US20150226880A1 - Cut Pattern For Film - Google Patents

Cut Pattern For Film Download PDF

Info

Publication number
US20150226880A1
US20150226880A1 US14/616,606 US201514616606A US2015226880A1 US 20150226880 A1 US20150226880 A1 US 20150226880A1 US 201514616606 A US201514616606 A US 201514616606A US 2015226880 A1 US2015226880 A1 US 2015226880A1
Authority
US
United States
Prior art keywords
wafer
template
templates
individual
sides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/616,606
Inventor
Richard Blacker
Lance Andersen
James Kunkel
David Olund
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Optical Labs of America Inc
Original Assignee
Vision Ease LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vision Ease LP filed Critical Vision Ease LP
Priority to US14/616,606 priority Critical patent/US20150226880A1/en
Publication of US20150226880A1 publication Critical patent/US20150226880A1/en
Assigned to Insight Equity A.P.X, LP (dba Vision-Ease Lens) reassignment Insight Equity A.P.X, LP (dba Vision-Ease Lens) ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BLACKER, RICHARD, KUNKEL, James, OLUND, DAVID
Assigned to VISION EASE, LP reassignment VISION EASE, LP CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: INSIGHT EQUITY A.P. X, LP (DBA VISION-EASE LENS)
Assigned to INSIGHT EQUITY A.P.X., LP (DBA VISION-EASE LENS) reassignment INSIGHT EQUITY A.P.X., LP (DBA VISION-EASE LENS) ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ANDERSEN, Lance
Assigned to Insight Equity A.P.X, LP (dba Vision-Ease Lens) reassignment Insight Equity A.P.X, LP (dba Vision-Ease Lens) CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY'S PLACE OF BUSINESS ADDRESS IN THE ASSIGNMENT DOCUMENT PREVIOUSLY RECORDED ON REEL 038103 FRAME 0822. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: BLACKER, RICHARD, KUNKEL, James, OLUND, DAVID
Assigned to Insight Equity A.P.X, LP (dba Vision-Ease Lens) reassignment Insight Equity A.P.X, LP (dba Vision-Ease Lens) CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY'S NAME PREVIOUSLY RECORDED AT REEL: 040874 FRAME: 0864. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: ANDERSEN, Lance
Priority to US16/687,503 priority patent/US11650353B2/en
Assigned to HOYA OPTICAL LABS OF AMERICA, INC. reassignment HOYA OPTICAL LABS OF AMERICA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VISION EASE, LP
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/0006Means for guiding the cutter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1671Making multilayered or multicoloured articles with an insert
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/37Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings
    • B29C45/372Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings provided with means for marking or patterning, e.g. numbering articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00278Lenticular sheets
    • B29D11/00307Producing lens wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/04Processes

Definitions

  • the present invention is directed toward optical films and film laminates and, more particularly, to the preparation of films and film laminates for use in producing optical articles such as lenses.
  • Films and film laminates are employed to manufacture optical lenses, for example ophthalmic lenses and sun glass lenses, to impart optically functional characteristics to the lenses.
  • the optical functional characteristics imparted may include photochromic properties, polarizing properties, antireflective properties, hard or protective properties, hydrophobic or hydrophilic properties, and/or various tinting or coloration properties.
  • circular forms of a film or film laminate are cut from flat sheets of film or film laminate. Once cut, the individual cut forms of the film or film laminate are referred to as wafers.
  • the diameter of the circular wafer is determined based upon the size of the lens blank being formed, the type of lens being formed, and certain properties of the equipment in which the lenses are to be formed.
  • the film or film laminate from which the wafers are cut is typically provided in a flat sheet.
  • a square pattern of circular wafers may be cut from a rectangular sheet of film or film laminate using a cutting plate.
  • FIGS. 1 and 2 show examples of a conventional, film or film laminate sheet cut pattern 2 for the formation of circular wafers of different diameters, for example of circular wafers having a diameter of 86 and 76 millimeters, respectively.
  • weed In order to minimize imperfections resulting from the cutting of the sheet, a space, for example 0.03125 inches, is maintained between each adjacent wafer cut from the sheet.
  • the area of the film or film laminate sheet remaining after the wafers have been cut is referred to as “weed.”
  • one disadvantage of the above-described conventional method for forming wafers is that the weed can amount to as much as 30 percent of the area of the original uncut film or film laminate sheet.
  • the flat, circular wafer prior to employing a flat, circular wafer in the formation of a lens, the flat, circular wafer is per-formed or manipulated into a curved or cup-like shape that is similar to the curvature of a front surface of the lens to be formed.
  • the wafer can be formed into this curved shape by various techniques such as the application of vacuum and heat.
  • the distortion of the flat, circular shaped wafer in to a curved, circular wafer often leads to a radial fold formed in the film or film laminate of the wafer.
  • the fold occurs in order to accommodate the distortion and/or material stress of the initially flat wafer. This fold can be visible in higher base curve lenses thus leading to product waste due to poor or unacceptable quality lens.
  • significant cost savings could be realized if techniques for reducing this fold in the curved wafer were achieved.
  • the present invention improves efficiency and quality of forming film and film laminate wafers for use in the fabrication of optical articles such as single and multifocal lenses. These improvements are achieved, in part, by providing a cut pattern for the formation of film wafers for making optical articles comprising a plurality of individual wafer templates each having six sides of equal length and a series of rows and columns in which the plurality of individual wafers are arranged such that each of the six sides of an individual wafer template of said plurality of individual wafer templates is adjacent and parallel to a side of a different wafer template of said plurality of individual wafer templates.
  • these improvements are achieved by providing a wafer for use in the formation of a circular optical article comprising six sides of equal length and a maximum dimension that is approximately equal to a maximum dimension of the circular optical article in which the wafer will be employed.
  • these improvements are achieved by a method for forming film wafers for use in the formation of optical articles comprising: forming a single wafer template having six straight sides of equal length, an intersection of each pair of adjacent sides of said six straight sides forming a curve; duplicating the wafer template in a series of rows and columns; arranging the rows and columns of the duplicated wafer templates such that each sides of a first wafer template is adjacent and parallel to a side of a different wafer template; and using said arrangement of rows and columns of the duplicated wafer templates to cut a plurality of individual wafers from a sheet of film.
  • these improvements are achieved by a method for forming an injection molded lens comprising: placing a hexagonal-shaped film wafer within a mold forming a portion of a lens mold cavity; closing the mold cavity; injecting a molten resin in the closed mold cavity; and removing the lens from the mold cavity.
  • FIG. 1 is a view of an example of a conventional film or film laminate sheet cut pattern.
  • FIG. 2 is a view of an example of a conventional film or film laminate sheet cut pattern.
  • FIG. 3 is a view of a cut pattern according to one embodiment of the present invention.
  • FIG. 4A is a view of a cut pattern according to one embodiment of the present invention.
  • FIG. 4B is a plan view of a wafer template or wafer according to one embodiment of the present invention.
  • FIG. 4C is a magnified view of portion “C” of FIG. 4A of a cut pattern according to one embodiment of the present invention.
  • FIG. 5A is a view of a cut pattern according to one embodiment of the present invention.
  • FIG. 5B is a plan view of a wafer template or wafer according to one embodiment of the present invention.
  • FIG. 5C is a magnified view of portion “C” of FIG. 5A of a cut pattern according to one embodiment of the present invention.
  • FIG. 6A is a view of a cut pattern according to one embodiment of the present invention.
  • FIG. 6B is a plan view of a wafer template or wafer according to one embodiment of the present invention.
  • FIG. 6C is a magnified view of portion “C” of FIG. 6A of a cut pattern according to one embodiment of the present invention.
  • FIG. 6D is a partial view of a cut pattern according to one embodiment of the present invention.
  • FIG. 7 is an image of a hexagonal-shaped wafer according to the present invention resting on top of a conventional, round wafer.
  • FIG. 8 is an image of a lens employing a hexagonal-shaped wafer according to the present invention
  • the film or film laminate cut pattern of the present invention effectively reduces weed resulting from the original film or film laminate sheet while also effectively reducing the occurrence of a fold in the subsequently pre-formed, curved wafer.
  • these objectives are achieved by employing a film or film laminate sheet cut pattern that results in wafers having a regular hexagon, i.e. having a shape with six equal angles and with six sides of equal length, a hexagonal-shape, or a hexagonal-like shape.
  • These objectives are further achieved by employing a film or film laminate sheet cut pattern that results in hexagonal-shaped wafers having curved or rounded corners.
  • FIG. 3 shows a hexagonal wafer cut pattern 10 according to the present invention.
  • the cut pattern 10 is designed for use in the formation of circular lenses having, for example, a diameter of 86 millimeters.
  • the sides 14 of the hexagonal wafers 12 are, for example approximately 44 millimeters.
  • the percent of weed resulting from this cut pattern is approximately five percent.
  • the wafer is held in place by applying vacuum behind the wafer at specific points near the periphery of the circular wafer.
  • Such wafer vacuum points are compromised or otherwise not present in a wafer having a perfect hexagonal shape.
  • the otherwise perfect hexagonal shape of the wafer is altered by trimming or otherwise rounding the corners formed at the intersections of the straight sides of the hexagon and by enlarging the otherwise perfect hexagon so as to have a diameter or largest dimension approximately equal to that of the diameter of the lens in which the wafer will be employed.
  • FIG. 4A shows a hexagonal-shaped wafer cut pattern 20 according to the present invention in which the corners of the otherwise perfect hexagons are trimmed at a diagonal 26 to form wafers 22 .
  • FIG. 4B is a magnified view of a single wafer 22 having a dimension 25 between opposite sides 24 of approximately 78 millimeters and a dimension 27 between opposite diagonals 26 of approximately 85 . 1 millimeters.
  • FIG. 4C shows a magnified view of a portion “C” of FIG. 4A . As shown in FIG. 4C , diagonals 26 have a dimension 23 of approximately 8.6 millimeters, and sides 24 have a dimension 21 of approximately 35.1 millimeters.
  • the feature of the sides 24 of adjacent wafers 22 being “shared.”
  • the adjacent sides 24 of adjacent wafers 22 are not spaced apart or gapped and are formed by a single cut in the film or laminate film sheet.
  • FIG. 5A shows a hexagonal-shaped wafer cut pattern 30 according to the present invention in which the corners of the otherwise perfect hexagons are trimmed so as to form curves 36 spanning between two adjacent sides 34 of the wafers 32 .
  • FIG. 5B is a magnified view of a single wafer 32 having a dimension 35 between opposite sides 34 of approximately 78 millimeters.
  • the shape or radius of the curves 36 is determined by best fitting the wafer 32 within a circle 37 having a diameter 38 of 85.55 millimeters.
  • the circle 37 and diameter 38 are representative of a lens to be molded with the wafer 32 .
  • the curvature of the curves 36 of the wafer 32 is determined based upon a curvature of a circular lens of a desired diameter to which the wafer 32 will be molded.
  • FIG. 5C is a magnified view of a portion “C” of FIG. 5A . As shown in FIG. 5C , sides 34 of wafer 32 have a dimension 31 of approximately 30.54 millimeters.
  • the feature of the sides 34 of adjacent wafers 32 being “shared.”
  • the adjacent sides 34 of adjacent wafers 32 are not spaced apart or gapped and are formed by a single cut in the film or laminate film sheet.
  • FIG. 6A shows a hexagonal-shaped wafer cut pattern 40 according to the present invention in which the corners of the otherwise perfect hexagons are trimmed so as to form curves 46 spanning between two adjacent sides 44 of the wafers 42 .
  • the wafer cut pattern 40 employs first gaps or spaces 51 and second gaps or spaces 52 between the sides 44 of the individual different wafers. While such first spaces 51 and second spaces 52 may result in increased weed, such a pattern may be desired in certain situations due to limitations in, for example, wafer cutting mechanisms; limitations in available film or film laminate sheet sizes; and/or the film's or film laminate's physical properties.
  • FIG. 6B is a magnified view of a single wafer 42 having a dimension 45 between opposite sides 44 of approximately 78 millimeters.
  • the shape or radius of the curves 46 is determined by best fitting the wafer 42 within a circle 47 having a diameter 38 of approximately 85.55 millimeters.
  • the circle 47 and diameter 38 are representative of a lens to be molded with the wafer 42 .
  • the curvature or radius of the curves 46 of the wafer 42 is determined based upon a radius or curvature of a circular lens of a desired diameter to which the wafer 42 will be molded.
  • FIG. 6C is a magnified view of a portion of area “C” of FIG. 6A . As shown in FIG.
  • first spaces 51 and second spaces 52 may employ different dimensions.
  • first spaces 51 may have a dimension of approximately 19 millimeters and second spaces 52 may have a dimension of approximately three sixteenths of an inch.
  • spacing 51 and spacing 52 may have equal or approximately equal dimensions, for example 1.15 millimeters.
  • the dimensions of the spacing 51 and the spacing 52 may, for example, be in the range of 0.4 millimeters to 30 millimeters, regardless of whether there is a differential between the dimensions of spacing 51 and spacing 52 .
  • each of hexagonal-shapes or wafers 12 , 22 , 32 , 42 shown in FIGS. 3 , 4 A, 4 B, 5 A, 5 B, 6 A, and 6 B may represent a template of an area from which an individual wafer has yet to be cut; a void left after an individual wafer has been removed from a portion of a film laminate sheet; or a cut wafer remaining after the surrounding unused portion of a film laminate sheet has been removed.
  • FIG. 7 shows a wafer 30 or 40 according to the present invention resting upon or over a conventional, circular wafer. Both wafers are intended for use in the molding of circular lenses having the same diameter.
  • a template or shape for an individual film or film laminate wafer is formed depending on, for example the size of the optical article, for example a single or multifocal lens.
  • a cut pattern is then formed by duplicating the wafer template and arranging the duplicated template wafers in columns and rows so as to achieve the desired balance between efficient use of the sheet of film or film laminate from which the wafers will be cut and wafer quality.
  • the individual wafers are then cut from the sheet of film or film laminate, the edges of the wafers are cleaned, and the individual wafers are pre-formed if desired depending on the intended application.
  • an individual wafer Prior to the molding of an optical article, an individual wafer is then inserted or placed within a mold forming a side of a mold cavity.
  • the wafer may, but need not necessarily be held into place within the mold by a friction fit within the mold.
  • the mold cavity is then closed and a molten optical substrate, for example a polycarbonate resin, is injected into the closed mold cavity.
  • the mold cavity is cooled, the cavity opened and the molded optical article is removed.
  • the wafer may form a front or back surface of the optical article or may be embedded within an interior of the optical article.
  • FIG. 8 shows an optical article in the form of a single focal lens molded with a wafer 30 or 40 according to the present invention.
  • hexagonal-shaped wafers according to the present invention are advantageous over conventional, circular wafers in several regards.
  • hexagonal-shaped wafers according to the present invention allow for film or film laminate sheet cutting patterns that result in significantly less production of weed or wasted, unused film or film laminate sheet area.
  • the advantage of this optimization are realized most significantly in the reduced waste of functional laminate components such as tinting dyes, photochromic dyes, and polarization layers.
  • the hexagonal-shaped wafers of the present invention further advantageously provide for the continued utilization of edge cleaning techniques already in practice. Accordingly, employing the hexagonal-shaped wafers of the present invention does not necessitate development of new edge cleaning techniques.
  • the hexagonal-shaped wafers of the present invention also advantageously provide for the continued utilization of robotic handling of the inventive wafers during utilization in the lens manufacturing process.
  • the hexagonal-shaped wafers of the present invention advantageously decrease the occurrence of wafer folding during the process of pre-forming curved wafers.
  • the hexagonal shape of the wafers of the present invention does not experience the same distortion and/or material stress during formation of a curved wafer from an initially flat wafer as exhibited when employing conventional circular wafers.
  • Employing the hexagonal-shaped wafers of the present invention thereby decreases the occurrence of the wafer fold observed in higher base curve lenses formed from circular wafers. Accordingly, less product is wasted due to poor or unacceptable lens quality and production costs are thereby decreased.
  • cutting the inventive hexagonal-shaped wafers to the size of the mold cavity of the lens in which the wafer will be employed allows for a friction fit or placement of the wafer within the mold.
  • the number of contact points of the inventive hexagonal-shaped wafers within the mold is advantageously reduced relative to a conventional round wafer which reduces the particulates generated and results in a higher yield of acceptable lenses.
  • inventive hexagonal-shaped wafers advantageously allow for the wafer to be more sealed within a lens blank thereby reducing the chance of contamination from film or film laminate bleeding. This may be especially beneficial with lenses that will be coated as it may result in reduced particulates in coating. Additionally, the edge of the resulting lens is smoother due to lack of bleeding, for example polymer bleeding, along the edge of the wafer and lens. Accordingly, lens forming cavities may be maintained cleaner thereby leading to fewer defects and reduced coater defects.
  • hexagonal-shaped wafers of the present invention may be less susceptible to film oil which effects where air bubbled may form and be trapped around the wafer; a common defect seen in low base lenses.
  • the present wafers also more easily facilitate recognition of an undesirable wafer drop or deflection and the presence of a wafer in an unfinished lens.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Forests & Forestry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Packaging Frangible Articles (AREA)
  • Eyeglasses (AREA)

Abstract

A cut pattern for a film or film laminate used in the fabrication of optical articles such as lenses.

Description

    RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional Application Ser. No. 61/937,428 filed Feb. 7, 2014, entitled Cut Pattern For Film, which is hereby incorporated herein by reference in its entirety.
  • FIELD OF THE INVENTION
  • The present invention is directed toward optical films and film laminates and, more particularly, to the preparation of films and film laminates for use in producing optical articles such as lenses.
  • BACKGROUND OF THE INVENTION
  • Films and film laminates are employed to manufacture optical lenses, for example ophthalmic lenses and sun glass lenses, to impart optically functional characteristics to the lenses. The optical functional characteristics imparted may include photochromic properties, polarizing properties, antireflective properties, hard or protective properties, hydrophobic or hydrophilic properties, and/or various tinting or coloration properties.
  • Conventionally, when films or film laminates are employed during the formation of circular lenses or lens blanks, for example through injection molding and casting techniques, circular forms of a film or film laminate are cut from flat sheets of film or film laminate. Once cut, the individual cut forms of the film or film laminate are referred to as wafers. The diameter of the circular wafer is determined based upon the size of the lens blank being formed, the type of lens being formed, and certain properties of the equipment in which the lenses are to be formed.
  • The film or film laminate from which the wafers are cut is typically provided in a flat sheet. For example, a square pattern of circular wafers may be cut from a rectangular sheet of film or film laminate using a cutting plate. FIGS. 1 and 2 show examples of a conventional, film or film laminate sheet cut pattern 2 for the formation of circular wafers of different diameters, for example of circular wafers having a diameter of 86 and 76 millimeters, respectively.
  • In order to minimize imperfections resulting from the cutting of the sheet, a space, for example 0.03125 inches, is maintained between each adjacent wafer cut from the sheet. The area of the film or film laminate sheet remaining after the wafers have been cut is referred to as “weed.” In certain configurations, one disadvantage of the above-described conventional method for forming wafers is that the weed can amount to as much as 30 percent of the area of the original uncut film or film laminate sheet. Hence, in view of the substantial costs associated with acquiring certain optically functional films and film laminates, significant cost saving could be realized if techniques for reducing the weed were achieved.
  • In many cases, prior to employing a flat, circular wafer in the formation of a lens, the flat, circular wafer is per-formed or manipulated into a curved or cup-like shape that is similar to the curvature of a front surface of the lens to be formed. The wafer can be formed into this curved shape by various techniques such as the application of vacuum and heat. The distortion of the flat, circular shaped wafer in to a curved, circular wafer often leads to a radial fold formed in the film or film laminate of the wafer. The fold occurs in order to accommodate the distortion and/or material stress of the initially flat wafer. This fold can be visible in higher base curve lenses thus leading to product waste due to poor or unacceptable quality lens. Hence, in view of the substantial costs associated with forming high quality lenses, significant cost savings could be realized if techniques for reducing this fold in the curved wafer were achieved.
  • OBJECTS AND SUMMARY OF THE INVENTION
  • The present invention improves efficiency and quality of forming film and film laminate wafers for use in the fabrication of optical articles such as single and multifocal lenses. These improvements are achieved, in part, by providing a cut pattern for the formation of film wafers for making optical articles comprising a plurality of individual wafer templates each having six sides of equal length and a series of rows and columns in which the plurality of individual wafers are arranged such that each of the six sides of an individual wafer template of said plurality of individual wafer templates is adjacent and parallel to a side of a different wafer template of said plurality of individual wafer templates.
  • In certain other embodiments, these improvements are achieved by providing a wafer for use in the formation of a circular optical article comprising six sides of equal length and a maximum dimension that is approximately equal to a maximum dimension of the circular optical article in which the wafer will be employed.
  • In certain other embodiments, these improvements are achieved by a method for forming film wafers for use in the formation of optical articles comprising: forming a single wafer template having six straight sides of equal length, an intersection of each pair of adjacent sides of said six straight sides forming a curve; duplicating the wafer template in a series of rows and columns; arranging the rows and columns of the duplicated wafer templates such that each sides of a first wafer template is adjacent and parallel to a side of a different wafer template; and using said arrangement of rows and columns of the duplicated wafer templates to cut a plurality of individual wafers from a sheet of film.
  • In certain other embodiments, these improvements are achieved by a method for forming an injection molded lens comprising: placing a hexagonal-shaped film wafer within a mold forming a portion of a lens mold cavity; closing the mold cavity; injecting a molten resin in the closed mold cavity; and removing the lens from the mold cavity.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other aspects, features and advantages of which embodiments of the invention are capable of will be apparent and elucidated from the following description of embodiments of the present invention, reference being made to the accompanying drawings, in which
  • FIG. 1 is a view of an example of a conventional film or film laminate sheet cut pattern.
  • FIG. 2 is a view of an example of a conventional film or film laminate sheet cut pattern.
  • FIG. 3 is a view of a cut pattern according to one embodiment of the present invention.
  • FIG. 4A is a view of a cut pattern according to one embodiment of the present invention.
  • FIG. 4B is a plan view of a wafer template or wafer according to one embodiment of the present invention.
  • FIG. 4C is a magnified view of portion “C” of FIG. 4A of a cut pattern according to one embodiment of the present invention.
  • FIG. 5A is a view of a cut pattern according to one embodiment of the present invention.
  • FIG. 5B is a plan view of a wafer template or wafer according to one embodiment of the present invention.
  • FIG. 5C is a magnified view of portion “C” of FIG. 5A of a cut pattern according to one embodiment of the present invention.
  • FIG. 6A is a view of a cut pattern according to one embodiment of the present invention.
  • FIG. 6B is a plan view of a wafer template or wafer according to one embodiment of the present invention.
  • FIG. 6C is a magnified view of portion “C” of FIG. 6A of a cut pattern according to one embodiment of the present invention.
  • FIG. 6D is a partial view of a cut pattern according to one embodiment of the present invention.
  • FIG. 7 is an image of a hexagonal-shaped wafer according to the present invention resting on top of a conventional, round wafer.
  • FIG. 8 is an image of a lens employing a hexagonal-shaped wafer according to the present invention
  • DESCRIPTION OF EMBODIMENTS
  • Specific embodiments of the invention will now be described with reference to the accompanying drawings. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. The terminology used in the detailed description of the embodiments illustrated in the accompanying drawings is not intended to be limiting of the invention. In the drawings, like numbers refer to like elements.
  • The film or film laminate cut pattern of the present invention effectively reduces weed resulting from the original film or film laminate sheet while also effectively reducing the occurrence of a fold in the subsequently pre-formed, curved wafer. Generally speaking, these objectives are achieved by employing a film or film laminate sheet cut pattern that results in wafers having a regular hexagon, i.e. having a shape with six equal angles and with six sides of equal length, a hexagonal-shape, or a hexagonal-like shape. These objectives are further achieved by employing a film or film laminate sheet cut pattern that results in hexagonal-shaped wafers having curved or rounded corners.
  • FIG. 3 shows a hexagonal wafer cut pattern 10 according to the present invention. The cut pattern 10 is designed for use in the formation of circular lenses having, for example, a diameter of 86 millimeters. The sides 14 of the hexagonal wafers 12 are, for example approximately 44 millimeters. The percent of weed resulting from this cut pattern is approximately five percent.
  • In practice, the use of perfect or regular hexagonal wafers can be problematic for two reasons. First, in practice, after a wafer has been cut, the edges of the wafer must be cleaned of lint and other debris. Conventional wafer cleaning processes are hampered by the presence of the relatively sharp corners on a wafer formed in the shape of a perfect hexagon. However, improper edge cleaning can result in the persistence of debris on the edges of the wafer. The presence of such debris can, in turn, result in a higher percent of lenses having cosmetic failures due to the incorporation of imperfections in the lens.
  • Second, in the case of at least injection molded lenses, placement of the conventional circular wafers into the injection mold cavity is conducted by robot. The wafer is held in place by applying vacuum behind the wafer at specific points near the periphery of the circular wafer. Such wafer vacuum points are compromised or otherwise not present in a wafer having a perfect hexagonal shape.
  • In order to overcome both of these deficiencies of employing a wafer having a perfect hexagonal shape, in certain embodiments of the present invention, the otherwise perfect hexagonal shape of the wafer is altered by trimming or otherwise rounding the corners formed at the intersections of the straight sides of the hexagon and by enlarging the otherwise perfect hexagon so as to have a diameter or largest dimension approximately equal to that of the diameter of the lens in which the wafer will be employed.
  • FIG. 4A shows a hexagonal-shaped wafer cut pattern 20 according to the present invention in which the corners of the otherwise perfect hexagons are trimmed at a diagonal 26 to form wafers 22. FIG. 4B is a magnified view of a single wafer 22 having a dimension 25 between opposite sides 24 of approximately 78 millimeters and a dimension 27 between opposite diagonals 26 of approximately 85.1 millimeters. FIG. 4C shows a magnified view of a portion “C” of FIG. 4A. As shown in FIG. 4C, diagonals 26 have a dimension 23 of approximately 8.6 millimeters, and sides 24 have a dimension 21 of approximately 35.1 millimeters.
  • Also shown in FIG. 4C, is the feature of the sides 24 of adjacent wafers 22 being “shared.” Alternatively stated, the adjacent sides 24 of adjacent wafers 22 are not spaced apart or gapped and are formed by a single cut in the film or laminate film sheet.
  • FIG. 5A shows a hexagonal-shaped wafer cut pattern 30 according to the present invention in which the corners of the otherwise perfect hexagons are trimmed so as to form curves 36 spanning between two adjacent sides 34 of the wafers 32. FIG. 5B is a magnified view of a single wafer 32 having a dimension 35 between opposite sides 34 of approximately 78 millimeters.
  • The shape or radius of the curves 36 is determined by best fitting the wafer 32 within a circle 37 having a diameter 38 of 85.55 millimeters. The circle 37 and diameter 38 are representative of a lens to be molded with the wafer 32. In other words, in the present embodiment, the curvature of the curves 36 of the wafer 32 is determined based upon a curvature of a circular lens of a desired diameter to which the wafer 32 will be molded. FIG. 5C is a magnified view of a portion “C” of FIG. 5A. As shown in FIG. 5C, sides 34 of wafer 32 have a dimension 31 of approximately 30.54 millimeters.
  • Also shown in FIG. 5C, is the feature of the sides 34 of adjacent wafers 32 being “shared.” Alternatively stated, the adjacent sides 34 of adjacent wafers 32 are not spaced apart or gapped and are formed by a single cut in the film or laminate film sheet.
  • FIG. 6A shows a hexagonal-shaped wafer cut pattern 40 according to the present invention in which the corners of the otherwise perfect hexagons are trimmed so as to form curves 46 spanning between two adjacent sides 44 of the wafers 42. The wafer cut pattern 40 employs first gaps or spaces 51 and second gaps or spaces 52 between the sides 44 of the individual different wafers. While such first spaces 51 and second spaces 52 may result in increased weed, such a pattern may be desired in certain situations due to limitations in, for example, wafer cutting mechanisms; limitations in available film or film laminate sheet sizes; and/or the film's or film laminate's physical properties.
  • FIG. 6B is a magnified view of a single wafer 42 having a dimension 45 between opposite sides 44 of approximately 78 millimeters. The shape or radius of the curves 46 is determined by best fitting the wafer 42 within a circle 47 having a diameter 38 of approximately 85.55 millimeters. The circle 47 and diameter 38 are representative of a lens to be molded with the wafer 42. In other words, in the present embodiment, the curvature or radius of the curves 46 of the wafer 42 is determined based upon a radius or curvature of a circular lens of a desired diameter to which the wafer 42 will be molded. FIG. 6C is a magnified view of a portion of area “C” of FIG. 6A. As shown in FIG. 6C, first spaces 51 and second spaces 52 may employ different dimensions. For example, as shown in FIGS. 6A and 6C, first spaces 51 may have a dimension of approximately 19 millimeters and second spaces 52 may have a dimension of approximately three sixteenths of an inch.
  • Alternatively, as shown in FIG. 6D, in certain embodiments of the present invention, spacing 51 and spacing 52 may have equal or approximately equal dimensions, for example 1.15 millimeters. The dimensions of the spacing 51 and the spacing 52 may, for example, be in the range of 0.4 millimeters to 30 millimeters, regardless of whether there is a differential between the dimensions of spacing 51 and spacing 52.
  • For the sake of clarity, each of hexagonal-shapes or wafers 12, 22, 32, 42 shown in FIGS. 3, 4A, 4B, 5A, 5B, 6A, and 6B may represent a template of an area from which an individual wafer has yet to be cut; a void left after an individual wafer has been removed from a portion of a film laminate sheet; or a cut wafer remaining after the surrounding unused portion of a film laminate sheet has been removed.
  • By way of comparison, FIG. 7 shows a wafer 30 or 40 according to the present invention resting upon or over a conventional, circular wafer. Both wafers are intended for use in the molding of circular lenses having the same diameter.
  • In operation, according to certain embodiments of the present invention, a template or shape for an individual film or film laminate wafer is formed depending on, for example the size of the optical article, for example a single or multifocal lens. A cut pattern is then formed by duplicating the wafer template and arranging the duplicated template wafers in columns and rows so as to achieve the desired balance between efficient use of the sheet of film or film laminate from which the wafers will be cut and wafer quality. The individual wafers are then cut from the sheet of film or film laminate, the edges of the wafers are cleaned, and the individual wafers are pre-formed if desired depending on the intended application.
  • Prior to the molding of an optical article, an individual wafer is then inserted or placed within a mold forming a side of a mold cavity. The wafer may, but need not necessarily be held into place within the mold by a friction fit within the mold. The mold cavity is then closed and a molten optical substrate, for example a polycarbonate resin, is injected into the closed mold cavity. The mold cavity is cooled, the cavity opened and the molded optical article is removed. Depending upon the exact placement of the wafer within the mold or mold cavity the wafer may form a front or back surface of the optical article or may be embedded within an interior of the optical article.
  • FIG. 8 shows an optical article in the form of a single focal lens molded with a wafer 30 or 40 according to the present invention.
  • The hexagonal-shaped wafers according to the present invention are advantageous over conventional, circular wafers in several regards. First, hexagonal-shaped wafers according to the present invention allow for film or film laminate sheet cutting patterns that result in significantly less production of weed or wasted, unused film or film laminate sheet area. The advantage of this optimization are realized most significantly in the reduced waste of functional laminate components such as tinting dyes, photochromic dyes, and polarization layers.
  • The hexagonal-shaped wafers of the present invention further advantageously provide for the continued utilization of edge cleaning techniques already in practice. Accordingly, employing the hexagonal-shaped wafers of the present invention does not necessitate development of new edge cleaning techniques.
  • The hexagonal-shaped wafers of the present invention also advantageously provide for the continued utilization of robotic handling of the inventive wafers during utilization in the lens manufacturing process.
  • The hexagonal-shaped wafers of the present invention advantageously decrease the occurrence of wafer folding during the process of pre-forming curved wafers. The hexagonal shape of the wafers of the present invention does not experience the same distortion and/or material stress during formation of a curved wafer from an initially flat wafer as exhibited when employing conventional circular wafers. Employing the hexagonal-shaped wafers of the present invention thereby decreases the occurrence of the wafer fold observed in higher base curve lenses formed from circular wafers. Accordingly, less product is wasted due to poor or unacceptable lens quality and production costs are thereby decreased.
  • In addition to the above advantages, according to certain embodiments of the present invention, cutting the inventive hexagonal-shaped wafers to the size of the mold cavity of the lens in which the wafer will be employed allows for a friction fit or placement of the wafer within the mold. Furthermore, the number of contact points of the inventive hexagonal-shaped wafers within the mold is advantageously reduced relative to a conventional round wafer which reduces the particulates generated and results in a higher yield of acceptable lenses.
  • Additionally, the inventive hexagonal-shaped wafers advantageously allow for the wafer to be more sealed within a lens blank thereby reducing the chance of contamination from film or film laminate bleeding. This may be especially beneficial with lenses that will be coated as it may result in reduced particulates in coating. Additionally, the edge of the resulting lens is smoother due to lack of bleeding, for example polymer bleeding, along the edge of the wafer and lens. Accordingly, lens forming cavities may be maintained cleaner thereby leading to fewer defects and reduced coater defects.
  • Furthermore, the hexagonal-shaped wafers of the present invention may be less susceptible to film oil which effects where air bubbled may form and be trapped around the wafer; a common defect seen in low base lenses. The present wafers also more easily facilitate recognition of an undesirable wafer drop or deflection and the presence of a wafer in an unfinished lens.
  • Although the invention has been described in terms of particular embodiments and applications, one of ordinary skill in the art, in light of this teaching, can generate additional embodiments and modifications without departing from the spirit of or exceeding the scope of the claimed invention. Accordingly, it is to be understood that the drawings and descriptions herein are proffered by way of example to facilitate comprehension of the invention and should not be construed to limit the scope thereof.

Claims (18)

What is claimed is:
1. A cut pattern for the formation of film wafers for making optical articles comprising:
a plurality of individual wafer templates each having six sides of equal length; and
a series of rows and columns in which the plurality of individual wafer templates are arranged such that each of the six sides of an individual wafer template of said plurality of individual wafer templates is adjacent and parallel to a side of a different wafer template of said plurality of individual wafer templates.
2. The cut pattern of claim 1 wherein each of the six sides of the individual wafer template of said plurality of individual wafer templates is shared with the side of the different wafer template of said plurality of individual wafer templates.
3. The cut pattern of claim 1 wherein each of the six sides of the individual wafer template of said plurality of individual wafer templates is spaced apart from the side of the different wafer template of said plurality of individual wafer templates.
4. The cut pattern of claim 1 wherein two of the six sides of the individual wafer template of said plurality of individual wafer templates are differentially spaced apart from the side of the different wafer template of said plurality of individual wafer templates.
5. The cut pattern of claim 1 wherein an intersection of a pair of sides of said six sides is curved.
6. The cut pattern of claim 5 wherein said curve has a same radius as a radius of a circular optical article in which a film wafer made from said plurality of individual wafer templates will be employed.
7. A wafer for use in the formation of a circular optical article comprising:
six sides of equal length; and
a maximum dimension that is approximately equal to a maximum dimension of the circular optical article in which the wafer will be employed.
8. The wafer of claim 7 wherein an intersection of a pair of sides of said six sides with one another is curved.
9. The wafer of claim 7 wherein intersection of a pair of said six sides with one another has a curved shape having a same radius as a radius of the optical article in which the wafer will be employed.
10. A method for forming film wafers for use in the formation of optical articles comprising:
forming a single wafer template having six straight sides of equal length, an intersection of each pair of adjacent sides of said six straight sides forming a curve;
duplicating the wafer template in a series of rows and columns;
arranging the rows and columns of the duplicated wafer templates such that each side of a first wafer template is adjacent and parallel to a side of a different wafer template; and
using said arrangement of rows and columns of the duplicated wafer templates to cut a plurality of individual wafers from a sheet of film.
11. The method of claim 10 wherein the step of forming a single wafer template having six straight sides of equal length, an intersection of each pair of adjacent sides of said six straight sides forming a curve comprises forming said curve with a same radius as a radius of a circular optical article in which one of said plurality of individual wafers will be employed.
12. The method of claim 10 wherein the step of arranging the rows and columns of the duplicated wafer templates such that each side of a first wafer template is adjacent and parallel to a side of a different wafer template comprises arranging the rows and columns of the duplicated wafer template such that each side of the first wafer template is shared with a side of a different wafer template.
13. The method of claim 10 wherein the step of arranging the rows and columns of the duplicated wafer templates such that each side of a first wafer template is adjacent and parallel to a side of a different wafer template comprises arranging the rows and columns of the duplicated wafer template such that each side of the first wafer template is spaced apart from a side of a different wafer template.
14. The method of claim 10 wherein the step of arranging the rows and columns of the duplicated wafer templates such that each side of a first wafer template is adjacent and parallel to a side of a different wafer template comprises arranging the rows and columns of the duplicated wafer templates such that a spacing between rows of the duplicated wafer templates is less than a spacing between columns of the duplicated wafer templates.
15. The method of claim 10 wherein the step of using said arrangement of rows and columns of the duplicated wafer templates to cut individual wafers from a sheet or film comprises cutting individual wafers from a sheet of film laminate.
16. A method for forming an injection molded lens comprising:
placing a hexagonal-shaped film wafer within a mold forming a portion of a lens mold cavity;
closing the mold cavity;
injecting a molten resin in the closed mold cavity; and
removing the lens from the mold cavity.
17. The method of claim 16 wherein the step of placing a hexagonal-shaped film wafer within a mold forming a portion of a lens mold cavity comprises placing a hexagonal-shaped wafer having curved corners within said mold.
18. The method of claim 16 wherein the step of placing a hexagonal-shaped film wafer within a mold forming a portion of a lens mold cavity comprises placing a hexagonal-shaped wafer having curved corners having a radius equal to the radius of an interior shape of said mold.
US14/616,606 2014-02-07 2015-02-06 Cut Pattern For Film Abandoned US20150226880A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/616,606 US20150226880A1 (en) 2014-02-07 2015-02-06 Cut Pattern For Film
US16/687,503 US11650353B2 (en) 2014-02-07 2019-11-18 Cut pattern for film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461937428P 2014-02-07 2014-02-07
US14/616,606 US20150226880A1 (en) 2014-02-07 2015-02-06 Cut Pattern For Film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/687,503 Division US11650353B2 (en) 2014-02-07 2019-11-18 Cut pattern for film

Publications (1)

Publication Number Publication Date
US20150226880A1 true US20150226880A1 (en) 2015-08-13

Family

ID=53774779

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/616,606 Abandoned US20150226880A1 (en) 2014-02-07 2015-02-06 Cut Pattern For Film
US16/687,503 Active 2037-03-17 US11650353B2 (en) 2014-02-07 2019-11-18 Cut pattern for film

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/687,503 Active 2037-03-17 US11650353B2 (en) 2014-02-07 2019-11-18 Cut pattern for film

Country Status (4)

Country Link
US (2) US20150226880A1 (en)
KR (1) KR20160118276A (en)
CN (2) CN114131971A (en)
WO (1) WO2015120338A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017106371A1 (en) * 2015-12-14 2017-06-22 Vision Ease, Lp Lens casting system
WO2017197185A1 (en) 2016-05-13 2017-11-16 Vision Ease, Lp Cast lens
US20190006197A1 (en) * 2017-07-03 2019-01-03 Boe Technology Group Co., Ltd. Wafer part and chip packaging method
US10486380B2 (en) * 2014-09-11 2019-11-26 Toshiba Kikai Kabushiki Kaisha Apparatus and method for producing light diffusing lens
US12017388B2 (en) 2021-01-22 2024-06-25 Hoya Optical Labs Of America, Inc. Lens casting system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015120338A1 (en) 2014-02-07 2015-08-13 Insight Equity A.P.X., L.P. (Dba Vision-Ease Lens) Cut pattern for film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060157191A1 (en) * 2005-01-14 2006-07-20 Naoyuki Matsuo Manufacturing method of laser processed parts and adhesive sheet for laser processing
US20080182069A1 (en) * 2006-11-20 2008-07-31 Lintec Corporation Luminescent sheet and method of producing the same
US20090308033A1 (en) * 2008-06-12 2009-12-17 International Business Machines Corporation Modified hexagonal perforated pattern
US20100130246A1 (en) * 2004-08-10 2010-05-27 Schott Ag Method and Apparatus for Producing Hybrid Lenses
US20120327524A1 (en) * 2011-06-27 2012-12-27 Norimichi Shigemitsu Image pickup lens, lens array, method for producing image pickup lens, and image pickup module
JP2013068872A (en) * 2011-09-26 2013-04-18 Goyo Paper Working Co Ltd Lens sheet and el light-emitting device
US20130314798A1 (en) * 2012-05-23 2013-11-28 Canon Kabushiki Kaisha Plastic optical element and method of manufacturing the same
US20140205801A1 (en) * 2013-01-23 2014-07-24 Dexerials Corporation Hydrophilic laminate and method for manufacturing the same, antifouling laminate, product and method for manufacturing the same, and antifouling method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094127A (en) * 1999-09-20 2001-04-06 Shin Etsu Chem Co Ltd Substrate for solar cell, the solar cell, solar cell module and method for production thereof
US20040126587A1 (en) * 2002-07-31 2004-07-01 Alan Maki Polyurethane laminates for photochromic lenses
US7025458B2 (en) * 2002-08-07 2006-04-11 Vision-Ease Lens Process to mold a plastic optical article with integrated hard coating
JP2006003522A (en) * 2004-06-16 2006-01-05 Kuraray Co Ltd Microlens array and manufacturing method thereof
FR2897693B1 (en) * 2006-02-23 2008-11-21 Essilor Int POLARIZING OPTICAL ELEMENT COMPRISING A POLARIZER FILM AND METHOD OF FARBINATING SUCH A ELEMENT
FR2907922B1 (en) * 2006-10-30 2009-02-13 Essilor Int PROCESS FOR MANUFACTURING A SERIES OF OPHTHALMIC GLASSES AND FILM SHEET USED IN SUCH A METHOD.
JP2010039220A (en) * 2008-08-05 2010-02-18 Miyoshi Industrial Enterprise Inc Polarizing lens and method of manufacturing method therefor
FR2943427B1 (en) * 2009-03-17 2011-04-01 Essilor Int METHOD FOR CUTTING A PASTILLE TO BE APPLIED ON A CURVED SUBSTRATE
CN202142545U (en) * 2011-03-05 2012-02-08 常州天合光能有限公司 Solar-grade monocrystalline silicon chip
US8885272B2 (en) * 2011-05-03 2014-11-11 Omnivision Technologies, Inc. Flexible membrane and lens assembly and associated method of lens replication
WO2015120338A1 (en) 2014-02-07 2015-08-13 Insight Equity A.P.X., L.P. (Dba Vision-Ease Lens) Cut pattern for film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100130246A1 (en) * 2004-08-10 2010-05-27 Schott Ag Method and Apparatus for Producing Hybrid Lenses
US20060157191A1 (en) * 2005-01-14 2006-07-20 Naoyuki Matsuo Manufacturing method of laser processed parts and adhesive sheet for laser processing
US20080182069A1 (en) * 2006-11-20 2008-07-31 Lintec Corporation Luminescent sheet and method of producing the same
US20090308033A1 (en) * 2008-06-12 2009-12-17 International Business Machines Corporation Modified hexagonal perforated pattern
US20120327524A1 (en) * 2011-06-27 2012-12-27 Norimichi Shigemitsu Image pickup lens, lens array, method for producing image pickup lens, and image pickup module
JP2013068872A (en) * 2011-09-26 2013-04-18 Goyo Paper Working Co Ltd Lens sheet and el light-emitting device
US20130314798A1 (en) * 2012-05-23 2013-11-28 Canon Kabushiki Kaisha Plastic optical element and method of manufacturing the same
US20140205801A1 (en) * 2013-01-23 2014-07-24 Dexerials Corporation Hydrophilic laminate and method for manufacturing the same, antifouling laminate, product and method for manufacturing the same, and antifouling method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Definition of the term "Stamp" from the American Heritage Dictionary. Retrieved on 5 February 2017 *
Machine translation of JP 2013/068872 A, obtained from Industrial Property Digital Library of the JPO on 21 August 2017 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10486380B2 (en) * 2014-09-11 2019-11-26 Toshiba Kikai Kabushiki Kaisha Apparatus and method for producing light diffusing lens
WO2017106371A1 (en) * 2015-12-14 2017-06-22 Vision Ease, Lp Lens casting system
CN108602210A (en) * 2015-12-14 2018-09-28 视觉缓解公司 Casting lenses system
US10926434B2 (en) 2015-12-14 2021-02-23 Vision Ease, Lp Lens casting system
CN113618989A (en) * 2015-12-14 2021-11-09 视觉缓解公司 Lens casting system
WO2017197185A1 (en) 2016-05-13 2017-11-16 Vision Ease, Lp Cast lens
US20190006197A1 (en) * 2017-07-03 2019-01-03 Boe Technology Group Co., Ltd. Wafer part and chip packaging method
US12017388B2 (en) 2021-01-22 2024-06-25 Hoya Optical Labs Of America, Inc. Lens casting system

Also Published As

Publication number Publication date
US20200088910A1 (en) 2020-03-19
WO2015120338A1 (en) 2015-08-13
CN106461979A (en) 2017-02-22
CN114131971A (en) 2022-03-04
CN106461979B (en) 2021-12-21
US11650353B2 (en) 2023-05-16
KR20160118276A (en) 2016-10-11

Similar Documents

Publication Publication Date Title
US11650353B2 (en) Cut pattern for film
US11719956B2 (en) Ophthalmic lens with graded microlenses
US20100097568A1 (en) Optical lens base with protective film and process for producing optical lens base
JP2022533719A (en) Glass substrate cutting method and light guide plate manufacturing method
US20240075698A1 (en) Methods, apparatuses, and systems for edge sealing laminate wafers containing a soft deformable inner film
US20170235130A1 (en) Curved lens protector
US20220404643A1 (en) Stabilized Thin Lens
CN105278119A (en) Contact lenses and methods of making the same
US7407280B2 (en) Lens for sunglasses, method for producing the same, and production apparatus therefor
US7326373B2 (en) Method for forming a wafer for use in an optical part
US11878480B2 (en) Wafer holder band for mold injection process
JP2006047586A (en) Polarizing sheet for polarizing plastic lens with power, method for manufacturing the polarizing sheet, apparatus for manufacturing the polarizing sheet, and polarizing plastic lens with power
WO2021054903A3 (en) Method of producing microneedles
US20050062179A1 (en) Automated method for transferring lenses in a hydrated state from molds to receivers
CN205705533U (en) A kind of biaxial stretching BOPP protection film
US20210124187A1 (en) Back side fresnel ophthalmic lens with a limited transmittance of visible light
WO2017136521A1 (en) Curved lens protector
JP6856841B2 (en) Eyeglass lenses
ES2959431T3 (en) Curved lens formation procedure
CN115107267A (en) Production process of polarizing sunglasses visible toughened film
JPH0656437A (en) Forming of glass raw material for aspherical lens

Legal Events

Date Code Title Description
AS Assignment

Owner name: INSIGHT EQUITY A.P.X, LP (DBA VISION-EASE LENS), M

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BLACKER, RICHARD;KUNKEL, JAMES;OLUND, DAVID;REEL/FRAME:038103/0822

Effective date: 20150803

AS Assignment

Owner name: VISION EASE, LP, MINNESOTA

Free format text: CHANGE OF NAME;ASSIGNOR:INSIGHT EQUITY A.P. X, LP (DBA VISION-EASE LENS);REEL/FRAME:038275/0400

Effective date: 20141119

AS Assignment

Owner name: INSIGHT EQUITY A.P.X., LP (DBA VISION-EASE LENS),

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ANDERSEN, LANCE;REEL/FRAME:040874/0864

Effective date: 20170106

AS Assignment

Owner name: INSIGHT EQUITY A.P.X, LP (DBA VISION-EASE LENS), M

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY'S NAME PREVIOUSLY RECORDED AT REEL: 040874 FRAME: 0864. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:ANDERSEN, LANCE;REEL/FRAME:041300/0369

Effective date: 20170106

Owner name: INSIGHT EQUITY A.P.X, LP (DBA VISION-EASE LENS), M

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY'S PLACE OF BUSINESS ADDRESS IN THE ASSIGNMENT DOCUMENT PREVIOUSLY RECORDED ON REEL 038103 FRAME 0822. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:BLACKER, RICHARD;KUNKEL, JAMES;OLUND, DAVID;REEL/FRAME:041303/0562

Effective date: 20150803

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: HOYA OPTICAL LABS OF AMERICA, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VISION EASE, LP;REEL/FRAME:059825/0497

Effective date: 20220414