US20150185423A1 - Optical coupling apparatus and optical transceiver installing the same - Google Patents

Optical coupling apparatus and optical transceiver installing the same Download PDF

Info

Publication number
US20150185423A1
US20150185423A1 US14/579,781 US201414579781A US2015185423A1 US 20150185423 A1 US20150185423 A1 US 20150185423A1 US 201414579781 A US201414579781 A US 201414579781A US 2015185423 A1 US2015185423 A1 US 2015185423A1
Authority
US
United States
Prior art keywords
flange
optical
ferrule
latch
connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/579,781
Other versions
US9213150B2 (en
Inventor
Takashi Matsui
Hiromi Kurashima
Masahiro Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
SEI Optifrontier Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, SEI Optifrontier Co Ltd filed Critical Sumitomo Electric Industries Ltd
Assigned to SUMITOMO ELECTRIC INDUSTRIES, LTD. reassignment SUMITOMO ELECTRIC INDUSTRIES, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHIBATA, MASAHIRO, KURASHIMA, HIROMI, MATSUI, TAKASHI
Publication of US20150185423A1 publication Critical patent/US20150185423A1/en
Assigned to SUMITOMO ELECTRIC INDUSTRIES, LTD., SEI OPTIFRONTIER CO., LTD reassignment SUMITOMO ELECTRIC INDUSTRIES, LTD. CORRECTIVE ASSIGNMENT TO CORRECT THE OMISSION OF SECOND ASSIGNEE PREVIOUSLY RECORDED AT REEL: 035349 FRAME: 0665. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: SHIBATA, MASAHIRO, KURASHIMA, HIROMI, MATSUI, TAKASHI
Application granted granted Critical
Publication of US9213150B2 publication Critical patent/US9213150B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/389Dismountable connectors, i.e. comprising plugs characterised by the method of fastening connecting plugs and sockets, e.g. screw- or nut-lock, snap-in, bayonet type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/389Dismountable connectors, i.e. comprising plugs characterised by the method of fastening connecting plugs and sockets, e.g. screw- or nut-lock, snap-in, bayonet type
    • G02B6/3893Push-pull type, e.g. snap-in, push-on
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • G02B6/3818Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres of a low-reflection-loss type
    • G02B6/3821Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres of a low-reflection-loss type with axial spring biasing or loading means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • G02B6/3825Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres with an intermediate part, e.g. adapter, receptacle, linking two plugs

Definitions

  • the present invention relates to an optical coupling apparatus, in particular, the invention relates to an optical coupling apparatus with a simplified structure and installed in a limited space such as an inside of an optical transceiver.
  • Recent optical communication systems often install a wavelength division multiplexing (WDM) system to enhance the transmission capacity.
  • WDM wavelength division multiplexing
  • optical transceivers following the multi-source agreements (MSA) such as CFP, QSFP (Quadrature Small Form-factor Pluggable), and so on multiplex four optical signals having wavelength grids of, for instance, CWDM (Coarse WDM) and LAN-WDM (Local Area Network WDM), on an optical fiber.
  • MSA multi-source agreements
  • Such an optical transceiver installs an optical multiplexer and/or an optical de-multiplexer to multiplex/de-multiplex optical signals optically connected with optical transducers of laser didoes and photodiodes with inner fibers.
  • the present application relates to an optical coupling apparatus that comprises a first optical connector, a second optical connector, and a sleeve.
  • the first optical connector provides a first ferrule, a first flange and a latch.
  • the first flange is formed in a root portion of the first ferrule.
  • the latch has a U-shape comprised of a base corresponding to a bottom bar of the U-shape and a pair of arms extending from the base.
  • the second optical connector provides a second ferrule and a second flange.
  • the second flange is formed in a root portion of the second ferrule.
  • the sleeve receives the first ferrule and the second ferrule in respective ends.
  • a feature of the optical coupling apparatus is that the base of the latch is set in a position opposite to the first ferrule with respect to the first flange and the arms of the latch engage with the second flange of the second optical connector.
  • the optical transceiver of the present application comprises a housing and an optical coupling apparatus including a first optical connector, a second optical connector, and a sleeve.
  • the first optical connector has a first ferrule attached in an end of one of the inner fibers, a first flange provided in a root portion of the first ferrule, and a latch having the base and a pair of arms extending from the base.
  • the second optical connector has a second ferrule attached in an end of another of the inner fibers, and a second flange provided in a root portion of the second ferrule.
  • the sleeve receives the first ferrule and the second ferrule in respective ends thereof.
  • the arms of the latch engage with the second flange.
  • the base and the second flange sandwiches the first flange of the first optical connector therebetween.
  • the housing encloses the optical coupling apparatus and provides a pocket to set the optical coupling apparatus therein.
  • a feature of the present optical transceiver is that the pocket of the housing provides a channel to set the sleeve therein and a guide in an end of the channel to receive one of the first flange and the second flange of the optical coupling apparatus.
  • FIGS. 1A and 1B illustrate an optical connector according to an embodiment of the present invention
  • FIG. 2 is a perspective view showing the male connector engaged with the female connector
  • FIG. 3A illustrates the ferrule and the flange of the male connector as omitting the sleeve and the latch, and FIG. 3B illustrates the latch 14 ;
  • FIG. 4 shows a cross section of the optical coupling apparatus where the male connector engages with the female connector
  • FIGS. 5A to 5C explain the procedures to engage the male connector with the female connector
  • FIG. 6 is an outer appearance of an optical transceiver into which the optical connectors are to be installed.
  • FIGS. 7A to 7C explain an embodiment to install the optical connectors within the housing and to engage to each other.
  • FIGS. 1A and 1B illustrate an optical connector according to an embodiment of the present invention, where FIG. 1A illustrates a male connector 10 , while, FIG. 1B illustrates a female connector 20 .
  • the optical connector of the present embodiment cannot exactly distinguish the male connector 10 from the female connector 20 because both connectors provide respective ferrules, 11 and 21 , and a sleeve 30 to receive the ferrules, 11 and 21 , to couple the male connector 10 with the female connector 20 .
  • the description presented below assumes the member shown in FIG. 1A as the male connector because the connector 20 shown in FIG. 1B provides a pocket 24 a to receive the sleeve 30 , while, the optical connector 20 shown in FIG. 1B is called as the female connector.
  • the male connector 10 provides a ferrule 11 shown in FIG. 3A , which is attached to an end of an inner fiber F 1 , and a flange 12 in a root portion of the ferrule 11 .
  • the male connector 10 also provides a coil spring 13 in an outer side of the flange 12 and a latch 14 with a U-shaped side view. A portion corresponding to a bottom bar of the U-character is attached to the coil spring 13 .
  • the latch 14 of the present embodiment may be made of metal, typically copper (Cu). However, the latch 14 may be made of resin.
  • the female connector 20 also provides a ferrule 21 attached in an end of another inner fiber F 2 .
  • the ferrule 21 provides a flange 22 in a root portion thereof.
  • the ferrules, 11 and 21 are preferably formed independent of respective flanges, 12 and 22 , because the accuracy of the physical dimensions required to the ferrules, 11 and 21 , are different from the accuracy of the flanges, 12 and 22 .
  • FIG. 2 illustrates the male connector 10 coupled with the female connector 20 through the sleeve 30 .
  • the optical coupling between two connectors, 10 and 20 are primarily derived from the mating between the sleeve 30 and respective ferrules, 11 and 21 .
  • the latch 14 with the U-shape side view assists the coupling between two connectors, 10 and 20 , by being latched with the flange 22 of the female connector 20 .
  • the present optical connector provides the coil spring 13 disposed between the flange 12 of the male connector 10 and the bottom bar of the U-shaped latch 14 , then, the coil spring 13 may strengthen the engagement between the latch 14 and the flange 22 . As shown in FIG. 2 , even then male connector 10 is engaged with the female connector 20 , the sleeve 30 is exposed.
  • FIG. 3A illustrates the ferrule 11 and the flange 12 of the male connector 10 , where FIG. 3A omits the sleeve 30 and the latch 14 .
  • FIG. 3B illustrates the latch 14 .
  • the flange 12 as shown in FIG. 3A , provides two cuts 12 a in respective sides opposite to each other.
  • the cuts 12 a receive ends of respective vertical bars of the U-shaped latch 14 .
  • the arrangement of the vertical bars of the U-shaped latch 14 set within the cuts 12 a may effectively prevent the latch 14 from rotating around the optical axis of the inner fibers, F 1 and F 2 .
  • the U-shaped latch 14 as shown in FIG. 3B , comprises a base 14 a with a rectangular plane shape, which corresponds to the bottom bar of the U-character, and the base 14 a provides an opening 14 b in a center thereof to pass the infer fiber F 1 therethrough.
  • the base 14 a extends a pair of arms 14 c from respective sides thereof opposite to each other toward the ferrule 11 .
  • a space between the arms 14 c is substantially same with or slightly less than a distance between the cuts 12 a of the flange 12 .
  • the aims 14 c provide hooks 14 d in respective tips bent inward and preferably have widths greater than an outer diameter of the ferrule 11 , further preferably substantially comparable with an outer diameter of the sleeve 30 .
  • the base 14 a also provides tabs 14 e extending from rest sides opposite to each other bent toward the direction along which the arms 14 c extend. These tabs 14 e have two functions, one of which securely sets the coil spring 13 within a space formed between the base 14 a and the flange 12 .
  • the coil spring 13 has an inner diameter greater than the outer diameter of the inner fiber F 1 but the outer diameter thereof less than a space between the bent tabs 14 e, which allows the coil spring 13 to be movable around the optical axis thereof but securely suppresses the movement of the coil spring 13 within the space between the flange 12 and the base 14 a.
  • the second function of the tabs 14 e is to strengthen the latch 14 .
  • the coil spring 13 is compressed between the flange 12 and the base 14 a , which means that the coil spring 13 presses the base 14 a outwardly.
  • the tabs 14 e of the base 14 a may enhance the stiffness against the stress caused by the coil spring 13 .
  • the arms 14 c further provide saddles 14 f in respective centers so as to narrow the space therebetween.
  • the saddles 14 f may distinguish two statuses of the latch 14 . That is, sliding the latch 14 so as to set the saddles 14 f in the side of the coil spring 13 , which exposes the ferrule 11 and the insertion of the ferrule 11 into the spilt sleeve 30 is facilitated. Moreover, the arms 14 c drawn rearward effectively prevent the hooks 14 d in the respective tips thereof from touching to the ferrule 21 when the female connector 20 engages with the sleeve 30 . On the other hand, sliding the latch 14 so as to latch the hooks 14 d with the flange 22 of the female connector 20 , the saddles 14 f are set in the side of the ferrule 11 with respect to the flange 12 .
  • the female connector 20 provides the other ferrule 21 secured in an end of the other inner fiber F 2 .
  • the ferrule 21 in a root portion thereof provides the flange 22 with cuts 22 a formed oppositely with respect to the optical axis of the inner fiber F 2 .
  • the cuts 22 a similar to the cuts 12 a, have a function not to rotate the female connector 20 around the optical axis of the inner fiber F 2 .
  • the root of the flange 22 is formed in a slope 22 b to assist the latch of the hooks 14 d of the latch 14 with the flange 22 because the tips of the hooks 14 d slide on the slope 22 b.
  • No slope is provided in an opposite side of the flange 22 to securely latch the hooks 14 d with the flange 22 even when the latch 14 is pulled along the optical axis so as to separate the male connector 10 from the female connector 20 .
  • the body 23 behind the flange 22 also provides cuts 23 a continuous to the cuts 22 a of the flange 22 .
  • the cuts 23 a of the body 23 have depths greater than the depths of the cut 22 a to receive the tip of the hook 14 d of the latch 14 .
  • the flange 22 further provides a cover 24 protruding from the flange 22 frontward so as to surround the ferrule 21 .
  • the cover 24 forms a pocket 24 a against the ferrule 21 to receive an end of the sleeve 30 opposite to a side receiving the ferrule 11 of the male connector 10 .
  • the cover 24 also has a function to protect the tip of the ferrule 21 .
  • the cover 24 has an inner diameter greater than the outer diameter of the sleeve 30 to facilitate the insertion of the ferrule 21 into the sleeve 30 .
  • FIG. 4 shows a cross section where the male connector 10 mates with the female connector 20 .
  • the hooks 14 d of the arms 14 c in the tips thereof are set within the cuts 23 a of the body. Moreover, the positions of the cuts, 12 a and 22 a, of respective connectors, 10 and 20 , are aligned by the arms 14 c.
  • the coil spring 13 is set within the space between the body 14 a and the flange 12 as being compressed therebetween to push the base 14 a so as to be apart from the flange 12 , which securely latches the hook 14 d with the flange 22 of the female connector 20 .
  • the saddles 14 f of respective arms position in the middle between two flanges, 12 and 22 .
  • the ferrules, 11 and 21 are set within the sleeve 30 and respective ends of the ferrules, 11 and 21 , come in physically contact to realize the optical coupling between two inner fibers, F 1 and F 2 .
  • the tip of the sleeve 30 is apart from the deep end of the pocket 24 a in the female connector 20 .
  • the coil spring 13 pushes the flange 12 of the male connector 10 toward the female connector 20 , while, pulls the flange 22 of the female connector 20 toward the mail connector 10 by pushing the base 14 a so as to apart from the flange 12 and lathing the hook 14 d with the flange 22 .
  • This mechanism of the coil spring 13 , the latch 14 , two flanges, 12 and 22 , and the sleeve 30 forming a gap against the deep end of the pocket 24 a makes the physical contact between the ends of respective ferrules, 11 and 21 , stable and secure.
  • FIGS. 5A to 5C explain the procedures to engage the male connector 10 with the female connector 20 .
  • the latch 14 is pulled rearward to expose the ferrule 11 of the mail connector 10 , and attaches the sleeve 30 to the exposed ferrule 11 .
  • the saddles 14 f positions behind the flange 12 to show the function not to slide the arms 14 c frontward.
  • the sleeve 30 is set within the pocket 24 a of the female connector 20 to abut the end of the ferrule 11 against the ferrule 21 of the female connector 20 .
  • the arms 14 c slide toward the female connector 20 such that the saddles 14 f get over the flange 12 of the male connector 10 , and hooks 14 d are set within the cuts 23 a of the body 23 to engage the hooks 14 d with the flange 22 of the female connector 20 .
  • the coil spring 13 is compressed between the base 14 a and the flange 12 to shorten the length thereof shorter than the free length to push the base 14 a rearward which securely engages the hooks 14 d with the flange 22 of the female connector 20 .
  • the female connector 20 may be disengaged from the mail connector 10 by pressing the saddles 14 f to de-latch the hook 14 d from the flange 22 .
  • the total length of the sleeve 30 is set to be shorter than a distance between flanges, 12 and 22 , when two connectors, 10 and 20 , are engaged, which means that the tip of the sleeve 30 is apart from the deep end of the pocket 24 a, or the other end of the sleeve 30 is apart from the flange 12 . This makes the physical contact between the ends of the ferrules, 11 and 21 , secure.
  • the mechanism of two connectors, 10 and 20 enhances the retention along the optical axis but substantially no functions or no effects along directions perpendicular to the optical axis.
  • the retention perpendicular to the optical axis solely depends on the function of the sleeve 30 to hold the ferrules, 11 and 21 .
  • the connectors, 10 and 20 of the present embodiment have a feature that they have no housings to retain the ferrules, 11 and 21 , perpendicular to the optical axis because the connectors, 10 and 20 , are assumed to be practically used in a narrower housing and an application of infrequent latching/de-latching system.
  • FIG. 6 shows an outer appearance of an optical apparatus into which the optical connectors, 10 and 20 , thus described are to be installed.
  • the optical apparatus 50 shown in FIG. 6 provides a housing comprised of an upper housing and a lower housing to form a space to install optical electrical components including the optical connectors, 10 and 20 .
  • FIGS. 7A to 7C explain an embodiment to install the optical connectors, 10 and 20 , within the housing 60 and to engage to each other.
  • the bottom housing 62 as shown in FIG. 7A , provides a pocket 62 b surrounded by walls 62 a.
  • the pocket 62 b has a channel 62 c with a width narrower than widths of rest portions of the pocket 62 b.
  • the channel 62 c accompanies with guides 62 d in respective side walls 62 a in one end thereof and screw holes 62 e.
  • the optical connectors, 10 and 20 are set within the pocket 62 a such that the sleeve 30 is set in the channel 62 c and one of the flanges, 12 and 22 , is set within the guides 62 d, as shown in FIG. 7B .
  • the length of the channel 62 c is substantially equal to a span between the flanges, 12 and 22 , in the state where the latch 14 is engaged with the flange 22 .
  • the width of the channel 62 c is substantially equal to an outer diameter of the cover 24 .
  • the optical connectors, 10 and 20 engaged with each other may be set within the channel 62 c with substantially no rickety.
  • a presser bar 70 is fixed to the bottom housing 62 by screws 71 so as to cover the latch 14 and install the engaged optical connectors, 10 and 20 , in the bottom housing 62 .
  • the presser bar 70 provides a center pocket 70 a with a width substantially equal to a width of the arm 14 c to prevent the arm 14 c from being rebounded out and releasing the engagement with the flange 22 of the female connector 20 .
  • the presser bar 70 provides a projection in a position counter to the pocket 70 a, which is not illustrated in FIG. 7C , set within the saddle 14 f of the arm 14 c.
  • the projection has a length along the arm 14 c substantially equal to a length of the saddle 14 f along the arm 14 c . Accordingly, the projection of the presser bar 70 effectively prevents the arm 14 c from sliding along the sleeve 30 .
  • FIG. 7A provides the guides 62 d only in one side of the channel 62 c, other guides may be provided in the other end of the channel 62 c to receive the flange 22 of the female connector 20 .

Abstract

A simplified optical coupling system having two optical connectors is disclosed. The optical coupling system includes a male connector with a ferrule, a female connector with another ferrule, and a sleeve to receive the ferrules in respective ends thereof. One of connectors provides a latch and a coil spring. The latch engages with a flange of the other connector, and the coil spring put between the flange of the connector having the latch and a base of the latch to secure the engagement of the latch with the flange.

Description

    BACKGROUND
  • 1. Field of the Invention
  • The present invention relates to an optical coupling apparatus, in particular, the invention relates to an optical coupling apparatus with a simplified structure and installed in a limited space such as an inside of an optical transceiver.
  • 2. Background Arts
  • Recent optical communication systems often install a wavelength division multiplexing (WDM) system to enhance the transmission capacity. For instance, optical transceivers following the multi-source agreements (MSA) such as CFP, QSFP (Quadrature Small Form-factor Pluggable), and so on multiplex four optical signals having wavelength grids of, for instance, CWDM (Coarse WDM) and LAN-WDM (Local Area Network WDM), on an optical fiber. Such an optical transceiver installs an optical multiplexer and/or an optical de-multiplexer to multiplex/de-multiplex optical signals optically connected with optical transducers of laser didoes and photodiodes with inner fibers.
  • When such optical components are connected with the arrangement of the pig-tailed fibers permanently and only one of the optical components shows a failure, all optical components installed within the optical transceiver are inevitably replaced, or at least carrying out procedures of cutting the pig-tailed fiber, replacing the failure optical component, and connecting the inner fiber of the replace component with already installed inner fiber by the fusion splicing. In order to carry out the procedures above, the installed pigtailed fibers are necessary to have surplus lengths, which dis-arranges the inside of the optical transceiver.
  • Some background arts have reported to connect the inner fibers with inner optical connectors. The inner optical connectors, different from ordinary connectors, are unnecessary to have the moisture resistance, the toughness, the coupling facilitation, and so on. The former two factors are secured by the housing of the optical transceiver. For the last factor, once the inner optical connectors are engaged, the disengagement of the inner connectors is not to be done until the optical components become failure. The simplified structure and the compactness consequence of the simplicity are first requested to the inner optical connector.
  • SUMMARY
  • One aspect of the present application relates to an optical coupling apparatus that comprises a first optical connector, a second optical connector, and a sleeve. The first optical connector provides a first ferrule, a first flange and a latch. The first flange is formed in a root portion of the first ferrule. The latch has a U-shape comprised of a base corresponding to a bottom bar of the U-shape and a pair of arms extending from the base. The second optical connector provides a second ferrule and a second flange. The second flange is formed in a root portion of the second ferrule. The sleeve receives the first ferrule and the second ferrule in respective ends. A feature of the optical coupling apparatus is that the base of the latch is set in a position opposite to the first ferrule with respect to the first flange and the arms of the latch engage with the second flange of the second optical connector.
  • Another aspect of the present application relates to an optical transceiver that installs optical components and inner fibers optically connecting the optical components. The optical transceiver of the present application comprises a housing and an optical coupling apparatus including a first optical connector, a second optical connector, and a sleeve. The first optical connector has a first ferrule attached in an end of one of the inner fibers, a first flange provided in a root portion of the first ferrule, and a latch having the base and a pair of arms extending from the base. The second optical connector has a second ferrule attached in an end of another of the inner fibers, and a second flange provided in a root portion of the second ferrule. The sleeve receives the first ferrule and the second ferrule in respective ends thereof. The arms of the latch engage with the second flange. The base and the second flange sandwiches the first flange of the first optical connector therebetween. The housing encloses the optical coupling apparatus and provides a pocket to set the optical coupling apparatus therein. A feature of the present optical transceiver is that the pocket of the housing provides a channel to set the sleeve therein and a guide in an end of the channel to receive one of the first flange and the second flange of the optical coupling apparatus.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing and other purposes, aspects and advantages will be better understood from the following detailed description of a preferred embodiment of the invention with reference to the drawings, in which:
  • FIGS. 1A and 1B illustrate an optical connector according to an embodiment of the present invention;
  • FIG. 2 is a perspective view showing the male connector engaged with the female connector;
  • FIG. 3A illustrates the ferrule and the flange of the male connector as omitting the sleeve and the latch, and FIG. 3B illustrates the latch 14;
  • FIG. 4 shows a cross section of the optical coupling apparatus where the male connector engages with the female connector;
  • FIGS. 5A to 5C explain the procedures to engage the male connector with the female connector;
  • FIG. 6 is an outer appearance of an optical transceiver into which the optical connectors are to be installed; and
  • FIGS. 7A to 7C explain an embodiment to install the optical connectors within the housing and to engage to each other.
  • DETAILED DESCRIPTION
  • Next, some preferred embodiments of optical transceivers according to the present application will be described as referring to accompanying drawings. In the description of the drawings, numerals or symbols same with or similar to each other will refer to elements same with or similar to each other without duplicated explanations.
  • FIGS. 1A and 1B illustrate an optical connector according to an embodiment of the present invention, where FIG. 1A illustrates a male connector 10, while, FIG. 1B illustrates a female connector 20. However, the optical connector of the present embodiment cannot exactly distinguish the male connector 10 from the female connector 20 because both connectors provide respective ferrules, 11 and 21, and a sleeve 30 to receive the ferrules, 11 and 21, to couple the male connector 10 with the female connector 20.
  • The description presented below assumes the member shown in FIG. 1A as the male connector because the connector 20 shown in FIG. 1B provides a pocket 24 a to receive the sleeve 30, while, the optical connector 20 shown in FIG. 1B is called as the female connector. The male connector 10 provides a ferrule 11 shown in FIG. 3A, which is attached to an end of an inner fiber F1, and a flange 12 in a root portion of the ferrule 11. Referring to FIG. 2, the male connector 10 also provides a coil spring 13 in an outer side of the flange 12 and a latch 14 with a U-shaped side view. A portion corresponding to a bottom bar of the U-character is attached to the coil spring 13. The latch 14 of the present embodiment may be made of metal, typically copper (Cu). However, the latch 14 may be made of resin.
  • Referring back to FIG. 1, the female connector 20 also provides a ferrule 21 attached in an end of another inner fiber F2. The ferrule 21 provides a flange 22 in a root portion thereof. The ferrules, 11 and 21, are preferably formed independent of respective flanges, 12 and 22, because the accuracy of the physical dimensions required to the ferrules, 11 and 21, are different from the accuracy of the flanges, 12 and 22.
  • FIG. 2 illustrates the male connector 10 coupled with the female connector 20 through the sleeve 30. The optical coupling between two connectors, 10 and 20, are primarily derived from the mating between the sleeve 30 and respective ferrules, 11 and 21. The latch 14 with the U-shape side view assists the coupling between two connectors, 10 and 20, by being latched with the flange 22 of the female connector 20. The present optical connector provides the coil spring 13 disposed between the flange 12 of the male connector 10 and the bottom bar of the U-shaped latch 14, then, the coil spring 13 may strengthen the engagement between the latch 14 and the flange 22. As shown in FIG. 2, even then male connector 10 is engaged with the female connector 20, the sleeve 30 is exposed.
  • FIG. 3A illustrates the ferrule 11 and the flange 12 of the male connector 10, where FIG. 3A omits the sleeve 30 and the latch 14. FIG. 3B illustrates the latch 14. The flange 12, as shown in FIG. 3A, provides two cuts 12 a in respective sides opposite to each other. The cuts 12 a receive ends of respective vertical bars of the U-shaped latch 14. The arrangement of the vertical bars of the U-shaped latch 14 set within the cuts 12 a may effectively prevent the latch 14 from rotating around the optical axis of the inner fibers, F1 and F2.
  • The U-shaped latch 14, as shown in FIG. 3B, comprises a base 14 a with a rectangular plane shape, which corresponds to the bottom bar of the U-character, and the base 14 a provides an opening 14 b in a center thereof to pass the infer fiber F1 therethrough. The base 14 a extends a pair of arms 14 c from respective sides thereof opposite to each other toward the ferrule 11. A space between the arms 14 c is substantially same with or slightly less than a distance between the cuts 12 a of the flange 12. Also, the aims 14 c provide hooks 14 d in respective tips bent inward and preferably have widths greater than an outer diameter of the ferrule 11, further preferably substantially comparable with an outer diameter of the sleeve 30.
  • The base 14 a also provides tabs 14 e extending from rest sides opposite to each other bent toward the direction along which the arms 14 c extend. These tabs 14 e have two functions, one of which securely sets the coil spring 13 within a space formed between the base 14 a and the flange 12. The coil spring 13 has an inner diameter greater than the outer diameter of the inner fiber F1 but the outer diameter thereof less than a space between the bent tabs 14 e, which allows the coil spring 13 to be movable around the optical axis thereof but securely suppresses the movement of the coil spring 13 within the space between the flange 12 and the base 14 a.
  • The second function of the tabs 14 e is to strengthen the latch 14. When the male connector 10 is engaged with the female connector 20, the coil spring 13 is compressed between the flange 12 and the base 14 a, which means that the coil spring 13 presses the base 14 a outwardly. The tabs 14 e of the base 14 a may enhance the stiffness against the stress caused by the coil spring 13.
  • The arms 14 c further provide saddles 14 f in respective centers so as to narrow the space therebetween. The saddles 14 f may distinguish two statuses of the latch 14. That is, sliding the latch 14 so as to set the saddles 14 f in the side of the coil spring 13, which exposes the ferrule 11 and the insertion of the ferrule 11 into the spilt sleeve 30 is facilitated. Moreover, the arms 14 c drawn rearward effectively prevent the hooks 14 d in the respective tips thereof from touching to the ferrule 21 when the female connector 20 engages with the sleeve 30. On the other hand, sliding the latch 14 so as to latch the hooks 14 d with the flange 22 of the female connector 20, the saddles 14 f are set in the side of the ferrule 11 with respect to the flange 12.
  • Referring back to FIG. 1B, the female connector 20 provides the other ferrule 21 secured in an end of the other inner fiber F2. The ferrule 21 in a root portion thereof provides the flange 22 with cuts 22 a formed oppositely with respect to the optical axis of the inner fiber F2. The cuts 22 a, similar to the cuts 12 a, have a function not to rotate the female connector 20 around the optical axis of the inner fiber F2.
  • The root of the flange 22 is formed in a slope 22 b to assist the latch of the hooks 14 d of the latch 14 with the flange 22 because the tips of the hooks 14 d slide on the slope 22 b. No slope is provided in an opposite side of the flange 22 to securely latch the hooks 14 d with the flange 22 even when the latch 14 is pulled along the optical axis so as to separate the male connector 10 from the female connector 20. The body 23 behind the flange 22 also provides cuts 23 a continuous to the cuts 22 a of the flange 22. The cuts 23 a of the body 23 have depths greater than the depths of the cut 22 a to receive the tip of the hook 14 d of the latch 14.
  • The flange 22 further provides a cover 24 protruding from the flange 22 frontward so as to surround the ferrule 21. The cover 24 forms a pocket 24 a against the ferrule 21 to receive an end of the sleeve 30 opposite to a side receiving the ferrule 11 of the male connector 10. The cover 24 also has a function to protect the tip of the ferrule 21. The cover 24 has an inner diameter greater than the outer diameter of the sleeve 30 to facilitate the insertion of the ferrule 21 into the sleeve 30.
  • FIG. 4 shows a cross section where the male connector 10 mates with the female connector 20. The hooks 14 d of the arms 14 c in the tips thereof are set within the cuts 23 a of the body. Moreover, the positions of the cuts, 12 a and 22 a, of respective connectors, 10 and 20, are aligned by the arms 14 c. The coil spring 13 is set within the space between the body 14 a and the flange 12 as being compressed therebetween to push the base 14 a so as to be apart from the flange 12, which securely latches the hook 14 d with the flange 22 of the female connector 20. When the hook 14 d is engaged with the flange 22, the saddles 14 f of respective arms position in the middle between two flanges, 12 and 22.
  • Also, when the two connectors, 10 and 20, are engaged, the ferrules, 11 and 21, are set within the sleeve 30 and respective ends of the ferrules, 11 and 21, come in physically contact to realize the optical coupling between two inner fibers, F1 and F2. The tip of the sleeve 30 is apart from the deep end of the pocket 24 a in the female connector 20. As described, the coil spring 13 pushes the flange 12 of the male connector 10 toward the female connector 20, while, pulls the flange 22 of the female connector 20 toward the mail connector 10 by pushing the base 14 a so as to apart from the flange 12 and lathing the hook 14 d with the flange 22. This mechanism of the coil spring 13, the latch 14, two flanges, 12 and 22, and the sleeve 30 forming a gap against the deep end of the pocket 24 a makes the physical contact between the ends of respective ferrules, 11 and 21, stable and secure.
  • FIGS. 5A to 5C explain the procedures to engage the male connector 10 with the female connector 20. First, as shown in FIG. 5A, the latch 14 is pulled rearward to expose the ferrule 11 of the mail connector 10, and attaches the sleeve 30 to the exposed ferrule 11. In this state, the saddles 14 f positions behind the flange 12 to show the function not to slide the arms 14 c frontward.
  • Then, as shown in FIG. 5B, the sleeve 30 is set within the pocket 24 a of the female connector 20 to abut the end of the ferrule 11 against the ferrule 21 of the female connector 20. Finally, as shown in FIG. 5C, the arms 14 c slide toward the female connector 20 such that the saddles 14 f get over the flange 12 of the male connector 10, and hooks 14 d are set within the cuts 23 a of the body 23 to engage the hooks 14 d with the flange 22 of the female connector 20. During the slide of the arms 14 c shown in FIG. 5C, the coil spring 13 is compressed between the base 14 a and the flange 12 to shorten the length thereof shorter than the free length to push the base 14 a rearward which securely engages the hooks 14 d with the flange 22 of the female connector 20. The female connector 20 may be disengaged from the mail connector 10 by pressing the saddles 14 f to de-latch the hook 14 d from the flange 22.
  • As described, the total length of the sleeve 30 is set to be shorter than a distance between flanges, 12 and 22, when two connectors, 10 and 20, are engaged, which means that the tip of the sleeve 30 is apart from the deep end of the pocket 24 a, or the other end of the sleeve 30 is apart from the flange 12. This makes the physical contact between the ends of the ferrules, 11 and 21, secure.
  • The mechanism of two connectors, 10 and 20, thus described enhances the retention along the optical axis but substantially no functions or no effects along directions perpendicular to the optical axis. The retention perpendicular to the optical axis solely depends on the function of the sleeve 30 to hold the ferrules, 11 and 21. The connectors, 10 and 20, of the present embodiment have a feature that they have no housings to retain the ferrules, 11 and 21, perpendicular to the optical axis because the connectors, 10 and 20, are assumed to be practically used in a narrower housing and an application of infrequent latching/de-latching system.
  • FIG. 6 shows an outer appearance of an optical apparatus into which the optical connectors, 10 and 20, thus described are to be installed. The optical apparatus 50 shown in FIG. 6 provides a housing comprised of an upper housing and a lower housing to form a space to install optical electrical components including the optical connectors, 10 and 20. FIGS. 7A to 7C explain an embodiment to install the optical connectors, 10 and 20, within the housing 60 and to engage to each other. The bottom housing 62, as shown in FIG. 7A, provides a pocket 62 b surrounded by walls 62 a. The pocket 62 b has a channel 62 c with a width narrower than widths of rest portions of the pocket 62 b. The channel 62 c accompanies with guides 62 d in respective side walls 62 a in one end thereof and screw holes 62 e.
  • The optical connectors, 10 and 20, are set within the pocket 62 a such that the sleeve 30 is set in the channel 62 c and one of the flanges, 12 and 22, is set within the guides 62 d, as shown in FIG. 7B. The length of the channel 62 c is substantially equal to a span between the flanges, 12 and 22, in the state where the latch 14 is engaged with the flange 22. Also, the width of the channel 62 c is substantially equal to an outer diameter of the cover 24. Thus, the optical connectors, 10 and 20, engaged with each other may be set within the channel 62 c with substantially no rickety.
  • Finally, a presser bar 70 is fixed to the bottom housing 62 by screws 71 so as to cover the latch 14 and install the engaged optical connectors, 10 and 20, in the bottom housing 62. The presser bar 70 provides a center pocket 70 a with a width substantially equal to a width of the arm 14 c to prevent the arm 14 c from being rebounded out and releasing the engagement with the flange 22 of the female connector 20. Moreover, the presser bar 70 provides a projection in a position counter to the pocket 70 a, which is not illustrated in FIG. 7C, set within the saddle 14 f of the arm 14 c. The projection has a length along the arm 14 c substantially equal to a length of the saddle 14 f along the arm 14 c. Accordingly, the projection of the presser bar 70 effectively prevents the arm 14 c from sliding along the sleeve 30.
  • Although the embodiment shown in FIG. 7A provides the guides 62 d only in one side of the channel 62 c, other guides may be provided in the other end of the channel 62 c to receive the flange 22 of the female connector 20.
  • In the foregoing detailed description, the method and apparatus of the present invention have been described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the present invention. The present specification and figures are accordingly to be regarded as illustrative rather than restrictive.

Claims (17)

What is claimed is:
1. An optical coupling apparatus, comprising:
a first optical connector providing a first ferrule, a first flange and a latch, the first flange being formed in a root portion of the first ferrule, the latch having a U-shape comprised of a base corresponding to a bottom bar of the U-shape and a pair of arms extending from the base;
a second optical connector providing a second ferrule and a second flange, the second flange being formed in a root portion of the second ferrule; and
a sleeve configured to receive the first ferrule and the second ferrule in respective ends thereof,
wherein the base of the latch is set in a position opposite to the first ferrule with respect to the first flange and the arms of the latch engage with the second flange of the second optical connector.
2. The optical coupling apparatus of claim 1,
wherein the first connector further provides a coil spring set between the base of the latch and the first flange, the coil spring pushing the first flange toward the second connector and the base toward a direction opposite to the second optical connector.
3. The optical coupling apparatus of claim 1,
wherein the arms of the latch provide hooks bent inward in respective ends thereof, the hooks being engaged with the second flange of the second optical connector.
4. The optical coupling apparatus of claim 3,
wherein the second flange provides cuts to receive respective arms of the latch.
5. The optical coupling apparatus of claim 4,
wherein the second connector provides a body in a position opposite to the second ferrule with respect to the second flange, the body providing cuts continuous to the cuts of the second flange, the cuts of the body receiving the bent ends of respective hooks.
6. The optical coupling apparatus of claim 3,
wherein the first flange provides cuts to pass respective arms.
7. The optical coupling apparatus of claim 1,
wherein the second ferrule provides a slope in a root portion thereof.
8. The optical coupling apparatus of claim 1,
wherein the arms provide saddles set between the first flange and the second flange.
9. The optical coupling apparatus of claim 1,
wherein the second optical connector provides a cover surrounding the second ferrule, the cover forming a pocket against the second ferrule to receive the sleeve therein.
10. The optical coupling apparatus of claim 9,
wherein the sleeve has a length shorter than a distance between the first flange and the second flange.
11. An optical transceiver that installs optical components and inner fibers optically connecting the optical components, comprising:
an optical coupling apparatus including a first optical connector, a second optical connector, and a sleeve,
wherein the first optical connector has a first ferrule attached in an end of one of the inner fibers, a first flange provided in a root portion of the first ferrule, and a latch having the base and a pair of arms extending from the base,
wherein the second optical connector has a second ferrule attached in an end of another of the inner fibers, and a second flange provided in a root portion of the second ferrule,
wherein the sleeve receives the first ferrule and the second ferrule in respective ends thereof, and
wherein the arms of the latch engages with the second flange, the base and the second flange putting the first flange of the first optical connector therebtween; and
a housing to enclose the optical coupling apparatus and provide a pocket to set the optical coupling apparatus therein,
wherein the pocket of the housing provides a channel to set the sleeve therein and a guide in an end of the channel to receive one of the first flange and the second flange of the optical coupling apparatus.
12. The optical transceiver of claim 11,
wherein the first optical connector further provides a coil spring set between the base of the latch and the first flange, the coil spring pushing the first flange toward the second optical connector and the base toward a direction opposite to the second optical connector.
13. The optical transceiver of claim 11,
wherein the arms of the latch provide hooks bent inward in respective ends thereof, the hooks being engaged with the second flange of the second connector.
14. The optical transceiver of claim 13,
wherein the first flange provides cuts to pass respective arms therethrough and the second flange provides another cuts to receive respective arms.
15. The optical transceiver of claim 11,
wherein the arms provide saddles in a position between the first flange and the second flange.
16. The optical transceiver of claim 11,
wherein the second optical connector provides a cover surrounding the second ferrule, the cover forming a pocket against the second ferrule to receive the sleeve therein, and
wherein the sleeve has a length shorter than a distance between the first flange and the second flange.
17. The optical transceiver of claim 11,
further comprising a presser bar to hold the optical coupling apparatus, in the channel,
wherein the presser bar provides a pocket to receive the arms and the sleeve therein.
US14/579,781 2013-12-26 2014-12-22 Optical coupling apparatus and optical transceiver installing the same Active US9213150B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-268534 2013-12-26
JP2013268534A JP2015125217A (en) 2013-12-26 2013-12-26 Optical coupling mechanism and optical transceiver

Publications (2)

Publication Number Publication Date
US20150185423A1 true US20150185423A1 (en) 2015-07-02
US9213150B2 US9213150B2 (en) 2015-12-15

Family

ID=53481463

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/579,781 Active US9213150B2 (en) 2013-12-26 2014-12-22 Optical coupling apparatus and optical transceiver installing the same

Country Status (3)

Country Link
US (1) US9213150B2 (en)
JP (1) JP2015125217A (en)
CN (1) CN104749717B (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160091670A1 (en) * 2014-09-30 2016-03-31 Fujitsu Component Limited Clip, optical module, and optical connector
US9720188B2 (en) * 2015-12-31 2017-08-01 International Business Machines Corporation Connecting mid-board optical modules
US10168488B1 (en) * 2017-08-30 2019-01-01 Te Connectivity Corporation Tool-less ferrule retainer
US20190033534A1 (en) * 2017-07-28 2019-01-31 Sumitomo Electric Industries, Ltd. Optical fiber connector, optical apparatus, optical transceiver, and method of manufacturing optical fiber connector
US10359577B2 (en) 2017-06-28 2019-07-23 Corning Research & Development Corporation Multiports and optical connectors with rotationally discrete locking and keying features
US10379298B2 (en) 2017-06-28 2019-08-13 Corning Research & Development Corporation Fiber optic connectors and multiport assemblies including retention features
US10641967B1 (en) 2018-11-16 2020-05-05 Corning Research & Development Corporation Multiport assemblies including a modular adapter support array
US10768382B2 (en) 2018-11-29 2020-09-08 Corning Research & Development Corporation Multiport assemblies including access apertures and a release tool
US10938482B2 (en) * 2019-03-11 2021-03-02 Sumitomo Electric Industries, Ltd. Optical transceiver
US11187859B2 (en) 2017-06-28 2021-11-30 Corning Research & Development Corporation Fiber optic connectors and methods of making the same
US11221449B2 (en) * 2018-05-11 2022-01-11 Sumitomo Electric Industries, Ltd. Optical connector, optical module and clip member
US11294133B2 (en) 2019-07-31 2022-04-05 Corning Research & Development Corporation Fiber optic networks using multiports and cable assemblies with cable-to-connector orientation
US11300746B2 (en) 2017-06-28 2022-04-12 Corning Research & Development Corporation Fiber optic port module inserts, assemblies and methods of making the same
US11487073B2 (en) 2019-09-30 2022-11-01 Corning Research & Development Corporation Cable input devices having an integrated locking feature and assemblies using the cable input devices
US11536921B2 (en) 2020-02-11 2022-12-27 Corning Research & Development Corporation Fiber optic terminals having one or more loopback assemblies
US11604320B2 (en) 2020-09-30 2023-03-14 Corning Research & Development Corporation Connector assemblies for telecommunication enclosures
US11650388B2 (en) 2019-11-14 2023-05-16 Corning Research & Development Corporation Fiber optic networks having a self-supporting optical terminal and methods of installing the optical terminal
US11668890B2 (en) 2017-06-28 2023-06-06 Corning Research & Development Corporation Multiports and other devices having optical connection ports with securing features and methods of making the same
US11686913B2 (en) 2020-11-30 2023-06-27 Corning Research & Development Corporation Fiber optic cable assemblies and connector assemblies having a crimp ring and crimp body and methods of fabricating the same
CN116540365A (en) * 2023-05-16 2023-08-04 安徽鹏大光电科技有限公司 Optical fiber coupling connector assembly and connecting method
US11880076B2 (en) 2020-11-30 2024-01-23 Corning Research & Development Corporation Fiber optic adapter assemblies including a conversion housing and a release housing
US11886010B2 (en) 2019-10-07 2024-01-30 Corning Research & Development Corporation Fiber optic terminals and fiber optic networks having variable ratio couplers
US11927810B2 (en) 2020-11-30 2024-03-12 Corning Research & Development Corporation Fiber optic adapter assemblies including a conversion housing and a release member
US11947167B2 (en) 2021-05-26 2024-04-02 Corning Research & Development Corporation Fiber optic terminals and tools and methods for adjusting a split ratio of a fiber optic terminal

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018081144A (en) * 2016-11-14 2018-05-24 住友電気工業株式会社 Optical connector
US10281668B2 (en) * 2017-07-14 2019-05-07 Senko Advanced Components, Inc. Ultra-small form factor optical connectors
KR101930078B1 (en) * 2017-09-14 2018-12-17 주식회사 디투에스 A Fixing Clip For Optical fiber composite cable Connector
CN108037566B (en) * 2017-11-29 2023-07-25 国网河南省电力公司焦作供电公司 FC type optical fiber connector convenient to plug and pull and operation method thereof
JP7206484B2 (en) * 2017-12-27 2023-01-18 日亜化学工業株式会社 Fastening member and optical receptacle module
CN110196470B (en) * 2019-04-29 2021-04-16 宁波天韵通信设备有限公司 Optical fiber core insert ceramic sleeve
JP7339144B2 (en) 2019-12-09 2023-09-05 矢崎総業株式会社 optical connector
JP7306262B2 (en) * 2019-12-27 2023-07-11 住友電気工業株式会社 Optical component manufacturing method and holding jig
TWI722902B (en) * 2020-02-26 2021-03-21 立佳興業股份有限公司 Latching structure and optical connector receptacle using the same
WO2023100409A1 (en) * 2021-12-01 2023-06-08 株式会社フジクラ Optical connection structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5943461A (en) * 1997-05-12 1999-08-24 Lucent Technologies Inc Connectorized optical module package and method using same with internal fiber connections
US20090016685A1 (en) * 2007-07-11 2009-01-15 Hudgins Clay E Reconfiguration and protocol adaptation of optoelectronic modules and network components
US20090052898A1 (en) * 2006-10-04 2009-02-26 Sumitomo Electric Industries, Ltd. Optical transceiver with a plurality of optical subassemblies electrically connected by integrated FPC board with a substrate
US20110103797A1 (en) * 2009-10-29 2011-05-05 Sumitomo Electric Industries, Ltd. Pluggable optical transceiver and method for manufacturing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082345A (en) * 1990-08-13 1992-01-21 At&T Bell Laboratories Optical fiber connecting device including attenuator
JP2780640B2 (en) 1994-05-25 1998-07-30 住友電装株式会社 Optical fiber cable connector
DE19533498C2 (en) 1995-09-01 1997-12-04 Siemens Ag Connector for an optical fiber cable
US5953475A (en) 1995-09-01 1999-09-14 Siemens Aktiengesellschaft Fiber optic plug connector
DE19809806A1 (en) * 1998-03-09 1999-09-16 Kromberg & Schubert Contact arrangement for optical conductor, esp. for motor vehicles
JP2000180669A (en) * 1998-12-17 2000-06-30 Oki Electric Ind Co Ltd Optical connector plug
DE502004009448D1 (en) * 2004-02-19 2009-06-18 Reichle & De Massari Fa Connector housing of an optical connector for the industrial environment
CN102455468B (en) * 2010-10-19 2015-02-25 富士康(昆山)电脑接插件有限公司 Optical fiber connector and optical fiber connector component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5943461A (en) * 1997-05-12 1999-08-24 Lucent Technologies Inc Connectorized optical module package and method using same with internal fiber connections
US20090052898A1 (en) * 2006-10-04 2009-02-26 Sumitomo Electric Industries, Ltd. Optical transceiver with a plurality of optical subassemblies electrically connected by integrated FPC board with a substrate
US20090016685A1 (en) * 2007-07-11 2009-01-15 Hudgins Clay E Reconfiguration and protocol adaptation of optoelectronic modules and network components
US20110103797A1 (en) * 2009-10-29 2011-05-05 Sumitomo Electric Industries, Ltd. Pluggable optical transceiver and method for manufacturing the same

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160091670A1 (en) * 2014-09-30 2016-03-31 Fujitsu Component Limited Clip, optical module, and optical connector
US9453975B2 (en) * 2014-09-30 2016-09-27 Fujitsu Component Limited Clip, optical module, and optical connector
US9720188B2 (en) * 2015-12-31 2017-08-01 International Business Machines Corporation Connecting mid-board optical modules
US9835804B2 (en) 2015-12-31 2017-12-05 Intenational Business Machines Corporation Connecting mid-board optical modules
US10073223B2 (en) 2015-12-31 2018-09-11 International Business Machines Corporation Connecting mid-board optical modules
US11415759B2 (en) 2017-06-28 2022-08-16 Corning Optical Communications LLC Multiports having a connection port insert and methods of making the same
US11940656B2 (en) 2017-06-28 2024-03-26 Corning Research & Development Corporation Compact fiber optic connectors, cable assemblies and methods of making the same
US10359577B2 (en) 2017-06-28 2019-07-23 Corning Research & Development Corporation Multiports and optical connectors with rotationally discrete locking and keying features
US10379298B2 (en) 2017-06-28 2019-08-13 Corning Research & Development Corporation Fiber optic connectors and multiport assemblies including retention features
US10386584B2 (en) 2017-06-28 2019-08-20 Corning Research & Development Corporation Optical connectors with locking and keying features for interfacing with multiports
US10429593B2 (en) 2017-06-28 2019-10-01 Corning Research & Development Corporation Fiber optic connectors and connectorization employing adapter extensions and/or flexures
US10429594B2 (en) 2017-06-28 2019-10-01 Corning Research & Development Corporation Multiport assemblies including retention features
US10605998B2 (en) 2017-06-28 2020-03-31 Corning Research & Development Corporation Fiber optic connectors and connectorization employing adhesive admitting adapters
US11966089B2 (en) 2017-06-28 2024-04-23 Corning Optical Communications, Llc Multiports having connection ports formed in the shell and associated securing features
US11914197B2 (en) 2017-06-28 2024-02-27 Corning Research & Development Corporation Compact fiber optic connectors having multiple connector footprints, along with cable assemblies and methods of making the same
US10802228B2 (en) 2017-06-28 2020-10-13 Corning Research & Development Corporation Fiber optic connectors and multiport assemblies including retention features
US10809463B2 (en) 2017-06-28 2020-10-20 Corning Research & Development Corporation Multiports and optical connectors with rotationally discrete locking and keying features
US11914198B2 (en) 2017-06-28 2024-02-27 Corning Research & Development Corporation Compact fiber optic connectors having multiple connector footprints, along with cable assemblies and methods of making the same
US11187859B2 (en) 2017-06-28 2021-11-30 Corning Research & Development Corporation Fiber optic connectors and methods of making the same
US11215768B2 (en) 2017-06-28 2022-01-04 Corning Research & Development Corporation Fiber optic connectors and connectorization employing adhesive admitting adapters
US11906792B2 (en) 2017-06-28 2024-02-20 Corning Research & Development Corporation Compact fiber optic connectors having multiple connector footprints, along with cable assemblies and methods of making the same
US11262509B2 (en) 2017-06-28 2022-03-01 Corning Research & Development Corporation Compact fiber optic connectors having multiple connector footprints, along with cable assemblies and methods of making the same
US11287581B2 (en) 2017-06-28 2022-03-29 Corning Research & Development Corporation Compact fiber optic connectors, cable assemblies and methods of making the same
US11287582B2 (en) 2017-06-28 2022-03-29 Corning Research & Development Corporation Compact fiber optic connectors, cable assemblies and methods of making the same
US11886017B2 (en) 2017-06-28 2024-01-30 Corning Research & Development Corporation Multiports and other devices having connection ports with securing features and methods of making the same
US11300735B2 (en) 2017-06-28 2022-04-12 Corning Research & Development Corporation Compact fiber optic connectors having multiple connector footprints, along with cable assemblies and methods of making the same
US11300746B2 (en) 2017-06-28 2022-04-12 Corning Research & Development Corporation Fiber optic port module inserts, assemblies and methods of making the same
US11460646B2 (en) 2017-06-28 2022-10-04 Corning Research & Development Corporation Fiber optic connectors and multiport assemblies including retention features
US11327247B2 (en) 2017-06-28 2022-05-10 Corning Optical Communications LLC Multiports having connection ports formed in the shell and associated securing features
US11409055B2 (en) 2017-06-28 2022-08-09 Corning Optical Communications LLC Multiports having connection ports with associated securing features and methods of making the same
US11789214B2 (en) 2017-06-28 2023-10-17 Corning Research & Development Corporation Multiports and other devices having keyed connection ports and securing features and methods of making the same
US11307364B2 (en) 2017-06-28 2022-04-19 Corning Research & Development Corporation Compact fiber optic connectors having multiple connector footprints, along with cable assemblies and methods of making the same
US11703646B2 (en) 2017-06-28 2023-07-18 Corning Research & Development Corporation Multiports and optical connectors with rotationally discrete locking and keying features
US11624877B2 (en) 2017-06-28 2023-04-11 Corning Research & Development Corporation Multiports having connection ports with securing features that actuate flexures and methods of making the same
US11493700B2 (en) 2017-06-28 2022-11-08 Corning Research & Development Corporation Compact fiber optic connectors, cable assemblies and methods of making the same
US11493699B2 (en) 2017-06-28 2022-11-08 Corning Research & Development Corporation Multifiber fiber optic connectors, cable assemblies and methods of making the same
US11531168B2 (en) 2017-06-28 2022-12-20 Corning Research & Development Corporation Fiber optic connectors having a keying structure and methods of making the same
US11536913B2 (en) 2017-06-28 2022-12-27 Corning Research & Development Corporation Fiber optic connectors and connectorization employing adhesive admitting adapters
US11668890B2 (en) 2017-06-28 2023-06-06 Corning Research & Development Corporation Multiports and other devices having optical connection ports with securing features and methods of making the same
US11543600B2 (en) 2017-06-28 2023-01-03 Corning Research & Development Corporation Compact fiber optic connectors having multiple connector footprints, along with cable assemblies and methods of making the same
US11579377B2 (en) 2017-06-28 2023-02-14 Corning Research & Development Corporation Compact fiber optic connectors, cable assemblies and methods of making the same with alignment elements
US11656414B2 (en) 2017-06-28 2023-05-23 Corning Research & Development Corporation Multiports and other devices having connection ports with securing features and methods of making the same
US11487065B2 (en) 2017-06-28 2022-11-01 Corning Research & Development Corporation Multiports and devices having a connector port with a rotating securing feature
US20190033534A1 (en) * 2017-07-28 2019-01-31 Sumitomo Electric Industries, Ltd. Optical fiber connector, optical apparatus, optical transceiver, and method of manufacturing optical fiber connector
US10168488B1 (en) * 2017-08-30 2019-01-01 Te Connectivity Corporation Tool-less ferrule retainer
US11221449B2 (en) * 2018-05-11 2022-01-11 Sumitomo Electric Industries, Ltd. Optical connector, optical module and clip member
US10641967B1 (en) 2018-11-16 2020-05-05 Corning Research & Development Corporation Multiport assemblies including a modular adapter support array
US10768382B2 (en) 2018-11-29 2020-09-08 Corning Research & Development Corporation Multiport assemblies including access apertures and a release tool
US10938482B2 (en) * 2019-03-11 2021-03-02 Sumitomo Electric Industries, Ltd. Optical transceiver
US11294133B2 (en) 2019-07-31 2022-04-05 Corning Research & Development Corporation Fiber optic networks using multiports and cable assemblies with cable-to-connector orientation
US11487073B2 (en) 2019-09-30 2022-11-01 Corning Research & Development Corporation Cable input devices having an integrated locking feature and assemblies using the cable input devices
US11886010B2 (en) 2019-10-07 2024-01-30 Corning Research & Development Corporation Fiber optic terminals and fiber optic networks having variable ratio couplers
US11650388B2 (en) 2019-11-14 2023-05-16 Corning Research & Development Corporation Fiber optic networks having a self-supporting optical terminal and methods of installing the optical terminal
US11536921B2 (en) 2020-02-11 2022-12-27 Corning Research & Development Corporation Fiber optic terminals having one or more loopback assemblies
US11604320B2 (en) 2020-09-30 2023-03-14 Corning Research & Development Corporation Connector assemblies for telecommunication enclosures
US11686913B2 (en) 2020-11-30 2023-06-27 Corning Research & Development Corporation Fiber optic cable assemblies and connector assemblies having a crimp ring and crimp body and methods of fabricating the same
US11927810B2 (en) 2020-11-30 2024-03-12 Corning Research & Development Corporation Fiber optic adapter assemblies including a conversion housing and a release member
US11880076B2 (en) 2020-11-30 2024-01-23 Corning Research & Development Corporation Fiber optic adapter assemblies including a conversion housing and a release housing
US11947167B2 (en) 2021-05-26 2024-04-02 Corning Research & Development Corporation Fiber optic terminals and tools and methods for adjusting a split ratio of a fiber optic terminal
CN116540365A (en) * 2023-05-16 2023-08-04 安徽鹏大光电科技有限公司 Optical fiber coupling connector assembly and connecting method

Also Published As

Publication number Publication date
CN104749717B (en) 2016-09-21
US9213150B2 (en) 2015-12-15
CN104749717A (en) 2015-07-01
JP2015125217A (en) 2015-07-06

Similar Documents

Publication Publication Date Title
US9213150B2 (en) Optical coupling apparatus and optical transceiver installing the same
US11525965B2 (en) Mini duplex connector with push-pull polarity mechanism and carrier with latch and rail
KR102239204B1 (en) Narrow width adapters and connectors with modular latching arms
US10168485B2 (en) Optical adaptor for mounting to a receptacle to optically couple connectorized optical cables
US8403569B2 (en) Termination system for fiber optic connection
US8858095B2 (en) Optical-electrical connector having a resilient member for urging ferrule against lens member
US9915789B2 (en) Optical adaptor for mounting to a receptacle to optically couple connectorized optical cables
US20170184800A1 (en) Ferrule for multi-fiber optical connector
JP7057146B2 (en) Optical connector
US11754789B2 (en) Fiber optic connector with unitary housing and fiber optic connector assembly
US9122022B2 (en) Debris reducing multi-fiber connector and adapter and associated methods
WO2014085116A1 (en) Connector systems having receptacle assembly and plug assembly
JP6574306B2 (en) Optical fiber terminal adapter
JP2010002931A (en) Optical connector adapter
JP6021619B2 (en) Optical connector, optical connector system, optical backplane device
CN110927891B (en) Connector and method of assembling connector
JP2010049147A (en) Optical cable connector
KR100951651B1 (en) Device for Gripping Optical Fiber Cable and Optical Connector

Legal Events

Date Code Title Description
AS Assignment

Owner name: SUMITOMO ELECTRIC INDUSTRIES, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATSUI, TAKASHI;KURASHIMA, HIROMI;SHIBATA, MASAHIRO;SIGNING DATES FROM 20141223 TO 20150106;REEL/FRAME:035349/0665

AS Assignment

Owner name: SUMITOMO ELECTRIC INDUSTRIES, LTD., JAPAN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE OMISSION OF SECOND ASSIGNEE PREVIOUSLY RECORDED AT REEL: 035349 FRAME: 0665. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:MATSUI, TAKASHI;KURASHIMA, HIROMI;SHIBATA, MASAHIRO;SIGNING DATES FROM 20141223 TO 20150106;REEL/FRAME:036285/0563

Owner name: SEI OPTIFRONTIER CO., LTD, JAPAN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE OMISSION OF SECOND ASSIGNEE PREVIOUSLY RECORDED AT REEL: 035349 FRAME: 0665. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:MATSUI, TAKASHI;KURASHIMA, HIROMI;SHIBATA, MASAHIRO;SIGNING DATES FROM 20141223 TO 20150106;REEL/FRAME:036285/0563

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8