US20150181962A1 - Machine for making an impermeable join on impermeable three-layer or two-layer fabrics - Google Patents

Machine for making an impermeable join on impermeable three-layer or two-layer fabrics Download PDF

Info

Publication number
US20150181962A1
US20150181962A1 US14/657,767 US201514657767A US2015181962A1 US 20150181962 A1 US20150181962 A1 US 20150181962A1 US 201514657767 A US201514657767 A US 201514657767A US 2015181962 A1 US2015181962 A1 US 2015181962A1
Authority
US
United States
Prior art keywords
fabric
layer
internal layer
joining line
cauterization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/657,767
Inventor
Giovanni Cartabbia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macpi SpA
Original Assignee
Macpi SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macpi SpA filed Critical Macpi SpA
Priority to US14/657,767 priority Critical patent/US20150181962A1/en
Publication of US20150181962A1 publication Critical patent/US20150181962A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D27/00Details of garments or of their making
    • A41D27/24Hems; Seams
    • A41D27/245Hems; Seams made by welding or gluing
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41HAPPLIANCES OR METHODS FOR MAKING CLOTHES, e.g. FOR DRESS-MAKING OR FOR TAILORING, NOT OTHERWISE PROVIDED FOR
    • A41H43/00Other methods, machines or appliances
    • A41H43/04Joining garment parts or blanks by gluing or welding ; Gluing presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/10Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using hot gases (e.g. combustion gases) or flames coming in contact with at least one of the parts to be joined
    • B29C65/103Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using hot gases (e.g. combustion gases) or flames coming in contact with at least one of the parts to be joined direct heating both surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/481Non-reactive adhesives, e.g. physically hardening adhesives
    • B29C65/4815Hot melt adhesives, e.g. thermoplastic adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • B29C65/5042Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like covering both elements to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • B29C65/5092Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like characterised by the tape handling mechanisms, e.g. using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/024Thermal pre-treatments
    • B29C66/0242Heating, or preheating, e.g. drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/03After-treatments in the joint area
    • B29C66/038Covering the joint by a coating material
    • B29C66/0384Covering the joint by a coating material the coating material being in tape, strip or band form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/23Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being multiple and parallel or being in the form of tessellations
    • B29C66/232Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being multiple and parallel or being in the form of tessellations said joint lines being multiple and parallel, i.e. the joint being formed by several parallel joint lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7234General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a barrier layer
    • B29C66/72343General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a barrier layer for liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/729Textile or other fibrous material made from plastics
    • B29C66/7292Textile or other fibrous material made from plastics coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7318Permeability to gases or liquids
    • B29C66/73181Permeability to gases or liquids permeable
    • B29C66/73182Permeability to gases or liquids permeable to gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7318Permeability to gases or liquids
    • B29C66/73185Permeability to gases or liquids non-permeable
    • B29C66/73187Permeability to gases or liquids non-permeable to liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/834General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
    • B29C66/8341Roller, cylinder or drum types; Band or belt types; Ball types
    • B29C66/83411Roller, cylinder or drum types
    • B29C66/83413Roller, cylinder or drum types cooperating rollers, cylinders or drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/845C-clamp type or sewing machine type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/934Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed
    • B29C66/93411Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed the parts to be joined having different speeds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/934Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed
    • B29C66/93451Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed by controlling or regulating the rotational speed, i.e. the speed of revolution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/967Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving special data inputs or special data outputs, e.g. for monitoring purposes
    • B29C66/9672Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving special data inputs or special data outputs, e.g. for monitoring purposes involving special data inputs, e.g. involving barcodes, RFID tags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/08Interconnection of layers by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06HMARKING, INSPECTING, SEAMING OR SEVERING TEXTILE MATERIALS
    • D06H5/00Seaming textile materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/04Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam
    • B29C35/045Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using gas or flames
    • B29C2035/046Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using gas or flames dried air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/04Dielectric heating, e.g. high-frequency welding, i.e. radio frequency welding of plastic materials having dielectric properties, e.g. PVC
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • B29C65/5042Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like covering both elements to be joined
    • B29C65/505Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like covering both elements to be joined and placed in a recess formed in the parts to be joined, e.g. in order to obtain a continuous surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/62Stitching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/72Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by combined operations or combined techniques, e.g. welding and stitching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/74Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by welding and severing, or by joining and severing, the severing being performed in the area to be joined, next to the area to be joined, in the joint area or next to the joint area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/133Fin-type joints, the parts to be joined being flexible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/135Single hemmed joints, i.e. one of the parts to be joined being hemmed in the joint area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/729Textile or other fibrous material made from plastics
    • B29C66/7294Non woven mats, e.g. felt
    • B29C66/72941Non woven mats, e.g. felt coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/816General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the mounting of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8167Quick change joining tools or surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/841Machines or tools adaptable for making articles of different dimensions or shapes or for making joints of different dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/87Auxiliary operations or devices
    • B29C66/874Safety measures or devices
    • B29C66/8748Safety measures or devices involving the use of warnings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/924Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/9261Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the displacement of the joining tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/962Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process using proportional controllers, e.g. PID controllers [proportional–integral–derivative controllers]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/48Wearing apparel
    • B29L2031/4842Outerwear
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/19Sheets or webs edge spliced or joined
    • Y10T428/192Sheets or webs coplanar
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24033Structurally defined web or sheet [e.g., overall dimension, etc.] including stitching and discrete fastener[s], coating or bond
    • Y10T428/24041Discontinuous or differential coating, impregnation, or bond
    • Y10T428/2405Coating, impregnation, or bond in stitching zone only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]

Definitions

  • the present invention concerns a machine for making an impermeable join on three-layer or two-layer fabrics that are impermeable to fluids, in particular liquids, to obtain protective garments or other products impermeable to liquids.
  • One known textile product is the three-layer type and comprises a first external layer, a second intermediate layer and a third internal layer.
  • the first external layer is a layer of textile material of various type, which may or may not comprise a textile structure of various type.
  • the second intermediate layer is a sheet or film of polymeric material which functions as a barrier against liquids from outside to inside and as a membrane that is transpirant to fluids from inside to outside.
  • the third internal layer is generally made by means of a complex textile structure, for example fleece or pile, meaning a fabric worked in different ways, by shaping, incisions, reliefs, or a fibrous or filament structure, including woven or non-woven materials, knitted fabrics, brushed, teaseled, carded materials or other.
  • the three-layer textile product is supplied cut into panels which, to make the impermeable garments or other products in question, are joined to each other along suitably made joining lines, so that they are comfortable for the user.
  • the textile products are in fact also called “soft-shell”, because they must have flexible and soft joins, and constitute durable and resistant materials on the outside, but soft inside, to provide comfort to the touch and wearability.
  • joins between the panels of three-layer fabric in question are made by a first stitching operation, using needles, or an ultrasound join or other, along joining edges, and a subsequent taping operation along the sewn edges, that is, appliqués of sealing and impermeabilizing tapes applied hot on the side intended to face the inside during use.
  • the joining step in itself would not guarantee the impermeability of the join, due to the effect of the capillarity of the liquids that penetrate into the fabrics, in particular passing from the first external layer to the third internal layer in correspondence with the stitching zone.
  • the individual threads used to make the textile material are formed by filaments which create unsealable interstices between them, through which the liquids are absorbed due to capillarity or seepage.
  • the join is made, taking care to leave visible, at the sides of the joining line, a portion of the second intermediate barrier layer; and finally, the sealing tape is applied astride the joining line directly on the portion of the second intermediate layer left free following the fleshing or shaving. Impermeability is obtained thanks to the fact that the sealing tape adheres directly to the second intermediate layer that functions as a barrier.
  • the preparatory operation which is carried out using suitable shaving machines, fleshing machines or sanding machines, produces a great quantity of removed material which is dispersed, in the form of powder or light particulate, into the surrounding environment, to the detriment of the operators present.
  • Purpose of the present invention is to perfect a machine to make an impermeable join on three-layer or two-layer impermeable fabrics which allows to make the impermeable join quickly, safely and reliably, without having recourse to preparatory operations such as mechanical fleshing, at the same time keeping the impermeability and the minimum thickness of the fabric, which is comfortable, pleasant to the touch and to the eye, and pleasant to wear.
  • the Applicant has devised, tested and embodied the present invention to overcome the shortcomings of the state of the art and to obtain these and other purposes and advantages.
  • a machine according to the present invention is able, in a single step or operation, to impermeabilize the join made on two panels of laminated multilayer textile material, three-layer or two-layer, also called soft-shell, comprising an internal layer, and made along a joining line by stitching, simple or complex, ultrasound or high frequency joining, on fabrics in their natural state without any prior operation or treatment being made in correspondence with the lips of the join.
  • the impermeabilization according to the present invention is obtained with the machine according to the present invention, achieving a seal that is impermeable to fluids, in particular from outside to inside, by means of a cauterization, which can be simple or multiple, on the inside of the textile material and simultaneously applying, by means of hot welding, an adhesive and impermeable tape.
  • the machine to achieve an impermeable join between the two panels according to the present invention comprises first movement means able to move the textile material in a desired direction of feed and impermeabilization means able to achieve the impermeabilization along the joining line and comprising second movement means able to move an impermeable tape for hot taping with adhesive, in order to determine the hot application and welding on the internal layer along the joining line.
  • the impermeabilization means also comprise heating means suitable to effect a cauterization of the material of the internal layer and positionable directly upstream of the second movement means in the direction of feed, so that the hot taping can be effected immediately after the cauterization.
  • the effect is to modify its structure, and in particular the filament conformation which would normally allow the liquids to pass and seep through capillarity, thus rendering the join between the two panels impermeable.
  • the machine according to the present invention allows to simplify the process of impermeabilizing the joins compared with the state of the art, because it is possible to obtain this effect effectively in only two substantive steps or operations, that is, joining the panels and cauterizing the join with a corresponding taping.
  • the heating means comprise a blower device able to blow compressed and super-heated air at least toward the joining line and on the sides adjacent thereto, in order to determine the cauterization of the internal layer.
  • the blower device is also configured to blow heating air toward the tape.
  • the heating means comprise an irradiation heating device, able to be taken into close proximity, but not in contact, with the internal layer along the joining line, and to heat the internal layer by irradiation, obtaining the cauterization thereof.
  • This variant solution which uses an irradiation device, is particularly indicated when the second layer (membrane) and/or the third internal layer consist of thin and light membranes, which are particularly delicate and could be at least partly damaged by the blowing of the compressed and super-heated air.
  • the same device is used both for heating with compressed and super-heated air, and also for heating by irradiation.
  • the machine is extremely flexible and versatile since it is already equipped substantially for any type of material. It is therefore possible, when working thick and not delicate materials, to use the device with compressed and super-heated air, keeping it slightly distant from the material to be treated and delivering the stream of super-heated air toward the joining line.
  • the delivery of compressed air is interrupted, the device is moved closer to a distance in the range of a millimeter to the joining line, and the temperature of the radiant elements of the device is taken to a value in the range of 400° C. or more, to achieve the cauterization through irradiation.
  • another option also provides to use the combined effect of super-heated air and of irradiation, for example in the case of particularly thick fabrics, for example thick pile.
  • suitable position detectors are provided, to condition and adjust the correct positioning of the device, increasing or decreasing the distance thereof with respect to the position of the textile material being worked.
  • the machine's command and control unit has a database in which various types of fabrics are memorized, to which a specific process to be carried out corresponds: either only with super-heated air, or only by irradiation, or with both heat sources. It may also be provided that with every type of fabric there corresponds a specific distance of the device with respect to the surface of the fabric to be processed.
  • the user when the machine is started, the user will select by type the fabric being worked, and the most suitable option among the three available ones will be selected automatically by the machine, which will also automatically position the heating device at the most suitable distance for that specific textile material.
  • the compressed air circulates in a feed circuit connected to the blower device and is preferably at a pressure comprised between about 1.5 bar and 2.5 bar.
  • the air is super-heated to a temperature preferably between about 200° C. and about 350° C.
  • the feed circuit is associated with an air super-heater unit able to increase the temperature of the air in a desired manner.
  • the blower device comprises a first blower nozzle to blow super-heated air, and a second blower nozzle, downstream of the first nozzle in the direction of feed, to blow the hot air toward the tape.
  • the first and second nozzle are mounted on a single common operating head of the blower device, positionable with respect to the textile material to be impermeabilized.
  • the feed circuit comprises two air feed branches that are independent from each other, of which a first branch is connected to the first nozzle and a second branch is connected to the second nozzle.
  • the first nozzle has a single row of delivery channels or a single channel with an elongated shape, in order to determine substantially a single jet or blade of super-heated compressed air and perform a single-track cauterization along the joining line.
  • the first nozzle has a pair of delivery channels, by means of which a pair of jets of super-heated compressed air is substantially determined, distanced from each other astride the joining line, in order to perform a double-track cauterization along the joining line.
  • the first nozzles with a single delivery channel or with a double channel are interchangeable.
  • the position at least of the heating means intended at least for cauterization is advantageously adjustable with respect to the tape and to the textile material which are fed.
  • the machine according to the present invention comprises a mobile slider on which at least the heating means are mounted. The mobile slider is selectively positionable both in a longitudinal direction parallel to or coinciding with the direction of feed of the textile material, and in a direction transverse to the direction of feed, and also along a desired angular path from and toward the tape and the textile material that are fed.
  • the machine comprises first linear adjustment means to adjust the positioning of the mobile slider in the longitudinal direction.
  • the machine comprises second linear adjustment means to adjust the transverse positioning of the mobile slider.
  • the machine comprises first angular adjustment means that determine the controlled rotation and angular positioning of the mobile slider.
  • the present invention also concerns impermeabilization means able to achieve the impermeabilization of two panels made of three-layer or two-layer textile material comprising at least an internal layer, already joined along a joining line by means of a stitching operation, simple or complex, or by ultrasound joining or other, along the joining line and comprising movement means able to move an impermeable tape for hot taping with adhesive, in order to determine the hot application and welding on the internal layer along the joining line.
  • the impermeabilization means also comprise heating means suitable to effect a cauterization of the material of the internal layer and positionable directly upstream of the second movement means in the direction of feed, so that the hot taping can be effected immediately after the cauterization.
  • the present invention also concerns a method to achieve an impermeable join between two panels made of three-layer or two-layer textile material comprising at least an internal layer, already joined along a joining line by means of a stitching operation, simple or complex, or by ultrasound joining or other, which provides to move the textile material in a direction of feed and to perform the impermeabilization along the joining line by the hot application and welding, on the internal layer along the joining line, of an impermeable tape for hot taping with adhesive.
  • the impermeabilization provides to effect a cauterization of the material of the internal layer immediately before the hot taping. This obtains the advantages of simplifying known processes, obtaining the purpose of impermeabilizing the join by means of only two steps or operations, that is, joining the panels and cauterizing combined with hot taping.
  • the present invention also concerns a textile material comprising an impermeable join between two panels made of three-layer or two-layer textile material comprising at least an internal layer, joined along a joining line by means of a stitching operation, simple or complex, or by ultrasound joining or other, comprising an impermeable tape for hot taping with adhesive, applied and welded hot on the internal layer along the joining line.
  • the internal layer is cauterized at least along the joining line and on portions lateral thereto.
  • FIG. 1 is a perspective view of a machine for achieving an impermeable join on impermeable three-layer or two-layer fabrics according to the present invention
  • FIG. 2 is an enlarged detail of part of the machine in FIG. 1 ;
  • FIG. 3 is a variant of the enlarged detail of FIG. 1 ;
  • FIG. 4 is a perspective view of part of the machine in FIG. 1 ;
  • FIG. 5 is a schematic representation of another part of the machine in FIG. 1 ;
  • FIG. 6 is a perspective view of another part of the machine in FIG. 1 ;
  • FIG. 7 is a schematic representation in section of two panels of textile material joined together and cauterized with the machine of the present invention.
  • FIG. 8 is a schematic representation in section of the two panels in FIG. 7 also subjected to hot taping with the machine of the present invention.
  • FIG. 9 is a schematic representation in section of two panels of textile material joined together and cauterized according to a variant of the machine of the present invention.
  • FIG. 10 is a schematic representation in section of the two panels in FIG. 9 also subjected to hot taping with the machine of the present invention.
  • FIG. 11 is a perspective view of a first variant of the machine in FIG. 1 for single-track cauterization
  • FIG. 12 is a perspective view of part of the machine in FIG. 1 provided with the first variant of FIG. 11 in an operating condition of cauterization by irradiation;
  • FIG. 12 a is a schematic representation of the cauterization by irradiation in the condition of FIG. 12 ;
  • FIG. 13 is a perspective view of part of the machine in FIG. 1 provided with the first variant of FIG. 11 in an operating condition of cauterization by super-heated compressed air;
  • FIG. 13 a is a schematic representation of the cauterization by super-heated compressed air in the condition of FIG. 13 ;
  • FIG. 14 is a perspective view of a second variant of the machine in FIG. 1 for double-track cauterization
  • FIG. 15 is a perspective view of part of the machine in FIG. 1 provided with the second variant of FIG. 14 in an operating condition of cauterization by irradiation;
  • FIG. 15 a is a schematic representation of the cauterization by irradiation in the condition of FIG. 15 ;
  • FIG. 16 is a perspective view of part of the machine in FIG. 1 provided with the second variant of FIG. 14 in an operating condition of cauterization by super-heated compressed air;
  • FIG. 16 a is a schematic representation of the cauterization by super-heated compressed air in the condition of FIG. 16 .
  • a machine 10 is used to achieve an impermeable join between two panels 12 , 14 ( FIGS. 7-10 ) made of three-layer laminated textile material 11 , although application to a two-layer textile material or other multilayer materials is not excluded.
  • the machine 10 is configured to achieve, with a single operation, the impermeabilization of the join between two panels 12 , 14 already subjected to a stitching operation, simple or complex, done with needles, or ultrasound join or other similar or comparable technique, along a corresponding joining line 15 .
  • Each panel 12 , 14 is in this case made of a three-layer fabric, formed by a first external layer 16 , a second intermediate layer 18 and a third internal layer 20 . It is obvious that in the case of a two-layer fabric this configuration may vary, providing in any case an internal layer 20 of the type in question.
  • the first external layer 16 is made of textile material of various types, which may or may not comprise a complex textile structure.
  • the second intermediate layer 18 is formed by a film or sheet of polymeric material functioning as a barrier against the liquids from outside to inside, and as a membrane transpirant to fluids from inside to outside.
  • the third internal layer 20 is made with a complex fabric with a polymeric base, for example synthetic, which can be with a raised nap, such as pile, fleece, teaseled, brushed, or of non-woven fabric, or can have a smooth surface or with relief workings.
  • a polymeric base for example synthetic, which can be with a raised nap, such as pile, fleece, teaseled, brushed, or of non-woven fabric, or can have a smooth surface or with relief workings.
  • the machine 10 comprises a support plane 22 , supported by a lower supporting arm or column 23 constrained to a frame 13 which supports all the operative components, in particular the movement, control, adjustment and heating components of the machine 10 , of which more will be said hereafter.
  • the support plane 22 determines a direction of feed F along which the textile material 11 is fed, to be sealed and taped in correspondence with the joining line 15 between the two panels 12 , 14 .
  • a first movement device 24 is also provided ( FIG. 4 ), in this case disposed slightly under the support plane 22 , able to determine the selective advance of the textile material 11 along the support plane 22 .
  • the textile material 11 is fed manually with the third layer 20 facing upward and the first layer 16 sliding along the support plane 22 .
  • the first movement device 24 comprises a belt 28 associated with two toothed wheels 29 ( FIG. 1 ), able to load the textile material 11 , and a first lower wheel 26 , associated with the support plane 22 , to draw the textile material 11 loaded by the belt 28 .
  • the machine 10 comprises a second movement device 30 ( FIG. 4 ), in this case disposed above the support plane 22 , which is configured to feed, in coordination with the advance of the textile material 11 , an impermeable welding tape 32 using hot melt adhesion of a known type toward the textile material 11 .
  • the second movement device 30 comprises a second upper wheel 34 which receives the tape 32 and directs it tangentially into contact with the textile material 11 and, a little before adhering to the textile material 11 , it is suitably heated so as to start the action of the adhesive which determines the welding of the tape 32 , as will be described in more detail hereafter.
  • the second lower wheel 34 cooperates in coupling with the first lower wheel 26 to load the textile material 11 . Consequently, the textile material 11 is first loaded by the belt 28 and then drawn by the pair of wheels 26 , 34 toward the tape 32 .
  • the wheels 26 , 34 can be driven at the same speed of rotation, to ensure the synchronous feed of the tape 32 and the textile material 11 , or at different speeds, to obtain particular effects, for example curling or suchlike.
  • the machine 10 also comprises heating means able to determine, advantageously without contact, the cauterization of the material of the third layer 20 along the joining line 15 and on the sides adjacent to it.
  • the heating means comprise a blower device 38 able to blow compressed and super-heated air at least toward the joining line 15 and on the sides adjacent to it.
  • the jet of super-heated air is localized, by means of the blower device 38 , only in the affected zone, and without entering into contact with it, using temperatures, flow rates and pressures needed to obtain the cauterization of the surface treated.
  • cauterization is a heat treatment made locally on the material, which determines a hot structural modification due to the polymeric nature of the material itself.
  • the polymerization of the material of the third layer 20 causes it to compact, substantially eliminating all the cavities or interstices between the filaments or fibers that make up the threads of the material, in this way eliminating the possibility of the liquids migrating through capillarity or seepage. Therefore, the heat treatment of the material of the third layer 20 creates a physical barrier, substantially along the joining line 15 and in the adjacent lateral portions, against the passage of liquids from outside to inside the textile material 11 in question.
  • the third layer 20 is ready for the application of the tape 32 , both because the surface thus treated prevents the passage of the liquids, and also because the grip of the adhesive of the tape 32 does not take place on filaments which, since they are yielding, would offer little mechanical grip, but on a compact and consistent surface with a good mechanical grip and tearing resistance. Furthermore, cauterization determines a reduction in thicknesses, which is especially useful in fabrics with raised nap and hence a more pleasant feel and wearability.
  • the heat treatment completely modifies the structure of the surface fibers since they are polymerized and taken to a plastic state, flattened and partly removed.
  • the heat treatment eliminates the surface down and the fabric is smooth and compact.
  • the blower device 38 is fluidically connected with an air feed circuit 42 , advantageously compressed air, preferably at a pressure comprised between about 1.5 bar and 2.5 bar, which is in turn advantageously connected to an air compression unit, not shown.
  • the feed circuit 42 is associated with an air super-heater unit 44 , disposed downstream of the blower device 38 , able to increase the temperature of the compressed air, preferably to between about 200° C. and about 350° C.
  • the blower device 38 in this case is disposed upstream of the second movement device 30 with respect to the direction of feed F, so that the cauterization occurs a little before, both in spatial and in temporal terms, the deposition and adhesion of the tape 32 along the joining line 15 .
  • the blower device 38 in this case comprises a first blower nozzle 46 to blow the super-heated air that cauterizes the third internal layer 20 , and a second blower nozzle 48 , downstream of the first nozzle 46 in the direction of feed F, to blow the hot heating air to activate the adhesive of the tape 32 .
  • the feed circuit 42 comprises two air feed branches that are independent from each other, of which a first branch 50 is connected to the first nozzle 46 and a second branch 52 is connected to the second nozzle 48 , both passing through the super-heater unit 44 .
  • the first branch 50 and the second branch 52 are respectively associated with a first 54 and a second 56 valve, advantageously of the proportional control type, by means of which to control precisely and autonomously the flow rate and pressure of the air delivered.
  • the blower device 38 has an operating head 58 , on which the first nozzle 46 and the second nozzle 48 are disposed; the operating head 58 is positioned in direct cooperation with the textile material 11 fed on the support plane 22 and also with the tape 32 on which the adhesive is to be applied.
  • the first nozzle 46 is located on the operating head 58 upstream and at a desired distance from the second nozzle 48 , in this case slightly inclined forward with respect to the direction of feed F, so as to distribute better the cauterization action along the joining line 15 .
  • the first nozzle has a single row of delivery channels 62 , which develops transverse to the direction of feed along the joining line 15 , by means of which a single jet or blade of super-heated compressed air is substantially determined, to perform a single-track cauterization along said joining line 15 ( FIG. 7 ).
  • the heat treatment determines a single track 15 a of cauterized material which affects both the zone of the joining line 15 and also the portions adjacent to it.
  • a single delivery channel with an elongated shape could be provided.
  • the first nozzle 46 has a pair of delivery channels 64 (of which only one channel 64 is visible in FIG. 3 ), by means of which a pair of jets of super-heated compressed air is determined, distanced from each other astride the joining line 15 , in order to perform a double-track cauterization along the joining line 15 ( FIG. 9 ).
  • the heat treatment determines two distinct and separate tracks 15 b of cauterized material which affect only the lateral portions adjacent to the zone of the joining line 15 .
  • both the first branch 50 and the second branch 52 are graphically represented with shading, to indicate the presence of the stream of super-heated air.
  • the first nozzle 46 is the removable type, for example provided with a threaded portion able to be screwed onto the operating head 58 , so that it is possible to selectively change the type of air stream emitted, for example to pass from single-track cauterization to double-track cauterization, or if there is a variation in size of the joining lines 15 to be impermeabilized, and hence of the zone to be subjected to cauterization.
  • the operator will be able to easily use one or the other format according to needs.
  • the tape 32 is fed, in this case from above, in a direction transverse to the textile material 11 introduced on the support plane 22 in the direction of feed F, and is then rotated by the second wheel 34 in a tangential direction, to be deposited parallel along the joining line 15 of the textile material 11 . Consequently, the second nozzle 48 , positioned in correspondence with the second wheel 34 , is configured with an exit channel 60 for the air for heating the adhesive, which is directed substantially orthogonal to the tape 32 which is moved by the second wheel 34 .
  • the operating head 58 of the blower device 38 has such an extension along the direction of feed F that the distance between first nozzle 46 and second nozzle 48 is optimized, so that the residual heat on the material, deriving from the cauterization, can also assist the adhesion operation.
  • blower device 38 and the associated feed circuit 42 and super-heater unit 44 are mounted on a mobile slider 40 , which is selectively positionable both in a longitudinal direction parallel to or coinciding with the direction of feed F, and in a direction transverse to said direction of feed F, advantageously orthogonal, and also along an angular path lying on a transverse plane, advantageously orthogonal, to the support plane 22 .
  • the machine 10 can be managed and controlled in all its features, both productive, including the operation of feeding the textile material 11 , the tape 32 and cauterization of the third layer 20 along the joining line 15 , and also in the positioning, monitoring the operating and alarm conditions, by an operator using an electronic programmer 90 , advantageously a video interface equipped with data input and command means, in this case a touch screen.
  • first linear adjustment means 65 in this case which can be activated manually and comprise a first rotating knob 66 that rotates a shaft (not visible in the drawings) connected by means of conical coupling to a worm screw (not visible in the drawings) that determines the alternate longitudinal movement of the mobile slider 40 .
  • the transverse positioning of the mobile slider 40 is adjustable using second linear adjustment means 67 , which determine its sliding along transverse guides 68 .
  • the second linear adjustment means 67 allow both an approximate positioning using first piston pneumatic means 70 driven along the corresponding travel by means of a command given for example through the electronic programmer 90 , and also a precise manual positioning by means of a second rotating knob 69 which cooperates with the first piston pneumatic means 70 .
  • first angular adjustment means 71 are provided, which determine the controlled rotation and angular positioning, as indicated by arrow G, of the mobile slider 40 .
  • the first angular adjustment means 71 allow both an approximate angular positioning using second piston pneumatic means 75 driven by a command given for example through the electronic programmer 90 , and also a precise manual angular positioning by means of a third rotating knob 73 which cooperates with the second piston pneumatic means 75 .
  • the angular adjustment allows to make a fine and precise adjustment of the position of the latter with respect to the tape 32 , so that the distance between the exit of the channel 60 of the second nozzle 48 is in the optimum position, as described above, with respect to the tape 32 .
  • the step of selective angular adjustment can be carried out easily and intuitively, so as to perform various trial sealing operations in order to verify the quality thereof and to progressively identify the optimum distance to be set during production, according to the type of tape 32 and textile material 11 to be sealed.
  • the impermeable adhesive tape 32 is applied and welded on the cauterized part fed by the second movement device 30 .
  • FIGS. 7 , 8 , 9 and 10 each show the steps of cauterization and hot taping performed on four different types of stitch or join, from the top down, a double stitch (a), a traditional hemstitch (b), a simple stitch (c), and an ultrasound join with cut (d).
  • FIGS. 7 and 9 show the cauterization, single- and double-track
  • FIGS. 8 and 10 show how the tape 32 is applied on the cauterized zone along the joining line 15 , obtained according to the four variants shown, and at the sides of the joining line 15 , respectively in the case of a single-track and a double-track shown in FIGS. 7 and 9 .
  • the machine 10 comprises a reel 72 to feed the tape 32 , which is guided by a guide element 74 toward the second movement device 30 , where it is welded along the joining line 15 in the zone subjected to cauterization.
  • a cutting member 80 is advantageously provided to cut, at desired intervals and lengths, the tape 32 which is deposited.
  • the cutting member 80 consists of a first mobile blade 82 and a second fixed blade 84 , which functions as a cutting abutment.
  • the tape 32 can be fed without adhesive, and in this case a device is provided to transfer the adhesive onto the tape 32 : the device is a known type, for example as described by the patent application EP-A-1.749.658 in the name of the present Applicant. Otherwise, the tape 32 can be purchased and supplied with the adhesive already applied upon it, according to needs.
  • the machine 10 also comprises a device 76 for the programmed tensioning of the tape 32 , of a known type which, in order to achieve recesses, curls and variations, has the task of determining a desired tension of the tape 32 being fed toward the textile material 11 , independently of the tension possessed by the tape 32 downstream of the device 76 .
  • the machine 10 is freed from any lack of uniformity or anomalies in the tension which can derive from the feed of the tape 32 or the operation of transferring the adhesive, if envisaged.
  • the effect is to keep the tape 32 extended normally with a tension of a few grams and, when required, to supply a desired tension in the desired position and for the desired length.
  • FIGS. 11-16 show another form of embodiment of the machine 10 , in which the heating means able to determine the cauterization of the material of the third internal layer 20 comprise an irradiation heating device 138 which, without entering into contact with the third internal layer 20 , determines the desired cauterization thereof along the joining line 15 .
  • the heating means able to determine the cauterization of the material of the third internal layer 20 comprise an irradiation heating device 138 which, without entering into contact with the third internal layer 20 , determines the desired cauterization thereof along the joining line 15 .
  • This form of embodiment is particularly indicated when the second layer 18 (membrane) and/or the third internal layer 20 consist of particularly delicate materials.
  • the irradiation heating device 138 which in this case is directly associated with the blower device 38 , may be formed by one or more blocks, made of a suitable metal material with adequate properties of heat conductivity and heated to a temperature suitable to determine the cauterization by irradiation, for example up to a value in the range of 400° C. or more, advantageously using the same air super-heater unit 44 as described above, or by means of other dedicated heating members, such as wire-type electric resistances or suchlike.
  • FIGS. 11-13 show a first variant usable for single-track cauterization, in which the irradiation heating device 138 comprises a single irradiation block 139 which is heated as described above, in this case associated with the first nozzle 46 , and which has the sole row of channels 62 , or the sole channel with elongated shape, to deliver the super-heated air.
  • the irradiation heating device 138 comprises a single irradiation block 139 which is heated as described above, in this case associated with the first nozzle 46 , and which has the sole row of channels 62 , or the sole channel with elongated shape, to deliver the super-heated air.
  • the operating head 58 is positioned so that the overall bulk of the irradiation heating device 138 is disposed completely above the zone to be subjected to cauterization.
  • FIG. 12 shows the condition in which, for single-track cauterization, only the irradiation technique is used, by means of the sole irradiation block 139 disposed completely overlapping the zone to be cauterized, without determining any stream of super-heated air through the first nozzle 46 , as can also be seen easily in the schematic detail in FIG. 12 a , which shows the cauterization operation using irradiation, similar to what is shown in FIG. 7 .
  • the first branch 50 is shown graphically without shading, to indicate there is no stream of super-heated air. This can be obtained by closing the first valve 54 of the first branch 50 associated with the first nozzle 46 , so as to prevent the passage of super-heated air toward the third layer 20 .
  • FIG. 13 instead shows the condition in which, for single-track cauterization, only the super-heated air is used through the first nozzle 46 , as can easily be seen in the schematic detail of FIG. 13 a which shows the blade of super-heated air produced toward the zone to be cauterized, in this case too in the same way as shown in FIG. 7 .
  • the first branch 50 is shown graphically with shading, to indicate the stream of super-heated air.
  • the operating head 58 is moved backward, to a different position, compared with FIG.
  • the operating head 58 is positioned as in FIG. 12 , so that the irradiation heating device 138 is disposed completely above the zone to be cauterized which is affected by the heat irradiation phenomenon; moreover, the passage of super-heated air is permitted, as in FIG. 13 , to produce the blade of super-heated air toward the third layer 20 to be cauterized.
  • FIGS. 14-16 show a second variant of the irradiation heating device 138 , usable for double-track cauterization, which comprises a pair of separate irradiation blocks 239 , each of which is able to cauterize through heat irradiation distinct lateral zones astride the joining line 15 : it functions in exactly the same way as the first variant shown in FIGS. 11-13 .
  • each irradiation block 239 is shown also provided with a corresponding channel 64 to deliver super-heated air, to be able to selectively use the irradiation technique, the super-heated compressed air technique or a combination of both.
  • FIG. 15 shows the condition in which only the irradiation technique is used, as shown in the schematic detail of FIG. 15 a , identical to what is shown in FIG. 9
  • FIG. 16 shows the condition in which the blade of super-heated air is used, as shown in the schematic detail of FIG. 16 a , also identical to what is shown in FIG. 9 .
  • the techniques of irradiation and heating with compressed air can be combined, by suitably positioning the operating head 58 so that the irradiation blocks 239 are above the zone to be cauterized and by activating the stream of super-heated air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Health & Medical Sciences (AREA)
  • Replacement Of Web Rolls (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Toxicology (AREA)

Abstract

A machine for making an impermeable join between two panels made of three-layer or two-layer textile material including at least an internal layer, already joined along a joining line by way of a stitching operation, simple or complex, or by ultrasound joining or other, includes first movement element able to move the textile material in a direction of feed and impermeabilization element able to achieve the impermeabilization along said joining line and including second movement element able to move an impermeable tape for hot taping with adhesive, in order to determine the hot application and welding on the internal layer along the joining line. The impermeabilization element also comprise heating element suitable to effect a cauterization of the material of the internal layer and positionable directly upstream of the second movement element in the direction of feed, so that the hot taping can be effected immediately after the cauterization.

Description

    FIELD OF THE INVENTION
  • The present invention concerns a machine for making an impermeable join on three-layer or two-layer fabrics that are impermeable to fluids, in particular liquids, to obtain protective garments or other products impermeable to liquids.
  • BACKGROUND OF THE INVENTION
  • It is known to make composite textile products by lining or laminating fabrics associated with membrane layers that function as a barrier against liquids, in order to obtain protective garments or other products that are impermeable from the outside to the inside, but transpirant, that is, they allow fluids to pass from the inside to the outside.
  • One known textile product is the three-layer type and comprises a first external layer, a second intermediate layer and a third internal layer. The first external layer is a layer of textile material of various type, which may or may not comprise a textile structure of various type. The second intermediate layer is a sheet or film of polymeric material which functions as a barrier against liquids from outside to inside and as a membrane that is transpirant to fluids from inside to outside. The third internal layer is generally made by means of a complex textile structure, for example fleece or pile, meaning a fabric worked in different ways, by shaping, incisions, reliefs, or a fibrous or filament structure, including woven or non-woven materials, knitted fabrics, brushed, teaseled, carded materials or other.
  • Normally, the three-layer textile product is supplied cut into panels which, to make the impermeable garments or other products in question, are joined to each other along suitably made joining lines, so that they are comfortable for the user. The textile products are in fact also called “soft-shell”, because they must have flexible and soft joins, and constitute durable and resistant materials on the outside, but soft inside, to provide comfort to the touch and wearability.
  • The joins between the panels of three-layer fabric in question are made by a first stitching operation, using needles, or an ultrasound join or other, along joining edges, and a subsequent taping operation along the sewn edges, that is, appliqués of sealing and impermeabilizing tapes applied hot on the side intended to face the inside during use.
  • However, the joining step in itself would not guarantee the impermeability of the join, due to the effect of the capillarity of the liquids that penetrate into the fabrics, in particular passing from the first external layer to the third internal layer in correspondence with the stitching zone. Indeed, the individual threads used to make the textile material are formed by filaments which create unsealable interstices between them, through which the liquids are absorbed due to capillarity or seepage.
  • To obviate this problem it is known, for example from the U.S. Pat. No. 7,117,545, to carry out an operation, upstream of the first stitching operation, of preparing the fabric by mechanically removing the material which constitutes the internal layer along the edges of the panels which will then be joined, so as to reach and expose the second intermediate impermeable layer which functions as a barrier: this operation is known as fleshing or shaving.
  • Subsequently, by means of stitching, ultrasound joining, high frequency joining or other, the join is made, taking care to leave visible, at the sides of the joining line, a portion of the second intermediate barrier layer; and finally, the sealing tape is applied astride the joining line directly on the portion of the second intermediate layer left free following the fleshing or shaving. Impermeability is obtained thanks to the fact that the sealing tape adheres directly to the second intermediate layer that functions as a barrier.
  • The preparatory operation of fleshing or shaving is complex and slow because it is necessary to act with extreme skill, since on the one hand it is easy to damage the second intermediate layer below the portion of third layer being removed, and on the other hand it is possible that residues of unremoved third layer may remain, in both cases with negative effects on the impermeabilization.
  • Furthermore, the preparatory operation, which is carried out using suitable shaving machines, fleshing machines or sanding machines, produces a great quantity of removed material which is dispersed, in the form of powder or light particulate, into the surrounding environment, to the detriment of the operators present.
  • Other machines that apply a sealing tape are known from US 2003/010439, US 2006/000546 and EP 2.098.630.
  • Purpose of the present invention is to perfect a machine to make an impermeable join on three-layer or two-layer impermeable fabrics which allows to make the impermeable join quickly, safely and reliably, without having recourse to preparatory operations such as mechanical fleshing, at the same time keeping the impermeability and the minimum thickness of the fabric, which is comfortable, pleasant to the touch and to the eye, and pleasant to wear.
  • The Applicant has devised, tested and embodied the present invention to overcome the shortcomings of the state of the art and to obtain these and other purposes and advantages.
  • SUMMARY OF THE INVENTION
  • The present invention is set forth and characterized in the independent claims, while the dependent claims describe other characteristics of the invention or variants to the main inventive idea.
  • In accordance with the above purpose, a machine according to the present invention is able, in a single step or operation, to impermeabilize the join made on two panels of laminated multilayer textile material, three-layer or two-layer, also called soft-shell, comprising an internal layer, and made along a joining line by stitching, simple or complex, ultrasound or high frequency joining, on fabrics in their natural state without any prior operation or treatment being made in correspondence with the lips of the join.
  • The impermeabilization according to the present invention is obtained with the machine according to the present invention, achieving a seal that is impermeable to fluids, in particular from outside to inside, by means of a cauterization, which can be simple or multiple, on the inside of the textile material and simultaneously applying, by means of hot welding, an adhesive and impermeable tape.
  • The machine to achieve an impermeable join between the two panels according to the present invention comprises first movement means able to move the textile material in a desired direction of feed and impermeabilization means able to achieve the impermeabilization along the joining line and comprising second movement means able to move an impermeable tape for hot taping with adhesive, in order to determine the hot application and welding on the internal layer along the joining line.
  • According to one feature of the present invention, the impermeabilization means also comprise heating means suitable to effect a cauterization of the material of the internal layer and positionable directly upstream of the second movement means in the direction of feed, so that the hot taping can be effected immediately after the cauterization.
  • In this way, with the cauterization heat treatment of the material of the internal layer of textile material, the effect is to modify its structure, and in particular the filament conformation which would normally allow the liquids to pass and seep through capillarity, thus rendering the join between the two panels impermeable.
  • Furthermore, the machine according to the present invention allows to simplify the process of impermeabilizing the joins compared with the state of the art, because it is possible to obtain this effect effectively in only two substantive steps or operations, that is, joining the panels and cauterizing the join with a corresponding taping.
  • In one form of embodiment, the heating means comprise a blower device able to blow compressed and super-heated air at least toward the joining line and on the sides adjacent thereto, in order to determine the cauterization of the internal layer. In one form of embodiment, the blower device is also configured to blow heating air toward the tape. This solution is advantageous since it makes the machine according to the present invention more compact and also facilitates the substantially simultaneous execution, that is, in rapid succession, of the cauterization and hot taping operations.
  • In another form of embodiment, the heating means comprise an irradiation heating device, able to be taken into close proximity, but not in contact, with the internal layer along the joining line, and to heat the internal layer by irradiation, obtaining the cauterization thereof.
  • This variant solution, which uses an irradiation device, is particularly indicated when the second layer (membrane) and/or the third internal layer consist of thin and light membranes, which are particularly delicate and could be at least partly damaged by the blowing of the compressed and super-heated air.
  • In another form of embodiment, the same device is used both for heating with compressed and super-heated air, and also for heating by irradiation.
  • In this solution, the machine is extremely flexible and versatile since it is already equipped substantially for any type of material. It is therefore possible, when working thick and not delicate materials, to use the device with compressed and super-heated air, keeping it slightly distant from the material to be treated and delivering the stream of super-heated air toward the joining line. When working delicate materials, the delivery of compressed air is interrupted, the device is moved closer to a distance in the range of a millimeter to the joining line, and the temperature of the radiant elements of the device is taken to a value in the range of 400° C. or more, to achieve the cauterization through irradiation. Finally, another option also provides to use the combined effect of super-heated air and of irradiation, for example in the case of particularly thick fabrics, for example thick pile.
  • In one solution of the invention, suitable position detectors are provided, to condition and adjust the correct positioning of the device, increasing or decreasing the distance thereof with respect to the position of the textile material being worked.
  • In another solution of the present invention, the machine's command and control unit has a database in which various types of fabrics are memorized, to which a specific process to be carried out corresponds: either only with super-heated air, or only by irradiation, or with both heat sources. It may also be provided that with every type of fabric there corresponds a specific distance of the device with respect to the surface of the fabric to be processed.
  • In this way, when the machine is started, the user will select by type the fabric being worked, and the most suitable option among the three available ones will be selected automatically by the machine, which will also automatically position the heating device at the most suitable distance for that specific textile material.
  • In operational variants, the compressed air circulates in a feed circuit connected to the blower device and is preferably at a pressure comprised between about 1.5 bar and 2.5 bar.
  • In some variant solutions, the air is super-heated to a temperature preferably between about 200° C. and about 350° C. To this purpose, in some variants the feed circuit is associated with an air super-heater unit able to increase the temperature of the air in a desired manner.
  • In some forms of embodiment, the blower device comprises a first blower nozzle to blow super-heated air, and a second blower nozzle, downstream of the first nozzle in the direction of feed, to blow the hot air toward the tape. Advantageously, in some variants the first and second nozzle are mounted on a single common operating head of the blower device, positionable with respect to the textile material to be impermeabilized.
  • In variants of these forms of embodiment, the feed circuit comprises two air feed branches that are independent from each other, of which a first branch is connected to the first nozzle and a second branch is connected to the second nozzle.
  • In some variant solutions, the first nozzle has a single row of delivery channels or a single channel with an elongated shape, in order to determine substantially a single jet or blade of super-heated compressed air and perform a single-track cauterization along the joining line. In alternative variants, the first nozzle has a pair of delivery channels, by means of which a pair of jets of super-heated compressed air is substantially determined, distanced from each other astride the joining line, in order to perform a double-track cauterization along the joining line. Advantageously, the first nozzles with a single delivery channel or with a double channel are interchangeable.
  • In some forms of embodiment, the position at least of the heating means intended at least for cauterization is advantageously adjustable with respect to the tape and to the textile material which are fed. In variants of these forms of embodiment, the machine according to the present invention comprises a mobile slider on which at least the heating means are mounted. The mobile slider is selectively positionable both in a longitudinal direction parallel to or coinciding with the direction of feed of the textile material, and in a direction transverse to the direction of feed, and also along a desired angular path from and toward the tape and the textile material that are fed.
  • In advantageous variants of these forms of embodiment, the machine comprises first linear adjustment means to adjust the positioning of the mobile slider in the longitudinal direction. In other variants, the machine comprises second linear adjustment means to adjust the transverse positioning of the mobile slider. Moreover, in other variants, the machine comprises first angular adjustment means that determine the controlled rotation and angular positioning of the mobile slider.
  • The present invention also concerns impermeabilization means able to achieve the impermeabilization of two panels made of three-layer or two-layer textile material comprising at least an internal layer, already joined along a joining line by means of a stitching operation, simple or complex, or by ultrasound joining or other, along the joining line and comprising movement means able to move an impermeable tape for hot taping with adhesive, in order to determine the hot application and welding on the internal layer along the joining line. According to the present invention, the impermeabilization means also comprise heating means suitable to effect a cauterization of the material of the internal layer and positionable directly upstream of the second movement means in the direction of feed, so that the hot taping can be effected immediately after the cauterization.
  • The present invention also concerns a method to achieve an impermeable join between two panels made of three-layer or two-layer textile material comprising at least an internal layer, already joined along a joining line by means of a stitching operation, simple or complex, or by ultrasound joining or other, which provides to move the textile material in a direction of feed and to perform the impermeabilization along the joining line by the hot application and welding, on the internal layer along the joining line, of an impermeable tape for hot taping with adhesive. According to the method of the present invention, the impermeabilization provides to effect a cauterization of the material of the internal layer immediately before the hot taping. This obtains the advantages of simplifying known processes, obtaining the purpose of impermeabilizing the join by means of only two steps or operations, that is, joining the panels and cauterizing combined with hot taping.
  • The present invention also concerns a textile material comprising an impermeable join between two panels made of three-layer or two-layer textile material comprising at least an internal layer, joined along a joining line by means of a stitching operation, simple or complex, or by ultrasound joining or other, comprising an impermeable tape for hot taping with adhesive, applied and welded hot on the internal layer along the joining line. According to the present invention, the internal layer is cauterized at least along the joining line and on portions lateral thereto.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other characteristics of the present invention will become apparent from the following description of a preferential form of embodiment, given as a non-restrictive example with reference to the attached drawings wherein:
  • FIG. 1 is a perspective view of a machine for achieving an impermeable join on impermeable three-layer or two-layer fabrics according to the present invention;
  • FIG. 2 is an enlarged detail of part of the machine in FIG. 1;
  • FIG. 3 is a variant of the enlarged detail of FIG. 1;
  • FIG. 4 is a perspective view of part of the machine in FIG. 1;
  • FIG. 5 is a schematic representation of another part of the machine in FIG. 1;
  • FIG. 6 is a perspective view of another part of the machine in FIG. 1;
  • FIG. 7 is a schematic representation in section of two panels of textile material joined together and cauterized with the machine of the present invention;
  • FIG. 8 is a schematic representation in section of the two panels in FIG. 7 also subjected to hot taping with the machine of the present invention;
  • FIG. 9 is a schematic representation in section of two panels of textile material joined together and cauterized according to a variant of the machine of the present invention;
  • FIG. 10 is a schematic representation in section of the two panels in FIG. 9 also subjected to hot taping with the machine of the present invention;
  • FIG. 11 is a perspective view of a first variant of the machine in FIG. 1 for single-track cauterization;
  • FIG. 12 is a perspective view of part of the machine in FIG. 1 provided with the first variant of FIG. 11 in an operating condition of cauterization by irradiation;
  • FIG. 12 a is a schematic representation of the cauterization by irradiation in the condition of FIG. 12;
  • FIG. 13 is a perspective view of part of the machine in FIG. 1 provided with the first variant of FIG. 11 in an operating condition of cauterization by super-heated compressed air;
  • FIG. 13 a is a schematic representation of the cauterization by super-heated compressed air in the condition of FIG. 13;
  • FIG. 14 is a perspective view of a second variant of the machine in FIG. 1 for double-track cauterization;
  • FIG. 15 is a perspective view of part of the machine in FIG. 1 provided with the second variant of FIG. 14 in an operating condition of cauterization by irradiation;
  • FIG. 15 a is a schematic representation of the cauterization by irradiation in the condition of FIG. 15;
  • FIG. 16 is a perspective view of part of the machine in FIG. 1 provided with the second variant of FIG. 14 in an operating condition of cauterization by super-heated compressed air;
  • FIG. 16 a is a schematic representation of the cauterization by super-heated compressed air in the condition of FIG. 16.
  • To facilitate comprehension, the same reference numbers have been used, where possible, to identify identical common elements in the drawings. It is understood that elements and characteristics of one form of embodiment can conveniently be incorporated into other forms of embodiment without further clarifications.
  • DETAILED DESCRIPTION OF SOME PREFERENTIAL FORMS OF EMBODIMENT
  • With reference to the attached drawings, a machine 10 according to the present invention is used to achieve an impermeable join between two panels 12, 14 (FIGS. 7-10) made of three-layer laminated textile material 11, although application to a two-layer textile material or other multilayer materials is not excluded.
  • According to the present invention, the machine 10 is configured to achieve, with a single operation, the impermeabilization of the join between two panels 12, 14 already subjected to a stitching operation, simple or complex, done with needles, or ultrasound join or other similar or comparable technique, along a corresponding joining line 15.
  • Each panel 12, 14 is in this case made of a three-layer fabric, formed by a first external layer 16, a second intermediate layer 18 and a third internal layer 20. It is obvious that in the case of a two-layer fabric this configuration may vary, providing in any case an internal layer 20 of the type in question.
  • The first external layer 16 is made of textile material of various types, which may or may not comprise a complex textile structure.
  • The second intermediate layer 18 is formed by a film or sheet of polymeric material functioning as a barrier against the liquids from outside to inside, and as a membrane transpirant to fluids from inside to outside.
  • The third internal layer 20 is made with a complex fabric with a polymeric base, for example synthetic, which can be with a raised nap, such as pile, fleece, teaseled, brushed, or of non-woven fabric, or can have a smooth surface or with relief workings.
  • The machine 10 comprises a support plane 22, supported by a lower supporting arm or column 23 constrained to a frame 13 which supports all the operative components, in particular the movement, control, adjustment and heating components of the machine 10, of which more will be said hereafter.
  • The support plane 22 determines a direction of feed F along which the textile material 11 is fed, to be sealed and taped in correspondence with the joining line 15 between the two panels 12, 14.
  • A first movement device 24 is also provided (FIG. 4), in this case disposed slightly under the support plane 22, able to determine the selective advance of the textile material 11 along the support plane 22. In particular, the textile material 11 is fed manually with the third layer 20 facing upward and the first layer 16 sliding along the support plane 22.
  • In this case, the first movement device 24 comprises a belt 28 associated with two toothed wheels 29 (FIG. 1), able to load the textile material 11, and a first lower wheel 26, associated with the support plane 22, to draw the textile material 11 loaded by the belt 28.
  • Furthermore, the machine 10 comprises a second movement device 30 (FIG. 4), in this case disposed above the support plane 22, which is configured to feed, in coordination with the advance of the textile material 11, an impermeable welding tape 32 using hot melt adhesion of a known type toward the textile material 11. In this case, the second movement device 30 comprises a second upper wheel 34 which receives the tape 32 and directs it tangentially into contact with the textile material 11 and, a little before adhering to the textile material 11, it is suitably heated so as to start the action of the adhesive which determines the welding of the tape 32, as will be described in more detail hereafter. Furthermore, the second lower wheel 34 cooperates in coupling with the first lower wheel 26 to load the textile material 11. Consequently, the textile material 11 is first loaded by the belt 28 and then drawn by the pair of wheels 26, 34 toward the tape 32.
  • The wheels 26, 34 can be driven at the same speed of rotation, to ensure the synchronous feed of the tape 32 and the textile material 11, or at different speeds, to obtain particular effects, for example curling or suchlike.
  • The machine 10 also comprises heating means able to determine, advantageously without contact, the cauterization of the material of the third layer 20 along the joining line 15 and on the sides adjacent to it. In the solution shown here, the heating means comprise a blower device 38 able to blow compressed and super-heated air at least toward the joining line 15 and on the sides adjacent to it. The jet of super-heated air is localized, by means of the blower device 38, only in the affected zone, and without entering into contact with it, using temperatures, flow rates and pressures needed to obtain the cauterization of the surface treated.
  • In particular, cauterization is a heat treatment made locally on the material, which determines a hot structural modification due to the polymeric nature of the material itself. The polymerization of the material of the third layer 20 causes it to compact, substantially eliminating all the cavities or interstices between the filaments or fibers that make up the threads of the material, in this way eliminating the possibility of the liquids migrating through capillarity or seepage. Therefore, the heat treatment of the material of the third layer 20 creates a physical barrier, substantially along the joining line 15 and in the adjacent lateral portions, against the passage of liquids from outside to inside the textile material 11 in question.
  • The third layer 20, thus cauterized, is ready for the application of the tape 32, both because the surface thus treated prevents the passage of the liquids, and also because the grip of the adhesive of the tape 32 does not take place on filaments which, since they are yielding, would offer little mechanical grip, but on a compact and consistent surface with a good mechanical grip and tearing resistance. Furthermore, cauterization determines a reduction in thicknesses, which is especially useful in fabrics with raised nap and hence a more pleasant feel and wearability.
  • In the case of cauterization of complex laminated fabrics with a raised nap, the heat treatment completely modifies the structure of the surface fibers since they are polymerized and taken to a plastic state, flattened and partly removed. In the case of cauterization of smooth fabric or with relief workings, the heat treatment eliminates the surface down and the fabric is smooth and compact.
  • The blower device 38 is fluidically connected with an air feed circuit 42, advantageously compressed air, preferably at a pressure comprised between about 1.5 bar and 2.5 bar, which is in turn advantageously connected to an air compression unit, not shown. The feed circuit 42 is associated with an air super-heater unit 44, disposed downstream of the blower device 38, able to increase the temperature of the compressed air, preferably to between about 200° C. and about 350° C.
  • The blower device 38 in this case is disposed upstream of the second movement device 30 with respect to the direction of feed F, so that the cauterization occurs a little before, both in spatial and in temporal terms, the deposition and adhesion of the tape 32 along the joining line 15.
  • The blower device 38 in this case comprises a first blower nozzle 46 to blow the super-heated air that cauterizes the third internal layer 20, and a second blower nozzle 48, downstream of the first nozzle 46 in the direction of feed F, to blow the hot heating air to activate the adhesive of the tape 32. In coordination, the feed circuit 42 comprises two air feed branches that are independent from each other, of which a first branch 50 is connected to the first nozzle 46 and a second branch 52 is connected to the second nozzle 48, both passing through the super-heater unit 44. The first branch 50 and the second branch 52 are respectively associated with a first 54 and a second 56 valve, advantageously of the proportional control type, by means of which to control precisely and autonomously the flow rate and pressure of the air delivered.
  • In particular, the blower device 38 has an operating head 58, on which the first nozzle 46 and the second nozzle 48 are disposed; the operating head 58 is positioned in direct cooperation with the textile material 11 fed on the support plane 22 and also with the tape 32 on which the adhesive is to be applied.
  • The first nozzle 46 is located on the operating head 58 upstream and at a desired distance from the second nozzle 48, in this case slightly inclined forward with respect to the direction of feed F, so as to distribute better the cauterization action along the joining line 15.
  • In the solution shown in FIG. 2, the first nozzle has a single row of delivery channels 62, which develops transverse to the direction of feed along the joining line 15, by means of which a single jet or blade of super-heated compressed air is substantially determined, to perform a single-track cauterization along said joining line 15 (FIG. 7). In this solution, the heat treatment determines a single track 15 a of cauterized material which affects both the zone of the joining line 15 and also the portions adjacent to it. In a variant, not shown, instead of the single row formed by a plurality of channels 62, a single delivery channel with an elongated shape could be provided.
  • Instead, in the variant in FIG. 3, the first nozzle 46 has a pair of delivery channels 64 (of which only one channel 64 is visible in FIG. 3), by means of which a pair of jets of super-heated compressed air is determined, distanced from each other astride the joining line 15, in order to perform a double-track cauterization along the joining line 15 (FIG. 9). In this solution, the heat treatment determines two distinct and separate tracks 15 b of cauterized material which affect only the lateral portions adjacent to the zone of the joining line 15.
  • In both FIGS. 2 and 3, both the first branch 50 and the second branch 52 are graphically represented with shading, to indicate the presence of the stream of super-heated air.
  • Advantageously, the first nozzle 46 is the removable type, for example provided with a threaded portion able to be screwed onto the operating head 58, so that it is possible to selectively change the type of air stream emitted, for example to pass from single-track cauterization to double-track cauterization, or if there is a variation in size of the joining lines 15 to be impermeabilized, and hence of the zone to be subjected to cauterization. In this way, by making available different first nozzles 46 for each machine 10, the operator will be able to easily use one or the other format according to needs.
  • As we said, the tape 32 is fed, in this case from above, in a direction transverse to the textile material 11 introduced on the support plane 22 in the direction of feed F, and is then rotated by the second wheel 34 in a tangential direction, to be deposited parallel along the joining line 15 of the textile material 11. Consequently, the second nozzle 48, positioned in correspondence with the second wheel 34, is configured with an exit channel 60 for the air for heating the adhesive, which is directed substantially orthogonal to the tape 32 which is moved by the second wheel 34. It is advantageous to optimize the distance between the exit of the channel 60 and the surface of the tape 32 to be heated, so that it is not too small, so as not to damage the tape 32, nor too big, to ensure that the adhesive is activated, thus optimizing the time and space allowed for the expansion of the hot air exiting from the second nozzle 48, so that it does not get excessively cold and can efficiently activate the adhesive.
  • Advantageously, moreover, the operating head 58 of the blower device 38 has such an extension along the direction of feed F that the distance between first nozzle 46 and second nozzle 48 is optimized, so that the residual heat on the material, deriving from the cauterization, can also assist the adhesion operation.
  • Advantageously, at least the blower device 38 and the associated feed circuit 42 and super-heater unit 44 are mounted on a mobile slider 40, which is selectively positionable both in a longitudinal direction parallel to or coinciding with the direction of feed F, and in a direction transverse to said direction of feed F, advantageously orthogonal, and also along an angular path lying on a transverse plane, advantageously orthogonal, to the support plane 22.
  • The machine 10 can be managed and controlled in all its features, both productive, including the operation of feeding the textile material 11, the tape 32 and cauterization of the third layer 20 along the joining line 15, and also in the positioning, monitoring the operating and alarm conditions, by an operator using an electronic programmer 90, advantageously a video interface equipped with data input and command means, in this case a touch screen.
  • Advantageously, the positioning in the longitudinal direction of the mobile slider 40 can be precisely adjusted using first linear adjustment means 65, in this case which can be activated manually and comprise a first rotating knob 66 that rotates a shaft (not visible in the drawings) connected by means of conical coupling to a worm screw (not visible in the drawings) that determines the alternate longitudinal movement of the mobile slider 40.
  • Furthermore, the transverse positioning of the mobile slider 40 is adjustable using second linear adjustment means 67, which determine its sliding along transverse guides 68. In this case the second linear adjustment means 67 allow both an approximate positioning using first piston pneumatic means 70 driven along the corresponding travel by means of a command given for example through the electronic programmer 90, and also a precise manual positioning by means of a second rotating knob 69 which cooperates with the first piston pneumatic means 70.
  • Moreover, first angular adjustment means 71 are provided, which determine the controlled rotation and angular positioning, as indicated by arrow G, of the mobile slider 40.
  • In this case too, the first angular adjustment means 71 allow both an approximate angular positioning using second piston pneumatic means 75 driven by a command given for example through the electronic programmer 90, and also a precise manual angular positioning by means of a third rotating knob 73 which cooperates with the second piston pneumatic means 75.
  • This possibility of adjusting the position of the mobile slider 40 in two directions, and also the angular adjustment thereof, first of all allows to locate the mobile slider 40, and the components installed on it, transversely and on each occasion in the operating position aligned with the direction of feed, and in the non-operating position, outside the direction of feed. Furthermore, it is possible to translate the mobile slider 40 longitudinally in the direction of feed F, so as to bring it closer to or distance it along the support plane 22 and with respect to the tape 32 being fed. Once the mobile slider 40 has been moved transversely to the operating position, it can be positioned in substantial correspondence with the tape 32, so as to define a first approximate adjustment of the reciprocal position between blower device 38 and tape 32.
  • Finally, once the approximate approach of the blower device 38 has been made, the angular adjustment allows to make a fine and precise adjustment of the position of the latter with respect to the tape 32, so that the distance between the exit of the channel 60 of the second nozzle 48 is in the optimum position, as described above, with respect to the tape 32. The step of selective angular adjustment can be carried out easily and intuitively, so as to perform various trial sealing operations in order to verify the quality thereof and to progressively identify the optimum distance to be set during production, according to the type of tape 32 and textile material 11 to be sealed.
  • After the cauterization carried out in this case using the blower device 38, on the same machine 10 and immediately afterward, the impermeable adhesive tape 32 is applied and welded on the cauterized part fed by the second movement device 30.
  • FIGS. 7, 8, 9 and 10 each show the steps of cauterization and hot taping performed on four different types of stitch or join, from the top down, a double stitch (a), a traditional hemstitch (b), a simple stitch (c), and an ultrasound join with cut (d).
  • In particular, FIGS. 7 and 9 show the cauterization, single- and double-track, while FIGS. 8 and 10 show how the tape 32 is applied on the cauterized zone along the joining line 15, obtained according to the four variants shown, and at the sides of the joining line 15, respectively in the case of a single-track and a double-track shown in FIGS. 7 and 9.
  • For the purposes of hot taping, in the solution shown in FIGS. 1-6, the machine 10 comprises a reel 72 to feed the tape 32, which is guided by a guide element 74 toward the second movement device 30, where it is welded along the joining line 15 in the zone subjected to cauterization.
  • A cutting member 80 is advantageously provided to cut, at desired intervals and lengths, the tape 32 which is deposited. In the solution shown in FIG. 4, the cutting member 80 consists of a first mobile blade 82 and a second fixed blade 84, which functions as a cutting abutment.
  • The tape 32 can be fed without adhesive, and in this case a device is provided to transfer the adhesive onto the tape 32: the device is a known type, for example as described by the patent application EP-A-1.749.658 in the name of the present Applicant. Otherwise, the tape 32 can be purchased and supplied with the adhesive already applied upon it, according to needs.
  • In this case, the machine 10 also comprises a device 76 for the programmed tensioning of the tape 32, of a known type which, in order to achieve recesses, curls and variations, has the task of determining a desired tension of the tape 32 being fed toward the textile material 11, independently of the tension possessed by the tape 32 downstream of the device 76. In this way the machine 10 is freed from any lack of uniformity or anomalies in the tension which can derive from the feed of the tape 32 or the operation of transferring the adhesive, if envisaged. The effect is to keep the tape 32 extended normally with a tension of a few grams and, when required, to supply a desired tension in the desired position and for the desired length.
  • It is clear that modifications and/or additions of parts may be made to the machine 10 for making an impermeable join on impermeable three-layer or two-layer fabrics as described heretofore, without departing from the field and scope of the present invention.
  • In particular, FIGS. 11-16 show another form of embodiment of the machine 10, in which the heating means able to determine the cauterization of the material of the third internal layer 20 comprise an irradiation heating device 138 which, without entering into contact with the third internal layer 20, determines the desired cauterization thereof along the joining line 15. This form of embodiment is particularly indicated when the second layer 18 (membrane) and/or the third internal layer 20 consist of particularly delicate materials.
  • The irradiation heating device 138, which in this case is directly associated with the blower device 38, may be formed by one or more blocks, made of a suitable metal material with adequate properties of heat conductivity and heated to a temperature suitable to determine the cauterization by irradiation, for example up to a value in the range of 400° C. or more, advantageously using the same air super-heater unit 44 as described above, or by means of other dedicated heating members, such as wire-type electric resistances or suchlike.
  • In this case, FIGS. 11-13 show a first variant usable for single-track cauterization, in which the irradiation heating device 138 comprises a single irradiation block 139 which is heated as described above, in this case associated with the first nozzle 46, and which has the sole row of channels 62, or the sole channel with elongated shape, to deliver the super-heated air.
  • For using this first variant with its irradiation technique, the operating head 58 is positioned so that the overall bulk of the irradiation heating device 138 is disposed completely above the zone to be subjected to cauterization.
  • In particular, FIG. 12 shows the condition in which, for single-track cauterization, only the irradiation technique is used, by means of the sole irradiation block 139 disposed completely overlapping the zone to be cauterized, without determining any stream of super-heated air through the first nozzle 46, as can also be seen easily in the schematic detail in FIG. 12 a, which shows the cauterization operation using irradiation, similar to what is shown in FIG. 7. In FIG. 12 the first branch 50 is shown graphically without shading, to indicate there is no stream of super-heated air. This can be obtained by closing the first valve 54 of the first branch 50 associated with the first nozzle 46, so as to prevent the passage of super-heated air toward the third layer 20.
  • FIG. 13 instead shows the condition in which, for single-track cauterization, only the super-heated air is used through the first nozzle 46, as can easily be seen in the schematic detail of FIG. 13 a which shows the blade of super-heated air produced toward the zone to be cauterized, in this case too in the same way as shown in FIG. 7. In FIG. 13 the first branch 50 is shown graphically with shading, to indicate the stream of super-heated air. In this condition, as well as opening the first valve 54, the operating head 58 is moved backward, to a different position, compared with FIG. 12, so that the outlet of the super-heated air is aligned with the start-of-cauterization zone and so that the irradiation heating device 138 is not positioned completely above the latter, substantially preventing any irradiation phenomena on the zone to be cauterized.
  • It is also possible, for certain types of fabrics, to cauterize the third layer 20 by combining the two techniques, that is, irradiation and air heating. In order to obtain this, the operating head 58 is positioned as in FIG. 12, so that the irradiation heating device 138 is disposed completely above the zone to be cauterized which is affected by the heat irradiation phenomenon; moreover, the passage of super-heated air is permitted, as in FIG. 13, to produce the blade of super-heated air toward the third layer 20 to be cauterized.
  • FIGS. 14-16 show a second variant of the irradiation heating device 138, usable for double-track cauterization, which comprises a pair of separate irradiation blocks 239, each of which is able to cauterize through heat irradiation distinct lateral zones astride the joining line 15: it functions in exactly the same way as the first variant shown in FIGS. 11-13.
  • In particular, in the case of FIG. 14, each irradiation block 239 is shown also provided with a corresponding channel 64 to deliver super-heated air, to be able to selectively use the irradiation technique, the super-heated compressed air technique or a combination of both. FIG. 15 shows the condition in which only the irradiation technique is used, as shown in the schematic detail of FIG. 15 a, identical to what is shown in FIG. 9, while FIG. 16 shows the condition in which the blade of super-heated air is used, as shown in the schematic detail of FIG. 16 a, also identical to what is shown in FIG. 9. It is clear that, in the second variant too, the techniques of irradiation and heating with compressed air can be combined, by suitably positioning the operating head 58 so that the irradiation blocks 239 are above the zone to be cauterized and by activating the stream of super-heated air.

Claims (11)

1-18. (canceled)
19. A fabric comprising an impermeable join between two panels made of three-layer or two-layer textile material each comprising at least an internal layer,
the two panels joined along a joining line by a stitching, simple or complex, or ultrasound joining, or high frequency joining,
an impermeable tape for hot taping with adhesive, applied and welded hot on said internal layer of each panel along said joining line,
wherein said internal layer of each panel is cauterized to form a cauterized zone at least along said joining line and on portions lateral to said joining line.
20. The fabric of claim 19, wherein the fabric comprises the impermeable join between the two panels made of the two-layer textile material comprising an external layer and the internal layer.
21. The fabric of claim 19, wherein the fabric comprises the impermeable join between two panels made of the three-layer textile material comprising the three-layer fabric, formed by an external layer, an intermediate layer and the internal layer.
22. The fabric of claim 21, wherein
the external layer is made of textile material;
the intermediate layer is formed by a film or sheet of polymeric material functioning as a barrier against the liquids from outside to inside, and as a membrane transpirant to fluids from inside to outside; and
the internal layer is made with a complex fabric with a polymeric base.
23. The fabric of claim 21, wherein the internal layer is selected from a fabric having a raised nap selected from the group consisting of pile, fleece, teaseled, brushed, or non-woven fabric, or fabric having a smooth surface, or fabric having relief workings.
24. The fabric of claim 19, wherein material of the internal layer has a polymeric base modified by the cauterization to be compact, substantially without cavities or interstices between filaments or fibers that make up the threads of the internal layer, thereby eliminating the possibility of the liquids migrating through capillarity or seepage, to create a physical barrier, substantially along the joining line and in the adjacent lateral portions, against the passage of liquids from outside to inside the textile.
25. The fabric of claim 19, wherein the fabric has a single-track cauterization zone of cauterized material which affects both the zone of the joining line and the portions adjacent to the zone of the joining line.
25. The fabric of claim 19, wherein the fabric has a double-track cauterization cone comprising two distinct and separate tracks of cauterized material along only the lateral portions adjacent to a zone of the joining line.
26. The fabric of claim 19, wherein the internal layer has a raised nap but in the cauterized zone the structure of the surface fibers has been modified and taken to a plastic state, flattened and partly removed.
27. The fabric of claim 19, wherein the internal layer is a smooth fabric or has relief workings, and the heat treatment eliminates the surface down and the fabric is smooth and compact in the cauterized zone.
US14/657,767 2011-06-24 2015-03-13 Machine for making an impermeable join on impermeable three-layer or two-layer fabrics Abandoned US20150181962A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/657,767 US20150181962A1 (en) 2011-06-24 2015-03-13 Machine for making an impermeable join on impermeable three-layer or two-layer fabrics

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
ITMI2011A001159 2011-06-24
IT001159A ITMI20111159A1 (en) 2011-06-24 2011-06-24 MACHINE FOR THE CONSTRUCTION OF A WATERPROOF JUNCTION ON TRISTRATE FABRICS OR WATERPROOF BISTRATE
IT001425A ITMI20111425A1 (en) 2011-06-24 2011-07-28 MACHINE FOR THE CONSTRUCTION OF A WATERPROOF JUNCTION ON TRISTRATE FABRICS OR WATERPROOF BISTRATE
ITMI2011A001425 2011-07-28
US13/526,831 US8999089B2 (en) 2011-06-24 2012-06-19 Machine for making an impermeable join on impermeable three-layer or two-layer fabrics
US14/657,767 US20150181962A1 (en) 2011-06-24 2015-03-13 Machine for making an impermeable join on impermeable three-layer or two-layer fabrics

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/526,831 Division US8999089B2 (en) 2011-06-24 2012-06-19 Machine for making an impermeable join on impermeable three-layer or two-layer fabrics

Publications (1)

Publication Number Publication Date
US20150181962A1 true US20150181962A1 (en) 2015-07-02

Family

ID=44513038

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/526,831 Active 2033-04-20 US8999089B2 (en) 2011-06-24 2012-06-19 Machine for making an impermeable join on impermeable three-layer or two-layer fabrics
US14/657,767 Abandoned US20150181962A1 (en) 2011-06-24 2015-03-13 Machine for making an impermeable join on impermeable three-layer or two-layer fabrics

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/526,831 Active 2033-04-20 US8999089B2 (en) 2011-06-24 2012-06-19 Machine for making an impermeable join on impermeable three-layer or two-layer fabrics

Country Status (3)

Country Link
US (2) US8999089B2 (en)
EP (1) EP2537429B1 (en)
IT (2) ITMI20111159A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11963568B2 (en) * 2022-07-01 2024-04-23 Unipros Camping Products Company Limited Bonding device and method of using bonding device

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1403644B1 (en) * 2011-01-24 2013-10-31 Macpi Pressing Div SIMPLIFIED METHOD FOR THE IMPLEMENTATION OF A WATERPROOF JUNCTION ON SADDLED OR BISTRIED TEXTILES, WITH OR WITHOUT A COMPLEX STRUCTURE ON THE UNION SIDE, ACCORDING TO US WITH A SEWING OR ULTRASOUND.
US11606992B2 (en) 2012-04-18 2023-03-21 Nike, Inc. Vented garment
US9392825B2 (en) 2012-04-18 2016-07-19 Nike, Inc. Cold weather vented garment
US12035770B2 (en) 2012-04-18 2024-07-16 Nike, Inc. Vented garment
US10111480B2 (en) 2015-10-07 2018-10-30 Nike, Inc. Vented garment
DE102012213796B4 (en) * 2012-08-03 2021-03-25 Brandt Kantentechnik Gmbh Method and device for coating workpieces
CN103785985A (en) * 2014-02-24 2014-05-14 上海阿丽贝塑料防腐设备有限公司 Automatic welding device for outer bottom of plastic storage tank
DE212015000302U1 (en) * 2015-01-14 2017-10-09 W.L. Gore & Associates Gmbh A seam connection structure, textile article having such a seam connection structure, and apparatus for producing a seam connection structure
CN105433489B (en) * 2015-04-26 2017-07-07 周盈裕 A kind of waterproof garment waterproof processing equipment
CN104997221A (en) * 2015-07-20 2015-10-28 英商马田纺织品(中国-中山)有限公司 Belt flanging machine
US11406148B2 (en) 2015-10-07 2022-08-09 Nike, Inc. Vented garment
US11019865B2 (en) 2016-10-06 2021-06-01 Nike, Inc. Insulated garment
US10743596B2 (en) 2016-10-06 2020-08-18 Nike, Inc. Insulated vented garment formed using non-woven polymer sheets
IL272623B1 (en) 2017-08-29 2024-08-01 Roam Robotics Inc Semi-supervised intent recognition system and method
JP6574911B1 (en) * 2019-01-16 2019-09-11 大成ラミック株式会社 Joint tape, packaging film coupling method and coupling apparatus using the same
CN115038421A (en) 2019-12-13 2022-09-09 漫游机械人技术公司 Power device beneficial to wearer during skiing
WO2021173860A1 (en) * 2020-02-25 2021-09-02 Roam Robotics Inc. Fluidic actuator systems and methods for mobile robots
CN111642833B (en) * 2020-04-22 2022-09-06 王峰 Medical mask production equipment and quality rapid detection method of medical mask
CN112167756B (en) * 2020-11-02 2023-08-08 浙江逸帅机电科技股份有限公司 Inner ear folding and edge covering device for mask machine
EP4387816A1 (en) 2021-08-17 2024-06-26 Roam Robotics Inc. Maritime applications for a mobile robot

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070082165A1 (en) * 2003-04-15 2007-04-12 Shaun Barrett Seam
US20080044614A1 (en) * 2006-08-17 2008-02-21 Hannon Gregory E Stitchless seam system for joining laminates

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6471803B1 (en) * 1997-10-24 2002-10-29 Ray Pelland Rotary hot air welder and stitchless seaming
US20030010439A1 (en) * 2001-07-16 2003-01-16 Fenton Jay Thomas Seam sealing apparatus and process therefor
EP1464471B1 (en) * 2003-04-04 2006-08-02 Leister Process Technologies Process and apparatus for overlapping joining of flat plastic materials
US7005021B2 (en) * 2003-05-21 2006-02-28 Mountain Hardwear, Inc. Method of forming and adhesively bonded seam
US7117545B2 (en) * 2003-10-15 2006-10-10 Gore Enterprise Holdings Inc. Liquidproof seam for protective apparel
TWI286172B (en) * 2004-06-30 2007-09-01 Makalot Ind Co Ltd Method for bonding waterproof tape
ITMI20051433A1 (en) 2005-07-25 2007-01-26 Macpi Pressing Div EQUIPMENT FOR APPLYING AN ADHESIVE SUBSTANCE TO A FABRIC STRIP
DE102007056239A1 (en) * 2007-06-12 2008-12-18 Seo, Gi Weon, Paju Hot air welding device for anti-water sealing tape
ITMI20080342A1 (en) 2008-02-29 2009-09-01 Macpi Pressing Division Spa MODULAR MACHINE SUITABLE FOR PERFORMING THE ASSEMBLY OF TWO FABRICS THROUGH ADHESIVATION WITH OR WITHOUT TIGHTENING.
IT1403644B1 (en) * 2011-01-24 2013-10-31 Macpi Pressing Div SIMPLIFIED METHOD FOR THE IMPLEMENTATION OF A WATERPROOF JUNCTION ON SADDLED OR BISTRIED TEXTILES, WITH OR WITHOUT A COMPLEX STRUCTURE ON THE UNION SIDE, ACCORDING TO US WITH A SEWING OR ULTRASOUND.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070082165A1 (en) * 2003-04-15 2007-04-12 Shaun Barrett Seam
US20080044614A1 (en) * 2006-08-17 2008-02-21 Hannon Gregory E Stitchless seam system for joining laminates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11963568B2 (en) * 2022-07-01 2024-04-23 Unipros Camping Products Company Limited Bonding device and method of using bonding device

Also Published As

Publication number Publication date
ITMI20111159A1 (en) 2012-12-25
ITMI20111425A1 (en) 2012-12-25
US8999089B2 (en) 2015-04-07
EP2537429A1 (en) 2012-12-26
US20120328824A1 (en) 2012-12-27
EP2537429B1 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
US8999089B2 (en) Machine for making an impermeable join on impermeable three-layer or two-layer fabrics
JP6078561B2 (en) Apparatus and method for splicing substrates
US5707470A (en) Rotary ultrasonic apparatus and methods
US7490651B2 (en) Apparatus for finishing garment fabric edges
US6471803B1 (en) Rotary hot air welder and stitchless seaming
US20110186208A1 (en) Method for impermeably joining laminated three or two layer fabrics either with or without a complex structure on the joining face or fabrics with a raised pile on either one or two faces thereof
JPS6215672B2 (en)
CN101243903A (en) Hemming system and method for hemming a fabric
US11746453B2 (en) Attachment for sealing seams
CN109157333B (en) Method for fixing rubber band without glue
KR102087190B1 (en) The manufacuring equipment for a fusible interlining
US3390038A (en) Method and apparatus for trimming and joining the ends of two web lengths
CN105636772B (en) For manufacturing the method and apparatus for intersecting bottom bag
KR101656839B1 (en) A device for welding fabrics
ITMI20100306A1 (en) MACHINE FOR THE PREPARATION OF FABRIC PANELS FOR THE NEXT JUNCTION OF FLUID SEALING PARTICULARLY FOR LAMINATED TEXTILE OR TRISTRATO.
JP6155096B2 (en) Bonding device
JPS63293037A (en) Hot air nozzle
US20230157388A1 (en) A face protection mask, a method for producing face protection masks and an apparatus for producing face protection masks
CN113442479A (en) Manufacturing process of large-circumference seamless annular conveying belt
KR20220148624A (en) Sewing Apparatus Having Seam Sealing Part
JPH05339806A (en) Method for temporarily fixing interlining of suit and device for temporarily fixing
JPH10331064A (en) Apparatus for stretching one end of tubular material
JPS61246046A (en) Manufacture of seat cover for seat and the like
BG66990B1 (en) Textile cutting and sealing machine

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION