US20150208038A1 - Sighting device - Google Patents

Sighting device Download PDF

Info

Publication number
US20150208038A1
US20150208038A1 US14/422,001 US201214422001A US2015208038A1 US 20150208038 A1 US20150208038 A1 US 20150208038A1 US 201214422001 A US201214422001 A US 201214422001A US 2015208038 A1 US2015208038 A1 US 2015208038A1
Authority
US
United States
Prior art keywords
encoder
sighting device
reticule
zooming
display means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/422,001
Other versions
US9706174B2 (en
Inventor
Coskun Ayyildiz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aselsan Elektronik Sanayi ve Ticaret AS
Original Assignee
Aselsan Elektronik Sanayi ve Ticaret AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aselsan Elektronik Sanayi ve Ticaret AS filed Critical Aselsan Elektronik Sanayi ve Ticaret AS
Assigned to ASELSAN ELEKTRONIK SANAYI VE TICARET ANONIM SIRKETI reassignment ASELSAN ELEKTRONIK SANAYI VE TICARET ANONIM SIRKETI ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AYYILDIZ, COSKUN
Publication of US20150208038A1 publication Critical patent/US20150208038A1/en
Application granted granted Critical
Publication of US9706174B2 publication Critical patent/US9706174B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G1/00Sighting devices
    • F41G1/38Telescopic sights specially adapted for smallarms or ordnance; Supports or mountings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G1/00Sighting devices
    • F41G1/46Sighting devices for particular applications
    • F41G1/473Sighting devices for particular applications for lead-indicating or range-finding, e.g. for use with rifles or shotguns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming
    • H04N5/2251
    • H04N5/23293
    • H04N5/23296

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Telescopes (AREA)

Abstract

The present invention relates to a sighting device (1) providing an automatically updated reticule. The control unit (4) acquires the output level of the encoder (22) and calculates the expected distance between the dots of the reticule accordingly. The control unit (4) calculates the expected distance between the dots of the reticule and draws the reticule generated for that specific zoom level on the display means (3).

Description

    FIELD OF THE INVENTION
  • The present invention relates to a sighting device providing an automatically updated mil-dot reticule.
  • BACKGROUND OF THE INVENTION
  • In order to aim at far away targets, scopes are usually utilized in firearms. These scopes help magnify the view in their sight in order to give a clearer vision of the target. However, this magnification brings along a concession of accuracy. As the scope is used for aiming at far away targets, even a single millimeter deviation of the barrel causes the bullet to deviate dramatically when it reaches the target. In order to increase accuracy in aiming, reticules are utilized. Reticules come in handy when aiming at a far away target as they give a very good idea on how the barrel of the firearm is pointed. However, even the reticules cannot help to aim at very far away targets. When fired, a bullet's trajectory will be affected by the gravity and wind. Thusly, for long flight times, the bullet will noticeably deviate from the center of the reticule. In order to compensate the effect of gravity, the center of the reticule must be shifted upwards from the target aimed.
  • When using crosshair reticules, the amount of shift in order to compensate the effect of gravity cannot be seen quite clearly as there are no markers, which make seeing the shifted amount possible. In order to overcome this problem, markers have been added to the reticule, which makes determining the shifting amount easier. There are numerous types of markers, one of which utilizes mil-dot.
  • Mil-dot reticule is a reticule, which utilizes small dots, which are positioned in milliradian intervals. These dots may also be utilized in estimation of the range of target. However, for a scope that has multiple zoom levels, a reticule with a fixed mil- dot interval is not useful as the area spanned by those mil-dots are different between the zoom levels.
  • There are scopes, which have separate mil-dot reticules with different separations between the mil-dots for every constant zoom level. However, for continuous zoom systems, having a separate mil-dot reticule for every single zoom level is not plausible. A different approach for the scopes with continuous zoom has to be used.
  • The United States patent document numbered U.S. Pat. No. 6,362,882 discloses a reticule projection system for video inspection apparatus.
  • The United States patent document numbered US 2005018041 discloses an electronic firearm sight, and method of operating same.
  • OBJECTS OF THE INVENTION
  • The object of the invention is to provide a sighting device utilizing continuous zoom.
  • A further object of the invention is to provide a sighting device comprising a mil-dot reticule, which is generated according to the zoom level.
  • DETAILED DESCRIPTION OF THE INVENTION
  • A sighting device in order to fulfill the objects of the present invention is illustrated in the attached figure, where:
  • FIG. 1 is the schematic representation of the sighting device.
  • Elements shown in the figures are numbered as follows:
    • 1. Sighting device
    • 2. Imaging means
    • 21. Zooming means
    • 22. Encoder
    • 3. Display means
    • 4. Control unit
  • A sighting device (1) comprises;
      • at least one imaging means (2) which acquires images from the scene to be watched comprising at least one zooming means (21) which enables the user to change the level of magnification according to users' preferences and at least one encoder (22) enabling the magnification level of the zooming means (21) to be determined,
      • at least one display means (3) which enables the user to see the scene viewed by the imaging means (2),
      • at least one control unit (4) which acquires the output level of the encoder (22), calculates the expected distance between the dots of the reticule and places the reticule over the image being displayed at the display means (3).
  • In the preferred embodiment of the invention, the zooming means (2) provide continuous zoom, meaning that the magnification level can be changed gradually instead of jumping from one predefined magnification level to another.
  • The subject matter of invention comprises at least one imaging means (2) which acquires images from the scene to be watched. User points the imaging means (2) so that a desired scene is in the field of view of the imaging means (2). The imaging means (2) comprises at least one zooming means (21). If the scene to be viewed is far away from the user and hence the sighting device (1) then the user may utilize the zooming means (21) in order to magnify the scene viewed by the imaging means (2). In the preferred embodiment of the invention, the zooming means (21) is utilized by turning a ring (zoom ring) manually or by means of a motor attached to that ring. The subject matter of invention comprises at least one encoder (22) output value of which is related to the magnification level of the zooming means (2). The encoder (22) can be coupled with either the zoom ring or the motor. If the encoder (22) is coupled with the ring, the output of the encoder (22) changes according to the change of position of the ring. If the encoder (22) is coupled with the motor, the output of the encoder (22) changes as the motor turns. The level of the magnification then can be determined using the correlation between the output value of the encoder and the magnification level. The subject matter of invention comprises at least one control unit (4), which calculates the expected distance between the dots of the reticule and places the reticule over the image being displayed at the display means (3). The control unit (4) acquires the output value and hence the value of magnification level from the encoder (22). Control unit (4) then calculates the expected value of the distance between the dots of the reticule using the acquired encoder value and the resolution of the display means (3).
  • In the preferred embodiment of the invention, the distance between the dots of the reticule is calculated as follows:
  • D = ( A × 360 ) ( 6400 × n )
  • wherein A is the horizontal resolution value of the display means (3), n is the angle of view and D is the distance between the dots of the reticule. If the horizontal resolution value of the display means (3) is given in pixels then the distance between the dots of the reticule is also in pixels. The calculations can be adapted for different length measures such as millimeters, centimeters, inches etc. However, in that case, as the unit length in an imaging device (3) is 1 pixel, a relation between the other units and pixels has to be determined. The control unit (4) calculates the expected distance between the dots of the reticule and draws the reticule generated for that specific zoom level on the display means (3).
  • As the distance between the dots and hence reticule is recalculated whenever the zoom level is changed, the user can estimate the distance accurately even if he changes the zoom level.
  • In one embodiment of the invention, encoder (22) is analog. Meaning that, for every position of the ring or motor it gives a separate analog output.
  • In another embodiment of the invention, encoder (22) is digital. In this embodiment, the output of the encoder can be either serial or parallel. If the output of the encoder (22) is parallel then the control unit (4) reads the output of the encoder (22) which is a binary number that refers to the position of the encoder (22) thus the zooming means (21). If the output of the encoder (22) is serial, then the encoder (22) gives out peaks while the zoom ring turns. That is to say, according to the structure of the encoder (22), it may give one peak per one degree, two peaks per one degree and such. However, in that case, instead of being able to determine the position of the encoder (22) right away, control unit (4) counts the number of peaks and then calculates the position of the encoder (22) thus the zooming means (21).
  • Although the present invention has been described and illustrated in detail, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the spirit and scope of the present invention being limited only by the terms of the appended claims.

Claims (16)

1. A sighting device comprising:
at least one imaging means which acquires images from the scene to be watched comprising at least one zooming means which enables the user to change the level of magnification according to users' preferences;
at least one display means which enables the user to see the scene viewed by the imaging means;
at least one control unit which calculates the shooting distance between the neighboring dots of the display means and places a reticule over the image being displayed at the display means;
wherein the imaging means further comprises at least one encoder enabling, the magnification level of the zooming means to be determined;
wherein the control unit which acquires the output level of the encoder and calculates the shooting distance between the neighboring dots of the display means according to following formula:
D = ( A × 360 ) ( 6400 × n )
wherein A is the horizontal resolution value of the display means, n is the angle of view and D is the distance between the dots of the reticule according to acquired output level of the encoder.
2. The sighting device according to claim 1, wherein the zooming means is utilized by turning a ring (zoom ring) manually or by means of a motor attached to the ring.
3. (canceled)
4. The sighting device according to claim 1, wherein the zooming means provide continuous zoom.
5. The sighting device according to claim 1, wherein the encoder is analog.
6. The sighting device according to claim 1, wherein the encoder is digital.
7. The sighting device according to claim 6, wherein the output of the encoder is a binary number that refers to the position of the encoder thus the zooming means.
8. The sighting device according to claim 6, wherein the output of the encoder is peaks which are acquired while the zoom ring tarns.
9. The sighting device according to claim 8, wherein the control unit counts the peaks outputted by the encoder and calculates the position of the encoder hence the position of the zooming means.
10. The sighting device according to claim 2, wherein the zooming means provide continuous zoom.
11. The sighting device according to claim 2, wherein the encoder is analog.
12. The sighting device according to claim 4, wherein the encoder is analog.
13. The sighting device according to claim 10, wherein the encoder is analog.
14. The sighting device according to claim 2, wherein the encoder is digital.
15. The sighting device according to claim 4, wherein the encoder is digital.
16. The sighting device according to claim 10, wherein the encoder is digital.
US14/422,001 2012-08-14 2012-08-14 Sighting device Active 2033-08-16 US9706174B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2012/054132 WO2014027218A1 (en) 2012-08-14 2012-08-14 A sighting device

Publications (2)

Publication Number Publication Date
US20150208038A1 true US20150208038A1 (en) 2015-07-23
US9706174B2 US9706174B2 (en) 2017-07-11

Family

ID=47018293

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/422,001 Active 2033-08-16 US9706174B2 (en) 2012-08-14 2012-08-14 Sighting device

Country Status (3)

Country Link
US (1) US9706174B2 (en)
EP (1) EP2885598B1 (en)
WO (1) WO2014027218A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170329123A1 (en) * 2014-12-10 2017-11-16 Canon Kabushiki Kaisha Microscope system, control method thereof, and program
CN114322659A (en) * 2021-12-31 2022-04-12 吉林市江机民科实业有限公司 White light sighting telescope division projection display method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102415502B1 (en) * 2015-08-07 2022-07-01 삼성전자주식회사 Method and apparatus of light filed rendering for plurality of user

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4531052A (en) 1982-09-24 1985-07-23 Moore Sidney D Microcomputer-controlled optical apparatus for surveying, rangefinding and trajectory-compensating functions
US5389774A (en) 1993-11-08 1995-02-14 Optical Gaging Products, Inc. Method and means for calibrating the magnification of zoom optical systems using reticle images
US6362882B1 (en) 2000-01-24 2002-03-26 Optical Gaging Products, Inc. Reticle projection system for video inspection apparatus
US7292262B2 (en) 2003-07-21 2007-11-06 Raytheon Company Electronic firearm sight, and method of operating same
US7905046B2 (en) 2008-02-15 2011-03-15 Thomas D. Smith, III System and method for determining target range and coordinating team fire
TW201022716A (en) * 2008-12-12 2010-06-16 Asia Optical Co Inc Sighting apparatus having magnification adjustment display

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170329123A1 (en) * 2014-12-10 2017-11-16 Canon Kabushiki Kaisha Microscope system, control method thereof, and program
US10732397B2 (en) * 2014-12-10 2020-08-04 Canon Kabushiki Kaisha Microscope system, control method thereof, and program
CN114322659A (en) * 2021-12-31 2022-04-12 吉林市江机民科实业有限公司 White light sighting telescope division projection display method

Also Published As

Publication number Publication date
EP2885598B1 (en) 2017-03-22
US9706174B2 (en) 2017-07-11
EP2885598A1 (en) 2015-06-24
WO2014027218A1 (en) 2014-02-20

Similar Documents

Publication Publication Date Title
US9062961B2 (en) Systems and methods for calculating ballistic solutions
US20140110483A1 (en) Ballistic Sight System
US11087512B2 (en) High visibility overlay systems and methods
US8051597B1 (en) Scout sniper observation scope
US8074394B2 (en) Riflescope with image stabilization
CN101101192B (en) Double viewing field gun electronic range measurement and aiming device
US9250036B2 (en) Optical device utilizing ballistic zoom and methods for sighting a target
KR100681784B1 (en) Electronic firearm sight, and method of operating same
US20120090216A1 (en) Electronic Firearm Sight and method for adjusting the reticle thereof
US20050257414A1 (en) Tactical ranging reticle for a projectile weapon aiming device
US11302041B2 (en) High visibility overlay systems and methods
US10072907B2 (en) Telescopic sight having fast reticle adjustment
EP3210067B1 (en) Sighting system comprising a variable maginifcation indicator
US20130228618A1 (en) Dscope aiming device
US7656579B1 (en) Auto zoom aiming device
TWI485630B (en) Sights, operational methods thereof, and computer program products thereof
CN108700753A (en) Graticle for optical aiming device
US9706174B2 (en) Sighting device
WO2015156899A3 (en) Optical device utilizing ballistic zoom and methods for sighting a target
US11118863B2 (en) Extreme long-range sniper engagement
KR20110097053A (en) Apparatus for compensating images and armament system therewith
WO2021246986A1 (en) On-weapon thermal imaging device with increased optical magnification
CA3234451A1 (en) Enhanced picture-in-picture
KR101509511B1 (en) Apparatus for aiming target by night of vulcan automatic cannon using lead angle moving target circle and mehtod thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: ASELSAN ELEKTRONIK SANAYI VE TICARET ANONIM SIRKET

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AYYILDIZ, COSKUN;REEL/FRAME:034969/0056

Effective date: 20150216

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4