US20150232910A1 - Beneficial effects of bacteriophage treatments - Google Patents

Beneficial effects of bacteriophage treatments Download PDF

Info

Publication number
US20150232910A1
US20150232910A1 US14/625,049 US201514625049A US2015232910A1 US 20150232910 A1 US20150232910 A1 US 20150232910A1 US 201514625049 A US201514625049 A US 201514625049A US 2015232910 A1 US2015232910 A1 US 2015232910A1
Authority
US
United States
Prior art keywords
sample
antibiotics
pseudomonas aeruginosa
ncimb
bacteriophages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/625,049
Inventor
David Harper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIO-CONTROL Ltd
Original Assignee
BIO-CONTROL Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIO-CONTROL Ltd filed Critical BIO-CONTROL Ltd
Priority to US14/625,049 priority Critical patent/US20150232910A1/en
Assigned to BIO-CONTROL LIMITED reassignment BIO-CONTROL LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HARPER, DAVID
Publication of US20150232910A1 publication Critical patent/US20150232910A1/en
Priority to US15/400,786 priority patent/US20170216380A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/18Testing for antimicrobial activity of a material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/407Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with other heterocyclic ring systems, e.g. ketorolac, physostigmine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/427Thiazoles not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/429Thiazoles condensed with heterocyclic ring systems
    • A61K31/43Compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula, e.g. penicillins, penems
    • A61K31/431Compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula, e.g. penicillins, penems containing further heterocyclic rings, e.g. ticarcillin, azlocillin, oxacillin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/542Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/545Compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins, cefaclor, or cephalexine
    • A61K31/546Compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins, cefaclor, or cephalexine containing further heterocyclic rings, e.g. cephalothin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/7036Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin having at least one amino group directly attached to the carbocyclic ring, e.g. streptomycin, gentamycin, amikacin, validamycin, fortimicins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/12Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/025Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/00032Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/21Assays involving biological materials from specific organisms or of a specific nature from bacteria from Pseudomonadaceae (F)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/26Infectious diseases, e.g. generalised sepsis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Definitions

  • the present invention relates to the sensitisation of previously resistant bacteria to antibiotics following treatment with bacteriophages.
  • the invention provides in its preferred aspect for the preparation and administration of therapeutic medicaments that use sequential treatments with bacteriophages and conventional antibiotics, to be used with infections of animals and humans caused by pathogenic bacteria.
  • Antibiotic resistance is now seen as one of the major challenges facing modern medicine. Given the shortage of novel antibiotics, a number of alternative approaches are being investigated, including the use of bacteriophages as therapeutic agents (Barrow & Soothill, Trends in Microbiology (1997), 5, 268-271; Dixon B, The Lancet Infectious Diseases (2004), 4, 186; Hausler T, Viruses vs. Superbugs: A Solution to the Antibiotics Crisis? (2006) MacMillan, New York; Matsuzaki et al, Journal of Infection and Chemotherapy (2005), 11, 211-219.
  • Bacteriophages are viruses that grow within bacteria. The name translates as “eaters of bacteria” and reflects the fact that as they grow most bacteriophages kill the bacterial host as the next generation of bacteriophages is released. Early work with bacteriophages was hindered by many factors, one of which was the widespread belief that there was only one type of bacteriophage, a non-specific virus that killed all bacteria. In fact, the host range of bacteriophages (the spectrum of bacteria they are capable of infecting) is often very specific. This specificity may be considered a therapeutic strength as populations of bacteriophages can be selected to specifically eliminate only the target bacterial species.
  • Bacteriophages and antibiotic therapy have previously been used together in Eastern Europe (see for example Bradbury, The Lancet (February 2004) 363, 624-625), but without specific reporting of synergistic effects. Indeed, there have been suggestions that antibiotics can have adverse effects on use of bacteriophage therapy since bacteriophages use bacterial metabolism to replicate and this is inhibited by antibiotics (Payne and Janssen, Clinical Pharmacokinetics (2002) 42, 315-325).
  • Biofilm formation is now known to be a characteristic of many important pathogenic bacteria contributing to increased resistance to antibiotics.
  • Such biofilms may comprise more than one type of bacterium supported and surrounded by an excreted extracellular matrix and assist bacteria to colonise surfaces from marine reefs to tooth enamel.
  • Biofilms allow bacteria to attach to surfaces and to attain population densities which would otherwise be unsupportable. They impart increased resistance to not only antibiotics but many environmental stresses including toxins such as heavy metals, bleaches and other cleaning agents. It was previously thought that contribution of biofilm formation to antibiotic resistance was primarily a physical process arising from limitation of diffusion, but more recent evidence has shown that some biofilms appear to have specific abilities to trap antibiotics (Mah et al., Nature (2003) 426, 306-310).
  • biofilms can be 100 to 1000 times more resistant to antibiotics than the same strain of bacteria growing in single-celled (“planktonic”) forms. This increased resistance means that bacteria that are apparently sensitive to antibiotics in a laboratory test may be resistant to therapy in a clinical setting. Even if some are cleared, biofilms may provide resistant reservoirs permitting rapid colonisation once antibiotics are no longer present. It is clear therefore that biofilms are major factors in many human diseases.
  • PCT patent application WO2005009451 is against the use of antibiotics that are specifically active against the same bacterial species as that targeted by bacteriophage.
  • Co-amoxiclav is defined in the online 52 nd edition of the British National Formulary (www.bnf.org) as “a mixture of amoxicillin (as the trihydrate or as the sodium salt) and clavulanic acid (as potassium clavulanate), equating to the veterinary drug Synulox.
  • PCT patent application WO2005009451 would not indicate the use of antibiotics targeting Pseudomonas in any combination with bacteriophages but rather the use of antibiotics specifically targeting co-infecting bacteria.
  • the present invention is based on the induction of sensitivity to chemical antibiotics by the use of bacteriophage treatment in vivo in humans or in animals, where such sensitivity is heritable, does not rely on active bacteriophage metabolism and does not relate to the destruction of biofilm to induce such sensitivity, along with the preparation of medicaments to permit the sequential use of bacteriophages and antibiotics so as to take advantage of such induction in sensitivity in the control of bacterial disease, especially for example a Pseudomonas aeruginosa infection.
  • Induction of sensitivity in this context will be understood to include improvement of sensivity.
  • a bacteriophage preparation comprising one or more bacteriophages for use in combined bacteriophage and antibiotic therapy to treat a bacterial infection in a human or animal, wherein at least one antibiotic is administered following the start of said bacteriophage treatment at a time period at which susceptibility of bacterial cells of said infection to said antibiotic is induced or improved by the bacteriophage treatment, where such susceptibility is heritable, independent of continuing bacteriophage metabolism within those cells, and does not relate to the destruction of a biofilm to induce such sensitivity.
  • Antibiotic sensitivity may be monitored by established procedures in vitro. Induction of sensitivity may be confirmed for one or more bacterial strains from the individual patient or may be identified in other patients with similar bacterial infections following bacteriophage treatment
  • a two stage medicament where the first stage comprises a bacteriophage-based therapeutic and the second is composed of one or more chemical antibiotics, for sequential use in humans or animals, where this is designed to exert beneficial effects by the induction of sensitivity as noted above.
  • the bacteriophage therapeutic and one or more chemical antibiotics may be administered for example at an interval of one to two days to two months apart, preferably at an interval of one to four weeks, most preferably at an interval of two weeks apart.
  • phage/antibiotic therapy may be particularly useful for example in targeting bacterial infection comprising or consisting of Pseudomonas aeruginosa .
  • Such infection may be, for example, at the site of a skin burn or other skin wound. It may be in the lung, an ocular infection or an ear infection.
  • an infection comprising P. aeruginosa will be understood to include an infection consisting essentially of P. aeruginosa .
  • phage therapy according to the invention may be applied to an infection composed entirely, predominantly or significantly of P. aeruginosa.
  • Canine ear infections caused by Pseudomonas aeruginosa are examples of clinical disease associated with biofilm-based colonization of a body surface.
  • Clinical signs of such infection include pain, irritation (erythema), ulceration and the discharge of increased amounts of material from the ear. This is often purulent in nature and is accompanied by a distinctive odour.
  • BioVet-PA A combined preparation of six bacteriophages was named BioVet-PA, and was authorized for trial in dogs with such infection by the Veterinary Medicines Directorate of the United Kingdom in November 2003.
  • BioVet-PA was stored at ⁇ 80° C. Immediately prior to administration, the product was thawed and warmed in the hand. 0.2 ml (containing 1 ⁇ 10 5 infectious units of each of the 6 bacteriophages) was administered drop-wise using a sterile 1 ml capacity syringe into the ear. Ear condition and microbiology was assessed at 2 days post-administration.
  • the first dog to be tested was excluded because of a subsequent change in the scoring system (to take account of ear discharge purulence) while two treated dogs proved to have infections that were not predominantly with the target bacterium at the time of treatment (due to a change in bacterial flora following pre-entry screening).
  • BioPhage-PA a mixture of six bacteriophages specific for Pseudomonas aeruginosa
  • placebo in patients with chronic ear infection caused by Pseudomonas aeruginosa shown to be susceptible to one or more of the bacteriophages present in BioPhage-PA.
  • the six bacteriophage strains (which were deposited at the National Collection of Industrial and Marine Bacteria, 23 St Machar Drive, Aberdeen, AB24 3RY, Scotland, UK on 24 Jun. 2003) are as follows:
  • a patient was eligible for inclusion in this study only if all of the following criteria apply: Aged 18 or over; able and willing to give written informed consent to take part in the study; infection of a the ear shown to be caused predominantly or solely by Pseudomonas aeruginosa; Pseudomonas aeruginosa isolated from the infection and shown to be vulnerable to one or more of the bacteriophages present in BioPhage-PA; infection established for at least 6 weeks and proven unresponsive to conventional anti-bacterial therapy; available to attend all clinic visits and complete all study measurements; female patients to be post-menopausal, surgically sterile or willing to use an acceptable form of contraception.
  • a patient was not eligible for inclusion in this study if any of the following criteria applied: Local surgery within 3 months of the pre-study visit; acute or systemic sepsis; use of systemic or topical antibiotics within one week of the pre-study visit or during the study; use of topical antiseptic or anti-inflammatory agents within one week of the pre-study visit or during the study; bacteriophage therapy in the 6 months prior to the pre-study visit; haemolytic Streptococci of groups A, B, C and G or unusual bacterial or fungal flora on ear swab culture at the pre-study visit; female pregnant or intending to become pregnant; patients who have a past or present disease which, as judged by the investigator, may affect the outcome of the study; any other condition which the investigator feels may prejudice the results of the study; participation in another clinical trial involving a new molecular entity within the previous 4 months or any trial within the previous one month.
  • swabs in transport media
  • General microbiological analysis was carried out to determine the level of Pseudomonas aeruginosa in the ear. This was followed by a diagnostic ear-swab test.
  • the trial was discussed verbally with patient, and the patient was provided with information sheet/consent form; history was taken and recorded on the case report form; a diagnostic swab was taken and the swab sent for microbiological analysis, where it was analysed for Pseudomonas aeruginosa and for sensitivity of Pseudomonas aeruginosa that was present to the bacteriophages in BioPhage-PA.
  • the patient was enrolled onto trial within 2 weeks of the time that the diagnostic swab was taken.
  • Study Day 0 The patient assessed the condition of their ear for: discomfort, itchiness, wetness, and smell. Using pre-weighed dry swabs, samples were taken for microbiological analysis. Oral and aural temperature were recorded, the ear was cleaned, and the attending physician assessed the ear for: erythema/inflammation, ulceration/granulation/polyps, discharge type (clear/mucoid/mucopurulent), discharge quantity, and odour (immediately prior to study procedures). Digital otoscopic photography was performed, along with a hearing test (audiogram).
  • BioPhage-PA (0.2 ml) was then administered directly into the ear canal using a 1 ml syringe and soft sterile tubing over a period of approximately 30 seconds. The patient remained at the clinic for 6 hours after therapy for observation and was then sent home with a diary card to record any information they felt relevant to their condition.
  • Study Day 7 This involved adverse event and compliance questioning, patient assessment of the ear, swab sampling with microbiological analysis, recording of aural and oral temperature, physician assessment of the ear, and ear cleaning.
  • Study Day 21 This involved procedures as described for study day 7
  • Study Day 42 This involved procedures as described for study days 7 and 21, except that a hearing test was also be performed and the ear was photographed.
  • Microbiological assessment involved counting of the Pseudomonas aeruginosa present on the swab, along with counting of all bacteriophages (both extraneous and therapeutic) on the swab.
  • the test was conducted using Isosensitest agar.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Virology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention relates to use of one or more bacteriophages in vivo in a human or animal in order to induce sensitivity to chemical antibiotics in bacterial cells, where such susceptibility is heritable, independent of continuing bacteriophage metabolism within those cells, and does not relate to the destruction of a biofilm to induce such sensitivity.

Description

    FIELD OF THE INVENTION
  • The present invention relates to the sensitisation of previously resistant bacteria to antibiotics following treatment with bacteriophages. In particular, the invention provides in its preferred aspect for the preparation and administration of therapeutic medicaments that use sequential treatments with bacteriophages and conventional antibiotics, to be used with infections of animals and humans caused by pathogenic bacteria.
  • BACKGROUND TO THE INVENTION
  • Antibiotic resistance is now seen as one of the major challenges facing modern medicine. Given the shortage of novel antibiotics, a number of alternative approaches are being investigated, including the use of bacteriophages as therapeutic agents (Barrow & Soothill, Trends in Microbiology (1997), 5, 268-271; Dixon B, The Lancet Infectious Diseases (2004), 4, 186; Hausler T, Viruses vs. Superbugs: A Solution to the Antibiotics Crisis? (2006) MacMillan, New York; Matsuzaki et al, Journal of Infection and Chemotherapy (2005), 11, 211-219.
  • Bacteriophages (often known simply as “phages”) are viruses that grow within bacteria. The name translates as “eaters of bacteria” and reflects the fact that as they grow most bacteriophages kill the bacterial host as the next generation of bacteriophages is released. Early work with bacteriophages was hindered by many factors, one of which was the widespread belief that there was only one type of bacteriophage, a non-specific virus that killed all bacteria. In fact, the host range of bacteriophages (the spectrum of bacteria they are capable of infecting) is often very specific. This specificity may be considered a therapeutic strength as populations of bacteriophages can be selected to specifically eliminate only the target bacterial species.
  • Despite the therapeutic advantages afforded by the host specificity of bacteriophages, this characteristic has the disadvantage that it can be difficult to achieve breadth of coverage of target strains. For this reason, there has been interest in finding combinations of bacteriophages having broad targeting capability in relation to particular types of bacterial infection (see for example Pirsi, The Lancet (2000) 355, 1418). This has now been achieved with the development of a mixture of six bacteriophages targeting Pseudomonas aeruginosa, which has completed veterinary field trials and is now in human clinical trials (Soothill et al, Lancet Infectious Diseases (2004) 4, 544-545). The challenge now is to develop regimens which optimise the delivery of such therapies.
  • Bacteriophages and antibiotic therapy have previously been used together in Eastern Europe (see for example Bradbury, The Lancet (February 2004) 363, 624-625), but without specific reporting of synergistic effects. Indeed, there have been suggestions that antibiotics can have adverse effects on use of bacteriophage therapy since bacteriophages use bacterial metabolism to replicate and this is inhibited by antibiotics (Payne and Janssen, Clinical Pharmacokinetics (2002) 42, 315-325).
  • More recently, bacteriophages have been shown to produce benefits where mixed pathogenic bacteria grow in a biofilm (Soothill et al, 2005, PCT patent application WO2005009451). In this application benefit was shown with respect to subsequent antibiotic treatment of heterologous bacterial infections, apparently by disruption of the biofilm following bacteriophage treatment.
  • Biofilm formation is now known to be a characteristic of many important pathogenic bacteria contributing to increased resistance to antibiotics. Such biofilms may comprise more than one type of bacterium supported and surrounded by an excreted extracellular matrix and assist bacteria to colonise surfaces from marine reefs to tooth enamel. Biofilms allow bacteria to attach to surfaces and to attain population densities which would otherwise be unsupportable. They impart increased resistance to not only antibiotics but many environmental stresses including toxins such as heavy metals, bleaches and other cleaning agents. It was previously thought that contribution of biofilm formation to antibiotic resistance was primarily a physical process arising from limitation of diffusion, but more recent evidence has shown that some biofilms appear to have specific abilities to trap antibiotics (Mah et al., Nature (2003) 426, 306-310). It is known that bacteria within biofilms can be 100 to 1000 times more resistant to antibiotics than the same strain of bacteria growing in single-celled (“planktonic”) forms. This increased resistance means that bacteria that are apparently sensitive to antibiotics in a laboratory test may be resistant to therapy in a clinical setting. Even if some are cleared, biofilms may provide resistant reservoirs permitting rapid colonisation once antibiotics are no longer present. It is clear therefore that biofilms are major factors in many human diseases.
  • As noted above, greater beneficial effects have been observed with the subsequent use of antibiotics against mixed infections following the use of a therapeutic bacteriophage preparation against Pseudomonas aeruginosa, and it has been proposed that this is due to the destruction of Pseudomonas aeruginosa as the key species maintaining the biofilm (Soothill et al, 2005, PCT patent application WO2005009451), which results in loss of biofilm integrity and thus exposure of bacteria to conventional antibiotics.
  • The teaching of PCT patent application WO2005009451 is against the use of antibiotics that are specifically active against the same bacterial species as that targeted by bacteriophage.
  • The examples cited refer to the use of Synulox (amoxicillin and clavulanic acid) and/or Canaural ear drops (containing diethanolamine fusidate, framycetin sulphate, nystatin and prednisolone). Both of these preparations contain only antibiotics that are not effective against Pseudomonas aeruginosa (Krogh et al, Nordisk Veterinaer Medicin (1975) 27, 285-295; Kucers A, in Kucers et al (eds), The Use of Antibiotics: A Clinical Review of Antibacterial, Antifungal and Antiviral Drugs, Fifth edition (1997), Butterworth-Heinemann, Oxford; Rawal, Journal of Antimicrobial Chemotherapy (1987) 20, 537-540). In particular, while aminoglycoside antibiotics as a class are effective against Pseudomonas aeruginosa, Framycetin is of very limited efficacy. Kucers notes that “Nearly all the medically important Gram-negative aerobic bacteria are sensitive” (to Neomycin, Framycetin and Paromomycin) “with the exception of Pseudomonas aeruginosa”, while the same author states that “Pseudomonas aeruginosa is co-amoxiclav resistant, citing the work of Comber et al, in Rolinson & Watson Augmentin (eds) (1980), Excerpta Medica, Amsterdam, p. 19. Co-amoxiclav is defined in the online 52nd edition of the British National Formulary (www.bnf.org) as “a mixture of amoxicillin (as the trihydrate or as the sodium salt) and clavulanic acid (as potassium clavulanate), equating to the veterinary drug Synulox. Thus, PCT patent application WO2005009451 would not indicate the use of antibiotics targeting Pseudomonas in any combination with bacteriophages but rather the use of antibiotics specifically targeting co-infecting bacteria.
  • Another mechanism has been identified recently by which bacteriophages can increase the sensitivity of bacteria to antibiotics to which they are resistant (Hagens et al, Microbial Drug Resistance (2006), 12, 164-168). This involves active bacteriophage metabolism, and is suggested to involve the formation of pores in the bacterial membrane. However, this teaches that “resensitization of pathogens resistant to a particular antibiotic can be achieved in the presence of phage in vivo” based around the use of “a combination treatment with antibiotics and filamentous phage”. Thus this relates to a non-heritable characteristic which is exerted only in the presence of bacteriophage, which relies on the simultaneous use of both bacteriophages and antibiotics, and which appears to be specific to filamentous bacteriophages which form pores in the bacterial membrane. This is thus distinct from the inventions claimed herein, which induce heritable changes that persist even when actively replicating bacteriophage is not present.
  • SUMMARY OF THE INVENTION
  • The present invention is based on the induction of sensitivity to chemical antibiotics by the use of bacteriophage treatment in vivo in humans or in animals, where such sensitivity is heritable, does not rely on active bacteriophage metabolism and does not relate to the destruction of biofilm to induce such sensitivity, along with the preparation of medicaments to permit the sequential use of bacteriophages and antibiotics so as to take advantage of such induction in sensitivity in the control of bacterial disease, especially for example a Pseudomonas aeruginosa infection. Induction of sensitivity in this context will be understood to include improvement of sensivity.
  • DETAILED DESCRIPTION
  • Thus in one aspect, there is provided a bacteriophage preparation comprising one or more bacteriophages for use in combined bacteriophage and antibiotic therapy to treat a bacterial infection in a human or animal, wherein at least one antibiotic is administered following the start of said bacteriophage treatment at a time period at which susceptibility of bacterial cells of said infection to said antibiotic is induced or improved by the bacteriophage treatment, where such susceptibility is heritable, independent of continuing bacteriophage metabolism within those cells, and does not relate to the destruction of a biofilm to induce such sensitivity. Antibiotic sensitivity may be monitored by established procedures in vitro. Induction of sensitivity may be confirmed for one or more bacterial strains from the individual patient or may be identified in other patients with similar bacterial infections following bacteriophage treatment
  • In a further aspect, there is provided a two stage medicament where the first stage comprises a bacteriophage-based therapeutic and the second is composed of one or more chemical antibiotics, for sequential use in humans or animals, where this is designed to exert beneficial effects by the induction of sensitivity as noted above.
  • The bacteriophage therapeutic and one or more chemical antibiotics may be administered for example at an interval of one to two days to two months apart, preferably at an interval of one to four weeks, most preferably at an interval of two weeks apart.
  • As indicated above, combined phage/antibiotic therapy according to the invention may be particularly useful for example in targeting bacterial infection comprising or consisting of Pseudomonas aeruginosa. Such infection may be, for example, at the site of a skin burn or other skin wound. It may be in the lung, an ocular infection or an ear infection. In this context, such an infection comprising P. aeruginosa will be understood to include an infection consisting essentially of P. aeruginosa. Thus, phage therapy according to the invention may be applied to an infection composed entirely, predominantly or significantly of P. aeruginosa.
  • Examples Induction of Antibiotic Sensitivity in a Veterinary Field Trial
  • Canine ear infections caused by Pseudomonas aeruginosa (otitis externa and otitis media) are examples of clinical disease associated with biofilm-based colonization of a body surface. Clinical signs of such infection include pain, irritation (erythema), ulceration and the discharge of increased amounts of material from the ear. This is often purulent in nature and is accompanied by a distinctive odour.
  • A combined preparation of six bacteriophages was named BioVet-PA, and was authorized for trial in dogs with such infection by the Veterinary Medicines Directorate of the United Kingdom in November 2003.
  • Conduct of the Trial
  • BioVet-PA was stored at −80° C. Immediately prior to administration, the product was thawed and warmed in the hand. 0.2 ml (containing 1×105 infectious units of each of the 6 bacteriophages) was administered drop-wise using a sterile 1 ml capacity syringe into the ear. Ear condition and microbiology was assessed at 2 days post-administration.
  • The procedure was as follows:
  • Characterisation (2 to 14 days prior to treatment):
    • Day 0 Swabs taken from each ear by a veterinary surgeon
      • Laboratory tests carried out using these swabs to confirm presence of Pseudomonas aeruginosa.
  • If Pseudomonas aeruginosa was not detected, the dog was excluded from the trial
    • Day 1 If Pseudomonas aeruginosa was detected, the isolates were tested for sensitivity to BioVet-PA.
  • If the Pseudomonas aeruginosa strain(s) with which the dog was infected was/were not sensitive to BioVet-PA, the dog was excluded from the trial.
  • Treatment:
    • Day 0 Ears examined auroscopically to assess their condition.
      • Swabs taken from each ear for microbiological analysis.
      • Dog's core temperature measured
      • Dog given dose of 0.2 ml BioVet-PA into the ear (treatments administered drop-wise using a sterile 1 ml-capacity syringe, and ear canals then massaged to promote deep penetration).
    • Day 2 Ears examined to assess their condition.
      • Swabs taken from each ear for microbiological analysis.
      • Dog's core temperature measured.
      • Only where both ears were infected:
      • Dog given dose of 0.2 ml BioVet-PA into the second ear (treatments administered drop-wise using a sterile 1 ml-capacity syringe, and ear canals then massaged to promote deep penetration).
    • Day 4 Only where both ears were infected:
      • Ears examined to assess their condition.
      • Swabs taken from each ear for microbiological analysis.
      • Dog's core temperature measured.
    Results:
  • Studies on ten dogs with severe, antibiotic-resistant Pseudomonas aeruginosa ear infections treated with BioVet-PA showed improvement in clinical symptoms within two days of treatment and reductions in bacterial numbers over the same timescale. Bacteriophage replication was observed in all dogs. Analysis of the improvement in clinical symptoms showed this to be significant at the 95% level of confidence by both the t-test and the Wilcoxon matched-pairs test.
  • Three dogs were excluded from the trial. The first dog to be tested was excluded because of a subsequent change in the scoring system (to take account of ear discharge purulence) while two treated dogs proved to have infections that were not predominantly with the target bacterium at the time of treatment (due to a change in bacterial flora following pre-entry screening).
  • Antibiotic Resistance:
  • All isolates of Pseudomonas aeruginosa from all thirteen dogs that were collected before treatment were screened for their sensitivity to antibiotics. The antibiotic sensitivity profile of each Pseudomonas aeruginosa strain was assessed with a range of 10 antibiotics which may be used clinically by veterinarians to treat Pseudomonas aeruginosa infections. The results were recorded in appropriate data collection sheets.
  • Since differing colony types were often observed in the same dog and both ears were infected in four dogs, a total of 83 individual isolates of Pseudomonas aeruginosa were tested. Thus, 830 tests were carried out, of which 340 were on swabs taken immediately prior to treatment, 340 two days after treatment, and 150 four days after treatment.
  • All sensitivity assays were compared to identify shifts in sensitivity to any of the antibiotics tested. No individual isolate showed more than a single shift, and no isolate changed from fully sensitive to fully resistant, or fully resistant to fully sensitive. However, shifts from sensitive to partially resistant, partially resistant to resistant, resistant to partially resistant, or partially resistant to sensitive were seen for 16 isolates. Events were observed as shown in Table 1 below.
  • TABLE 1
    Piperacillin +
    Cipro- Genta- Meropenem Tazobactam Colistin Imipenem
    Amikacin Ceftazidime floxacin micin Aztreonam Tobramycin All sensitive
    Sensitive change to 1
    Partially resistant
    Partially resistant 1
    change to Resistant
    Resistant change to 6 3 5
    Partially resistant
    Partially resistant 2 2 5 5
    change to Sensitive
    Monitored isolates in total 340  100%
    more resistant 2 0.59%
    more sensitive 28 8.24%
  • A total of 30 alterations in antibiotic sensitivity were seen, with 28 being shifts towards sensitivity and 2 being shifts towards resistance. Thus shifts towards sensitivity outnumbered those towards resistance by a factor of 14:1, illustrating the predominance of such “beneficial” shifts following bacteriophage treatment.
  • Induction of Antibiotic Sensitivity in a Human Clinical Trial:
  • The trial was a single-centre, double-blind, randomised, parallel group study of the safety and efficacy of a single administration of BioPhage-PA (a mixture of six bacteriophages specific for Pseudomonas aeruginosa) compared with placebo in patients with chronic ear infection caused by Pseudomonas aeruginosa shown to be susceptible to one or more of the bacteriophages present in BioPhage-PA.
  • This study investigated the efficacy and safety of BioPhage-PA, a mixture of six Pseudomonas aeruginosa bacteriophages of the same types as those tested as BioVet-PA in the veterinary field trial, which formed part of the pre-clinical work for this study.
  • The six bacteriophage strains (which were deposited at the National Collection of Industrial and Marine Bacteria, 23 St Machar Drive, Aberdeen, AB24 3RY, Scotland, UK on 24 Jun. 2003) are as follows:
  • Reference NCIMB Deposit Number
    BC-BP-01 NCIMB 41174
    BC-BP-02 NCIMB 41175
    BC-BP-03 NCIMB 41176
    BC-BP-04 NCIMB 41177
    BC-BP-05 NCIMB 41178
    BC-BP-06 NCIMB 41179
  • These bacteriophages are effective at killing a broad range of P. aeruginosa isolates.
  • The study was carried out in two parallel groups of patients with ear infection caused by Pseudomonas aeruginosa. Patients were randomly allocated to receive a single dose of either BioPhage-PA or placebo and were be monitored in a double-blind design over a period of 6 weeks post-dose. Efficacy assessments included questions about adverse events, both patient and investigator assessment of disease severity using visual analogue scales, Pseudomonas aeruginosa and bacteriophage ear swab count, audiogram, photography of the ear, and aural temperature analysis. Change from baseline (pre-dose assessment) in active and placebo groups were compared statistically. Safety data was also compared in the 2 groups.
  • Study Design
  • This was a single-centre, double-blind, randomised, parallel group study in patients with chronic Pseudomonas aeruginosa infection of the ear. Patients were randomised to one of two groups:
  • Group 1:
  • Patients received a single 0.2 mL dose of BioPhage-PA (containing 1×105 pfu by original titration of each of the 6 therapeutic bacteriophages)
  • Group 2:
  • Patients received a single 0.2 mL dose of placebo (10% v/v glycerol in PBS)
  • Design Summary Pre-Study Visit
  • Patients attended the clinic within 2 weeks of treatment Day 0 after being informed of the trial verbally. At this visit, they were provided with a written information sheet and were also provided with study details verbally. Patients were questioned regarding their eligibility to participate and if successful signed a consent form prior to Day 0 of the trial.
  • Treatment Period (Days 0-42 Inclusive)
  • Patients attended the clinic on the morning of Day 0 for clinical examination and were questioned about adverse events and study compliance. Upon confirmation of eligibility, patients were randomised to one of the two treatment groups and had baseline assessments performed to determine the severity of the infection. Treatment was then administered by the clinician who instilled the therapy drop-wise into the ear. Patients remained in the clinic for 6 hours post-dose. They were issued with diary cards for recording any adverse events or comments on the condition of the ear on a daily basis whilst away from the unit.
  • Patients returned on Days 7, 21 and 42 for further safety and efficacy tests.
  • A patient was eligible for inclusion in this study only if all of the following criteria apply: Aged 18 or over; able and willing to give written informed consent to take part in the study; infection of a the ear shown to be caused predominantly or solely by Pseudomonas aeruginosa; Pseudomonas aeruginosa isolated from the infection and shown to be vulnerable to one or more of the bacteriophages present in BioPhage-PA; infection established for at least 6 weeks and proven unresponsive to conventional anti-bacterial therapy; available to attend all clinic visits and complete all study measurements; female patients to be post-menopausal, surgically sterile or willing to use an acceptable form of contraception.
  • A patient was not eligible for inclusion in this study if any of the following criteria applied: Local surgery within 3 months of the pre-study visit; acute or systemic sepsis; use of systemic or topical antibiotics within one week of the pre-study visit or during the study; use of topical antiseptic or anti-inflammatory agents within one week of the pre-study visit or during the study; bacteriophage therapy in the 6 months prior to the pre-study visit; haemolytic Streptococci of groups A, B, C and G or unusual bacterial or fungal flora on ear swab culture at the pre-study visit; female pregnant or intending to become pregnant; patients who have a past or present disease which, as judged by the investigator, may affect the outcome of the study; any other condition which the investigator feels may prejudice the results of the study; participation in another clinical trial involving a new molecular entity within the previous 4 months or any trial within the previous one month.
  • Study Assessments and Procedures
  • Each patient attended the unit for the following visits:
  • Prior to the official start of the study, swabs (in transport media) were taken from the ears of potential trial candidates. General microbiological analysis was carried out to determine the level of Pseudomonas aeruginosa in the ear. This was followed by a diagnostic ear-swab test. The trial was discussed verbally with patient, and the patient was provided with information sheet/consent form; history was taken and recorded on the case report form; a diagnostic swab was taken and the swab sent for microbiological analysis, where it was analysed for Pseudomonas aeruginosa and for sensitivity of Pseudomonas aeruginosa that was present to the bacteriophages in BioPhage-PA.
  • If suitable, the patient was enrolled onto trial within 2 weeks of the time that the diagnostic swab was taken.
  • Study Day 0: The patient assessed the condition of their ear for: discomfort, itchiness, wetness, and smell. Using pre-weighed dry swabs, samples were taken for microbiological analysis. Oral and aural temperature were recorded, the ear was cleaned, and the attending physician assessed the ear for: erythema/inflammation, ulceration/granulation/polyps, discharge type (clear/mucoid/mucopurulent), discharge quantity, and odour (immediately prior to study procedures). Digital otoscopic photography was performed, along with a hearing test (audiogram). BioPhage-PA (0.2 ml) was then administered directly into the ear canal using a 1 ml syringe and soft sterile tubing over a period of approximately 30 seconds. The patient remained at the clinic for 6 hours after therapy for observation and was then sent home with a diary card to record any information they felt relevant to their condition.
    Study Day 7: This involved adverse event and compliance questioning, patient assessment of the ear, swab sampling with microbiological analysis, recording of aural and oral temperature, physician assessment of the ear, and ear cleaning.
    Study Day 21: This involved procedures as described for study day 7
    Study Day 42: This involved procedures as described for study days 7 and 21, except that a hearing test was also be performed and the ear was photographed.
  • Microbiological Assessment
  • Microbiological assessment involved counting of the Pseudomonas aeruginosa present on the swab, along with counting of all bacteriophages (both extraneous and therapeutic) on the swab.
  • Sensitivity to ten antibiotics (as for the veterinary field trial) was also monitored for all isolates. The antibiotic sensitivity test was conducted on each strain of Pseudomonas aeruginosa isolated. The test was conducted according to the standard methods of the British Society for Antimicrobial Chemotherapy (BSAC) Disc Diffusion Method for Antimicrobial Susceptibility Testing (May 2003). The antibiotics to be used were as follows:
  • Amikacin—30 μg/ml
    Ceftazadime—30 μg/ml
    Ciprofloxacin—5 μg/ml
    Gentamicin—10 μg/ml
    Meropenem—10 μg/ml
    Pipericillin+Tazobactam (7.5:1)—85 μg/ml
    Colistin—25 μg/ml
    Aztreonam—30 μg/ml
    Imipenem—10 μg/ml
    Tobramycin—10 μg/ml
  • The test was conducted using Isosensitest agar.
  • It was found that in the first patient in which bacteriophage replication was seen, there was evidence of a movement towards sensitivity for three of the ten antibiotics monitored (see Table 2).
  • TABLE 2
    Antibiotic sensitivity of Pseudomonas aeruginosa:
    Data from human otitis trial
    Pre-
    treatment Day 0
    Antibiotic screening (treatment) Day 7 Day 21 Day 42
    Amikacin Partially Partially Sensitive Partially Sensitive
    resistant resistant resistant
    Gentamicin Resistant Resistant Resistant Resistant Partially
    resistant
    Tobramycin Resistant Sensitive Resistant Partially Resistant
    resistant
    Meropenem Sensitive Sensitive Sensitive Sensitive Sensitive
    Imipenem Sensitive Sensitive Sensitive Sensitive Sensitive
    Ceftazadime Sensitive Sensitive Sensitive Sensitive Sensitive
    Pipericillin & Sensitive Sensitive Sensitive Sensitive Sensitive
    Tazobactam
    Colistin Sensitive Sensitive Sensitive Sensitive Sensitive
    Aztreonam Sensitive Sensitive Sensitive Sensitive Sensitive
    Ciprofloxacin Sensitive Sensitive Sensitive Sensitive Sensitive
  • Summary of the Above Exemplification
  • In the veterinary field trial, over a two to four day monitoring period, evidence was found of a movement towards antibiotic sensitivity in 8.24% of Pseudomonas aeruginosa isolates (against 0.59% where movement towards resistance was seen).
  • In human trial, evidence was seen of a movement towards sensitivity to chemical antibiotics following the use of a bacteriophage therapeutic in the first patient where bacteriophage replication was observed. Such movement was seen for three of ten antibiotics monitored (30%), over the longer monitoring period in this trial.
  • Further Human Trial Results
  • Subsequent analysis of all twenty four participants in the human trial confirmed the above findings as follows with reference to Tables 3 and 4 below. It can be seen that cessation of antibiotic treatment (required for trial entry) itself produced a drift towards antibiotic sensitivity, but that this was more marked for both numbers of patients and for individual antibiotics assayed in the test (bacteriophage-treated) group, with the majority of patients (7/12) showing at least one change towards sensitivity during the monitoring period. Shifts sensitivity appear particularly marked for aminoglycoside antibiotics with, for example, five of twelve bacteriophage-treated patients showing increased sensitivity to gentamicin. Taken together, the above data exemplifies the present invention.
  • TABLE 3
    Antibiotic sensitivity of Pseudomonas aeruginosa:
    Data from human otitis trial
    Change from pre-screening to day 42
    Placebo group
    Patient number
    Antibiotic 3 4 6 8 9 11 13 14 19 20 22 23
    Amikacin + +
    Gentamicin + +
    Tobramycin + +
    Meropenem
    Imipenem
    Ceftazadime
    Pipericillin &
    Tazobactam
    Colistin
    Aztreonam +
    Ciprofloxacin
    Test group
    Patient number
    Antibiotic 1 2 5 7 10 12 15 16 17 18 21 24
    Amikacin + + +
    Gentamicin + + + + +
    Tobramycin +
    Meropenem
    Imipenem
    Ceftazadime
    Pipericillin &
    Tazobactam
    Colistin
    Aztreonam +
    Ciprofloxacin +
  • TABLE 4
    Antibiotic (ten drugs tested)
    To resistance To sensitivity
    Changes in resistance patterns: n = No. % No. %
    Test
    Patients (one or more 12 2 16.7% 7 58.3%
    changes) of
    Individual tests of 120 3 2.5% 11 9.2%
    Control
    Patients (one or more 12 1 8.3% 5 41.7%
    changes) of
    Individual tests of 120 1 0.8% 7 5.8%

Claims (21)

1-25. (canceled)
26. A method of monitoring antibiotic resistance in Pseudomonas aeruginosa comprising:
(i) obtaining a first sample from a subject that has a Pseudomonas aeruginosa bacterial infection that is resistant to chemical antibiotics;
(ii) testing the first sample for susceptibility to antibiotics;
(iii) administering one or more bacteriophages capable of infecting Pseudomonas aeruginosa to the subject;
(iv) obtaining a second sample from the subject after the administration step (iii);
(v) testing the second sample for susceptibility to antibiotics; and
(vi) detecting a change in the antibiotic resistance in Pseudomonas aeruginosa by comparing the susceptibility of Pseudomonas aeruginosa in the first sample and the second sample.
27. The method of claim 26, wherein susceptibility of the Pseudomonas aeruginosa to chemical antibiotics is heritable, independent of continuing bacteriophage metabolism within those cells, and does not relate to the destruction of a biofilm to induce the sensitivity.
28. The method of claim 26, wherein the monitoring is used to select antibiotics for therapeutic use in a human or animal.
29. The method of claim 26, wherein the antibiotic is selected from the group consisting of amikacin, ceftazadime, ciprofloxacin, gentamicin, meropenem, pipericillin, tazobactam, colistin, aztreonam, imipenem, and tobramycin.
30. The method of claim 26, wherein the antibiotic is an aminoglycoside antibiotic.
31. The method of claim 26, wherein the bacteriophages are selected from the group consisting of NCIMB (National Collection of Industrial and Marine Bacteria) 41174, NCIMB 41175, NCIMB 41176, NCIMB 41177, NCIMB 41178, and NCIMB 41179;
32. The method of claim 26, wherein the subject is an animal.
33. The method of claim 32, wherein the animal is human.
34. The method of claim 32, wherein the animal is a canine.
35. The method of claim 26, wherein a time period between administering the one or more bacteriophages to the subject and testing the sample for susceptibility to antibiotics is one day to two months apart.
36. The method of claim 26, wherein a time period between administering the one or more bacteriophages to the subject and testing the sample for susceptibility to antibiotics is one week to four weeks apart.
37. The method of claim 26, wherein a time period between administering the one or more bacteriophages to the subject and testing the sample for susceptibility to antibiotics is one day to two days apart.
38. The method of claim 26, wherein at least one sample selected from the first sample and the second sample is from an ear, a lung, an eye, a burn, or a wound.
39. The method of claim 26, wherein at least one sample selected from the first sample and the second sample is from an ear.
40. The method of claim 26, wherein the one or more bacteriophages are capable of replicating in the subject.
41. A method of monitoring antibiotic resistance in Pseudomonas aeruginosa comprising:
(i) obtaining a first sample from a subject that has a Pseudomonas aeruginosa bacterial infection that is partially resistant to chemical antibiotics;
(ii) testing the first sample for susceptibility to antibiotics;
(iii) administering one or more bacteriophages to the subject, wherein the bacteriophages are selected from the group consisting of NCIMB (National Collection of Industrial and Marine Bacteria) 41174, NCIMB 41175, NCIMB 41176, NCIMB 41177, NCIMB 41178, and NCIMB 41179;
(iv) obtaining a second sample from the subject after the administration step (iii);
(v) testing the second sample for susceptibility to antibiotics; and
(vi) detecting a change in the antibiotic resistance in Pseudomonas aeruginosa by comparing the susceptibility of Pseudomonas aeruginosa in the first sample and the second sample.
42. The method of claim 41, wherein susceptibility of the Pseudomonas aeruginosa to chemical antibiotics is heritable, independent of continuing bacteriophage metabolism within those cells, and does not relate to the destruction of a biofilm to induce the sensitivity.
43. The method of claim 41, wherein the monitoring is used to select antibiotics for therapeutic use in a human or animal.
44. The method of claim 41, wherein the antibiotic is selected from the group consisting of amikacin, ceftazadime, ciprofloxacin, gentamicin, meropenem, pipericillin, tazobactam, colistin, aztreonam, imipenem, and tobramycin.
45. The method of claim 41, wherein the subject is a human.
US14/625,049 2007-03-09 2015-02-18 Beneficial effects of bacteriophage treatments Abandoned US20150232910A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/625,049 US20150232910A1 (en) 2007-03-09 2015-02-18 Beneficial effects of bacteriophage treatments
US15/400,786 US20170216380A1 (en) 2007-03-09 2017-01-06 Beneficial effects of bacteriophage treatments

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
GBGB0704553.7A GB0704553D0 (en) 2007-03-09 2007-03-09 Beneficial effects of bacteriophage treatments
GB0704553.7 2007-03-09
PCT/GB2008/050162 WO2008110840A1 (en) 2007-03-09 2008-03-07 Beneficial effects of bacteriophage treatments
US52987609A 2009-12-22 2009-12-22
US13/904,713 US20140037587A1 (en) 2007-03-09 2013-05-29 Beneficial effects of bacteriophage treatments
US14/625,049 US20150232910A1 (en) 2007-03-09 2015-02-18 Beneficial effects of bacteriophage treatments

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US13/872,699 Division US8986751B2 (en) 2011-04-17 2013-04-29 Medicinal orobancheace extracts
US13/904,713 Continuation US20140037587A1 (en) 2007-03-09 2013-05-29 Beneficial effects of bacteriophage treatments

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/400,786 Continuation US20170216380A1 (en) 2007-03-09 2017-01-06 Beneficial effects of bacteriophage treatments
US15/933,477 Division US10975413B2 (en) 2011-04-17 2018-03-23 Medicinal orobancheace extracts

Publications (1)

Publication Number Publication Date
US20150232910A1 true US20150232910A1 (en) 2015-08-20

Family

ID=37988661

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/529,876 Active 2029-03-21 US8475787B2 (en) 2007-03-09 2008-03-07 Beneficial effects of bacteriophage treatments
US13/904,713 Abandoned US20140037587A1 (en) 2007-03-09 2013-05-29 Beneficial effects of bacteriophage treatments
US14/625,049 Abandoned US20150232910A1 (en) 2007-03-09 2015-02-18 Beneficial effects of bacteriophage treatments
US15/400,786 Abandoned US20170216380A1 (en) 2007-03-09 2017-01-06 Beneficial effects of bacteriophage treatments

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US12/529,876 Active 2029-03-21 US8475787B2 (en) 2007-03-09 2008-03-07 Beneficial effects of bacteriophage treatments
US13/904,713 Abandoned US20140037587A1 (en) 2007-03-09 2013-05-29 Beneficial effects of bacteriophage treatments

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/400,786 Abandoned US20170216380A1 (en) 2007-03-09 2017-01-06 Beneficial effects of bacteriophage treatments

Country Status (8)

Country Link
US (4) US8475787B2 (en)
EP (1) EP2136826B1 (en)
JP (2) JP5988417B2 (en)
AU (1) AU2008224651B2 (en)
CA (1) CA2680108C (en)
ES (1) ES2589909T3 (en)
GB (1) GB0704553D0 (en)
WO (1) WO2008110840A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1663265B1 (en) * 2003-07-23 2015-09-23 Biocontrol Limited Bacteriophage-containing therapeutic agents
GB0704553D0 (en) 2007-03-09 2007-04-18 Harper David R Beneficial effects of bacteriophage treatments
KR20100093626A (en) * 2009-02-17 2010-08-26 서강대학교산학협력단 Phage therapy against pseudomonas aeruginosa
WO2010141135A2 (en) 2009-03-05 2010-12-09 Trustees Of Boston University Bacteriophages expressing antimicrobial peptides and uses thereof
JP6004631B2 (en) * 2010-10-28 2016-10-12 栄研化学株式会社 Disc test piece for detecting drug-resistant bacteria
US11058131B2 (en) 2015-04-16 2021-07-13 Kennesaw State University Research And Service Foundation, Inc. Escherichia coli O157:H7 bacteriophage Φ241
US10517908B2 (en) 2015-08-13 2019-12-31 Armata Pharmaceuticals, Inc. Therapeutic bacteriophage compositions
US10357522B2 (en) 2016-06-22 2019-07-23 The United States Of America As Represented By The Secretary Of The Navy Bacteriophage compositions and methods of selection of components against specific bacteria
WO2018146437A1 (en) 2017-02-13 2018-08-16 Biocontrol Limited Therapeutic bacteriophage compositions
CN112218659A (en) 2018-01-02 2021-01-12 阿玛塔制药股份有限公司 Therapeutic phage compositions for the treatment of staphylococcal infections
EP3735221A1 (en) * 2018-01-02 2020-11-11 Armata Pharmaceuticals, Inc. Bacteriophage compositions for treating pseudomona infections
CN112243377A (en) 2018-02-07 2021-01-19 阿玛塔制药股份有限公司 Bacteriophage for treating and preventing bacterially-associated cancer

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4678750A (en) 1984-10-18 1987-07-07 Microlife Technics, Inc. Method and compositions for use in the treatment of fireblight
US4828999A (en) 1986-07-21 1989-05-09 Jackson Le Roy E Bacteriophage prevention and control of harmful plant bacteria
SU1472500A1 (en) 1987-07-28 1989-04-15 Тбилисский Научно-Исследовательский Институт Вакцин И Сывороток Strain of pseudomonas aeruginosa bacteriophage used for identifying and indicating pseudomonas aeruginosa microbes
US5032574A (en) 1988-05-26 1991-07-16 Invitron Corporation Novel antimicrobial peptide
US5242902A (en) 1989-09-06 1993-09-07 The Regents Of The University Of California Defensin peptide compositions and methods for their use
AU4381493A (en) 1992-05-22 1993-12-30 Children's Hospital Of Philadelphia, The Gastrointestinal defensins, CDNA sequences and method for the production and use thereof
DE69324918T2 (en) 1993-02-24 1999-11-11 Gunze Kk MEDICINE AGAINST CYSTIC FIBROSIS
US5459235A (en) 1993-03-19 1995-10-17 The Regents Of The University Of California Antimicrobial peptides antibodies and nucleic acid molecules from bovine neutrophils
US5550109A (en) 1994-05-24 1996-08-27 Magainin Pharmaceuticals Inc. Inducible defensin peptide from mammalian epithelia
CA2251724A1 (en) * 1996-04-15 1997-10-23 Paul Averback Compositions containing bacteriophages and methods of using bacteriophages to treat infections
AU7113398A (en) 1997-04-24 1998-11-13 Idaho Research Foundation Inc., The Phages, methods for growing and detecting them and their use
US20020037260A1 (en) 1997-10-16 2002-03-28 Budny John A. Compositions for treating biofilm
US6161036A (en) 1997-12-25 2000-12-12 Nihon Kohden Corporation Biological signal transmission apparatus
NZ505847A (en) * 1998-01-21 2002-09-27 Secr Defence Adenylate kinase assay for rapid and sensitive investigation of bacterial growth and inhibition
CA2430501A1 (en) 2000-01-11 2001-07-19 Intralytix, Inc. Method for produce sanitation using bacteriophages
US20040208853A1 (en) 2000-01-11 2004-10-21 Intralytix, Inc. Method and device for sanitation using bacteriophages
US20020001590A1 (en) 2000-04-20 2002-01-03 Mount Sinai Hospital Antibacterial therapy for multi-drug resistant bacteria
US6485902B2 (en) 2000-06-06 2002-11-26 Thomas E. Waddell Use of bacteriophages for control of escherichia coli O157
CA2417188A1 (en) 2000-07-25 2002-01-31 Carl R. Merril Bacteriophage having multiple host range
US6461608B1 (en) 2000-11-22 2002-10-08 Nymox Pharmaceutical Corporation Bacteriophage composition useful in treating food products to prevent bacterial contamination
RU2186574C1 (en) 2001-01-24 2002-08-10 Яфаев Рауэль Хасанянович Preparation of polyvalent bacteriophage against pyocyanic bacillus, strains of bacteriphagum pseudomonas aeruginosa used in preparing polyvalent preparation against pyocyanic bacillus
AU2002354900A1 (en) 2001-07-18 2003-03-03 Instytut Immunologii I Terapii Doswiadczalnej Pan Methods of polyvalent bacteriophage preparation for the treatment of bacterial infections
WO2004052274A2 (en) * 2002-12-09 2004-06-24 Phage Biopharm Llc Production of bacteriophage compositions for use in phage therapy
GB0300597D0 (en) 2003-01-10 2003-02-12 Microbiological Res Authority Phage biofilms
US6804620B1 (en) 2003-03-21 2004-10-12 Advantest Corporation Calibration method for system performance validation of automatic test equipment
EP1663265B1 (en) 2003-07-23 2015-09-23 Biocontrol Limited Bacteriophage-containing therapeutic agents
US20050051420A1 (en) 2003-09-05 2005-03-10 Sharper Image Corporation Electro-kinetic air transporter and conditioner devices with insulated driver electrodes
GB0704553D0 (en) 2007-03-09 2007-04-18 Harper David R Beneficial effects of bacteriophage treatments

Also Published As

Publication number Publication date
JP2010521428A (en) 2010-06-24
WO2008110840A1 (en) 2008-09-18
CA2680108A1 (en) 2008-09-18
US20100104538A1 (en) 2010-04-29
EP2136826B1 (en) 2016-06-15
US20140037587A1 (en) 2014-02-06
CA2680108C (en) 2017-04-11
AU2008224651B2 (en) 2013-09-05
EP2136826A1 (en) 2009-12-30
ES2589909T3 (en) 2016-11-17
JP5988417B2 (en) 2016-09-07
GB0704553D0 (en) 2007-04-18
US20170216380A1 (en) 2017-08-03
AU2008224651A1 (en) 2008-09-18
JP2014237685A (en) 2014-12-18
JP6004543B2 (en) 2016-10-12
US8475787B2 (en) 2013-07-02

Similar Documents

Publication Publication Date Title
US8475787B2 (en) Beneficial effects of bacteriophage treatments
JP5856556B2 (en) Bacteriophage-containing therapeutics
Bundrick et al. Levofloxacin versus ciprofloxacin in the treatment of chronic bacterial prostatitis: a randomized double-blind multicenter study
Roland et al. A single topical agent is clinically equivalent to the combination of topical and oral antibiotic treatment for otitis externa
Greenberg et al. Treatment of serious gram-negative infections with aztreonam
Uwumiro et al. Atypical Burkholderia Cepacia Resistance to Ceftazidime/Avibactam and Co-trimoxazole: A Case of Open Wound Contamination and Persistent Bacteremia
Davis et al. Enrofloxacin use in a long-distance transport model of equine respiratory disease
YADAV Medicine-Pharmacology
Abdul-Rahman Evaluation of the effect of some antibiotics on amoxicillin resistant bacteria isolated from middle ear infection: A comparative study
Lappin et al. Feline Infectious Respiratory Diseases
Takano et al. Antibiotics Therapy for Acute Bacterial Tonsillitis
Hamm et al. Susceptibility Patterns of Select Gram-Negative Organisms after a Formulary Switch from Ceftazidime to Cefepime
Faust Low dose nitric oxide as targeted anti-biofilm adjunctive therapy to treat chronic Pseudomonas aeruginosa infection in cystic fibrosis 2

Legal Events

Date Code Title Description
AS Assignment

Owner name: BIO-CONTROL LIMITED, GREAT BRITAIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HARPER, DAVID;REEL/FRAME:035096/0697

Effective date: 20091030

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION