US20150252116A1 - Anti-prolactin receptor antibody formulations - Google Patents

Anti-prolactin receptor antibody formulations Download PDF

Info

Publication number
US20150252116A1
US20150252116A1 US14/421,609 US201314421609A US2015252116A1 US 20150252116 A1 US20150252116 A1 US 20150252116A1 US 201314421609 A US201314421609 A US 201314421609A US 2015252116 A1 US2015252116 A1 US 2015252116A1
Authority
US
United States
Prior art keywords
prlr antibody
prlr
formulation
antibody formulation
histidine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/421,609
Inventor
Xinghang Ma
Jun Xiang
Jianjie Niu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Healthcare LLC
Original Assignee
Bayer Healthcare LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Healthcare LLC filed Critical Bayer Healthcare LLC
Priority to US14/421,609 priority Critical patent/US20150252116A1/en
Assigned to BAYER HEALTHCARE LLC reassignment BAYER HEALTHCARE LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MA, XINGHANG, NIU, Jianjie, XIANG, JUN
Publication of US20150252116A1 publication Critical patent/US20150252116A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2869Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against hormone receptors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39591Stabilisation, fragmentation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • A61K47/183Amino acids, e.g. glycine, EDTA or aspartame
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/20Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing sulfur, e.g. dimethyl sulfoxide [DMSO], docusate, sodium lauryl sulfate or aminosulfonic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/51Complete heavy chain or Fd fragment, i.e. VH + CH1
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/515Complete light chain, i.e. VL + CL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance

Definitions

  • the present disclosure relates generally to a wide concentration range of anti-prolactin receptor antibody formulations that are substantially isosmotic and of low viscosity, including formulations that are useful for subcutaneous and general injection administration.
  • Prolactin is a polypeptide hormone composed of 199 amino acids.
  • PRL belongs to the growth hormone (GH), placental lactogen (PL) family of polypeptide hormones and is synthesized in lactotroph cells of the pituitary and in several extrapituitary tissues such as lymphocytes, mammary epithelial cells, the myometrium, and the prostate.
  • GH growth hormone
  • PL placental lactogen
  • PRL binds to the PRL receptor (PRLR), a single transmembrane receptor belonging to the class 1 cytokine receptor superfamily ( Endocrine Reviews 19:225-268 (1998)).
  • PRLR exists in three different isoforms, the short, the long, and the intermediate form that can be distinguished by the length of their cytoplasmic tails.
  • PRLR Upon ligand binding, a sequential process leads to PRLR activation.
  • PRL interacts via its binding site 1 with one PRLR molecule and then attracts via its binding site 2 a second receptor molecule leading to an active dimer of PRLRs.
  • PRLR dimerization leads to the predominant activation of the JAK/STAT (Janus Kinase/Signal transducers and activators of transcription) pathway.
  • JAKs predominantly JAK2
  • PRLR is also phosphorylated and can bind to SH2-domain containing proteins such as STATs.
  • Receptor bound STATs are subsequently phosphorylated, dissociate from the receptor and translocate to the nucleus where they stimulate transcription of target genes.
  • activation of the Ras-Raf-MAPK pathway and activation of the cytoplasmic src kinase by PRLRs have been described (for review Endocrine Reviews 19: 225-268 (1998)).
  • PRLR-mediated signalling The role of PRLR-mediated signalling has been investigated in the context of the benign disease endometriosis.
  • Antibodies that are directed against prolactin receptor including anti-PRLR monoclonal antibodies (aPRLR mAbs), are being developed in an effort to block PRLR function.
  • aPRLR mAb is an IgG2 anti-PRLR mAb that is being developed for the non-hormonal treatment of endometriosis patients.
  • a high concentration antibody formulation may present many challenges in formulation development, especially for liquid formulation.
  • phase separation can occur through precipitation, gelation, and/or crystallization.
  • the stability of an antibody can become problematic due to the formation of soluble and insoluble protein-protein aggregates.
  • Highly concentrated antibody formulations are frequently highly viscous, which presents difficulties for processing, such as ultrafiltration and sterile filtration, and for injection of the dosage solution.
  • the present disclosure provides liquid and lyophilized anti-PRLR antibody formulations with a wide range of anti-PRLR antibody concentrations, which are substantially isotonic and low viscosity and that contain substantially no salt other than an organic salt or an inorganic salt that is used to buffer the formulation.
  • the anti-PRLR antibody formulations presented herein contain from about 0 mM to about 70 mM histidine; from about 50 ppm to about 300 ppm of a non-ionic surfactant such as, for example, polysorbate (Tween®) 80 and/or polysorbate (Tween®) 20; from about 34 mM to about 292 mM of a sugar or sugar alcohol such as, for example, mannitol, dextrose, glucose, trehalose, and/or sucrose; from about 0 mM to about 50 mM arginine; from about 0 mM to about 50 mM lysine; from about 0 mM to about 270 mM glycine or alanine; from about 0 mM to about 10 mM methionine; and from about 1 mg/ml to about 150 mg/ml of an anti-PRLR antibody, including an aPRLR-specific IgG2 monoclonal antibody (mAb) at
  • Each of the presently disclosed antibody formulations contains substantially no salt other than an organic salt or an inorganic salt that is used to buffer the formulation. This permits the addition of alternative stabilizers to maintain the isosmoticity of the formulation (i.e., osmolality ranging from about 240 mmol/kg to about 380 mmol/kg), which thereby promotes a higher degree of patient compliance.
  • Each of the presently disclosed antibody formulations has a low viscosity ranging from about 1 to about 8 mPa-S at 22° C.-23° C., which promotes ease of processing such as, for example, improved ultrafiltration and sterile filtration as well as injection of the antibody formulation through a syringe needle during administration.
  • the formulations disclosed herein stabilize antibodies, in particular anti-PRLR antibodies including anti-PRLR IgG2 antibodies, at high protein concentrations in liquid form or in lyophilized form.
  • the present disclosure provides anti-PRLR antibody formulations that stabilize the anti-PRLR antibody in a wide range of concentrations in liquid form or in lyophilized form at intended storage conditions.
  • the formulations described herein include one or more pharmaceutically acceptable excipients or stabilizers, and are contained in buffered media at a suitable pH and are substantially isosmotic with physiological fluids.
  • injection is one possible route of administration, including intramuscular, intravenous, intraperitoneal, and subcutaneous for injection.
  • the presently disclosed anti-PRLR antibody formulations can be conveniently processed via, for example, ultrafiltration and sterile filtration and can be administered to a patient via injection, including both intravenous and subcutaneous injection. Moreover, because they are substantially isosmotic, the presently disclosed anti-PRLR antibody formulations reduce tissue damage or other adverse physiologic effects and thereby achieving favorable patient tolerance and increased patient compliance.
  • the formulations described herein are characterized by the substantial absence of added salt other than an organic salt or an inorganic salt that is used to buffer the formulation, which provides the flexibility for increasing the concentrations of other stabilizers, such as sucrose, while maintaining the osmolality of the formulation for improved in vivo tolerability and, consequently, increased patient compliance.
  • the low viscosity of the presently described formulations permits convenient processing, including ultrafiltration and sterile filtration, and injection of the drug product solution through the needle.
  • the term “including” shall mean “including, but not limited to.”
  • the description of one or more embodiments uses the term “comprising,” those skilled in the art would understand that, in some specific instances, the embodiment or embodiments can be alternatively described using the language “consisting essentially of” and/or “consisting of.”
  • osmolality refers to a measure of solute concentration, defined as the number of mmole of solute per kg of solution.
  • a desired level of osmolality can be achieved by the addition of one or more stabilizer such as a sugar or a sugar alcohol including mannitol, dextrose, glucose, trehalose, and/or sucrose. Additional stabilizers that are suitable for providing osmolality are described in references such as the handbook of Pharmaceutical Excipients (Fourth Edition, Royal Pharmaceutical Society of Great Britain, Science & Practice Publishers) or Remingtons: The Science and Practice of Pharmacy (Nineteenth Edition, Mack Publishing Company).
  • the term “about” refers to +/ ⁇ 10% of the unit value provided.
  • the term “substantially” refers to the qualitative condition of exhibiting a total or approximate degree of a characteristic or property of interest.
  • the terms “isosmotic” and “isotonic” are used interchangeably with the terms “substantially isosmotic,” and “substantially isotonic” and refer to formulations characterized by having an osmotic pressure that is the same as or at least substantially equivalent to the osmotic pressure of another solution, which is achieved by formulations wherein the total concentration of solutes, including both permeable and impermeable solutes, in the formulation are the same as or at least substantially equivalent to the total number of solutes in another solution.
  • isosmotic and “isotonic” formulations that are used for in vivo administration generally have an osmolality ranging from about 270 mmol/kg to about 310 mmol/kg, in the context of the high concentration, low viscosity formulations of the present disclosure, the terms “isosmotic,” “isotonic,” “substantially isosmotic,” and “substantially isotonic” are used interchangeably to refer to formulations having an osmolality ranging from about 240 mmol/kg to about 380 mmol/kg, or from about 270 mmol/kg to about 370 mmol/kg, or from about 300 mmol/kg to about 330 mmol/kg.
  • the presently disclosed high concentration, low viscosity, substantially isosmotic anti-PRLR antibody formulations contain from about 0 mM to about 70 mM histidine; from about 50 ppm to about 300 ppm of a non-ionic surfactant such as, for example, polysorbate (Tween®) 80 and/or polysorbate (Tween®) 20; from about 34 mM to about 292 mM of a sugar or sugar alcohol, such as, for example, mannitol, dextrose, glucose, trehalose, and/or sucrose; from about 0 mM to about 50 mM arginine; from about 0 mM to about 50 mM lysine; from about 0 mM to about 270 mM glycine or alanine; from about 0 mM to about 10 mM methionine; and from about 1 mg/ml to about 150 mg/ml of an anti-PRLR antibody at a pH from about pH
  • histidine is a buffer agent, which can be used to maintain the formulation pH from about pH 5.0 to about pH 6.5, or from about pH 5.5 to about pH 6.0, such as about pH 5.0, about pH 5.5, about pH 6.0, or about pH 6.5.
  • Sugars or sugar alcohol such as mannitol, dextrose, glucose, trehalose, and/or sucrose, are used separately or in combination both as cryo-protectants and a stabilizer the anti-PRLR antibody in liquid formulations as well as during lyophilization.
  • Non-ionic surfactants such as polysorbates, including polysorbate 20 and polysorbate 80; polyoxamers, including poloxamer 184 and 188; Pluronic® polyols; and other ethylene/polypropylene block polymers, stabilize the anti-PRLR antibody during processing and storage by reducing interfacial interaction and prevent antibody from adsorption.
  • Arginine is a protein solubilizer and also a stabilizer that reduces antibody and other protein aggregation, such as anti-PRLR antibody aggregation, and other possible degradation.
  • Methionine is an antioxidant that prevents antibody oxidation during processing and storage.
  • Sugars and inorganic salts are commonly used as protein stabilizers; however, both sugars and inorganic salts are also effective tonicity agents. If a formulation requires a high concentration of one or more sugars to stabilize an anti-PRLR antibody, the inorganic salt concentration should be zero or kept very low in order to maintain the formulation's osmolality such that injection pain is reduced upon administration.
  • salt refers to inorganic salts, which include sodium chloride (NaCl), sodium sulfate (Na 2 SO 4 ), sodium thiocyanate (NaSCN), magnesium chloride (MgCl), magnesium sulfate (MgSO 4 ), ammonium thiocyanate (NH 4 SCN), ammonium sulfate ((NH 4 ) 2 SO 4 ), ammonium chloride (NH 4 Cl), calcium chloride (CaCl 2 ), calcium sulfate (CaSO 4 ), zinc chloride (ZnCl 2 ) and the like, or combinations thereof.
  • the anti-PRLR antibody formulations disclosed herein are characterized by a substantial absence of added salt and are, therefore, referred to herein as salt-free antibody formulations. It will be understood by those of skill in the art that the presence of inorganic salts within the presently disclosed formulations that are introduced by pH adjustment are not considered to be added salts. Such inorganic salts when introduced by pH adjustments, if present in a formulation according to the present disclosure, should not exceed a concentration of about 2 mM.
  • surfactant includes non-ionic surfactants including, without limitation, polysorbates, such as polysorbate 20 or 80, and the polyoxamers, such as poloxamer 184 or 188, Pluronic® polyols, and other ethylene/polypropylene block polymers.
  • Amounts of surfactants effective to provide stable high concentration anti-PRLR antibody formulations are usually in the range of 50 ppm to 300 ppm.
  • the use of non-ionic surfactants permits the formulations to be exposed to shear and surface stresses without causing denaturation of the anti-PRLR antibody, and also reduce the adsorption on the surfaces during processing and storage.
  • formulations disclosed herein include, without limitation, formulations having one or more non-ionic surfactant(s) including, for example, one or more polysorbate(s), such as polysorbate 20 or 80; one or more polyoxamers, such as poloxamer 184 or 188; Pluronic® polyols; and/or one or more ethylene/polypropylene block polymer(s).
  • polysorbate such as polysorbate 20 or 80
  • polyoxamers such as poloxamer 184 or 188
  • Pluronic® polyols such as ethylene/polypropylene block polymer(s).
  • ethylene/polypropylene block polymer(s) such as polysorbate 20 (Tween® 20) or polysorbate 80 (Tween® 80).
  • antibody refers to a class of proteins that are generally known as immunoglobulins. Antibodies include full-length monoclonal antibodies (mAb), such as IgG2 monoclonal antibodies, which include immunoglobulin Fc regions. The term antibody also includes bispecific antibodies, diabodies, single-chain molecules, and antibody fragments such as Fab, F(ab′) 2 , and Fv.
  • mAb monoclonal antibodies
  • IgG2 monoclonal antibodies which include immunoglobulin Fc regions.
  • the term antibody also includes bispecific antibodies, diabodies, single-chain molecules, and antibody fragments such as Fab, F(ab′) 2 , and Fv.
  • anti-PRLR antibody refers to an antibody having binding specificity against the human PRLR protein as well as fragments and variants of the human PRLR protein.
  • Anti-PRLR antibodies presented herein can be IgG2 antibodies and include anti-PRLR IgG2 monoclonal antibodies, such as chimeric, humanized, and fully-human anti-PRLR IgG2 monoclonal antibodies.
  • Anti-PRLR monoclonal antibodies, including full-length antibodies and antigen binding fragments and variants thereof, that are suitable for use in the formulations disclosed herein are presented in PCT Patent Publication NOs.
  • “Monoclonal antibodies” are characterized by having specificity for a single antigenic determinant. Monoclonal antibodies can, for example, be made by the hybridoma method described by Kohler and Milstein, Nature 256:495 (1975) or by recombinant DNA methods such as those described in U.S. Pat. No. 4,816,567. Monoclonal antibodies can also be isolated from phage display libraries using the techniques such as those described in Clackson et al., Nature 352:624-628 (1991) and Marks et al., J. Mol. Biol. 222:581-597 (1991).
  • Monoclonal antibodies include “chimeric monoclonal antibodies” wherein a portion of a heavy and/or light chain includes sequences from antibodies derived from one species, while the remainder of the antibody, including the Fc region, includes sequences from antibodies derived from a second species, and the second species may be human. See, e.g., U.S. Pat. No. 4,816,567 and Morrison et al., Proc. Natl. Acad. Sci. USA 81:6851-6855 (1984).
  • Monoclonal antibodies also include “humanized monoclonal antibodies” wherein one or more complementarity determining region (CDR) from a heavy and/or light chain sequence from antibodies derived from one species replace one or more CDR from a heavy and/or light chain sequence from antibodies derived from a second species, and the second species may be human.
  • CDR complementarity determining region
  • the process of “humanization” is usually applied to monoclonal antibodies developed for administration to humans. See, e.g., Riechmann et al., Nature 332(6162):323-27 (1988) and Queen et al., Proc. Natl. Acad. Sci. USA 86(24):10029-33 (1989).
  • Monoclonal antibodies also include “fully-human monoclonal antibodies” wherein the entire heavy and light chain sequences are derived from human antibody sequences.
  • Fully-human monoclonal antibodies can be generated by phage display technologies and can be isolated from mice that have been genetically engineered to express the human antibody repertoire. See, e.g., McCafferty et al., Nature 348(6301):552-554 (1990), Marks et al., J. Mol. Biol. 222(3):581-597 (1991), and Carmen and Jermutus, Brief Funct. Genomic Proteomic 1(2):189-203 (2002).
  • the term “Pharmaceutically effective amount” of an anti-PRLR antibody formulation refers to an amount of the formulation that provides therapeutic effect in an administration regimen.
  • the high concentration anti-PRLR antibody formulations disclosed herein typically include an anti-PRLR antibody at a concentration ranging from about 1 mg/ml to about 150 mg/ml, or from about 2 mg/ml to about 120 mg/ml, or from about 5 mg/ml to about 100 mg/ml, or from about 7.5 mg/ml to about 60 mg/ml.
  • the concentration of anti-PRLR antibody within these formulations is about 2 mg/ml, or about 7.5 mg/ml, or about 20 mg/ml, or about 50 mg/ml, or about 60 mg/ml.
  • Such formulations are typically administered in a volume of less than about 2 ml, or about 1.5 ml, or about 1 ml, or about 0.5 ml per injection site for subcutaneous injection.
  • the anti-PRLR antibody formulation contains about 30 mM histidine, about 100 ppm polysorbate 80, about 292 mM sucrose, about 20 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5.
  • the anti-PRLR antibody formulation also contains from about 10 mM to about 50 mM arginine.
  • the anti-PRLR antibody formulation contains about 10 mM histidine, about 80 ppm polysorbate 80, about 234 mM sucrose, about 60 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5.
  • the anti-PRLR antibody formulation also contains from about 30 mM to about 50 mM arginine.
  • the anti-PRLR antibody formulation contains about 10 mM histidine, about 75 ppm polysorbate 80, about 234 sucrose, about 60 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5.
  • the anti-PRLR antibody formulation also contains from about 30 mM to about 50 mM arginine.
  • the anti-PRLR antibody formulation contains about 10 mM histidine, about 75 ppm polysorbate 80, about 88 mM sucrose, about 133 mM glycine, about 60 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5.
  • the anti-PRLR antibody formulation also contains from about 10 mM to about 50 mM arginine.
  • the anti-PRLR antibody formulation contains about 10 mM histidine, about 75 ppm polysorbate 20, about 88 mM sucrose, about 133 mM glycine, about 60 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5.
  • the anti-PRLR antibody formulation also contains from about 10 mM to about 50 mM arginine.
  • the anti-PRLR antibody formulation contains about 10 mM histidine, about 200 ppm polysorbate 20, about 88 mM sucrose, about 133 mM glycine, about 60 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5.
  • the anti-PRLR antibody formulation also contains from about 10 mM to about 50 mM arginine.
  • the anti-PRLR antibody formulation contains about 70 mM histidine, about 80 ppm polysorbate 80, about 200 mM sucrose, about 60 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5.
  • the anti-PRLR antibody formulation also contains from about 10 mM to about 50 mM arginine.
  • the anti-PRLR antibody formulation contains about 10 mM histidine, about 80 ppm polysorbate 80, about 292 mM sucrose, about 10 mM arginine, about 60 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5.
  • the anti-PRLR antibody formulation also contains from about 0 mM to about 10 mM methionine.
  • the anti-PRLR antibody formulation contains about 70 mM histidine, about 80 ppm polysorbate 80, about 176 mM sucrose, about 133 mM glycine, about 30 mM lysine, about 60 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5.
  • the anti-PRLR antibody formulation contains about 10 mM histidine, about 75 ppm about polysorbate 80, about 234 mM sucrose, about 30 mM arginine, about 60 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5.
  • the anti-PRLR antibody formulation also contains from about 0 mM to 10 mM methionine.
  • the anti-PRLR antibody formulation contains about 10 mM histidine, about 80 ppm about polysorbate 80, about 234 mM sucrose, about 20 mM arginine, about 150 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5.
  • the anti-PRLR antibody formulation also contains from about 0 mM to 10 mM methionine.
  • the anti-PRLR antibody formulation contains about 10 mM histidine, about 80 ppm about polysorbate 80, about 205 mM sucrose, about 20 mM arginine, about 60 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5.
  • the anti-PRLR antibody formulation also contains from about 0 mM to 10 mM methionine.
  • the anti-PRLR antibody formulation contains about 10 mM histidine, about 80 ppm about polysorbate 80, about 205 mM sucrose, about 20 mM arginine, about 2 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5.
  • the anti-PRLR antibody formulation also contains from about 0 mM to 10 mM methionine.
  • the anti-PRLR antibody formulation contains about 10 mM histidine, about 80 ppm about polysorbate 80, about 205 sucrose, about 20 mM arginine, about 1 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5.
  • the anti-PRLR antibody formulation also contains from about 0 mM to 10 mM methionine.
  • the anti-PRLR antibody formulation contains about 10 mM histidine, about 75 ppm about polysorbate 80, about 205 trehalose, about 20 mM arginine, about 2 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5.
  • the anti-PRLR antibody formulation also contains from about 0 mM to 10 mM methionine.
  • the anti-PRLR antibody formulation contains about 10 mM histidine, about 75 ppm about polysorbate 80, about 205 trehalose, about 20 mM arginine, about 60 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5.
  • the anti-PRLR antibody formulation also contains from about 0 mM to 10 mM methionine.
  • the anti-PRLR antibody formulation contains about 10 mM histidine, about 234 mM sucrose, about 80 ppm polysorbate 80, about 30 mM arginine, about 5 mM methionine, about 7.5 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5, such as pH 5.5.
  • the anti-PRLR antibody formulation contains about 10 mM histidine, about 234 mM sucrose, about 80 ppm polysorbate 80, about 30 mM arginine, about 5 mM methionine, about 60 mg/mL anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5, such as pH 5.5.
  • the anti-PRLR antibody formulation contains about 10 mM histidine, about 234 mM sucrose, about 75 ppm Tween 80, about 30 mM arginine, about 10 mM methionine, about 60 mg/mL anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5, such as pH 5.5.
  • the anti-PRLR antibody formulation contains about 10 mM histidine, about 263 mM sucrose, about 80 ppm polysorbate 80, about 60 mg/mL anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5, such as pH 6.0.
  • the present disclosure provides anti-PRLR mAb formulations, including anti-PRLR IgG2 mAb formulations, wherein the anti-PRLR mAb is soluble at high protein concentrations.
  • the anti-PRLR mAb in the formulations disclosed herein remain soluble at concentrations of between about 1 mg/ml to about 150 mg/ml and remain stable under isosmotic storage conditions and exhibit reduced viscosity as compared to currently available antibody formulations.
  • the anti-PRLR antibody having a light chain comprising the amino acid sequence of SEQ ID NO: 1 and a heavy chain comprising the amino acid sequence of SEQ ID NO: 7 is an IgG2 antibody that blocks prolactin receptor (PRLR).
  • Anti-PRLR antibodies can prevent the onset or progression of endometriosis by blocking PRLR, thereby overcoming deficiencies in endometrial pathways.
  • the high concentration, salt free anti-PRLR antibody formulations presented herein can be administrated to the patients via intravenous injection or subcutaneous injection or other injection routes.
  • stability of anti-PRLR antibodies is affected by excipients.
  • the stability of anti-PRLR antibody increases with the decrease of NaCl concentrations in the pH range defined.
  • positively charged amino acids such as arginine and lysine, can improve the stability anti-PRLR antibody and that pH greatly affects anti-PRLR antibody aggregation.
  • the aggregation of antibody solutions increases with increases in pH.
  • the optimal pH for stabilizing the anti-PRLR antibodies presented herein ranges from about pH 5.0 to about pH 6.5 or from about pH 5.5 to about pH 6.0 such as about pH 5.0, about pH 5.5, about pH 6.0, or about pH 6.5.
  • anti-PRLR antibody formulations wherein the anti-PRLR antibodies include IgG2 antibodies, including human IgG2 monoclonal anti-PRLR antibodies having a light chain sequence and a heavy chain sequence presented in one or more of PCT Patent Publication NOs. WO/2011/069799, WO/2011/069798, WO/2011/069797, WO/2011/069796, WO/2011/069795, and WO/2011/069794.
  • Antibodies that may be suitably employed in the anti-PRLR antibody formulations described herein are exemplified by the Mat3-hIgG2 antibody presented in Table 1, which was obtained from the BioInvent Phage Display library (Lund, Sweden) and subsequently germ lined and sequence-optimized for affinity, activity, species cross-reactivity, and manufacturability.
  • the Fab part comprises a lambda light chain (VL: DPL3 germline; CL: Mcg-/Kern-/Oz-isotype) and a heavy chain VH DP47-germline framework region.
  • VL DPL3 germline
  • CL Mcg-/Kern-/Oz-isotype
  • the antibody was reformatted into a human IgG2 of the IgG2m (n-) heavychain allotype lacking the C-terminal lysine.
  • a potential deamidation site is present in CDR3 at amino acid position 98 of the light chain and was left unchanged in this antibody.
  • the standard N-glycosylation site of IgG2 is present at N294 of the heavy chain.
  • the present disclosure provides anti-PRLR mAb formulations, including anti-PRLR IgG2 mAb formulations, wherein the anti-PRLR mAb is soluble at high protein concentrations.
  • the anti-PRLR mAb in the formulations disclosed herein remain soluble at concentrations from about 1 mg/ml to about 150 mg/ml and remain stable under isosmotic storage conditions and exhibit reduced viscosity as compared to currently available antibody formulations.
  • Anti-PRLR antibodies can prevent the onset or progression of endometriosis by blocking PRLR, thereby overcoming deficiencies in endometrial pathways.
  • the wide protein concentration range, including high concentration anti-PRLR antibody formulations presented herein can be administrated to the patients via intravenous injection intramuscular injection or subcutaneous injection.
  • the present disclosure also provides methods for the non-hormonal treatment of endometriosis in a patient, comprising the administration to the patient of a therapeutically effective amount of one or more formulations described herein.
  • methods for the non-hormonal treatment of endometriosis in a patient comprising the administration to the patient of a therapeutically effective amount of an anti-prolactin receptor antibody (aPRLR Ab) formulation including an aPRLR-specific IgG2 monoclonal antibody (mAb) formulation that contains from about 0 mM to about 70 mM histidine; from about 50 ppm to about 300 ppm polysorbate (Tween®) 80 and/or polysorbate (Tween®) 20; from about 34 mM to about 292 mM sucrose; from about 0 mM to about 50 mM arginine, from about 0 mM to about 50 mM lysine, from about 0 mM to about 270 mM glycine or a
  • the anti-PRLR antibody formulation can be administered intravenously. Within other aspects of these methods, the anti-PRLR antibody formulation can be administered subcutaneously. Within other aspects of these methods, the anti-PRLR antibody formulation can be administered intramuscularly.
  • the anti-PRLR antibody is a human anti-PRLR IgG2 monoclonal antibody such as, for example, a human anti-PRLR IgG2 monoclonal antibody that contains a light chain sequence and a heavy chain sequence presented in one or more of PCT Patent Publication NOs. WO/2011/069799, WO/2011/069798, WO/2011/069797, WO/2011/069796, WO/2011/069795, and WO/2011/069794.
  • This Example discloses the effect of salt (NaCl) concentration and pH on the aggregation of solutions containing an anti-PRLR human monoclonal antibody that contains a light chain sequence and a heavy chain sequence presented in one or more of PCT Patent Publication Nos. WO/2011/069799, WO/2011/069798, WO/2011/069797, WO/2011/069796, WO/2011/069795, and WO/2011/069794.
  • the turbidity of solutions is assessed by visual observation to quickly evaluate the effects of salt concentrations and pH on aPRLR mAb solutions. No precipitation is observed after 2 months at 5° C. and 25° C. with the formulation in absence of salt at pH 5.5-6.5.
  • an anti-PRLR antibody has a net positive charge.
  • the repulsion of the positive charges on such an anti-PRLR antibody surface likely prevents protein-protein association between individual molecules and, thereby, significantly increases solubility.
  • the anion (C1 ⁇ ) of salt binds to the guanidinium group on arginine side-chains on an anti-PRLR antibody surface to neutralize the positive charges, which enhances protein-protein interactions and, hence, causes lower solubility and solution turbidity.
  • the non-salt formulations that are described herein are developed to achieve increased antibody solubility and stability.
  • the concentration of other stabilizers, such as sucrose can be increased to >150 mM and ⁇ 300 mM without compromising osmolality.
  • Substantially isosmotic high concentration anti-PRLR Ab formulations are prepared without NaCl. These formulations employ high sucrose concentrations to help stabilize the anti-PRLR
  • Frozen anti-PRLR antibody is thawed and formulated according to formulations presented in Table 2.
  • the formulations are prepared and are sterile filtered with a 0.22 ⁇ m filter and sterile filled in glass tubing vials and stoppered with rubber stoppers.
  • the positive charged amino acids such as arginine (10-50 mM)
  • sucrose or trehalose 34 mM to 292 mM and polysorbate 80 50-300 ppm
  • the positive charged amino acids such as arginine (10-50 mM)
  • Representative anti-PRLR mAb formulations were analyzed by HPLC-SEC for protein aggregation and degradation, LC-MS for aPRLR structural changes (glycation and oxidation), viscometer for viscosity measurement, and osmolality instrument for osmolality measurement.
  • the results for the HPLC-SEC analysis of protein aggregation are presented in Table 3, the results for the nephlometry analysis of turbidity are presented in Table 4, the results for the LC-MS analysis of aPRLR structural changes are presented in Table 5, and the results for the analysis of viscosity and osmolality are presented in Table 6.
  • Viscosity and Osmolality of Anti-PRLR Ab Formulations Viscosity (mPa-S) at Osmolality Formulation Composition 22.0° C.-23.0° C. (mmol/kg) Anti-PRLR 60 mg/mL 1.83 342 Histidine 10 mM Sucrose 234 mM Polysorbate 80 80 ppm pH 5.5 Arginine 30 mM Methionine 5 mM Anti-PRLR 60 mg/mL 2.37 345 Histidine 10 mM Sucrose 234 mM Polysorbate 80 75 ppm pH 5.5 Arginine 30 mM Methionine 10 mM Anti-PRLR 60 mg/mL 2.17 299 Histidine 10 mM Sucrose 263 mM Polysorbate 80 80 ppm pH 6.0

Abstract

Provided are a wide concentration range, especially high concentration, substantially salt-free anti-prolactin receptor antibody formulations that are substantially isosmotic and of low viscosity.

Description

  • This application is being filed on 28 Aug. 2013, as a PCT International patent application, and claims priority to U.S. Provisional Patent Application No. 61/695,949, filed Aug. 31, 2012, and U.S. patent application Ser. No. 13/842,906, filed Mar. 15, 2013, the disclosures of which are hereby incorporated by reference herein in their entirety.
  • BACKGROUND
  • The present disclosure relates generally to a wide concentration range of anti-prolactin receptor antibody formulations that are substantially isosmotic and of low viscosity, including formulations that are useful for subcutaneous and general injection administration.
  • Prolactin (PRL) is a polypeptide hormone composed of 199 amino acids. PRL belongs to the growth hormone (GH), placental lactogen (PL) family of polypeptide hormones and is synthesized in lactotroph cells of the pituitary and in several extrapituitary tissues such as lymphocytes, mammary epithelial cells, the myometrium, and the prostate. Two different promoters regulate pituitary and extrapituitary PRL synthesis (BioEssays 28:1051-1055 (2006)).
  • PRL binds to the PRL receptor (PRLR), a single transmembrane receptor belonging to the class 1 cytokine receptor superfamily (Endocrine Reviews 19:225-268 (1998)). PRLR exists in three different isoforms, the short, the long, and the intermediate form that can be distinguished by the length of their cytoplasmic tails. Upon ligand binding, a sequential process leads to PRLR activation. PRL interacts via its binding site 1 with one PRLR molecule and then attracts via its binding site 2 a second receptor molecule leading to an active dimer of PRLRs.
  • PRLR dimerization leads to the predominant activation of the JAK/STAT (Janus Kinase/Signal transducers and activators of transcription) pathway. Upon receptor dimerization, JAKs (predominantly JAK2) associated with the receptor, transphosphorylate and activate each other. In addition the PRLR is also phosphorylated and can bind to SH2-domain containing proteins such as STATs. Receptor bound STATs are subsequently phosphorylated, dissociate from the receptor and translocate to the nucleus where they stimulate transcription of target genes. In addition, activation of the Ras-Raf-MAPK pathway and activation of the cytoplasmic src kinase by PRLRs have been described (for review Endocrine Reviews 19: 225-268 (1998)).
  • The role of PRLR-mediated signalling has been investigated in the context of the benign disease endometriosis. In one study the expression pattern of the PRLR in endometriotic samples and eutopic endometrium from endometriosis patients was analysed (Acta Obstet Gynecol Scand 81:5-10, 2002) during the mid-late proliferative phase of the menstrual cycle. It was demonstrated that the PRLR mRNA was present in the eutopic endometrium in 79% of the analysed endometriosis patients, whereas it was absent in the endometriotic lesions in 86% of the endometriosis patients. These data suggested a possible differential regulation of PRLR expression between normal and endometriotic tissue. However, from these expression data it cannot be concluded that inhibition of the PRLR might represent a suitable endometriosis therapy—especially since the PRLR was not found to be expressed in the endometriotic lesions (Acta Obstet Gynecol Scand 81:5-10 (2002)).
  • Antibodies that are directed against prolactin receptor (PRLR), including anti-PRLR monoclonal antibodies (aPRLR mAbs), are being developed in an effort to block PRLR function. One such aPRLR mAb is an IgG2 anti-PRLR mAb that is being developed for the non-hormonal treatment of endometriosis patients.
  • Antibodies may be administrated to patients via intravenous, intramuscular, and/or subcutaneous injection. To ensure patient compliance, it is desirable that intramuscular and subcutaneous injection dosage forms be isotonic and include small injection volumes (<2 ml per injection site). To reduce injection volume, and to provide an effective dose, antibodies are often administered with a wide concentration range, from 1 mg/ml to 150 mg/mL, including high concentrations within the range of 20 mg/ml to 150 mg/ml.
  • While both liquid and lyophilized dosage forms are used for currently marketed antibody drug products, lyophilized forms are more frequently used for antibody drug products having high protein concentrations. A high concentration antibody formulation may present many challenges in formulation development, especially for liquid formulation. For formulations in which the antibody concentration is near its apparent solubility limit, phase separation can occur through precipitation, gelation, and/or crystallization. At high protein concentration, the stability of an antibody can become problematic due to the formation of soluble and insoluble protein-protein aggregates. Highly concentrated antibody formulations are frequently highly viscous, which presents difficulties for processing, such as ultrafiltration and sterile filtration, and for injection of the dosage solution. And at high antibody concentrations, which are desirable for formulations intended for intramuscular or subcutaneous administration, proportionally high concentrations of stabilizers, such as sucrose and sodium chloride, are required to achieve long-term protein stability. The resulting hypertonic solutions often cause injection pain due to tissue damage. Therefore, it is often desirable to balance the amount of stabilizers for stability and osmolality of the high protein concentration formulation.
  • SUMMARY
  • The present disclosure provides liquid and lyophilized anti-PRLR antibody formulations with a wide range of anti-PRLR antibody concentrations, which are substantially isotonic and low viscosity and that contain substantially no salt other than an organic salt or an inorganic salt that is used to buffer the formulation.
  • The anti-PRLR antibody formulations presented herein contain from about 0 mM to about 70 mM histidine; from about 50 ppm to about 300 ppm of a non-ionic surfactant such as, for example, polysorbate (Tween®) 80 and/or polysorbate (Tween®) 20; from about 34 mM to about 292 mM of a sugar or sugar alcohol such as, for example, mannitol, dextrose, glucose, trehalose, and/or sucrose; from about 0 mM to about 50 mM arginine; from about 0 mM to about 50 mM lysine; from about 0 mM to about 270 mM glycine or alanine; from about 0 mM to about 10 mM methionine; and from about 1 mg/ml to about 150 mg/ml of an anti-PRLR antibody, including an aPRLR-specific IgG2 monoclonal antibody (mAb) at a pH from about pH 5.0 to about pH 6.5.
  • Each of the presently disclosed antibody formulations contains substantially no salt other than an organic salt or an inorganic salt that is used to buffer the formulation. This permits the addition of alternative stabilizers to maintain the isosmoticity of the formulation (i.e., osmolality ranging from about 240 mmol/kg to about 380 mmol/kg), which thereby promotes a higher degree of patient compliance.
  • Each of the presently disclosed antibody formulations has a low viscosity ranging from about 1 to about 8 mPa-S at 22° C.-23° C., which promotes ease of processing such as, for example, improved ultrafiltration and sterile filtration as well as injection of the antibody formulation through a syringe needle during administration.
  • The formulations disclosed herein stabilize antibodies, in particular anti-PRLR antibodies including anti-PRLR IgG2 antibodies, at high protein concentrations in liquid form or in lyophilized form.
  • DESCRIPTION OF VARIOUS EMBODIMENTS
  • As described above, the present disclosure provides anti-PRLR antibody formulations that stabilize the anti-PRLR antibody in a wide range of concentrations in liquid form or in lyophilized form at intended storage conditions. The formulations described herein include one or more pharmaceutically acceptable excipients or stabilizers, and are contained in buffered media at a suitable pH and are substantially isosmotic with physiological fluids. For systemic administration, injection is one possible route of administration, including intramuscular, intravenous, intraperitoneal, and subcutaneous for injection.
  • Because of their low viscosity, the presently disclosed anti-PRLR antibody formulations can be conveniently processed via, for example, ultrafiltration and sterile filtration and can be administered to a patient via injection, including both intravenous and subcutaneous injection. Moreover, because they are substantially isosmotic, the presently disclosed anti-PRLR antibody formulations reduce tissue damage or other adverse physiologic effects and thereby achieving favorable patient tolerance and increased patient compliance.
  • The formulations described herein are characterized by the substantial absence of added salt other than an organic salt or an inorganic salt that is used to buffer the formulation, which provides the flexibility for increasing the concentrations of other stabilizers, such as sucrose, while maintaining the osmolality of the formulation for improved in vivo tolerability and, consequently, increased patient compliance.
  • Moreover, the low viscosity of the presently described formulations permits convenient processing, including ultrafiltration and sterile filtration, and injection of the drug product solution through the needle.
  • For the purpose of interpreting this specification, the following definitions will apply. In the event that any definition set forth below conflicts with the usage of that word in any other document, including any document incorporated herein by reference, the definition set forth below shall always control for purposes of interpreting this specification and its associated claims unless a contrary meaning is clearly intended (for example in the document where the term is originally used).
  • Whenever appropriate, terms used in the singular also will include the plural and vice versa. The use of “a” herein means “one or more” unless stated otherwise or where the use of “one or more” is clearly inappropriate. The use of “or” means “and/or” unless stated otherwise. The use of “comprise,” “comprises,” “comprising,” “include,” “includes,” and “including” are interchangeable and not intended to be limiting. The term “such as” also is not intended to be limiting. For example, the term “including” shall mean “including, but not limited to.” Furthermore, where the description of one or more embodiments uses the term “comprising,” those skilled in the art would understand that, in some specific instances, the embodiment or embodiments can be alternatively described using the language “consisting essentially of” and/or “consisting of.”
  • As used herein, the term “viscosity” refers to the resistance of a liquid formulation to flow, such as when injected through a syringe needle during administration to a patient. Viscosity measurements can be done by a cone and plate technique with a Peltier element set at a defined temperature, such as 22° C.-23° C. as described herein. Typically, a well-defined shear stress gradient is applied to the liquid formulation and the resulting shear rate is measured. The viscosity is the ratio of the shear stress to the shear rate. As used herein, viscosity is expressed in units of mPa-S at 22° C.-23° C. wherein 1 mPa-S=1 cP. The high concentration, low viscosity, substantially isosmotic formulations disclosed herein are typically characterized by having a viscosity ranging from 1 to 8 mPa-S at 22° C.-23° C.
  • As used herein, the term “osmolality” refers to a measure of solute concentration, defined as the number of mmole of solute per kg of solution. A desired level of osmolality can be achieved by the addition of one or more stabilizer such as a sugar or a sugar alcohol including mannitol, dextrose, glucose, trehalose, and/or sucrose. Additional stabilizers that are suitable for providing osmolality are described in references such as the handbook of Pharmaceutical Excipients (Fourth Edition, Royal Pharmaceutical Society of Great Britain, Science & Practice Publishers) or Remingtons: The Science and Practice of Pharmacy (Nineteenth Edition, Mack Publishing Company).
  • As used herein, the term “about” refers to +/−10% of the unit value provided. As used herein, the term “substantially” refers to the qualitative condition of exhibiting a total or approximate degree of a characteristic or property of interest. One of ordinary skill in the biological arts will understand that biological and chemical phenomena rarely, if ever, achieve or avoid an absolute result because of the many variables that affect testing, production, and storage of biological and chemical compositions and materials, and because of the inherent error in the instruments and equipment used in the testing, production, and storage of biological and chemical compositions and materials. The term substantially is therefore used herein to capture the potential lack of completeness inherent in many biological and chemical phenomena.
  • As used herein, the terms “isosmotic” and “isotonic” are used interchangeably with the terms “substantially isosmotic,” and “substantially isotonic” and refer to formulations characterized by having an osmotic pressure that is the same as or at least substantially equivalent to the osmotic pressure of another solution, which is achieved by formulations wherein the total concentration of solutes, including both permeable and impermeable solutes, in the formulation are the same as or at least substantially equivalent to the total number of solutes in another solution. Thus, while it will be appreciated by those of skill in the art that “isosmotic” and “isotonic” formulations that are used for in vivo administration generally have an osmolality ranging from about 270 mmol/kg to about 310 mmol/kg, in the context of the high concentration, low viscosity formulations of the present disclosure, the terms “isosmotic,” “isotonic,” “substantially isosmotic,” and “substantially isotonic” are used interchangeably to refer to formulations having an osmolality ranging from about 240 mmol/kg to about 380 mmol/kg, or from about 270 mmol/kg to about 370 mmol/kg, or from about 300 mmol/kg to about 330 mmol/kg.
  • The presently disclosed high concentration, low viscosity, substantially isosmotic anti-PRLR antibody formulations contain from about 0 mM to about 70 mM histidine; from about 50 ppm to about 300 ppm of a non-ionic surfactant such as, for example, polysorbate (Tween®) 80 and/or polysorbate (Tween®) 20; from about 34 mM to about 292 mM of a sugar or sugar alcohol, such as, for example, mannitol, dextrose, glucose, trehalose, and/or sucrose; from about 0 mM to about 50 mM arginine; from about 0 mM to about 50 mM lysine; from about 0 mM to about 270 mM glycine or alanine; from about 0 mM to about 10 mM methionine; and from about 1 mg/ml to about 150 mg/ml of an anti-PRLR antibody at a pH from about pH 5.0 to about pH 6.5. The formulations disclosed herein exhibit a viscosity ranging from about 1 to about 8 mPa-S at 22° C.-23° C. and osmolality ranging from about 240 to about 380 mmol/kg.
  • In these formulations, histidine is a buffer agent, which can be used to maintain the formulation pH from about pH 5.0 to about pH 6.5, or from about pH 5.5 to about pH 6.0, such as about pH 5.0, about pH 5.5, about pH 6.0, or about pH 6.5.
  • Sugars or sugar alcohol, such as mannitol, dextrose, glucose, trehalose, and/or sucrose, are used separately or in combination both as cryo-protectants and a stabilizer the anti-PRLR antibody in liquid formulations as well as during lyophilization.
  • Non-ionic surfactants such as polysorbates, including polysorbate 20 and polysorbate 80; polyoxamers, including poloxamer 184 and 188; Pluronic® polyols; and other ethylene/polypropylene block polymers, stabilize the anti-PRLR antibody during processing and storage by reducing interfacial interaction and prevent antibody from adsorption.
  • Arginine is a protein solubilizer and also a stabilizer that reduces antibody and other protein aggregation, such as anti-PRLR antibody aggregation, and other possible degradation. Methionine is an antioxidant that prevents antibody oxidation during processing and storage.
  • Sugars and inorganic salts are commonly used as protein stabilizers; however, both sugars and inorganic salts are also effective tonicity agents. If a formulation requires a high concentration of one or more sugars to stabilize an anti-PRLR antibody, the inorganic salt concentration should be zero or kept very low in order to maintain the formulation's osmolality such that injection pain is reduced upon administration.
  • As used herein, the term “salt” refers to inorganic salts, which include sodium chloride (NaCl), sodium sulfate (Na2SO4), sodium thiocyanate (NaSCN), magnesium chloride (MgCl), magnesium sulfate (MgSO4), ammonium thiocyanate (NH4SCN), ammonium sulfate ((NH4)2SO4), ammonium chloride (NH4Cl), calcium chloride (CaCl2), calcium sulfate (CaSO4), zinc chloride (ZnCl2) and the like, or combinations thereof. The anti-PRLR antibody formulations disclosed herein are characterized by a substantial absence of added salt and are, therefore, referred to herein as salt-free antibody formulations. It will be understood by those of skill in the art that the presence of inorganic salts within the presently disclosed formulations that are introduced by pH adjustment are not considered to be added salts. Such inorganic salts when introduced by pH adjustments, if present in a formulation according to the present disclosure, should not exceed a concentration of about 2 mM.
  • As used herein, the term “surfactant” includes non-ionic surfactants including, without limitation, polysorbates, such as polysorbate 20 or 80, and the polyoxamers, such as poloxamer 184 or 188, Pluronic® polyols, and other ethylene/polypropylene block polymers. Amounts of surfactants effective to provide stable high concentration anti-PRLR antibody formulations are usually in the range of 50 ppm to 300 ppm. The use of non-ionic surfactants permits the formulations to be exposed to shear and surface stresses without causing denaturation of the anti-PRLR antibody, and also reduce the adsorption on the surfaces during processing and storage. The formulations disclosed herein include, without limitation, formulations having one or more non-ionic surfactant(s) including, for example, one or more polysorbate(s), such as polysorbate 20 or 80; one or more polyoxamers, such as poloxamer 184 or 188; Pluronic® polyols; and/or one or more ethylene/polypropylene block polymer(s). Exemplified herein are formulations having a polysorbate, such as polysorbate 20 (Tween® 20) or polysorbate 80 (Tween® 80).
  • As used herein, the term “antibody” refers to a class of proteins that are generally known as immunoglobulins. Antibodies include full-length monoclonal antibodies (mAb), such as IgG2 monoclonal antibodies, which include immunoglobulin Fc regions. The term antibody also includes bispecific antibodies, diabodies, single-chain molecules, and antibody fragments such as Fab, F(ab′)2, and Fv.
  • As used herein, the term “anti-PRLR antibody” refers to an antibody having binding specificity against the human PRLR protein as well as fragments and variants of the human PRLR protein. Anti-PRLR antibodies presented herein can be IgG2 antibodies and include anti-PRLR IgG2 monoclonal antibodies, such as chimeric, humanized, and fully-human anti-PRLR IgG2 monoclonal antibodies. Anti-PRLR monoclonal antibodies, including full-length antibodies and antigen binding fragments and variants thereof, that are suitable for use in the formulations disclosed herein are presented in PCT Patent Publication NOs. WO/2011/069799, WO/2011/069798, WO/2011/069797, WO/2011/069796, WO/2011/069795, and WO/2011/069794, each of which are incorporated by reference herein in their entirety.
  • “Monoclonal antibodies” are characterized by having specificity for a single antigenic determinant. Monoclonal antibodies can, for example, be made by the hybridoma method described by Kohler and Milstein, Nature 256:495 (1975) or by recombinant DNA methods such as those described in U.S. Pat. No. 4,816,567. Monoclonal antibodies can also be isolated from phage display libraries using the techniques such as those described in Clackson et al., Nature 352:624-628 (1991) and Marks et al., J. Mol. Biol. 222:581-597 (1991).
  • Monoclonal antibodies include “chimeric monoclonal antibodies” wherein a portion of a heavy and/or light chain includes sequences from antibodies derived from one species, while the remainder of the antibody, including the Fc region, includes sequences from antibodies derived from a second species, and the second species may be human. See, e.g., U.S. Pat. No. 4,816,567 and Morrison et al., Proc. Natl. Acad. Sci. USA 81:6851-6855 (1984).
  • Monoclonal antibodies also include “humanized monoclonal antibodies” wherein one or more complementarity determining region (CDR) from a heavy and/or light chain sequence from antibodies derived from one species replace one or more CDR from a heavy and/or light chain sequence from antibodies derived from a second species, and the second species may be human. The process of “humanization” is usually applied to monoclonal antibodies developed for administration to humans. See, e.g., Riechmann et al., Nature 332(6162):323-27 (1988) and Queen et al., Proc. Natl. Acad. Sci. USA 86(24):10029-33 (1989).
  • Monoclonal antibodies also include “fully-human monoclonal antibodies” wherein the entire heavy and light chain sequences are derived from human antibody sequences. Fully-human monoclonal antibodies can be generated by phage display technologies and can be isolated from mice that have been genetically engineered to express the human antibody repertoire. See, e.g., McCafferty et al., Nature 348(6301):552-554 (1990), Marks et al., J. Mol. Biol. 222(3):581-597 (1991), and Carmen and Jermutus, Brief Funct. Genomic Proteomic 1(2):189-203 (2002).
  • As used herein, the term “Pharmaceutically effective amount” of an anti-PRLR antibody formulation refers to an amount of the formulation that provides therapeutic effect in an administration regimen. The high concentration anti-PRLR antibody formulations disclosed herein typically include an anti-PRLR antibody at a concentration ranging from about 1 mg/ml to about 150 mg/ml, or from about 2 mg/ml to about 120 mg/ml, or from about 5 mg/ml to about 100 mg/ml, or from about 7.5 mg/ml to about 60 mg/ml. Within some aspects the concentration of anti-PRLR antibody within these formulations is about 2 mg/ml, or about 7.5 mg/ml, or about 20 mg/ml, or about 50 mg/ml, or about 60 mg/ml. Such formulations are typically administered in a volume of less than about 2 ml, or about 1.5 ml, or about 1 ml, or about 0.5 ml per injection site for subcutaneous injection.
  • Within certain aspects, the anti-PRLR antibody formulation contains about 30 mM histidine, about 100 ppm polysorbate 80, about 292 mM sucrose, about 20 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5. Within related aspects, the anti-PRLR antibody formulation also contains from about 10 mM to about 50 mM arginine.
  • Within other aspects, the anti-PRLR antibody formulation contains about 10 mM histidine, about 80 ppm polysorbate 80, about 234 mM sucrose, about 60 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5. Within related aspects, the anti-PRLR antibody formulation also contains from about 30 mM to about 50 mM arginine.
  • Within other aspects, the anti-PRLR antibody formulation contains about 10 mM histidine, about 75 ppm polysorbate 80, about 234 sucrose, about 60 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5. Within related aspects, the anti-PRLR antibody formulation also contains from about 30 mM to about 50 mM arginine.
  • Within other aspects, the anti-PRLR antibody formulation contains about 10 mM histidine, about 75 ppm polysorbate 80, about 88 mM sucrose, about 133 mM glycine, about 60 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5. Within related aspects, the anti-PRLR antibody formulation also contains from about 10 mM to about 50 mM arginine.
  • Within other aspects, the anti-PRLR antibody formulation contains about 10 mM histidine, about 75 ppm polysorbate 20, about 88 mM sucrose, about 133 mM glycine, about 60 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5. Within related aspects, the anti-PRLR antibody formulation also contains from about 10 mM to about 50 mM arginine.
  • Within other aspects, the anti-PRLR antibody formulation contains about 10 mM histidine, about 200 ppm polysorbate 20, about 88 mM sucrose, about 133 mM glycine, about 60 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5. Within related aspects, the anti-PRLR antibody formulation also contains from about 10 mM to about 50 mM arginine.
  • Within other aspects, the anti-PRLR antibody formulation contains about 70 mM histidine, about 80 ppm polysorbate 80, about 200 mM sucrose, about 60 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5. Within related aspects, the anti-PRLR antibody formulation also contains from about 10 mM to about 50 mM arginine.
  • Within other aspects, the anti-PRLR antibody formulation contains about 10 mM histidine, about 80 ppm polysorbate 80, about 292 mM sucrose, about 10 mM arginine, about 60 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5. Within related aspects, the anti-PRLR antibody formulation also contains from about 0 mM to about 10 mM methionine.
  • Within other aspects, the anti-PRLR antibody formulation contains about 70 mM histidine, about 80 ppm polysorbate 80, about 176 mM sucrose, about 133 mM glycine, about 30 mM lysine, about 60 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5.
  • Within other aspects, the anti-PRLR antibody formulation contains about 10 mM histidine, about 75 ppm about polysorbate 80, about 234 mM sucrose, about 30 mM arginine, about 60 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5. Within related aspects, the anti-PRLR antibody formulation also contains from about 0 mM to 10 mM methionine.
  • Within other aspects, the anti-PRLR antibody formulation contains about 10 mM histidine, about 80 ppm about polysorbate 80, about 234 mM sucrose, about 20 mM arginine, about 150 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5. Within related aspects, the anti-PRLR antibody formulation also contains from about 0 mM to 10 mM methionine.
  • Within other aspects, the anti-PRLR antibody formulation contains about 10 mM histidine, about 80 ppm about polysorbate 80, about 205 mM sucrose, about 20 mM arginine, about 60 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5. Within related aspects, the anti-PRLR antibody formulation also contains from about 0 mM to 10 mM methionine.
  • Within other aspects, the anti-PRLR antibody formulation contains about 10 mM histidine, about 80 ppm about polysorbate 80, about 205 mM sucrose, about 20 mM arginine, about 2 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5. Within related aspects, the anti-PRLR antibody formulation also contains from about 0 mM to 10 mM methionine.
  • Within other aspects, the anti-PRLR antibody formulation contains about 10 mM histidine, about 80 ppm about polysorbate 80, about 205 sucrose, about 20 mM arginine, about 1 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5. Within related aspects, the anti-PRLR antibody formulation also contains from about 0 mM to 10 mM methionine.
  • Within other aspects, the anti-PRLR antibody formulation contains about 10 mM histidine, about 75 ppm about polysorbate 80, about 205 trehalose, about 20 mM arginine, about 2 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5. Within related aspects, the anti-PRLR antibody formulation also contains from about 0 mM to 10 mM methionine. Within other aspects, the anti-PRLR antibody formulation contains about 10 mM histidine, about 75 ppm about polysorbate 80, about 205 trehalose, about 20 mM arginine, about 60 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5. Within related aspects, the anti-PRLR antibody formulation also contains from about 0 mM to 10 mM methionine.
  • Within other aspects, the anti-PRLR antibody formulation contains about 10 mM histidine, about 234 mM sucrose, about 80 ppm polysorbate 80, about 30 mM arginine, about 5 mM methionine, about 7.5 mg/ml anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5, such as pH 5.5.
  • Within other aspects, the anti-PRLR antibody formulation contains about 10 mM histidine, about 234 mM sucrose, about 80 ppm polysorbate 80, about 30 mM arginine, about 5 mM methionine, about 60 mg/mL anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5, such as pH 5.5.
  • Within other aspects, the anti-PRLR antibody formulation contains about 10 mM histidine, about 234 mM sucrose, about 75 ppm Tween 80, about 30 mM arginine, about 10 mM methionine, about 60 mg/mL anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5, such as pH 5.5.
  • Within other aspects, the anti-PRLR antibody formulation contains about 10 mM histidine, about 263 mM sucrose, about 80 ppm polysorbate 80, about 60 mg/mL anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5, such as pH 6.0.
  • Thus, the present disclosure provides anti-PRLR mAb formulations, including anti-PRLR IgG2 mAb formulations, wherein the anti-PRLR mAb is soluble at high protein concentrations. The anti-PRLR mAb in the formulations disclosed herein remain soluble at concentrations of between about 1 mg/ml to about 150 mg/ml and remain stable under isosmotic storage conditions and exhibit reduced viscosity as compared to currently available antibody formulations.
  • The anti-PRLR antibody having a light chain comprising the amino acid sequence of SEQ ID NO: 1 and a heavy chain comprising the amino acid sequence of SEQ ID NO: 7 is an IgG2 antibody that blocks prolactin receptor (PRLR). Anti-PRLR antibodies can prevent the onset or progression of endometriosis by blocking PRLR, thereby overcoming deficiencies in endometrial pathways. The high concentration, salt free anti-PRLR antibody formulations presented herein can be administrated to the patients via intravenous injection or subcutaneous injection or other injection routes.
  • As part of the present disclosure, stability of anti-PRLR antibodies is affected by excipients. The stability of anti-PRLR antibody increases with the decrease of NaCl concentrations in the pH range defined. In addition, positively charged amino acids, such as arginine and lysine, can improve the stability anti-PRLR antibody and that pH greatly affects anti-PRLR antibody aggregation. The aggregation of antibody solutions increases with increases in pH. The optimal pH for stabilizing the anti-PRLR antibodies presented herein ranges from about pH 5.0 to about pH 6.5 or from about pH 5.5 to about pH 6.0 such as about pH 5.0, about pH 5.5, about pH 6.0, or about pH 6.5.
  • Provided herein are anti-PRLR antibody formulations wherein the anti-PRLR antibodies include IgG2 antibodies, including human IgG2 monoclonal anti-PRLR antibodies having a light chain sequence and a heavy chain sequence presented in one or more of PCT Patent Publication NOs. WO/2011/069799, WO/2011/069798, WO/2011/069797, WO/2011/069796, WO/2011/069795, and WO/2011/069794.
  • Antibodies that may be suitably employed in the anti-PRLR antibody formulations described herein are exemplified by the Mat3-hIgG2 antibody presented in Table 1, which was obtained from the BioInvent Phage Display library (Lund, Sweden) and subsequently germ lined and sequence-optimized for affinity, activity, species cross-reactivity, and manufacturability.
  • The Fab part comprises a lambda light chain (VL: DPL3 germline; CL: Mcg-/Kern-/Oz-isotype) and a heavy chain VH DP47-germline framework region. The antibody was reformatted into a human IgG2 of the IgG2m (n-) heavychain allotype lacking the C-terminal lysine. A potential deamidation site is present in CDR3 at amino acid position 98 of the light chain and was left unchanged in this antibody. The standard N-glycosylation site of IgG2 is present at N294 of the heavy chain.
  • TABLE 1
    Heavy and Light Chain Sequences of Exemplary Human
    Anti-PRLR IgG2 Monoclonal Antibody Mat3-hIgG2
    Sequence Portion of Amino Acid Sequence
    Identifier Antibody Chain (NH3—COOH)
    SEQ ID NO: 1 Light Chain, QSVLTQPPSA SGTPGQRVTI
    Full-length SCTGSSSNIG AGYVVHWYQQ
    LPGTAPKLLI YRNNQRPSGV
    PDRFSGSKSG TSASLAISGL
    RSEDEADYYC AAWDDSLNGW
    LFGGGTKLTV LGQPKAAPSV
    TLFPPSSEEL QANKATLVCL
    ISDFYPGAVT VAWKADSSPV
    KAGVETTTPS KQSNNKYAAS
    SYLSLTPEQW KSHRSYSCQV
    THEGSTVEKT VAPTECS
    SEQ ID NO: 2 Light Chain, QSVLTQPPSA SGTPGQRVTI
    Variable Domain SCTGSSSNIG AGYVVHWYQQ
    LPGTAPKLLI YRNNQRPSGV
    PDRFSGSKSG TSASLAISGL
    RSEDEADYYC AAWDDSLNGW
    LFGGGTKLTV LGQ
    SEQ ID NO: 3 Light Chain, SCTGSSSNIG AGYVVH
    Variable Domain,
    CDR1
    SEQ ID NO: 4 Light Chain, RNNQRPS
    Variable Domain,
    CDR2
    SEQ ID NO: 5 Light Chain, CAAWDDSLNG WL
    Variable Domain,
    CDR3
    SEQ ID NO: 6 Light Chain, PKAAPSVTLF PPSSEELQAN
    Constant Domain KATLVCLISD FYPGAVTVAW
    KADSSPVKAG VETTTPSKQS
    NNKYAASSYL SLTPEQWKSH
    RSYSCQVTHE GSTVEKTVAP
    TECS
    SEQ ID NO: 7 Heavy Chain, EVQLLESGGG LVQPGGSLRL
    Full-length SCAASGFTFS SYWMHWVRQA
    PGKGLEWVSD IARLSSYTNY
    ADSVKGRFTI SRDNSKNTLY
    LQMNSLRAED TAVYYCARGL
    DARRMDYWGQ GTLVTVSSAS
    TKGPSVFPLA PCSRSTSEST
    AALGCLVKDY FPEPVTVSWN
    SGALTSGVHT FPAVLQSSGL
    YSLSSVVTVP SSNFGTQTYT
    CNVDHKPSNT KVDKTVERKC
    CVECPPCPAP PVAGPSVFLF
    PPKPKDTLMI SRTPEVTCVV
    VDVSHEDPEV QFNWYVDGVE
    VHNAKTKPRE EQFNSTFRVV
    SVLTVVHQDW LNGKEYKCKV
    SNKGLPAPIE KTISKTKGQP
    REPQVYTLPP SREEMTKNQV
    SLTCLVKGFY PSDIAVEWES
    NGQPENNYKT TPPMLDSDGS
    FFLYSKLTVD KSRWQQGNVF
    SCSVMHEALH NHYTQKSLSL
    SPG
    SEQ ID NO: 8 Heavy Chain, EVQLLESGGG LVQPGGSLRL
    Variable Domain SCAASGFTFS SYWMHWVRQA
    PGKGLEWVSD IARLSSYTNY
    ADSVKGRFTI SRDNSKNTLY
    LQMNSLRAED TAVYYCARGL
    DARRMDYWGQ GTLVTVSS
    SEQ ID NO: 9 Heavy Chain, FSSYWMHW
    Variable Domain,
    CDR1
    SEQ ID NO: 10 Heavy Chain, SDIARLSSYT NYADSVKGR
    Variable Domain,
    CDR2
    SEQ ID NO: 11 Heavy Chain, ARGLDARRMD Y
    Variable Domain,
    CDR3
    SEQ ID NO: 12 Heavy Chain, ASTKGPSVFP LAPCSRSTSE
    Constant Domain STAALGCLVK DYFPEPVTVS
    WNSGALTSGV HTFPAVLQSS
    GLYSLSSVVT VPSSNFGTQT
    YTCNVDHKPS NTKVDKTVER
    KCCVECPPCP APPVAGPSVF
    LFPPKPKDTL MISRTPEVTC
    VVVDVSHEDP EVQFNWYVDG
    VEVHNAKTKP REEQFNSTFR
    VVSVLTVVHQ DWLNGKEYKC
    KVSNKGLPAP IEKTISKTKG
    QPREPQVYTL PPSREEMTKN
    QVSLTCLVKG FYPSDIAVEW
    ESNGQPENNY KTTPPMLDSD
    GSFFLYSKLT VDKSRWQQGN
    VFSCSVMHEA LHNHYTQKSL
    SLSPG
  • Thus, the present disclosure provides anti-PRLR mAb formulations, including anti-PRLR IgG2 mAb formulations, wherein the anti-PRLR mAb is soluble at high protein concentrations. Typically, the anti-PRLR mAb in the formulations disclosed herein remain soluble at concentrations from about 1 mg/ml to about 150 mg/ml and remain stable under isosmotic storage conditions and exhibit reduced viscosity as compared to currently available antibody formulations.
  • The anti-PRLR antibody having a light chain sequence and a heavy chain sequence presented in the Sequence Listing attached hereto and in one or more of PCT Patent Publication NOs. WO/2011/069799 (U.S. 2013/0129739), WO/2011/069798 (U.S. 2013/0022606), WO/2011/069797 (U.S. 2012/0315276), WO/2011/069796 (U.S. 2013/0171147), WO/2011/069795; and WO/2011/069794 (U.S. 2012/0321632) can be an IgG2 antibody that blocks a prolactin receptor activity. Anti-PRLR antibodies can prevent the onset or progression of endometriosis by blocking PRLR, thereby overcoming deficiencies in endometrial pathways. The wide protein concentration range, including high concentration anti-PRLR antibody formulations presented herein can be administrated to the patients via intravenous injection intramuscular injection or subcutaneous injection.
  • The present disclosure also provides methods for the non-hormonal treatment of endometriosis in a patient, comprising the administration to the patient of a therapeutically effective amount of one or more formulations described herein. For example, provided are methods for the non-hormonal treatment of endometriosis in a patient, comprising the administration to the patient of a therapeutically effective amount of an anti-prolactin receptor antibody (aPRLR Ab) formulation including an aPRLR-specific IgG2 monoclonal antibody (mAb) formulation that contains from about 0 mM to about 70 mM histidine; from about 50 ppm to about 300 ppm polysorbate (Tween®) 80 and/or polysorbate (Tween®) 20; from about 34 mM to about 292 mM sucrose; from about 0 mM to about 50 mM arginine, from about 0 mM to about 50 mM lysine, from about 0 mM to about 270 mM glycine or alanine, from about 0 mM to about 10 mM methionine, and from about 1 mg/ml to about 150 mg/ml of an anti-PRLR antibody at a pH ranging from about pH 5.0 to about pH 6.5. Within at least one aspect of these methods, the anti-PRLR antibody formulation can be administered intravenously. Within other aspects of these methods, the anti-PRLR antibody formulation can be administered subcutaneously. Within other aspects of these methods, the anti-PRLR antibody formulation can be administered intramuscularly.
  • According to certain aspects of these methods for the non-hormonal treatment of endometriosis in a patient, the anti-PRLR antibody is a human anti-PRLR IgG2 monoclonal antibody such as, for example, a human anti-PRLR IgG2 monoclonal antibody that contains a light chain sequence and a heavy chain sequence presented in one or more of PCT Patent Publication NOs. WO/2011/069799, WO/2011/069798, WO/2011/069797, WO/2011/069796, WO/2011/069795, and WO/2011/069794.
  • Aspects of the present disclosure may be further understood in light of the following examples, which should not be construed as limiting the scope of the present teachings in any way.
  • EXAMPLES Example 1 Effect of NaCl Concentration and pH on the Turbidity of Antibody Solutions
  • This Example discloses the effect of salt (NaCl) concentration and pH on the aggregation of solutions containing an anti-PRLR human monoclonal antibody that contains a light chain sequence and a heavy chain sequence presented in one or more of PCT Patent Publication Nos. WO/2011/069799, WO/2011/069798, WO/2011/069797, WO/2011/069796, WO/2011/069795, and WO/2011/069794. The turbidity of solutions is assessed by visual observation to quickly evaluate the effects of salt concentrations and pH on aPRLR mAb solutions. No precipitation is observed after 2 months at 5° C. and 25° C. with the formulation in absence of salt at pH 5.5-6.5.
  • Solutions without sodium chloride at pH 5.0 to 6.5 are recommended for the presently disclosed anti-PRLR antibody formulations.
  • Without being bound by theory, it is believed that the decreased stability in terms of turbidity or aggregation of the anti-PRLR mAb formulations with high NaCl concentration results from the neutralization of positive charges on the anti-PRLR mAb arginine side-chains. The phase behavior of aPRLR mAb at different pH with the impact of monovalent salt (NaCl) explains why the stable, soluble, non-salt, and substantial isosmolality aPRLR mAb formulations are achieved.
  • At a pH below the PI, such as pH 5-6.5, an anti-PRLR antibody has a net positive charge. The repulsion of the positive charges on such an anti-PRLR antibody surface likely prevents protein-protein association between individual molecules and, thereby, significantly increases solubility. It is hypothesized that the anion (C1) of salt binds to the guanidinium group on arginine side-chains on an anti-PRLR antibody surface to neutralize the positive charges, which enhances protein-protein interactions and, hence, causes lower solubility and solution turbidity. By shifting the pH to 5.0-6.5, the non-salt formulations that are described herein are developed to achieve increased antibody solubility and stability. In absence of salt, the concentration of other stabilizers, such as sucrose, can be increased to >150 mM and <300 mM without compromising osmolality.
  • Example 2 Anti-PRLR Antibody Formulations
  • Substantially isosmotic high concentration anti-PRLR Ab formulations are prepared without NaCl. These formulations employ high sucrose concentrations to help stabilize the anti-PRLR
  • Frozen anti-PRLR antibody is thawed and formulated according to formulations presented in Table 2. The formulations are prepared and are sterile filtered with a 0.22 μm filter and sterile filled in glass tubing vials and stoppered with rubber stoppers.
  • In the absence of NaCl, and in the presence of sucrose or trehalose 34 mM to 292 mM and polysorbate 80 (50-300 ppm), and at pH 5.0-6.5, the positive charged amino acids, such as arginine (10-50 mM), can effectively inhibit aPRLR Ab from aggregation.
  • TABLE 2
    Anti-PRLR Antibody Formulations
    1 mg/ml aPRLR Ab
    1 mg/ml aPRLR Ab
    10 mM histidine
    205 mM sucrose
    75 ppm polysorbate 80
    20 mM arginine
    10 mM methionine
    pH 5.5
    2 mg/ml aPRLR Ab
    2 mg/ml aPRLR Ab 2 mg/ml aPRLR Ab
    10 mM histidine 10 mM histidine
    234 mM sucrose 234 mM sucrose
    75 ppm polysorbate 80 75 ppm polysorbate 80
    30 mM arginine 30 mM arginine
    10 mM methionine 10 mM methionine
    pH 5.5 pH 5.0
    7.5 mg/ml aPRLR Ab
    7.5 mg/ml aPRLR Ab
    10 mM histidine
    234 mM sucrose
    80 ppm polysorbate 80
    30 mM arginine
    5 mM methionine
    pH 5.5
    20 mg/ml aPRLR Ab
    20 mg/ml aPRLR Ab 20 mg/ml aPRLR Ab 20 mg/ml aPRLR Ab
    30 mM histidine 30 mM histidine 30 mM histidine
    292 mM sucrose 292 mM sucrose 10% sucrose
    60 ppm polysorbate 80 60 ppm polysorbate 80 60 ppm polysorbate 80
    pH 5.0 pH 5.5 pH 6.5
    20 mg/ml aPRLR Ab
    30 mM histidine
    292 mM sucrose
    60 ppm polysorbate 80
    50 mM arginine
    pH 6.0
    50 mg/ml aPRLR Ab
    50 mg/ml aPRLR Ab 50 mg/ml aPRLR Ab
    10 mM histidine 10 mM histidine
    234 mM sucrose 234 mM sucrose
    75 ppm polysorbate 80 75 ppm polysorbate 80
    50 mM arginine 30 mM arginine
    pH at 6 pH 5.5
    60 mg/ml aPRLR Ab
    60 mg/ml aPRLR Ab 60 mg/ml aPRLR Ab 60 mg/ml aPRLR Ab
    10 mM histidine 10 mM histidine 10 mM histidine
    234 mM sucrose 88 mM sucrose 205 mM sucrose
    75 ppm polysorbate 80 200 ppm polysorbate 20 75 ppm polysorbate 80
    pH 5.5 30 mM arginine 20 mM arginine
    133 mM glycine 10 mM methionine
    pH at 5.5 pH 6.5
    60 mg/ml aPRLR Ab 60 mg/ml aPRLR Ab 60 mg/ml aPRLR Ab
    10 mM histidine 10 mM histidine 10 mM histidine
    234 mM sucrose 88 mM sucrose 205 mM trehalose
    75 ppm polysorbate 80 75 ppm polysorbate 80 75 ppm polysorbate 80
    30 mM arginine 10 mM arginine 20 mM arginine
    pH 5.5 133 mM glycine 10 mM methionine
    pH 5.5 pH 5.5
    60 mg/ml aPRLR Ab 60 mg/ml aPRLR Ab 60 mg/ml aPRLR Ab
    10 mM histidine 10 mM histidine 10 mM histidine
    234 mM sucrose 292 mM sucrose 205 mM trehalose
    75 ppm polysorbate 80 75 ppm polysorbate 80 75 ppm polysorbate 80
    30 mM arginine 10 mM arginine 20 mM arginine
    pH 6 10 mM methionine 10 mM methionine
    133 mM glycine pH 5.5
    pH 5.5
    60 mg/ml aPRLR Ab 60 mg/ml aPRLR Ab 60 mg/mL aPRLR Ab
    10 mM histidine 10 mM histidine 10 mM histidine
    88 mM sucrose 388 mM sucrose 234 mM sucrose
    75 ppm polysorbate 80 75 ppm polysorbate 80 80 ppm polysorbate 80
    30 mM arginine 30 mM lysine 30 mM arginine
    133 mM glycine 133 mM glycine 5 mM methionine
    pH 5.5 pH 5.5 pH 5.5
    60 mg/ml aPRLR Ab 60 mg/ml aPRLR Ab 60 mg/mL aPRLR Ab
    10 mM histidine 10 mM histidine 10 mM histidine
    88 mM sucrose 234 mM sucrose 234 mM sucrose
    75 ppm polysorbate 20 75 ppm polysorbate 80 75 ppm polysorbate 80
    30 mM arginine 30 mM arginine 30 mM arginine
    133 mM glycine 10 mM methionine 10 mM methionine
    pH 5.5 pH 5.5 pH 5.5
    60 mg/mL aPRLR Ab 60 mg/mL aPRLR Ab 60 mg/mL aPRLR Ab
    70 mM histidine 10 mM histidine 70 mM histidine
    200 mM sucrose 263 mM sucrose 176 mM sucrose
    80 ppm polysorbate 80 80 ppm polysorbate 80 75 ppm polysorbate 80
    pH 6.0 pH 6.0 30 mM lysine
    pH 6.0
    150 mg/ml aPRLR Ab
    150 mg/ml aPRLR Ab
    10 mM histidine
    234 mM sucrose
    75 ppm polysorbate 80
    30 mM arginine
    10 mM methionine
    pH 5.5
  • Representative anti-PRLR mAb formulations were analyzed by HPLC-SEC for protein aggregation and degradation, LC-MS for aPRLR structural changes (glycation and oxidation), viscometer for viscosity measurement, and osmolality instrument for osmolality measurement. The results for the HPLC-SEC analysis of protein aggregation are presented in Table 3, the results for the nephlometry analysis of turbidity are presented in Table 4, the results for the LC-MS analysis of aPRLR structural changes are presented in Table 5, and the results for the analysis of viscosity and osmolality are presented in Table 6.
  • TABLE 3
    HPLC-SEC Average Rate of Aggregation Formation (%/day)
    Formulation Composition 5° C. 25° C.
    Anti-PRLR 60 mg/mL 0.0001 0.0051
    Histidine 10 mM
    Sucrose 234 mM
    Polysorbate 80 75 ppm
    pH 5.5
    Arginine 30 mM
    Methionine 10 mM
    Anti-PRLR 60 mg/mL 0.0132 0.0222
    Histidine 10 mM
    Sucrose 263 mM
    Polysorbate 80 80 ppm
    pH 6.0
    1The calculation was based on 100 days value.
    2The calculation was based on 90 days value.
  • TABLE 4
    LC-MS Results of the Formulations after Shaking at 100 rpm at
    Room Temperature
    Formulation Composition Intact Mass Mass of LC and HC
    Anti-PRLR 60 mg/mL Comparable to Comparable to
    Histidine 10 mM RS1 RS1
    Sucrose 234 mM
    Polysorbate 80 75 ppm
    pH 5.5
    Arginine 30 mM
    Methionine 10 mM
    Anti-PRLR 60 mg/mL Comparable to Comparable to
    Histidine 10 mM RS2 RS2
    Sucrose 263 mM
    Polysorbate 80 80 ppm
    pH 6.0
    1After the formulation was shaken at 100 rpm at room temperature for 14 days.
    2After the formulation was shaken at 100 rpm at room temperature for 21 days.
    LC = Light Chain;
    HC = Heavy Chain;
    RS = Reference Standard.
  • TABLE 5
    Average Rate of Turbidity change (by Nephelometry) After Shaking at
    100 rpm at Room Temperature
    Formulation Composition FNU/day
    Anti-PRLR 60 mg/mL 0.6431
    Histidine 10 mM
    Sucrose 234 mM
    Polysorbate 80 75 ppm
    pH 5.5
    Arginine 30 mM
    Methionine 10 mM
    Anti-PRLR 60 mg/mL 0.0132
    Histidine 10 mM
    Sucrose 263 mM
    Polysorbate 80 80 ppm
    pH 6.0
    1After the formulation was shaken at 100 rpm at room temperature for 14 days.
    2After the formulation was shaken at 100 rpm at room temperature for 21 days.
  • TABLE 6
    Viscosity and Osmolality of Anti-PRLR Ab Formulations
    Viscosity
    (mPa-S) at Osmolality
    Formulation Composition 22.0° C.-23.0° C. (mmol/kg)
    Anti-PRLR 60 mg/mL 1.83 342
    Histidine 10 mM
    Sucrose 234 mM
    Polysorbate 80 80 ppm
    pH 5.5
    Arginine 30 mM
    Methionine 5 mM
    Anti-PRLR 60 mg/mL 2.37 345
    Histidine 10 mM
    Sucrose 234 mM
    Polysorbate 80 75 ppm
    pH 5.5
    Arginine 30 mM
    Methionine 10 mM
    Anti-PRLR 60 mg/mL 2.17 299
    Histidine 10 mM
    Sucrose 263 mM
    Polysorbate 80 80 ppm
    pH 6.0

Claims (36)

What is claimed is:
1. An anti-PRLR antibody formulation, comprising:
a. 0 mM to 70 mM histidine;
b. 50 ppm to 300 ppm of a non-ionic surfactant;
c. 34 mM to 292 mM of a sugar selected from mannitol, dextrose, glucose, trehalose, and sucrose;
d. 0 mM to 50 mM arginine;
e. 0 mM to 50 mM lysine;
f. 0 mM to 270 mM glycine or alanine;
g. 0 mM to 10 mM methionine; and
h. 1 mg/ml to 150 mg/ml of an anti-PRLR antibody;
wherein said anti-PRLR antibody formulation has a pH ranging from pH 5.0 to pH 6.5.
2. The anti-PRLR antibody formulation of claim 1 wherein said anti-PRLR formulation contains substantially no inorganic salt other than an organic salt or an inorganic salt that buffers said formulation.
3. The anti-PRLR antibody formulation of claim 1 wherein said anti-PRLR formulation contains substantially no inorganic salt selected from the group consisting of sodium chloride (NaCl), sodium sulfate (Na2SO4), sodium thiocyanate (NaSCN), magnesium chloride (MgCl), magnesium sulfate (MgSO4), ammonium thiocyanate (NH4SCN), ammonium sulfate ((NH4)2SO4), ammonium chloride (NH4Cl), calcium chloride (CaCl2), calcium sulfate (CaSO4), and zinc chloride (ZnCl2).
4. The anti-PRLR antibody formulation of claim 1 wherein said formulation has a viscosity ranging from 1 to 8 mPa-S at 22° C.-23° C.
5. The anti-PRLR antibody formulation of claim 1 wherein said formulation has and osmolality ranging from 240 to 380 mmol/kg.
6. The anti-PRLR antibody formulation of any of claim 1 wherein said non-ionic surfactant is a polysorbate selected from polysorbate 20 and polysorbate 80.
7. The anti-PRLR antibody formulation of claim 1 wherein said sugar is sucrose or trehalose.
8. The anti-PRLR antibody formulation of claim 1 comprising between 10 mM and 50 mM arginine.
9. The anti-PRLR antibody formulation of claim 1, comprising:
a. 30 mM histidine,
b. 100 ppm polysorbate 80,
c. 292 mM sucrose, and
d. 20 mg/ml anti-PRLR antibody;
wherein said anti-PRLR antibody formulation has a pH ranging from pH 5.0 to pH 6.5.
10. The anti-PRLR antibody formulation of claim 1, comprising:
a. 10 mM histidine,
b. 80 ppm polysorbate 80,
c. 234 mM sucrose,
d. 60 mg/ml anti-PRLR antibody;
wherein said anti-PRLR antibody formulation has a pH ranging from pH 5.0 to pH 6.0.
11. The anti-PRLR antibody formulation of claim 1, comprising:
a. 10 mM histidine,
b. 75 ppm polysorbate 80,
c. 234 mM sucrose, and
d. 60 mg/ml anti-PRLR antibody;
wherein said anti-PRLR antibody formulation has a pH ranging from pH 5.0 to pH 6.5.
12. The anti-PRLR antibody formulation of claim 1, comprising:
a. 10 mM histidine,
b. 75 ppm polysorbate 80,
c. 88 mM sucrose,
d. 270 mM glycine, and
e. 60 mg/ml anti-PRLR antibody;
wherein said anti-PRLR antibody formulation has a pH ranging from pH 5.0 to pH 6.5.
13. The anti-PRLR antibody formulation of claim 1, comprising:
a. 10 mM histidine,
b. 75 ppm polysorbate 20,
c. 88 mM sucrose,
d. 133 mM glycine, and
e. 60 mg/ml anti-PRLR antibody;
wherein said anti-PRLR antibody formulation has a pH ranging from pH 5.0 to pH 6.5.
14. The anti-PRLR antibody formulation of claim 1, comprising:
a. 10 mM histidine,
b. 200 ppm polysorbate 20,
c. 88 mM sucrose,
d. 133 mM glycine, and
e. 60 mg/ml anti-PRLR antibody;
wherein said anti-PRLR antibody formulation has a pH ranging from pH 5.0 to pH 6.5.
15. The anti-PRLR antibody formulation of claim 1, comprising:
a. 70 mM histidine,
b. 80 ppm polysorbate 80,
c. 200 mM sucrose, and
d. 60 mg/ml anti-PRLR antibody;
wherein said anti-PRLR antibody formulation has a pH ranging from pH 5.0 to pH 6.5.
16. The anti-PRLR antibody formulation of claim 1, comprising:
a. 10 mM histidine,
b. 75 ppm polysorbate 80,
c. 292 mM sucrose,
d. 10 mM arginine, and
e. 60 mg/ml anti-PRLR antibody;
wherein said anti-PRLR antibody formulation has a pH ranging from pH 5.0 to pH 6.5.
17. The anti-PRLR antibody formulation of claim 1, comprising:
a. 70 mM histidine,
b. 75 ppm polysorbate 80,
c. 176 mM sucrose,
d. 30 mM lysine, and
e. 60 mg/ml anti-PRLR antibody;
wherein said anti-PRLR antibody formulation has a pH ranging from pH 5.0 to pH 6.5.
18. The anti-PRLR antibody formulation of claim 1, comprising:
a. 10 mM histidine,
b. 75 ppm polysorbate 80,
c. 234 mM sucrose,
d. 30 mM arginine, and
e. 10 mM methionine, and
f. 60 mg/ml anti-PRLR antibody;
wherein said anti-PRLR antibody formulation has a pH ranging from pH 5.0 to pH 6.5.
19. The anti-PRLR antibody formulation of claim 1, comprising:
a. 10 mM histidine,
b. 75 ppm polysorbate 80,
c. 234 mM sucrose,
d. 30 mM arginine, and
e. 10 mM methionine, and
f. 2 mg/ml anti-PRLR antibody;
wherein said anti-PRLR antibody formulation has a pH ranging from pH 5.0 to pH 6.5.
20. The anti-PRLR antibody formulation of claim 1, comprising:
a. 10 mM histidine,
b. 75 ppm polysorbate 80,
c. 234 mM sucrose,
d. 20 mM arginine, and
e. 10 mM methionine, and
f. 150 mg/ml anti-PRLR antibody;
wherein said anti-PRLR antibody formulation has a pH ranging from pH 5.0 to pH 6.5.
21. The anti-PRLR antibody formulation of claim 1, comprising:
a. 10 mM histidine,
b. 75 ppm polysorbate 80,
c. 205 mM sucrose,
d. 20 mM arginine,
e. 10 mM methionine, and
f. 1 mg/ml anti-PRLR antibody;
wherein said anti-PRLR antibody formulation has a pH ranging from pH 5.0 to pH 6.5.
22. The anti-PRLR antibody formulation of claim 1, comprising:
a. 10 mM histidine,
b. 80 ppm polysorbate 80,
c. 205 mM sucrose,
d. 20 mM arginine, and
e. 10 mM methionine, and
f. 60 mg/ml anti-PRLR antibody;
wherein said anti-PRLR antibody formulation has a pH ranging from pH 5.0 to pH 6.5.
23. The anti-PRLR antibody formulation of claim 1, comprising:
a. 10 mM histidine,
b. 75 ppm polysorbate 80,
c. 205 mM trehlose,
d. 20 mM arginine, and
e. 10 mM methionine, and
f. 60 mg/ml anti-PRLR antibody;
wherein said anti-PRLR antibody formulation has a pH ranging from pH 5.0 to pH 6.5.
24. The anti-PRLR antibody formulation of claim 1, comprising:
a. 10 mM histidine,
b. 75 ppm polysorbate 80,
c. 205 mM trehalose,
d. 30 mM arginine,
e. 10 mM methionine, and
f. 2 mg/ml anti-PRLR antibody;
wherein said anti-PRLR antibody formulation has a pH ranging from pH 5.0 to pH 6.5.
25. The anti-PRLR antibody formulation of claim 1, comprising:
a. 10 mM histidine,
b. 234 mM sucrose,
c. 80 ppm polysorbate 80,
d. 30 mM arginine,
e. 5 mM methionine, and
f. 7.5 mg/ml anti-PRLR antibody;
wherein said anti-PRLR antibody formulation has a pH ranging from pH 5.0 to pH 6.5.
26. The anti-PRLR antibody formulation of claim 1, comprising:
a. 10 mM histidine,
b. 234 mM sucrose,
c. 80 ppm polysorbate 80,
d. 30 mM arginine,
e. 5 mM methionine, and
f. 60 mg/mL anti-PRLR antibody;
wherein said anti-PRLR antibody formulation has a pH ranging from pH 5.0 to pH 6.5.
27. The anti-PRLR antibody formulation of claim 1, comprising:
a. 10 mM histidine,
b. 234 mM sucrose,
c. 75 ppm polysorbate 80,
d. 30 mM arginine,
e. 10 mM methionine, and
f. 60 mg/mL anti-PRLR antibody;
wherein said anti-PRLR antibody formulation has a pH ranging from pH 5.0 to pH 6.5.
28. The anti-PRLR antibody formulation of claim 1, comprising:
a. 10 mM histidine,
b. 263 mM sucrose,
c. 80 ppm polysorbate 80, and
d. 60 mg/mL anti-PRLR antibody;
wherein said anti-PRLR antibody formulation has a pH ranging from pH 5.0 to pH 6.5.
29. The anti-PRLR antibody formulation of claim 1 wherein said anti-PRLR antibody is a human IgG2 monoclonal antibody.
30. The anti-PRLR antibody formulation of claim 29 wherein said human IgG2 monoclonal antibody comprises a light chain sequence and a heavy chain sequence presented in one or more of PCT Patent Publication NOs. WO/2011/069799, WO/2011/069798, WO/2011/069797, WO/2011/069796, WO/2011/069795, and WO/2011/069794.
31. The anti-PRLR antibody formulation of claim 29 wherein said human IgG2 monoclonal antibody comprises a light chain sequence of SEQ ID NO: 1 and a heavy chain sequence of SEQ ID NO: 7.
32. A method for the non-hormonal treatment of endometriosis in a patient, said method comprising administering to said patient a therapeutically effective amount of an anti-PRLR antibody formulation comprising between 0 mM and 70 mM histidine, between 50 ppm and 200 ppm polysorbate 80 or polysorbate 20, between 34 mM and 292 mM sucrose or trehalose, between 0 mM and 50 mM arginine, between 0 mM and 50 mM lysine, between 0 mM and 270 mM glycine or alanine, between 0 mM and 10 mM methionine, and between 1 mg/ml and 150 mg/ml of a protein or antibody at a pH of between pH 5.0 and pH 6.5, wherein said anti-PRLR antibody formulation contains substantially no inorganic salt.
33. The method of claim 32 wherein said anti-PRLR antibody formulation is administered intravenously, subcutaneously, or intramuscularly.
34. The method of claim 33 wherein said anti-PRLR antibody is a human IgG2
monoclonal antibody.
35. The method of claim 34 wherein said human IgG2 monoclonal antibody comprises a light chain sequence and a heavy chain sequence presented in one or more of PCT Patent Publication NOs. WO/2011/069799, WO/2011/069798, WO/2011/069797, WO/2011/069796, WO/2011/069795, and WO/2011/069794.
36. The method of claim 34 wherein said human IgG2 monoclonal antibody comprises a light chain sequence of SEQ ID NO: 1 and a heavy chain sequence of SEQ ID NO: 7.
US14/421,609 2012-08-31 2013-08-28 Anti-prolactin receptor antibody formulations Abandoned US20150252116A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/421,609 US20150252116A1 (en) 2012-08-31 2013-08-28 Anti-prolactin receptor antibody formulations

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261695949P 2012-08-31 2012-08-31
US13/842,906 US8883979B2 (en) 2012-08-31 2013-03-15 Anti-prolactin receptor antibody formulations
US14/421,609 US20150252116A1 (en) 2012-08-31 2013-08-28 Anti-prolactin receptor antibody formulations
PCT/US2013/056976 WO2014036076A1 (en) 2012-08-31 2013-08-28 Anti-prolactin receptor antibody formulations

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/842,906 Continuation US8883979B2 (en) 2012-08-31 2013-03-15 Anti-prolactin receptor antibody formulations

Publications (1)

Publication Number Publication Date
US20150252116A1 true US20150252116A1 (en) 2015-09-10

Family

ID=49162240

Family Applications (4)

Application Number Title Priority Date Filing Date
US13/842,906 Active US8883979B2 (en) 2012-08-31 2013-03-15 Anti-prolactin receptor antibody formulations
US14/421,609 Abandoned US20150252116A1 (en) 2012-08-31 2013-08-28 Anti-prolactin receptor antibody formulations
US14/501,986 Abandoned US20150093393A1 (en) 2012-08-31 2014-09-30 Anti-prolactin receptor antibody formulations
US15/276,794 Abandoned US20170008965A1 (en) 2012-08-31 2016-09-27 Anti-prolactin receptor antibody formulations

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/842,906 Active US8883979B2 (en) 2012-08-31 2013-03-15 Anti-prolactin receptor antibody formulations

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14/501,986 Abandoned US20150093393A1 (en) 2012-08-31 2014-09-30 Anti-prolactin receptor antibody formulations
US15/276,794 Abandoned US20170008965A1 (en) 2012-08-31 2016-09-27 Anti-prolactin receptor antibody formulations

Country Status (30)

Country Link
US (4) US8883979B2 (en)
EP (1) EP2890397B1 (en)
JP (1) JP6444871B2 (en)
KR (1) KR102100282B1 (en)
CN (3) CN111202844A (en)
AR (2) AR092387A1 (en)
AU (1) AU2013308907B2 (en)
BR (1) BR112015004397B1 (en)
CA (1) CA2883097C (en)
CY (1) CY1121990T1 (en)
DK (1) DK2890397T3 (en)
ES (1) ES2742868T3 (en)
HK (1) HK1207316A1 (en)
HR (1) HRP20191199T1 (en)
HU (1) HUE045494T2 (en)
IL (1) IL237277B (en)
IN (1) IN2015DN02255A (en)
LT (1) LT2890397T (en)
MX (1) MX367691B (en)
NZ (1) NZ705178A (en)
PL (1) PL2890397T3 (en)
PT (1) PT2890397T (en)
RS (1) RS59207B1 (en)
RU (1) RU2649372C2 (en)
SG (1) SG11201501225SA (en)
SI (1) SI2890397T1 (en)
TW (3) TW201422235A (en)
UY (2) UY34994A (en)
WO (1) WO2014036076A1 (en)
ZA (1) ZA201501279B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019157224A1 (en) 2018-02-07 2019-08-15 Regeneron Pharmaceuticals, Inc. Methods and compositions for therapeutic protein delivery
US11352446B2 (en) 2016-04-28 2022-06-07 Regeneron Pharmaceuticals, Inc. Methods of making multispecific antigen-binding molecules
US11578135B2 (en) 2012-03-14 2023-02-14 Regeneron Pharmaceuticals, Inc. Multispecific antigen-binding molecules binding to a target and an internalizing effector protein that is CD63 and uses thereof

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201920245A (en) 2012-12-24 2019-06-01 美商艾伯維有限公司 Prolactin receptor binding proteins and uses thereof
US20160002342A1 (en) * 2013-03-15 2016-01-07 Xinghang Ma Anti-prolactin receptor antibody formulations
US9545451B2 (en) 2013-08-21 2017-01-17 Regeneron Pharmaceuticals, Inc. Anti-PRLR antibodies and methods for killing PRLR-expressing cells
TWI641620B (en) 2013-08-21 2018-11-21 再生元醫藥公司 Anti-prlr antibodies and uses thereof
AR103173A1 (en) * 2014-12-22 2017-04-19 Novarits Ag PHARMACEUTICAL PRODUCTS AND STABLE LIQUID COMPOSITIONS OF ANTIBODIES IL-17
US10039826B2 (en) * 2015-02-09 2018-08-07 Ucb Biopharma Sprl Pharmaceutical formulation comprising antibodies which bind colony stimulating factor-1 receptor (CSF1R)
EP3722318A1 (en) 2015-07-06 2020-10-14 Regeneron Pharmaceuticals, Inc. Multispecific antigen-binding molecules and uses thereof
TW201726111A (en) * 2015-09-30 2017-08-01 持田製藥股份有限公司 Liquid pharmaceutical agent comprising high concentration antibody
GB201608323D0 (en) 2016-05-12 2016-06-29 Ucb Biopharma Sprl Pharmaceutical compositions
AU2017366873A1 (en) 2016-11-29 2019-06-13 Regeneron Pharmaceuticals, Inc. Methods of treating PRLR positive breast cancer
TWI761453B (en) 2017-03-01 2022-04-21 英商梅迪繆思有限公司 Anti-rsv monoclonal antibody formulation
JPWO2018179138A1 (en) * 2017-03-29 2020-02-06 持田製薬株式会社 Antibody-containing liquid preparation
TW201836647A (en) 2017-04-06 2018-10-16 美商艾伯維有限公司 Anti-prlr antibody-drug conjugates (adc) and uses thereof
US10493149B2 (en) 2017-04-11 2019-12-03 Kiniksa Pharmaceuticals, Ltd. Stable anti-OSMR antibody formulation
JOP20190260A1 (en) 2017-05-02 2019-10-31 Merck Sharp & Dohme Stable formulations of programmed death receptor 1 (pd-1) antibodies and methods of use thereof
CA3060581A1 (en) 2017-05-02 2018-11-08 Merck Sharp & Dohme Corp. Formulations of anti-lag3 antibodies and co-formulations of anti-lag3 antibodies and anti-pd-1 antibodies
EP3652205A1 (en) 2017-07-10 2020-05-20 Bayer Pharma Aktiengesellschaft Prolactin receptor antibody for male and female pattern hair loss
CN111356471A (en) * 2017-11-20 2020-06-30 济世发展生物药业有限公司 Abutip formulation comprising lysine salt as tonicity modifier and use thereof
MX2021004356A (en) * 2018-10-18 2021-05-31 Merck Sharp & Dohme Llc Formulations of anti-rsv antibodies and methods of use thereof.
US20210395352A1 (en) * 2018-10-30 2021-12-23 Alexion Pharmaceuticals, Inc. Subcutaneous dosage and administration of anti-c5 antibodies for treatment of paroxysmal nocturnal hemoglobinuria (pnh)
UA128098C2 (en) 2019-02-18 2024-04-03 Елі Ліллі Енд Компані Therapeutic antibody formulation
UY39610A (en) 2021-01-20 2022-08-31 Abbvie Inc ANTI-EGFR ANTIBODY-DRUG CONJUGATES
WO2023230532A1 (en) * 2022-05-26 2023-11-30 Compugen Ltd. Anti-tigit antibody formulation

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9122820D0 (en) 1991-10-28 1991-12-11 Wellcome Found Stabilised antibodies
EP0852951A1 (en) 1996-11-19 1998-07-15 Roche Diagnostics GmbH Stable lyophilized monoclonal or polyclonal antibodies containing pharmaceuticals
AU740284B2 (en) 1997-06-13 2001-11-01 Genentech Inc. Stabilized antibody formulation
AU2444899A (en) 1998-01-22 1999-08-09 Astrazeneca Ab Pharmaceutical formulation comprising an antibody and a citrate buffer
HU0800692D0 (en) 1999-10-04 2009-01-28 Novartis Vaccines & Diagnostic Stabilized liquid polypeptide-containing pharmaceutical compositions
GB0113179D0 (en) 2001-05-31 2001-07-25 Novartis Ag Organic compounds
JP4317010B2 (en) 2001-07-25 2009-08-19 ピーディーエル バイオファーマ,インコーポレイティド Stable lyophilized pharmaceutical formulation of IgG antibody
US7521053B2 (en) * 2001-10-11 2009-04-21 Amgen Inc. Angiopoietin-2 specific binding agents
PL224150B1 (en) 2002-05-02 2016-11-30 Wyeth Corp Composition containing drug conjugate including the calicheamicin derivatives and the antibody, and the pharmaceutical composition containing it
ES2653555T3 (en) 2002-06-21 2018-02-07 Novo Nordisk Health Care Ag Solid stabilized compositions of Factor VIIa polypeptides
CN1751236A (en) * 2002-12-16 2006-03-22 健泰科生物技术公司 Transgenic mice expressing human CD20
CN1771053B (en) 2003-02-10 2012-10-03 伊兰药品公司 Immunoglobulin formulation and method of preparation thereof
CA2519020A1 (en) 2003-03-18 2004-09-30 Novo Nordisk Health Care Ag Method for the production of gla-residue containing serine proteases
BRPI0408439A (en) 2003-03-18 2006-04-04 Novo Nordisk Healthcare Ag aqueous liquid pharmaceutical composition, method for preparing and using same, method for treating a factor responsive syndrome vii, and, airtight container
US7897734B2 (en) 2003-03-26 2011-03-01 Novo Nordisk Healthcare Ag Method for the production of proteins
US20050158303A1 (en) 2003-04-04 2005-07-21 Genentech, Inc. Methods of treating IgE-mediated disorders comprising the administration of high concentration anti-IgE antibody formulations
PT1610820E (en) 2003-04-04 2010-12-16 Novartis Ag High concentration antibody and protein formulations
EA009285B1 (en) 2003-05-14 2007-12-28 Иммуноджен, Инк. Drug conjugate composition
US8088387B2 (en) 2003-10-10 2012-01-03 Immunogen Inc. Method of targeting specific cell populations using cell-binding agent maytansinoid conjugates linked via a non-cleavable linker, said conjugates, and methods of making said conjugates
BRPI0409936A (en) 2003-05-23 2006-04-25 Novo Nordisk Healthcare Ag use of material, at least partially filled container, and medical kit
ES2382157T3 (en) 2003-06-25 2012-06-05 Novo Nordisk Health Care Ag Liquid composition of factor VII polypeptides
ES2335994T3 (en) 2003-07-01 2010-04-07 Novo Nordisk Health Care Ag PHARMACEUTICAL, LIQUID, WATERPROOF POLYPEPTIDE COMPOSITION FACTOR VII.
KR20120104619A (en) 2003-08-14 2012-09-21 노보 노르디스크 헬스 케어 악티엔게젤샤프트 Liquid, aqueous pharmaceutical composition of factor vii polypeptides
JP4219932B2 (en) 2003-10-01 2009-02-04 協和発酵キリン株式会社 Antibody stabilization method and stabilized solution antibody preparation
DE10361599A1 (en) 2003-12-24 2005-07-28 Boehringer Ingelheim Pharma Gmbh & Co. Kg Liquid formulation of antibody conjugates
US7611709B2 (en) 2004-05-10 2009-11-03 Boehringer Ingelheim Pharma Gmbh And Co. Kg 1,4 O-linked saccharose derivatives for stabilization of antibodies or antibody derivatives
DE102004022927A1 (en) 2004-05-10 2005-12-15 Boehringer Ingelheim Pharma Gmbh & Co. Kg 1,4 O-linked sucrose derivatives for the stabilization of antibodies or antibody derivatives
WO2006014965A2 (en) 2004-07-27 2006-02-09 Human Genome Sciences, Inc. Pharmaceutical formulation and process
US20070196364A1 (en) 2004-07-27 2007-08-23 Human Genome Sciences, Inc. Pharmaceutical Formulation and Process
TW200621282A (en) 2004-08-13 2006-07-01 Wyeth Corp Stabilizing formulations
JO3000B1 (en) 2004-10-20 2016-09-05 Genentech Inc Antibody Formulations.
JP2008519032A (en) * 2004-11-03 2008-06-05 キュラジェン コーポレイション Formulation, production method and use of FGF-20
DE102005002353A1 (en) * 2005-01-18 2006-07-27 Abbott Gmbh & Co. Kg Use of receptor multimerization epitope (RME) of advanced glycation end product receptor (AGER) as immunogen, useful for preparing antibodies for diagnosis and treatment of e.g. spinal injuries or diabetic complications
JP2008543839A (en) 2005-06-14 2008-12-04 アムジェン インコーポレーテッド Self-buffering protein formulation
WO2007002543A2 (en) * 2005-06-23 2007-01-04 Medimmune, Inc. Antibody formulations having optimized aggregation and fragmentation profiles
US7956160B2 (en) 2005-07-22 2011-06-07 Amgen Inc. Concentrated protein lyophilates, methods, and uses
US7422899B2 (en) * 2005-10-05 2008-09-09 Biogen Idec Ma Inc. Antibodies to the human prolactin receptor
EP1977763A4 (en) 2005-12-28 2010-06-02 Chugai Pharmaceutical Co Ltd Antibody-containing stabilizing preparation
WO2007081751A2 (en) 2006-01-05 2007-07-19 The Johns Hopkins University Compositions and methods for the treatment of cancer
JP2009525986A (en) 2006-02-03 2009-07-16 メディミューン,エルエルシー Protein preparation
CA2642270A1 (en) 2006-02-15 2007-08-23 Imclone Systems Incorporated Antibody formulation
TW200806317A (en) 2006-03-20 2008-02-01 Wyeth Corp Methods for reducing protein aggregation
TWI454480B (en) * 2006-08-18 2014-10-01 Novartis Ag Prlr-specific antibody and uses thereof
WO2008039761A2 (en) 2006-09-25 2008-04-03 Medimmune, Llc. Stabilized antibody formulations and uses thereof
EP2094729A1 (en) * 2006-12-11 2009-09-02 F.Hoffmann-La Roche Ag Abeta antibody parenteral formulation
ES2748526T3 (en) 2006-12-21 2020-03-17 Amgen Inc Stable buffered formulations containing polypeptides
EP2099475B1 (en) 2007-01-03 2016-08-24 Novo Nordisk Health Care AG Subcutaneous administration of coagulation factor viia-related polypeptides
CA2685372A1 (en) 2007-05-02 2008-11-13 F. Hoffmann-La Roche Ag Method for stabilizing a protein
US20100189721A1 (en) 2007-07-06 2010-07-29 Smithkline Beecham Corporation Antibody formulations
JP2010536786A (en) 2007-08-17 2010-12-02 アムジエン・インコーポレーテツド Preparation of antibody and FC fusion molecule using polycation
EP2205280B1 (en) 2007-09-27 2019-09-04 Amgen Inc. Pharmaceutical formulations
JP5490714B2 (en) 2007-11-28 2014-05-14 メディミューン,エルエルシー Protein preparation
WO2009073569A2 (en) 2007-11-30 2009-06-11 Abbott Laboratories Protein formulations and methods of making same
US8883146B2 (en) 2007-11-30 2014-11-11 Abbvie Inc. Protein formulations and methods of making same
ES2511844T3 (en) * 2007-12-21 2014-10-23 F. Hoffmann-La Roche Ag Antibody formulation
JP2011506565A (en) * 2007-12-21 2011-03-03 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム vaccine
PE20091174A1 (en) 2007-12-27 2009-08-03 Chugai Pharmaceutical Co Ltd LIQUID FORMULATION WITH HIGH CONCENTRATION OF ANTIBODY CONTENT
US8486892B2 (en) 2008-01-23 2013-07-16 Novo Nordisk Health Care Ag Blood coagulation factor inhibitors
MX2011005051A (en) 2008-11-17 2011-06-01 Genentech Inc Method and formulation for reducing aggregation of a macromolecule under physiological conditions.
RU2011126338A (en) * 2008-11-28 2013-01-10 Эбботт Лэборетриз STABLE COMPOSITIONS OF ANTIBODIES AND METHODS FOR THEIR STABILIZATION
EP2196476A1 (en) * 2008-12-10 2010-06-16 Novartis Ag Antibody formulation
JP2012526121A (en) * 2009-05-04 2012-10-25 アボツト・バイオテクノロジー・リミテツド Stable high protein concentration formulation of human anti-TNF alpha antibody
EP2332995A1 (en) 2009-12-10 2011-06-15 Bayer Schering Pharma Aktiengesellschaft Neutralizing prolactin receptor antibodies and their therapeutic use
JP2013520476A (en) 2010-02-26 2013-06-06 ノヴォ ノルディスク アー/エス Stable antibody-containing composition
EP3354280B1 (en) * 2010-10-06 2020-07-29 Regeneron Pharmaceuticals, Inc. Stabilized formulations containing anti-interleukin-4 receptor (il-4r) antibodies

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11578135B2 (en) 2012-03-14 2023-02-14 Regeneron Pharmaceuticals, Inc. Multispecific antigen-binding molecules binding to a target and an internalizing effector protein that is CD63 and uses thereof
US11352446B2 (en) 2016-04-28 2022-06-07 Regeneron Pharmaceuticals, Inc. Methods of making multispecific antigen-binding molecules
WO2019157224A1 (en) 2018-02-07 2019-08-15 Regeneron Pharmaceuticals, Inc. Methods and compositions for therapeutic protein delivery

Also Published As

Publication number Publication date
AU2013308907B2 (en) 2018-04-19
UY34994A (en) 2014-03-31
CN104736175B (en) 2019-11-01
RS59207B1 (en) 2019-10-31
SI2890397T1 (en) 2019-11-29
US20150093393A1 (en) 2015-04-02
SG11201501225SA (en) 2015-03-30
HUE045494T2 (en) 2019-12-30
JP6444871B2 (en) 2018-12-26
PT2890397T (en) 2019-09-10
HK1207316A1 (en) 2016-01-29
CN111202843A (en) 2020-05-29
BR112015004397B1 (en) 2022-07-19
AU2013308907A1 (en) 2015-03-12
TW201422235A (en) 2014-06-16
EP2890397B1 (en) 2019-06-19
TWI688404B (en) 2020-03-21
LT2890397T (en) 2019-09-25
UY34999A (en) 2014-03-31
PL2890397T3 (en) 2019-12-31
CN104736175A (en) 2015-06-24
KR20150046298A (en) 2015-04-29
IL237277B (en) 2020-04-30
CN111202844A (en) 2020-05-29
BR112015004397A2 (en) 2017-12-19
AR092401A1 (en) 2015-04-22
RU2015111319A (en) 2016-10-20
RU2649372C2 (en) 2018-04-02
KR102100282B1 (en) 2020-04-13
TW201821103A (en) 2018-06-16
ES2742868T3 (en) 2020-02-17
CA2883097A1 (en) 2014-03-06
CA2883097C (en) 2022-11-15
EP2890397A1 (en) 2015-07-08
ZA201501279B (en) 2016-11-30
HRP20191199T1 (en) 2019-10-18
TW201414491A (en) 2014-04-16
US8883979B2 (en) 2014-11-11
JP2015528465A (en) 2015-09-28
MX2015002412A (en) 2015-09-29
IL237277A0 (en) 2015-04-30
TWI641384B (en) 2018-11-21
US20140065158A1 (en) 2014-03-06
NZ705178A (en) 2018-06-29
CY1121990T1 (en) 2020-10-14
MX367691B (en) 2019-09-02
WO2014036076A1 (en) 2014-03-06
IN2015DN02255A (en) 2015-08-21
AR092387A1 (en) 2015-04-22
US20170008965A1 (en) 2017-01-12
DK2890397T3 (en) 2019-08-05

Similar Documents

Publication Publication Date Title
US8883979B2 (en) Anti-prolactin receptor antibody formulations
US9023357B2 (en) Anti-prolactin receptor antibody formulations
CA2665567C (en) Stable formulations
US9592297B2 (en) Antibody and protein formulations
AU2012200284B2 (en) Stable Antibody Formulations
TW202237185A (en) Pharmaceutical compositions of a her2/neu antibody and use of the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAYER HEALTHCARE LLC, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MA, XINGHANG;XIANG, JUN;NIU, JIANJIE;REEL/FRAME:035384/0592

Effective date: 20130716

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION