US20150272633A1 - Screw with anchor features - Google Patents

Screw with anchor features Download PDF

Info

Publication number
US20150272633A1
US20150272633A1 US14/739,266 US201514739266A US2015272633A1 US 20150272633 A1 US20150272633 A1 US 20150272633A1 US 201514739266 A US201514739266 A US 201514739266A US 2015272633 A1 US2015272633 A1 US 2015272633A1
Authority
US
United States
Prior art keywords
screw
expandable
bone
fins
surgical method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/739,266
Inventor
Sean Suh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Globus Medical Inc
Original Assignee
Globus Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Globus Medical Inc filed Critical Globus Medical Inc
Priority to US14/739,266 priority Critical patent/US20150272633A1/en
Assigned to GLOBUS MEDICAL, INC. reassignment GLOBUS MEDICAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SUH, SEAN
Publication of US20150272633A1 publication Critical patent/US20150272633A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7097Stabilisers comprising fluid filler in an implant, e.g. balloon; devices for inserting or filling such implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/844Fasteners therefor or fasteners being internal fixation devices with expandable anchors or anchors having movable parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B17/864Pins or screws or threaded wires; nuts therefor hollow, e.g. with socket or cannulated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/8802Equipment for handling bone cement or other fluid fillers
    • A61B17/8805Equipment for handling bone cement or other fluid fillers for introducing fluid filler into bone or extracting it
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/8802Equipment for handling bone cement or other fluid fillers
    • A61B17/8805Equipment for handling bone cement or other fluid fillers for introducing fluid filler into bone or extracting it
    • A61B17/8811Equipment for handling bone cement or other fluid fillers for introducing fluid filler into bone or extracting it characterised by the introducer tip, i.e. the part inserted into or onto the bone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/8802Equipment for handling bone cement or other fluid fillers
    • A61B17/8841Tools specially adapted to engage a prosthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B2017/8655Pins or screws or threaded wires; nuts therefor with special features for locking in the bone

Definitions

  • the disclosure is directed to bone screws with anchor features for securely attaching to low-quality cancellous bone, such as may be found, for example, in a vertebral body of a patient with osteoporosis.
  • Pedicle screws are commonly used to attach a spinal fusion apparatus to a patient's spine.
  • the screws are bored through cortical bone of the pedicle and place their distal portion in the cancellous bone of the vertebral body.
  • the portion of the screw anchored in cancellous bone may be as much as 50%.
  • the quality of the cancellous bone is therefore critical for the overall stability of the apparatus, as well as the success of the fusion process.
  • the disclosure meets the foregoing need and allows pedicle screws to anchor in low-quality cancellous bone using an expandable container, which results in a significant increase in the strength of bone-screw interface and the overall anchorage of the screw, as well as other advantages apparent from the discussion herein.
  • a screw for anchoring in cancellous bone includes a screw head including a receiver, a distal end, and a proximal end, the proximal end configured as a channel, an anchoring device connected to the distal end of the screw head, an expandable container, and a neck connected to the temporary anchoring device and to the expandable container.
  • a screw for anchoring in cancellous bone includes a body including bone threads, a proximal end, and a distal end, a head connected to the proximal end of the body, the head including a receiver, a plurality of fins connected to the distal end of the body, the plurality of fins defining an interior space, and an expandable container located in the interior space.
  • one aspect of the disclosure describes a screw for anchoring in cancellous or other low-quality bone.
  • the screw includes a screw head with a receiver, a proximal end and a distal end.
  • the proximal end of the screw head is structured to accept a lumen.
  • a temporary anchoring device is connected to the distal end of the screw head.
  • the screw also includes an expandable container and a neck connecting the temporary anchoring device to the expandable container.
  • a delivery adapter may be provided for connecting to the screw.
  • the delivery adapter may include a body with a proximal end and a distal end.
  • a connector for connecting to the screw's receiver may be attached to the distal end of the body.
  • the delivery adapter may also include a filler arm connected to the body.
  • the temporary anchoring device may include bone threads.
  • the receiver may include female threads.
  • the screw itself may also include a lumen from the receiver to the distal end of the expandable container, as well as a filler space from the receiver to the expandable container.
  • the filler space may be in fluid communication with the expandable container and separate and distinct from the lumen.
  • a delivery adapter may be provided for connecting to the screw.
  • the delivery adapter may include a body with a proximal end and a distal end.
  • a connector for connecting to the screw's receiver may be attached to the distal end of the body.
  • a stylet port may be located on the proximal end of the body.
  • a lumen may connect the stylet port to the connector, and the lumen may be configured to connect to the lumen of the screw.
  • the delivery adapter may also include a filler arm, with both a proximal end and a distal end, connected to the body at the distal end of the filler arm.
  • a filler port may be connected to the proximal end of the filler arm.
  • a filler space, separate and distinct from the lumen, may connect the filler port to the connector. The filler space may be configured to connect to the filler space of the screw at the connector.
  • a screw for anchoring in cancellous or other low-quality bone includes a body with bone threads, a proximal end, and a distal end.
  • a screw head which includes a receiver, is connected to the proximal end of the body.
  • Two or more fins are connected to the distal end of the body and define an interior space.
  • An expandable container is located in the interior space.
  • the head of the screw may be structured to accept a polyaxial connector, a monoaxial connector, a fixed connector, or any combination thereof.
  • the screw may also include a screw tip connected to the distal end of one or more fins.
  • the fins may include bone threads.
  • the receiver may be structured to connect to a fluid source and receive a pressurized fluid, which may be saline, polymethyl methacrylate (PMMA), or any other appropriate gas or liquid.
  • the screw may include a channel structured and arranged to convey the pressurized fluid from the receiver to the expandable container.
  • the expandable container may be expanded by the pressurized fluid. The expansion of the container may cause the deformation of one or more of the fins.
  • FIG. 1 shows a screw with containment features and a delivery adapter, according to an aspect of the disclosure
  • FIG. 2 shows the screw of FIG. 1 without the delivery adapter
  • FIG. 3 shows the delivery adapter of FIG. 1 ;
  • FIG. 4 shows a cutaway view of the assembled screw with containment features of FIG. 1 attached to a bone, such as a vertebra;
  • FIG. 5A shows an expanding screw, according to an additional aspect of the disclosure
  • FIG. 5B shows the screw of FIG. 5A after the container has been filled from a fluid source
  • FIG. 6A shows a cutaway view of the screw of FIG. 5A with the fins in a straight position and a collapsed container;
  • FIG. 6B shows a cutaway view of the screw of FIG. 5A with the container expanded and the fins in a deformed configuration
  • FIG. 7A shows a screw that is constructed without a tip
  • FIG. 7B shows the distal end of the screw of FIG. 7A with the container in a collapsed position and the fins in a straight configuration.
  • FIG. 1 shows a screw with containment features 100 , according to an aspect of the disclosure.
  • the screw with containment features 100 may include two main components, a screw 200 and a filler delivery adapter 300 .
  • the screw 200 may be further divided into a distal portion 210 and a proximal portion 220 , connected by a neck 230 .
  • FIG. 2 further shows the screw 200 according to an aspect of the disclosure.
  • the distal portion 210 of the screw 200 may include an expandable container 211 attached to the neck 230 .
  • the distal portion 210 may also include an inner lumen 212 through the container 211 .
  • the lumen 212 may be sealed against the container 211 , defining a separate space.
  • the lumen 212 may be connected to a distal port 213 .
  • the neck may be connected to the proximal portion 220 of the screw 200 . More specifically, the neck 230 may be connected to a temporary anchoring device (TAD) 222 .
  • the TAD 222 may serve to temporarily anchor the screw to the bone prior to filling the container 211 with bone cement or other suitable compound.
  • the TAD 222 may include bone threads or any other device suitable construction for temporarily anchoring the screw 100 in the bone, as will be understood by one skilled in the art.
  • the proximal portion may also include a screw head 221 .
  • the screw head 221 may provide an appropriate interface for connecting the screw 200 to a rod or other device (not shown).
  • the interface may be, for example, a polyaxial connector, a monoaxial connector, or a fixed connector. Other connector types are contemplated and may be used without departing from the spirit and scope of the specification and the claims.
  • the proximal portion 220 may further include a receiver 223 for connecting to a delivery adapter.
  • FIG. 3 shows a filler delivery adapter 300 , according to an aspect of the disclosure.
  • the delivery adapter 300 may include a body 304 that interfaces with the screw 200 at the body's distal end.
  • the body may include a connector 303 that removable attaches to the receiver 223 on the screw.
  • the distal end of the adapter 300 may provide an interface lumen port 301 , which may connect to the lumen of the screw, and an interface filler port 302 , which may connect to the filler space of the screw.
  • the proximal end of the adapter 300 may include a stylet port 307 , which may connect to the lumen of the delivery adapter 300 and, in turn, the interface lumen port 301 .
  • the delivery adapter 300 may also include a filler arm 305 , which may end in a filler port 306 .
  • FIG. 4 shows a cutaway view of the assembled screw with containment features 100 attached to a bone 400 , such as a vertebra.
  • the inner lumen 212 , lumen space 231 , and inner lumen 308 may form a continuous space, which may allow, e.g., a straight instrument to be passed through the screw 100 to the bone on the distal side.
  • Stylet port 307 may provide access to the lumen on the proximal end, and distal port 213 may provide access to the lumen on the distal end.
  • filler space 309 and filler space 232 may connect filler port 306 to container 211 .
  • a supply of filler (not shown) may be connected to filler port 306 and may be provided to the container 211 under pressure.
  • the container 211 may expand and compress cancellous bone in the surrounding vertebral body or other bone 400 . Expansion of the container 211 , which may be accompanied by solidification of the filler, may create a solid, stable anchor for the screw 100 in low-quality cancellous bone.
  • the container 211 itself may prevent extravasation of the filler, further enhancing the stability of the anchor.
  • the filler may be bone cement, also known as polymethyl methacrylate (PMMA).
  • PMMA polymethyl methacrylate
  • Other suitable compounds may be used, as will be understood by one skilled in the art, without departing from the spirit and scope of the specification or the claims.
  • the screw with containment features 100 may be temporarily anchored to the bone 400 with temporary anchoring device (TAD) 222 .
  • TAD temporary anchoring device
  • a pilot hole may be drilled in the bone 400 .
  • the pilot hole may be deep enough into the bone to additionally accommodate neck 230 and distal portion 210 .
  • Delivery adapter 300 may attach to screw 200 at an interface.
  • the interface may include male threads on the distal portion of the filler adapter and corresponding female threads in the proximal portion 220 of the screw 200 .
  • the interface may also align lumen space 231 with inner lumen 308 , as well as filler space 232 with filler space 309 .
  • the corresponding sections may be in fluid communication with one another but not with the other sections.
  • lumen space 231 and inner lumen 308 may form a continuous space that is not in fluid communication with the continuous space formed by filler space 232 and filler space 309 .
  • FIG. 5A shows an expanding screw, according to an additional aspect of the disclosure. Expanding screws may also be used to anchor a spinal fusion apparatus in low-quality cancellous bone. Expanding screw 500 may include a head 501 that may be used with, e.g., a polyaxial connector, a monoaxial connector, or a fixed connector for attaching to a rod. Other connector types are contemplated and may be used without departing from the spirit and scope of the specification and the claims.
  • the head 501 may also provide a receiver 502 for a fluid source 600 .
  • Fluid source 600 may include a reservoir 603 , a connector 602 for attaching to the receiver 502 , and a tube 601 connecting the connector 602 to the reservoir 603 .
  • Reservoir 603 may provide a fluid under pressure to connector 602 .
  • Reservoir 603 may pressurize the fluid through any appropriate means, as will be understood by one skilled in the art. Examples include a syringe and a mechanical compressor.
  • the reservoir 603 may be manual, mechanical, or powered.
  • the body 503 of the screw 500 may include one or more bone threads 504 .
  • the bone threads 504 may be continuous with bone threads 506 associated with a plurality of fins 505 , which may be located distal of the screw body 503 .
  • the distal end of screw 500 may terminate in a screw tip 507 .
  • FIG. 5B shows the screw 500 after container 508 has been filled from fluid source 600 .
  • Connector 602 may be attached to receiver 502 , and a fluid from reservoir 603 may be supplied to container 508 under pressure. Expansion of container 508 may cause fins 505 to change shape or deform, assuming a more curved or spherical shape.
  • Container 508 may push fins 505 outward into, e.g., cancellous bone inside a vertebral body. Compression of the cancellous bone may provide fins 505 greater purchase than the fins 505 may have had in non-compressed bone.
  • Bone threads 506 located on fins 505 , may further provide increased purchase.
  • Screw 500 and fins 505 in particular, may be constructed from a material that will retain its altered or expanded shape, even when pressure is withdrawn from container 508 .
  • container 508 may be filled with, e.g., saline, which may be drained from the container after the fins 505 have been expanded.
  • container 508 may be filled with, e.g., bone cement (PMMA), which would provide an enlarged anchor as well as additional retention in low-quality bone provided by threads 506 .
  • PMMA bone cement
  • FIG. 6A shows a cutaway view of the screw 500 with the fins 505 in a straight position and a collapsed container 508 .
  • Connector 602 may be attached to receiver 502 to supply a pressurized fluid to the screw 500 . From the receiver 502 , the fluid may travel along channel 511 to container 508 .
  • a fitting 512 may connect the channel 511 to the container 508 .
  • a spacer 509 may be disposed within the container 508 . The spacer 509 and/or container 508 may terminate in a knob 510 located near the tip 507 of the screw 500 .
  • the spacer 509 may be constructed of a rigid material and may serve to help keep tip 507 at a fixed distance from screw head 501 while fins 505 are undergoing deformation as a result of the expansion of the container 508 . Without spacer 509 in place, expansion of the container 508 and deformation of fins 505 may tend to draw tip 507 and screw head 501 closer together.
  • This contracting of the screw 500 may weaken the integrity of the bone-screw interface, thus reducing the strength of the anchor in the bone. For example, contracting the screw may cause the grooves of the bone threads to widen, allowing the screw to wiggle or pivot in the bone.
  • FIG. 6B shows a cutaway view of the screw 500 with the container 508 expanded and the fins 505 in a deformed configuration.
  • spacer 509 may keep the screw at a single length during expansion of the container 508 and deformation of the fins 505 .
  • the fins 505 may become thinner, as seen in FIG. 6B .
  • Screw 500 may be shipped in a pre-assembled format, with the expansion apparatus, which may include knob 510 , container 508 , fitting 512 , channel 511 , and receiver 502 , already inserted into the screw or integrally formed therein.
  • the expansion apparatus may be reusable, which may reduce the cost of the device.
  • the expansion apparatus maybe inserted into the screw housing through an aperture in the screw head 501 . Once the container 508 has been filled, the fluid is allowed to drain, either naturally or with mechanical assistance, and the expansion apparatus is removed for use with another screw.
  • FIG. 7A shows a screw 500 a that is constructed without a tip 507 .
  • the tip 507 may not be necessary to successfully attach the screw to a bone.
  • the deformed fins may assume a more convex shape, rather than the curved or spherical shape seen in previous aspects.
  • Space 509 and knob 510 may still be present in this aspect. Here, they may serve to control or guide expansion of the container 508 .
  • FIG. 7B shows the distal end of the screw 500 a with the container in a collapsed position and the fins 505 in a straight configuration.
  • screw 500 a As screw 500 a is open on its distal end, it may be assembled from the distal end.
  • the expansion apparatus which may include knob 510 , container 508 , fitting 512 , channel 511 , and receiver 502 , may be inserted through the aperture created by the removal of the screw tip.

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Neurology (AREA)
  • Surgical Instruments (AREA)

Abstract

Screws for anchoring in cancellous or other low-quality bone are described. One type of screw addresses the problem of extravasation of bone cement when filling an area of low-quality bone. The screw includes an expandable container for retaining bone cement and anchoring the screw in low-quality bone. The screw also includes an anchoring device for holding the screw in place in the bone while it is supplied with bone cement or other appropriate filler. The screw further includes a head for connecting to a rod or other apparatus. A second type of screw uses an expandable container to deform two or more fins to compress cancellous bone and/or anchor in cancellous bone.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation application of U.S. patent application Ser. No. 13/271,373, filed Oct. 12, 2011, which is hereby incorporated by reference in its entirety.
  • BACKGROUND OF THE DISCLOSURE
  • 1. Field of the Disclosure
  • The disclosure is directed to bone screws with anchor features for securely attaching to low-quality cancellous bone, such as may be found, for example, in a vertebral body of a patient with osteoporosis.
  • 2. Related Art
  • Pedicle screws are commonly used to attach a spinal fusion apparatus to a patient's spine. The screws are bored through cortical bone of the pedicle and place their distal portion in the cancellous bone of the vertebral body. The portion of the screw anchored in cancellous bone may be as much as 50%. The quality of the cancellous bone is therefore critical for the overall stability of the apparatus, as well as the success of the fusion process.
  • Several factors may reduce the quality of the cancellous bone. The patient's age is the most common factor. Diseases and injuries, such as, e.g., osteoporosis and vertical compression fractures, can further reduce the bone quality.
  • In patients with low-quality cancellous bone, the common solution is to fill the vertebral body with bone cement. This solution, however, may be inadequate due to extravasation of the bone cement. In addition, low-quality cortical bone on the outside of the vertebral body may not retain all of bone cement.
  • Accordingly, there is a need for pedicle screws that retain bone cement or provide alternative means of anchoring in low-quality bone.
  • SUMMARY OF THE DISCLOSURE
  • The disclosure meets the foregoing need and allows pedicle screws to anchor in low-quality cancellous bone using an expandable container, which results in a significant increase in the strength of bone-screw interface and the overall anchorage of the screw, as well as other advantages apparent from the discussion herein.
  • According to one aspect of the invention, a screw for anchoring in cancellous bone includes a screw head including a receiver, a distal end, and a proximal end, the proximal end configured as a channel, an anchoring device connected to the distal end of the screw head, an expandable container, and a neck connected to the temporary anchoring device and to the expandable container.
  • According to another aspect of the invention, a screw for anchoring in cancellous bone includes a body including bone threads, a proximal end, and a distal end, a head connected to the proximal end of the body, the head including a receiver, a plurality of fins connected to the distal end of the body, the plurality of fins defining an interior space, and an expandable container located in the interior space.
  • Accordingly, one aspect of the disclosure describes a screw for anchoring in cancellous or other low-quality bone. The screw includes a screw head with a receiver, a proximal end and a distal end. The proximal end of the screw head is structured to accept a lumen. A temporary anchoring device is connected to the distal end of the screw head. The screw also includes an expandable container and a neck connecting the temporary anchoring device to the expandable container.
  • A delivery adapter may be provided for connecting to the screw. The delivery adapter may include a body with a proximal end and a distal end. A connector for connecting to the screw's receiver may be attached to the distal end of the body. The delivery adapter may also include a filler arm connected to the body.
  • The temporary anchoring device may include bone threads. The receiver may include female threads. The screw itself may also include a lumen from the receiver to the distal end of the expandable container, as well as a filler space from the receiver to the expandable container. The filler space may be in fluid communication with the expandable container and separate and distinct from the lumen.
  • A delivery adapter may be provided for connecting to the screw. The delivery adapter may include a body with a proximal end and a distal end. A connector for connecting to the screw's receiver may be attached to the distal end of the body. A stylet port may be located on the proximal end of the body. A lumen may connect the stylet port to the connector, and the lumen may be configured to connect to the lumen of the screw. The delivery adapter may also include a filler arm, with both a proximal end and a distal end, connected to the body at the distal end of the filler arm. A filler port may be connected to the proximal end of the filler arm. A filler space, separate and distinct from the lumen, may connect the filler port to the connector. The filler space may be configured to connect to the filler space of the screw at the connector.
  • According to another aspect of the disclosure, a screw for anchoring in cancellous or other low-quality bone includes a body with bone threads, a proximal end, and a distal end. A screw head, which includes a receiver, is connected to the proximal end of the body. Two or more fins are connected to the distal end of the body and define an interior space. An expandable container is located in the interior space.
  • The head of the screw may be structured to accept a polyaxial connector, a monoaxial connector, a fixed connector, or any combination thereof. The screw may also include a screw tip connected to the distal end of one or more fins. The fins may include bone threads. The receiver may be structured to connect to a fluid source and receive a pressurized fluid, which may be saline, polymethyl methacrylate (PMMA), or any other appropriate gas or liquid. The screw may include a channel structured and arranged to convey the pressurized fluid from the receiver to the expandable container. The expandable container may be expanded by the pressurized fluid. The expansion of the container may cause the deformation of one or more of the fins.
  • Additional features, advantages, and aspects of the disclosure may be set forth or apparent from consideration of the following detailed description, drawings, and claims. Moreover, it is to be understood that both the foregoing summary of the disclosure and the following detailed description are exemplary and intended to provide further explanation without limiting the scope of the disclosure as claimed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are included to provide a further understanding of the disclosure, are incorporated in and constitute a part of this specification, illustrate aspects of the disclosure and together with the detailed description serve to explain the principles of the disclosure. No attempt is made to show structural details of the disclosure in more detail than may be necessary for a fundamental understanding of the disclosure and the various ways in which it may be practiced. In the drawings:
  • FIG. 1 shows a screw with containment features and a delivery adapter, according to an aspect of the disclosure;
  • FIG. 2 shows the screw of FIG. 1 without the delivery adapter;
  • FIG. 3 shows the delivery adapter of FIG. 1;
  • FIG. 4 shows a cutaway view of the assembled screw with containment features of FIG. 1 attached to a bone, such as a vertebra;
  • FIG. 5A shows an expanding screw, according to an additional aspect of the disclosure;
  • FIG. 5B shows the screw of FIG. 5A after the container has been filled from a fluid source;
  • FIG. 6A shows a cutaway view of the screw of FIG. 5A with the fins in a straight position and a collapsed container;
  • FIG. 6B shows a cutaway view of the screw of FIG. 5A with the container expanded and the fins in a deformed configuration;
  • FIG. 7A shows a screw that is constructed without a tip; and
  • FIG. 7B shows the distal end of the screw of FIG. 7A with the container in a collapsed position and the fins in a straight configuration.
  • DETAILED DESCRIPTION OF THE DISCLOSURE
  • The aspects of the disclosure and the various features and advantageous details thereof are explained more fully with reference to the non-limiting aspects and examples that are described and/or illustrated in the accompanying drawings and detailed in the following description. It should be noted that the features illustrated in the drawings are not necessarily drawn to scale, and features of one aspect may be employed with other aspects as the skilled artisan would recognize, even if not explicitly stated herein. Descriptions of well-known components and processing techniques may be omitted so as to not unnecessarily obscure the aspects of the disclosure. The examples used herein are intended merely to facilitate an understanding of ways in which the disclosure may be practiced and to further enable those of skill in the art to practice the aspects of the disclosure. Accordingly, the examples and aspects herein should not be construed as limiting the scope of the disclosure, which is defined solely by the appended claims and applicable law. Moreover, it is noted that like reference numerals represent similar parts throughout the several views of the drawings.
  • FIG. 1 shows a screw with containment features 100, according to an aspect of the disclosure. The screw with containment features 100 may include two main components, a screw 200 and a filler delivery adapter 300. As seen in FIG. 2, the screw 200 may be further divided into a distal portion 210 and a proximal portion 220, connected by a neck 230.
  • FIG. 2 further shows the screw 200 according to an aspect of the disclosure. The distal portion 210 of the screw 200 may include an expandable container 211 attached to the neck 230. The distal portion 210 may also include an inner lumen 212 through the container 211. The lumen 212 may be sealed against the container 211, defining a separate space. The lumen 212 may be connected to a distal port 213.
  • The neck may be connected to the proximal portion 220 of the screw 200. More specifically, the neck 230 may be connected to a temporary anchoring device (TAD) 222. The TAD 222 may serve to temporarily anchor the screw to the bone prior to filling the container 211 with bone cement or other suitable compound. The TAD 222 may include bone threads or any other device suitable construction for temporarily anchoring the screw 100 in the bone, as will be understood by one skilled in the art. The proximal portion may also include a screw head 221. The screw head 221 may provide an appropriate interface for connecting the screw 200 to a rod or other device (not shown). The interface may be, for example, a polyaxial connector, a monoaxial connector, or a fixed connector. Other connector types are contemplated and may be used without departing from the spirit and scope of the specification and the claims. The proximal portion 220 may further include a receiver 223 for connecting to a delivery adapter.
  • FIG. 3 shows a filler delivery adapter 300, according to an aspect of the disclosure. The delivery adapter 300 may include a body 304 that interfaces with the screw 200 at the body's distal end. In particular, the body may include a connector 303 that removable attaches to the receiver 223 on the screw. The distal end of the adapter 300 may provide an interface lumen port 301, which may connect to the lumen of the screw, and an interface filler port 302, which may connect to the filler space of the screw. The proximal end of the adapter 300 may include a stylet port 307, which may connect to the lumen of the delivery adapter 300 and, in turn, the interface lumen port 301. The delivery adapter 300 may also include a filler arm 305, which may end in a filler port 306.
  • FIG. 4 shows a cutaway view of the assembled screw with containment features 100 attached to a bone 400, such as a vertebra. In the fully assembled device, the inner lumen 212, lumen space 231, and inner lumen 308 may form a continuous space, which may allow, e.g., a straight instrument to be passed through the screw 100 to the bone on the distal side. Stylet port 307 may provide access to the lumen on the proximal end, and distal port 213 may provide access to the lumen on the distal end.
  • Similarly, filler space 309 and filler space 232 may connect filler port 306 to container 211. A supply of filler (not shown) may be connected to filler port 306 and may be provided to the container 211 under pressure. As the filler enters the container 211, the container 211 may expand and compress cancellous bone in the surrounding vertebral body or other bone 400. Expansion of the container 211, which may be accompanied by solidification of the filler, may create a solid, stable anchor for the screw 100 in low-quality cancellous bone. The container 211 itself may prevent extravasation of the filler, further enhancing the stability of the anchor. In one aspect of the disclosure, the filler may be bone cement, also known as polymethyl methacrylate (PMMA). Other suitable compounds may be used, as will be understood by one skilled in the art, without departing from the spirit and scope of the specification or the claims.
  • The screw with containment features 100 may be temporarily anchored to the bone 400 with temporary anchoring device (TAD) 222. For aspects of the disclosure where the TAD includes bone threads, a pilot hole may be drilled in the bone 400. The pilot hole may be deep enough into the bone to additionally accommodate neck 230 and distal portion 210.
  • Delivery adapter 300 may attach to screw 200 at an interface. In certain aspects of the disclosure, the interface may include male threads on the distal portion of the filler adapter and corresponding female threads in the proximal portion 220 of the screw 200. The interface may also align lumen space 231 with inner lumen 308, as well as filler space 232 with filler space 309. The corresponding sections may be in fluid communication with one another but not with the other sections. In other words, lumen space 231 and inner lumen 308 may form a continuous space that is not in fluid communication with the continuous space formed by filler space 232 and filler space 309.
  • FIG. 5A shows an expanding screw, according to an additional aspect of the disclosure. Expanding screws may also be used to anchor a spinal fusion apparatus in low-quality cancellous bone. Expanding screw 500 may include a head 501 that may be used with, e.g., a polyaxial connector, a monoaxial connector, or a fixed connector for attaching to a rod. Other connector types are contemplated and may be used without departing from the spirit and scope of the specification and the claims.
  • The head 501 may also provide a receiver 502 for a fluid source 600. Fluid source 600 may include a reservoir 603, a connector 602 for attaching to the receiver 502, and a tube 601 connecting the connector 602 to the reservoir 603. Reservoir 603 may provide a fluid under pressure to connector 602. Reservoir 603 may pressurize the fluid through any appropriate means, as will be understood by one skilled in the art. Examples include a syringe and a mechanical compressor. The reservoir 603 may be manual, mechanical, or powered.
  • The body 503 of the screw 500 may include one or more bone threads 504. The bone threads 504 may be continuous with bone threads 506 associated with a plurality of fins 505, which may be located distal of the screw body 503. The distal end of screw 500 may terminate in a screw tip 507.
  • FIG. 5B shows the screw 500 after container 508 has been filled from fluid source 600. Connector 602 may be attached to receiver 502, and a fluid from reservoir 603 may be supplied to container 508 under pressure. Expansion of container 508 may cause fins 505 to change shape or deform, assuming a more curved or spherical shape. Container 508 may push fins 505 outward into, e.g., cancellous bone inside a vertebral body. Compression of the cancellous bone may provide fins 505 greater purchase than the fins 505 may have had in non-compressed bone. Bone threads 506, located on fins 505, may further provide increased purchase.
  • Screw 500, and fins 505 in particular, may be constructed from a material that will retain its altered or expanded shape, even when pressure is withdrawn from container 508. Accordingly, container 508 may be filled with, e.g., saline, which may be drained from the container after the fins 505 have been expanded. Alternatively, container 508 may be filled with, e.g., bone cement (PMMA), which would provide an enlarged anchor as well as additional retention in low-quality bone provided by threads 506.
  • FIG. 6A shows a cutaway view of the screw 500 with the fins 505 in a straight position and a collapsed container 508. Connector 602 may be attached to receiver 502 to supply a pressurized fluid to the screw 500. From the receiver 502, the fluid may travel along channel 511 to container 508. A fitting 512 may connect the channel 511 to the container 508. A spacer 509 may be disposed within the container 508. The spacer 509 and/or container 508 may terminate in a knob 510 located near the tip 507 of the screw 500.
  • The spacer 509 may be constructed of a rigid material and may serve to help keep tip 507 at a fixed distance from screw head 501 while fins 505 are undergoing deformation as a result of the expansion of the container 508. Without spacer 509 in place, expansion of the container 508 and deformation of fins 505 may tend to draw tip 507 and screw head 501 closer together. This contracting of the screw 500 may weaken the integrity of the bone-screw interface, thus reducing the strength of the anchor in the bone. For example, contracting the screw may cause the grooves of the bone threads to widen, allowing the screw to wiggle or pivot in the bone.
  • FIG. 6B shows a cutaway view of the screw 500 with the container 508 expanded and the fins 505 in a deformed configuration. As described above, spacer 509 may keep the screw at a single length during expansion of the container 508 and deformation of the fins 505. To accommodate their increased length, the fins 505 may become thinner, as seen in FIG. 6B.
  • Screw 500 may be shipped in a pre-assembled format, with the expansion apparatus, which may include knob 510, container 508, fitting 512, channel 511, and receiver 502, already inserted into the screw or integrally formed therein. Alternatively, the expansion apparatus may be reusable, which may reduce the cost of the device. According to this aspect, the expansion apparatus maybe inserted into the screw housing through an aperture in the screw head 501. Once the container 508 has been filled, the fluid is allowed to drain, either naturally or with mechanical assistance, and the expansion apparatus is removed for use with another screw.
  • FIG. 7A shows a screw 500 a that is constructed without a tip 507. As the screw 500 a may be inserted into a pre-drilled hole, the tip 507 may not be necessary to successfully attach the screw to a bone. Without a tip to hold the fins 505 together at the distal end, the deformed fins may assume a more convex shape, rather than the curved or spherical shape seen in previous aspects. Space 509 and knob 510 may still be present in this aspect. Here, they may serve to control or guide expansion of the container 508.
  • FIG. 7B shows the distal end of the screw 500 a with the container in a collapsed position and the fins 505 in a straight configuration. As screw 500 a is open on its distal end, it may be assembled from the distal end. The expansion apparatus, which may include knob 510, container 508, fitting 512, channel 511, and receiver 502, may be inserted through the aperture created by the removal of the screw tip.
  • While the disclosure has been described in terms of exemplary aspects, those skilled in the art will recognize that the disclosure can be practiced with modifications in the spirit and scope of the appended claims. These examples given above are merely illustrative and are not meant to be an exhaustive list of all possible designs, aspects, applications or modifications of the disclosure.

Claims (20)

What is claimed is:
1. A surgical method comprising:
inserting an expandable screw into bone, wherein the expandable screw comprises:
a head portion;
a body portion distally attached to the head portion; and
an expandable portion distally attached to the body portion;
attaching a fluid source to the expandable screw, wherein the fluid source comprises:
a reservoir; and
a tube extending from the reservoir; and
injecting a fluid source into the expandable screw, thereby causing the expandable portion to expand in width within the bone.
2. The surgical method of claim 1, wherein the head portion comprises a receiver for receiving the fluid source.
3. The surgical method of claim 1, wherein the body portion comprises threads.
4. The surgical method of claim 1, wherein the expandable portion comprises a plurality of fins that can change shape or deform.
5. The surgical method of claim 4, wherein the expandable screw further comprises a container received within the plurality of fins, wherein the container is configured to receive fluid from the fluid source to push the plurality of fins outward into bone.
6. The surgical method of claim 5, wherein the fluid received in the container is bone cement (PMMA).
7. The surgical method of claim 1, wherein the expandable screw is inserted into cancellous bone.
8. The surgical method of claim 1, wherein the expandable portion comprises one or more fins connected to a knob.
9. The surgical method of claim 1, wherein the expandable portion comprises one or more fins that can assume a convex shape when expanded.
10. The surgical method of claim 1, wherein the reservoir is pressurized.
11. A surgical method comprising:
inserting an expandable screw into bone, wherein the expandable screw comprises:
a head portion;
a body portion distally attached to the head portion; and
an expandable portion distally attached to the body portion, wherein a container is received within the expandable portion;
attaching a fluid source to the expandable screw, wherein the fluid source comprises:
a reservoir; and
a tube extending from the reservoir; and
injecting a fluid into the expandable screw, thereby causing the expandable portion to expand in width within the bone.
12. The surgical method of claim 11, wherein the expandable screw is inserted at least in part into cancellous bone.
13. The surgical method of claim 11, wherein the body portion comprises a first set of threads and the expandable portion comprises a second set of threads, wherein the first set of threads are continuous with the second set of threads.
14. The surgical method of claim 11, wherein the expandable portion comprises a plurality of fins that terminate in a screw tip.
15. The surgical method of claim 11, wherein the expandable portion comprises a plurality of fins that are capable of expansion, wherein fluid is injected into the container, which causes the plurality of fins to expand outwardly.
16. The surgical method of claim 11, wherein expansion of the expandable screw causes compression of cancellous bone.
17. The surgical method of claim 11, wherein the expandable portion comprise a plurality of fins, wherein the fins are capable of curving convexly.
18. The surgical method of claim 11, wherein the expandable portion comprises a plurality of fins capable of expansion, wherein in a non-expanded state the fins are straight and in an expanded state the fins are curved.
19. The surgical method of claim 11, wherein the reservoir is pressurized.
20. The surgical method of claim 11, wherein the fluid received in the container is bone cement (PMMA).
US14/739,266 2011-10-12 2015-06-15 Screw with anchor features Abandoned US20150272633A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/739,266 US20150272633A1 (en) 2011-10-12 2015-06-15 Screw with anchor features

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/271,373 US9084647B2 (en) 2011-10-12 2011-10-12 Screw with anchor features
US14/739,266 US20150272633A1 (en) 2011-10-12 2015-06-15 Screw with anchor features

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/271,373 Continuation US9084647B2 (en) 2011-10-12 2011-10-12 Screw with anchor features

Publications (1)

Publication Number Publication Date
US20150272633A1 true US20150272633A1 (en) 2015-10-01

Family

ID=48086502

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/271,373 Active 2032-04-29 US9084647B2 (en) 2011-10-12 2011-10-12 Screw with anchor features
US14/739,266 Abandoned US20150272633A1 (en) 2011-10-12 2015-06-15 Screw with anchor features

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/271,373 Active 2032-04-29 US9084647B2 (en) 2011-10-12 2011-10-12 Screw with anchor features

Country Status (1)

Country Link
US (2) US9084647B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200197059A1 (en) * 2018-12-20 2020-06-25 Industrial Technology Research Institute Osteo-implant

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7648523B2 (en) 2004-12-08 2010-01-19 Interventional Spine, Inc. Method and apparatus for spinal stabilization
US7857832B2 (en) 2004-12-08 2010-12-28 Interventional Spine, Inc. Method and apparatus for spinal stabilization
US8821506B2 (en) * 2006-05-11 2014-09-02 Michael David Mitchell Bone screw
US9724140B2 (en) 2010-06-02 2017-08-08 Wright Medical Technology, Inc. Tapered, cylindrical cruciform hammer toe implant and method
US8608785B2 (en) 2010-06-02 2013-12-17 Wright Medical Technology, Inc. Hammer toe implant with expansion portion for retrograde approach
US9498273B2 (en) 2010-06-02 2016-11-22 Wright Medical Technology, Inc. Orthopedic implant kit
US20140067069A1 (en) 2012-08-30 2014-03-06 Interventional Spine, Inc. Artificial disc
US8945232B2 (en) 2012-12-31 2015-02-03 Wright Medical Technology, Inc. Ball and socket implants for correction of hammer toes and claw toes
US20140277169A1 (en) * 2013-03-14 2014-09-18 Nadi Salah Hibri Vertebral Implant
US9763802B2 (en) * 2013-03-14 2017-09-19 Atlas Spine, Inc. Transpedicular nucleus replacement system
US10610370B2 (en) * 2013-03-14 2020-04-07 Atlas Spine, Inc. Polyaxial cannulated screw
US9724139B2 (en) 2013-10-01 2017-08-08 Wright Medical Technology, Inc. Hammer toe implant and method
AU2014340051A1 (en) * 2013-10-23 2016-06-09 Extremity Medical Llc Devices and methods for bone fixation using an intramedullary fixation implant
US9474561B2 (en) 2013-11-19 2016-10-25 Wright Medical Technology, Inc. Two-wire technique for installing hammertoe implant
US9545274B2 (en) * 2014-02-12 2017-01-17 Wright Medical Technology, Inc. Intramedullary implant, system, and method for inserting an implant into a bone
US9498266B2 (en) 2014-02-12 2016-11-22 Wright Medical Technology, Inc. Intramedullary implant, system, and method for inserting an implant into a bone
CA2887570C (en) 2014-09-18 2018-05-01 Wright Medical Technology, Inc. Hammertoe implant and instrument
US10080597B2 (en) 2014-12-19 2018-09-25 Wright Medical Technology, Inc. Intramedullary anchor for interphalangeal arthrodesis
CN104905859B (en) * 2015-07-01 2017-11-24 上海凯利泰医疗科技股份有限公司 For the fixing device of Cruciate ligament reconstruction, fixing means and application method
EP4245234A3 (en) * 2017-04-21 2023-11-29 Stryker Corporation Stabilization system and implant for preventing relative motion between sections of tissue

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468243B1 (en) * 1999-08-25 2002-10-22 Nipro Corporation Balloon catheter
WO2010105196A1 (en) * 2009-03-13 2010-09-16 University Of Toledo Removable anchoring pedicle screw

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968306A (en) * 1989-07-07 1990-11-06 Advanced Cardiovascular Systems, Inc. Intravascular catheter having an adjustable length infusion section to delivery therapeutic fluid
US5346495A (en) * 1994-02-28 1994-09-13 Vargas Iii Joseph H Biomedical cement applicator
JPH0838618A (en) * 1994-07-29 1996-02-13 Nippon Zeon Co Ltd Balloon catheter for expanding celom and its production
US6214012B1 (en) * 1998-11-13 2001-04-10 Harrington Arthritis Research Center Method and apparatus for delivering material to a desired location
US7488320B2 (en) * 2001-11-01 2009-02-10 Renova Orthopedics, Llc Orthopaedic implant fixation using an in-situ formed anchor
US7354442B2 (en) * 2003-05-05 2008-04-08 Warsaw Orthopedic, Inc. Bone anchor and methods of using the same
WO2005041793A2 (en) * 2003-10-23 2005-05-12 Trans1, Inc. Spinal mobility preservation apparatus and method
US20080249604A1 (en) * 2007-03-30 2008-10-09 Brian Donovan Apparatus and method for medical procedures within a spine
US7789901B2 (en) * 2007-10-11 2010-09-07 Zimmer Gmbh Bone anchor system
WO2012177759A1 (en) * 2011-06-20 2012-12-27 Rdc Holdings, Llc System and method for repairing joints

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468243B1 (en) * 1999-08-25 2002-10-22 Nipro Corporation Balloon catheter
WO2010105196A1 (en) * 2009-03-13 2010-09-16 University Of Toledo Removable anchoring pedicle screw

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200197059A1 (en) * 2018-12-20 2020-06-25 Industrial Technology Research Institute Osteo-implant
CN111345880A (en) * 2018-12-20 2020-06-30 财团法人工业技术研究院 Bone implant
US10743926B2 (en) * 2018-12-20 2020-08-18 Industrial Technology Research Institute Osteo-implant

Also Published As

Publication number Publication date
US20130096634A1 (en) 2013-04-18
US9084647B2 (en) 2015-07-21

Similar Documents

Publication Publication Date Title
US20150272633A1 (en) Screw with anchor features
JP5653908B2 (en) Posterior spinal fixation
CN101530343B (en) Implant for stabilizing vertebrae or bones
US8808337B2 (en) Method and device for delivering medicine to bone
US8556949B2 (en) Hybrid bone fixation element and methods of using the same
CN100518682C (en) Expandable percutaneous sheath
CN101617953B (en) Cannulated bone anchor with plug member and tool for inserting the plug member into the bone anchor
US7608062B2 (en) Method and device for delivering medicine to bone
US20070299450A1 (en) Pedicle Screw and Device for Injecting Bone Cement into Bone
KR20120028873A (en) Minimally invasive spine augmentation and stabilization system and method
CA2733783A1 (en) Dynamic pedicle screw
US11033313B2 (en) Adjustable balloon including bone access tip
CN104815387A (en) Dilation vertebroplasty system
US20140316411A1 (en) Systems and methods for minimally invasive fracture reduction and fixation
US20120265210A1 (en) Vertebroplasty Curved Needle
US20110282348A1 (en) Device for fixation of bone, and device set comprising the same
CN204699233U (en) A kind of vertebral body augmentation formation system
KR101085074B1 (en) Bone compression equipment for kyphoplasty
CN106667563A (en) Pedicle screw capable of achieving infusion and fixing system thereof
CN105496534A (en) Novel interspinous fixing sleeve piece and usage method thereof
KR100465197B1 (en) Injection method for bone cement of a bone porosity and device thereof
KR200404913Y1 (en) Needle For Spine Surgery
KR200317729Y1 (en) Injection device for bone cement of a bone porosity
BR112016014802B1 (en) EXPANDABLE INTRAVERTEBRAL IMPLANT SYSTEM WITH POSTERIOR PEDICLE FIXATION

Legal Events

Date Code Title Description
AS Assignment

Owner name: GLOBUS MEDICAL, INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SUH, SEAN;REEL/FRAME:035837/0468

Effective date: 20111012

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION