US20150182613A1 - Meningococcal And Pneumococcal Conjugate Vaccine And Method Of Using Same - Google Patents
Meningococcal And Pneumococcal Conjugate Vaccine And Method Of Using Same Download PDFInfo
- Publication number
- US20150182613A1 US20150182613A1 US14/549,052 US201414549052A US2015182613A1 US 20150182613 A1 US20150182613 A1 US 20150182613A1 US 201414549052 A US201414549052 A US 201414549052A US 2015182613 A1 US2015182613 A1 US 2015182613A1
- Authority
- US
- United States
- Prior art keywords
- meningitidis
- vaccine
- protein
- rpsaa
- psaa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 229940124731 meningococcal vaccine Drugs 0.000 title description 4
- 229940031999 pneumococcal conjugate vaccine Drugs 0.000 title 1
- 150000004676 glycans Chemical class 0.000 claims abstract description 95
- 229920001282 polysaccharide Polymers 0.000 claims abstract description 95
- 239000005017 polysaccharide Substances 0.000 claims abstract description 95
- 229960005486 vaccine Drugs 0.000 claims abstract description 46
- 239000000203 mixture Substances 0.000 claims abstract description 38
- 241000947238 Neisseria meningitidis serogroup C Species 0.000 claims abstract description 19
- 101710099976 Photosystem I P700 chlorophyll a apoprotein A1 Proteins 0.000 claims abstract 5
- 108090000623 proteins and genes Proteins 0.000 claims description 50
- 102000004169 proteins and genes Human genes 0.000 claims description 50
- 241000588650 Neisseria meningitidis Species 0.000 claims description 28
- 230000028993 immune response Effects 0.000 claims description 10
- 101710183389 Pneumolysin Proteins 0.000 claims description 4
- 101000832034 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) Inactive diphosphatase DCS2 Proteins 0.000 claims description 4
- 101100453077 Botryococcus braunii HDR gene Proteins 0.000 claims description 3
- 238000007918 intramuscular administration Methods 0.000 claims description 3
- 238000007920 subcutaneous administration Methods 0.000 claims description 3
- 238000007912 intraperitoneal administration Methods 0.000 claims description 2
- 238000001990 intravenous administration Methods 0.000 claims description 2
- 230000002163 immunogen Effects 0.000 abstract description 27
- 230000001939 inductive effect Effects 0.000 abstract description 10
- 238000009472 formulation Methods 0.000 abstract description 9
- 201000009906 Meningitis Diseases 0.000 abstract description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 21
- 239000000427 antigen Substances 0.000 description 18
- 102000036639 antigens Human genes 0.000 description 18
- 108091007433 antigens Proteins 0.000 description 18
- 239000011780 sodium chloride Substances 0.000 description 12
- 210000004027 cell Anatomy 0.000 description 11
- 102000014914 Carrier Proteins Human genes 0.000 description 10
- 239000000872 buffer Substances 0.000 description 10
- 208000015181 infectious disease Diseases 0.000 description 10
- 101150043479 psaA gene Proteins 0.000 description 10
- 108010078791 Carrier Proteins Proteins 0.000 description 9
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 9
- 101100130893 Alkalihalobacillus halodurans (strain ATCC BAA-125 / DSM 18197 / FERM 7344 / JCM 9153 / C-125) mntA gene Proteins 0.000 description 7
- 101100084597 Dictyostelium discoideum pspA gene Proteins 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 230000005847 immunogenicity Effects 0.000 description 7
- 210000002966 serum Anatomy 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 108091026890 Coding region Proteins 0.000 description 6
- 108010060123 Conjugate Vaccines Proteins 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000000844 anti-bacterial effect Effects 0.000 description 6
- 230000021615 conjugation Effects 0.000 description 6
- 238000010790 dilution Methods 0.000 description 6
- 239000012895 dilution Substances 0.000 description 6
- 201000010099 disease Diseases 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 238000011534 incubation Methods 0.000 description 6
- 239000002773 nucleotide Substances 0.000 description 6
- 125000003729 nucleotide group Chemical group 0.000 description 6
- 239000013615 primer Substances 0.000 description 6
- 238000001262 western blot Methods 0.000 description 6
- 210000001744 T-lymphocyte Anatomy 0.000 description 5
- 238000006640 acetylation reaction Methods 0.000 description 5
- 229940031670 conjugate vaccine Drugs 0.000 description 5
- 239000003085 diluting agent Substances 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 230000036039 immunity Effects 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 125000005629 sialic acid group Chemical group 0.000 description 5
- 239000013598 vector Substances 0.000 description 5
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 4
- 101710098119 Chaperonin GroEL 2 Proteins 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- 239000007995 HEPES buffer Substances 0.000 description 4
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 125000000539 amino acid group Chemical group 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 239000013592 cell lysate Substances 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 230000006054 immunological memory Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 108010040473 pneumococcal surface protein A Proteins 0.000 description 4
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 4
- JQWHASGSAFIOCM-UHFFFAOYSA-M sodium periodate Chemical compound [Na+].[O-]I(=O)(=O)=O JQWHASGSAFIOCM-UHFFFAOYSA-M 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000002965 ELISA Methods 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- 239000000020 Nitrocellulose Substances 0.000 description 3
- 208000035109 Pneumococcal Infections Diseases 0.000 description 3
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 3
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate group Chemical group [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 229920001220 nitrocellulos Polymers 0.000 description 3
- 150000007523 nucleic acids Chemical group 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 108010071134 CRM197 (non-toxic variant of diphtheria toxin) Proteins 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 108010090665 Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase Proteins 0.000 description 2
- 108010052285 Membrane Proteins Proteins 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 101710165315 Sialidase A Proteins 0.000 description 2
- 101001024534 Streptococcus pneumoniae serotype 4 (strain ATCC BAA-334 / TIGR4) Sialidase B Proteins 0.000 description 2
- 102400000368 Surface protein Human genes 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 125000003275 alpha amino acid group Chemical group 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- GZCGUPFRVQAUEE-UHFFFAOYSA-N alpha-D-galactose Natural products OCC(O)C(O)C(O)C(O)C=O GZCGUPFRVQAUEE-UHFFFAOYSA-N 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 230000001268 conjugating effect Effects 0.000 description 2
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- 229960003983 diphtheria toxoid Drugs 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 230000003053 immunization Effects 0.000 description 2
- 238000002649 immunization Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 239000002054 inoculum Substances 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 208000037941 meningococcal disease Diseases 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229940124733 pneumococcal vaccine Drugs 0.000 description 2
- 229960001973 pneumococcal vaccines Drugs 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 229960000856 protein c Drugs 0.000 description 2
- 239000012460 protein solution Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000010188 recombinant method Methods 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 239000012279 sodium borohydride Substances 0.000 description 2
- 229910000033 sodium borohydride Inorganic materials 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 238000000527 sonication Methods 0.000 description 2
- 229960000814 tetanus toxoid Drugs 0.000 description 2
- -1 1-cyano-4-dimethylaminopyridinium tetrafluoroborate Chemical compound 0.000 description 1
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 1
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 1
- LHYQAEFVHIZFLR-UHFFFAOYSA-L 4-(4-diazonio-3-methoxyphenyl)-2-methoxybenzenediazonium;dichloride Chemical compound [Cl-].[Cl-].C1=C([N+]#N)C(OC)=CC(C=2C=C(OC)C([N+]#N)=CC=2)=C1 LHYQAEFVHIZFLR-UHFFFAOYSA-L 0.000 description 1
- XZKIHKMTEMTJQX-UHFFFAOYSA-N 4-Nitrophenyl Phosphate Chemical compound OP(O)(=O)OC1=CC=C([N+]([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-N 0.000 description 1
- 108050001496 ATP-dependent Clp protease proteolytic subunit Proteins 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 208000031729 Bacteremia Diseases 0.000 description 1
- 241001227713 Chiron Species 0.000 description 1
- 101710164918 Choline-binding protein Proteins 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 101710082494 DNA protection during starvation protein Proteins 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016607 Diphtheria Toxin Human genes 0.000 description 1
- 108010053187 Diphtheria Toxin Proteins 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 229940124904 Menactra Drugs 0.000 description 1
- 208000034762 Meningococcal Infections Diseases 0.000 description 1
- BRGMHAYQAZFZDJ-ZTVVOAFPSA-N N-acetyl-D-mannosamine 6-phosphate Chemical compound CC(=O)N[C@@H]1C(O)O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O BRGMHAYQAZFZDJ-ZTVVOAFPSA-N 0.000 description 1
- 102100030397 N-acetylmuramoyl-L-alanine amidase Human genes 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 206010033078 Otitis media Diseases 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 201000005702 Pertussis Diseases 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 102000012479 Serine Proteases Human genes 0.000 description 1
- 108010022999 Serine Proteases Proteins 0.000 description 1
- 241000193998 Streptococcus pneumoniae Species 0.000 description 1
- 206010043376 Tetanus Diseases 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 101710117021 Tyrosine-protein phosphatase YopH Proteins 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000001727 anti-capsular Effects 0.000 description 1
- 230000009830 antibody antigen interaction Effects 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 239000012148 binding buffer Substances 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 206010013023 diphtheria Diseases 0.000 description 1
- 239000012149 elution buffer Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 235000013861 fat-free Nutrition 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000012215 gene cloning Methods 0.000 description 1
- 102000035122 glycosylated proteins Human genes 0.000 description 1
- 108091005608 glycosylated proteins Proteins 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002506 iron compounds Chemical class 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 230000021633 leukocyte mediated immunity Effects 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229960005037 meningococcal vaccines Drugs 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 229940049548 pneumovax Drugs 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 239000000304 virulence factor Substances 0.000 description 1
- 230000007923 virulence factor Effects 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/02—Bacterial antigens
- A61K39/095—Neisseria
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/02—Bacterial antigens
- A61K39/09—Lactobacillales, e.g. aerococcus, enterococcus, lactobacillus, lactococcus, streptococcus
- A61K39/092—Streptococcus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/60—Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
- A61K2039/6031—Proteins
- A61K2039/6068—Other bacterial proteins, e.g. OMP
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/70—Multivalent vaccine
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S424/00—Drug, bio-affecting and body treating compositions
- Y10S424/831—Drug, bio-affecting and body treating compositions involving capsular polysaccharide of bacterium, e.g. polyribosyl ribitol phosphate
Definitions
- This disclosure relates to vaccine formulations that include an immunogenic composition for inducing antibodies to the S. pneumoniae PsaA protein and N. meningitidis capsular polysaccharide. This disclosure further relates to methods for producing the immunogenic composition as well as methods for their use.
- S. pneumoniae is a gram-positive encapsulated diplococcus.
- Capsule a layer of polysaccharide (PS) surrounding the bacterial cell, is a major virulence factor of S. pneumoniae .
- PS polysaccharide
- S. pneumoniae can be divided into more than 90 different serotypes.
- Capsular polysaccharides are the base for the currently used vaccines.
- the FDA has approved two types of pneumococcal vaccines for use in humans: a 23-valent PS vaccine and a 7-valent PS/protein conjugate vaccine. The former is comprised of capsular polysaccharide purified from 23 different serotypes of S.
- PS elicits type-specific antibodies. Antibodies raised for one serotype do not provide protection against infection of other serotypes. The efficacy of the 23-valent vaccine is limited. Furthermore, PS is a T-cell independent antigen which induces short-term immunity without immune memory and is not effective in children younger than two years of age (Greenwood B M et al., Trans R Soc Trop Med Hyg, 1980, 74:756-760). It is only recommended for high risk groups, such as the elderly and persons with underlying disease.
- a recently approved pneumococcal vaccine is a mixture of conjugates of 7 different individually prepared capsular polysaccharides covalently linked with carrier protein CRM197, which is a non-toxic and immunologically cross-reactive mutant of diphtheria toxin (Uchida et al, J. Biol. Chem. 248:3838-3844, 1973) and a component of the pediatric DPT (Diphtheria-Tetanus-Pertussis toxin) vaccine.
- the otherwise T-cell independent PS becomes a T-cell dependent antigen by obtaining the immunological property of the protein.
- the conjugate induces long-lasting immunity with immune memory and is effective in young infants.
- the 7 serotypes were selected for their prevalence in pediatric diseases.
- a conjugate vaccine of 7 pneumococcal capsular PS (PCV7) with CRM197 (Wyeth) is the only vaccine of this family that is commercially available. It is only prescribed for use in the prevention of pediatric invasive pneumococcal disease because of its high cost and limited supply.
- the drawback of these two families of vaccines is that they only provide protection against infection by the specific serotypes of S. pneumoniae that are included in the respective vaccine formulations.
- N. meningitidis is a gram-negative, encapsulated diplococcus. At least 13 different serogroups have been identified based on the structure of capsular PS, but serogroups A, B, C, Y, and W-135 account for almost all cases of disease. Serogroup B organisms account for 46 percent of all cases, serogroup C for 45 percent of all cases, and serogroups W-135 and Y and strains that could not be serogrouped account for most of the remaining cases.
- S. pneumoniae the major ingredient for meningococcal vaccines is capsular PS. Its vaccines can be divided into two families: the capsular PS vaccine and PS-protein conjugate vaccines. Three versions of PS vaccines are commercially available.
- Quadrivalent PS vaccine (GlaxoSmithKline and Sanofi-Pasteur) is composed of capsular PS purified from serogroups A, C, Y, and W-135. It is expensive and not affordable for developing countries.
- Bivalent PS vaccine (GlaxoSmithKline and Sanofi-Pasteur) is composed of capsular PS purified from serogroups A and C.
- Trivalent PS vaccine (GlaxoSmithKline) is composed of capsular PS purified from serogroups A, C, and W-135. This vaccine has been used in the epidemics in the “Meningitis Belt” countries in Africa.
- PS vaccine is not efficacious in children younger than two years of age. Such deficiency can be overcome by PS-protein conjugates.
- MENACTRA® Sanofi-Pasteur
- groups A, C, Y, and W135 conjugated with diphtheria toxoid.
- a monovalent meningococcal conjugate vaccine currently under development is a conjugate of serogroup C polysaccharide-diphtheria toxoid (Chiron and Wyeth), serogroup C PS-tetanus toxoid (Chiron, Baxter), and serogroup A PS-tetanus toxoid (PATH-SII). Preliminary results of clinical trials indicate these vaccines are efficacious.
- This disclosure provides an immunogenic composition for inducing an immune response to two different microorganisms, S. pneumoniae and N. meningitidis .
- This disclosure further provides an inoculum and/or vaccine comprising the immunogenic composition dispersed and/or dissolved in a pharmaceutically acceptable diluent.
- the vaccine includes at least one N. meningitidis capsular polysaccharide conjugated to a pneumococcal protein.
- the immunogenic composition comprises recombinant PsaA (“rPsaA”) from S. pneumoniae and capsular polysaccharide from N. meningitidis serogroup C. Pneumococcal protein acts as an antigen as well as a carrier protein for N. meningitidis capsular polysaccharide in the vaccine.
- the vaccine is effective for providing dual protection against infection by both S. pneumoniae and N. meningitidis.
- pneumococcal proteins are universally found in all tested serotypes of S. pneumoniae , such as pneumococcal surface antigen A (PsaA), pneumococcal surface protein A (PspA), pneumococcal surface protein C (PspC), pneumolysin, and histidine-triad proteins. Studies have shown that these proteins are capable of eliciting protective antibodies in laboratory animals.
- PsaA has been found by immunological and PCR methods in all S. pneumoniae tested including 23 vaccine serotypes as well as clinical isolates from various countries.
- PsaA has a length of 309 amino acid residues.
- the rPsaA used in the immunogenic composition described herein includes at least the amino acid residues at positions 21 to 319 of SEQ ID NO:1.
- the capsular polysaccharide (about 300,000 Da) of N. meningitidis serogroup C comprises about 850 repeating units of sialic acid with ⁇ (2 ⁇ 9) glycosidic linkage and about 80 percent O-acetylation at C7 or C8.
- the capsular polysaccharide of N. meningitidis s erogroup C and PsaA are provided in conjugated form.
- the capsular polysaccharide and PsaA are conjugated by covalent linkage.
- a method for generating an immune response in a subject against pneumococcal surface antigen A (PsaA) and capsular polysaccharide from N. meningitidis serogroup C.
- the method comprises administering to a subject an effective amount for inducing production of antibodies specific to rPsaA and capsular polysaccharide from N. meningitidis serogroup C.
- Administering to a subject a combination of rPsaA and capsular polysaccharide from N. meningitidis serogroup C in covalently linked form is effective for generating an immune response in the subject.
- immunogenicity of the conjugated pneumococcal surface antigen A (PsaA) and capsular polysaccharide is significantly increased as compared to the immune response observed when the antigens are administered individually.
- more than a 40-fold increase in immunogenicity is seen for conjugated PsaA as compared to non-conjugated PsaA, and more than a 170-fold increase in immunogenicity is seen for conjugated capsular polysaccharide as compared to non-conjugated capsular polysaccharide.
- the immunogenic composition may be administered to a subject by a number of different routes, including intramuscular administration, intranasal administration, oral administration, sub-cutaneous administration, transdermal administration, and transmucosal administration.
- Immunogenic compositions described herein are prepared by a method comprising preparing recombinant PsaA (“rPsaA”) and conjugating rPsaA with capsular polysaccharide from N. meningitidis serogroup C.
- rPsaA can be prepared using well-known recombinant techniques.
- Capsular polysaccharide can be isolated from natural sources or synthesized using a number of techniques which are well known in the art.
- the immunogenic compositions described herein advantageously provide dual protection against S. pneumoniae and N. meningitidis infection.
- the immunogenic composition described herein also utilizes PsaA as a protein carrier for polysaccharide.
- the conjugated immunogenic composition provided herein can reduce the costs of preparing and administering the vaccine. This is a particularly important benefit to developing and underdeveloped countries because the vaccine will reduce the economic and medical burden to the countries which have high rates of pneumococcal and meningococcal disease.
- FIG. 1 provides the nucleotide sequence (SEQ ID NO. 2) of a cloned psaA fragment, including restriction endonuclease sites at the 5′ and 3′ ends produced according to the Example.
- FIG. 2 provides the deduced amino acid sequence (SEQ ID NO. 1) of recombinant PsaA protein produced according to the Example.
- FIG. 3 shows a photograph of a SDS-polyacrylamide gel electrophoresis and Western blot analysis of rPsaA according to the Example.
- FIG. 4 is a chromatogram demonstrating that the protein signal shifted from a low molecular weight position to a high molecular weight for the conjugate produced according to the Example.
- FIG. 5A shows a photograph of an Immuno-dot blot according to the Example.
- FIG. 5B shows a photograph of a Western blot according to the Example.
- This disclosure provides an immunogenic composition comprising capsular polysaccharide from N. meningitidis and a protein from S. pneumoniae (referred to as “Pn-Mn” vaccine).
- the S. pneumoniae protein is recombinant pneumococcal surface antigen A (“rPsaA”) and the N. meningitidis capsular polysaccharide is serogroup C capsular polysaccharide.
- rPsaA pneumococcal surface antigen A
- the immunogenic composition is useful for inducing production of antibodies for diagnostic and therapeutic purposes.
- This disclosure further provides an inoculum and vaccine comprising the immunogenic composition dispersed or dissolved in a pharmaceutically acceptable diluent. It is particularly preferred that the rPsaA from S. pneumoniae is covalently conjugated to capsular polysaccharide from N. meningitidis serogroup C.
- antibody refers to a molecule that is a member of a family of glycosylated proteins called immunoglobulins, which can specifically bind to an antigen.
- antigen refers to an entity that is bound by an antibody.
- immunoglobulins refers to the entity that induces antibody production or binds to the receptor.
- protein and “polypeptide” are used interchangeably throughout the specification and designate a series of amino acid residues connected by peptide bonds.
- Polysaccharide is a T cell-independent (T-I) antigen inducing short-term immunity with little immune memory and is not effective in infants younger than 2 years old.
- T-I T cell-independent
- T-D T cell-dependent
- the capsular polysaccharide of N. meningitidis serogroup C comprises repeating units of sialic acid with a (2 ⁇ 9) glycosidic linkage and about 80 percent O-acetylation at C7 or C8.
- the size of the N. meningitidis group C polysaccharide is about 590 to about 1,030 sialic acid repeating units assuming the molecular weight of a sialic acid repeating unit is 340 Daltons.
- meningitidis serogroup C capsular polysaccharide particularly useful in the invention is about 200 to about 350 kDa, preferably about 250 to about 300 kDa, although other sizes may be used, if desired, provided that the selected size of the polysaccharide is effective to induce production of antibodies in a subject after conjugation to a carrier protein.
- the capsular polysaccharide can be isolated from natural sources using a number of techniques which are well known in the art. For example, N. meningitidis group C strain can be grown in a defined medium for 18 hours and inactivated with 0.5 percent formaldehyde. After centrifugation to precipitate the cells, the polysaccharide in the removed supernatant can be precipitated by 0.1 percent cetavlon. The insoluble cetavlon complex is then dissolved in 0.9 M calcium chloride and the crude polysaccharide is precipitated with 5 volume ethanol. The precipitate is further dissolved in phosphate buffer. After phenol extraction and ribonuclease treatment, the sample is dialyzed against water and concentrated (Bundle et al, J. Biol. Chem. 249:4797-4801, 1974, which is incorporated herein by reference.)
- capsular polysaccharide derived from N. meningitidis serogroup C may be substituted with capsular polysaccharide derived from N. meningitidis serogroups A, B, D, X, Y, Z, 29E, W-135, or a combination thereof, in the Pn-Mn conjugates described herein.
- N. meningitidis serogroups A, B, C, D, X, Y, Z, 29E, and W-135 account for almost all cases of disease.
- Such conjugates can be administered to a subject capable of inducing an immune response to an antigen in order to provide protection against infection of these serogroups.
- Meningococcal serogroup A polysaccharide (about 300 kDa) is composed of N-acetyl mannosamine 6-phosphate repeating units with ⁇ (1 ⁇ phosphate) glycosidic linkage and about 70-90 percent O-acetylation at C3.
- Meningococcal serogroup W135 polysaccharide ( ⁇ 300,000 Daltons) is composed of (2 ⁇ 6) ⁇ -D-galactose (1 ⁇ 4) ⁇ -D-sialic acid repeating units with about 70 percent O-acetylation at C7 or C9 of the sialic acid residue.
- Meningococcal serogroup Y polysaccharide (about 300 kDa) is composed of (2 ⁇ 6) ⁇ -D-galactose (1 ⁇ 4) ⁇ -D-sialic acid repeating units with about 70 percent O-acetylation at C7 or C9 of the sialic acid residue.
- the size of the N. meningitidis capsular polysaccharide particularly useful in the invention is about 200 to about 350 kDa, preferably about 250 to about 300 kDa, although other sizes may be used, if desired, provided that the selected size of the polysaccharide is effective to induce production of antibodies in a subject after conjugation to a carrier protein.
- the activation conditions for these polysaccharides may be different from that for group C polysaccharide due to differences in their structures.
- PsaA has a length of 309 amino acid residues. It is preferred that the rPsaA used in the immunogenic composition includes at least the residues at positions 21 to 319 of SEQ ID NO:1.
- Recombinant PsaA from S. pneumoniae can be prepared using conventional recombinant techniques. Recombinant methodologies required to produce a DNA encoding a desired protein are well known and are routine to those of ordinary skill in the art.
- the nucleic acid sequences used to practice this invention, whether cDNA, genomic DNA, vectors, and the like, may be isolated from a variety of sources, genetically engineered, amplified, and/or expressed recombinantly.
- the nucleotide sequence for psaA is provided at nucleotide positions 6 to 867 in SEQ ID NO:2.
- the coding sequence of the desired protein can be cloned into a vector.
- Any recombinant expression system can be used, including bacterial, mammalian, yeast, insect, or plant cell expression systems.
- these nucleic acids can be synthesized in vitro by well-known chemical synthesis techniques. Double stranded DNA fragments may then be obtained either by synthesizing the complementary strand and annealing the strands together under appropriate conditions, or by adding the complementary strand using DNA polymerase with an appropriate primer sequence.
- Oligonucleotide primers can be used to amplify nucleic acids to generate psaA coding sequence used to prepare recombinant PsaA.
- the coding sequence can be cloned into an expression cassette, such as plasmids, recombinant viruses which can infect or transfect cells in vitro, ex vivo, and/or in vivo, and other vectors which can be used to express the PsaA polypeptide in vitro or in vivo.
- Selection markers can be incorporated to confer a selectable phenotype on transformed cells, such as antibiotic resistance.
- the expressed rPsaA can be recovered and purified using conventional techniques.
- pneumococcal proteins can be used as a component of the Pn-Mn conjugate vaccine provided herein.
- Other S. pneumoniae proteins that may be used include pneumolysin, pneumococcal surface protein A (PspA), pneumococcal surface protein C (PspC or CbpA), pneumococcal histidine triad proteins or similar proteins with different nomenclatures such as PhtA or BVH11-3, PhtB or PhpA or BVH-11, PhtE or BVH-3), PhtD or BVH-11-2, and, pneumococcal choline binding protein A (PcpA), non-heme iron-containing ferritin or pneumococcal protective proteins (PppA, Dpr), neuraminidase A (NanA), neuraminidase B (NanB), iron transport proteins or iron-compound-binding protein PiuA and PiaA, N-
- Polysaccharides contain hydroxyl groups, and occasionally carboxyl and amino groups, and proteins contain amino and carboxyl groups. Both polysaccharides and proteins are not active for chemical reaction with each other in their natural form. Proper pretreatment or activation of one or both of the polysaccharide and protein is required to convert the otherwise non-reactive molecules to a reactive form in order to produce the polysaccharide-protein conjugate. Many methods are known in the art for conjugating a protein to a polysaccharide. Polysaccharide can be activated by cyanogen bromide to provide cyanate groups which react with hydrazide-activated protein (Schneerson et al., J. Exp. Med. 1980; 152:361-3760).
- Polysaccharide can be activated by cyanogen bromide to provide cyanate groups, which further reacts with di-hydrazide, and then conjugates to protein in the presence of EDC (Chu et al., Infect. Immun 1983; 40:245-256). Polysaccharide can be partially hydrolyzed and added with an amino group at the reducing terminus. After a bifunctional linker is added to the amino group, the activated polysaccharide is conjugated to the carrier protein (Costantino et al., Vaccine 1992; 10:691-8).
- Polysaccharide can be activated with 1-cyano-4-dimethylaminopyridinium tetrafluoroborate to provide cyanate groups which react with a carrier protein (Lees A, Nelson B L, Mond JJ. Vaccine 1996; 14:190-198).
- rPsaA is dialyzed before use, such as against 30 mM NaCl at about 4° C. for about 18 to about 24 hours.
- the dialyzed rPsaA is then treated to activate the protein, such as with 0.1 M MES (pH 6.5), 0.5 M hydrazine (pH 7.0), and 20 mM 1-[3-dimethylamino propyl)-3-ethyl carbodiimide-HCl (“EDC” from Sigma-Aldrich) in saline, and incubated for 4 hours.
- the treated rPsaA is then neutralized, such as with 1 M NaOH, before dialyzing the protein, such as dialyzing against buffer containing 3 mM Na 2 CO 3 and 30 mM NaCl at 4° C.
- the dialyzed activated rPsaA can be used immediately or stored at 4° C.
- the capsular polysaccharide is treated with 6 mM sodium periodate and incubated for 4 hours at room temperature to activate the capsular polysaccharide.
- the activated capsular polysaccharide is then dialyzed against deionized water, such as for about 18 to about 24 hours at 4° C.
- the dialyzed activated capsular polysaccharide can be used immediately or stored at 4° C.
- Activated rPsaA is lyophilized, redissolved in water.
- Dialyzed activated capsular polysaccharide is lyophilized, redissolved in 0.2 M HEPES, pH 7.5, 30 mM EDTA.
- the protein solution is added to the polysaccharide solution and incubated overnight.
- NaBH 4 is added to a final concentration of 50 mM and incubated for about 4 to about 6 hours to reduce the C ⁇ N double bonds in the polysaccharide-protein conjugate to C-N single bonds, and to reduce the unreacted aldehyde to alcohol.
- the conjugate is dialyzed against 150 mM NaCl, 10 mM HEPES (pH 7), 1 mM EDTA at 4° C.
- the dialyzed conjugate can then be evaluated, such as by HPLC, for shift of protein signal (280 nm) from 19 minute position to 18 minute upon conjugation.
- the rPsaA/capsular polysaccharide conjugate provided herein can be administered to a subject capable of inducing an immune response to an antigen.
- the rPsaA/capsular polysaccharide conjugate is administered to the subject in an effective amount for inducing an antibody response.
- An “effective amount” is an amount of rPsaA/capsular polysaccharide conjugate which assists a subject in producing both anti-rPsaA and anti-capsular polysaccharide antibodies.
- Such antibodies may prevent infection by S. pneumoniae and N. meningitidis serotype C.
- One of ordinary skill in the art can determine whether an amount of the rPsaA/capsular polysaccharide conjugate is effective to induce immunity in a subject using routine methods known in the art. For example, the ability of an antigen to produce antibody in a subject can be determined by screening for antibodies using separate coating antigens rPsaA and capsular polysaccharide in the respective ELISA assays.
- a vaccine formulation for N. meningitidis serogroup C and S. pneumoniae .
- the vaccine formulation is effective for generating an immune response in a subject to both N. meningitidis serogroup C and S. pneumonia .
- the vaccine formulation comprises rPsaA from S. pneumoniae and capsular polysaccharide from N. meningitidis serogroup C.
- the conjugated immunogenic composition can be provided with one or more additional components, such as a pharmaceutically acceptable diluents, carriers, adjuvants, and/or buffers.
- the conjugate can be dispersed or dissolved in a diluent.
- the immunogenic composition may be prepared as a solution, suspension, tablet, pill, capsule, sustained release formulation, powder, or the like.
- the antigens and immunogenic composition may be mixed with physiologically acceptable carriers which are compatible therewith. These may include water, saline, dextrose, glycerol, ethanol, combinations thereof, and the like.
- the vaccine may further contain auxiliary substances, such as wetting or emulsifying agents or pH buffering agents, to further enhance the effectiveness.
- Administration of the conjugate in a vaccine formulation can include delivery by various routes, such as, for example, oral, intravenous, intramuscular, nasal, subcutaneous, and intraperitoneal administration.
- the immunogenic composition is administered in a manner compatible with the dosage formulation, and in such amount as to be therapeutically effective, protective, and immunogenic.
- the quantity to be administered depends on the subject to the immunized, including, for example, the capacity of the subject's immune system to synthesize antibodies and, if needed, to produce a cell-mediated immune response.
- Precise amounts of antigen and immunogenic composition to be administered depend on the judgment of the practitioner. However, suitable dosage ranges are readily determinable by those skilled in the art and may be of the order of micrograms to milligrams. Suitable regimes for initial administration and booster doses are also variable but may include an initial administration followed by subsequent administrations.
- the dosage of the vaccine may also depend on the route of administration and will vary according to the size of the subject.
- the rPsaA/capsular polysaccharide Pn-Mn conjugate provided herein may be used to prevent infection of both S. pneumoniae and N. meningitidis serotype C, which are the leading causes of otitis media and meningitis in young children.
- the rPsaA/capsular polysaccharide conjugate provided herein also could be used in the prevention of other pneumococcal and meningococcal diseases, such as bacteremia, pneumoniae and meningitis in the population of other age groups.
- psaA gene cloning and expression To prepare recombinant pneumococcal PsaA (rPsaA) protein, the coding sequence of pneumococcal psaA genes in E. coli was cloned in the expression vector pET22b(+) (Novagen, Madison, Wis.). Sequence analysis revealed that the coding sequence of psaA does not include BamHI and HindIII restriction sites.
- a pair of primers for PCR amplification were designed so that: 1) the PCR product would have a BamHI and HindIII site at the 5′ and 3′ ends, respectively; 2) the reading frame of cloned psaA would be in-frame with that of the vector; and 3) the produced rPsaA protein would have a His-tag at its C-terminal.
- the forward and reverse primers (5′-GGGATCCTAGCGGAAAAAAAGATACA-3′ (SEQ ID NO. 3), 5′-GCAAGCTTTGCCAATCCTTCAGCAATC-3′ (SEQ ID NO.
- a typical PCR mixture contained 5 ⁇ mole primers, 20 ng S. pneumoniae serotype 4 chromosomal DNA and PCR Supermix (Life Technologies, Rockville, MD).
- the conditions for PCR were as follows: DNA denaturation at 95° C. for 40 seconds, primer annealing at 42° C. for 1 min, and DNA synthesis at 72° C. for 1.5 min. After 30 cycles of synthesis, the reaction was terminated with an extension at 72° C. for 5 min.
- the PCR products were purified with the GeneClean kit (Qbiogen, Carlsbad, Calif.), cloned into pGEM-T easy vector (Promega, Madison, Wis.) and transformed into E. coli DH5 ⁇ .
- the insert was isolated from the resultant plasmid after a double digestion with restriction enzymes BamHI and HindIII, cloned into the compatible site of pET22b(+) to generate plasmid pST648, and transformed into E. coli BL21(DE3).
- restriction enzymes BamHI and HindIII restriction enzymes BamHI and HindIII
- pST648 plasmid pST648
- E. coli BL21(DE3) E. coli BL21(DE3).
- the restriction map of the cloned PCR product was determined. The results were consistent with those of published psaA gene.
- the proper cloning of the BamHI-HindIII restriction fragment into pET22b(+) was further confirmed by the induction of recombinant protein and by the presence of His-tag at the carboxyl end.
- IPTG isopropyl-13-D-thiogalactoside
- the proteins on the SDS-gel were analyzed by western blotting against mouse monoclonal anti-poly-histidine antibody (Sigma-Aldrich, St. Louis, Mo.).
- the proteins on the gel were transferred onto nitrocellulose paper and the paper was washed with blotto (20 mM Tris, 0.2M NaCl, 1.5 percent nonfat milk), incubated with monoclonal anti-poly-histidine antibody in blotto (1:200 dilution) for 2 hours, washed with blotto three times, incubated with alkaline phosphatase-conjugated goat anti-mouse antibody in blotto (1:5000 dilution), and washed with blotto and AP buffer (0.1 M NaCl, 0.1 M Tris-Cl, pH 9.5).
- the antibody-antigen interaction was visualized by incubating with 0.1 percent naphthol and 1 percent fast blue (Sigma-Aldrich). The results are shown in FIG. 3 . The results indicate that the overproduced protein was indeed rPsaA and the crude cell lysate of E. coli BL2I(DE3)(pST648) could be used as the source of rPsaA in protein purification.
- rPsaA protein Purification of rPsaA protein.
- To purify rPsaA protein crude cell lysate was loaded on a HIS-BIND® Column (Novagen, Madison, Wis.). The resin was washed with binding buffer (TN buffer containing 50 mM imidazole) and washing buffer (TN buffer containing 200 mM imidazole) to remove excess and nonspecifically bound proteins. The bound protein was eluted with elution buffer (TN buffer containing 1 M imidazole) and analyzed by SDS-polyacrylamide gel electrophoresis and Western blotting against monoclonal anti-poly-histidine antibody as described above. Fractions containing protein that reacts with anti-poly-histidine monoclonal antibody were collected as purified rPsaA protein ( FIG. 3 ).
- rPsaA was dialyzed against 30 mM NaCl at 4° C. overnight before use.
- the dialyzed rPsaA was mixed with 1 M MES, pH 6.5, 5 M hydrazine, pH 7.0, 1 M EDC (Sigma-Aldrich) in saline at the final concentration of 0.1 M, 0.5 M, and 20 mM, respectively.
- 1 M NaOH 0.05 mL was added to neutralize the reaction before dialysis against buffer containing 3 mM Na 2 CO 3 and 30 mM NaCl at 4° C.
- the protein solution was stored at 4° C.
- MCPS activation N. meningitidis type C capsular PS (MCPS, 10 mg/ML) was mixed with sodium periodate at a final concentration of 6 mM. After incubation at room temperature for 4 hours, the reaction mixture was dialyzed against deionized water overnight and stored at 4° C.
- the conjugate of MCPS with rPsaA was evaluated with HPLC analysis using a Waters Ultrahydrogel Linear size-exclusion column and monitored at the wavelengths of 206 nm and 280 nm. Upon conjugation, the protein signal shifted from low molecular weight position to the high molecular weight in the chromatogram, as shown in FIG. 4 .
- mice were subcutaneously immunized every two weeks with rPsaA, MCPS, or PsaA-MCPS conjugate, respectively, at the dose of 1 ⁇ g per mouse. Blood was collected from optical vein two weeks after the third immunization and the titers of antibodies were determined by enzyme-linked immunosorbent assay (ELISA).
- ELISA enzyme-linked immunosorbent assay
- microtiter plate (Dynatec, no.1) was coated with MCPS by adding 100 ⁇ l of solution comprised of antigen, 0.5 ⁇ g/mL rPsaA or 5 ⁇ g/mL native MCPS plus 5 mg/ml methylated human serum albumin in PBS, pH 7.5 and incubated at room temperature for at least 4 hours.
- Wells were washed three times (150 ⁇ l/well) with PBS containing 0.05 percent TWEEN® 20 and 0.02 percent NaN 3 .
- the anti-rPsaA or anti-MCPS IgG antibody level of each antiserum was measured by ELISA and compared with respective reference serum, assigned with 3,200 unit/mL IgG antibody.
- the numbers in parenthesis represents the confidence interval of one standard deviation.
- rPsaA and MCPS were immunogenic in mice in the absence of adjuvant. Their immunogenicity increased significantly after they were conjugated. When compared with each individual component, the immunogenicity increased approximately 41-fold and 170-fold for rPsaA and MCPS, respectively.
- anti-rPsaA antibodies Reactivity of anti-rPsaA antibodies. It has been demonstrated that active immunization of PsaA is effective to protect laboratory animals from S. pneumoniae infection. To provide protection, anti-PsaA should interact with all S. pneumoniae cells. The cross-reactivity of the generated anti-rPsaA antibodies was investigated by immuno-dot blotting and western blotting against clinical isolates of S. pneumoniae , including serotypes 1, 2, 3, 4, 5, 6A, 6B, 7C, 8, 9A, 10A, 10B, 11A, 12A, 14, 15A, 15C, 16F, 18A, 18C, 19A, 19F, 20, 24, 22A, 23B, 23F, 23C and 35. Cells of S.
- pneumoniae were cultured in 15 mL Todd-Hewitt broth overnight at 37° C. in the presence of 5 percent CO2, harvested by centrifugation, and suspended in 2 mL of TN buffer. Cells were disrupted by sonication in ice bath at the energy level of 7, 50 percent cycle, for 5 minutes. The supernatant after centrifugation at 10,000 ⁇ g for 10 minutes was collected and used as the source of S. pneumoniae proteins.
- immuno-dot blotting 5 ⁇ l cell lysate was spotted on the nitrocellulose paper.
- For Western blot randomly selected pneumococcal cell lysates were analyzed by SDS-PAGE and transferred on nitrocellulose paper.
- the paper was processed as described above, except anti-rPsaA antibody was used. Results are shown in FIG. 5A and FIG. 5B .
- the anti-rPsaA antibody cross-reacted with cells of all serotypes tested and reacted with a single protein that has an apparent molecular weight comparable to that of PsaA.
- Bactericidal activity of anti-MCPS antibody The biological function of the induced MCPS-specific antibodies was determined by bactericidal assay against N. meningitidis serogroup C (strain C11). Briefly, bacteria were cultured overnight on brain heart infusion (BHI) agar plates containing 5 percent normal horse serum (NHS) and transferred to fresh plates and cultured for 5 hours the second day.
- BHI brain heart infusion
- NHS normal horse serum
- Bacteria from the 5 hour culture were suspended to 65-66 percent transmittance at 530 nm in DPBSG (1 ⁇ PBS, pH 7.2, 0.5 mM MgCl 2 , 0.9 mM CaCl 2 , and 0.01 percent gelatin) followed by 1:10,000 dilution with the same buffer to contain approximately 4,000 cfu/mL.
- DPBSG 1 ⁇ PBS, pH 7.2, 0.5 mM MgCl 2 , 0.9 mM CaCl 2 , and 0.01 percent gelatin
- 50 ⁇ l 2-fold dilutions of test and control sera were prepared with DPBSG and mixed with 25 ⁇ l bacterial suspension and 25 ⁇ l baby rabbit complement (Pel-Freez, Rogers, Ark.). After incubation at 37° C.
- Antigen Bactericidal activity titer* MCPS 109 (63; 190) rPsaA-PCPS 5022 (1123; 22454) *The data that is not in parenthesis represents the geometric mean of sera from 10 mice for each antigen. The numbers in parenthesis represents the confidence interval of one standard deviation.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Microbiology (AREA)
- Epidemiology (AREA)
- Mycology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
This disclosure relates to vaccine formulations comprising an immunogenic composition for inducing antibodies to both S. pneumoniae and N. meningitides in a subject. In a preferred aspect, the immunogenic composition comprises covalently conjugated recombinant PsaA (“rPsaA”) from S. pneumoniae and capsular polysaccharide from N. meningitidis serogroup C. This disclosure further relates to methods for producing the immunogenic composition as well as methods for their use.
Description
- The present application is a continuation of U.S. application Ser. No. 13/183,303, filed Jul.14, 2011, which is a continuation of U.S. application Ser. No. 12/425,232, filed Apr. 16, 2009, which are incorporated herein by reference in their entireties.
- This disclosure relates to vaccine formulations that include an immunogenic composition for inducing antibodies to the S. pneumoniae PsaA protein and N. meningitidis capsular polysaccharide. This disclosure further relates to methods for producing the immunogenic composition as well as methods for their use.
- Status of current pneumococcal vaccines. S. pneumoniae is a gram-positive encapsulated diplococcus. Capsule, a layer of polysaccharide (PS) surrounding the bacterial cell, is a major virulence factor of S. pneumoniae. Based on the differences in structure and immunological response to capsular polysaccharide, S. pneumoniae can be divided into more than 90 different serotypes. Capsular polysaccharides are the base for the currently used vaccines. The FDA has approved two types of pneumococcal vaccines for use in humans: a 23-valent PS vaccine and a 7-valent PS/protein conjugate vaccine. The former is comprised of capsular polysaccharide purified from 23 different serotypes of S. pneumoniae, which account for almost 89 percent of disease cases. PNEUMOVAX® (Merck) is an example of this group of vaccines. However, PS elicits type-specific antibodies. Antibodies raised for one serotype do not provide protection against infection of other serotypes. The efficacy of the 23-valent vaccine is limited. Furthermore, PS is a T-cell independent antigen which induces short-term immunity without immune memory and is not effective in children younger than two years of age (Greenwood B M et al., Trans R Soc Trop Med Hyg, 1980, 74:756-760). It is only recommended for high risk groups, such as the elderly and persons with underlying disease. A recently approved pneumococcal vaccine is a mixture of conjugates of 7 different individually prepared capsular polysaccharides covalently linked with carrier protein CRM197, which is a non-toxic and immunologically cross-reactive mutant of diphtheria toxin (Uchida et al, J. Biol. Chem. 248:3838-3844, 1973) and a component of the pediatric DPT (Diphtheria-Tetanus-Pertussis toxin) vaccine. Upon conjugation to a carrier protein, the otherwise T-cell independent PS becomes a T-cell dependent antigen by obtaining the immunological property of the protein. (Schneerson R et al., J Exp Med 1980, 152:361-376). The conjugate induces long-lasting immunity with immune memory and is effective in young infants. The 7 serotypes were selected for their prevalence in pediatric diseases. A conjugate vaccine of 7 pneumococcal capsular PS (PCV7) with CRM197 (Wyeth) is the only vaccine of this family that is commercially available. It is only prescribed for use in the prevention of pediatric invasive pneumococcal disease because of its high cost and limited supply. The drawback of these two families of vaccines is that they only provide protection against infection by the specific serotypes of S. pneumoniae that are included in the respective vaccine formulations.
- Status of current meningococcal vaccine. N. meningitidis is a gram-negative, encapsulated diplococcus. At least 13 different serogroups have been identified based on the structure of capsular PS, but serogroups A, B, C, Y, and W-135 account for almost all cases of disease. Serogroup B organisms account for 46 percent of all cases, serogroup C for 45 percent of all cases, and serogroups W-135 and Y and strains that could not be serogrouped account for most of the remaining cases. Like S. pneumoniae, the major ingredient for meningococcal vaccines is capsular PS. Its vaccines can be divided into two families: the capsular PS vaccine and PS-protein conjugate vaccines. Three versions of PS vaccines are commercially available.
- Quadrivalent PS vaccine (GlaxoSmithKline and Sanofi-Pasteur) is composed of capsular PS purified from serogroups A, C, Y, and W-135. It is expensive and not affordable for developing countries. Bivalent PS vaccine (GlaxoSmithKline and Sanofi-Pasteur) is composed of capsular PS purified from serogroups A and C. Trivalent PS vaccine (GlaxoSmithKline) is composed of capsular PS purified from serogroups A, C, and W-135. This vaccine has been used in the epidemics in the “Meningitis Belt” countries in Africa. Like pneumococcal vaccine, PS vaccine is not efficacious in children younger than two years of age. Such deficiency can be overcome by PS-protein conjugates.
- Two types of meningococcal vaccine conjugates are commercially available or being developed. MENACTRA® (Sanofi-Pasteur) is the first quadrivalent conjugate meningococcal vaccine. It is a mixture of meningococcal polysaccharides (groups A, C, Y, and W135) conjugated with diphtheria toxoid. A monovalent meningococcal conjugate vaccine currently under development is a conjugate of serogroup C polysaccharide-diphtheria toxoid (Chiron and Wyeth), serogroup C PS-tetanus toxoid (Chiron, Baxter), and serogroup A PS-tetanus toxoid (PATH-SII). Preliminary results of clinical trials indicate these vaccines are efficacious.
- With the burden of S. pneumoniae and N. meningitidis infection on the public health system at a global scale, it is desirable to have a single vaccine that is effective to prevent disease resulting from the infection of both pathogens.
- This disclosure provides an immunogenic composition for inducing an immune response to two different microorganisms, S. pneumoniae and N. meningitidis. This disclosure further provides an inoculum and/or vaccine comprising the immunogenic composition dispersed and/or dissolved in a pharmaceutically acceptable diluent. The vaccine includes at least one N. meningitidis capsular polysaccharide conjugated to a pneumococcal protein. In a preferred aspect, the immunogenic composition comprises recombinant PsaA (“rPsaA”) from S. pneumoniae and capsular polysaccharide from N. meningitidis serogroup C. Pneumococcal protein acts as an antigen as well as a carrier protein for N. meningitidis capsular polysaccharide in the vaccine. Thus, the vaccine is effective for providing dual protection against infection by both S. pneumoniae and N. meningitidis.
- Several pneumococcal proteins are universally found in all tested serotypes of S. pneumoniae, such as pneumococcal surface antigen A (PsaA), pneumococcal surface protein A (PspA), pneumococcal surface protein C (PspC), pneumolysin, and histidine-triad proteins. Studies have shown that these proteins are capable of eliciting protective antibodies in laboratory animals. In particular, PsaA has been found by immunological and PCR methods in all S. pneumoniae tested including 23 vaccine serotypes as well as clinical isolates from various countries. PsaA has a length of 309 amino acid residues. In an important aspect, the rPsaA used in the immunogenic composition described herein includes at least the amino acid residues at positions 21 to 319 of SEQ ID NO:1.
- The capsular polysaccharide (about 300,000 Da) of N. meningitidis serogroup C comprises about 850 repeating units of sialic acid with α(2→9) glycosidic linkage and about 80 percent O-acetylation at C7 or C8. The capsular polysaccharide of N. meningitidis serogroup C and PsaA are provided in conjugated form. In a preferred aspect, the capsular polysaccharide and PsaA are conjugated by covalent linkage.
- In another aspect, a method is provided for generating an immune response in a subject against pneumococcal surface antigen A (PsaA) and capsular polysaccharide from N. meningitidis serogroup C. The method comprises administering to a subject an effective amount for inducing production of antibodies specific to rPsaA and capsular polysaccharide from N. meningitidis serogroup C. Administering to a subject a combination of rPsaA and capsular polysaccharide from N. meningitidis serogroup C in covalently linked form is effective for generating an immune response in the subject. In an important aspect, immunogenicity of the conjugated pneumococcal surface antigen A (PsaA) and capsular polysaccharide is significantly increased as compared to the immune response observed when the antigens are administered individually. In this aspect, more than a 40-fold increase in immunogenicity is seen for conjugated PsaA as compared to non-conjugated PsaA, and more than a 170-fold increase in immunogenicity is seen for conjugated capsular polysaccharide as compared to non-conjugated capsular polysaccharide.
- The immunogenic composition may be administered to a subject by a number of different routes, including intramuscular administration, intranasal administration, oral administration, sub-cutaneous administration, transdermal administration, and transmucosal administration.
- Immunogenic compositions described herein are prepared by a method comprising preparing recombinant PsaA (“rPsaA”) and conjugating rPsaA with capsular polysaccharide from N. meningitidis serogroup C. rPsaA can be prepared using well-known recombinant techniques. Capsular polysaccharide can be isolated from natural sources or synthesized using a number of techniques which are well known in the art.
- The immunogenic compositions described herein advantageously provide dual protection against S. pneumoniae and N. meningitidis infection. The immunogenic composition described herein also utilizes PsaA as a protein carrier for polysaccharide.
- Advantageously, the conjugated immunogenic composition provided herein can reduce the costs of preparing and administering the vaccine. This is a particularly important benefit to developing and underdeveloped countries because the vaccine will reduce the economic and medical burden to the countries which have high rates of pneumococcal and meningococcal disease.
-
FIG. 1 provides the nucleotide sequence (SEQ ID NO. 2) of a cloned psaA fragment, including restriction endonuclease sites at the 5′ and 3′ ends produced according to the Example. -
FIG. 2 provides the deduced amino acid sequence (SEQ ID NO. 1) of recombinant PsaA protein produced according to the Example. -
FIG. 3 shows a photograph of a SDS-polyacrylamide gel electrophoresis and Western blot analysis of rPsaA according to the Example. -
FIG. 4 is a chromatogram demonstrating that the protein signal shifted from a low molecular weight position to a high molecular weight for the conjugate produced according to the Example. -
FIG. 5A shows a photograph of an Immuno-dot blot according to the Example.FIG. 5B shows a photograph of a Western blot according to the Example. - This disclosure provides an immunogenic composition comprising capsular polysaccharide from N. meningitidis and a protein from S. pneumoniae (referred to as “Pn-Mn” vaccine). In a preferred aspect, the S. pneumoniae protein is recombinant pneumococcal surface antigen A (“rPsaA”) and the N. meningitidis capsular polysaccharide is serogroup C capsular polysaccharide. PsaA is universally found in all tested serotypes of S. pneumoniae. The immunogenic composition is useful for inducing production of antibodies for diagnostic and therapeutic purposes. This disclosure further provides an inoculum and vaccine comprising the immunogenic composition dispersed or dissolved in a pharmaceutically acceptable diluent. It is particularly preferred that the rPsaA from S. pneumoniae is covalently conjugated to capsular polysaccharide from N. meningitidis serogroup C.
- The term “antibody” refers to a molecule that is a member of a family of glycosylated proteins called immunoglobulins, which can specifically bind to an antigen. The word “antigen” refers to an entity that is bound by an antibody. “Immunogen” or “immunogenic composition” refers to the entity that induces antibody production or binds to the receptor.
- The words “protein” and “polypeptide” are used interchangeably throughout the specification and designate a series of amino acid residues connected by peptide bonds.
- Capsular polysaccharide from N. meningitidis Serogroup C
- Polysaccharide is a T cell-independent (T-I) antigen inducing short-term immunity with little immune memory and is not effective in infants younger than 2 years old. When covalently linked to a carrier protein, the resulting PS component in a conjugate vaccine becomes a T cell-dependent (T-D) antigen inducing long-term immunity with immune memory even in infants and young children.
- The capsular polysaccharide of N. meningitidis serogroup C comprises repeating units of sialic acid with a (2→9) glycosidic linkage and about 80 percent O-acetylation at C7 or C8. The size of the N. meningitidis group C polysaccharide is about 590 to about 1,030 sialic acid repeating units assuming the molecular weight of a sialic acid repeating unit is 340 Daltons. The size of the N. meningitidis serogroup C capsular polysaccharide particularly useful in the invention is about 200 to about 350 kDa, preferably about 250 to about 300 kDa, although other sizes may be used, if desired, provided that the selected size of the polysaccharide is effective to induce production of antibodies in a subject after conjugation to a carrier protein.
- The capsular polysaccharide can be isolated from natural sources using a number of techniques which are well known in the art. For example, N. meningitidis group C strain can be grown in a defined medium for 18 hours and inactivated with 0.5 percent formaldehyde. After centrifugation to precipitate the cells, the polysaccharide in the removed supernatant can be precipitated by 0.1 percent cetavlon. The insoluble cetavlon complex is then dissolved in 0.9 M calcium chloride and the crude polysaccharide is precipitated with 5 volume ethanol. The precipitate is further dissolved in phosphate buffer. After phenol extraction and ribonuclease treatment, the sample is dialyzed against water and concentrated (Bundle et al, J. Biol. Chem. 249:4797-4801, 1974, which is incorporated herein by reference.)
- In another aspect, the capsular polysaccharide derived from N. meningitidis serogroup C may be substituted with capsular polysaccharide derived from N. meningitidis serogroups A, B, D, X, Y, Z, 29E, W-135, or a combination thereof, in the Pn-Mn conjugates described herein. N. meningitidis serogroups A, B, C, D, X, Y, Z, 29E, and W-135 account for almost all cases of disease. Such conjugates can be administered to a subject capable of inducing an immune response to an antigen in order to provide protection against infection of these serogroups. Meningococcal serogroup A polysaccharide (about 300 kDa) is composed of N-acetyl mannosamine 6-phosphate repeating units with α (1→phosphate) glycosidic linkage and about 70-90 percent O-acetylation at C3. Meningococcal serogroup W135 polysaccharide (˜300,000 Daltons) is composed of (2→6) α-D-galactose (1→4) α-D-sialic acid repeating units with about 70 percent O-acetylation at C7 or C9 of the sialic acid residue. Meningococcal serogroup Y polysaccharide (about 300 kDa) is composed of (2→6) α-D-galactose (1→4) α-D-sialic acid repeating units with about 70 percent O-acetylation at C7 or C9 of the sialic acid residue. The size of the N. meningitidis capsular polysaccharide particularly useful in the invention is about 200 to about 350 kDa, preferably about 250 to about 300 kDa, although other sizes may be used, if desired, provided that the selected size of the polysaccharide is effective to induce production of antibodies in a subject after conjugation to a carrier protein. The activation conditions for these polysaccharides may be different from that for group C polysaccharide due to differences in their structures.
- Pneumococcal Protein
- PsaA has a length of 309 amino acid residues. It is preferred that the rPsaA used in the immunogenic composition includes at least the residues at positions 21 to 319 of SEQ ID NO:1.
- Recombinant PsaA from S. pneumoniae can be prepared using conventional recombinant techniques. Recombinant methodologies required to produce a DNA encoding a desired protein are well known and are routine to those of ordinary skill in the art. The nucleic acid sequences used to practice this invention, whether cDNA, genomic DNA, vectors, and the like, may be isolated from a variety of sources, genetically engineered, amplified, and/or expressed recombinantly. The nucleotide sequence for psaA is provided at nucleotide positions 6 to 867 in SEQ ID NO:2. The coding sequence of the desired protein can be cloned into a vector.
- Any recombinant expression system can be used, including bacterial, mammalian, yeast, insect, or plant cell expression systems. Alternatively, these nucleic acids can be synthesized in vitro by well-known chemical synthesis techniques. Double stranded DNA fragments may then be obtained either by synthesizing the complementary strand and annealing the strands together under appropriate conditions, or by adding the complementary strand using DNA polymerase with an appropriate primer sequence.
- Nucleic acid amplification methods are well known in the art. Oligonucleotide primers can be used to amplify nucleic acids to generate psaA coding sequence used to prepare recombinant PsaA. The coding sequence can be cloned into an expression cassette, such as plasmids, recombinant viruses which can infect or transfect cells in vitro, ex vivo, and/or in vivo, and other vectors which can be used to express the PsaA polypeptide in vitro or in vivo. Selection markers can be incorporated to confer a selectable phenotype on transformed cells, such as antibiotic resistance. The expressed rPsaA can be recovered and purified using conventional techniques.
- In another aspect and in addition to PsaA, other pneumococcal proteins can be used as a component of the Pn-Mn conjugate vaccine provided herein. Other S. pneumoniae proteins that may be used include pneumolysin, pneumococcal surface protein A (PspA), pneumococcal surface protein C (PspC or CbpA), pneumococcal histidine triad proteins or similar proteins with different nomenclatures such as PhtA or BVH11-3, PhtB or PhpA or BVH-11, PhtE or BVH-3), PhtD or BVH-11-2, and, pneumococcal choline binding protein A (PcpA), non-heme iron-containing ferritin or pneumococcal protective proteins (PppA, Dpr), neuraminidase A (NanA), neuraminidase B (NanB), iron transport proteins or iron-compound-binding protein PiuA and PiaA, N-acetylmuramoyl-L-alanine amidase or autolysin (LytA), endo-β-acetylglucosaminidase (LytB), 1,4-β-N-acetylmuranminidase (LytC), caseinolytic protease or serine proteases (ClpP), and adherence and virulence protein A (PavA).
- Conjugate Preparation
- Polysaccharides contain hydroxyl groups, and occasionally carboxyl and amino groups, and proteins contain amino and carboxyl groups. Both polysaccharides and proteins are not active for chemical reaction with each other in their natural form. Proper pretreatment or activation of one or both of the polysaccharide and protein is required to convert the otherwise non-reactive molecules to a reactive form in order to produce the polysaccharide-protein conjugate. Many methods are known in the art for conjugating a protein to a polysaccharide. Polysaccharide can be activated by cyanogen bromide to provide cyanate groups which react with hydrazide-activated protein (Schneerson et al., J. Exp. Med. 1980; 152:361-3760). Polysaccharide can be activated by cyanogen bromide to provide cyanate groups, which further reacts with di-hydrazide, and then conjugates to protein in the presence of EDC (Chu et al., Infect. Immun 1983; 40:245-256). Polysaccharide can be partially hydrolyzed and added with an amino group at the reducing terminus. After a bifunctional linker is added to the amino group, the activated polysaccharide is conjugated to the carrier protein (Costantino et al., Vaccine 1992; 10:691-8). Polysaccharide can be activated with 1-cyano-4-dimethylaminopyridinium tetrafluoroborate to provide cyanate groups which react with a carrier protein (Lees A, Nelson B L, Mond JJ. Vaccine 1996; 14:190-198).
- In a preferred aspect, rPsaA is dialyzed before use, such as against 30 mM NaCl at about 4° C. for about 18 to about 24 hours. The dialyzed rPsaA is then treated to activate the protein, such as with 0.1 M MES (pH 6.5), 0.5 M hydrazine (pH 7.0), and 20 mM 1-[3-dimethylamino propyl)-3-ethyl carbodiimide-HCl (“EDC” from Sigma-Aldrich) in saline, and incubated for 4 hours. The treated rPsaA is then neutralized, such as with 1 M NaOH, before dialyzing the protein, such as dialyzing against buffer containing 3 mM Na2CO3 and 30 mM NaCl at 4° C. The dialyzed activated rPsaA can be used immediately or stored at 4° C.
- In a preferred aspect, the capsular polysaccharide is treated with 6 mM sodium periodate and incubated for 4 hours at room temperature to activate the capsular polysaccharide. The activated capsular polysaccharide is then dialyzed against deionized water, such as for about 18 to about 24 hours at 4° C. The dialyzed activated capsular polysaccharide can be used immediately or stored at 4° C.
- Activated rPsaA is lyophilized, redissolved in water. Dialyzed activated capsular polysaccharide (is lyophilized, redissolved in 0.2 M HEPES, pH 7.5, 30 mM EDTA. The protein solution is added to the polysaccharide solution and incubated overnight. NaBH4 is added to a final concentration of 50 mM and incubated for about 4 to about 6 hours to reduce the C═N double bonds in the polysaccharide-protein conjugate to C-N single bonds, and to reduce the unreacted aldehyde to alcohol. The conjugate is dialyzed against 150 mM NaCl, 10 mM HEPES (pH 7), 1 mM EDTA at 4° C. The dialyzed conjugate can then be evaluated, such as by HPLC, for shift of protein signal (280 nm) from 19 minute position to 18 minute upon conjugation.
- Method of Using Conjugate
- The rPsaA/capsular polysaccharide conjugate provided herein can be administered to a subject capable of inducing an immune response to an antigen. The rPsaA/capsular polysaccharide conjugate is administered to the subject in an effective amount for inducing an antibody response. An “effective amount” is an amount of rPsaA/capsular polysaccharide conjugate which assists a subject in producing both anti-rPsaA and anti-capsular polysaccharide antibodies. Such antibodies may prevent infection by S. pneumoniae and N. meningitidis serotype C.
- One of ordinary skill in the art can determine whether an amount of the rPsaA/capsular polysaccharide conjugate is effective to induce immunity in a subject using routine methods known in the art. For example, the ability of an antigen to produce antibody in a subject can be determined by screening for antibodies using separate coating antigens rPsaA and capsular polysaccharide in the respective ELISA assays.
- In one aspect, a vaccine formulation is provided for N. meningitidis serogroup C and S. pneumoniae. The vaccine formulation is effective for generating an immune response in a subject to both N. meningitidis serogroup C and S. pneumonia. The vaccine formulation comprises rPsaA from S. pneumoniae and capsular polysaccharide from N. meningitidis serogroup C. The conjugated immunogenic composition can be provided with one or more additional components, such as a pharmaceutically acceptable diluents, carriers, adjuvants, and/or buffers. For example, the conjugate can be dispersed or dissolved in a diluent.
- The immunogenic composition may be prepared as a solution, suspension, tablet, pill, capsule, sustained release formulation, powder, or the like. The antigens and immunogenic composition may be mixed with physiologically acceptable carriers which are compatible therewith. These may include water, saline, dextrose, glycerol, ethanol, combinations thereof, and the like. The vaccine may further contain auxiliary substances, such as wetting or emulsifying agents or pH buffering agents, to further enhance the effectiveness. Administration of the conjugate in a vaccine formulation can include delivery by various routes, such as, for example, oral, intravenous, intramuscular, nasal, subcutaneous, and intraperitoneal administration.
- The immunogenic composition is administered in a manner compatible with the dosage formulation, and in such amount as to be therapeutically effective, protective, and immunogenic. The quantity to be administered depends on the subject to the immunized, including, for example, the capacity of the subject's immune system to synthesize antibodies and, if needed, to produce a cell-mediated immune response. Precise amounts of antigen and immunogenic composition to be administered depend on the judgment of the practitioner. However, suitable dosage ranges are readily determinable by those skilled in the art and may be of the order of micrograms to milligrams. Suitable regimes for initial administration and booster doses are also variable but may include an initial administration followed by subsequent administrations. The dosage of the vaccine may also depend on the route of administration and will vary according to the size of the subject.
- In an important aspect, the rPsaA/capsular polysaccharide Pn-Mn conjugate provided herein may be used to prevent infection of both S. pneumoniae and N. meningitidis serotype C, which are the leading causes of otitis media and meningitis in young children. Furthermore, the rPsaA/capsular polysaccharide conjugate provided herein also could be used in the prevention of other pneumococcal and meningococcal diseases, such as bacteremia, pneumoniae and meningitis in the population of other age groups.
- The examples that follow are intended to illustrate the invention and not to limit it. All percentages used herein are by weight unless otherwise indicated. All patents, patent applications, and literature references cited herein are hereby incorporated by reference in their entirety.
- A better understanding of the vaccine provided herein and its many advantages is provided with the following example.
- A. Preparation of Purified rPsaA
- psaA gene cloning and expression. To prepare recombinant pneumococcal PsaA (rPsaA) protein, the coding sequence of pneumococcal psaA genes in E. coli was cloned in the expression vector pET22b(+) (Novagen, Madison, Wis.). Sequence analysis revealed that the coding sequence of psaA does not include BamHI and HindIII restriction sites. For the purpose of cloning, expression, and purification of rPsaA protein, a pair of primers for PCR amplification were designed so that: 1) the PCR product would have a BamHI and HindIII site at the 5′ and 3′ ends, respectively; 2) the reading frame of cloned psaA would be in-frame with that of the vector; and 3) the produced rPsaA protein would have a His-tag at its C-terminal. The forward and reverse primers (5′-GGGATCCTAGCGGAAAAAAAGATACA-3′ (SEQ ID NO. 3), 5′-GCAAGCTTTGCCAATCCTTCAGCAATC-3′ (SEQ ID NO. 4), respectively, were intended to amplify a 868-bp fragment starting from nucleotide no. 42 to no. 921 of the psaA coding sequence. The underlined nucleotides indicate the positions of BamHI and HindIII sites in these primers. The coded rPsaA protein would have 331 amino residues and a predicted molecular mass of 36,940 daltons. The nucleotide sequence of the cloned fragment is shown in
FIG. 1 and the predicted amino acid sequence for rPsaA inFIG. 2 . - A typical PCR mixture contained 5 μmole primers, 20 ng S. pneumoniae serotype 4 chromosomal DNA and PCR Supermix (Life Technologies, Rockville, MD). The conditions for PCR were as follows: DNA denaturation at 95° C. for 40 seconds, primer annealing at 42° C. for 1 min, and DNA synthesis at 72° C. for 1.5 min. After 30 cycles of synthesis, the reaction was terminated with an extension at 72° C. for 5 min. The PCR products were purified with the GeneClean kit (Qbiogen, Carlsbad, Calif.), cloned into pGEM-T easy vector (Promega, Madison, Wis.) and transformed into E. coli DH5α. The insert was isolated from the resultant plasmid after a double digestion with restriction enzymes BamHI and HindIII, cloned into the compatible site of pET22b(+) to generate plasmid pST648, and transformed into E. coli BL21(DE3). To confirm that psaA gene on pST648 was cloned as planned, the restriction map of the cloned PCR product was determined. The results were consistent with those of published psaA gene. The proper cloning of the BamHI-HindIII restriction fragment into pET22b(+) was further confirmed by the induction of recombinant protein and by the presence of His-tag at the carboxyl end.
- To induce the synthesis of recombinant protein, isopropyl-13-D-thiogalactoside (IPTG, 0.1 mM) was added to the log-phase culture (A600 nm=0.6) of E. coli BL21(DE3) harboring pST648 and growth continued for another 2 hours. Cells were harvested, washed, suspended in one-tenth volume of 50 mM Tris-HCl, pH 7.9 containing 200 mM NaCl (TN buffer) at 4° C., and disrupted by sonication. After the removal of unbroken cells by centrifugation, the supernatant was subject to SDS-PAGE analysis. To confirm that recombinant protein had a His-tag, the proteins on the SDS-gel were analyzed by western blotting against mouse monoclonal anti-poly-histidine antibody (Sigma-Aldrich, St. Louis, Mo.). The proteins on the gel were transferred onto nitrocellulose paper and the paper was washed with blotto (20 mM Tris, 0.2M NaCl, 1.5 percent nonfat milk), incubated with monoclonal anti-poly-histidine antibody in blotto (1:200 dilution) for 2 hours, washed with blotto three times, incubated with alkaline phosphatase-conjugated goat anti-mouse antibody in blotto (1:5000 dilution), and washed with blotto and AP buffer (0.1 M NaCl, 0.1 M Tris-Cl, pH 9.5). The antibody-antigen interaction was visualized by incubating with 0.1 percent naphthol and 1 percent fast blue (Sigma-Aldrich). The results are shown in
FIG. 3 . The results indicate that the overproduced protein was indeed rPsaA and the crude cell lysate of E. coli BL2I(DE3)(pST648) could be used as the source of rPsaA in protein purification. - Purification of rPsaA protein. To purify rPsaA protein, crude cell lysate was loaded on a HIS-BIND® Column (Novagen, Madison, Wis.). The resin was washed with binding buffer (TN buffer containing 50 mM imidazole) and washing buffer (TN buffer containing 200 mM imidazole) to remove excess and nonspecifically bound proteins. The bound protein was eluted with elution buffer (TN buffer containing 1 M imidazole) and analyzed by SDS-polyacrylamide gel electrophoresis and Western blotting against monoclonal anti-poly-histidine antibody as described above. Fractions containing protein that reacts with anti-poly-histidine monoclonal antibody were collected as purified rPsaA protein (
FIG. 3 ). - B. Preparation of rPsaA-MCPS Conjugate
- Activation of rPsaA. rPsaA was dialyzed against 30 mM NaCl at 4° C. overnight before use. The dialyzed rPsaA was mixed with 1 M MES, pH 6.5, 5 M hydrazine, pH 7.0, 1 M EDC (Sigma-Aldrich) in saline at the final concentration of 0.1 M, 0.5 M, and 20 mM, respectively. After incubation at room temperature for 4 hours, 1 M NaOH (0.05 mL) was added to neutralize the reaction before dialysis against buffer containing 3 mM Na2CO3 and 30 mM NaCl at 4° C. The protein solution was stored at 4° C.
- MCPS activation. N. meningitidis type C capsular PS (MCPS, 10 mg/ML) was mixed with sodium periodate at a final concentration of 6 mM. After incubation at room temperature for 4 hours, the reaction mixture was dialyzed against deionized water overnight and stored at 4° C.
- Conjugation of PsaA-MCPS. Aliquot activated rPsaA (0.25 mg) was lyophilized and re-dissolved in 25 μl water. Aliquot activated MCPS (0.25 mg) was lyophilized and redissolved in 25 μl of 0.2 M HEPES, pH 7.5 containing 30 mM EDTA. These two solutions were combined. After incubation overnight at room temperature, 5 μl of 1 M NaBH4 was added and incubation continued for another 6 hours. After dialysis against 150 mM NaCl, 10 mM HEPES,
pH 7, 1 mM EDTA at 4° C., the conjugate product was stored at 4° C. The conjugate of MCPS with rPsaA was evaluated with HPLC analysis using a Waters Ultrahydrogel Linear size-exclusion column and monitored at the wavelengths of 206 nm and 280 nm. Upon conjugation, the protein signal shifted from low molecular weight position to the high molecular weight in the chromatogram, as shown inFIG. 4 . - C. Characterization of rPsaA-MCPS Conjugate.
- Immunogenicity. Mice (NIH-Swiss) were subcutaneously immunized every two weeks with rPsaA, MCPS, or PsaA-MCPS conjugate, respectively, at the dose of 1 μg per mouse. Blood was collected from optical vein two weeks after the third immunization and the titers of antibodies were determined by enzyme-linked immunosorbent assay (ELISA). Briefly, wells of microtiter plate (Dynatec, no.1) was coated with MCPS by adding 100 μl of solution comprised of antigen, 0.5 μg/mL rPsaA or 5 μg/mL native MCPS plus 5 mg/ml methylated human serum albumin in PBS, pH 7.5 and incubated at room temperature for at least 4 hours. Wells were washed three times (150 μl/well) with PBS containing 0.05
percent TWEEN® 20 and 0.02 percent NaN3. 100 μL of diluent (5 percent calf serum and 0.02 percent NaN3 in PBS) was added to each well and a two-fold serial dilution of diluted (1:100) antiserum was prepared. The reference serum, which was assigned with 3,200 units/mL IgG against MCPS or rPsaA, was similarly treated in the same plate. After incubating overnight at room temperature and washing three times, 100 μl of alkaline phosphate-conjugated goat anti-mouse IgG Fc (1:3000 dilution) was added and incubated at room temperature for 3 hours. Wells were washed three times and 100 μl of substrate (p-nitrophenyl phosphate, 1 mg/mL in 1 M Tris-HCl, pH 9.8 containing 0.3 mM MgCl2) was added. The plate was incubated at room temperature for 20 minutes (it might vary depending on the color development of sample and reference serum) and the absorbances were measured at 405 nm. The respective reference serum for MCPS and rPsaA was prepared in the laboratory and were used as standards to determine the antibody level of the sample serum. Results are shown in Table I below. -
TABLE I Immunogenicity of rPsaA, MCPS, and rPsaA-MCPS conjugate. IgG level* Antigen Dose anti-PsaA anti-MCPS rPsaA 3 × 1 μg 107 (9; 1678) — MCPS 3 × 1 μg — 533 (46; 6176) rPsaA- MCPS 3 × 1 μg 4,418 (2006; 9734) 90,506 (50,421; 162,455) *The data that is not in parenthesis represents the geometric mean of IgG antibody level in 10 antiserum samples. The anti-rPsaA or anti-MCPS IgG antibody level of each antiserum was measured by ELISA and compared with respective reference serum, assigned with 3,200 unit/mL IgG antibody. The numbers in parenthesis represents the confidence interval of one standard deviation. - Both rPsaA and MCPS were immunogenic in mice in the absence of adjuvant. Their immunogenicity increased significantly after they were conjugated. When compared with each individual component, the immunogenicity increased approximately 41-fold and 170-fold for rPsaA and MCPS, respectively.
- Reactivity of anti-rPsaA antibodies. It has been demonstrated that active immunization of PsaA is effective to protect laboratory animals from S. pneumoniae infection. To provide protection, anti-PsaA should interact with all S. pneumoniae cells. The cross-reactivity of the generated anti-rPsaA antibodies was investigated by immuno-dot blotting and western blotting against clinical isolates of S. pneumoniae, including
serotypes FIG. 5A andFIG. 5B . The anti-rPsaA antibody cross-reacted with cells of all serotypes tested and reacted with a single protein that has an apparent molecular weight comparable to that of PsaA. - Bactericidal activity of anti-MCPS antibody. The biological function of the induced MCPS-specific antibodies was determined by bactericidal assay against N. meningitidis serogroup C (strain C11). Briefly, bacteria were cultured overnight on brain heart infusion (BHI) agar plates containing 5 percent normal horse serum (NHS) and transferred to fresh plates and cultured for 5 hours the second day. Bacteria from the 5 hour culture were suspended to 65-66 percent transmittance at 530 nm in DPBSG (1×PBS, pH 7.2, 0.5 mM MgCl2, 0.9 mM CaCl2, and 0.01 percent gelatin) followed by 1:10,000 dilution with the same buffer to contain approximately 4,000 cfu/mL. In the wells of a microtiter plate, 50 μl 2-fold dilutions of test and control sera were prepared with DPBSG and mixed with 25 μl bacterial suspension and 25 μl baby rabbit complement (Pel-Freez, Rogers, Ark.). After incubation at 37° C. for 60 min, 10 μl of the bacterial suspension was withdrawn from each well and spread on the BHI/NHS plate. The colonies were enumerated after incubation overnight at 37° C. with 5 percent CO2. The bactericidal titer was the reciprocal of the highest dilution of the sample yielding a 50 percent reduction in CFU as compared to the control well containing complement without antiserum. The geometric means of the titer for each mouse group was calculated. Results are shown in Table II below.
-
TABLE II Bactericidal activity of antisera against MCPS, rPsaA-MCPS conjugate. Antigen Bactericidal activity titer* MCPS 109 (63; 190) rPsaA-PCPS 5022 (1123; 22454) *The data that is not in parenthesis represents the geometric mean of sera from 10 mice for each antigen. The numbers in parenthesis represents the confidence interval of one standard deviation. - Sera for both MCPS and rPsaA-MCPS conjugates had bactericidal activity, but the titer for the conjugates were significantly higher (approximately 46-fold).
- While the invention has been particularly described with specific reference to particular process and product embodiments, it will be appreciated that various alterations, modifications, and adaptations may be based on the present disclosure, and are intended to be within the spirit and scope of the invention as defined by the following claims.
Claims (11)
1. A vaccine comprising capsular polysaccharide from N. meningitidis conjugated to a pneumococcal protein.
2. The vaccine of claim 1 wherein the N. meningitidis capsular polysaccharide is derived from at least one N. meningitidis serogroup selected from the group consisting of serogroups A, B, C, D, X, Y, Z, 29E, W-135, and combinations thereof.
3. The vaccine of claim 2 wherein the N. meningitidis capsular polysaccharide is derived from N. meningitidis serogroup C.
4. The vaccine of claim 1 wherein the pneumococcal protein is selected from the group consisting of PsaA, pneumolysin, PspA, PspC, CbpA, pneumococcal histidine triad protein selected from the group consisting of PhtA, BVH11-3, PhtB, PhpA, BVH-11, PhtE, BVH-3, PhtD and BVH-11-2, PcpA, PppA, Dpr, NanA, NanB, PiuA, PiaA, LytA, LytB, LytC, ClpP, PavA, and combinations thereof.
5. The vaccine of claim 4 wherein the pneumococcal protein is PsaA.
6. A method for generating an immune response against N. meningitidis and S. pneumoniae in an individual, the method comprising administering to the individual an amount of vaccine composition effective for generating an immune response to both N. meningitidis and S. pneumoniae, wherein the vaccine composition comprises N. meningitidis capsular polysaccharide conjugated to a pneumococcal protein.
7. The method of claim 6 wherein the vaccine is administered by a route selected from the group consisting of oral intravenous, intramuscular , nasal, subcutaneous, intraperitoneal, and combinations thereof.
8. The method of claim 6 wherein the N. meningitidis capsular polysaccharide is derived from at least one N. meningitidis serogroup selected from the group consisting of serogroups A, B, C, D, X, Y, Z, 29E, W-135, and combinations thereof.
9. The method of claim 8 wherein the N. meningitidis polysaccharide is derived from N. meningitidis serogroup C.
10. The method of claim 6 wherein the pneumococcal protein is selected from the group consisting of of PsaA, pneumolysin, PspA, PspC, CbpA, pneumococcal histidine triad protein selected from the group consisting of PhtA, BVH11-3, PhtB, PhpA, BVH-11, PhtE, BVH-3, PhtD and BVH-11-2, PcpA, PppA, Dpr, NanA, NanB, PiuA, PiaA, LytA, LytB, LytC, ClpP, PavA, and combinations thereof.
11. The method of claim 10 wherein the pneumococcal protein is PsaA.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/549,052 US20150182613A1 (en) | 2009-04-16 | 2014-11-20 | Meningococcal And Pneumococcal Conjugate Vaccine And Method Of Using Same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/425,232 US8003112B2 (en) | 2009-04-16 | 2009-04-16 | Meningococcal and pneumococcal conjugate vaccine and method of using same |
US13/183,303 US20120009213A1 (en) | 2009-04-16 | 2011-07-14 | Meningococcal And Pneumococcal Conjugate Vaccine And Method Of Using Same |
US14/549,052 US20150182613A1 (en) | 2009-04-16 | 2014-11-20 | Meningococcal And Pneumococcal Conjugate Vaccine And Method Of Using Same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/183,303 Continuation US20120009213A1 (en) | 2009-04-16 | 2011-07-14 | Meningococcal And Pneumococcal Conjugate Vaccine And Method Of Using Same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150182613A1 true US20150182613A1 (en) | 2015-07-02 |
Family
ID=42981141
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/425,232 Active US8003112B2 (en) | 2009-04-16 | 2009-04-16 | Meningococcal and pneumococcal conjugate vaccine and method of using same |
US13/183,303 Abandoned US20120009213A1 (en) | 2009-04-16 | 2011-07-14 | Meningococcal And Pneumococcal Conjugate Vaccine And Method Of Using Same |
US14/549,052 Pending US20150182613A1 (en) | 2009-04-16 | 2014-11-20 | Meningococcal And Pneumococcal Conjugate Vaccine And Method Of Using Same |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/425,232 Active US8003112B2 (en) | 2009-04-16 | 2009-04-16 | Meningococcal and pneumococcal conjugate vaccine and method of using same |
US13/183,303 Abandoned US20120009213A1 (en) | 2009-04-16 | 2011-07-14 | Meningococcal And Pneumococcal Conjugate Vaccine And Method Of Using Same |
Country Status (5)
Country | Link |
---|---|
US (3) | US8003112B2 (en) |
EP (1) | EP2419130A4 (en) |
JP (1) | JP5744842B2 (en) |
CA (1) | CA2758921C (en) |
WO (1) | WO2010120921A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8003112B2 (en) * | 2009-04-16 | 2011-08-23 | Howard University | Meningococcal and pneumococcal conjugate vaccine and method of using same |
KR20150020164A (en) | 2012-05-15 | 2015-02-25 | 수브하시 브이. 카프레 | Adjuvant formulations and methods |
RU2510281C2 (en) | 2012-06-22 | 2014-03-27 | Общество с ограниченной ответственностью "Эпитоп" (ООО "Эпитоп") | HYBRID PROTEIN VACCINE AGAINST PNEUMONIA CAUSED BY Streptococcus pneumoniae |
US10402608B2 (en) * | 2014-09-12 | 2019-09-03 | Ent. Services Development Corporation Lp | Radio frequency identification card monitor |
US9815886B2 (en) | 2014-10-28 | 2017-11-14 | Adma Biologics, Inc. | Compositions and methods for the treatment of immunodeficiency |
BR112019006278A2 (en) * | 2016-09-30 | 2019-07-02 | Biological E Ltd | multivalent pneumococcal vaccine compositions comprising polysaccharide-protein conjugates |
EP3562838A2 (en) | 2016-12-28 | 2019-11-06 | Henriques Normark, Birgitta | Microparticles from streptococcus pneumoniae as vaccine antigens |
US10259865B2 (en) | 2017-03-15 | 2019-04-16 | Adma Biologics, Inc. | Anti-pneumococcal hyperimmune globulin for the treatment and prevention of pneumococcal infection |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070065462A1 (en) * | 2005-09-21 | 2007-03-22 | Ryall Robert P | Multivalent meningococcal derivatized polysaccharide-protein conjugates and vaccine |
US8003112B2 (en) * | 2009-04-16 | 2011-08-23 | Howard University | Meningococcal and pneumococcal conjugate vaccine and method of using same |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4356170A (en) | 1981-05-27 | 1982-10-26 | Canadian Patents & Development Ltd. | Immunogenic polysaccharide-protein conjugates |
NZ239643A (en) | 1990-09-17 | 1996-05-28 | North American Vaccine Inc | Vaccine containing bacterial polysaccharide protein conjugate and adjuvant (c-nd-che-a-co-b-r) with a long chain alkyl group. |
US5849301A (en) | 1993-09-22 | 1998-12-15 | Henry M. Jackson Foundation For The Advancement Of Military Medicine | Producing immunogenic constructs using soluable carbohydrates activated via organic cyanylating reagents |
US20020054884A1 (en) | 1995-06-23 | 2002-05-09 | Smithkline Beecham Biologicals, Sa | Vaccine composition comprising a polysaccharide conjugate antigen adsorbed onto aluminium phosphate |
KR100947751B1 (en) | 2001-01-23 | 2010-03-18 | 아벤티스 파스퇴르 | Multivalent meningococcal polysaccharide-protein conjugate vaccine |
AU2002309706A1 (en) * | 2001-05-11 | 2002-11-25 | Aventis Pasteur, Inc. | Novel meningitis conjugate vaccine |
CA2524853A1 (en) * | 2003-05-07 | 2005-01-20 | Aventis Pasteur, Inc. | Method of enhanced immunogenicity to meningococcal vaccination |
US8048432B2 (en) | 2003-08-06 | 2011-11-01 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Polysaccharide-protein conjugate vaccines |
CA2844154C (en) | 2003-08-06 | 2016-12-20 | The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Polysaccharide-protein conjugate vaccines |
-
2009
- 2009-04-16 US US12/425,232 patent/US8003112B2/en active Active
-
2010
- 2010-04-14 WO PCT/US2010/031083 patent/WO2010120921A1/en active Application Filing
- 2010-04-14 JP JP2012506176A patent/JP5744842B2/en active Active
- 2010-04-14 CA CA2758921A patent/CA2758921C/en active Active
- 2010-04-14 EP EP10765117.6A patent/EP2419130A4/en not_active Withdrawn
-
2011
- 2011-07-14 US US13/183,303 patent/US20120009213A1/en not_active Abandoned
-
2014
- 2014-11-20 US US14/549,052 patent/US20150182613A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070065462A1 (en) * | 2005-09-21 | 2007-03-22 | Ryall Robert P | Multivalent meningococcal derivatized polysaccharide-protein conjugates and vaccine |
US8003112B2 (en) * | 2009-04-16 | 2011-08-23 | Howard University | Meningococcal and pneumococcal conjugate vaccine and method of using same |
Also Published As
Publication number | Publication date |
---|---|
US8003112B2 (en) | 2011-08-23 |
CA2758921A1 (en) | 2010-10-21 |
CA2758921C (en) | 2018-12-04 |
US20120009213A1 (en) | 2012-01-12 |
WO2010120921A1 (en) | 2010-10-21 |
US20100266625A1 (en) | 2010-10-21 |
EP2419130A4 (en) | 2013-06-26 |
JP2012524099A (en) | 2012-10-11 |
JP5744842B2 (en) | 2015-07-08 |
EP2419130A1 (en) | 2012-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20150182613A1 (en) | Meningococcal And Pneumococcal Conjugate Vaccine And Method Of Using Same | |
CA2673477C (en) | Multivalent pneumococcal polysaccharide-protein conjugate composition | |
KR20190066032A (en) | A polyvalent pneumococcal vaccine composition comprising a polysaccharide-protein conjugate | |
AU2005302269B2 (en) | Modified streptococcal polysaccharides and uses thereof | |
RU2634405C2 (en) | Immunogenic composition | |
JP4001625B2 (en) | Antigenic group B Streptococcus type 2 and type 3 polysaccharide fragments and complex vaccines thereof having a 2,5-anhydro-D-mannose terminal structure | |
US20030035806A1 (en) | Novel meningitis conjugate vaccine | |
EP0630260B1 (en) | Polysaccharide-protein conjugates | |
JPH10504717A (en) | Pneumococcal polysaccharide-recombinant pneumolysin conjugate vaccines for immunization against pneumococcal infection | |
JP2004505885A (en) | Immunogenic β-propionamide linked polysaccharide-protein conjugates useful as vaccines produced using N-acryloylated polysaccharides | |
JP2004505885A5 (en) | ||
EP0658118A1 (en) | Vaccines against group c neisseria meningitidis | |
EP1069909B1 (en) | Conjugate vaccines for the prevention of dental caries | |
EP3923982A1 (en) | Neisseria meningitidiscompositions and methods thereof | |
US20200030430A1 (en) | Immunogenic compositions | |
Wu et al. | Investigation of nontypeable Haemophilus influenzae outer membrane protein P6 as a new carrier for lipooligosaccharide conjugate vaccines | |
CN110652585B (en) | Polysaccharide-protein conjugate immune preparation and application thereof | |
US20230405104A1 (en) | Proteoglycan conjugate and application thereof | |
Madoff et al. | Surface structures of group B streptococci important in human immunity | |
AU662141C (en) | Polysaccharide-protein conjugates | |
JP2000507274A (en) | IGA1 protease fragment as carrier peptide | |
AU2018213968A1 (en) | Multivalent pneumococcal polysaccharide-protein conjugate composition | |
MXPA00008255A (en) | Multi-oligosaccharide glycoconjugate bacterial meningitis vaccines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
AS | Assignment |
Owner name: THE UNITED STATES OF AMERICA, AS REPRESENTED BY TH Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LEE, CHE-HUNG ROBERT;REEL/FRAME:038309/0416 Effective date: 20100409 Owner name: HOWARD UNIVERSITY, DISTRICT OF COLUMBIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TAI, STANLEY SHIH-PENG;REEL/FRAME:038309/0410 Effective date: 20100408 |