US20150223421A1 - Squash hybrid sv8575yl and parents thereof - Google Patents
Squash hybrid sv8575yl and parents thereof Download PDFInfo
- Publication number
- US20150223421A1 US20150223421A1 US14/179,520 US201414179520A US2015223421A1 US 20150223421 A1 US20150223421 A1 US 20150223421A1 US 201414179520 A US201414179520 A US 201414179520A US 2015223421 A1 US2015223421 A1 US 2015223421A1
- Authority
- US
- United States
- Prior art keywords
- plant
- squash
- seed
- hybrid
- line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 240000001980 Cucurbita pepo Species 0.000 title claims abstract description 153
- 235000009854 Cucurbita moschata Nutrition 0.000 title claims abstract description 85
- 235000009852 Cucurbita pepo Nutrition 0.000 title claims abstract description 85
- 235000020354 squash Nutrition 0.000 title claims abstract description 85
- 241000196324 Embryophyta Species 0.000 claims abstract description 200
- 235000013399 edible fruits Nutrition 0.000 claims abstract description 77
- 238000000034 method Methods 0.000 claims abstract description 71
- 210000004027 cell Anatomy 0.000 claims description 47
- 210000001519 tissue Anatomy 0.000 claims description 21
- 230000000877 morphologic effect Effects 0.000 claims description 19
- 241000238631 Hexapoda Species 0.000 claims description 9
- 108700019146 Transgenes Proteins 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 210000000349 chromosome Anatomy 0.000 claims description 7
- 210000002257 embryonic structure Anatomy 0.000 claims description 7
- 230000002363 herbicidal effect Effects 0.000 claims description 6
- 239000004009 herbicide Substances 0.000 claims description 6
- 208000035240 Disease Resistance Diseases 0.000 claims description 5
- 241000607479 Yersinia pestis Species 0.000 claims description 5
- 230000023852 carbohydrate metabolic process Effects 0.000 claims description 4
- 235000021256 carbohydrate metabolism Nutrition 0.000 claims description 4
- 210000001938 protoplast Anatomy 0.000 claims description 4
- 206010021929 Infertility male Diseases 0.000 claims description 3
- 208000007466 Male Infertility Diseases 0.000 claims description 3
- 230000006353 environmental stress Effects 0.000 claims description 3
- 230000004129 fatty acid metabolism Effects 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 108091005573 modified proteins Proteins 0.000 claims 2
- 102000035118 modified proteins Human genes 0.000 claims 2
- 230000022558 protein metabolic process Effects 0.000 claims 2
- 230000000644 propagated effect Effects 0.000 claims 1
- 230000001902 propagating effect Effects 0.000 claims 1
- 239000002609 medium Substances 0.000 description 62
- 108090000623 proteins and genes Proteins 0.000 description 45
- 230000002068 genetic effect Effects 0.000 description 36
- 241000219130 Cucurbita pepo subsp. pepo Species 0.000 description 28
- 235000003954 Cucurbita pepo var melopepo Nutrition 0.000 description 28
- 241001573881 Corolla Species 0.000 description 22
- 238000009395 breeding Methods 0.000 description 21
- 239000006071 cream Substances 0.000 description 20
- 230000001488 breeding effect Effects 0.000 description 19
- 108020004414 DNA Proteins 0.000 description 17
- 230000000306 recurrent effect Effects 0.000 description 17
- 230000009466 transformation Effects 0.000 description 14
- 230000014509 gene expression Effects 0.000 description 12
- 241000689227 Cora <basidiomycete fungus> Species 0.000 description 11
- 238000011161 development Methods 0.000 description 11
- 230000018109 developmental process Effects 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 241000589158 Agrobacterium Species 0.000 description 9
- 108700028369 Alleles Proteins 0.000 description 9
- 230000000295 complement effect Effects 0.000 description 9
- 230000001788 irregular Effects 0.000 description 7
- 239000003550 marker Substances 0.000 description 7
- 230000001404 mediated effect Effects 0.000 description 7
- 239000013598 vector Substances 0.000 description 7
- 235000013311 vegetables Nutrition 0.000 description 7
- 241000283690 Bos taurus Species 0.000 description 6
- 241000112790 Carlotta Species 0.000 description 6
- 230000008635 plant growth Effects 0.000 description 6
- 102000054765 polymorphisms of proteins Human genes 0.000 description 6
- 231100000241 scar Toxicity 0.000 description 6
- 241000894007 species Species 0.000 description 6
- 241000723854 Zucchini yellow mosaic virus Species 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 241000701489 Cauliflower mosaic virus Species 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- 241001354471 Pseudobahia Species 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 238000003306 harvesting Methods 0.000 description 4
- 108020004707 nucleic acids Proteins 0.000 description 4
- 102000039446 nucleic acids Human genes 0.000 description 4
- 150000007523 nucleic acids Chemical class 0.000 description 4
- 235000016709 nutrition Nutrition 0.000 description 4
- 210000001672 ovary Anatomy 0.000 description 4
- 238000003976 plant breeding Methods 0.000 description 4
- 230000010152 pollination Effects 0.000 description 4
- OANVFVBYPNXRLD-UHFFFAOYSA-M propyromazine bromide Chemical compound [Br-].C12=CC=CC=C2SC2=CC=CC=C2N1C(=O)C(C)[N+]1(C)CCCC1 OANVFVBYPNXRLD-UHFFFAOYSA-M 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 241000857945 Anita Species 0.000 description 3
- 239000005562 Glyphosate Substances 0.000 description 3
- 241000237509 Patinopecten sp. Species 0.000 description 3
- 108700001094 Plant Genes Proteins 0.000 description 3
- 241000702479 Squash leaf curl virus Species 0.000 description 3
- 241001310178 Watermelon mosaic virus Species 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 3
- 238000004520 electroporation Methods 0.000 description 3
- 239000000796 flavoring agent Substances 0.000 description 3
- 235000019634 flavors Nutrition 0.000 description 3
- 239000010437 gem Substances 0.000 description 3
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 description 3
- 229940097068 glyphosate Drugs 0.000 description 3
- 239000002932 luster Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 210000005059 placental tissue Anatomy 0.000 description 3
- 235000020637 scallop Nutrition 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- JLIDBLDQVAYHNE-YKALOCIXSA-N (+)-Abscisic acid Chemical compound OC(=O)/C=C(/C)\C=C\[C@@]1(O)C(C)=CC(=O)CC1(C)C JLIDBLDQVAYHNE-YKALOCIXSA-N 0.000 description 2
- IAKHMKGGTNLKSZ-INIZCTEOSA-N (S)-colchicine Chemical compound C1([C@@H](NC(C)=O)CC2)=CC(=O)C(OC)=CC=C1C1=C2C=C(OC)C(OC)=C1OC IAKHMKGGTNLKSZ-INIZCTEOSA-N 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- 108090000994 Catalytic RNA Proteins 0.000 description 2
- 102000053642 Catalytic RNA Human genes 0.000 description 2
- 241000037488 Coccoloba pubescens Species 0.000 description 2
- 235000009804 Cucurbita pepo subsp pepo Nutrition 0.000 description 2
- 230000004544 DNA amplification Effects 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 241000701484 Figwort mosaic virus Species 0.000 description 2
- 244000303847 Lagenaria vulgaris Species 0.000 description 2
- 235000009797 Lagenaria vulgaris Nutrition 0.000 description 2
- 241000723990 Papaya ringspot virus Species 0.000 description 2
- 235000014443 Pyrus communis Nutrition 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 235000009508 confectionery Nutrition 0.000 description 2
- 230000010154 cross-pollination Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 238000009399 inbreeding Methods 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 239000011022 opal Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000037039 plant physiology Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 108091092562 ribozyme Proteins 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 230000010153 self-pollination Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- GEWDNTWNSAZUDX-WQMVXFAESA-N (-)-methyl jasmonate Chemical compound CC\C=C/C[C@@H]1[C@@H](CC(=O)OC)CCC1=O GEWDNTWNSAZUDX-WQMVXFAESA-N 0.000 description 1
- 241001167018 Aroa Species 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 241000193388 Bacillus thuringiensis Species 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 241000282994 Cervidae Species 0.000 description 1
- 241000701515 Commelina yellow mottle virus Species 0.000 description 1
- 108010066133 D-octopine dehydrogenase Proteins 0.000 description 1
- 101150111720 EPSPS gene Proteins 0.000 description 1
- 101100491986 Emericella nidulans (strain FGSC A4 / ATCC 38163 / CBS 112.46 / NRRL 194 / M139) aromA gene Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 108091029865 Exogenous DNA Proteins 0.000 description 1
- 108030006517 Glyphosate oxidoreductases Proteins 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- 108010044467 Isoenzymes Proteins 0.000 description 1
- 241000209510 Liliopsida Species 0.000 description 1
- 208000031888 Mycoses Diseases 0.000 description 1
- 206010034133 Pathogen resistance Diseases 0.000 description 1
- 108010029182 Pectin lyase Proteins 0.000 description 1
- 108020005120 Plant DNA Proteins 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 241000724803 Sugarcane bacilliform virus Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 206010048245 Yellow skin Diseases 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000009418 agronomic effect Effects 0.000 description 1
- -1 and preferably Chemical compound 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 101150037081 aroA gene Proteins 0.000 description 1
- 229940097012 bacillus thuringiensis Drugs 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 229930002868 chlorophyll a Natural products 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 229930002869 chlorophyll b Natural products 0.000 description 1
- NSMUHPMZFPKNMZ-VBYMZDBQSA-M chlorophyll b Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C=O)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 NSMUHPMZFPKNMZ-VBYMZDBQSA-M 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 229960001338 colchicine Drugs 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- FCRACOPGPMPSHN-UHFFFAOYSA-N desoxyabscisic acid Natural products OC(=O)C=C(C)C=CC1C(C)=CC(=O)CC1(C)C FCRACOPGPMPSHN-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 210000001840 diploid cell Anatomy 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000000408 embryogenic effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 230000003054 hormonal effect Effects 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 210000004754 hybrid cell Anatomy 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- GEWDNTWNSAZUDX-UHFFFAOYSA-N methyl 7-epi-jasmonate Natural products CCC=CCC1C(CC(=O)OC)CCC1=O GEWDNTWNSAZUDX-UHFFFAOYSA-N 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 108010058731 nopaline synthase Proteins 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 230000032361 posttranscriptional gene silencing Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 230000007226 seed germination Effects 0.000 description 1
- 210000004999 sex organ Anatomy 0.000 description 1
- 239000002884 skin cream Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000004114 suspension culture Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H5/00—Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
- A01H5/08—Fruits
-
- A01G1/001—
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H1/00—Processes for modifying genotypes ; Plants characterised by associated natural traits
- A01H1/02—Methods or apparatus for hybridisation; Artificial pollination ; Fertility
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H6/00—Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
- A01H6/34—Cucurbitaceae, e.g. bitter melon, cucumber or watermelon
- A01H6/348—Cucurbita, e.g. squash or pumpkin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/8245—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/8247—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/8251—Amino acid content, e.g. synthetic storage proteins, altering amino acid biosynthesis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8274—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8286—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8287—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
- C12N15/8289—Male sterility
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/04—Plant cells or tissues
Definitions
- the present invention relates to the field of plant breeding and, more specifically, to the development of squash hybrid SV8575YL and the inbred squash lines ZGN-EH-08-195 and LEB-48-4100.
- the goal of vegetable breeding is to combine various desirable traits in a single variety/hybrid.
- Such desirable traits may include any trait deemed beneficial by a grower and/or consumer, including greater yield, resistance to insects or disease, tolerance to environmental stress, and nutritional value.
- Breeding techniques take advantage of a plant's method of pollination. There are two general methods of pollination: a plant self-pollinates if pollen from one flower is transferred to the same or another flower of the same plant or plant variety. A plant cross-pollinates if pollen comes to it from a flower of a different plant variety.
- Plants that have been self-pollinated and selected for type over many generations become homozygous at almost all gene loci and produce a uniform population of true breeding progeny, a homozygous plant.
- a cross between two such homozygous plants of different genotypes produces a uniform population of hybrid plants that are heterozygous for many gene loci.
- a cross of two plants each heterozygous at a number of loci produces a population of hybrid plants that differ genetically and are not uniform. The resulting non-uniformity makes performance unpredictable.
- Pedigree breeding and recurrent selection are examples of breeding methods that have been used to develop inbred plants from breeding populations. Those breeding methods combine the genetic backgrounds from two or more plants or various other broad-based sources into breeding pools from which new lines and hybrids derived therefrom are developed by selfing and selection of desired phenotypes. The new lines and hybrids are evaluated to determine which of those have commercial potential.
- the present invention provides a squash plant of the hybrid designated SV8575YL, the squash line ZGN-EH-08-195 or squash LEB-48-4100. Also provided are squash plants having all the physiological and morphological characteristics of such a plant. Parts of these squash plants are also provided, for example, including pollen, an ovule, scion, a rootstock, a fruit, and a cell of the plant.
- a plant of squash hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100 comprising an added heritable trait.
- the heritable trait may comprise a genetic locus that is, for example, a dominant or recessive allele.
- a plant of squash hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100 is defined as comprising a single locus conversion.
- an added genetic locus confers one or more traits such as, for example, herbicide tolerance, insect resistance, disease resistance, and modified carbohydrate metabolism.
- the trait may be conferred by a naturally occurring gene introduced into the genome of a line by backcrossing, a natural or induced mutation, or a transgene introduced through genetic transformation techniques into the plant or a progenitor of any previous generation thereof.
- a genetic locus may comprise one or more genes integrated at a single chromosomal location.
- the invention also concerns the seed of squash hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100.
- the squash seed of the invention may be provided as an essentially homogeneous population of squash seed of squash hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100. Essentially homogeneous populations of seed are generally free from substantial numbers of other seed. Therefore, seed of hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100 may be defined as forming at least about 97% of the total seed, including at least about 98%, 99% or more of the seed.
- the seed population may be separately grown to provide an essentially homogeneous population of squash plants designated SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100.
- tissue culture of regenerable cells of a squash plant of hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100 is provided.
- the tissue culture will preferably be capable of regenerating squash plants capable of expressing all of the physiological and morphological characteristics of the starting plant, and of regenerating plants having substantially the same genotype as the starting plant.
- Examples of some of the physiological and morphological characteristics of the hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100 include those traits set forth in the tables herein.
- regenerable cells in such tissue cultures may be derived, for example, from embryos, meristems, cotyledons, pollen, leaves, anthers, roots, root tips, pistils, flowers, seed and stalks. Still further, the present invention provides squash plants regenerated from a tissue culture of the invention, the plants having all the physiological and morphological characteristics of hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100.
- processes for producing squash seeds, plants and fruit, which processes generally comprise crossing a first parent squash plant with a second parent squash plant, wherein at least one of the first or second parent squash plants is a plant of squash line ZGN-EH-08-195 or squash LEB-48-4100.
- These processes may be further exemplified as processes for preparing hybrid squash seed or plants, wherein a first squash plant is crossed with a second squash plant of a different, distinct genotype to provide a hybrid that has, as one of its parents, a plant of squash line ZGN-EH-08-195 or squash LEB-48-4100. In these processes, crossing will result in the production of seed. The seed production occurs regardless of whether the seed is collected or not.
- the first step in “crossing” comprises planting seeds of a first and second parent squash plant, often in proximity so that pollination will occur for example, mediated by insect vectors. Alternatively, pollen can be transferred manually. Where the plant is self-pollinated, pollination may occur without the need for direct human intervention other than plant cultivation.
- a second step may comprise cultivating or growing the seeds of first and second parent squash plants into plants that bear flowers.
- a third step may comprise preventing self-pollination of the plants, such as by emasculating the flowers (i.e., killing or removing the pollen).
- a fourth step for a hybrid cross may comprise cross-pollination between the first and second parent squash plants. Yet another step comprises harvesting the seeds from at least one of the parent squash plants. The harvested seed can be grown to produce a squash plant or hybrid squash plant.
- the present invention also provides the squash seeds and plants produced by a process that comprises crossing a first parent squash plant with a second parent squash plant, wherein at least one of the first or second parent squash plants is a plant of squash hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100.
- squash seed and plants produced by the process are first generation (F 1 ) hybrid squash seed and plants produced by crossing a plant in accordance with the invention with another, distinct plant.
- the present invention further contemplates plant parts of such an F 1 hybrid squash plant, and methods of use thereof. Therefore, certain exemplary embodiments of the invention provide an F 1 hybrid squash plant and seed thereof.
- the present invention provides a method of producing a plant derived from hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100, the method comprising the steps of: (a) preparing a progeny plant derived from hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100, wherein said preparing comprises crossing a plant of the hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100 with a second plant; and (b) crossing the progeny plant with itself or a second plant to produce a seed of a progeny plant of a subsequent generation.
- the method may additionally comprise: (c) growing a progeny plant of a subsequent generation from said seed of a progeny plant of a subsequent generation and crossing the progeny plant of a subsequent generation with itself or a second plant; and repeating the steps for an additional 3-10 generations to produce a plant derived from hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100.
- the plant derived from hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100 may be an inbred line, and the aforementioned repeated crossing steps may be defined as comprising sufficient inbreeding to produce the inbred line.
- step (c) it may be desirable to select particular plants resulting from step (c) for continued crossing according to steps (b) and (c).
- plants having one or more desirable traits By selecting plants having one or more desirable traits, a plant derived from hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100 is obtained which possesses some of the desirable traits of the line/hybrid as well as potentially other selected traits.
- the present invention provides a method of producing food or feed comprising: (a) obtaining a plant of squash hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100, wherein the plant has been cultivated to maturity, and (b) collecting at least one squash from the plant.
- the genetic complement of squash hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100 is provided.
- the phrase “genetic complement” is used to refer to the aggregate of nucleotide sequences, the expression of which sequences defines the phenotype of, in the present case, a squash plant, or a cell or tissue of that plant.
- a genetic complement thus represents the genetic makeup of a cell, tissue or plant
- a hybrid genetic complement represents the genetic make up of a hybrid cell, tissue or plant.
- the invention thus provides squash plant cells that have a genetic complement in accordance with the squash plant cells disclosed herein, and seeds and plants containing such cells.
- Plant genetic complements may be assessed by genetic marker profiles, and by the expression of phenotypic traits that are characteristic of the expression of the genetic complement, e.g., isozyme typing profiles. It is understood that hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100 could be identified by any of the many well known techniques such as, for example, Simple Sequence Length Polymorphisms (SSLPs) (Williams et al., Nucleic Acids Res., 1 8:6531-6535, 1990), Randomly Amplified Polymorphic DNAs (RAPDs), DNA Amplification Fingerprinting (DAF), Sequence Characterized Amplified Regions (SCARs), Arbitrary Primed Polymerase Chain Reaction (AP-PCR), Amplified Fragment Length Polymorphisms (AFLPs) (EP 534 858, specifically incorporated herein by reference in its entirety), and Single Nucleotide Polymorphisms (SNPs)
- the present invention provides hybrid genetic complements, as represented by squash plant cells, tissues, plants, and seeds, formed by the combination of a haploid genetic complement of a squash plant of the invention with a haploid genetic complement of a second squash plant, preferably, another, distinct squash plant.
- the present invention provides a squash plant regenerated from a tissue culture that comprises a hybrid genetic complement of this invention.
- any method that “comprises,” “has” or “includes” one or more steps is not limited to possessing only those one or more steps and also covers other unlisted steps.
- any plant that “comprises,” “has” or “includes” one or more traits is not limited to possessing only those one or more traits and covers other unlisted traits.
- FIG. 1 A graphical representation of yield—Egypt Early Spring Trial 24 harvests 4th of December 2010 Planting—Kg/Plant
- FIG. 2 A graphical representation of yield—Egypt Summer 2011 Trial Kg/Plant 5th of April Planting.
- the invention provides methods and compositions relating to plants, seeds and derivatives of squash hybrid SV8575YL, squash line ZGN-EH-08-195 and squash LEB-48-4100.
- Squash hybrid SV8575YL also known as RX 13078575 and SVR 13078575
- the hybrid was planted in late Year 1 in the Jordan Valley for comparison with other commercial and pre-commercial hybrids. Performance in this trial was good for yield, but poor for fruit shape and color. Subsequent trials in the Jordan Valley have been consistent with that observation. In Year 2 this hybrid was sown in the uplands region in Jordan in late spring, where performance in comparison to the market standard for this type, known as “Eskenderany”, was very good, under high pressure of ZYMV and SLCV. Subsequent trials in Woodland, Calif., Boztepe Turkey, and Yeniköy Turkey showed consistently high vigor, acceptable yield, and good performance under high pressure of viral diseases.
- hybrid SV8575YL The parents of hybrid SV8575YL are ZGN-EH-08-195 and LEB-48-4100. These parents were created as follows:
- Parent line LEB-48-4100 also known as “LEB 48-4100”, was disclosed and claimed in the patent for hybrid PS13056719 (PS 719) (U.S. Pat. No. 8,552,259).
- Line LEB-48-4100 was also disclosed in the patent application for hybrid SV8655YL (U.S. patent application Ser. No. 14/070,477).
- Parent line LEB 48-4100 was developed from a cross between LEB 46-20, a proprietary breeding line owned by Monsanto Vegetable Seeds, and “Anita”, a commercial squash variety. Selections from this cross were self pollinated for 6 generations, with selection for fruit shape and color and resistance to Zucchini Yellow Mosaic Virus (ZYMV) and Watermelon Mosaic Virus II (WMV-II).
- ZYMV Zucchini Yellow Mosaic Virus
- WMV-II Watermelon Mosaic Virus II
- ZGN-EH-08-195 was developed from a cross between two proprietary inbred breeding lines, known as ZGN-130-1020 and ZGN-130-1028. There are no other pre-commercial or commercial hybrids using ZGN-EH-08-195 or it's female parent line, ZGN-130-1020 at this time.
- ZGN-130-1020 is a vigorous, dark green colored green zucchini inbred line, and is deposited with ATCC for distribution.
- ZGN-130-1028 is an elite inbred line, which was previously disclosed in U.S. Patent Publication No. 2008/0313755A1, used as a parent of commercial hybrid “Dareen.” The F1 generation of the cross of ZGN-130-1020 and ZGN-130-1028 was self pollinated without observation.
- the F2 generation was inoculated with a cocktail including ZYMV, PRSV, and SLCV, and survivors were selected and self pollinated.
- seedlings were inoculated with a cocktail containing ZYMV, WMV, and PRSV, and the survivors were planted and observed, the most vigorous individuals with the darkest green fruit color were selected and self pollinated.
- seedlings were inoculated with SLCV, and only the most resistant individuals were selected and self pollinated.
- the F5 generation was sown and self pollinated without observation, and one individual plant (with the highest seed yield) was selected as the source of ZGN-EH-08-195.
- Several plants were selected and self pollinated in the F6 generation, which was observed to be phenotypically uniform, and the bulk of the self pollinated seed was used to establish the parent line ZGN-EH-08-195.
- the parent lines are uniform and stable, as is a hybrid produced therefrom. A small percentage of variants can occur within commercially acceptable limits for almost any characteristic during the course of repeated multiplication. However no variants are expected.
- a plant having the physiological and morphological characteristics of squash hybrid SV8575YL and the parent lines thereof. A description of the physiological and morphological characteristics of such plants is presented in Tables 1-3.
- Cotyledon length 47 mm 42.55 mm width 29.1 mm 28.55 mm apex tapered tapered veining plainly visible plainly visible color medium green medium green color (RHS Color Chart) 137A 137A Seedling shape of cotyledons elliptic (Cora, Tivoli) elliptic intensity of green color of medium (Cora) medium cotyledons cross section of straight (Sunburst) straight cotyledons 5. Mature Plant growth habit bush semi-bush plant type prickly pilose 6.
- Leaves blade shape reniform reniform blade form shallow lobed deep lobed margin dentate denticulate margin edges frilled frilled average width 35.15 cm 36.2 cm average length 28.55 cm 29.75 cm leaf surface blistered blistered dorsal surface pubescence soft hairy glabrous vental surface pubescence soft hairy glabrous color dark green dark green color (RHS Color Chart) 139A 147A leaf blotching blotched with gray blotched with gray leaf blade: size medium (Ambassador) large leaf blade: incisions shallow (Everest) medium leaf blade: intensity of dark (Everest) dark green color of upper surface leaf blade: silvery patches present (Civac) present leaf blade: relative area large (Cora) small covered by silvery patches average petiole length 32.75 cm 38.35 cm petiole length medium (Goldi) long petiole: number of few (Opaline) few prickles 8.
- Fruit market maturity average 17.05 cm 13.3 cm length market maturity: average 3.2 cm 3.1 cm width - stem end at market maturity: 2.6 cm 3 cm average width - blossom end market maturity: average 225.5 gm 236.5 gm weight market maturity: shape straightneck straightneck according to variety type market maturity: apex rounded flattened market maturity: base rounded rounded market maturity: ribs inconspicuous inconspicuous market maturity: rib shallow shallow furrow depth market maturity: rib wide narrow furrow width market maturity: fruit shallowly wavy smooth surface market maturity: warts none none market maturity: blossom raised acorn raised acom scar button young fruit: ratio length/ large (Carlotta) medium maximum diameter (zucchini type varieties) young fruit: general shape cylindrical (Ambassador, tapered elliptical (zucchini and rounded Ibis) zucchini type varieties) young fruit: main color of green (Elite, Opal, Romano) green skin (excluding color of ribs or grooves) young fruit: intensity of light (Arlika
- Seed Cavity average length 37.9 cm 25.5 cm average width 6.95 cm 8.7 cm location conforms to fruit shape conforms to fruit shape placental tissue abundant abundant center core inconspicuous inconspicuous 13.
- Fruit Stalks average length 2.4 cm 3.15 cm average diameter 2.25 cm 2.1 cm cross-section shape irregular irregular twisting not twisted not twisted tapering not tapered tapered straightness slightly curved straight texture hard soft furrows deep shallow surface rough spiny attachment end expanded expanded expanded detaches easily easily color light green medium green color (RHS Color Chart) 143A 143B 14.
- Leaves blade shape reniform reniform blade form deep lobed deep lobed margin dentate dentate margin edges flat frilled average width 37.45 cm 32.4 cm average length 32.25 cm 29.1 cm leaf surface blistered blistered dorsal surface pubescence glabrous soft hairy vental surface pubescence glabrous soft hairy color dark green dark green color (RHS Color Chart) 147A 139A leaf blotching blotched with gray blotched with gray leaf blade: size large (Kriti) small leaf blade: incisions deep (Everest) deep leaf blade: intensity of dark (Everest) dark green color of upper surface leaf blade: silvery patches present (Civac) present leaf blade: relative area medium (Ambassador) small covered by silvery patches average petiole length 40.05 cm 35.15 cm petiole length long (Autumn Gold, Baikal) long petiole: number of few (Opaline) few prickles 8.
- Fruit market maturity average 17.25 cm 19.05 cm length market maturity: average 3.4 cm 3.2 cm width - stem end at market maturity: 2.25 cm 1.8 cm average width - blossom end market maturity: average 217.2 gm 239 gm weight market maturity: shape straightneck straightneck according to variety type market maturity: apex rounded rounded market maturity: base rounded taper pointed market maturity: ribs inconspicuous prominent market maturity: rib medium deep shallow furrow depth market maturity: rib narrow narrow furrow width market maturity: fruit shallowly wavy smooth surface market maturity: warts none none market maturity: blossom raised acron raised acorn scar button young fruit: ratio length/ large (Carlotta) large maximum diameter (zucchini type varieties) young fruit: general shape cylindrical (Ambassador, cylindrical (zucchini and rounded Ibis) zucchini type varieties) young fruit: main color of green (Elite, Opal, Romano) green skin (excluding color of ribs or grooves) young fruit: intensity of dark (Arlesa, Sandra, Zefira)
- Seed Cavity average length 31.8 cm 28.85 cm average width 5.6 cm 5 cm location conforms to fruit shape conforms to fruit shape placental tissue abundant abundant center core inconspicuous inconspicuous 13.
- Fruit Stalks average length 1.7 cm 2.75 cm average diameter 2.15 cm 2.05 cm cross-section shape irregular irregular twisting not twisted twisted tapering tapered tapered straightness straight curved texture hard soft furrows deep deep surface rough rough attachment end expanded slightly expanded detaches with difficulty easily color medium green medium green color (RHS Color Chart) 137A 137B 14.
- Mature Plant growth habit bush bush plant type glabrous prickly 7.
- Main Stem cross-section shape round round average diameter at mid-point of 1 st 26.4 mm 33.75 mm internode average length 43.2 cm 21.4 cm average number of internodes 24 23 8.
- Plant growth habit bush (Greyzini) bush branching present (Patty Green Tint) absent degree of branching weak (Karioka, Verdi) bush varieties only: attitude of petiole semi-erect (Arlesa) semi-erect (excluding lower external leaves) 10.
- Leaves blade shape ovate reniform blade form deep lobed deep lobed margin dentate denticulate margin edges frilled frilled average width 34.2 cm 34.2 cm average length 27.1 cm 29 cm leaf surface blistered blistered dorsal surface pubescence soft hairy soft hairy vental surface pubescence soft hairy soft hairy color medium green dark green color (RHS Color Chart) 136A 139A leaf blotching not blotched blotched with gray leaf blade: size medium (Ambassador) large leaf blade: incisions medium (Jackpot) medium leaf blade: intensity of green color of upper medium (Cora) dark surface leaf blade: silvery patches absent (Black Forest, present Scallopini) average petiole length 29.3 cm 24.9 cm petiole length medium (Goldi) medium petiole: number of prickles few (Opaline) medium 11.
- Fruit market maturity average length 15.7 cm 11.1 cm market maturity: average width—stem end 4.6 cm 3.7 cm market maturity: average width—blossom 5.2 cm 4.6 cm end market maturity: average weight 266.5 gm 163.8 gm market maturity: shape according to variety straightneck straightneck type market maturity: apex taper pointed taper pointed market maturity: base flattened flattened market maturity: ribs inconspicuous inconspicuous market maturity: rib furrow depth shallow shallow market maturity: rib furrow width narrow narrow market maturity: fruit surface fine wrinkle smooth market maturity: warts none none market maturity: blossom scar button raised acron raised acron young fruit: ratio length/maximum medium (Cora) small diameter (zucchini type varieties) young fruit: general shape (zucchini and tapered elliptical (Top pear shaped rounded zucchini type varieties) Kapi) young fruit: main color of skin (excluding green (Elite, Opal, partly white and color of ribs or grooves) Romano) partly green young fruit: intensity of green color
- hybrid SV8575YL, line ZGN-EH-08-195, or LEB-48-4100 may be crossed with itself or with any second plant.
- Such methods can be used for propagation of hybrid SV8575YL and/or the squash lines ZGN-EH-08-195 and LEB-48-4100, or can be used to produce plants that are derived from hybrid SV8575YL and/or the squash lines ZGN-EH-08-195 and LEB-48-4100.
- Plants derived from hybrid SV8575YL and/or the squash lines ZGN-EH-08-195 and LEB-48-4100 may be used, in certain embodiments, for the development of new squash varieties.
- novel varieties may be created by crossing hybrid SV8575YL followed by multiple generations of breeding according to such well known methods.
- New varieties may be created by crossing with any second plant. In selecting such a second plant to cross for the purpose of developing novel lines, it may be desired to choose those plants which either themselves exhibit one or more selected desirable characteristics or which exhibit the desired characteristic(s) when in hybrid combination.
- inbreeding and selection take place to produce new varieties. For development of a uniform line, often five or more generations of selfing and selection are involved.
- Uniform lines of new varieties may also be developed by way of double-haploids. This technique allows the creation of true breeding lines without the need for multiple generations of selfing and selection. In this manner true breeding lines can be produced in as little as one generation.
- Haploid embryos may be produced from microspores, pollen, anther cultures, or ovary cultures. The haploid embryos may then be doubled autonomously, or by chemical treatments (e.g. colchicine treatment). Alternatively, haploid embryos may be grown into haploid plants and treated to induce chromosome doubling. In either case, fertile homozygous plants are obtained.
- any of such techniques may be used in connection with a plant of the invention and progeny thereof to achieve a homozygous line.
- Backcrossing can also be used to improve an inbred plant.
- Backcrossing transfers a specific desirable trait from one inbred or non-inbred source to an inbred that lacks that trait. This can be accomplished, for example, by first crossing a superior inbred (A) (recurrent parent) to a donor inbred (non-recurrent parent), which carries the appropriate locus or loci for the trait in question. The progeny of this cross are then mated back to the superior recurrent parent (A) followed by selection in the resultant progeny for the desired trait to be transferred from the non-recurrent parent. After five or more backcross generations with selection for the desired trait, the progeny have the characteristic being transferred, but are like the superior parent for most or almost all other loci. The last backcross generation would be selfed to give pure breeding progeny for the trait being transferred.
- the plants of the present invention are particularly well suited for the development of new lines based on the elite nature of the genetic background of the plants.
- a second plant to cross with SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100 for the purpose of developing novel squash lines, it will typically be preferred to choose those plants which either themselves exhibit one or more selected desirable characteristics or which exhibit the desired characteristic(s) when in hybrid combination.
- desirable traits may include, in specific embodiments, high seed yield, high seed germination, seedling vigor, high fruit yield, disease tolerance or resistance, and adaptability for soil and climate conditions.
- Consumer-driven traits, such as a fruit shape, color, texture, and taste are other examples of traits that may be incorporated into new lines of squash plants developed by this invention.
- hybrid SV8575YL exhibits desirable traits, as conferred by squash lines ZGN-EH-08-195 and LEB-48-4100.
- the performance characteristics of hybrid SV8575YL and squash lines ZGN-EH-08-195 and LEB-48-4100 were the subject of an objective analysis of the performance traits relative to other varieties. The results of the analysis are presented below in Tables 4, 5, and FIGS. 1 and 2 .
- plants described herein are provided modified to include at least a first desired heritable trait.
- Such plants may, in one embodiment, be developed by a plant breeding technique called backcrossing, wherein essentially all of the morphological and physiological characteristics of a variety are recovered in addition to a genetic locus transferred into the plant via the backcrossing technique.
- the term single locus converted plant as used herein refers to those squash plants which are developed by a plant breeding technique called backcrossing, wherein essentially all of the morphological and physiological characteristics of a variety are recovered in addition to the single locus transferred into the variety via the backcrossing technique.
- backcrossing essentially all of the morphological and physiological characteristics, it is meant that the characteristics of a plant are recovered that are otherwise present when compared in the same environment, other than an occasional variant trait that might arise during backcrossing or direct introduction of a transgene.
- Backcrossing methods can be used with the present invention to improve or introduce a characteristic into the present variety.
- the parental squash plant which contributes the locus for the desired characteristic is termed the nonrecurrent or donor parent. This terminology refers to the fact that the nonrecurrent parent is used one time in the backcross protocol and therefore does not recur.
- the parental squash plant to which the locus or loci from the nonrecurrent parent are transferred is known as the recurrent parent as it is used for several rounds in the backcrossing protocol.
- recurrent parent the original variety of interest (recurrent parent) is crossed to a second variety (nonrecurrent parent) that carries the single locus of interest to be transferred.
- nonrecurrent parent the second variety that carries the single locus of interest to be transferred.
- the resulting progeny from this cross are then crossed again to the recurrent parent and the process is repeated until a squash plant is obtained wherein essentially all of the morphological and physiological characteristics of the recurrent parent are recovered in the converted plant, in addition to the single transferred locus from the nonrecurrent parent.
- a suitable recurrent parent is an important step for a successful backcrossing procedure.
- the goal of a backcross protocol is to alter or substitute a single trait or characteristic in the original variety.
- a single locus of the recurrent variety is modified or substituted with the desired locus from the nonrecurrent parent, while retaining essentially all of the rest of the desired genetic, and therefore the desired physiological and morphological constitution of the original variety.
- the choice of the particular nonrecurrent parent will depend on the purpose of the backcross; one of the major purposes is to add some commercially desirable trait to the plant.
- the exact backcrossing protocol will depend on the characteristic or trait being altered and the genetic distance between the recurrent and nonrecurrent parents.
- progeny squash plants of a backcross in which a plant described herein is the recurrent parent comprise (i) the desired trait from the non-recurrent parent and (ii) all of the physiological and morphological characteristics of squash the recurrent parent as determined at the 5% significance level when grown in the same environmental conditions.
- New varieties can also be developed from more than two parents.
- the technique known as modified backcrossing, uses different recurrent parents during the backcrossing. Modified backcrossing may be used to replace the original recurrent parent with a variety having certain more desirable characteristics or multiple parents may be used to obtain different desirable characteristics from each.
- one, two, three or four genomic loci may be integrated into an elite line via this methodology.
- this elite line containing the additional loci is further crossed with another parental elite line to produce hybrid offspring, it is possible to then incorporate at least eight separate additional loci into the hybrid.
- additional loci may confer, for example, such traits as a disease resistance or a fruit quality trait.
- each locus may confer a separate trait.
- loci may need to be homozygous and exist in each parent line to confer a trait in the hybrid.
- multiple loci may be combined to confer a single robust phenotype of a desired trait.
- Single locus traits have been identified that are not regularly selected for in the development of a new inbred but that can be improved by backcrossing techniques.
- Single locus traits may or may not be transgenic; examples of these traits include, but are not limited to, herbicide resistance, resistance to bacterial, fungal, or viral disease, insect resistance, modified fatty acid or carbohydrate metabolism, and altered nutritional quality. These comprise genes generally inherited through the nucleus.
- Direct selection may be applied where the single locus acts as a dominant trait.
- the progeny of the initial cross are assayed for viral resistance and/or the presence of the corresponding gene prior to the backcrossing. Selection eliminates any plants that do not have the desired gene and resistance trait, and only those plants that have the trait are used in the subsequent backcross. This process is then repeated for all additional backcross generations.
- Selection of squash plants for breeding is not necessarily dependent on the phenotype of a plant and instead can be based on genetic investigations. For example, one can utilize a suitable genetic marker which is closely genetically linked to a trait of interest. One of these markers can be used to identify the presence or absence of a trait in the offspring of a particular cross, and can be used in selection of progeny for continued breeding. This technique is commonly referred to as marker assisted selection. Any other type of genetic marker or other assay which is able to identify the relative presence or absence of a trait of interest in a plant can also be useful for breeding purposes. Procedures for marker assisted selection are well known in the art.
- Types of genetic markers which could be used in accordance with the invention include, but are not necessarily limited to, Simple Sequence Length Polymorphisms (SSLPs) (Williams et al., Nucleic Acids Res., 1 8:6531-6535, 1990), Randomly Amplified Polymorphic DNAs (RAPDs), DNA Amplification Fingerprinting (DAF), Sequence Characterized Amplified Regions (SCARs), Arbitrary Primed Polymerase Chain Reaction (AP-PCR), Amplified Fragment Length Polymorphisms (AFLPs) (EP 534 858, specifically incorporated herein by reference in its entirety), and Single Nucleotide Polymorphisms (SNPs) (Wang et al., Science, 280:1077-1082, 1998).
- SSLPs Simple Sequence Length Polymorphisms
- RAPDs Randomly Amplified Polymorphic DNAs
- DAF Sequence Characterized Amplified Regions
- Many useful traits that can be introduced by backcrossing, as well as directly into a plant are those which are introduced by genetic transformation techniques. Genetic transformation may therefore be used to insert a selected transgene into a plant of the invention or may, alternatively, be used for the preparation of transgenes which can be introduced by backcrossing. Methods for the transformation of plants that are well known to those of skill in the art and applicable to many crop species include, but are not limited to, electroporation, microprojectile bombardment, Agrobacterium -mediated transformation and direct DNA uptake by protoplasts.
- friable tissues such as a suspension culture of cells or embryogenic callus or alternatively one may transform immature embryos or other organized tissue directly.
- pectolyases pectolyases
- microprojectile bombardment An efficient method for delivering transforming DNA segments to plant cells is microprojectile bombardment.
- particles are coated with nucleic acids and delivered into cells by a propelling force.
- Exemplary particles include those comprised of tungsten, platinum, and preferably, gold.
- cells in suspension are concentrated on filters or solid culture medium.
- immature embryos or other target cells may be arranged on solid culture medium.
- the cells to be bombarded are positioned at an appropriate distance below the macroprojectile stopping plate.
- An illustrative embodiment of a method for delivering DNA into plant cells by acceleration is the Biolistics Particle Delivery System, which can be used to propel particles coated with DNA or cells through a screen, such as a stainless steel or Nytex screen, onto a surface covered with target cells.
- a screen such as a stainless steel or Nytex screen
- the screen disperses the particles so that they are not delivered to the recipient cells in large aggregates.
- Microprojectile bombardment techniques are widely applicable, and may be used to transform virtually any plant species.
- Agrobacterium -mediated transfer is another widely applicable system for introducing gene loci into plant cells.
- An advantage of the technique is that DNA can be introduced into whole plant tissues, thereby bypassing the need for regeneration of an intact plant from a protoplast.
- Modern Agrobacterium transformation vectors are capable of replication in E. coli as well as Agrobacterium , allowing for convenient manipulations (Klee et al., Bio - Technology, 3(7):637-642, 1985).
- recent technological advances in vectors for Agrobacterium -mediated gene transfer have improved the arrangement of genes and restriction sites in the vectors to facilitate the construction of vectors capable of expressing various polypeptide coding genes.
- the vectors described have convenient multi-linker regions flanked by a promoter and a polyadenylation site for direct expression of inserted polypeptide coding genes.
- Agrobacterium containing both armed and disarmed Ti genes can be used for transformation.
- Agrobacterium -mediated transformation In those plant strains where Agrobacterium -mediated transformation is efficient, it is the method of choice because of the facile and defined nature of the gene locus transfer.
- the use of Agrobacterium -mediated plant integrating vectors to introduce DNA into plant cells is well known in the art (Fraley et al., Bio/Technology, 3:629-635, 1985; U.S. Pat. No. 5,563,055).
- Transformation of plant protoplasts also can be achieved using methods based on calcium phosphate precipitation, polyethylene glycol treatment, electroporation, and combinations of these treatments (see, e.g., Potrykus et al., Mol. Gen. Genet., 199:183-188, 1985; Omirulleh et al., Plant Mol. Biol., 21(3):415-428, 1993; Fromm et al., Nature, 312:791-793, 1986; Uchimiya et al., Mol. Gen. Genet., 204:204, 1986; Marcotte et al., Nature, 335:454, 1988). Transformation of plants and expression of foreign genetic elements is exemplified in Choi et al. ( Plant Cell Rep., 13: 344-348, 1994), and Ellul et al. ( Theor. Appl. Genet., 107:462-469, 2003).
- a number of promoters have utility for plant gene expression for any gene of interest including but not limited to selectable markers, scoreable markers, genes for pest tolerance, disease resistance, nutritional enhancements and any other gene of agronomic interest.
- constitutive promoters useful for plant gene expression include, but are not limited to, the cauliflower mosaic virus (CaMV) P-35S promoter, which confers constitutive, high-level expression in most plant tissues (see, e.g., Odel et al., Nature, 313:810, 1985), including in monocots (see, e.g., Dekeyser et al., Plant Cell, 2:591, 1990; Terada and Shimamoto, Mol. Gen.
- CaMV cauliflower mosaic virus
- P-eFMV FMV promoter
- a variety of plant gene promoters that are regulated in response to environmental, hormonal, chemical, and/or developmental signals can also be used for expression of an operably linked gene in plant cells, including promoters regulated by (1) heat (Callis et al., Plant Physiol., 88:965, 1988), (2) light (e.g., pea rbcS-3A promoter, Kuhlemeier et al., Plant Cell, 1:471, 1989; maize rbcS promoter, Schaffner and Sheen, Plant Cell, 3:997, 1991; or chlorophyll a/b-binding protein promoter, Simpson et al., EMBO J., 4:2723, 1985), (3) hormones, such as abscisic acid (Marcotte et al., Plant Cell, 1:969, 1989), (4) wounding (e.g., wunl, Siebertz et al., Plant Cell, 1:961, 1989); or (5) chemicals such as methyl jasmonate
- organ-specific promoters e.g., Roshal et al., EMBO J., 6:1155, 1987; Schernthaner et al., EMBO J., 7:1249, 1988; Bustos et al., Plant Cell, 1:839, 1989.
- Exemplary nucleic acids which may be introduced to plants of this invention include, for example, DNA sequences or genes from another species, or even genes or sequences which originate with or are present in the same species, but are incorporated into recipient cells by genetic engineering methods rather than classical reproduction or breeding techniques.
- exogenous is also intended to refer to genes that are not normally present in the cell being transformed, or perhaps simply not present in the form, structure, etc., as found in the transforming DNA segment or gene, or genes which are normally present and that one desires to express in a manner that differs from the natural expression pattern, e.g., to over-express.
- exogenous gene or DNA is intended to refer to any gene or DNA segment that is introduced into a recipient cell, regardless of whether a similar gene may already be present in such a cell.
- the type of DNA included in the exogenous DNA can include DNA which is already present in the plant cell, DNA from another plant, DNA from a different organism, or a DNA generated externally, such as a DNA sequence containing an antisense message of a gene, or a DNA sequence encoding a synthetic or modified version of a gene.
- Non-limiting examples of particular genes and corresponding phenotypes one may choose to introduce into a squash plant include one or more genes for insect tolerance, such as a Bacillus thuringiensis (B.t.) gene, pest tolerance such as genes for fungal disease control, herbicide tolerance such as genes conferring glyphosate tolerance, and genes for quality improvements such as yield, nutritional enhancements, environmental or stress tolerances, or any desirable changes in plant physiology, growth, development, morphology or plant product(s).
- insect tolerance such as a Bacillus thuringiensis (B.t.) gene
- pest tolerance such as genes for fungal disease control
- herbicide tolerance such as genes conferring glyphosate tolerance
- quality improvements such as yield, nutritional enhancements, environmental or stress tolerances, or any desirable changes in plant physiology, growth, development, morphology or plant product(s).
- structural genes would include any gene that confers insect tolerance including but not limited to a Bacillus insect control protein gene as described in WO 99/31248, herein incorporated by reference in its entirety, U.S. Pat. No. 5,689,052, herein incorporated by reference in its entirety, U.S. Pat. Nos. 5,500,365 and 5,880,275, herein incorporated by reference in their entirety.
- the structural gene can confer tolerance to the herbicide glyphosate as conferred by genes including, but not limited to Agrobacterium strain CP4 glyphosate resistant EPSPS gene (aroA:CP4) as described in U.S. Pat. No. 5,633,435, herein incorporated by reference in its entirety, or glyphosate oxidoreductase gene (GOX) as described in U.S. Pat. No. 5,463,175, herein incorporated by reference in its entirety.
- the DNA coding sequences can affect these phenotypes by encoding a non-translatable RNA molecule that causes the targeted inhibition of expression of an endogenous gene, for example via antisense- or cosuppression-mediated mechanisms (see, for example, Bird et al., Biotech. Gen. Engin. Rev., 9:207, 1991).
- the RNA could also be a catalytic RNA molecule (i.e., a ribozyme) engineered to cleave a desired endogenous mRNA product (see for example, Gibson and Shillito, Mol. Biotech., 7:125, 1997).
- a catalytic RNA molecule i.e., a ribozyme
- any gene which produces a protein or mRNA which expresses a phenotype or morphology change of interest is useful for the practice of the present invention.
- Allele Any of one or more alternative forms of a gene locus, all of which alleles relate to one trait or characteristic. In a diploid cell or organism, the two alleles of a given gene occupy corresponding loci on a pair of homologous chromosomes.
- Backcrossing A process in which a breeder repeatedly crosses hybrid progeny, for example a first generation hybrid (F 1 ), back to one of the parents of the hybrid progeny. Backcrossing can be used to introduce one or more single locus conversions from one genetic background into another.
- F 1 first generation hybrid
- Crossing The mating of two parent plants.
- Cross-pollination Fertilization by the union of two gametes from different plants.
- Diploid A cell or organism having two sets of chromosomes.
- Emasculate The removal of plant male sex organs or the inactivation of the organs with a cytoplasmic or nuclear genetic factor or a chemical agent conferring male sterility.
- Enzymes Molecules which can act as catalysts in biological reactions.
- F 1 Hybrid The first generation progeny of the cross of two nonisogenic plants.
- Genotype The genetic constitution of a cell or organism.
- Haploid A cell or organism having one set of the two sets of chromosomes in a diploid.
- Linkage A phenomenon wherein alleles on the same chromosome tend to segregate together more often than expected by chance if their transmission was independent.
- Marker A readily detectable phenotype, preferably inherited in codominant fashion (both alleles at a locus in a diploid heterozygote are readily detectable), with no environmental variance component, i.e., heritability of 1.
- Phenotype The detectable characteristics of a cell or organism, which characteristics are the manifestation of gene expression.
- Quantitative Trait Loci Quantitative trait loci (QTL) refer to genetic loci that control to some degree numerically representable traits that are usually continuously distributed.
- Resistance As used herein, the terms “resistance” and “tolerance” are used interchangeably to describe plants that show no symptoms to a specified biotic pest, pathogen, abiotic influence or environmental condition. These terms are also used to describe plants showing some symptoms but that are still able to produce marketable product with an acceptable yield. Some plants that are referred to as resistant or tolerant are only so in the sense that they may still produce a crop, even though the plants are stunted and the yield is reduced.
- Regeneration The development of a plant from tissue culture.
- RHS color chart value The RHS color chart is a standardized reference which allows accurate identification of any color. A color's designation on the chart describes its hue, brightness and saturation. A color is precisely named by the RHS color chart by identifying the group name, sheet number and letter, e.g., Yellow-Orange Group 19A or Red Group 41B.
- Self-pollination The transfer of pollen from the anther to the stigma of the same plant.
- Single Locus Converted (Conversion) Plant Plants which are developed by a plant breeding technique called backcrossing, wherein essentially all of the morphological and physiological characteristics of a squash variety are recovered in addition to the characteristics of the single locus transferred into the variety via the backcrossing technique and/or by genetic transformation.
- Tissue Culture A composition comprising isolated cells of the same or a different type or a collection of such cells organized into parts of a plant.
- Transgene A genetic locus comprising a sequence which has been introduced into the genome of a squash plant by transformation.
- the accession numbers for those deposited seeds of squash lines ZGN-EH-08-195 and LEB-48-4100 are ATCC Accession No. PTA-120757 and ATCC Accession No. PTA-11352, respectively.
- all restrictions upon the deposits will be removed, and the deposits are intended to meet all of the requirements of 37 C.F.R. ⁇ 1.801-1.809.
- the deposits will be maintained in the depository for a period of 30 years, or 5 years after the last request, or for the effective life of the patent, whichever is longer, and will be replaced if necessary during that period.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Botany (AREA)
- General Health & Medical Sciences (AREA)
- Environmental Sciences (AREA)
- Cell Biology (AREA)
- Biochemistry (AREA)
- Developmental Biology & Embryology (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Physiology (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Nutrition Science (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Insects & Arthropods (AREA)
- Pest Control & Pesticides (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Oil, Petroleum & Natural Gas (AREA)
Abstract
Description
- The present invention relates to the field of plant breeding and, more specifically, to the development of squash hybrid SV8575YL and the inbred squash lines ZGN-EH-08-195 and LEB-48-4100.
- The goal of vegetable breeding is to combine various desirable traits in a single variety/hybrid. Such desirable traits may include any trait deemed beneficial by a grower and/or consumer, including greater yield, resistance to insects or disease, tolerance to environmental stress, and nutritional value.
- Breeding techniques take advantage of a plant's method of pollination. There are two general methods of pollination: a plant self-pollinates if pollen from one flower is transferred to the same or another flower of the same plant or plant variety. A plant cross-pollinates if pollen comes to it from a flower of a different plant variety.
- Plants that have been self-pollinated and selected for type over many generations become homozygous at almost all gene loci and produce a uniform population of true breeding progeny, a homozygous plant. A cross between two such homozygous plants of different genotypes produces a uniform population of hybrid plants that are heterozygous for many gene loci. Conversely, a cross of two plants each heterozygous at a number of loci produces a population of hybrid plants that differ genetically and are not uniform. The resulting non-uniformity makes performance unpredictable.
- The development of uniform varieties requires the development of homozygous inbred plants, the crossing of these inbred plants, and the evaluation of the crosses. Pedigree breeding and recurrent selection are examples of breeding methods that have been used to develop inbred plants from breeding populations. Those breeding methods combine the genetic backgrounds from two or more plants or various other broad-based sources into breeding pools from which new lines and hybrids derived therefrom are developed by selfing and selection of desired phenotypes. The new lines and hybrids are evaluated to determine which of those have commercial potential.
- In one aspect, the present invention provides a squash plant of the hybrid designated SV8575YL, the squash line ZGN-EH-08-195 or squash LEB-48-4100. Also provided are squash plants having all the physiological and morphological characteristics of such a plant. Parts of these squash plants are also provided, for example, including pollen, an ovule, scion, a rootstock, a fruit, and a cell of the plant.
- In another aspect of the invention, a plant of squash hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100 comprising an added heritable trait is provided. The heritable trait may comprise a genetic locus that is, for example, a dominant or recessive allele. In one embodiment of the invention, a plant of squash hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100 is defined as comprising a single locus conversion. In specific embodiments of the invention, an added genetic locus confers one or more traits such as, for example, herbicide tolerance, insect resistance, disease resistance, and modified carbohydrate metabolism. In further embodiments, the trait may be conferred by a naturally occurring gene introduced into the genome of a line by backcrossing, a natural or induced mutation, or a transgene introduced through genetic transformation techniques into the plant or a progenitor of any previous generation thereof. When introduced through transformation, a genetic locus may comprise one or more genes integrated at a single chromosomal location.
- The invention also concerns the seed of squash hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100. The squash seed of the invention may be provided as an essentially homogeneous population of squash seed of squash hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100. Essentially homogeneous populations of seed are generally free from substantial numbers of other seed. Therefore, seed of hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100 may be defined as forming at least about 97% of the total seed, including at least about 98%, 99% or more of the seed. The seed population may be separately grown to provide an essentially homogeneous population of squash plants designated SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100.
- In yet another aspect of the invention, a tissue culture of regenerable cells of a squash plant of hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100 is provided. The tissue culture will preferably be capable of regenerating squash plants capable of expressing all of the physiological and morphological characteristics of the starting plant, and of regenerating plants having substantially the same genotype as the starting plant. Examples of some of the physiological and morphological characteristics of the hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100 include those traits set forth in the tables herein. The regenerable cells in such tissue cultures may be derived, for example, from embryos, meristems, cotyledons, pollen, leaves, anthers, roots, root tips, pistils, flowers, seed and stalks. Still further, the present invention provides squash plants regenerated from a tissue culture of the invention, the plants having all the physiological and morphological characteristics of hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100.
- In still yet another aspect of the invention, processes are provided for producing squash seeds, plants and fruit, which processes generally comprise crossing a first parent squash plant with a second parent squash plant, wherein at least one of the first or second parent squash plants is a plant of squash line ZGN-EH-08-195 or squash LEB-48-4100. These processes may be further exemplified as processes for preparing hybrid squash seed or plants, wherein a first squash plant is crossed with a second squash plant of a different, distinct genotype to provide a hybrid that has, as one of its parents, a plant of squash line ZGN-EH-08-195 or squash LEB-48-4100. In these processes, crossing will result in the production of seed. The seed production occurs regardless of whether the seed is collected or not.
- In one embodiment of the invention, the first step in “crossing” comprises planting seeds of a first and second parent squash plant, often in proximity so that pollination will occur for example, mediated by insect vectors. Alternatively, pollen can be transferred manually. Where the plant is self-pollinated, pollination may occur without the need for direct human intervention other than plant cultivation.
- A second step may comprise cultivating or growing the seeds of first and second parent squash plants into plants that bear flowers. A third step may comprise preventing self-pollination of the plants, such as by emasculating the flowers (i.e., killing or removing the pollen).
- A fourth step for a hybrid cross may comprise cross-pollination between the first and second parent squash plants. Yet another step comprises harvesting the seeds from at least one of the parent squash plants. The harvested seed can be grown to produce a squash plant or hybrid squash plant.
- The present invention also provides the squash seeds and plants produced by a process that comprises crossing a first parent squash plant with a second parent squash plant, wherein at least one of the first or second parent squash plants is a plant of squash hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100. In one embodiment of the invention, squash seed and plants produced by the process are first generation (F1) hybrid squash seed and plants produced by crossing a plant in accordance with the invention with another, distinct plant. The present invention further contemplates plant parts of such an F1 hybrid squash plant, and methods of use thereof. Therefore, certain exemplary embodiments of the invention provide an F1 hybrid squash plant and seed thereof.
- In still yet another aspect, the present invention provides a method of producing a plant derived from hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100, the method comprising the steps of: (a) preparing a progeny plant derived from hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100, wherein said preparing comprises crossing a plant of the hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100 with a second plant; and (b) crossing the progeny plant with itself or a second plant to produce a seed of a progeny plant of a subsequent generation. In further embodiments, the method may additionally comprise: (c) growing a progeny plant of a subsequent generation from said seed of a progeny plant of a subsequent generation and crossing the progeny plant of a subsequent generation with itself or a second plant; and repeating the steps for an additional 3-10 generations to produce a plant derived from hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100. The plant derived from hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100 may be an inbred line, and the aforementioned repeated crossing steps may be defined as comprising sufficient inbreeding to produce the inbred line. In the method, it may be desirable to select particular plants resulting from step (c) for continued crossing according to steps (b) and (c). By selecting plants having one or more desirable traits, a plant derived from hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100 is obtained which possesses some of the desirable traits of the line/hybrid as well as potentially other selected traits.
- In certain embodiments, the present invention provides a method of producing food or feed comprising: (a) obtaining a plant of squash hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100, wherein the plant has been cultivated to maturity, and (b) collecting at least one squash from the plant.
- In still yet another aspect of the invention, the genetic complement of squash hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100 is provided. The phrase “genetic complement” is used to refer to the aggregate of nucleotide sequences, the expression of which sequences defines the phenotype of, in the present case, a squash plant, or a cell or tissue of that plant. A genetic complement thus represents the genetic makeup of a cell, tissue or plant, and a hybrid genetic complement represents the genetic make up of a hybrid cell, tissue or plant. The invention thus provides squash plant cells that have a genetic complement in accordance with the squash plant cells disclosed herein, and seeds and plants containing such cells.
- Plant genetic complements may be assessed by genetic marker profiles, and by the expression of phenotypic traits that are characteristic of the expression of the genetic complement, e.g., isozyme typing profiles. It is understood that hybrid SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100 could be identified by any of the many well known techniques such as, for example, Simple Sequence Length Polymorphisms (SSLPs) (Williams et al., Nucleic Acids Res., 1 8:6531-6535, 1990), Randomly Amplified Polymorphic DNAs (RAPDs), DNA Amplification Fingerprinting (DAF), Sequence Characterized Amplified Regions (SCARs), Arbitrary Primed Polymerase Chain Reaction (AP-PCR), Amplified Fragment Length Polymorphisms (AFLPs) (EP 534 858, specifically incorporated herein by reference in its entirety), and Single Nucleotide Polymorphisms (SNPs) (Wang et al., Science, 280:1077-1082, 1998).
- In still yet another aspect, the present invention provides hybrid genetic complements, as represented by squash plant cells, tissues, plants, and seeds, formed by the combination of a haploid genetic complement of a squash plant of the invention with a haploid genetic complement of a second squash plant, preferably, another, distinct squash plant. In another aspect, the present invention provides a squash plant regenerated from a tissue culture that comprises a hybrid genetic complement of this invention.
- Any embodiment discussed herein with respect to one aspect of the invention applies to other aspects of the invention as well, unless specifically noted.
- The term “about” is used to indicate that a value includes the standard deviation of the mean for the device or method being employed to determine the value. The use of the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive. When used in conjunction with the word “comprising” or other open language in the claims, the words “a” and “an” denote “one or more,” unless specifically noted otherwise. The terms “comprise,” “have” and “include” are open-ended linking verbs. Any forms or tenses of one or more of these verbs, such as “comprises,” “comprising,” “has,” “having,” “includes” and “including,” are also open-ended. For example, any method that “comprises,” “has” or “includes” one or more steps is not limited to possessing only those one or more steps and also covers other unlisted steps. Similarly, any plant that “comprises,” “has” or “includes” one or more traits is not limited to possessing only those one or more traits and covers other unlisted traits.
- Other objects, features and advantages of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and any specific examples provided, while indicating specific embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
-
FIG. 1 : A graphical representation of yield—EgyptEarly Spring Trial 24 harvests 4th of December 2010 Planting—Kg/Plant -
FIG. 2 : A graphical representation of yield—Egypt Summer 2011 Trial Kg/Plant 5th of April Planting. - The invention provides methods and compositions relating to plants, seeds and derivatives of squash hybrid SV8575YL, squash line ZGN-EH-08-195 and squash LEB-48-4100.
- Squash hybrid SV8575YL, also known as RX 13078575 and SVR 13078575, was first created from a cross between LEB-48-4100 and ZGY-EH-08-195. The hybrid was planted in late Year 1 in the Jordan Valley for comparison with other commercial and pre-commercial hybrids. Performance in this trial was good for yield, but poor for fruit shape and color. Subsequent trials in the Jordan Valley have been consistent with that observation. In Year 2 this hybrid was sown in the uplands region in Jordan in late spring, where performance in comparison to the market standard for this type, known as “Eskenderany”, was very good, under high pressure of ZYMV and SLCV. Subsequent trials in Woodland, Calif., Boztepe Turkey, and Yeniköy Turkey showed consistently high vigor, acceptable yield, and good performance under high pressure of viral diseases.
- The parents of hybrid SV8575YL are ZGN-EH-08-195 and LEB-48-4100. These parents were created as follows:
- Parent line LEB-48-4100, also known as “LEB 48-4100”, was disclosed and claimed in the patent for hybrid PS13056719 (PS 719) (U.S. Pat. No. 8,552,259). Line LEB-48-4100 was also disclosed in the patent application for hybrid SV8655YL (U.S. patent application Ser. No. 14/070,477). Parent line LEB 48-4100 was developed from a cross between LEB 46-20, a proprietary breeding line owned by Monsanto Vegetable Seeds, and “Anita”, a commercial squash variety. Selections from this cross were self pollinated for 6 generations, with selection for fruit shape and color and resistance to Zucchini Yellow Mosaic Virus (ZYMV) and Watermelon Mosaic Virus II (WMV-II).
- Breeding history of ZGN-EH-08-195 is as follows:
- ZGN-EH-08-195 was developed from a cross between two proprietary inbred breeding lines, known as ZGN-130-1020 and ZGN-130-1028. There are no other pre-commercial or commercial hybrids using ZGN-EH-08-195 or it's female parent line, ZGN-130-1020 at this time. ZGN-130-1020 is a vigorous, dark green colored green zucchini inbred line, and is deposited with ATCC for distribution. ZGN-130-1028 is an elite inbred line, which was previously disclosed in U.S. Patent Publication No. 2008/0313755A1, used as a parent of commercial hybrid “Dareen.” The F1 generation of the cross of ZGN-130-1020 and ZGN-130-1028 was self pollinated without observation. The F2 generation was inoculated with a cocktail including ZYMV, PRSV, and SLCV, and survivors were selected and self pollinated. In the F3 generation, seedlings were inoculated with a cocktail containing ZYMV, WMV, and PRSV, and the survivors were planted and observed, the most vigorous individuals with the darkest green fruit color were selected and self pollinated. In the F4 generation seedlings were inoculated with SLCV, and only the most resistant individuals were selected and self pollinated. The F5 generation was sown and self pollinated without observation, and one individual plant (with the highest seed yield) was selected as the source of ZGN-EH-08-195. Several plants were selected and self pollinated in the F6 generation, which was observed to be phenotypically uniform, and the bulk of the self pollinated seed was used to establish the parent line ZGN-EH-08-195.
- The parent lines are uniform and stable, as is a hybrid produced therefrom. A small percentage of variants can occur within commercially acceptable limits for almost any characteristic during the course of repeated multiplication. However no variants are expected.
- In accordance with one aspect of the present invention, there is provided a plant having the physiological and morphological characteristics of squash hybrid SV8575YL and the parent lines thereof. A description of the physiological and morphological characteristics of such plants is presented in Tables 1-3.
-
TABLE 1 Physioloical and Morphological Characteristics of Hybrid SV8575YL Comparison Variety CHARACTERISTIC SV8575YL Anita 1. Species Pepo Pepo 2. Kind/Use squash squash 3. Type summer (vegetable marrow) summer 4. Cotyledon length 47 mm 42.55 mm width 29.1 mm 28.55 mm apex tapered tapered veining plainly visible plainly visible color medium green medium green color (RHS Color Chart) 137A 137A Seedling shape of cotyledons elliptic (Cora, Tivoli) elliptic intensity of green color of medium (Cora) medium cotyledons cross section of straight (Sunburst) straight cotyledons 5. Mature Plant growth habit bush semi-bush plant type prickly pilose 6. Main Stem cross-section shape round round diameter at mid-point of 24.95 mm 26.15 mm 1st internode average length 26.35 cm 45.8 cm average number of 29.1 33 internodes Stem color completely green (Becky) partly green and partly yellow intensity of green color medium (Cinderella) very dark mottling absent (Cinderella) absent tendrils absent to rudimentary well developed (Goldrush, Sylvana) Plant growth habit bush (Greyzini) semi-trailing branching absent (Goldi) absent bush varieties only: erect to semi-erect (Sardane) attitude of petiole (excluding lower external leaves) 7. Leaves blade shape reniform reniform blade form shallow lobed deep lobed margin dentate denticulate margin edges frilled frilled average width 35.15 cm 36.2 cm average length 28.55 cm 29.75 cm leaf surface blistered blistered dorsal surface pubescence soft hairy glabrous vental surface pubescence soft hairy glabrous color dark green dark green color (RHS Color Chart) 139A 147A leaf blotching blotched with gray blotched with gray leaf blade: size medium (Ambassador) large leaf blade: incisions shallow (Everest) medium leaf blade: intensity of dark (Everest) dark green color of upper surface leaf blade: silvery patches present (Civac) present leaf blade: relative area large (Cora) small covered by silvery patches average petiole length 32.75 cm 38.35 cm petiole length medium (Goldi) long petiole: number of few (Opaline) few prickles 8. Flower pistillate flower: average 14.85 cm 15.9 cm diameter pistillate flower: ovary drum-like drum-like pistillate flower: average 1.4 cm 1.7 cm pedicel length pistillate flower: margin curved curved shape pistillate flower: margin frilled frilled edges pistillate flower: average 1.3 mm 1.35 mm sepal width pistillate flower: average 9.35 mm 5.4 mm sepal length pistillate flower: color orange orange pistillate flower: color 23A 23A (RHS Color Chart) staminate flower: average 28.7 mm 16.8 mm sepal length staminate flower: average 2.25 mm 3 mm sepal width staminate flower: average 95.8 mm 122.9 mm pedicel length staminate flower: color orange orange female flower: ring at present (Aurore) present inner side of corolla female flower: color of green (Aurore, Early White green ring at inner side of Bush Scallop, President) corolla female flower: intensity of strong (Aristocrat, Diamant) medium green color of ring at inner side of corolla (varieties with green ring at inner side of corolla) male flower: ring at inner present (Goldi) present side of corolla male flower: color of ring green (Austral, Belor, Goldi) green at inner side of corolla male flower: intensity of strong (Goldi) medium green color of ring at inner side of corolla staminate flower: color 25A 17A 9. Fruit market maturity: average 17.05 cm 13.3 cm length market maturity: average 3.2 cm 3.1 cm width - stem end at market maturity: 2.6 cm 3 cm average width - blossom end market maturity: average 225.5 gm 236.5 gm weight market maturity: shape straightneck straightneck according to variety type market maturity: apex rounded flattened market maturity: base rounded rounded market maturity: ribs inconspicuous inconspicuous market maturity: rib shallow shallow furrow depth market maturity: rib wide narrow furrow width market maturity: fruit shallowly wavy smooth surface market maturity: warts none none market maturity: blossom raised acorn raised acom scar button young fruit: ratio length/ large (Carlotta) medium maximum diameter (zucchini type varieties) young fruit: general shape cylindrical (Ambassador, tapered elliptical (zucchini and rounded Ibis) zucchini type varieties) young fruit: main color of green (Elite, Opal, Romano) green skin (excluding color of ribs or grooves) young fruit: intensity of light (Arlika) light green color of skin (only varieties with green color of skin) general shape club shaped club shaped length (zucchini type long (Carlotta) medium varieties) maximum diameter large (Jericho, Spidy) medium (zucchini type varieties) ratio length/maximum large (Carlotta) medium diameter (zucchini type varieties) blossom end (zucchini and pointed rounded neck type varieties) grooves absent absent ribs present present protrusion of ribs weak (Ambassador) weak main color of skin green (Ambassador, Baby green (excluding color of dots, Bear) patches, stripes and bands) intensity of green color of light light skin (only varieties with green color of skin) color of ribs compared to same (Grey Zucchini) same main color of skin dots present (Gold Rush, Table present Queen) size of main dots small (Ambassador) small secondary green color absent (Grey Zucchini, absent between ribs (excluding Small Sugar) dots) warts on skin absent absent size of flower scar large (Cinderella) large length of peduncle short (Clarita) medium color of peduncle green (Ambassador) green intensity of green color of medium (Sunburst) medium peduncle mottling of peduncle present (Elite) absent ripe fruit: secondary color yellow (Gold Rush) yellow of skin (excluding color of mottles, patches, stripes and bands) ripe fruit: intensity of medium light main color of skin (only yellow and orange) ripe fruit: color of flesh cream (Elite) cream ripe fruit: lignified rind present (Elite, Little Gem, present Scallopini, Yellow Summer Crookneck) ripe fruit: structure of fibrous (Vegetable fibrous flesh Spaghetti) 10. Rind average thickness at 2.35 mm 2.5 mm medial toughness hard hard overall color pattern regular regular main or ground color yellow yellowish-orange main or ground color 13C 18A (RHS Color Chart) 11. Flesh average blossom end 44.7 mm 29.45 mm thickness average medial thickness 42.7 mm 52.8 mm average stem end 42.4 mm 26.25 mm thickness texture (fine, granular, fine fine lumpy or stringy) texture (soft, firm or firm firm brittle) texture (dry, moist or moist juicy juicy) flavor insipid sweet quality good excellent color greenish-white greenish-white color (RHS Color Chart) 157A 157D 12. Seed Cavity average length 37.9 cm 25.5 cm average width 6.95 cm 8.7 cm location conforms to fruit shape conforms to fruit shape placental tissue abundant abundant center core inconspicuous inconspicuous 13. Fruit Stalks average length 2.4 cm 3.15 cm average diameter 2.25 cm 2.1 cm cross-section shape irregular irregular twisting not twisted not twisted tapering not tapered tapered straightness slightly curved straight texture hard soft furrows deep shallow surface rough spiny attachment end expanded expanded detaches easily easily color light green medium green color (RHS Color Chart) 143A 143B 14. Seeds average length 15.55 mm 18.6 mm average width 8.95 mm 9.2 mm average thickness 2.05 mm 2.8 mm face surface smooth smooth color white white color (RHS Color Chart) 155A 155A luster dull dull margin curved curved margin edge rounded rounded separation from pulp moderately easy easy average grams per 100 12.7 gm 17 gm seeds average number of seeds 332 342 per fruit seed coat normal normal size medium (Diamant) large shape elliptic (Elite) elliptic hull present (Baby Bear, Elite) present appearance of hull fully developed (Elite) fully developed color of hull cream (De Nice à Fruit cream Rond) fruit type: zucchini fruit: patches, stripes or absent (Ambassador, Black bands in ripe stage (if Jack) zucchini type) *These are typical values. Values may vary due to environment. Other values that are substantially equivalent are also within the scope of the invention. -
TABLE 2 Physiological and Morphological Characteristics of Line ZGN-EH-08-195 Comparison Variety CHARACTERISTIC ZGN-EH-08-195 Payroll 1. Species Pepo Pepo 2. Kind/Use squash squash 3. Type summer (vegetable marrow) summer 4. Cotyledon length 38 mm 45.5 mm width 28 mm 29.25 mm apex rounded tapered veining obscure obscure color medium green medium green color (RHS Color Chart) 137A 137A Seedling shape of cotyledons elliptic (Cora, Tivoli) elliptic intensity of green color of medium (Cora) medium cotyledons cross section of concave concave cotyledons 5. Mature Plant growth habit bush bush plant type pilose pilose 6. Main Stem cross-section shape round round diameter at mid-point of 28.7 mm 23.4 mm 1st internode average length 25.1 cm 30.75 cm average number of 28.95 24.2 internodes Stem color completely green (Becky) completely green intensity of green color dark (Greyzini) dark mottling absent (Cinderella) absent tendrils absent to rudimentary well developed (Goldrush, Sylvana) Plant growth habit bush (Greyzini) bush branching absent (Goldi) absent bush varieties only: erect to semi-erect (Sardane) erect attitude of petiole (excluding lower external leaves) 7. Leaves blade shape reniform reniform blade form deep lobed deep lobed margin dentate dentate margin edges flat frilled average width 37.45 cm 32.4 cm average length 32.25 cm 29.1 cm leaf surface blistered blistered dorsal surface pubescence glabrous soft hairy vental surface pubescence glabrous soft hairy color dark green dark green color (RHS Color Chart) 147A 139A leaf blotching blotched with gray blotched with gray leaf blade: size large (Kriti) small leaf blade: incisions deep (Everest) deep leaf blade: intensity of dark (Everest) dark green color of upper surface leaf blade: silvery patches present (Civac) present leaf blade: relative area medium (Ambassador) small covered by silvery patches average petiole length 40.05 cm 35.15 cm petiole length long (Autumn Gold, Baikal) long petiole: number of few (Opaline) few prickles 8. Flower pistillate flower: average 14.4 cm 15.3 cm diameter pistillate flower: ovary drum-like drum-like pistillate flower: average 1.25 cm 1.75 cm pedicel length pistillate flower: margin straight straight shape pistillate flower: margin plain frilled edges pistillate flower: average .75 mm 1.25 mm sepal width pistillate flower: average 2.2 mm 5.25 mm sepal length pistillate flower: color orange orange pistillate flower: color 23A 17A (RHS Color Chart) staminate flower: average 20.55 mm 18.5 mm sepal length staminate flower: average 2.3 mm 2.95 mm sepal width staminate flower: average 103.85 175 mm pedicel length staminate flower: color orange orange female flower: ring at present (Aurore) present inner side of corolla female flower: color of green (Aurore, Early White green ring at inner side of Bush Scallop, President) corolla female flower: intensity of strong (Aristocrat, Diamant) medium green color of ring at inner side of corolla (varieties with green ring at inner side of corolla) male flower: ring at inner present (Goldi) present side of corolla male flower: color of ring green (Austral, Belor, Goldi) green at inner side of corolla male flower: intensity of strong (Goldi) strong green color of ring at inner side of corolla staminate flower: color 23A 21A 9. Fruit market maturity: average 17.25 cm 19.05 cm length market maturity: average 3.4 cm 3.2 cm width - stem end at market maturity: 2.25 cm 1.8 cm average width - blossom end market maturity: average 217.2 gm 239 gm weight market maturity: shape straightneck straightneck according to variety type market maturity: apex rounded rounded market maturity: base rounded taper pointed market maturity: ribs inconspicuous prominent market maturity: rib medium deep shallow furrow depth market maturity: rib narrow narrow furrow width market maturity: fruit shallowly wavy smooth surface market maturity: warts none none market maturity: blossom raised acron raised acorn scar button young fruit: ratio length/ large (Carlotta) large maximum diameter (zucchini type varieties) young fruit: general shape cylindrical (Ambassador, cylindrical (zucchini and rounded Ibis) zucchini type varieties) young fruit: main color of green (Elite, Opal, Romano) green skin (excluding color of ribs or grooves) young fruit: intensity of dark (Arlesa, Sandra, Zefira) medium green color of skin (excluding color of ribs or grooves; only varieties with green color of skin) general shape cylindrical cylindrical length (zucchini type long (Carlotta) very long varieties) maximum diameter small (Goldi) medium (zucchini type varieties) ratio length/maximum large (Carlotta) large diameter (zucchini type varieties) blossom end (zucchini and rounded pointed neck type varieties) grooves absent absent ribs present present protrusion of ribs strong (Spidi) strong main color of skin green (Ambassador, Baby green (excluding color of dots, Bear) patches, stripes and bands) intensity of green color of very dark (Baby Bear, medium skin (only varieties with Sardane) green color of skin) color of ribs compared to same (Grey Zucchini) darker main color of skin dots present (Gold Rush, Table present Queen) size of main dots small (Ambassador) small secondary green color absent (Grey Zucchini, absent between ribs (excluding Small Sugar) dots) warts on skin absent absent size of flower scar medium (Spidi) small length of peduncle very short (Arlesa) short color of peduncle green (Ambassador) green intensity of green color of dark (Gold Rush) medium peduncle mottling of peduncle present (Elite) absent ripe fruit: main color of orange (Autumn Gold) yellow skin (excluding color of mottles, patches, stripes and bands) ripe fruit: intensity of medium medium main color of skin ripe fruit: secondary color green orange of skin (excluding color of mottles, patches, stripes and bands) green hue (only white and present (Amalthee) cream) ripe fruit: prominence of strong (Amalthee) green hue (only white and cream) ripe fruit: color of flesh cream (Elite) cream ripe fruit: lignified rind present (Elite, Little Gem, present Scallopini, Yellow Summer Crookneck) ripe fruit: structure of fibrous (Vegetable fibrous flesh Spaghetti) 10. Rind average thickness at 2.2 mm 1.9 mm medial toughness hard hard overall color pattern regular regular main or ground color orange bronze main or ground color 22A 139A (RHS Color Chart) 11. Flesh average blossom end 38.4 mm 22 mm thickness average medial thickness 40.9 mm 59 mm average stem end 43.6 mm 27.4 mm thickness texture (fine, granular, fine fine lumpy or stringy) texture (soft, firm or firm soft brittle) texture (dry, moist or juicy moist juicy) flavor insipid slightly sweet quality good good color cream whitish cream color (RHS Color Chart) 150D 151B 12. Seed Cavity average length 31.8 cm 28.85 cm average width 5.6 cm 5 cm location conforms to fruit shape conforms to fruit shape placental tissue abundant abundant center core inconspicuous inconspicuous 13. Fruit Stalks average length 1.7 cm 2.75 cm average diameter 2.15 cm 2.05 cm cross-section shape irregular irregular twisting not twisted twisted tapering tapered tapered straightness straight curved texture hard soft furrows deep deep surface rough rough attachment end expanded slightly expanded detaches with difficulty easily color medium green medium green color (RHS Color Chart) 137A 137B 14. Seeds average length 14.35 mm 14.4 mm average width 8.9 mm 8.5 mm average thickness 2.35 mm 2.75 mm face surface smooth smooth color white white color (RHS Color Chart) 155C 155A luster glossy dull margin curved curved margin edge rounded rounded separation from pulp difficult easy average grams per 100 10.85 gm 13.75 gm seeds average number of seeds 68 187 per fruit seed coat normal normal size small (Delicata) small shape elliptic (Elite) elliptic hull present (Baby Bear, Elite) present appearance of hull fully developed (Elite) fully developed color of hull cream (De Nice à Fruit cream Rond) fruit type: zucchini fruit: patches, stripes or absent (Ambassador, Black bands in ripe stage (if Jack) zucchini type) *These are typical values. Values may vary due to environment. Other values that are substantially equivalent are also within the scope of the invention. -
TABLE 3 Physiological and Morphological Characteristics of LEB-48-4100 Comparison Variety CHARACTERISTIC LEB-48-4100 Anita 1. Species Pepo Pepo 2. Kind/Use squash squash 3. Type summer (vegetable summer marrow) 4. Cotyledon length 63.5 mm 61 mm width 29.4 mm 32.2 mm apex rounded rounded veining plainly visible plainly visible color medium green light green color (RHS Color Chart) 137B 137B 5. Seedling shape of cotyledons elliptic (Cora, Tivoli) elliptic intensity of green color of cotyledons medium (Cora) light cross section of cotyledons straight (Sunburst) straight 6. Mature Plant growth habit bush bush plant type glabrous prickly 7. Main Stem cross-section shape round round average diameter at mid-point of 1st 26.4 mm 33.75 mm internode average length 43.2 cm 21.4 cm average number of internodes 24 23 8. Stem color completely green (Becky) partly green and partly yellow intensity of green color light (Bianchini) medium mottling absent (Cinderella) present tendrils absent to rudimentary absent to (Goldrush, Sylvana) rudimentary 9. Plant growth habit bush (Greyzini) bush branching present (Patty Green Tint) absent degree of branching weak (Karioka, Verdi) bush varieties only: attitude of petiole semi-erect (Arlesa) semi-erect (excluding lower external leaves) 10. Leaves blade shape ovate reniform blade form deep lobed deep lobed margin dentate denticulate margin edges frilled frilled average width 34.2 cm 34.2 cm average length 27.1 cm 29 cm leaf surface blistered blistered dorsal surface pubescence soft hairy soft hairy vental surface pubescence soft hairy soft hairy color medium green dark green color (RHS Color Chart) 136A 139A leaf blotching not blotched blotched with gray leaf blade: size medium (Ambassador) large leaf blade: incisions medium (Jackpot) medium leaf blade: intensity of green color of upper medium (Cora) dark surface leaf blade: silvery patches absent (Black Forest, present Scallopini) average petiole length 29.3 cm 24.9 cm petiole length medium (Goldi) medium petiole: number of prickles few (Opaline) medium 11. Flower pistillate flower: diameter 17.9 cm 14.1 cm pistillate flower: ovary drum-like drum-like pistillate flower: average pedicel length 3.7 cm 2.3 cm pistillate flower: margin shape curved curved pistillate flower: margin edges plain plain pistillate flower: average sepal width 2 mm 1.7 mm pistillate flower: average sepal length 30.9 mm 7.1 mm pistillate flower: color orange deep yellow pistillate flower: color (RHS Color Chart) 23A 17A staminate flower: average sepal length 28.9 mm 15.2 mm staminate flower: average sepal width 2.1 mm 2.3 mm staminate flower: average pedicel length 134.8 mm 152 mm staminate flower: color deep yellow deep yellow female flower: ring at inner side of corolla present (Aurore) present female flower: color of ring at inner side of green (Aurore, Early green corolla White Bush Scallop, President) female flower: intensity of green color of strong (Aristocrat, medium ring at inner side of corolla (varieties with Diamant) green ring at inner side of corolla) male flower: ring at inner side of corolla present (Goldi) present male flower: color of ring at inner side of green (Austral, Belor, green corolla Goldi) male flower: intensity of green color of medium (Verdi) medium ring at inner side of corolla (varieties with green ring at inner side of corolla) staminate flower: color 17A 21A 12. Fruit market maturity: average length 15.7 cm 11.1 cm market maturity: average width—stem end 4.6 cm 3.7 cm market maturity: average width—blossom 5.2 cm 4.6 cm end market maturity: average weight 266.5 gm 163.8 gm market maturity: shape according to variety straightneck straightneck type market maturity: apex taper pointed taper pointed market maturity: base flattened flattened market maturity: ribs inconspicuous inconspicuous market maturity: rib furrow depth shallow shallow market maturity: rib furrow width narrow narrow market maturity: fruit surface fine wrinkle smooth market maturity: warts none none market maturity: blossom scar button raised acron raised acron young fruit: ratio length/maximum medium (Cora) small diameter (zucchini type varieties) young fruit: general shape (zucchini and tapered elliptical (Top pear shaped rounded zucchini type varieties) Kapi) young fruit: main color of skin (excluding green (Elite, Opal, partly white and color of ribs or grooves) Romano) partly green young fruit: intensity of green color of skin light (Arlika) light (excluding color of ribs or grooves; only varieties with green color of skin) general shape cylindrical pear shaped length (zucchini type varieties) medium (Cora) short maximum diameter (zucchini type medium (Opal) large varieties) ratio length/maximum diameter (zucchini medium (Cora) medium type varieties) blossom end (zucchini and neck type pointed rounded varieties) grooves present absent depth of grooves very shallow (Spooktacular) ribs present present protrusion of ribs very weak (Leda, Tivoli) weak main color of skin (excluding color of dots, partly white and partly green patches, stripes and bands) green intensity of green color of skin (excluding very light very light color of dots, patches, stripes and bands; varieties with green color or skin) stripes in grooves absent (Baby Bear, Jack absent Be Little) color of ribs compared to main color of same (Grey Zucchini) same skin (excluding color of dots, patches, stripes and bands) dots present (Gold Rush, present Table Queen) size of main dots small (Ambassador) large secondary green color between ribs absent (Grey Zucchini, (excluding dots) Small Sugar) warts on skin absent absent size of flower scar medium (Spidi) medium length of peduncle very long (Western long Sunrise) color of peduncle partly yellow and partly green green (Autumn Gold) intensity of green color of peduncle light (Blanchini) medium mottling of peduncle present (Elite) present ripe fruit: main color of skin (excluding yellow (Gold Rush) yellow color of mottles, patches, stripes and bands) ripe fruit: intensity of main color of skin medium dark (only yellow and orange) ripe fruit: secondary color of skin cream cream (excluding color of mottles, patches, stripes and bands) ripe fruit: green hue (only white and absent (Jedida) absent cream) ripe fruit: color of flesh yellow (Sunburst, yellow Vegetable Spaghetti) ripe fruit: lignified rind present (Elite, Little Gem, present Scallopini, Yellow Summer Crookneck) ripe fruit: structure of flesh fibrous (Vegetable fibrous Spaghetti) type rounded zucchini if zucchini type: patches, stripes or bands absent (Ambassador, in ripe stage Black Jack) 13. Rind average thickness at medial 2.3 mm 3.1 mm toughness hard hard overall color pattern regular irregular main or ground color yellowish-gray creamy-yellow main or ground color (RHS Color Chart) 162B 20C color of streaks greenish-gray yellowish-orange color of streaks (RHS Color Chart) 189B 16A pattern of streaks not specific not specific color of spots yellowish-buff creamy-brown color of spots (RHS Color Chart) 160C 162C pattern of spots not specific not specific 14. Flesh average blossom end thickness 11.9 mm 20.8 mm average medial thickness 43.4 mm 42.1 mm average stem end thickness 19.1 mm 26.8 mm texture (fine, granular, lumpy or stringy) lumpy stringy texture (soft, firm or brittle) soft firm texture (dry, moist or juicy) juicy moist flavor insipid insipid quality good good color whitish-cream cream color (RHS Color Chart) 155D 155C 15. Seed Cavity average length 23 cm 26 cm average width 7.3 cm 9.9 cm location apex only conforms to fruit shape placental tissues abundant abundant center core inconspicuous prominent 16. Fruit Stalks average length 3.4 cm 3.2 cm average diameter 1.2 cm 2.4 cm cross-section shape irregular irregular twisting not twisted not twisted tapering tapered not tapered straightness slightly curved straight texture hard spongy furrows deep deep surface rough spiny attachment end slightly expanded not expanded detaches with difficulty easily color light green medium green color (RHS Color Chart) 143A 144B 17. s average length 14.6 mm 16.1 mm average width 8 mm 9.1 mm average thickness 2 mm 2.5 mm face surface smooth smooth color cream cream color (RHS Color Chart) 162C 162C luster dull dull margin straight straight margin edge rounded rounded separation from pulp difficult easy average grams per 100 seeds 8.2 gm 15 gm average number of seeds per fruit 134 238 seed coat normal normal size large large shape broad elliptic (Baby Boo) broad elliptic hull present (Baby Bear, Elite) present appearance of hull fully developed (Elite) rudimentary color of hull cream (De Nice à Fruit cream Rond) *These are typical values. Values may vary due to environment. Other values that are substantially equivalent are also within the scope of the invention. indicates data missing or illegible when filed - One aspect of the current invention concerns methods for producing seed of squash hybrid SV8575YL involving crossing squash lines ZGN-EH-08-195 and LEB-48-4100. Alternatively, in other embodiments of the invention, hybrid SV8575YL, line ZGN-EH-08-195, or LEB-48-4100 may be crossed with itself or with any second plant. Such methods can be used for propagation of hybrid SV8575YL and/or the squash lines ZGN-EH-08-195 and LEB-48-4100, or can be used to produce plants that are derived from hybrid SV8575YL and/or the squash lines ZGN-EH-08-195 and LEB-48-4100. Plants derived from hybrid SV8575YL and/or the squash lines ZGN-EH-08-195 and LEB-48-4100 may be used, in certain embodiments, for the development of new squash varieties.
- The development of new varieties using one or more starting varieties is well known in the art. In accordance with the invention, novel varieties may be created by crossing hybrid SV8575YL followed by multiple generations of breeding according to such well known methods. New varieties may be created by crossing with any second plant. In selecting such a second plant to cross for the purpose of developing novel lines, it may be desired to choose those plants which either themselves exhibit one or more selected desirable characteristics or which exhibit the desired characteristic(s) when in hybrid combination. Once initial crosses have been made, inbreeding and selection take place to produce new varieties. For development of a uniform line, often five or more generations of selfing and selection are involved.
- Uniform lines of new varieties may also be developed by way of double-haploids. This technique allows the creation of true breeding lines without the need for multiple generations of selfing and selection. In this manner true breeding lines can be produced in as little as one generation. Haploid embryos may be produced from microspores, pollen, anther cultures, or ovary cultures. The haploid embryos may then be doubled autonomously, or by chemical treatments (e.g. colchicine treatment). Alternatively, haploid embryos may be grown into haploid plants and treated to induce chromosome doubling. In either case, fertile homozygous plants are obtained. In accordance with the invention, any of such techniques may be used in connection with a plant of the invention and progeny thereof to achieve a homozygous line.
- Backcrossing can also be used to improve an inbred plant. Backcrossing transfers a specific desirable trait from one inbred or non-inbred source to an inbred that lacks that trait. This can be accomplished, for example, by first crossing a superior inbred (A) (recurrent parent) to a donor inbred (non-recurrent parent), which carries the appropriate locus or loci for the trait in question. The progeny of this cross are then mated back to the superior recurrent parent (A) followed by selection in the resultant progeny for the desired trait to be transferred from the non-recurrent parent. After five or more backcross generations with selection for the desired trait, the progeny have the characteristic being transferred, but are like the superior parent for most or almost all other loci. The last backcross generation would be selfed to give pure breeding progeny for the trait being transferred.
- The plants of the present invention are particularly well suited for the development of new lines based on the elite nature of the genetic background of the plants. In selecting a second plant to cross with SV8575YL and/or squash lines ZGN-EH-08-195 and LEB-48-4100 for the purpose of developing novel squash lines, it will typically be preferred to choose those plants which either themselves exhibit one or more selected desirable characteristics or which exhibit the desired characteristic(s) when in hybrid combination. Examples of desirable traits may include, in specific embodiments, high seed yield, high seed germination, seedling vigor, high fruit yield, disease tolerance or resistance, and adaptability for soil and climate conditions. Consumer-driven traits, such as a fruit shape, color, texture, and taste are other examples of traits that may be incorporated into new lines of squash plants developed by this invention.
- As described above, hybrid SV8575YL exhibits desirable traits, as conferred by squash lines ZGN-EH-08-195 and LEB-48-4100. The performance characteristics of hybrid SV8575YL and squash lines ZGN-EH-08-195 and LEB-48-4100 were the subject of an objective analysis of the performance traits relative to other varieties. The results of the analysis are presented below in Tables 4, 5, and
FIGS. 1 and 2 . -
TABLE 4 Performance Data: Jordan Upland Station Spring early trial 2013 (12 harvests) Plant Vigor & Fruit Fruit Variety Size Uniformity Color Overall Comments SV8655YL 5 2 2 1 Fruits are darker. SV8575YL 3 2 3 1 Some curved fruits. Dareen 3 1 2 1 Healthy plants. PS 719 1 1 1 1 Healthy plants. Revera 1 3 1 3 Open vigorous plant, medium fruit color. Amjad 5 3 3 3 very open aerated plant habit. Eskenderany 5 2 3 3 Open plant. -
TABLE 5 Performance Data: Jordan Upland Station Spring second trial 2013 (10 harvests) Plant Vigor & Fruit Fruit Fruit per Variety Size Uniformity Color Plant Comments SV8655YL 3 4 1 34 Fruits are darker. SV8575YL 1 2 1 57 Some curved fruits. Dareen 3 3 1 40 Healthy plants. PS 719 2 4 1 42 Healthy plants. Revera 1 3 3 33 Open vigorous plant, medium fruit color. Amjad 3 4 1 52 very open areated plant habit. Eskenderany 4 3 1 55 High silvering, Fan leaves
Trait values are measured on a 1-9 scale, where 1 is considered ideal, 5 is acceptable, and 9 is unacceptable, by local market standards. - In certain aspects of the invention, plants described herein are provided modified to include at least a first desired heritable trait. Such plants may, in one embodiment, be developed by a plant breeding technique called backcrossing, wherein essentially all of the morphological and physiological characteristics of a variety are recovered in addition to a genetic locus transferred into the plant via the backcrossing technique. The term single locus converted plant as used herein refers to those squash plants which are developed by a plant breeding technique called backcrossing, wherein essentially all of the morphological and physiological characteristics of a variety are recovered in addition to the single locus transferred into the variety via the backcrossing technique. By essentially all of the morphological and physiological characteristics, it is meant that the characteristics of a plant are recovered that are otherwise present when compared in the same environment, other than an occasional variant trait that might arise during backcrossing or direct introduction of a transgene.
- Backcrossing methods can be used with the present invention to improve or introduce a characteristic into the present variety. The parental squash plant which contributes the locus for the desired characteristic is termed the nonrecurrent or donor parent. This terminology refers to the fact that the nonrecurrent parent is used one time in the backcross protocol and therefore does not recur. The parental squash plant to which the locus or loci from the nonrecurrent parent are transferred is known as the recurrent parent as it is used for several rounds in the backcrossing protocol.
- In a typical backcross protocol, the original variety of interest (recurrent parent) is crossed to a second variety (nonrecurrent parent) that carries the single locus of interest to be transferred. The resulting progeny from this cross are then crossed again to the recurrent parent and the process is repeated until a squash plant is obtained wherein essentially all of the morphological and physiological characteristics of the recurrent parent are recovered in the converted plant, in addition to the single transferred locus from the nonrecurrent parent.
- The selection of a suitable recurrent parent is an important step for a successful backcrossing procedure. The goal of a backcross protocol is to alter or substitute a single trait or characteristic in the original variety. To accomplish this, a single locus of the recurrent variety is modified or substituted with the desired locus from the nonrecurrent parent, while retaining essentially all of the rest of the desired genetic, and therefore the desired physiological and morphological constitution of the original variety. The choice of the particular nonrecurrent parent will depend on the purpose of the backcross; one of the major purposes is to add some commercially desirable trait to the plant. The exact backcrossing protocol will depend on the characteristic or trait being altered and the genetic distance between the recurrent and nonrecurrent parents. Although backcrossing methods are simplified when the characteristic being transferred is a dominant allele, a recessive allele, or an additive allele (between recessive and dominant), may also be transferred. In this instance it may be necessary to introduce a test of the progeny to determine if the desired characteristic has been successfully transferred.
- In one embodiment, progeny squash plants of a backcross in which a plant described herein is the recurrent parent comprise (i) the desired trait from the non-recurrent parent and (ii) all of the physiological and morphological characteristics of squash the recurrent parent as determined at the 5% significance level when grown in the same environmental conditions.
- New varieties can also be developed from more than two parents. The technique, known as modified backcrossing, uses different recurrent parents during the backcrossing. Modified backcrossing may be used to replace the original recurrent parent with a variety having certain more desirable characteristics or multiple parents may be used to obtain different desirable characteristics from each.
- With the development of molecular markers associated with particular traits, it is possible to add additional traits into an established germ line, such as represented here, with the end result being substantially the same base germplasm with the addition of a new trait or traits. Molecular breeding, as described in Moose and Mumm, 2008 (Plant Physiology, 147: 969-977), for example, and elsewhere, provides a mechanism for integrating single or multiple traits or QTL into an elite line. This molecular breeding-facilitated movement of a trait or traits into an elite line may encompass incorporation of a particular genomic fragment associated with a particular trait of interest into the elite line by the mechanism of identification of the integrated genomic fragment with the use of flanking or associated marker assays. In the embodiment represented here, one, two, three or four genomic loci, for example, may be integrated into an elite line via this methodology. When this elite line containing the additional loci is further crossed with another parental elite line to produce hybrid offspring, it is possible to then incorporate at least eight separate additional loci into the hybrid. These additional loci may confer, for example, such traits as a disease resistance or a fruit quality trait. In one embodiment, each locus may confer a separate trait. In another embodiment, loci may need to be homozygous and exist in each parent line to confer a trait in the hybrid. In yet another embodiment, multiple loci may be combined to confer a single robust phenotype of a desired trait.
- Many single locus traits have been identified that are not regularly selected for in the development of a new inbred but that can be improved by backcrossing techniques. Single locus traits may or may not be transgenic; examples of these traits include, but are not limited to, herbicide resistance, resistance to bacterial, fungal, or viral disease, insect resistance, modified fatty acid or carbohydrate metabolism, and altered nutritional quality. These comprise genes generally inherited through the nucleus.
- Direct selection may be applied where the single locus acts as a dominant trait. For this selection process, the progeny of the initial cross are assayed for viral resistance and/or the presence of the corresponding gene prior to the backcrossing. Selection eliminates any plants that do not have the desired gene and resistance trait, and only those plants that have the trait are used in the subsequent backcross. This process is then repeated for all additional backcross generations.
- Selection of squash plants for breeding is not necessarily dependent on the phenotype of a plant and instead can be based on genetic investigations. For example, one can utilize a suitable genetic marker which is closely genetically linked to a trait of interest. One of these markers can be used to identify the presence or absence of a trait in the offspring of a particular cross, and can be used in selection of progeny for continued breeding. This technique is commonly referred to as marker assisted selection. Any other type of genetic marker or other assay which is able to identify the relative presence or absence of a trait of interest in a plant can also be useful for breeding purposes. Procedures for marker assisted selection are well known in the art. Such methods will be of particular utility in the case of recessive traits and variable phenotypes, or where conventional assays may be more expensive, time consuming or otherwise disadvantageous. Types of genetic markers which could be used in accordance with the invention include, but are not necessarily limited to, Simple Sequence Length Polymorphisms (SSLPs) (Williams et al., Nucleic Acids Res., 1 8:6531-6535, 1990), Randomly Amplified Polymorphic DNAs (RAPDs), DNA Amplification Fingerprinting (DAF), Sequence Characterized Amplified Regions (SCARs), Arbitrary Primed Polymerase Chain Reaction (AP-PCR), Amplified Fragment Length Polymorphisms (AFLPs) (EP 534 858, specifically incorporated herein by reference in its entirety), and Single Nucleotide Polymorphisms (SNPs) (Wang et al., Science, 280:1077-1082, 1998).
- Many useful traits that can be introduced by backcrossing, as well as directly into a plant, are those which are introduced by genetic transformation techniques. Genetic transformation may therefore be used to insert a selected transgene into a plant of the invention or may, alternatively, be used for the preparation of transgenes which can be introduced by backcrossing. Methods for the transformation of plants that are well known to those of skill in the art and applicable to many crop species include, but are not limited to, electroporation, microprojectile bombardment, Agrobacterium-mediated transformation and direct DNA uptake by protoplasts.
- To effect transformation by electroporation, one may employ either friable tissues, such as a suspension culture of cells or embryogenic callus or alternatively one may transform immature embryos or other organized tissue directly. In this technique, one would partially degrade the cell walls of the chosen cells by exposing them to pectin-degrading enzymes (pectolyases) or mechanically wound tissues in a controlled manner.
- An efficient method for delivering transforming DNA segments to plant cells is microprojectile bombardment. In this method, particles are coated with nucleic acids and delivered into cells by a propelling force. Exemplary particles include those comprised of tungsten, platinum, and preferably, gold. For the bombardment, cells in suspension are concentrated on filters or solid culture medium. Alternatively, immature embryos or other target cells may be arranged on solid culture medium. The cells to be bombarded are positioned at an appropriate distance below the macroprojectile stopping plate.
- An illustrative embodiment of a method for delivering DNA into plant cells by acceleration is the Biolistics Particle Delivery System, which can be used to propel particles coated with DNA or cells through a screen, such as a stainless steel or Nytex screen, onto a surface covered with target cells. The screen disperses the particles so that they are not delivered to the recipient cells in large aggregates. Microprojectile bombardment techniques are widely applicable, and may be used to transform virtually any plant species.
- Agrobacterium-mediated transfer is another widely applicable system for introducing gene loci into plant cells. An advantage of the technique is that DNA can be introduced into whole plant tissues, thereby bypassing the need for regeneration of an intact plant from a protoplast. Modern Agrobacterium transformation vectors are capable of replication in E. coli as well as Agrobacterium, allowing for convenient manipulations (Klee et al., Bio-Technology, 3(7):637-642, 1985). Moreover, recent technological advances in vectors for Agrobacterium-mediated gene transfer have improved the arrangement of genes and restriction sites in the vectors to facilitate the construction of vectors capable of expressing various polypeptide coding genes. The vectors described have convenient multi-linker regions flanked by a promoter and a polyadenylation site for direct expression of inserted polypeptide coding genes. Additionally, Agrobacterium containing both armed and disarmed Ti genes can be used for transformation.
- In those plant strains where Agrobacterium-mediated transformation is efficient, it is the method of choice because of the facile and defined nature of the gene locus transfer. The use of Agrobacterium-mediated plant integrating vectors to introduce DNA into plant cells is well known in the art (Fraley et al., Bio/Technology, 3:629-635, 1985; U.S. Pat. No. 5,563,055).
- Transformation of plant protoplasts also can be achieved using methods based on calcium phosphate precipitation, polyethylene glycol treatment, electroporation, and combinations of these treatments (see, e.g., Potrykus et al., Mol. Gen. Genet., 199:183-188, 1985; Omirulleh et al., Plant Mol. Biol., 21(3):415-428, 1993; Fromm et al., Nature, 312:791-793, 1986; Uchimiya et al., Mol. Gen. Genet., 204:204, 1986; Marcotte et al., Nature, 335:454, 1988). Transformation of plants and expression of foreign genetic elements is exemplified in Choi et al. (Plant Cell Rep., 13: 344-348, 1994), and Ellul et al. (Theor. Appl. Genet., 107:462-469, 2003).
- A number of promoters have utility for plant gene expression for any gene of interest including but not limited to selectable markers, scoreable markers, genes for pest tolerance, disease resistance, nutritional enhancements and any other gene of agronomic interest. Examples of constitutive promoters useful for plant gene expression include, but are not limited to, the cauliflower mosaic virus (CaMV) P-35S promoter, which confers constitutive, high-level expression in most plant tissues (see, e.g., Odel et al., Nature, 313:810, 1985), including in monocots (see, e.g., Dekeyser et al., Plant Cell, 2:591, 1990; Terada and Shimamoto, Mol. Gen. Genet., 220:389, 1990); a tandemly duplicated version of the CaMV 35S promoter, the enhanced 35S promoter (P-e35S); 1 the nopaline synthase promoter (An et al., Plant Physiol., 88:547, 1988); the octopine synthase promoter (Fromm et al., Plant Cell, 1:977, 1989); and the figwort mosaic virus (P-FMV) promoter as described in U.S. Pat. No. 5,378,619 and an enhanced version of the FMV promoter (P-eFMV) where the promoter sequence of P-FMV is duplicated in tandem; the cauliflower mosaic virus 19S promoter; a sugarcane bacilliform virus promoter; a commelina yellow mottle virus promoter; and other plant DNA virus promoters known to express in plant cells.
- A variety of plant gene promoters that are regulated in response to environmental, hormonal, chemical, and/or developmental signals can also be used for expression of an operably linked gene in plant cells, including promoters regulated by (1) heat (Callis et al., Plant Physiol., 88:965, 1988), (2) light (e.g., pea rbcS-3A promoter, Kuhlemeier et al., Plant Cell, 1:471, 1989; maize rbcS promoter, Schaffner and Sheen, Plant Cell, 3:997, 1991; or chlorophyll a/b-binding protein promoter, Simpson et al., EMBO J., 4:2723, 1985), (3) hormones, such as abscisic acid (Marcotte et al., Plant Cell, 1:969, 1989), (4) wounding (e.g., wunl, Siebertz et al., Plant Cell, 1:961, 1989); or (5) chemicals such as methyl jasmonate, salicylic acid, or Safener. It may also be advantageous to employ organ-specific promoters (e.g., Roshal et al., EMBO J., 6:1155, 1987; Schernthaner et al., EMBO J., 7:1249, 1988; Bustos et al., Plant Cell, 1:839, 1989).
- Exemplary nucleic acids which may be introduced to plants of this invention include, for example, DNA sequences or genes from another species, or even genes or sequences which originate with or are present in the same species, but are incorporated into recipient cells by genetic engineering methods rather than classical reproduction or breeding techniques. However, the term “exogenous” is also intended to refer to genes that are not normally present in the cell being transformed, or perhaps simply not present in the form, structure, etc., as found in the transforming DNA segment or gene, or genes which are normally present and that one desires to express in a manner that differs from the natural expression pattern, e.g., to over-express. Thus, the term “exogenous” gene or DNA is intended to refer to any gene or DNA segment that is introduced into a recipient cell, regardless of whether a similar gene may already be present in such a cell. The type of DNA included in the exogenous DNA can include DNA which is already present in the plant cell, DNA from another plant, DNA from a different organism, or a DNA generated externally, such as a DNA sequence containing an antisense message of a gene, or a DNA sequence encoding a synthetic or modified version of a gene.
- Many hundreds if not thousands of different genes are known and could potentially be introduced into a squash plant according to the invention. Non-limiting examples of particular genes and corresponding phenotypes one may choose to introduce into a squash plant include one or more genes for insect tolerance, such as a Bacillus thuringiensis (B.t.) gene, pest tolerance such as genes for fungal disease control, herbicide tolerance such as genes conferring glyphosate tolerance, and genes for quality improvements such as yield, nutritional enhancements, environmental or stress tolerances, or any desirable changes in plant physiology, growth, development, morphology or plant product(s). For example, structural genes would include any gene that confers insect tolerance including but not limited to a Bacillus insect control protein gene as described in WO 99/31248, herein incorporated by reference in its entirety, U.S. Pat. No. 5,689,052, herein incorporated by reference in its entirety, U.S. Pat. Nos. 5,500,365 and 5,880,275, herein incorporated by reference in their entirety. In another embodiment, the structural gene can confer tolerance to the herbicide glyphosate as conferred by genes including, but not limited to Agrobacterium strain CP4 glyphosate resistant EPSPS gene (aroA:CP4) as described in U.S. Pat. No. 5,633,435, herein incorporated by reference in its entirety, or glyphosate oxidoreductase gene (GOX) as described in U.S. Pat. No. 5,463,175, herein incorporated by reference in its entirety.
- Alternatively, the DNA coding sequences can affect these phenotypes by encoding a non-translatable RNA molecule that causes the targeted inhibition of expression of an endogenous gene, for example via antisense- or cosuppression-mediated mechanisms (see, for example, Bird et al., Biotech. Gen. Engin. Rev., 9:207, 1991). The RNA could also be a catalytic RNA molecule (i.e., a ribozyme) engineered to cleave a desired endogenous mRNA product (see for example, Gibson and Shillito, Mol. Biotech., 7:125, 1997). Thus, any gene which produces a protein or mRNA which expresses a phenotype or morphology change of interest is useful for the practice of the present invention.
- In the description and tables herein, a number of terms are used. In order to provide a clear and consistent understanding of the specification and claims, the following definitions are provided:
- Allele: Any of one or more alternative forms of a gene locus, all of which alleles relate to one trait or characteristic. In a diploid cell or organism, the two alleles of a given gene occupy corresponding loci on a pair of homologous chromosomes.
- Backcrossing: A process in which a breeder repeatedly crosses hybrid progeny, for example a first generation hybrid (F1), back to one of the parents of the hybrid progeny. Backcrossing can be used to introduce one or more single locus conversions from one genetic background into another.
- Crossing: The mating of two parent plants.
- Cross-pollination: Fertilization by the union of two gametes from different plants.
- Diploid: A cell or organism having two sets of chromosomes.
- Emasculate: The removal of plant male sex organs or the inactivation of the organs with a cytoplasmic or nuclear genetic factor or a chemical agent conferring male sterility.
- Enzymes: Molecules which can act as catalysts in biological reactions.
- F1 Hybrid: The first generation progeny of the cross of two nonisogenic plants.
- Genotype: The genetic constitution of a cell or organism.
- Haploid: A cell or organism having one set of the two sets of chromosomes in a diploid.
- Linkage: A phenomenon wherein alleles on the same chromosome tend to segregate together more often than expected by chance if their transmission was independent.
- Marker: A readily detectable phenotype, preferably inherited in codominant fashion (both alleles at a locus in a diploid heterozygote are readily detectable), with no environmental variance component, i.e., heritability of 1.
- Phenotype: The detectable characteristics of a cell or organism, which characteristics are the manifestation of gene expression.
- Quantitative Trait Loci (QTL): Quantitative trait loci (QTL) refer to genetic loci that control to some degree numerically representable traits that are usually continuously distributed.
- Resistance: As used herein, the terms “resistance” and “tolerance” are used interchangeably to describe plants that show no symptoms to a specified biotic pest, pathogen, abiotic influence or environmental condition. These terms are also used to describe plants showing some symptoms but that are still able to produce marketable product with an acceptable yield. Some plants that are referred to as resistant or tolerant are only so in the sense that they may still produce a crop, even though the plants are stunted and the yield is reduced.
- Regeneration: The development of a plant from tissue culture.
- Royal Horticultural Society (RHS) color chart value: The RHS color chart is a standardized reference which allows accurate identification of any color. A color's designation on the chart describes its hue, brightness and saturation. A color is precisely named by the RHS color chart by identifying the group name, sheet number and letter, e.g., Yellow-Orange Group 19A or Red Group 41B.
- Self-pollination: The transfer of pollen from the anther to the stigma of the same plant.
- Single Locus Converted (Conversion) Plant: Plants which are developed by a plant breeding technique called backcrossing, wherein essentially all of the morphological and physiological characteristics of a squash variety are recovered in addition to the characteristics of the single locus transferred into the variety via the backcrossing technique and/or by genetic transformation.
- Substantially Equivalent: A characteristic that, when compared, does not show a statistically significant difference (e.g., p=0.05) from the mean.
- Tissue Culture: A composition comprising isolated cells of the same or a different type or a collection of such cells organized into parts of a plant.
- Transgene: A genetic locus comprising a sequence which has been introduced into the genome of a squash plant by transformation.
- A deposit of squash lines ZGN-EH-08-195 and LEB-48-4100, disclosed above and recited in the claims, has been made with the American Type Culture Collection (ATCC), 10801 University Blvd., Manassas, Va. 20110-2209. The dates of deposits were Dec. 10, 2013, and Sep. 23, 2010, respectively. The accession numbers for those deposited seeds of squash lines ZGN-EH-08-195 and LEB-48-4100 are ATCC Accession No. PTA-120757 and ATCC Accession No. PTA-11352, respectively. Upon issuance of a patent, all restrictions upon the deposits will be removed, and the deposits are intended to meet all of the requirements of 37 C.F.R. §1.801-1.809. The deposits will be maintained in the depository for a period of 30 years, or 5 years after the last request, or for the effective life of the patent, whichever is longer, and will be replaced if necessary during that period.
- Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity and understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the invention, as limited only by the scope of the appended claims.
- All references cited herein are hereby expressly incorporated herein by reference.
Claims (35)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/179,520 US9578822B2 (en) | 2014-02-12 | 2014-02-12 | Squash hybrid SV8575YL and parents thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/179,520 US9578822B2 (en) | 2014-02-12 | 2014-02-12 | Squash hybrid SV8575YL and parents thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
US20150223421A1 true US20150223421A1 (en) | 2015-08-13 |
US9578822B2 US9578822B2 (en) | 2017-02-28 |
Family
ID=53773751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/179,520 Active 2035-02-07 US9578822B2 (en) | 2014-02-12 | 2014-02-12 | Squash hybrid SV8575YL and parents thereof |
Country Status (1)
Country | Link |
---|---|
US (1) | US9578822B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9510528B2 (en) | 2013-10-02 | 2016-12-06 | Seminis Vegetable Seeds, Inc. | Squash hybrid SV8655YL and parents thereof |
US9717194B2 (en) | 2015-01-20 | 2017-08-01 | Seminis Vegetable Seeds, Inc. | Squash hybrid SV0914YG and parents thereof |
US9737000B2 (en) | 2015-01-15 | 2017-08-22 | Seminis Vegetable Seeds, Inc. | Squash hybrid SV0143YG and parents thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7432420B2 (en) * | 2005-09-07 | 2008-10-07 | Seminis Vegetable Seeds, Inc. | Squash with improved disease resistance |
US8115065B2 (en) * | 2007-08-29 | 2012-02-14 | Seminis Vegetable Seeds, Inc. | Squash line YCN 130-1053T |
US8119863B2 (en) * | 2007-08-29 | 2012-02-21 | Seminis Vegetable Seeds, Inc. | Squash line ZGN 130-1041T |
US20120137380A1 (en) * | 2010-11-29 | 2012-05-31 | Seminis Vegetable Seeds, Inc. | Squash hybrid px 13056719 |
US8552258B2 (en) * | 2010-08-30 | 2013-10-08 | Seminis Vegetable Seeds, Inc. | Squash hybrid RX 04858033 |
US20140157447A1 (en) * | 2012-11-30 | 2014-06-05 | Seminis Vegetable Seeds, Inc. | Squash hybrid sv0153yl and parents thereof |
US20140157449A1 (en) * | 2012-11-30 | 2014-06-05 | Seminis Vegetable Seeds, Inc. | Squash hybrid sv0201yl and parents thereof |
US20150020230A1 (en) * | 2013-07-15 | 2015-01-15 | Seminis Vegetable Seeds, Inc. | Squash hybrid sv0116yl and parents thereof |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080313755A1 (en) | 2007-06-12 | 2008-12-18 | Seminis Vegetable Seeds, Inc. | Squash Line ZGN 130-1028 |
US8124849B2 (en) | 2007-08-29 | 2012-02-28 | Seminis Vegetable Seeds, Inc. | Squash line YPC 130-1035T |
US8399742B2 (en) | 2010-04-21 | 2013-03-19 | Seminis Vegetable Seeds, Inc. | Squash hybrid PX 13067464 |
US8835721B2 (en) | 2011-06-15 | 2014-09-16 | Seminis Vegetable Seeds, Inc. | Broccoli hybrid PX 05181808 and parents thereof |
US9313963B2 (en) | 2011-08-25 | 2016-04-19 | Seminis Vegetable Seeds, Inc. | Squash hybrid EX 04858026 and parents thereof |
US9313964B2 (en) | 2011-08-30 | 2016-04-19 | Seminis Vegetable Seeds, Inc. | Squash hybrid EX 13056682 and parents thereof |
US9125354B2 (en) | 2012-01-31 | 2015-09-08 | Seminis Vegetable Seeds, Inc. | Squash hybrid LEBEHH9044 and parents thereof |
US9125355B2 (en) | 2012-05-18 | 2015-09-08 | Seminis Vegetable Seeds, Inc. | Squash hybrid ZGNEHH6009 and parents thereof |
US9510528B2 (en) | 2013-10-02 | 2016-12-06 | Seminis Vegetable Seeds, Inc. | Squash hybrid SV8655YL and parents thereof |
-
2014
- 2014-02-12 US US14/179,520 patent/US9578822B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7432420B2 (en) * | 2005-09-07 | 2008-10-07 | Seminis Vegetable Seeds, Inc. | Squash with improved disease resistance |
US8115065B2 (en) * | 2007-08-29 | 2012-02-14 | Seminis Vegetable Seeds, Inc. | Squash line YCN 130-1053T |
US8119863B2 (en) * | 2007-08-29 | 2012-02-21 | Seminis Vegetable Seeds, Inc. | Squash line ZGN 130-1041T |
US8552258B2 (en) * | 2010-08-30 | 2013-10-08 | Seminis Vegetable Seeds, Inc. | Squash hybrid RX 04858033 |
US20120137380A1 (en) * | 2010-11-29 | 2012-05-31 | Seminis Vegetable Seeds, Inc. | Squash hybrid px 13056719 |
US20140157447A1 (en) * | 2012-11-30 | 2014-06-05 | Seminis Vegetable Seeds, Inc. | Squash hybrid sv0153yl and parents thereof |
US20140157449A1 (en) * | 2012-11-30 | 2014-06-05 | Seminis Vegetable Seeds, Inc. | Squash hybrid sv0201yl and parents thereof |
US20150020230A1 (en) * | 2013-07-15 | 2015-01-15 | Seminis Vegetable Seeds, Inc. | Squash hybrid sv0116yl and parents thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9510528B2 (en) | 2013-10-02 | 2016-12-06 | Seminis Vegetable Seeds, Inc. | Squash hybrid SV8655YL and parents thereof |
US9737000B2 (en) | 2015-01-15 | 2017-08-22 | Seminis Vegetable Seeds, Inc. | Squash hybrid SV0143YG and parents thereof |
US9717194B2 (en) | 2015-01-20 | 2017-08-01 | Seminis Vegetable Seeds, Inc. | Squash hybrid SV0914YG and parents thereof |
Also Published As
Publication number | Publication date |
---|---|
US9578822B2 (en) | 2017-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9497910B2 (en) | Squash hybrid SV0116YL and parents thereof | |
US9474219B2 (en) | Squash hybrid SV0201YL and parents thereof | |
US8552259B2 (en) | Squash hybrid PX 13056719 | |
US9357720B2 (en) | Squash hybrid SV0153YL and parents thereof | |
US8552258B2 (en) | Squash hybrid RX 04858033 | |
US8399742B2 (en) | Squash hybrid PX 13067464 | |
US9313963B2 (en) | Squash hybrid EX 04858026 and parents thereof | |
US9125355B2 (en) | Squash hybrid ZGNEHH6009 and parents thereof | |
US9313964B2 (en) | Squash hybrid EX 13056682 and parents thereof | |
US9357719B2 (en) | Squash hybrid SV0104YL and parents thereof | |
US9125354B2 (en) | Squash hybrid LEBEHH9044 and parents thereof | |
US9578823B2 (en) | Squash hybrid SV9043YG | |
US9510528B2 (en) | Squash hybrid SV8655YL and parents thereof | |
US9357721B2 (en) | Squash hybrid SV0109YL and parents thereof | |
US9717194B2 (en) | Squash hybrid SV0914YG and parents thereof | |
US9578822B2 (en) | Squash hybrid SV8575YL and parents thereof | |
AU2015210473B2 (en) | Squash hybrid sv3451yg and parents thereof | |
US9717193B2 (en) | Squash hybrid SV9054YG and parents thereof | |
US20120227121A1 (en) | Pumpkin hybrid pxt 13067440 iii | |
US9675017B2 (en) | Squash hybrid SV0474YG and parents thereof | |
US20150020229A1 (en) | Watermelon variety tcs-146-1901 | |
US9313966B2 (en) | Zucchini hybrid SV9480YG and parents thereof | |
US9737000B2 (en) | Squash hybrid SV0143YG and parents thereof | |
US9313965B2 (en) | Zucchini hybrid SV9441YG and parents thereof | |
US10064353B2 (en) | Squash hybrid SV1118YG and parents thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SEMINIS VEGETABLE SEEDS, INC., MISSOURI Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JOHNSON, WILLIAM CLYDE;REEL/FRAME:032474/0030 Effective date: 20140304 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |