US20150260726A1 - Systems and methods for management of medical condition - Google Patents

Systems and methods for management of medical condition Download PDF

Info

Publication number
US20150260726A1
US20150260726A1 US14/219,991 US201414219991A US2015260726A1 US 20150260726 A1 US20150260726 A1 US 20150260726A1 US 201414219991 A US201414219991 A US 201414219991A US 2015260726 A1 US2015260726 A1 US 2015260726A1
Authority
US
United States
Prior art keywords
kit
user
computer
casing
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/219,991
Inventor
Johnnie J. Refvik
Original Assignee
Johnnie J. Refvik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201361790984P priority Critical
Priority to US201361790583P priority
Priority to US201361791141P priority
Priority to US201361790453P priority
Priority to US14/217,385 priority patent/US9980671B2/en
Application filed by Johnnie J. Refvik filed Critical Johnnie J. Refvik
Priority to US14/219,991 priority patent/US20150260726A1/en
Publication of US20150260726A1 publication Critical patent/US20150260726A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150305Packages specially adapted for piercing devices or blood sampling devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0022Monitoring a patient using a global network, e.g. telephone networks, internet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150015Source of blood
    • A61B5/150022Source of blood for capillary blood or interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150267Modular design or construction, i.e. subunits are assembled separately before being joined together or the device comprises interchangeable or detachable modules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150358Strips for collecting blood, e.g. absorbent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15146Devices loaded with multiple lancets simultaneously, e.g. for serial firing without reloading, for example by use of stocking means.
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15186Devices loaded with a single lancet, i.e. a single lancet with or without a casing is loaded into a reusable drive device and then discarded after use; drive devices reloadable for multiple use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/157Devices characterised by integrated means for measuring characteristics of blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6898Portable consumer electronic devices, e.g. music players, telephones, tablet computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/7445Display arrangements, e.g. multiple display units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31533Dosing mechanisms, i.e. setting a dose
    • A61M5/31545Setting modes for dosing
    • A61M5/31548Mechanically operated dose setting member
    • A61M5/3155Mechanically operated dose setting member by rotational movement of dose setting member, e.g. during setting or filling of a syringe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/66Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • G06F3/04817Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance using icons
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object or an image, setting a parameter value or selecting a range
    • G06F3/04842Selection of a displayed object
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object or an image, setting a parameter value or selecting a range
    • G06F3/04847Interaction techniques to control parameter settings, e.g. interaction with sliders, dials
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M2005/3125Details specific display means, e.g. to indicate dose setting
    • A61M2005/3126Specific display means related to dosing

Abstract

Embodiments of the invention relate to a self-contained kit for medical condition monitoring and maintenance, such as the monitoring and maintenance of blood sugar levels. The kit is compact and includes components structurally retained therein for use without removal, wherein these components are normally separate and loose. Such components could include a glucose meter, an insulin pen and a lancing apparatus. Other embodiments of the invention relate to a computer system and method for monitoring a medical condition, monitoring a medical condition over time, correlating recorded results with environmental factors such as location, time and meals consumed. A method may also enable individual users to share information to provide support to one another.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of and claims priority under 35 U.S.C. §§119 and 120 to, U.S. patent application Ser. No. 14/217,385, filed on Mar. 17, 2014, which claims priority to U.S. Provisional Patent Application Ser. No. 61/790,453, filed on Mar. 15, 2013, U.S. Provisional Patent Application Ser. No. 61/790,583, filed on Mar. 15, 2013, U.S. Provisional Patent Application Ser. No. 61/790,984, filed on Mar. 15, 2013 and U.S. Provisional Patent Application Ser. No. 61/791,141, filed on Mar. 15, 2013, the disclosure(s) of which that are not inconsistent with the present disclosure are incorporated herein by reference.
  • BACKGROUND
  • Particular medical conditions require periodic monitoring by the individual with the condition. With respect to diabetics, they must monitor their blood glucose level. Depending upon the type (Type I or Type II) of diabetes and severity, an individual may monitor his/her insulin level several times per day (particularly before and/or after meals), daily, weekly or monthly. To monitor one's glucose level a person typically lances a fingertip or thumb tip (collectively, “fingertip”) to draw a drop of blood, place the blood on a test strip and insert the test strip into a device programmed to measure the glucose level (also referred to herein as “blood sugar” or “BS”). Depending upon the glucose level measured the person may inject him or herself with insulin, the amount of insulin being dependent upon the glucose measurement, or alternatively take an oral medication.
  • FIGS. A and B depict typical kits currently used by diabetics. FIG. 1 shows a kit with, among other things, lances, swabs, test strips and a glucose reader and FIG. 2 shows a kit that includes insulin pens (each of which contains insulin and can be adjusted to dispense a predetermined amount of insulin) and needles. Each kit is approximately 4″×5″×1½″ and many diabetics must carry both kits when traveling, or even when going to a restaurant. Hence, there is a need for a smaller, more compact manner for a diabetic to carry necessary testing and treatment supplies. There is also a need for a fast and simple way to effectuate the measurement of one's blood glucose level and for administering insulin (if required).
  • Diabetics can also benefit from a system and method that provides an historical record of blood sugar level and can correspond the history of blood glucose measurement to different meals and/or dining at particular restaurants. With this information a diabetic can select different restaurants and/or meals in the future. Further, a diabetic can quickly review, for example, in a graphical format his or her glucose level over a period of hours, days, a week, a month or any given period, to see and evaluate a history of how well he or she is controlling glucose levels.
  • SUMMARY
  • Embodiments of the present invention are directed to systems and methods for the management of a medical condition, and more particularly to the management of a medical condition that requires periodic monitoring. References herein are made to specific examples wherein the medical condition is diabetes. However, the concepts described herein are applicable to other medical conditions, including, but not limited to managing, cholesterol level, blood pressure, heart rate or function, sodium levels, potassium levels, creatinine levels, liver function, or other medical conditions.
  • Thus, the most preferred embodiments of the present disclosure variously address the monitoring and testing of blood glucose levels, the administration of insulin (if required), and a system and method for a diabetic to quickly see his/her glucose history, compare the history with restaurants and/or meals, and, if desired, to share information with others to form a support group.
  • A kit (also referred to herein sometimes as a “device”) according to aspects of the invention is self-contained and approximately 5″-6″ in length, 1″-1½″ wide and 1″-1½″ deep. The kit may include a first compartment that includes lances to lance a fingertip and test strips upon which blood is placed. The kit may have a second compartment that includes needles. The kit also includes a lancing apparatus, an insulin pen that preferably can be manually adjusted to administer a desired amount of insulin and a needle mount that communicates with the insulin pen. The kit also includes a glucose meter that determines the blood glucose level from the blood placed on a test strip.
  • A kit according to aspects of the invention replaces the two prior art kits described above, is small enough to fit in a pocket or a purse, and at some major components, such as the insulin pen, glucose meter and lancing apparatus, are self-contained within the kit and are not removed during use. During use a test strip is removed from a compartment of the kit and is positioned in a slot (or part) in the kit housing. The slot communicates with an opening in the glucose meter and when the test strip is inserted the glucose meter is activated. The person then exposes an end of the lancing apparatus (if not already exposed), which is preferably an opening in the kit housing, inside of which is a spring-loaded lance. The user presses a fingertip to the opening and presses a button on the kit housing. The button releases the lance for a predetermined distance so the lance slightly pricks the fingertip to draw blood.
  • When the fingertip is lanced the user places a drop of blood on the test strip and the glucose meter measures and provides the blood glucose level, preferably by a digital, electronic display. To conserve power, the glucose meter is preferably only activated when a test strip is inserted.
  • Depending on the blood glucose level, the user may wish to inject him or herself with insulin. The user would first adjust (or select) the amount of insulin to be injected by an adjustment device connected to the insulin pen. Then a needle is removed from the second compartment. In the embodiments shown, the insulin pen has an end opposite the adjustment device and this end receives a needle. Once the needle is received (or mounted) to the end of the insulin pen the user can inject insulin in a standard manner. Afterwards, the needle is removed and discarded and the kit is put away.
  • In another embodiment in the kit includes either a wired or wireless communication device to communicate with a mobile device (such as a smart phone) or a computer. Alternatively, the kit itself may have a processor and data storage to retain data. In either mode, the user's glucose readings can be automatically stored and/or transmitted. The information transmitted from the kit can include the glucose reading, time and date the reading was made, the amount of insulin injected, the glucose reading after the insulin injection, and environmental information, such as the location where the reading was taken, whether it was before or after a meal, the type of meal consumed, and the name of restaurant or other establishment where the meal was consumed. This information can be stored and utilized by a software program (either in the kit, a smart phone, computer, or one that is accessed via the internet by any such device): (a) to create a chart or graphical display of glucose readings over a given time period, and/or (b) correlate readings with different meals at different places to create a history for the user.
  • This data allows user to interactively track history and enter information about each blood sugar test/result. If the data is stored in a central location, such as a website, the user/medical professionals can access the information and track progress and adjust the user's treatment plan as necessary. A system or method according to the invention may also alert user/medical professional of problems or irregularities, and can be updated with additional test results such as blood results/A1C results to better gain the overall health of the user. The application may also learn the habits of the user such as meals/testing times and send out reminders to users. All or some of the data may also be shared with other persons to create a support group, as further described below.
  • Both the foregoing summary and the following detailed description are exemplary and explanatory only and are not restrictive of the present disclosure or claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A more complete understanding of the embodiments of the present disclosure may be derived by referring to the detailed description and claims when considered in connection with the following illustrative figures.
  • FIG. A shows a prior art kit that houses loose components that are removed and used separately.
  • FIG. B shows another prior art kit that houses loose components that are removed and used separately.
  • FIG. 1A illustrates a front view of a first embodiment of a device in accordance with the present invention that can be attached to a mobile device, such as a smart phone.
  • FIG. 1B illustrates a rear view of the embodiment of FIG. 1A.
  • FIG. 1C illustrates a left side, perspective view of the embodiment of FIG. 1A.
  • FIG. 1D illustrates a right side, perspective view of the embodiment of FIG. 1A.
  • FIG. 1E illustrates a top view of the embodiment of FIG. 1A.
  • FIGS. 1F-1I illustrate the embodiment of FIG. 1A connected to an exemplary mobile device.
  • FIG. 2A illustrates a side, perspective, phantom view of a second embodiment in accordance with the present invention.
  • FIG. 2B illustrates a top phantom view of the embodiment of FIG. 2A.
  • FIG. 2C illustrates a side phantom view of the embodiment of FIG. 2A.
  • FIG. 2D illustrates an end phantom view of the embodiment of FIG. 2A with cap 200B removed.
  • FIG. 2E is a top view of the embodiment of FIG. 2A.
  • FIG. 2F is a perspective side view of the embodiment of FIG. 2A.
  • FIGS. 3A-3G illustrate other views of the embodiment in accordance with the FIGS. 2A-2F.
  • FIG. 4A is a side view of a lancet apparatus that may be used in accordance with aspects of the invention.
  • FIG. 4B is an end view of the lancet apparatus of FIG. 4A.
  • FIG. 4C is a side, partial view of the lancet apparatus of FIG. 4A.
  • FIG. 4D is a side view of an insulin pen that may be used in accordance with aspects of the invention.
  • FIG. 4E is another side view of an insulin pen that may be used in accordance with aspects of the invention.
  • FIG. 4F shows a device according to aspects of the invention worn on a belt.
  • FIG. 5 is a top view of the embodiment of FIG. 2A with a cavity partially open.
  • FIG. 6 is a perspective end view of the embodiment of FIG. 2A with cap 200B removed.
  • FIG. 7 is a perspective side view of the embodiment of FIG. 2A showing the bottom surface.
  • FIG. 8 is a perspective end view of the embodiment of FIG. 2A showing the insulin pen adjustment mechanism.
  • FIG. 9 is a perspective side view of the embodiment of FIG. 2A showing the top surface.
  • FIG. 10 is a perspective top view of the embodiment of FIG. 2A showing the compartment fully open.
  • FIG. 11 is a perspective view of the embodiment of FIG. 2A showing the cap 200B removed from main body portion 200A.
  • FIG. 12 is a perspective side view of the embodiment of FIG. 2A showing the top surface with the compartment open.
  • FIG. 13 is a perspective end view of the embodiment of FIG. 2A with a test strip inserted into the port.
  • FIG. 14 is a perspective end view of an alternative embodiment of a device according to the invention showing a slot for insertion of a test strip and an audio jack to be received in a computing device.
  • FIG. 15 shows the alternative embodiment according to FIG. 14 that has an audio jack that would plug into a computing device, such as a smart phone.
  • FIG. 16 is a top view of the device of FIG. 14.
  • FIG. 17 is a bottom view of the device of FIG. 14.
  • FIG. 18 is a cap according to aspects of the device showing one needle in the storage slot.
  • FIG. 19 illustrates an exemplary system according to various embodiments of the present disclosure.
  • FIG. 20 is a flow diagram illustrating an exemplary process according to various embodiments of the present disclosure.
  • FIGS. 21-34 illustrate screenshots of a display for use in connection with an exemplary system for managing a medical condition.
  • FIG. 35 illustrates an icon in accordance with exemplary embodiments of the disclosure.
  • DETAILED DESCRIPTION
  • The detailed description of exemplary embodiments herein makes reference to the accompanying figures, which show the exemplary embodiments by way of illustration. While these exemplary embodiments are described in sufficient detail to enable those skilled in the art to practice the inventions herein, it should be understood that other embodiments may be realized and that logical and mechanical changes may be made without departing from the spirit and scope of the disclosure.
  • Referring now to FIGS. 1A-1I, which are collectively referred to as FIG. 1, a first embodiment of a diabetes management kit assembly 100 comprises: a body assembly 102, an auxiliary jack 104 for connection to a smart phone or other computer device, LED indicator lights 106, an opening 108 for a lancet, and a storage door for storing lancets 110. A plurality of lancets 110 and test strips can be stored in the storage area of body assembly 102 that is accessed by the storage door. In an exemplary embodiment, a daily usage of lancets (e.g., three lancets) and test strips (e.g., 10 test strips) can be stored in the storage area.
  • Diabetes management kit assembly 100 may communicate with a computer (or computing) device 120 through a wired connection (auxiliary jack 104), such as a universal serial bus (USB) connection, a computer network connection, a mobile device synchronization port connection, a power connection, and/or a security cable. Alternatively, diabetes management kit assembly 100 may communicate with computer device 120 through any desired wireless connection, such as a wireless Internet connection, a Bluetooth connection, a cellular telephone network connection, a CDMA/GSM/4G LTE network, a wireless LAN connection, a wireless WAN connection, and/or an optical connection.
  • In accordance with exemplary embodiments, computer device 120 comprises any type of computing device, such as a smart phone, a tablet computer, a laptop computer, a desktop computer, a mobile subscriber communication device, a mobile phone, and/or a personal digital assistant (PDA).
  • In operation, a small drop of blood is obtained from the user, by pricking the skin with lancet 110 that protrudes through an opening. The drop of blood is placed on the disposable test strip. The diabetes management kit assembly 100 reads the test strip to calculate the blood glucose level of the user. LED indicator lights 106 are used to display the level of the blood glucose level. For example, a red light indicates a poor or out of normal range reading, while a green light indicates a good or in normal range reading.
  • Referring now to FIGS. 2A-F, which are collectively referred to as FIGS. 2, 3A-G, which are collectively referred to herein as FIGS. 3, FIGS. 4A-F, which are collectively referred to as FIG. 4, and FIGS. 5-18, another embodiment of a diabetes management kit assembly 200 comprises: a body assembly 202, a digital readout window 205, LED indicator light/on-off button 206, a pre-loaded insulin pen 208, a storage door 210 for storing lancets, lancets and needles 212, and test strips 214. A plurality of needles 212 and test strips 214 can be stored in the storage area of body assembly 202 that is accessed by storage door 210.
  • Diabetes management kit assembly 200 may communicate with computer device 120 through a wired connection (auxiliary jack 204), as described above. Alternatively, diabetes management kit assembly 200 may communicate with computer device 120 through any desired wireless connection, such as a wireless Internet connection, a Bluetooth connection, a cellular telephone network connection, a CDMA/GSM/4G LTE network, a wireless LAN connection, a wireless WAN connection, and/or an optical connection.
  • In operation, a small drop of blood is obtained from the user, by pricking the skin with the lancet that protrudes through an opening. The drop of blood is placed on the disposable test strip. The diabetes management kit assembly 200 reads the test strip to calculate the blood glucose level of the user. Digital readout window 205 displays the blood glucose level of the user. LED indicator lights 206 are used to indicate the level of the blood glucose level. For example, a red light indicates a poor or out of normal range reading, while a green light indicates a good or in normal range reading.
  • LED indicator lights/on-off button 206 also operates as an on/off button for the test kit. The user can press button 206 to turn the kit on or off, and to see the last several blood glucose results.
  • Referring now to FIGS. 3A-G, which are collectively referred to as FIGS. 3, diabetes management kit assembly 200 comprises: a body assembly 202, a digital readout window 205, LED indicator light/on-off button 206, a pre-loaded insulin pen 208, and a storage door 210 for storing lancets and test strips. A plurality of lancets and test strips can be stored in the storage area of body assembly 202 that is accessed by storage door 210.
  • With reference to FIG. 3C, diabetes management kit assembly 200 comprises a plurality of molded components, including: a cap frame 228, a top frame 224, a base frame 226, a first window 228, a second window 230, a lens 232, a lid 234, a base 236, a top 238, a cap 240, a battery plate 242, a battery button 244, an overmold module 246, a housing module 248, a button module 250, and a lens module 252.
  • In this embodiment, cap frame 228 may be made from 60 A durometer urethane material from a cast elastomer process, with a matte finish. Alternatively, cap frame 228 can be made from other materials as requirements allow.
  • In this embodiment, top frame 224 may be made from 60 A durometer urethane material from a cast elastomer process, with a matte finish. Alternatively, top frame 224 can be made from other materials as requirements allow.
  • In this embodiment, base frame 226 may be made from 60 A durometer urethane material from a cast elastomer process, with a matte finish. Alternatively, base frame 226 can be made from other materials as requirements allow.
  • First window 228 and second window 230 may be machined from polished acrylic, with a glossy finish. First window 228 and second window 230 have a clear color so that the user can see through the windows. Alternatively, first window 228 and second window 230 can be made from other suitable material such as glass, plexiglass, or other appropriate material.
  • Lens 232 may be machined from polished acrylic, with a glossy finish. Lens 232 has a clear color so that the user can see through the lens. Alternatively, lens 232 can be made from other suitable material such as glass, or other appropriate material.
  • Lid 234 may be machined from thermoplastic, such as acrylonitrile butadiene styrene, with a glossy finish. Alternatively, lid 234 can be made from other suitable thermoplastic, or other appropriate material.
  • Base 236 may be machined from thermoplastic, such as acrylonitrile butadiene styrene, with a glossy finish. Alternatively, base 236 can be made from other suitable thermoplastic, or other appropriate material.
  • Top 238 may be machined from thermoplastic, such as acrylonitrile butadiene styrene, with a glossy finish. Alternatively, top 338 can be made from other suitable thermoplastic, or other appropriate material.
  • Cap 240 may be machined from thermoplastic, such as acrylonitrile butadiene styrene, with a glossy finish. Alternatively, cap 240 can be made from other suitable thermoplastic, or other appropriate material.
  • Battery plate 242 may be machined from thermoplastic, such as acrylonitrile butadiene styrene, with any finish. Alternatively, battery plate 242 can be made from other suitable thermoplastic, or other appropriate material.
  • Battery button 244 may be machined from thermoplastic, such as acrylonitrile butadiene styrene, with a glossy finish. Alternatively, battery button 344 can be made from other suitable thermoplastic, or other appropriate material.
  • Overmold module 246 may be made from 60 A durometer urethane material from a cast elastomer process, with a matte finish. Alternatively, overmold module 346 can be made from other materials as requirements allow.
  • Housing module 248 may be machined from thermoplastic, such as acrylonitrile butadiene styrene, with a glossy finish. Alternatively, housing module 248 can be made from other suitable thermoplastic, or other appropriate material.
  • Button module 250 may be machined from thermoplastic, such as acrylonitrile butadiene styrene, with a glossy finish. Alternatively, button module 250 can be made from other suitable thermoplastic, or other appropriate material.
  • Lens module 252 may be made from acrylic, with a glossy finish. Alternatively, lens module 252 can be made from other suitable material such as glass, or other appropriate material.
  • With reference to FIGS. 3E and 3G, diabetes management kit assembly 200 further comprises cap 340 that is removable from body assembly 202. Insulin pen 208 and lancet device 262 are positioned in body assembly 202 through the use of an expandable insert to allow different types of insulin pens to fit into the kit. In addition, needles are stored in cartridges 264, which are stored in cap 240. In accordance with this embodiment, a loaded lancet device 262 can hold a plurality of lancets. For example, a loaded lancet device may hold 7-10 lancets for use over a 2-3 day period, or more. Once loaded, one needle (lancet) will extend automatically from lancet device 262 through the opening. When a lancet is used, it will retract into lancet device 262 for later disposal.
  • In addition, a loaded cartridge is provided that will hold a plurality of test strips, for example 8-10, for one or more days of testing. The test strip cartridge will be loaded into a feeder, so that when engaged, it will automatically load one test strip into the glucose meter for testing. Once used, the test strip will either be ejected for disposal, or the test strip will be stored in the cartridge for later disposal. In addition, diabetes management kit assembly 200 will include an alcohol dispensing apparatus for automatically dispensing alcohol swabs for the user to clean the skin and the kit for insulin injections.
  • Diabetes management kit assembly 200 may communicate with a device, such as computer device 120, through a wired connection, as described above. Alternatively, diabetes management kit assembly 200 may communicate with computer device 120 through any desired wireless connection, such as a wireless Internet connection, a Bluetooth connection, a cellular telephone network connection, a CDMA/GSM/4G LTE network, a wireless LAN connection, a wireless WAN connection, and/or an optical connection.
  • In operation, a small drop of blood is obtained from the user, by pricking the skin with a lancet that protrudes from lancet device 260. The drop of blood is placed on the disposable test strip. The diabetes management kit assembly 200 reads the test strip to calculate the blood glucose level of the user. Digital readout window 205 displays the blood glucose level of the user. LED indicator lights 206 are used to indicate the level of the blood glucose level. For example, a red light indicates a poor or out of normal range reading, while a green light indicates a good or in normal range reading.
  • Referring now to FIGS. 4A-4F, which are collectively referred to as FIG. 4, embodiments of a lancet assembly and insulin pen are shown. Lancet assembly 400 comprises an internal frame 418, a lancet trigger 420, and internal springs 422 and 424.
  • Internal frame 418 includes a shaft 425, wherein internal springs 422 and 424 are positioned in shaft 425. Shaft 425 is situated to hold and direct the lancet in one direction. Internal spring 424 is located near lancet exit hole 408, such that internal spring 424 is positioned to stop the lancet, and along with internal frame 418 keep the lancet from exiting too far from assembly 400. Internal spring 424 is positioned to stop the lancet and return the needle inside of carrying case, one shot at a time. Internal spring 422 is located in the far end of shaft 425 from internal spring 424. Internal spring 422 projects the lancet towards exit hole 408 to puncture the finger of the user. Lancet trigger 420 is used to initiate the projection of the lancet.
  • Insulin pen 450 comprises an insulin adjustment knob 430 (on its first end) and insulin level display window 432. In operation, insulin adjustment knob 430 is used to adjust the amount of insulin to administer to the user. The amount of insulin that will be administered is displayed in insulin level display window 432. Insulin pen 450 also includes a second end for mounting a needle 412.
  • Assembly 200 may be stored in a cover 460 and worn on the clothing of the user, Cover 460 attach to the cover of the belt of the user as illustrated in FIG. 4F. Other figures that show illustrations of this embodiment are FIG. 5, which is a top view of kit 200 with a compartment door 201 partially open; FIG. 6, which is the second end 300 of device 200 and includes the second end 302 of the insulin pen (which receives a needle) and an opening to the lancet apparatus through which the lance exits to prick a finger, and the port or slot, which is an opening in the outer housing that leads to an opening in the meter; FIG. 7, which is the underside of device 200 and shows the button that releases the lance; FIG. 8, which shows an end view of device 200 and the insulin adjustment mechanism of the first end of the insulin pen; FIG. 9, which is a side, perspective view of device 200 showing its top surface; FIG. 10, which is a top view of device 200 showing the cavity door fully open; FIG. 11, which shows the cap removed from the second end 300; FIG. 12, which is a side, perspective view showing the cavity door fully open; FIG. 13, which shows second end 300 with a test strip inserted in the port; FIGS. 14-17, which show device 200 with an optional audio jack to plug into a computing device; and FIG. 18, which shows the cavity inside of the cap when removed from device 200.
  • When components are described as being “in communication” with each other in the detailed description or claims, such components may be in communication with each other constantly or periodically. Additionally, components in various embodiments may be in communication with each other via any suitable form of communication medium, use any suitable form of communication format, may be electrically coupled, physically coupled, and/or in communication with each other wirelessly.
  • Exemplary System
  • An exemplary system 100 is depicted in FIG. 19. In various embodiments, the system 100 includes a computer device 110 comprising a processor 112 and a memory 114. Computer device 110 is in communication with a user interface 120, which includes an input component 122, and output component 124. In various embodiments, computer device 110 comprises any type of computing device, such as a smart phone, a tablet computer, a laptop computer, a desktop computer, a mobile subscriber communication device, a mobile phone, and/or a personal digital assistant (PDA). Computer device 110 may be further in communication with an external device 130, as well as a database 140.
  • Computer system 100 and other computing devices operating in conjunction with embodiments of the present disclosure may include an operating system (e.g., iOS, Windows, OS2, UNIX, Linux, Solaris, MacOS, etc.) as well as various conventional support software and drivers typically associated with computers. Software applications stored in the memory of such devices may be entirely or partially served or executed by the processor(s) in performing methods or processes of the present disclosure.
  • In various embodiments, and as shown in FIGS. 19 and 20, computer device 110 may store a software program configured to perform the methods described herein in the memory 114, and run the software program using the processor 112. Computer device 110 may include any number of individual processors 112 and memories 114. Various data may be communicated between computer device 110 and a user via user interface 120. Such information may also be communicated between computer device 110 and external device 130, database 140, and/or any other device connected to computer device 110 (e.g., through a local area network (LAN), or wide area network (WAN) such as the Internet).
  • In the exemplary system 100 depicted in FIG. 19, processor 112 retrieves and executes instructions stored in memory 114 to control the operation of computer device 110. Any number and type of processor(s) such as an integrated circuit microprocessor, microcontroller, and/or digital signal processor (DSP), can be used in conjunction with the embodiments described in the present disclosure. Processor 112 may include, or operate in conjunction with, any other suitable components and features, such as comparators, analog-to-digital converters (ADCs), and/or digital-to-analog converters (DACs). Functionality of embodiments of the present disclosure may also be implemented through various hardware components storing machine-readable instructions, such as application-specific integrated circuits (ASICs), field-programmable gate arrays (FPGAs) and/or complex programmable logic devices (CPLDs).
  • Memory 114 may include a non-transitory computer-readable medium (such as on a CD-ROM, DVD-ROM, hard drive or FLASH memory) storing computer-readable instructions stored thereon that can be executed by processor 112 to perform the methods of the present disclosure. Memory 114 may include any combination of different memory storage devices, such as hard drives, random access memory (RAM), read only memory (ROM), FLASH memory, or any other type of volatile and/or nonvolatile memory.
  • Computer device 110 may receive and display information (such as information related to a medical condition) via user interface 120. User interface 120 (and the user interfaces of any external device 130 used in conjunction with embodiments of the present disclosure) may include a screen display 124 or other peripheral output device 124 such as a monitor or printer, as well as any suitable input or control devices 122 (such as a mouse and keyboard) to allow users to control and interact with the software program.
  • User interface 120 may include any number of components, devices, and/or systems, such as speakers, an external memory device, a touch pad, a touch screen, and/or an alphanumeric keypad to allow a user to enter instructions, information related to their medical condition, and other input. User interface 120 may also include a microphone to allow a user to provide audio input, as well as a camera to allow the user to provide video input. Any of the components of the user interface 120 may be utilized as external devices 130 as described below.
  • The user interface of any component operating in conjunction with embodiments of the present disclosure may include, or operate with, audio or speech recognition software to process and analyze audio or verbal input through the user interface, as well as pattern recognition software to analyze graphics, text, and video received through the user interface 120, from external device 130, or from any other source.
  • Computer device 110 may communicate with any number of external devices 130. In some embodiments, one or more devices 130 are configured to obtain information regarding a medical condition and provide the information to computer device 110 through a wired or wireless connection. Devices 130 may also communicate directly with the database 140, each other, or with any other system or device operating in conjunction with the embodiments described herein.
  • A medical condition as managed by embodiments of the present disclosure includes any medical condition that can be tested and monitored on a periodic basis. As an exemplary medical condition, diabetes will be used as the medical condition managed by various embodiments of the present disclosure. However, any other medical condition that can be tested and monitored on a periodic basis (such as cholesterol, blood pressure, heart rate, sodium levels, potassium levels, creatinine levels, liver function) may also be monitored by embodiments of the present disclosure. Accordingly, embodiments of the present disclosure may operate in conjunction with external device 130 that includes a testing kit for detecting information about the medical condition and communicating it to computer device 110, database 140, or other system. External device 130 may communicate with computer device 110 or other device through a wired connection, such as a universal serial bus (USB) connection, an auxiliary port, a computer network connection, a mobile device synchronization port connection, a power connection, and/or a security cable. External device 130 may also communicate with any device operating in conjunction with an embodiment of the present disclosure through any desired wireless connection, such as a wireless Internet connection, a cellular telephone network connection, a CDMA/GSM/4G LTE network, a wireless LAN connection, a wireless WAN connection, and/or an optical connection.
  • Database 140 stores and provides information related to the medical condition, as well as any other desired information. Database 140 may be implemented on computer device 110 or hosted by another system or device (such as a server) in communication with computer device 100 via, for example, a network such as a LAN or WAN.
  • Computer device 110 and other computing devices operating in conjunction with embodiments of the present disclosure may include an operating system (e.g., iOS, Windows, OS2, UNIX, Linux, Solaris, MacOS, etc.) as well as various conventional support software and drivers typically associated with computers. Software applications stored in the memory of such devices may be entirely or partially served or executed by the processor(s) in performing methods or processes of the present disclosure.
  • Any of the components in FIG. 19, as well as other systems and components operating with, or as part of, embodiments of the present disclosure may communicate with each other via a network (not shown). In some embodiments, one or more components of system 100 may include a wireless transceiver and the network may comprise a wireless system to allow wireless communication between various systems and devices, such as a wireless mobile telephony network, General Packet Radio Service (GPRS) network, wireless Local Area Network (WLAN), Global System for Mobile Communications (GSM) network, Personal Communication Service (PCS) network, Advanced Mobile Phone System (AMPS) network, and/or a satellite communication network. Such networks may be configured to facilitate communication via any other type of connection, such as a wired Internet connection, a wireless Internet connection, a cellular telephone network connection, a CDMA/GSM/4G LTE network, a wireless LAN connection, a wireless WAN connection, an optical connection, a USB connection, and/or a mobile device synchronization port connection.
  • Exemplary Methods
  • The methods described below may be implemented in any manner, such as through a software program operating on a computer-based system. Such a software program may be stored on any computer-readable medium, such as floppy disks, hard disks, CD-ROMs, DVDs, any type of optical or magneti-optical disks, volatile or non-volatile memory, and/or any other type of media suitable for storing electronic instructions and capable of interfacing with a computing device. Methods according to embodiments of present disclosure may operate in conjunction with any type of computer system, such as a smart phone, personal computer (PC), server, cellular phone, personal digital assistant (PDA), portable computer (such as a laptop), embedded computing system, and/or any other type of computing device. The system may include any number of computing devices connected in any manner, such as through a distributed network. The system may communicate and/or interface with any number of users and/or other computing devices to send and receive any suitable information in any manner, such as via a local area network (LAN), cellular communication, radio, satellite transmission, a modem, the Internet, and/or the like.
  • Exemplary embodiments of this disclosure provide for an application that runs on computer device 110 and allows the user to interactively track historical data and information about each blood sugar test and result. The application will also store information about meals and perform an analysis of that data. The user and medical professionals can log into a web application and track progress and adjust the user's treatment plan as necessary. The system will alert the user and medical professionals of issues and irregularities. The application will allow the user to provide information about additional test results such as A1 test results.
  • FIG. 20 depicts an exemplary method according to various aspects of the present disclosure, and may be used with any suitable system, including the system 100 depicted in FIG. 19. The method in FIG. 20 may be practiced with more, fewer, or different steps in conjunction with various embodiments of this disclosure, and may be performed by hardware, software, or a combination of the two as described above. The steps in FIG. 20, as with the steps in the methods shown in the other figures may be combined with each other in any suitable order in accordance with various embodiments of the present disclosure.
  • As shown in FIGS. 20 and 21, exemplary method 200 includes displaying, on display screen 300, a plurality of touch icons displaying information related to the medical condition such as diabetes (step 205), and receiving information relating to the medical condition (step 210). In response to receiving new information, method 200 also includes automatically populating one or more of the touch icons with the new information relating to the medical condition (step 215) and displaying the newly populated touch icon on display screen 300 (step 220). Method 200 additionally includes receiving user input in the form of a touch, key pad entry, or other input indicating selection of one of the touch icons (step 225). Method 200 further includes launching an application associated with the selected touch icon (step 230), as will be described below.
  • With reference to FIG. 21, an example of a screenshot is illustrated that shows a plurality of touch icons displayed on display screen 300 upon launching an application for the management of a medical condition such diabetes. In this embodiment, the plurality of touch icons include a glucose level window 302, a glucose tracking window 304, a location update window 306, a community tracker window 308, a calendar window 310, and an activity challenge window 312.
  • In an exemplary embodiment, there will be a row of one or more small icons 320-334 located on an edge of display screen 300. Small icons 320-334 may be located on any edge of the display screen, for example, the bottom edge, and the small icons will always be displayed, even when an application for one of the touch icons is launched, as illustrated in FIGS. 22-25. Each of touch icons 302-312 has a corresponding small icon 324-334 located on display screen 300. With reference to FIG. 22, icon 324 corresponds to glucose level window 302. Icon 326 corresponds to calendar reminder window 310. Icon 328 corresponds to activity challenge window 312. Icon 330 corresponds to glucose tracking window 304. Icon 332 corresponds to location update window 306, and icon 334 corresponds to community tracker window 308. When one of small icons 324-334 is pressed, or otherwise activated by the user, the application for the touch icon that corresponds to the selected small icon is launched. In addition to the small icons that correspond to the touch icons, addition small icons may be displayed, such as small icon 320 that can be used to launch a settings or tools application, and small icon 322 that can be used to return to the home or initial screen display.
  • Glucose level window 302 shows the blood glucose level of the last recorded blood test. The blood glucose level can be displayed with a color coded scheme to show high (e.g., red), low (e.g., blue), and normal (e.g., green) readings. When the user takes a new blood test with a portable testing kit 120 that is in communication (via wireless or wired connection) with computer device 110, the glucose level in window 302 is updated to show the results of the latest blood test.
  • With reference to FIG. 23, when the application associated with glucose level window 302 is launched, by, for example, touching or otherwise activating its touch icon or small icon 324, the glucose level window is displayed so that it fills the entire display screen 300. The displayed information includes the most recent blood glucose level that was recorded, along with historical data 402 that shows current and past blood glucose levels distributed around target ranges. The data can be displayed with color coding, so that levels above the high target range are displayed in the color chosen by the user to represent high readings, such as red. Levels below the low target range are displayed in the color chosen by the user to represent low readings, such as blue. Levels between the two high and low target ranges are displayed in the color chosen by the user to represent normal readings, such as green. Additional information is displayed such as statistics 404 for last, high, average, and low blood glucose levels. In addition, information for previous blood glucose tests (406) and previous insulin injections (408) is displayed. In the example illustrated in FIG. 23, the previous five blood glucose tests and the previous five insulin injections are displayed.
  • A Rx icon 410 is displayed that allows the user to track previous insulin injections in more detail. If the user touches or otherwise activates Rx icon 410, insulin information 408 is expanded to fill the display screen with information displayed for all previous insulin injections.
  • Glucose tracking window 304 shows past test results fluctuating around one or more target lines or ranges. When the user takes a new blood test with portable testing kit 120 that is in communication (via wireless or wired connection) with computer device 110, the test results displayed in glucose tracking window 304 are updated to show the results of the latest blood test.
  • With reference to FIG. 24, when the application associated with glucose tracking window 304 is launched, by, for example, touching or otherwise activating its touch icon or small icon 330, the glucose tracking window is displayed so that it fills the entire display screen 300. The displayed information includes historical data 502 that shows current and past blood glucose levels distributed around target ranges. The data can be displayed with color coding, so that levels above the high target range are displayed in the color chosen by the user to represent high readings, such as red. Levels below the low target range are displayed in the color chosen by the user to represent low readings, such as blue. Levels between the two high and low target ranges are displayed in the color chosen by the user to represent normal readings, such as green. The displayed historical data can be filtered so that the data is displayed on an hourly, daily, weekly, or monthly basis. Alternatively, the historical data can be displayed in a serial manner, so that the most recent blood glucose levels are displayed. Additional information is displayed such as statistics 504 for previous blood glucose tests. The displayed information includes blood glucose level in a color coded scheme to show high/normal/low levels, date/time of test, including whether the test was before or after a meal, and the time elapsed between a meal and the test results.
  • Location update window 306 shows a user's glucose levels at various locations. Information from the user's previous meals and blood sugar test results at various locations is used to provide reminders about meals and blood sugar testing levels at a specific location. The user will be notified when the device's global positioning system (GPS) recognizes a previous location that was visited by the user.
  • With reference to FIG. 25, when the application associated with location update window 306 is launched, by, for example, touching or otherwise activating its touch icon or small icon 332, the location update window is displayed so that it fills the entire display screen 300. The displayed information includes a map with color coded push pins showing various locations visited by the user. For example, if the user's average blood sugar level at a specific location for all visits is above their target range, then the color coded push pin will be displayed with a color (e.g., red) that indicates the user's high average blood sugar level at that location. Alternatively, if the user's average blood sugar level at that location for all visits is below their target range, then the color coded push pin will be displayed with a color (e.g., blue) that indicates the user's low average blood sugar level at that location. If the user's average blood sugar level at that location for all visits is within their target range, then the color coded push pin will be displayed with a color (e.g., green) that indicates the user's normal average blood sugar level at that location. The display may be filtered by the color coding so that all push pins are displayed, only high blood sugar level (e.g., red) push pins are displayed, only normal blood sugar level (e.g., green) push pins are displayed, or only low blood sugar level (e.g., blue) push pins are displayed.
  • The user can use search window 602 to search and display information on specific locations. The application will display all previous visits to a specific location in chronological order, with the most recent visit displayed on top. In addition, the application will display the date/time and meal information, along with an optional photograph. This information will provide the user with a reminder of what they ate and the impact the meal had on the user at the time of their blood testing. In addition, the system will notify the user to take a blood test in standard time intervals after a meal and/or before a meal, in order to keep the user on track with regularly scheduled blood tests.
  • The information that is provided to the user by the application associated with location update window 306 will allow the user to make better decisions about new meals at the same location. As an example, when the user enters a location, the application will display and/or state the user's average blood sugar level at that location. In addition, the application can turn the background of display screen 300 to a color that represents the overall impact to the user's blood sugar level of the meals eaten at that location. In time, and after the user provides meal information and blood sugar levels for a variety of locations, the system will display a map that will enable the user to see locations that promote good diabetic management and those locations that promote poor diabetic management. In an exemplary embodiment, the user will be able to hold a camera that is an internal or external peripheral of computer device 110, and when the user points the camera up and down a street with a row of restaurants, the system will display the user's average blood sugar results at each location.
  • Community tracker window 308 shows the activity of other people in the user's community. With reference to FIG. 26, when the application associated with community tracker window 308 is launched, by, for example, touching or otherwise activating its touch icon or small icon 334, the community tracker window is displayed so that it fills the entire display screen 300. The displayed information includes leaderboard 702 that shows the points earned and lost by the user and other people in the user's community for certain activities such as reducing insulin intake (earn points), increasing insulin intake (lose points), exercise (gain points), maintaining diet (earn points), and not maintaining diet (lose points). The displayed information can include chat board 704 where the user and other people can record their activities and/or comments. Additional information can be displayed in check-in window 706 that shows recent locations, such as restaurants and exercise facilities, for people in the user's community.
  • In an exemplary embodiment, the application associated with community tracker window 308 allows the user to interface with other people in various topics such as diet, stress control, carbohydrate intake, exercise, medication (include side effects and benefits), and in an open discussion forum. The user will also be able to seek information from medical professionals to answer questions and provide advice. The user will also be able to add information about their own doctor(s) such as address, contact information, and past medical results and keep that information private to the user. In addition, the system will all