US20150190668A1 - Weighted Exercise Sliding Device - Google Patents

Weighted Exercise Sliding Device Download PDF

Info

Publication number
US20150190668A1
US20150190668A1 US14/588,123 US201414588123A US2015190668A1 US 20150190668 A1 US20150190668 A1 US 20150190668A1 US 201414588123 A US201414588123 A US 201414588123A US 2015190668 A1 US2015190668 A1 US 2015190668A1
Authority
US
United States
Prior art keywords
weight
recited
slide device
exercise
thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/588,123
Inventor
II Dale W Ferdinandsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US14/588,123 priority Critical patent/US20150190668A1/en
Publication of US20150190668A1 publication Critical patent/US20150190668A1/en
Priority to US16/146,279 priority patent/US20190030387A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/012Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using frictional force-resisters
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/0004Exercising devices moving as a whole during exercise
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/00058Mechanical means for varying the resistance
    • A63B21/00061Replaceable resistance units of different strengths, e.g. for swapping
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/06User-manipulated weights
    • A63B21/0618User-manipulated weights moving in a horizontal plane without substantial friction, i.e. using inertial forces
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/06User-manipulated weights
    • A63B21/072Dumb-bells, bar-bells or the like, e.g. weight discs having an integral peripheral handle
    • A63B21/075Dumb-bells, bar-bells or the like, e.g. weight discs having an integral peripheral handle with variable weights, e.g. weight systems with weight selecting means for bar-bells or dumb-bells
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/40Interfaces with the user related to strength training; Details thereof
    • A63B21/4027Specific exercise interfaces
    • A63B21/4033Handles, pedals, bars or platforms
    • A63B21/4034Handles, pedals, bars or platforms for operation by feet
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/40Interfaces with the user related to strength training; Details thereof
    • A63B21/4027Specific exercise interfaces
    • A63B21/4033Handles, pedals, bars or platforms
    • A63B21/4035Handles, pedals, bars or platforms for operation by hand
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/20Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements using rollers, wheels, castors or the like, e.g. gliding means, to be moved over the floor or other surface, e.g. guide tracks, during exercising
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/0025Particular aspects relating to the orientation of movement paths of the limbs relative to the body; Relative relationship between the movements of the limbs
    • A63B2022/0038One foot moving independently from the other, i.e. there is no link between the movements of the feet
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/0025Particular aspects relating to the orientation of movement paths of the limbs relative to the body; Relative relationship between the movements of the limbs
    • A63B2022/0041Particular aspects relating to the orientation of movement paths of the limbs relative to the body; Relative relationship between the movements of the limbs one hand moving independently from the other hand, i.e. there is no link between the movements of the hands

Definitions

  • the invention relates generally to exercise and fitness devices utilizing sliding plates or for use in performing a variety of exercise routines. More particularly, the invention relates to a weighted sliding device having a low friction sliding surface and a friction enhanced gripping or contact surface.
  • the exercise device is configured so that sliding devices of varying weights may be manufactured without a change in overall size and shape of the device. Providing a plurality of sliding devices of varying weights will allow a user to tailor the sliding resistance force to satisfy a desired workout parameter without a change to the overall shape and feel of the device.
  • Low friction slides are utilized as exercise devices to support a user as the user performs floor exercise routines with sliding movements of the hands or feet. These low friction slides have a bottom surface in contact with the floor that has a coefficient of friction selected to minimize the frictional resistance between the slide and the floor surface. The minimized frictional resistance will correspondingly minimize the sliding force necessary for the user to move the slide device along the floor during exercise routines.
  • Such slide devices are typically small and lightweight makes them easy to transport and use.
  • slide devices focus on reducing the sliding frictional resistance and not on increasing the force necessary to move the slide device when performing the exercises. Such devices provide no means to control the difficulty and intensity of the exercise being performed.
  • the present invention is directed to a weighted exercise slide device having a weight plate enclosed within a surrounding layer of thermoplastic polymer material such as high density polyethylene (HDPE).
  • the weight plate increases the sliding resistance of the weighted exercise slide device when compared to non-weighted exercise slide device.
  • the surrounding layer of thermoplastic material gives the exercise slide device a low friction bottom sliding surface allowing a user to readily slide the device along a floor surface.
  • a friction enhanced gripping surface is provided on the top surface of the slide device.
  • the friction enhanced gripping surface such as a DynaflexTM thermoplastic elastomer material that is overmolded, bonded or otherwise fixedly attached to the upper surface of the exercise device provides a gripping or contact surface to facilitate manipulation and control of the slide device even if the gripping surface of the device becomes wet or sweaty during an exercise routine.
  • a plurality of shear connectors may be provided along the top surface of the device in contact with the layer of DynaflexTM material. The shear connectors serve to enhance the bond between the layer of the DynaflexTM material and the high density polyethylene top surface.
  • a strap or handle may be attached to the exercise slide device to further enhance a user's contact with the device and allow for greater control of the device by the user.
  • a weight plate of a desired mass and overall dimension will allow a weighted exercise slide device of a desired selected size and weight to be produced.
  • the selected size and weight of the weight plate may then be utilized to produce a mold to create a standard weighted exercise slide device.
  • a desired plurality of weighted exercise slide devices, each of the same overall dimension but of varying weights, may be created once the base or standard size is determined. This is accomplished by drilling a desired number of holes through the weight plate to alter or reduce the weight or mass of the plate by a desired amount.
  • the altered weight plate is then placed in the standard mold and encapsulated within a surrounding layer of thermoplastic polymer material. This creates a weighted exercise slide device of the standard size but with a weight less than that of the predetermined base or standard exercise slide device.
  • Maintaining a base or standard size for the weighted exercise slide device allows the use of a standard sized mold for use in encapsulating the weight plate within the device also serves to reduce the manufacturing costs.
  • Providing a plurality of weighted exercise slide devices of varying weights but of the same overall dimensions allows a user to select and control the sliding resistance of the exercise slide device used during an exercise routine without having to adapt to or become familiar with slide devices of varying dimensions.
  • FIG. 1 is a top view of the weighted exercise slide device as described herein.
  • FIG. 2 is a cross-section view of the weighted exercise slide device of FIG. 1 cut along lines 2 - 2 in FIG. 1 .
  • FIG. 3 is a top view of an altered weight plate of the weighted exercise slide device of FIG. 1 .
  • FIG. 4 is an enlarged partial cross-section detail view of the weighted exercise slide device of FIG. 1 illustrating placement of shear connectors.
  • FIG. 5 is a perspective view of the weighted exercise slide device of FIG. 1 with the addition of an optional safety strap.
  • FIG. 6 is shows multiple views an alternate embodiment of the weighted exercise slide device of FIG. 1 with the addition of an optional handle.
  • FIG. 7 is a cross-section view of an alternate embodiment of the weighted exercise slide device including a weight spacer and an overmold.
  • FIG. 8 is an exploded view of the embodiment of the alternate embodiment of the weighted exercise slide device depicted in FIG. 7 .
  • the weighted exercise slide device 10 is shown in the drawings particularly FIGS. 1 and 2 .
  • the weighted exercise device 10 is comprised of a weight plate 12 having a desired size and weight.
  • the weight plate 12 is encapsulated within a layer of thermoplastic polymer material 16 , such as high density polyethylene (HDPE) or another suitable polymer material.
  • the layer of thermoplastic material 16 surrounding the weight plate 12 creates a smooth low friction bottom sliding surface 24 for the device 10 .
  • a friction enhanced gripping surface 23 is provided on the top surface 22 of the device 10 to aid a user in holding or gripping the weighted exercise slide device.
  • the friction enhanced surface 23 may be provided by stippling, a plurality of surface grooves, an abrading, or checkering on the top surface 22 .
  • a layer of soft friction enhanced material 14 attached by glue or other suitable bonding means to top surface 22 of the device 10 will be utilized as the friction enhanced surface 23 .
  • a layer of thermoplastic elastomer material, such as a DynaflexTM thermoplastic elastomer currently manufactured by Polyone Corporation 33587 Walker Road Avon Lake Ohio 44012, will be suitable as the soft friction enhanced material 14 .
  • the bond may be loosened after extended use of the device 10 allowing the layer of material 14 to separate from top surface 22 .
  • the bond between the material 14 and the top surface 22 of the encapsulating layer of thermoplastic material 16 may be enhanced by bonding the friction enhanced material 14 over a plurality of shear connectors 18 on the top surface 22 of thermoplastic material 16 as shown in FIG. 3 .
  • the shear connectors 18 are preferably molded integrally with the thermoplastic material 16 and serve to anchor the material 14 to the top surface 22 of the of thermoplastic material 16 .
  • the shear connectors 18 may also be embedded in the top surface 22 of thermoplastic material 16 as separate components or the shear connectors 18 may be cut into the top surface 22 of the thermoplastic material 16 .
  • the shear connectors 18 may be of any suitable shape such as square, rounded, T-shaped, or hooked projections that extend from the top surface 22 .
  • the weight of weight plate 12 may be changed or varied from its standard weight by drilling or otherwise creating at least one or a desired plurality of boreholes 28 into or through the weight plate 12 .
  • the boreholes 28 serve to remove a desired quantity of plate material thereby reducing the weight or mass of the weight plate 12 without a change in the overall dimensions of weight plate 12 .
  • the number of boreholes 28 provided in the weight plate 12 will determine the amount of variation in the weight of the varied weight plate 12 when compared to its standard weight.
  • An exercise device 10 of a desired weight, but of a predetermined overall dimension size, and shape may then be produced by selecting a weight plate 12 of a desired size, shape, and weight or mass and encapsulating the selected weight plate 12 within the layer of thermoplastic material 16 . It is thought that the exercise device 10 will be created by injecting molten thermoplastic material 16 into a mold of a predetermined overall dimension, size, and shape to encapsulate the selected weight plate 12 . Because the weight plate 12 has uniform overall dimensions, the same mold may be used for encapsulating weight plates 12 of varying weights within the layer of thermoplastic material 16 .
  • a manufacturer may use the same mold to produce a weighted exercise slide device 10 of a desired weight by reducing the weight of a weight plate 12 of a standard size and weight, placing the weight plate of the reduced weight in the mold, and injecting the mold with thermoplastic material to encapsulate the weight reduced weight plate 12 .
  • the weight reduced weight plate 12 may be produced by drilling or otherwise creating at least one or more boreholes 28 in a weight plate 12 of a standard size and weight to reduce the weight of that weight plate 12 to the desired lesser weight. In this manner any number of exercise slide devices 10 , each of a desired weigh and with uniform overall dimensions, may be provided to a user from the same mold.
  • the user's hand, foot, knee, or other body part are placed on the friction enhanced surface 23 of a desired selected device 10 of a desired weight.
  • the user then moves the device 10 on the low friction bottom sliding surface 24 .
  • the exercise slide device 10 provides a medium to facilitate low-friction exercise movements in an assortment of desired directions.
  • the weight of plate 12 in the selected exercise device 10 will change the force required to slide the exercise device 10 and difficulty level of the exercise to be performed.
  • the friction enhanced surface 23 such as that provided by the friction enhanced material 14 of upper surface 22 will allow a user to continue to maintain contact with the device 10 even when the friction enhanced surface 23 becomes wet due to sweat.
  • the exercise device 10 gripping surface 23 is manipulated by a user's hand, foot, knee, or other body part.
  • the high density polyethylene layer 16 of low friction lower sliding surface 24 will allow for sliding of the device when used by a user.
  • the edges of the low friction lower sliding surface 24 may be rounded to facilitate ease in sliding without the risk of catching the edge upon the surface of the floor.
  • the exercise slide device 10 may also be provided with a gripping strap 20 as shown in FIG. 5 or a handle 21 as shown in FIG. 6 .
  • a handle or a strap 5 will provide a means for easy transport as well as provide additional means for a user to securely retain the device 10 during an exercise routine.
  • the force needed to move any object is determined by multiplying the static or kinetic frictional coefficient between the object and its support surface by the normal force exerted by the object.
  • the greater the weight or mass of the weight plate 12 in the exercise slide device 10 the greater the force required to move the exercise slide device 10 on a floor surface. Varying the weight of the exercise slide device 10 by varying the weight of the weight plate 12 will allow a user to change the difficulty of the sliding exercises. Providing a user with a weighted exercise device 10 , or a variety of differently weighted exercise devices, will enhance the quality of workout provided to a user. Maintaining the same overall dimensions of the differently weighted exercise slide devices 10 will provide the user with a familiar grip and feel for control of the device 10 when the device is being used and enhance the user's confidence and safety as exercises are performed.
  • the weighted exercise device 10 may be comprised of a top framed structure 32 composed of a top layer of thermoplastic elastomer 16 selected to provide a soft, rubbery feel that is positioned above a layer of polypropylene 17 .
  • Thermoplastic elastomer 16 is selected to be suitable for overmolding and bonding to the polypropylene layer 17 and may be composed of styrenic block copolymers (SBC or SBS), tightly linked polystyrene, and elastomeric blocks such as that currently manufactured and sold under the name DynaflexTM.
  • SBC or SBS styrenic block copolymers
  • DynaflexTM styrenic block copolymers
  • Such thermoplastic elastomers allow for formulating options to enable fine tuning of performance and properties.
  • Top framed structure 32 may be connected with a sliding bottom framed structure 33 composed of thermoplastic elastomer 14 . These connecting top and bottom framed structures 32 and 33 together will comprise the layer of thermoplastic polymer material 16 to create a space 31 between the top and bottom framed structures 32 and 33 .
  • a weight plate 12 selected to provide a desired weight resistance is positioned in the space 31 between the top and bottom framed structures 32 and 33 .
  • the weight plate 12 will have perimeter dimension that will correspond with the perimeter dimension of the space 31 so that the weight plate thickness is varied depending upon the weight resisted required or selected.
  • a spacer plate 35 preferable made of thermoplastic polymer material may also be positioned in the space 31 preferably beneath the selected weight plate 12 in order to completely fill any gap 37 in the space 31 between the weight plate 12 and the top framed structure 32 or the bottom frame structure 13 .
  • the spacer plate 35 may be sized as required to fill the space 31 depending upon the thickness of the weigh plate 12 .
  • the interconnecting top and bottom framed structures 32 and 33 may be permanently bonded together or they may be releasably joined together by means of a frictional slot connection 34 , a mechanical mechanism such as a key and keyway type connection, or by attachment screws.
  • Assembling the device 10 comprises placing spacer 35 and the selected weighted plate 12 upon the sliding thermoplastic elastomer 14 of bottom frame structure 33 wherein the polypropylene layer 17 may be placed to enclose spacer 35 and weight plate 12 in space 31 .
  • Slot 34 may then be utilized by the thermoplastic elastomer 16 of top frame structure 32 which inserts to fit over the polypropylene layer 17 and into slot 33 which will grip and hold the thermoplastic elastomer 16 in place.
  • the top and bottom framed structures 32 and 33 may be disconnected from each other if desired.
  • the enclosed weight plate 12 and spacer 35 may be removed and replaced with a weight plate 12 of a different weight and a spacer of a different thickness if necessary to fill the space 31 .
  • the interconnecting top and bottom framed structures 32 and 33 may be reattached to enclose and encapsulate the replacement weight plate 12 .
  • a user may be provided with a variety of differently weighted replacement weight plates 12 and spacers 35 so that the weight of the weighted exercise device 10 may be adjusted as desired.
  • a plurality of holes 36 are provided in a series or grid pattern across the top surface of polypropylene layer 17 . Holes 36 are distributed about the surface of polypropylene layer 17 to facilitate adhesion with thermoplastic elastomer 14 . Distributing holes 36 about polypropylene layer 17 discourages the rubber from pealing from horizontal shear. Without a feature such as holes 36 , bubbles will appear between the polypropylene layer 17 and thermoplastic elastomer 14 .

Abstract

A weighted exercise slide device for use in performing a variety of exercise routines is comprised of a weight plate encapsulated within a layer of high density polyethylene. The upper surface of the device may be provided with a plurality of small shear connectors for aid in securing a gripping surface comprised of a layer a soft or friction enhanced material. The weight plate is of a standard overall dimension but the weight of the weight plate may be altered to allow for manufacture of a plurality of differently weighted exercise slide devices of a uniform shape and size from a single mold.

Description

    PRIORITY
  • This application claims priority to U.S. Provisional Application Ser. No. 61/923,487 filed Jan. 3, 2014 for Weighted Exercise Sliding Device, the entire content of which is incorporated by reference.
  • FIELD OF THE INVENTION
  • The invention relates generally to exercise and fitness devices utilizing sliding plates or for use in performing a variety of exercise routines. More particularly, the invention relates to a weighted sliding device having a low friction sliding surface and a friction enhanced gripping or contact surface. The exercise device is configured so that sliding devices of varying weights may be manufactured without a change in overall size and shape of the device. Providing a plurality of sliding devices of varying weights will allow a user to tailor the sliding resistance force to satisfy a desired workout parameter without a change to the overall shape and feel of the device.
  • BACKGROUND OF THE INVENTION
  • Low friction slides are utilized as exercise devices to support a user as the user performs floor exercise routines with sliding movements of the hands or feet. These low friction slides have a bottom surface in contact with the floor that has a coefficient of friction selected to minimize the frictional resistance between the slide and the floor surface. The minimized frictional resistance will correspondingly minimize the sliding force necessary for the user to move the slide device along the floor during exercise routines. Such slide devices are typically small and lightweight makes them easy to transport and use.
  • However, there are times when it may be useful for a user to increase the sliding force necessary for the user to move the slide device along the floor during exercise routines in order to enhance the intensity and benefit of the exercise routines. Because consistency is important an important factor in maximizing the benefits and sought after results of floor exercises, such consistency is better obtained when the exercise slide devices have the same size and shape. Further, keep a consistent size and shape for the exercise slide devices will allow a user to become accustomed to the feel and use of the device which will reduce the risk of losing contact with and control of the device and the chance of a subsequent associated injury due to falling.
  • Further, other slide devices focus on reducing the sliding frictional resistance and not on increasing the force necessary to move the slide device when performing the exercises. Such devices provide no means to control the difficulty and intensity of the exercise being performed.
  • Consequently, it can be appreciated that there exists a continuing need for an exercise slide device that will allow a user to perform floor exercises of a selected desired intensity while still maintaining the overall shape and size of the device in order to preserve consistency and familiarity with the device for the user.
  • SUMMARY OF THE INVENTION
  • The present invention is directed to a weighted exercise slide device having a weight plate enclosed within a surrounding layer of thermoplastic polymer material such as high density polyethylene (HDPE). The weight plate increases the sliding resistance of the weighted exercise slide device when compared to non-weighted exercise slide device. The surrounding layer of thermoplastic material gives the exercise slide device a low friction bottom sliding surface allowing a user to readily slide the device along a floor surface. A friction enhanced gripping surface is provided on the top surface of the slide device.
  • The friction enhanced gripping surface, such as a Dynaflex™ thermoplastic elastomer material that is overmolded, bonded or otherwise fixedly attached to the upper surface of the exercise device provides a gripping or contact surface to facilitate manipulation and control of the slide device even if the gripping surface of the device becomes wet or sweaty during an exercise routine. A plurality of shear connectors may be provided along the top surface of the device in contact with the layer of Dynaflex™ material. The shear connectors serve to enhance the bond between the layer of the Dynaflex™ material and the high density polyethylene top surface. A strap or handle may be attached to the exercise slide device to further enhance a user's contact with the device and allow for greater control of the device by the user.
  • Using a weight plate of a desired mass and overall dimension, will allow a weighted exercise slide device of a desired selected size and weight to be produced. The selected size and weight of the weight plate may then be utilized to produce a mold to create a standard weighted exercise slide device. A desired plurality of weighted exercise slide devices, each of the same overall dimension but of varying weights, may be created once the base or standard size is determined. This is accomplished by drilling a desired number of holes through the weight plate to alter or reduce the weight or mass of the plate by a desired amount. The altered weight plate is then placed in the standard mold and encapsulated within a surrounding layer of thermoplastic polymer material. This creates a weighted exercise slide device of the standard size but with a weight less than that of the predetermined base or standard exercise slide device.
  • Altering the weight or mass of the standardized weight plate as described, rather than using weight plates of different sizes and weights, reduces the inventory of materials and serves to reduce the manufacturing costs.
  • Maintaining a base or standard size for the weighted exercise slide device allows the use of a standard sized mold for use in encapsulating the weight plate within the device also serves to reduce the manufacturing costs.
  • Providing a plurality of weighted exercise slide devices of varying weights but of the same overall dimensions allows a user to select and control the sliding resistance of the exercise slide device used during an exercise routine without having to adapt to or become familiar with slide devices of varying dimensions.
  • Providing the user with a plurality of weighted exercise of a variety of different weights but with the same overall dimensions will serve to enhance the user's control of the device as it is being used as well as serve to enhance the user's confidence and safety as exercises are performed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a top view of the weighted exercise slide device as described herein.
  • FIG. 2 is a cross-section view of the weighted exercise slide device of FIG. 1 cut along lines 2-2 in FIG. 1.
  • FIG. 3 is a top view of an altered weight plate of the weighted exercise slide device of FIG. 1.
  • FIG. 4 is an enlarged partial cross-section detail view of the weighted exercise slide device of FIG. 1 illustrating placement of shear connectors.
  • FIG. 5 is a perspective view of the weighted exercise slide device of FIG. 1 with the addition of an optional safety strap.
  • FIG. 6 is shows multiple views an alternate embodiment of the weighted exercise slide device of FIG. 1 with the addition of an optional handle.
  • FIG. 7 is a cross-section view of an alternate embodiment of the weighted exercise slide device including a weight spacer and an overmold.
  • FIG. 8 is an exploded view of the embodiment of the alternate embodiment of the weighted exercise slide device depicted in FIG. 7.
  • DESCRIPTION OF THE EMBODIMENTS
  • The weighted exercise slide device 10 is shown in the drawings particularly FIGS. 1 and 2. The weighted exercise device 10 is comprised of a weight plate 12 having a desired size and weight. The weight plate 12 is encapsulated within a layer of thermoplastic polymer material 16, such as high density polyethylene (HDPE) or another suitable polymer material. The layer of thermoplastic material 16 surrounding the weight plate 12 creates a smooth low friction bottom sliding surface 24 for the device 10. A friction enhanced gripping surface 23 is provided on the top surface 22 of the device 10 to aid a user in holding or gripping the weighted exercise slide device.
  • The friction enhanced surface 23 may be provided by stippling, a plurality of surface grooves, an abrading, or checkering on the top surface 22. However, it is thought that a layer of soft friction enhanced material 14 attached by glue or other suitable bonding means to top surface 22 of the device 10 will be utilized as the friction enhanced surface 23. A layer of thermoplastic elastomer material, such as a Dynaflex™ thermoplastic elastomer currently manufactured by Polyone Corporation 33587 Walker Road Avon Lake Ohio 44012, will be suitable as the soft friction enhanced material 14.
  • While the friction enhanced material 14 will be overmolded, bonded, or glued to the top surface 22 of the encapsulating layer of thermoplastic material 16 of the exercise device 10, the bond may be loosened after extended use of the device 10 allowing the layer of material 14 to separate from top surface 22. The bond between the material 14 and the top surface 22 of the encapsulating layer of thermoplastic material 16 may be enhanced by bonding the friction enhanced material 14 over a plurality of shear connectors 18 on the top surface 22 of thermoplastic material 16 as shown in FIG. 3.
  • The shear connectors 18 are preferably molded integrally with the thermoplastic material 16 and serve to anchor the material 14 to the top surface 22 of the of thermoplastic material 16. The shear connectors 18 may also be embedded in the top surface 22 of thermoplastic material 16 as separate components or the shear connectors 18 may be cut into the top surface 22 of the thermoplastic material 16. The shear connectors 18 may be of any suitable shape such as square, rounded, T-shaped, or hooked projections that extend from the top surface 22.
  • As shown in FIG. 4, the weight of weight plate 12 may be changed or varied from its standard weight by drilling or otherwise creating at least one or a desired plurality of boreholes 28 into or through the weight plate 12. The boreholes 28 serve to remove a desired quantity of plate material thereby reducing the weight or mass of the weight plate 12 without a change in the overall dimensions of weight plate 12. The number of boreholes 28 provided in the weight plate 12 will determine the amount of variation in the weight of the varied weight plate 12 when compared to its standard weight.
  • An exercise device 10 of a desired weight, but of a predetermined overall dimension size, and shape, may then be produced by selecting a weight plate 12 of a desired size, shape, and weight or mass and encapsulating the selected weight plate 12 within the layer of thermoplastic material 16. It is thought that the exercise device 10 will be created by injecting molten thermoplastic material 16 into a mold of a predetermined overall dimension, size, and shape to encapsulate the selected weight plate 12. Because the weight plate 12 has uniform overall dimensions, the same mold may be used for encapsulating weight plates 12 of varying weights within the layer of thermoplastic material 16.
  • For example, a manufacturer may use the same mold to produce a weighted exercise slide device 10 of a desired weight by reducing the weight of a weight plate 12 of a standard size and weight, placing the weight plate of the reduced weight in the mold, and injecting the mold with thermoplastic material to encapsulate the weight reduced weight plate 12. The weight reduced weight plate 12 may be produced by drilling or otherwise creating at least one or more boreholes 28 in a weight plate 12 of a standard size and weight to reduce the weight of that weight plate 12 to the desired lesser weight. In this manner any number of exercise slide devices 10, each of a desired weigh and with uniform overall dimensions, may be provided to a user from the same mold.
  • To use the exercise slide device 10, the user's hand, foot, knee, or other body part are placed on the friction enhanced surface 23 of a desired selected device 10 of a desired weight. The user then moves the device 10 on the low friction bottom sliding surface 24. The exercise slide device 10 provides a medium to facilitate low-friction exercise movements in an assortment of desired directions. The weight of plate 12 in the selected exercise device 10 will change the force required to slide the exercise device 10 and difficulty level of the exercise to be performed. The friction enhanced surface 23, such as that provided by the friction enhanced material 14 of upper surface 22 will allow a user to continue to maintain contact with the device 10 even when the friction enhanced surface 23 becomes wet due to sweat.
  • The exercise device 10 gripping surface 23 is manipulated by a user's hand, foot, knee, or other body part. The high density polyethylene layer 16 of low friction lower sliding surface 24 will allow for sliding of the device when used by a user. The edges of the low friction lower sliding surface 24 may be rounded to facilitate ease in sliding without the risk of catching the edge upon the surface of the floor. The exercise slide device 10 may also be provided with a gripping strap 20 as shown in FIG. 5 or a handle 21 as shown in FIG. 6. A handle or a strap 5 will provide a means for easy transport as well as provide additional means for a user to securely retain the device 10 during an exercise routine.
  • The force needed to move any object is determined by multiplying the static or kinetic frictional coefficient between the object and its support surface by the normal force exerted by the object. The greater the weight or mass of the weight plate 12 in the exercise slide device 10, the greater the force required to move the exercise slide device 10 on a floor surface. Varying the weight of the exercise slide device 10 by varying the weight of the weight plate 12 will allow a user to change the difficulty of the sliding exercises. Providing a user with a weighted exercise device 10, or a variety of differently weighted exercise devices, will enhance the quality of workout provided to a user. Maintaining the same overall dimensions of the differently weighted exercise slide devices 10 will provide the user with a familiar grip and feel for control of the device 10 when the device is being used and enhance the user's confidence and safety as exercises are performed.
  • Now referring to FIGS. 7 and 8, an alternate embodiment the weighted exercise device 10 may be comprised of a top framed structure 32 composed of a top layer of thermoplastic elastomer 16 selected to provide a soft, rubbery feel that is positioned above a layer of polypropylene 17. Thermoplastic elastomer 16 is selected to be suitable for overmolding and bonding to the polypropylene layer 17 and may be composed of styrenic block copolymers (SBC or SBS), tightly linked polystyrene, and elastomeric blocks such as that currently manufactured and sold under the name Dynaflex™. Such thermoplastic elastomers allow for formulating options to enable fine tuning of performance and properties.
  • Top framed structure 32 may be connected with a sliding bottom framed structure 33 composed of thermoplastic elastomer 14. These connecting top and bottom framed structures 32 and 33 together will comprise the layer of thermoplastic polymer material 16 to create a space 31 between the top and bottom framed structures 32 and 33. A weight plate 12 selected to provide a desired weight resistance is positioned in the space 31 between the top and bottom framed structures 32 and 33. Preferably the weight plate 12 will have perimeter dimension that will correspond with the perimeter dimension of the space 31 so that the weight plate thickness is varied depending upon the weight resisted required or selected. If the desired selected weight resistance of the weight plate 12 does not provide a weight plate thickness dimension sufficient to completely fill the space 31 created between top framed structure 32 and bottom frame structure 33, a spacer plate 35 preferable made of thermoplastic polymer material may also be positioned in the space 31 preferably beneath the selected weight plate 12 in order to completely fill any gap 37 in the space 31 between the weight plate 12 and the top framed structure 32 or the bottom frame structure 13. The spacer plate 35 may be sized as required to fill the space 31 depending upon the thickness of the weigh plate 12.
  • The interconnecting top and bottom framed structures 32 and 33 may be permanently bonded together or they may be releasably joined together by means of a frictional slot connection 34, a mechanical mechanism such as a key and keyway type connection, or by attachment screws. Assembling the device 10 comprises placing spacer 35 and the selected weighted plate 12 upon the sliding thermoplastic elastomer 14 of bottom frame structure 33 wherein the polypropylene layer 17 may be placed to enclose spacer 35 and weight plate 12 in space 31. Slot 34 may then be utilized by the thermoplastic elastomer 16 of top frame structure 32 which inserts to fit over the polypropylene layer 17 and into slot 33 which will grip and hold the thermoplastic elastomer 16 in place.
  • When the interconnecting top and bottom framed structures 32 and 33 are so releasably joined, the top and bottom framed structures 32 and 33 may be disconnected from each other if desired. When so disconnected the enclosed weight plate 12 and spacer 35 may be removed and replaced with a weight plate 12 of a different weight and a spacer of a different thickness if necessary to fill the space 31. Then the interconnecting top and bottom framed structures 32 and 33 may be reattached to enclose and encapsulate the replacement weight plate 12. A user may be provided with a variety of differently weighted replacement weight plates 12 and spacers 35 so that the weight of the weighted exercise device 10 may be adjusted as desired.
  • A plurality of holes 36 are provided in a series or grid pattern across the top surface of polypropylene layer 17. Holes 36 are distributed about the surface of polypropylene layer 17 to facilitate adhesion with thermoplastic elastomer 14. Distributing holes 36 about polypropylene layer 17 discourages the rubber from pealing from horizontal shear. Without a feature such as holes 36, bubbles will appear between the polypropylene layer 17 and thermoplastic elastomer 14.
  • It will be understood that changes may be made in the form, construction and arrangement of the parts of the exercise slide device 10 and the described methods without departing from the spirit and scope of the invention or sacrificing any of the invention's material advantages. The description and drawings provided herein are intended to provide an exemplary embodiment of the exercise slide device 10 and methods and it will also be understood that the invention can be practiced by other than the described embodiments which are presented for purposes of illustration and not limitation.

Claims (20)

I claim:
1. A weighted exercise slide device comprising:
(a) a weight;
(b) a thermoplastic layer encapsulating said weight; said thermoplastic layer encapsulating said weight having a top surface and a bottom surface; and
(c) a friction enhanced gripping surface on said top surface of said thermoplastic layer encapsulating said weight.
2. The weighted exercise slide device as recited in claim 1 wherein said bottom surface of said thermoplastic layer encapsulating said weight provides a bottom sliding surface.
3. The weighted exercise slide device as recited in claim 2 wherein said weight is a weight plate having a desired dimension and a predetermined weight.
4. The weighted exercise slide device as recited in claim 3 wherein said weight plate has at least one borehole reducing said predetermined weight of said weight plate.
5. The weighted exercise slide device as recited in claim 4 wherein said friction enhanced gripping surface is comprised of a layer of thermoplastic elastomer material.
6. The weighted exercise slide device as recited in claim 5 further comprising a plurality of shear connectors anchoring said layer of thermoplastic elastomer material to said top surface of said thermoplastic layer encapsulating said weight.
7. The weighted exercise slide device as recited in claim 6 wherein said shear connectors are molded integrally with said top surface of said thermoplastic layer encapsulating said weight.
8. The weighted exercise slide device as recited in claim 6 wherein said shear connectors are cut into said top surface of said thermoplastic layer encapsulating said weight.
9. The weighted exercise slide device as recited in claim 4 wherein said thermoplastic layer encapsulating said weight is comprised of high density polyethylene.
10. A method of producing a weighted exercise slide device for use in a low friction exercise routine comprising the steps of:
(a) providing a weight plate having a predetermined dimension and a predetermined weight;
(b) encapsulating said weight plate within thermoplastic material, said thermoplastic material having a top surface and a bottom surface; and
(c) providing a friction enhanced gripping surface on said top surface of said thermoplastic material.
11. The method of producing a weighted exercise slide device for use in a low friction exercise routine recited in claim 10 wherein said thermoplastic material is comprised of high density polyethylene.
12. The method of producing a weighted exercise slide device for use in a low friction exercise routine recited in claim 11 wherein said friction enhanced gripping surface on said top surface of said thermoplastic material is a layer of thermoplastic elastomer material.
13. The method of producing a weighted exercise slide device for use in a low friction exercise routine recited in claim 10 further comprising the additional steps of:
(a) providing at least one borehole in said weight plate; and
(b) determining if said borehole reduces the weight of said weight plate to a desired weight.
14. The method of producing a weighted exercise slide device for use in a low friction exercise routine recited in claim 13 including the additional step of:
(a) providing a plurality of shear connectors on said top surface of said thermoplastic material; and
(b) bonding said layer of thermoplastic elastomer material to said top surface of said thermoplastic material over said plurality of shear connectors.
15. A weighted exercise device comprising:
(a) a top structure composed of thermoplastic elastomers said top structure of a pre-determined size and shape;
(b) a bottom structure composed of thermoplastic elastomers releasably connected to said top structure, said top structure and said bottom creating an internal space between said top structure and said bottom structure; and
(c) a weight plate positioned within said internal space.
16. The weighted exercise device recited in claim 15 wherein said top structure has a friction enhanced gripping surface.
17. The weighted exercise device recited in claim 16 further comprising a space plate positioned within said internal space.
18. The weighted exercise device recited in claim 17 wherein said weight plate is selected from a plurality of differently weighted weight plates.
19. The weighted exercise device recited in claim 18 wherein said top structure and said bottom structure are comprised of high density polyethylene.
20. The weighted exercise slide device as recited in claim 19 further comprising a strap or handle attached to said top structure.
US14/588,123 2014-01-03 2014-12-31 Weighted Exercise Sliding Device Abandoned US20150190668A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/588,123 US20150190668A1 (en) 2014-01-03 2014-12-31 Weighted Exercise Sliding Device
US16/146,279 US20190030387A1 (en) 2014-01-03 2018-09-28 Weighted Exercise Sliding Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461923487P 2014-01-03 2014-01-03
US14/588,123 US20150190668A1 (en) 2014-01-03 2014-12-31 Weighted Exercise Sliding Device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/146,279 Division US20190030387A1 (en) 2014-01-03 2018-09-28 Weighted Exercise Sliding Device

Publications (1)

Publication Number Publication Date
US20150190668A1 true US20150190668A1 (en) 2015-07-09

Family

ID=53494440

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/588,123 Abandoned US20150190668A1 (en) 2014-01-03 2014-12-31 Weighted Exercise Sliding Device
US16/146,279 Abandoned US20190030387A1 (en) 2014-01-03 2018-09-28 Weighted Exercise Sliding Device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/146,279 Abandoned US20190030387A1 (en) 2014-01-03 2018-09-28 Weighted Exercise Sliding Device

Country Status (1)

Country Link
US (2) US20150190668A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150224356A1 (en) * 2014-02-13 2015-08-13 Pro Performance Sports, L.L.C. Floor exercise slider
US20170296864A1 (en) * 2016-04-18 2017-10-19 Elliott Allen Richter Hand support apparatus, system, and method of use for enhancing upper body exercise
USD827060S1 (en) 2014-07-28 2018-08-28 Pro Performance Sports, Llc Floor exercise slider
USD827061S1 (en) 2017-04-19 2018-08-28 Heal slider, LLC Sliding exercise apparatus
USD849856S1 (en) * 2017-06-28 2019-05-28 Jumpsport, Inc. Standing platform
US20190358482A1 (en) * 2018-05-22 2019-11-28 Synergee Fitness Worldwide Inc. Exercise Slider
US20200086173A1 (en) * 2018-09-13 2020-03-19 Eduardo M Marti Portable lower limb therapy device
USD884094S1 (en) * 2018-05-22 2020-05-12 Synergee Fitness Worldwide Inc. Exercise slider
US10926124B2 (en) * 2018-09-13 2021-02-23 Eduardo M Marti Wearable anchor for a therapy device
USD920450S1 (en) * 2019-12-09 2021-05-25 Suzanna Rhoda Summers Foot hold apparatus for sit-ups
US11247096B2 (en) * 2018-04-24 2022-02-15 Marvel Us Blessings, Llc Mobility, muscle, and coordination development apparatus
US11285356B2 (en) * 2018-09-13 2022-03-29 Eduardo M Marti Portable lower limb therapy device
US11305148B2 (en) 2019-10-24 2022-04-19 C. John Cotton Multi-functional exercise device
US11318341B2 (en) * 2018-09-13 2022-05-03 Eduardo M. Marti Portable lower limb therapy device
WO2022104374A1 (en) * 2020-11-13 2022-05-19 Microvention, Inc. Distal aspiration catheter and method
US11364416B2 (en) * 2017-04-10 2022-06-21 Vq Innovation Device and method for foot exercise
USD1001925S1 (en) * 2022-02-16 2023-10-17 Maverick Sports Medicine, Inc. Slider disc with strap
USD1006924S1 (en) * 2023-09-03 2023-12-05 Suining Wu Ankle foot exerciser

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4396190A (en) * 1981-04-13 1983-08-02 Wilkerson C William Weighted device and method of making same
US5373584A (en) * 1993-02-19 1994-12-20 Parcells, Iii; Charles A. Sliding accessories to permit in-line roller skating maneuvers equivalent to ice skating maneuvers
US7052445B2 (en) * 2003-04-11 2006-05-30 Ira Ekhaus Adjustable exercise bell
US20070135274A1 (en) * 2005-12-13 2007-06-14 Frank Blateri Exercise device and method
US20070167301A1 (en) * 2006-01-17 2007-07-19 Scott Evans Exercise device
US8118537B2 (en) * 2009-03-23 2012-02-21 Nicholas Tutt Vertical axis windmill
US20120058863A1 (en) * 2009-08-18 2012-03-08 Cyril Brizard Resistance exercise trainer having portable hand-held weights
US20130040789A1 (en) * 2011-08-08 2013-02-14 George M. Kessler Soft-sided kettlebells
US8454483B1 (en) * 2007-10-09 2013-06-04 2nd Edison, Inc. Configurable exercise system
US20130252791A1 (en) * 2012-03-20 2013-09-26 Icore Health Extremity supporting and ground surface sliding exercise system
US20140100090A1 (en) * 2012-10-10 2014-04-10 Energeia Fitness, LLC Weight-adjustable surface gliding apparatus and methods for multipurpose fitness
US20140194258A1 (en) * 2013-01-04 2014-07-10 Gary T. Shorter Progressive Multi-Purpose Exercise Device
US20140256522A1 (en) * 2013-03-11 2014-09-11 Mobius Enterprises, LLC Functional training device
US8926482B2 (en) * 2011-05-06 2015-01-06 Gary Edward Miller, Jr. Exercise device
US20150126340A1 (en) * 2013-11-01 2015-05-07 Derek White Surface Stabilized Safety Enhanced Free-Weights
US20150335935A1 (en) * 2013-08-08 2015-11-26 Charles A. Peralo Multiple use exercise apparatus
US9623273B1 (en) * 2015-11-20 2017-04-18 Paul Chen Hand held sliding exercising device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8540538B2 (en) * 2002-01-09 2013-09-24 Tzong In Yeh Skidproof sports mat

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4396190A (en) * 1981-04-13 1983-08-02 Wilkerson C William Weighted device and method of making same
US5373584A (en) * 1993-02-19 1994-12-20 Parcells, Iii; Charles A. Sliding accessories to permit in-line roller skating maneuvers equivalent to ice skating maneuvers
US7052445B2 (en) * 2003-04-11 2006-05-30 Ira Ekhaus Adjustable exercise bell
US20070135274A1 (en) * 2005-12-13 2007-06-14 Frank Blateri Exercise device and method
US20070167301A1 (en) * 2006-01-17 2007-07-19 Scott Evans Exercise device
US8454483B1 (en) * 2007-10-09 2013-06-04 2nd Edison, Inc. Configurable exercise system
US8118537B2 (en) * 2009-03-23 2012-02-21 Nicholas Tutt Vertical axis windmill
US20120058863A1 (en) * 2009-08-18 2012-03-08 Cyril Brizard Resistance exercise trainer having portable hand-held weights
US8926482B2 (en) * 2011-05-06 2015-01-06 Gary Edward Miller, Jr. Exercise device
US20130040789A1 (en) * 2011-08-08 2013-02-14 George M. Kessler Soft-sided kettlebells
US20130252791A1 (en) * 2012-03-20 2013-09-26 Icore Health Extremity supporting and ground surface sliding exercise system
US20140100090A1 (en) * 2012-10-10 2014-04-10 Energeia Fitness, LLC Weight-adjustable surface gliding apparatus and methods for multipurpose fitness
US20140194258A1 (en) * 2013-01-04 2014-07-10 Gary T. Shorter Progressive Multi-Purpose Exercise Device
US20140256522A1 (en) * 2013-03-11 2014-09-11 Mobius Enterprises, LLC Functional training device
US20150335935A1 (en) * 2013-08-08 2015-11-26 Charles A. Peralo Multiple use exercise apparatus
US20150126340A1 (en) * 2013-11-01 2015-05-07 Derek White Surface Stabilized Safety Enhanced Free-Weights
US9623273B1 (en) * 2015-11-20 2017-04-18 Paul Chen Hand held sliding exercising device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9579533B2 (en) * 2014-02-13 2017-02-28 Pro Performance Sports, L.L.C. Floor exercise slider
US20150224356A1 (en) * 2014-02-13 2015-08-13 Pro Performance Sports, L.L.C. Floor exercise slider
USD827060S1 (en) 2014-07-28 2018-08-28 Pro Performance Sports, Llc Floor exercise slider
US20170296864A1 (en) * 2016-04-18 2017-10-19 Elliott Allen Richter Hand support apparatus, system, and method of use for enhancing upper body exercise
US11260264B2 (en) * 2016-04-18 2022-03-01 Elliott Allen Richter Hand support apparatus, system, and method of use for enhancing upper body exercise
US11364416B2 (en) * 2017-04-10 2022-06-21 Vq Innovation Device and method for foot exercise
USD827061S1 (en) 2017-04-19 2018-08-28 Heal slider, LLC Sliding exercise apparatus
USD849856S1 (en) * 2017-06-28 2019-05-28 Jumpsport, Inc. Standing platform
US11247096B2 (en) * 2018-04-24 2022-02-15 Marvel Us Blessings, Llc Mobility, muscle, and coordination development apparatus
US20190358482A1 (en) * 2018-05-22 2019-11-28 Synergee Fitness Worldwide Inc. Exercise Slider
USD884094S1 (en) * 2018-05-22 2020-05-12 Synergee Fitness Worldwide Inc. Exercise slider
US10981035B2 (en) * 2018-09-13 2021-04-20 Eduardo M Marti Portable lower limb therapy device
US10926124B2 (en) * 2018-09-13 2021-02-23 Eduardo M Marti Wearable anchor for a therapy device
US11285356B2 (en) * 2018-09-13 2022-03-29 Eduardo M Marti Portable lower limb therapy device
US11318341B2 (en) * 2018-09-13 2022-05-03 Eduardo M. Marti Portable lower limb therapy device
US20200086173A1 (en) * 2018-09-13 2020-03-19 Eduardo M Marti Portable lower limb therapy device
US11305148B2 (en) 2019-10-24 2022-04-19 C. John Cotton Multi-functional exercise device
US11541271B2 (en) 2019-10-24 2023-01-03 C. John Cotton Multi-functional exercise device
USD920450S1 (en) * 2019-12-09 2021-05-25 Suzanna Rhoda Summers Foot hold apparatus for sit-ups
WO2022104374A1 (en) * 2020-11-13 2022-05-19 Microvention, Inc. Distal aspiration catheter and method
USD1001925S1 (en) * 2022-02-16 2023-10-17 Maverick Sports Medicine, Inc. Slider disc with strap
USD1006924S1 (en) * 2023-09-03 2023-12-05 Suining Wu Ankle foot exerciser

Also Published As

Publication number Publication date
US20190030387A1 (en) 2019-01-31

Similar Documents

Publication Publication Date Title
US20190030387A1 (en) Weighted Exercise Sliding Device
US8959804B2 (en) Footwear sole sections including bladders with internal flexibility sipes therebetween and an attachment between sipe surfaces
KR101947253B1 (en) Method of manufacturing sole assembly formed of multiple preforms
US5308075A (en) Configurable golf practice mat
KR101896168B1 (en) Sole assembly formed from multiple preforms and method and mold for manufacturing same
US20130157815A1 (en) Soft Kettlebell
US5853352A (en) Reduced vertical impact exercise platform
US9738059B2 (en) Exercise mats, systems of exercise mats, and related methods
EP3984402A2 (en) Footwear and footwear components having a mesh component
US6705953B2 (en) Viscous golf practice turf
US20180229098A1 (en) Plyometric Jump Box
EP2961594B1 (en) Method of forming midsole of two materials
AU2014215444B2 (en) Cleats, cleated sole structures, molds, and molding methods for in-molding articles
US20190168051A1 (en) Adjustable height plyometric apparatus for vertical jump exercise or training
JP2023100683A (en) Shock absorber comprising elastomeric material and shoe insole, and method of forming same
US20150283438A1 (en) Device and method for improved tennis racket damping and weight adjustment
US10744360B2 (en) Energy dissipative floor mat, mat system, and manufacturing process
WO2005000188A1 (en) Fitness machine
US20050049125A1 (en) Exercise mat apparatus
US20170021262A1 (en) Inclined golf mat and golf mat assembly
US20150013066A1 (en) Yoga Mat
EP2770496B1 (en) Drum practice device and method for producing the same
KR100715647B1 (en) The innersole kit for individual person, and the manufacturing method of the innersole by using the same
US20170043547A1 (en) Method for manufacturing a shoe sole with multi-material spikes
CN206434773U (en) Foot pedal structure and rowing machine

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION