US20150174665A1 - Holder for a cutting tool, a cutting tool and a cutting insert - Google Patents
Holder for a cutting tool, a cutting tool and a cutting insert Download PDFInfo
- Publication number
- US20150174665A1 US20150174665A1 US14/633,563 US201514633563A US2015174665A1 US 20150174665 A1 US20150174665 A1 US 20150174665A1 US 201514633563 A US201514633563 A US 201514633563A US 2015174665 A1 US2015174665 A1 US 2015174665A1
- Authority
- US
- United States
- Prior art keywords
- channel
- cutting tool
- stem
- plunger
- holder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B29/00—Holders for non-rotary cutting tools; Boring bars or boring heads; Accessories for tool holders
- B23B29/03—Boring heads
- B23B29/034—Boring heads with tools moving radially, e.g. for making chamfers or undercuttings
- B23B29/03403—Boring heads with tools moving radially, e.g. for making chamfers or undercuttings radially adjustable before starting manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/007—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor for internal turning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/10—Cutting tools with special provision for cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/14—Cutting tools of which the bits or tips or cutting inserts are of special material
- B23B27/141—Specially shaped plate-like cutting inserts, i.e. length greater or equal to width, width greater than or equal to thickness
- B23B27/145—Specially shaped plate-like cutting inserts, i.e. length greater or equal to width, width greater than or equal to thickness characterised by having a special shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B29/00—Holders for non-rotary cutting tools; Boring bars or boring heads; Accessories for tool holders
- B23B29/03—Boring heads
- B23B29/034—Boring heads with tools moving radially, e.g. for making chamfers or undercuttings
- B23B29/03403—Boring heads with tools moving radially, e.g. for making chamfers or undercuttings radially adjustable before starting manufacturing
- B23B29/03407—Boring heads with tools moving radially, e.g. for making chamfers or undercuttings radially adjustable before starting manufacturing by means of screws and nuts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B31/00—Chucks; Expansion mandrels; Adaptations thereof for remote control
- B23B31/02—Chucks
- B23B31/24—Chucks characterised by features relating primarily to remote control of the gripping means
- B23B31/30—Chucks characterised by features relating primarily to remote control of the gripping means using fluid-pressure means in the chuck
- B23B31/305—Chucks characterised by features relating primarily to remote control of the gripping means using fluid-pressure means in the chuck the gripping means is a deformable sleeve
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2200/00—Details of cutting inserts
- B23B2200/20—Top or side views of the cutting edge
- B23B2200/201—Details of the nose radius and immediately surrounding area
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2200/00—Details of cutting inserts
- B23B2200/20—Top or side views of the cutting edge
- B23B2200/208—Top or side views of the cutting edge with wiper, i.e. an auxiliary cutting edge to improve surface finish
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2231/00—Details of chucks, toolholder shanks or tool shanks
- B23B2231/02—Features of shanks of tools not relating to the operation performed by the tool
- B23B2231/028—Lugs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2231/00—Details of chucks, toolholder shanks or tool shanks
- B23B2231/24—Cooling or lubrication means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2260/00—Details of constructional elements
- B23B2260/12—Stops
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T279/00—Chucks or sockets
- Y10T279/12—Chucks or sockets with fluid-pressure actuator
- Y10T279/1216—Jaw is expansible chamber; i.e., bladder type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T408/00—Cutting by use of rotating axially moving tool
- Y10T408/83—Tool-support with means to move Tool relative to tool-support
- Y10T408/85—Tool-support with means to move Tool relative to tool-support to move radially
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T408/00—Cutting by use of rotating axially moving tool
- Y10T408/83—Tool-support with means to move Tool relative to tool-support
- Y10T408/85—Tool-support with means to move Tool relative to tool-support to move radially
- Y10T408/858—Moving means including wedge, screw or cam
- Y10T408/8598—Screw extending perpendicular to tool-axis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T408/00—Cutting by use of rotating axially moving tool
- Y10T408/94—Tool-support
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T408/00—Cutting by use of rotating axially moving tool
- Y10T408/94—Tool-support
- Y10T408/95—Tool-support with tool-retaining means
Definitions
- the invention relates to a holder for a cutting tool according to the preamble of claim 1 .
- the invention relates to holder for a cutting tool where the holder is adapted to firmly hold the cutting tool to transfer a rotational movement from a driving source in boring or milling machine to a cutting tool secured in the holder.
- the cutting tool may preferably be designed for chip forming metal cutting.
- Precision cutting requires that the position at which a cutting tool is located when held by a holder for the cutting tool is highly reproducible.
- various types of holder for cutting tools are known.
- Precision hole making is defined by characteristics—among others—such as straightness, roundness and position accuracy, and in addition—for some applications—the properties of the produced surfaces.
- high integrity components such as gas turbine rotors and pressurized vessels a high demand is imposed on the tools in order to achieve the desired property on the machined surfaces.
- the type of tool holder used has an impact of the quality of the worked surfaces.
- a common type of tool holder is designed as body having a channel for receiving a stem portion of a cutting tool.
- the stem portion will be locked by screws that penetrate into the channel in order to engage with the stem portion of the cutting tool.
- load is concentrated to one or two locations where the screw or screws engage with the stem. It has shown that this type of engagement does not suppress oscillations for certain frequencies, which frequencies depend on the location of the connection between the screw and the shaft.
- Another type of locking device is presented in U.S. Pat. No. 6,568,055, where an axially wedge shaped sleeve is pushed by a hydraulic actuator to tighten a boring arbour.
- a tool holder according to the invention comprises a body having a first channel for receiving a stem of the cutting tool.
- the body furthermore includes a second channel intersecting with the first channel.
- a plunger is inserted in the second channel.
- the plunger has a third channel with a cross section which at least partly overlaps with the cross section of the first channel when the plunger is inserted into the body.
- the stem of the cutting tool thereby extends into the third channel when the stem is inserted in the first channel.
- the holder further comprises a mechanism for locking the stem against movement relative to the body by means of the plunger. The invention is based on the observation that the quality of the machined surfaces is dependent on the wear of the cutting insert.
- the holder comprises a plunger with said third channel, which plunger is configured for acting on the stem, an accurate holding of the cutting tool can be achieved. Further, by arranging the plunger moveable in the second channel which intersects with the first channel into which a cutting tool is inserted, lateral compensation of the position of the cutting tool is facilitated. Hence, production of high quality surfaces is facilitated.
- the plunger comprises said locking mechanism.
- the body may be formed as a monolith only provided with ducts for cooling liquid and means for locking and positioning of the plunger relatively to the body.
- the tool holder enables production of high quality surfaces by facilitating lateral positioning of the cutting tool, while allowing a compact stiff design of the body.
- the plunger may thus be moveably arranged in the second channel so as to allow lateral dislocation of the plunger and hence of the cutting tool. Accurate lateral positioning of the cutting insert to compensate for the successive wear of the cutting insert may therefore be achieved in a straightforward manner while maintaining a firm grip of the cutting tool.
- said locking mechanism comprises a membrane delimiting a pressure chamber.
- the holder may comprise a mechanism for pressurizing the pressure chamber in order to lock the stem against movement relative to the body.
- a holder is provided, which enables suppression of oscillation over a wide range of frequencies.
- the membrane forms a part of the third channel and is configured to act directly on the stem.
- the pressure mechanism is configured to press the membrane directly against the stem.
- the membrane is integrated into the plunger, which creates further conditions for a firm locking of the sutting tool.
- the contact between the stem and the membrane forming part of the third channel in the plunger ensures a distribution of the load on the stem enabling suppressions of oscillation of the cutting tool.
- the part of the third channel which is formed by the membrane is cylindrical and especially circular-cylindrical.
- the use of a cylindrical membrane ensures that the membrane grips the stem with a constant radial load.
- a hydraulic oil pipe is connected to the pressure chamber for enabling a movement of the membrane thereby enabling locking or release of the stem of the cutting tool.
- the use of hydraulic locking of the stem has a beneficial effect on the suppression of oscillations of the cutting tool.
- a hydraulic oil pipe connects the pressure chamber with an outwardly facing end wall of the plunger, at which the mechanism for pressurizing the pressure chamber is located.
- the first channel may extend along a first length axis and the second channel may extend along a second length axis.
- Each of the first and second channels are preferably straight.
- the first and second axes are essentially perpendicular to each other.
- the third channel extends through said plunger so as to enable a stem of a cutting tool to extend through said third channel when the stem is inserted in the first channel.
- the third channel is preferably straight.
- the holder includes a mechanism for movement of the plunger along a length axis of said second channel so as to position the stem in a lateral position relatively to the body. Lateral positioning is performed to enable accurate positioning as the cutting insert wears out during use.
- the holder comprises means for angular and/or axial positioning of the cutting tool relative to the body.
- the positioning means comprises an indentation provided at an opening of the first channel, which indentation is arranged to receive a notch provided on said stem of the cutting tool, thereby enabling axial and angular positioning of the cutting tool.
- the invention furthermore relates to a cutting tool for use in a holder, which cutting tool includes a stem.
- the cutting tool comprises means for angular and/or axial positioning of the cutting tool relative to a body of the holder.
- Particularly said positioning means comprises a notch provided on a stem of the cutting tool, thereby enabling axial and angular positioning of the cutting tool in the holder,
- the notch is to be inserted in a corresponding indentation made at the holder for enabling axial and angular positioning of the tool in the holder.
- the stem portion of the cutting tool includes a cooling liquid flow entrance in a lower region of the stem, a cooling liquid feeding conduit extending from said liquid flow entrance to a head located on the top of said stem, and a cooling liquid ejector outlet nozzle connected to said cooling liquid feeding conduit at said top portion of said stem.
- the cooling liquid ejector outlet nozzle has a smaller cross sectional area than said cooling liquid feeding conduit.
- the cooling liquid ejector outlet nozzle has a length between 1 mm and 3 mm.
- the cooling liquid ejector outlet nozzle By making the cooling liquid ejector outlet nozzle short an output spray from the nozzle will be focussed. Long narrow channels will tend to result in a distributed spray. By making the length of the narrow cooling liquid ejector outlet nozzle short, the spray will thus be focused.
- the cooling liquid feeding conduit is eccentric in relation to a centre axis of said stem. Steep changes in flow direction result in cavitation losses.
- the eccentric location allows for less steep change in flow direction in the vicinity of the cooling liquid ejector outlet nozzle.
- the cutting tool preferably comprises a head located on the top of the stem.
- said head includes a first surface, which extends in a plane in parallel with a longitudinal axis of the cutting tool, wherein a cutting insert is located on the first surface, and a second surface which extends in a plane which is inclined with regard to a plane at right angles to the longitudinal axis and which intersects with a length axis of the cooling liquid ejector outlet nozzle.
- This arrangement allows that the cooling liquid ejector outlet nozzle, which may have an exit opening in the inclined surface which extends perpendicularly to the direction of the inclined surface, may focus a cooling liquid jet on an edge of a cutting insert.
- the location of the rim an exit opening in a plane vertical to the length axis of the cooling liquid ejector outlet nozzle reduces spray diffusion in comparison to when the plane is inclined in relation to the length axis of the cooling liquid ejector outlet nozzle.
- the cutting tool includes a cutting insert which before use has a polygonal cross sectional shape, that sides of the polygon meet at rounded corners and that a straight portion is present in the rounded area.
- the polygon has the shape of an equilateral triangle or a square.
- the cutting insert is secured to said head such that said straight portion is coaxial with a centre axis of a stem of said cutting tool. By allowing the straight portion to be coaxial with the centre axis a reduction of wear of the cutting insert and of unintended deformation of the worked goods can be obtained.
- the invention also relates to a cutting insert which before use has the shape of an equilateral triangle or a square, which sides meet at rounded corners and that a straight portion is present in the rounded area.
- the rounded corners have a curvature radius between 0.6 and 1.2 mm and that the straight area has a length between 0.07 and 0.15 mm.
- FIG. 1 shows a perspective view of a holder for a cutting tool
- FIG. 2 shows a cross section through a plunger along a plane formed by the length axes of a first and second channel respectively, when the plunger is installed in correct position in the second channel,
- FIG. 4 shows a cross section along a plane formed by the length axes of a first and second channel respectively, with a plunger in a first retracted position
- FIG. 5 shows a cross section along a plane formed by the length axes of a first and channel respectively, with a plunger in a second projecting position
- FIG. 6 shows a top view of a holder, with a plunger in a first retracted position
- FIG. 7 shows a top view of a holder, with a plunger in a second projecting position
- FIG. 8 shows a cross section through a plunger as shown in FIG. 2 further including means for locking the plunger against movement in the length direction of the second channel,
- FIG. 9 shows a side view of a cutting tool, facing a flat surface in the head of the cutting tool
- FIG. 11 shows a cross section of the cutting tool in FIGS. 9 and 10 .
- the first channel 6 has in the embodiment shown in FIG. 1 a cross-section in a plane transverse to the first length axis 7 which is of a larger dimension than a stem of a cutting tool. More specifically, said cross section is elongated and preferably composed of two half circles 10 a , 10 b connected with two linear segments 12 a , 12 b . The stem of the cutting tool having a circular cross-section may thus be moved in direction of the second length axis.
- a plunger 13 is inserted in the second channel 8 .
- the plunger 13 is provided with a third channel 14 , see FIG. 2 , the cross section of which at least partly overlaps with the cross section of the first channel 6 when the plunger 13 is inserted into the body 4 .
- part of an upper opening of the third channel 14 is shown below an upper opening of the first channel 6 .
- the stem of the cutting tool inserted in the first channel 6 may thus be received in the third channel 14 .
- a hydraulic oil pipe 25 is connected to the pressure chamber 22 for enabling a movement of the membrane 20 thereby enabling locking or release of the stem of the cutting tool.
- the hydraulic oil pipe 25 connects the pressure chamber 22 with the end surface, or wall 16 a of the plunger 13 .
- a mechanism 26 for pressurizing the pressure chamber is located at the end wall.
- the mechanism for pressurising the pressure chamber is constituted by a screw 27 arranged in a threaded bore 28 . By rotating the screw such that it is moved inwardly, an incompressible hydraulic fluid contained in the pressure chamber and the hydraulic oil pipe would force the membrane to bulge inwardly and grip a stem of a cutting tool, if present in the third channel.
- FIGS. 6 and 7 top views of the holder, with the plunger in the first advanced position ( FIG. 6 ) and in the second retracted position ( FIG. 7 ), are shown.
- the holder shown in FIGS. 4-7 comprises a mechanism 29 for movement of the plunger along the length axis 9 of said second channel so as to position the stem of a cutting tool in a lateral position relatively to the body, that is along the length axis 9 of said second channel.
- the mechanism 29 includes a threaded screw 30 which engages in a threaded bore 31 formed in the plunger 13 or a nut secured to the plunger 13 .
- locking of the plunger against movement along the length axis 9 of said second channel may be achieved by a membrane 32 arranged in the envelope surface 17 of the plunger.
- a pressure chamber 33 is arranged inside of the membrane.
- the membrane is cylindrical in shape and the pressure chamber has an annular shape.
- a hydraulic oil pipe 34 is connected with the pressure chamber 33 and a mechanism 35 is configured for pressurizing the pressure chamber 33 so as to press the membrane 32 against inner walls of the second channel and lock the plunger against movement relative to the body.
- the mechanism 35 includes a threaded screw 36 which engages in a threaded bore 37 .
- FIG. 11 a cross section of the cutting tool in FIGS. 9 and 10 is shown.
- the cutting tool includes a cooling liquid flow entrance 45 in a lower region 46 of the stem.
- a cooling liquid feeding conduit 47 extends from said liquid flow entrance 45 to the head 42 located on the top of the stem 41 .
- a cooling liquid ejector outlet nozzle 48 is connected to the cooling liquid feeding conduit 47 at the head 42 .
- the cooling liquid feeding conduit 47 is eccentric in relation to a centre axis 49 of said stem.
- the cooling liquid ejector outlet nozzle 48 has a smaller cross sectional area than said cooling liquid feeding conduit 47 .
- the cooling liquid ejector outlet nozzle may have a length between 1 mm and 3 mm.
- FIG. 12 a cutting insert 43 before use is shown.
- the cutting insert has the shape of an equilateral triangle or a square, which sides 52 meet at rounded corners 53 .
- a straight portion 54 is present at the rounded corners 53 .
- FIG. 13 shows a corner 53 of the cutting insert in FIG. 12 in magnified view.
- the rounded corners have a curvature radius between 0, 6 and 1, 2 mm and the straight portion has a length between 0, 07 and 0, 15 mm.
- the short straight portion has a curved portion located on both it sides.
- the cutting insert is secured to said head such that said straight portion is coaxial with a rotational axis of said cutting tool.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Auxiliary Devices For Machine Tools (AREA)
- Gripping On Spindles (AREA)
Abstract
A holder for a cutting tool, comprising a body having a first channel for receiving a stein portion of the cutting tool. The body has a second channel intersecting with said first channel. The holder further comprises a plunger (13) to be inserted in the second channel, said plunger (13) having a third channel (14) the cross section of which at least partly overlaps with the cross section of the first channel when the plunger (13) is inserted into the body so as to enable the stem of the cutting tool to extend into the third channel (14) when the stem is inserted in the first channel. The holder (1) further comprises a mechanism (26) for locking the stem against movement relative to the body by means of the plunger. The invention furthermore relates to a cutting tool for use in such a holder and a cutting insert.
Description
- The invention relates to a holder for a cutting tool according to the preamble of
claim 1. In particular the invention relates to holder for a cutting tool where the holder is adapted to firmly hold the cutting tool to transfer a rotational movement from a driving source in boring or milling machine to a cutting tool secured in the holder. The cutting tool may preferably be designed for chip forming metal cutting. - Precision cutting requires that the position at which a cutting tool is located when held by a holder for the cutting tool is highly reproducible. For this purpose various types of holder for cutting tools are known. Precision hole making is defined by characteristics—among others—such as straightness, roundness and position accuracy, and in addition—for some applications—the properties of the produced surfaces. In particular for high integrity components such as gas turbine rotors and pressurized vessels a high demand is imposed on the tools in order to achieve the desired property on the machined surfaces. The type of tool holder used has an impact of the quality of the worked surfaces.
- A common type of tool holder is designed as body having a channel for receiving a stem portion of a cutting tool. The stem portion will be locked by screws that penetrate into the channel in order to engage with the stem portion of the cutting tool. With this type of locking engagement, load is concentrated to one or two locations where the screw or screws engage with the stem. It has shown that this type of engagement does not suppress oscillations for certain frequencies, which frequencies depend on the location of the connection between the screw and the shaft. Another type of locking device is presented in U.S. Pat. No. 6,568,055, where an axially wedge shaped sleeve is pushed by a hydraulic actuator to tighten a boring arbour.
- It is an object of the invention to provide a tool holder that facilitates preparation of high quality surfaces and which creates conditions for a cost-efficient production and/or use of the tool holder.
- This object is achieved by a tool holder according to
claim 1. A tool holder according to the invention comprises a body having a first channel for receiving a stem of the cutting tool. The body furthermore includes a second channel intersecting with the first channel. A plunger is inserted in the second channel. The plunger has a third channel with a cross section which at least partly overlaps with the cross section of the first channel when the plunger is inserted into the body. The stem of the cutting tool thereby extends into the third channel when the stem is inserted in the first channel. The holder further comprises a mechanism for locking the stem against movement relative to the body by means of the plunger. The invention is based on the observation that the quality of the machined surfaces is dependent on the wear of the cutting insert. By virtue of the fact that the holder comprises a plunger with said third channel, which plunger is configured for acting on the stem, an accurate holding of the cutting tool can be achieved. Further, by arranging the plunger moveable in the second channel which intersects with the first channel into which a cutting tool is inserted, lateral compensation of the position of the cutting tool is facilitated. Hence, production of high quality surfaces is facilitated. - According to an embodiment, the plunger comprises said locking mechanism. In this way, the need for including functional features for locking the cutting tool in the body is eliminated. It is therefore easier to make the body sufficiently sturdy to achieve a desired stiffness of the tool holder. Preferably the body may be formed as a monolith only provided with ducts for cooling liquid and means for locking and positioning of the plunger relatively to the body. Hence the tool holder enables production of high quality surfaces by facilitating lateral positioning of the cutting tool, while allowing a compact stiff design of the body. The plunger may thus be moveably arranged in the second channel so as to allow lateral dislocation of the plunger and hence of the cutting tool. Accurate lateral positioning of the cutting insert to compensate for the successive wear of the cutting insert may therefore be achieved in a straightforward manner while maintaining a firm grip of the cutting tool.
- According to a further embodiment, said locking mechanism comprises a membrane delimiting a pressure chamber. The holder may comprise a mechanism for pressurizing the pressure chamber in order to lock the stem against movement relative to the body. In this embodiment a holder is provided, which enables suppression of oscillation over a wide range of frequencies.
- According to a further embodiment, the membrane forms a part of the third channel and is configured to act directly on the stem. The pressure mechanism is configured to press the membrane directly against the stem. Thus, the membrane is integrated into the plunger, which creates further conditions for a firm locking of the sutting tool.
- The contact between the stem and the membrane forming part of the third channel in the plunger ensures a distribution of the load on the stem enabling suppressions of oscillation of the cutting tool.
- Optionally, the part of the third channel which is formed by the membrane is cylindrical and especially circular-cylindrical. The use of a cylindrical membrane ensures that the membrane grips the stem with a constant radial load. A hydraulic oil pipe is connected to the pressure chamber for enabling a movement of the membrane thereby enabling locking or release of the stem of the cutting tool. The use of hydraulic locking of the stem has a beneficial effect on the suppression of oscillations of the cutting tool.
- Optionally a hydraulic oil pipe connects the pressure chamber with an outwardly facing end wall of the plunger, at which the mechanism for pressurizing the pressure chamber is located.
- Optionally the first channel may extend along a first length axis and the second channel may extend along a second length axis. Each of the first and second channels are preferably straight. Optionally the first and second axes are essentially perpendicular to each other. By arranging the first and second axes perpendicular to each other, the risk of that the stem is axially dislocated during the locking process is reduced since a small movement of the plunger in the second channel in this case will not result in a translation of the plunger relatively to the length axis of the first channel. Hence movement of the plunger will not result in axial dislocation of the cutting tool.
- Optionally the third channel extends through said plunger so as to enable a stem of a cutting tool to extend through said third channel when the stem is inserted in the first channel. The third channel is preferably straight. By allowing the stem to pass through the third channel a good contact between the stem and the membrane is ascertained.
- Optionally the holder includes a mechanism for movement of the plunger along a length axis of said second channel so as to position the stem in a lateral position relatively to the body. Lateral positioning is performed to enable accurate positioning as the cutting insert wears out during use.
- Optionally the holder comprises means for angular and/or axial positioning of the cutting tool relative to the body. Preferably, the positioning means comprises an indentation provided at an opening of the first channel, which indentation is arranged to receive a notch provided on said stem of the cutting tool, thereby enabling axial and angular positioning of the cutting tool. The invention furthermore relates to a cutting tool for use in a holder, which cutting tool includes a stem. The cutting tool comprises means for angular and/or axial positioning of the cutting tool relative to a body of the holder. Particularly said positioning means comprises a notch provided on a stem of the cutting tool, thereby enabling axial and angular positioning of the cutting tool in the holder, The notch is to be inserted in a corresponding indentation made at the holder for enabling axial and angular positioning of the tool in the holder.
- Optionally the stem portion of the cutting tool includes a cooling liquid flow entrance in a lower region of the stem, a cooling liquid feeding conduit extending from said liquid flow entrance to a head located on the top of said stem, and a cooling liquid ejector outlet nozzle connected to said cooling liquid feeding conduit at said top portion of said stem.
- Optionally the cooling liquid ejector outlet nozzle has a smaller cross sectional area than said cooling liquid feeding conduit. By arranging the cooling liquid feeding conduit with a larger cross sectional area than the cooling liquid ejector outlet nozzle it is ensured that the pressure drop in the cutting tool can be reduced.
- Optionally the cooling liquid ejector outlet nozzle has a length between 1 mm and 3 mm. By making the cooling liquid ejector outlet nozzle short an output spray from the nozzle will be focussed. Long narrow channels will tend to result in a distributed spray. By making the length of the narrow cooling liquid ejector outlet nozzle short, the spray will thus be focused.
- Optionally the cooling liquid feeding conduit is eccentric in relation to a centre axis of said stem. Steep changes in flow direction result in cavitation losses. The eccentric location allows for less steep change in flow direction in the vicinity of the cooling liquid ejector outlet nozzle.
- The cutting tool preferably comprises a head located on the top of the stem. Optionally, said head includes a first surface, which extends in a plane in parallel with a longitudinal axis of the cutting tool, wherein a cutting insert is located on the first surface, and a second surface which extends in a plane which is inclined with regard to a plane at right angles to the longitudinal axis and which intersects with a length axis of the cooling liquid ejector outlet nozzle. This arrangement allows that the cooling liquid ejector outlet nozzle, which may have an exit opening in the inclined surface which extends perpendicularly to the direction of the inclined surface, may focus a cooling liquid jet on an edge of a cutting insert. The location of the rim an exit opening in a plane vertical to the length axis of the cooling liquid ejector outlet nozzle reduces spray diffusion in comparison to when the plane is inclined in relation to the length axis of the cooling liquid ejector outlet nozzle.
- Optionally the cutting tool includes a cutting insert which before use has a polygonal cross sectional shape, that sides of the polygon meet at rounded corners and that a straight portion is present in the rounded area. Preferably, the polygon has the shape of an equilateral triangle or a square. Optionally the cutting insert is secured to said head such that said straight portion is coaxial with a centre axis of a stem of said cutting tool. By allowing the straight portion to be coaxial with the centre axis a reduction of wear of the cutting insert and of unintended deformation of the worked goods can be obtained. It is believed that in the event no straight portion is present in the rounded area a local concentration of force is obtained at the contact between the goods and the cutting insert such that the contact force will initially be too high with excessive wear and risk for damage of the cutting insert as well as of the worked goods as a consequence.
- The invention also relates to a cutting insert which before use has the shape of an equilateral triangle or a square, which sides meet at rounded corners and that a straight portion is present in the rounded area. Optionally, the rounded corners have a curvature radius between 0.6 and 1.2 mm and that the straight area has a length between 0.07 and 0.15 mm.
- Embodiments of the invention will now be described in more detail with reference to appended drawings, where
-
FIG. 1 shows a perspective view of a holder for a cutting tool, -
FIG. 2 shows a cross section through a plunger along a plane formed by the length axes of a first and second channel respectively, when the plunger is installed in correct position in the second channel, -
FIG. 3 shows a perspective view of a plunger, -
FIG. 4 shows a cross section along a plane formed by the length axes of a first and second channel respectively, with a plunger in a first retracted position, -
FIG. 5 shows a cross section along a plane formed by the length axes of a first and channel respectively, with a plunger in a second projecting position, -
FIG. 6 shows a top view of a holder, with a plunger in a first retracted position, -
FIG. 7 shows a top view of a holder, with a plunger in a second projecting position, -
FIG. 8 shows a cross section through a plunger as shown inFIG. 2 further including means for locking the plunger against movement in the length direction of the second channel, -
FIG. 9 shows a side view of a cutting tool, facing a flat surface in the head of the cutting tool, -
FIG. 10 shows a side view of the cutting tool shown inFIG. 7 taken along a flat surface in the head of the cutting tool, -
FIG. 11 shows a cross section of the cutting tool inFIGS. 9 and 10 , and -
FIGS. 12 and 13 show a cutting insert in detail. - In
FIG. 1 aholder 1 for a cutting tool (not shown) is shown. Theholder 1 comprises abody 2. Thebody 2 includes ahead portion 3 and astem portion 4. Thehead portion 3 includes afirst channel 6 arranged for receiving a stem of a cutting tool. Thefirst channel 6 extends along afirst length axis 7 in a first axial direction which is coaxial with a rotational axis when the tool holder is mounted in a metal working machine. Thehead portion 3 furthermore includes asecond channel 8, which intersects with saidfirst channel 6. Thesecond channel 8 extends along asecond length axis 9. The first and second length axes 7, 9 are preferably perpendicular or essentially perpendicular to each other. Thefirst channel 6 has in the embodiment shown inFIG. 1 a cross-section in a plane transverse to thefirst length axis 7 which is of a larger dimension than a stem of a cutting tool. More specifically, said cross section is elongated and preferably composed of twohalf circles 10 a, 10 b connected with twolinear segments - A
plunger 13 is inserted in thesecond channel 8. Theplunger 13 is provided with athird channel 14, seeFIG. 2 , the cross section of which at least partly overlaps with the cross section of thefirst channel 6 when theplunger 13 is inserted into thebody 4. InFIG. 1 , part of an upper opening of thethird channel 14 is shown below an upper opening of thefirst channel 6. - The stem of the cutting tool inserted in the
first channel 6 may thus be received in thethird channel 14. - In
FIG. 2 is shown a cross section through theplunger 13 along a plane formed by the length axes 7, 9 of the first and second channel respectively, when the plunger is installed in correct position in the second channel. Theplunger 13 has a cylindrical shape with two parallel, flat end surfaces or endwalls envelope surface 17. Theplunger 13 may have alternative shapes as long as it fits and in thesecond channel 8 and may be secured in thesecond channel 8 so as to allow a limited axial movement in the secondaxial direction 9. In the drawing it is shown that thethird channel 14 extends through theplunger 13 from anupper opening 18 to alower opening 19. - A
membrane 20 forms a part of the third channel. Themembrane 20 may be formed by a cylindrical sleeve which is introduced into an internal cavity in the wall forming the third channel. The sleeve is sealed at its upper and lower ends. Thesleeve 20 covers an annular shapedtrace 21 in the cavity forming the third channel. Thetrace 21 forms apressure chamber 22, which has an annular shape. An interiorcylindrical wall 23 of the pressure chamber extending along thefirst length axis 7 is thus defined by an envelope surface of saidmembrane 20, which faces radially outwards. Part of thethird channel 14 is defined by an envelope surface of saidmembrane 20, which faces radially inwards. Thus, said envelope surfaces are defined by opposite sides of awall 24 of said membrane. A hydraulic oil pipe 25 is connected to thepressure chamber 22 for enabling a movement of themembrane 20 thereby enabling locking or release of the stem of the cutting tool. The hydraulic oil pipe 25 connects thepressure chamber 22 with the end surface, or wall 16 a of theplunger 13. Amechanism 26 for pressurizing the pressure chamber is located at the end wall. In this embodiment, the mechanism for pressurising the pressure chamber is constituted by ascrew 27 arranged in a threadedbore 28. By rotating the screw such that it is moved inwardly, an incompressible hydraulic fluid contained in the pressure chamber and the hydraulic oil pipe would force the membrane to bulge inwardly and grip a stem of a cutting tool, if present in the third channel. By rotating the screw such that it is moved outwardly, the membrane would progressively be released to assume an unloaded position and a grip a stem of a cutting tool, if present in the third channel, may be released. In order to facilitate filling of the pressure chamber with suitable hydraulic oil or grease avacuum nipple 15 is connected to the pressure chamber via a conduit. Filling of the chamber can then be achieved by connecting thenipple 15 to a vacuum source while removing thescrew 27 from thebore 28 and supplying oil or grease to the conduit connected to thebore 28. -
FIG. 3 shows theplunger 13 ofFIG. 2 in perspective view positioned in thebody 2. Thethird channel 14 is visible in theenvelope surface 17. One of theend walls 16 a is provided with the locking means 26 and thenipple 15. - In
FIGS. 4 and 5 cross sections along a plane formed by the length axes of the first andsecond channel plunger 13 in a first advanced position (FIG. 4 ) and in a second retracted position (FIG. 5 ) in thebody 2, are shown. - In
FIGS. 6 and 7 top views of the holder, with the plunger in the first advanced position (FIG. 6 ) and in the second retracted position (FIG. 7 ), are shown. - The holder shown in
FIGS. 4-7 comprises amechanism 29 for movement of the plunger along thelength axis 9 of said second channel so as to position the stem of a cutting tool in a lateral position relatively to the body, that is along thelength axis 9 of said second channel. Themechanism 29 includes a threadedscrew 30 which engages in a threadedbore 31 formed in theplunger 13 or a nut secured to theplunger 13. - In an embodiment of the invention, as shown in
FIG. 8 , locking of the plunger against movement along thelength axis 9 of said second channel may be achieved by amembrane 32 arranged in theenvelope surface 17 of the plunger. Apressure chamber 33 is arranged inside of the membrane. The membrane is cylindrical in shape and the pressure chamber has an annular shape. Ahydraulic oil pipe 34 is connected with thepressure chamber 33 and amechanism 35 is configured for pressurizing thepressure chamber 33 so as to press themembrane 32 against inner walls of the second channel and lock the plunger against movement relative to the body. Themechanism 35 includes a threaded screw 36 which engages in a threaded bore 37. - As is seen in
FIGS. 2-8 , anindentation 38 is provided in theplunger 13 at anupper opening 18 of thethird channel 14. Theindentation 38 is arranged to receive a notch provided on said stem of a cutting tool, thereby enabling axial and angular positioning of the cutting tool. - In
FIGS. 9 and 10 acutting tool 40 is shown. The cuttingtool 40 includes astem 41 arranged to be inserted into the first and third channels of the holder for the cutting tool. The cutting tool furthermore includes ahead 42 on which acutting insert 43 is positioned. Anotch 44 is provided on thestem 41 of the cutting tool, thereby enabling axial and angular positioning of the cutting tool in the holder, when the notch is positioned in a corresponding recess in the cutting tool holder. Thestem 41 preferably includes or consists of cemented carbide and thehead 42 is preferably made of tool steel. This combination ensures that the cutting tool has a high rigidity, while allowing formation of a carrier pocket or a carrier wall for a cutting insert with high accuracy. - In
FIG. 11 a cross section of the cutting tool inFIGS. 9 and 10 is shown. The cutting tool includes a coolingliquid flow entrance 45 in alower region 46 of the stem. A coolingliquid feeding conduit 47 extends from saidliquid flow entrance 45 to thehead 42 located on the top of thestem 41. A cooling liquidejector outlet nozzle 48 is connected to the coolingliquid feeding conduit 47 at thehead 42. The coolingliquid feeding conduit 47 is eccentric in relation to acentre axis 49 of said stem. The cooling liquidejector outlet nozzle 48 has a smaller cross sectional area than said coolingliquid feeding conduit 47. The cooling liquid ejector outlet nozzle may have a length between 1 mm and 3 mm. - The
head 42 includes a first, substantially flat surface in the form of avertical wall 50 on which the cuttinginsert 43 is located. The firstflat surface 50 extends in a plane in parallel with the length direction of thecutting tool 40. The head furthermore includes a second, substantiallyflat surface 51, which is arranged at right angles to the first flat surface. The secondflat surface 51 is further inclined with regard to a direction at right angles to the length direction of thecutting tool 40. The second surface forms aninclined wall 51 which extends in a plane P intersecting with a length axis 56 of the cooling liquid ejector outlet nozzle. The cooling liquid ejector outlet nozzle has anexit opening 55 in the inclined wall which extend perpendicularly to the direction of the inclined wall. A cooling liquid ejector outlet nozzle (48) opening for the cooling liquid is located in said second, inclinedsurface 51. - In
FIG. 12 a cuttinginsert 43 before use is shown. The cutting insert has the shape of an equilateral triangle or a square, which sides 52 meet atrounded corners 53. Astraight portion 54 is present at therounded corners 53.FIG. 13 shows acorner 53 of the cutting insert inFIG. 12 in magnified view. The rounded corners have a curvature radius between 0, 6 and 1, 2 mm and the straight portion has a length between 0, 07 and 0, 15 mm. Hence, the short straight portion has a curved portion located on both it sides. In use, the cutting insert is secured to said head such that said straight portion is coaxial with a rotational axis of said cutting tool.
Claims (2)
1. A holder for a cutting tool, comprising a body having a first channel for receiving a stem of the cutting tool, characterized in that the body has a second channel intersecting with said first channel, the holder further comprises a plunger having a third channel the cross section of which at least partly overlaps with the cross section of the first channel when the plunger is inserted into the body so as to enable the stem of the cutting tool to extend into the third channel when the stem of the cutting tool to extend into the third channel when the stem is inserted in the first channel, and that the holder further comprises a mechanism for locking the stem against movement relative to the body by means of the plunger.
2-24. (canceled)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/633,563 US20150174665A1 (en) | 2009-05-26 | 2015-02-27 | Holder for a cutting tool, a cutting tool and a cutting insert |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/SE2009/000270 WO2009145693A2 (en) | 2009-05-26 | 2009-05-26 | A holder for a cutting tool, a cutting tool and a cutting insert |
US201113321860A | 2011-11-22 | 2011-11-22 | |
US14/633,563 US20150174665A1 (en) | 2009-05-26 | 2015-02-27 | Holder for a cutting tool, a cutting tool and a cutting insert |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/321,860 Continuation US8992139B2 (en) | 2009-05-26 | 2009-05-26 | Holder for a cutting tool, a cutting tool and a cutting insert |
PCT/SE2009/000270 Continuation WO2009145693A2 (en) | 2009-05-26 | 2009-05-26 | A holder for a cutting tool, a cutting tool and a cutting insert |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150174665A1 true US20150174665A1 (en) | 2015-06-25 |
Family
ID=41377826
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/321,860 Active 2030-05-21 US8992139B2 (en) | 2009-05-26 | 2009-05-26 | Holder for a cutting tool, a cutting tool and a cutting insert |
US14/633,563 Abandoned US20150174665A1 (en) | 2009-05-26 | 2015-02-27 | Holder for a cutting tool, a cutting tool and a cutting insert |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/321,860 Active 2030-05-21 US8992139B2 (en) | 2009-05-26 | 2009-05-26 | Holder for a cutting tool, a cutting tool and a cutting insert |
Country Status (6)
Country | Link |
---|---|
US (2) | US8992139B2 (en) |
EP (1) | EP2435202B1 (en) |
JP (1) | JP5820371B2 (en) |
CN (1) | CN102448644A (en) |
ES (1) | ES2435265T3 (en) |
WO (1) | WO2009145693A2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102029412A (en) * | 2010-12-06 | 2011-04-27 | 安徽晶菱机床制造有限公司 | Self-cooling trapezoidal nut turning tool |
EP3135410B1 (en) * | 2015-08-31 | 2022-02-02 | Sandvik Intellectual Property AB | Metal cutting tool with coolant supply |
DE102015114456A1 (en) * | 2015-08-31 | 2017-03-02 | Kennametal Inc. | Adjustment system and tool |
CN113811410B (en) * | 2019-05-15 | 2024-08-06 | 住友电工硬质合金株式会社 | Boring tool holder and turning tool |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US991884A (en) * | 1908-11-12 | 1911-05-09 | John L Osgood | Twist-drill. |
US2468874A (en) * | 1946-11-07 | 1949-05-03 | Karl G R Hawkins | Torsion driven tool |
US2483096A (en) * | 1946-09-16 | 1949-09-27 | Joseph F Jaworowski | Boring tool |
DE2733705A1 (en) * | 1976-07-26 | 1978-02-02 | Trw Inc | DRILLING TOOL WITH CUTTING INSERT |
US4955767A (en) * | 1987-07-20 | 1990-09-11 | Heinz Kaiser Ag | Boring attachment |
US5024563A (en) * | 1989-09-08 | 1991-06-18 | North East Form Engineering, Inc. | Cutting apparatus |
US5125773A (en) * | 1990-11-02 | 1992-06-30 | Kiyoshi Miyashita | Boring bar |
EP0642859A1 (en) * | 1993-09-09 | 1995-03-15 | Plansee Tizit Gesellschaft M.B.H. | Cutting tool |
US5431513A (en) * | 1994-07-25 | 1995-07-11 | General Motors Corporation | Adjustable boring bar with improved accuracy |
JPH09290304A (en) * | 1996-04-26 | 1997-11-11 | Mitsubishi Materials Corp | Throwaway tip for poking cutter |
US5904450A (en) * | 1996-07-05 | 1999-05-18 | Iscar Ltd | Cutting insert with a rounded corner |
US6076999A (en) * | 1996-07-08 | 2000-06-20 | Sandvik Aktiebolag | Boring bar |
US6109841A (en) * | 1995-11-07 | 2000-08-29 | Johne & Co., Prazisionswerkzeuge GmbH | Drilling tool with replaceable bit |
JP2001079710A (en) * | 1999-07-09 | 2001-03-27 | Mitsubishi Materials Corp | Throwaway tip |
JP2001173633A (en) * | 1999-12-21 | 2001-06-26 | Toshiba Mach Co Ltd | Main spindle of machine tool |
US6543970B1 (en) * | 1999-10-22 | 2003-04-08 | Sandvik Aktiebolag | Double negative cutting insert for tools for chip removing machining |
US20030177643A1 (en) * | 2002-03-22 | 2003-09-25 | Noga Engineering, Ltd. | Hand tool and knife for deburring |
US20060013664A1 (en) * | 2004-07-15 | 2006-01-19 | Heinz Kaiser Ag | Boring tool |
US20070059110A1 (en) * | 2003-04-28 | 2007-03-15 | Taegutec Ltd. | Tool holder assembly for multifunction machine and adapter for the same |
US20080191429A1 (en) * | 2004-08-31 | 2008-08-14 | Raymond Tugend | Bore Head |
US8393831B2 (en) * | 2009-06-02 | 2013-03-12 | Tungaloy, Corporation | Indexable drill and drill body |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US993395A (en) * | 1909-02-16 | 1911-05-30 | Sidney Newbold | Drill. |
BE439285A (en) * | 1939-07-28 | |||
DE743530C (en) | 1941-02-16 | 1943-12-28 | Hans Hofer | Device for the detachable connection of two parts, in particular mandrel or chuck for machine tools |
US2363215A (en) | 1942-12-18 | 1944-11-21 | Loraine L Williams | Holder for boring bars |
US2393777A (en) * | 1944-04-05 | 1946-01-29 | Gordon W Hughes | Tool |
US2826420A (en) * | 1954-01-08 | 1958-03-11 | Karl A Klingler | Hydraulic holding means for chucks and the like |
US3023995A (en) * | 1958-07-21 | 1962-03-06 | William C N Hopkins | Sealing and coupling structures |
US3044323A (en) * | 1959-09-21 | 1962-07-17 | De Vlieg Machine Co | Adjustable boring head |
US4093052A (en) * | 1974-01-23 | 1978-06-06 | Forenade Fabriksverken | Fluid actuated coupling assembly |
EP0026082B1 (en) | 1979-09-21 | 1983-07-20 | Wimet Limited | Drill |
FR2501088A1 (en) | 1981-03-03 | 1982-09-10 | Lormac Automation | Combined hollow spindle and chuck - uses housing to locate annular rotary jack housing and split conical sleeve actuating chuck |
DE3401200A1 (en) | 1984-01-14 | 1985-07-25 | Komet Stahlhalter- Und Werkzeugfabrik Robert Breuning Gmbh, 7122 Besigheim | Drilling and turning-out tool |
JPS6281506U (en) * | 1985-11-11 | 1987-05-25 | ||
JPS62195405U (en) * | 1986-06-04 | 1987-12-12 | ||
DE9100115U1 (en) | 1991-01-07 | 1991-03-28 | ETP Transmission AB, Linköping | Device consisting of tool and tool chuck |
IL99297A (en) * | 1991-08-26 | 1995-11-27 | Iscar Ltd | Sealing bushing for the shaft for a work piece |
WO1993018880A1 (en) | 1992-03-26 | 1993-09-30 | Spirex Tools Ab | Hydraulic bushing or tool holder with expandable inner and outer sleeves |
SE501705C2 (en) * | 1993-03-22 | 1995-04-24 | Etp Transmission Ab | Protective device for chuck with integrated cone or machine spindle |
DE4327698A1 (en) * | 1993-08-18 | 1995-02-23 | Widia Heinlein Gmbh | Chuck and associated tool |
SE509224C2 (en) | 1994-05-19 | 1998-12-21 | Sandvik Ab | Inserts |
AT1324U1 (en) | 1995-10-11 | 1997-03-25 | Plansee Tizit Gmbh | TOOL WITH INSIDE COOLANT SUPPLY |
JPH1076404A (en) | 1996-02-28 | 1998-03-24 | Sumitomo Electric Ind Ltd | Cutting tool for lathe turning |
SE512318C2 (en) * | 1997-08-29 | 2000-02-28 | Sandvik Ab | Utilities Connection |
SE518027C2 (en) | 2000-04-20 | 2002-08-20 | Sandvik Ab | Cutting tool system and means for precisely positioning the same |
TW509116U (en) | 2001-12-18 | 2002-11-01 | Ind Tech Res Inst | Device for clipping and tightening spindle of honing and milling machine |
SE527378C2 (en) | 2003-05-08 | 2006-02-21 | Sandvik Intellectual Property | Cutters for turning have an edge phase |
US7112020B2 (en) * | 2003-06-10 | 2006-09-26 | Kennametal Inc. | Cutting tool configured for improved engagement with a tool holder |
AT7296U1 (en) | 2003-10-17 | 2005-01-25 | Ceratizit Austria Gmbh | TOOL FOR THE PRODUCTION AND / OR INTERNAL PROCESSING OF HOLES |
US7506877B1 (en) * | 2005-01-13 | 2009-03-24 | Henderson David L | Bit or tool extension and method of making same |
SE528813C2 (en) | 2005-03-16 | 2007-02-20 | Sandvik Intellectual Property | Flat cutter with heel in connection with the beetle |
EP1883361B1 (en) * | 2005-05-17 | 2011-03-02 | IMT Integral Medizintechnik AG | Percussive tool, in particular for surgical use |
SE530581C2 (en) | 2006-11-28 | 2008-07-08 | Sandvik Intellectual Property | Chip separation tool and basic body comprising two channels for a fluid |
CN201108970Y (en) * | 2007-11-23 | 2008-09-03 | 刘晓明 | Hydraulic buckling type tool fixture |
-
2009
- 2009-05-26 JP JP2012512997A patent/JP5820371B2/en active Active
- 2009-05-26 EP EP09755131.1A patent/EP2435202B1/en not_active Revoked
- 2009-05-26 CN CN2009801595168A patent/CN102448644A/en active Pending
- 2009-05-26 WO PCT/SE2009/000270 patent/WO2009145693A2/en active Application Filing
- 2009-05-26 ES ES09755131T patent/ES2435265T3/en active Active
- 2009-05-26 US US13/321,860 patent/US8992139B2/en active Active
-
2015
- 2015-02-27 US US14/633,563 patent/US20150174665A1/en not_active Abandoned
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US991884A (en) * | 1908-11-12 | 1911-05-09 | John L Osgood | Twist-drill. |
US2483096A (en) * | 1946-09-16 | 1949-09-27 | Joseph F Jaworowski | Boring tool |
US2468874A (en) * | 1946-11-07 | 1949-05-03 | Karl G R Hawkins | Torsion driven tool |
DE2733705A1 (en) * | 1976-07-26 | 1978-02-02 | Trw Inc | DRILLING TOOL WITH CUTTING INSERT |
US4955767A (en) * | 1987-07-20 | 1990-09-11 | Heinz Kaiser Ag | Boring attachment |
US5024563A (en) * | 1989-09-08 | 1991-06-18 | North East Form Engineering, Inc. | Cutting apparatus |
US5125773A (en) * | 1990-11-02 | 1992-06-30 | Kiyoshi Miyashita | Boring bar |
EP0642859A1 (en) * | 1993-09-09 | 1995-03-15 | Plansee Tizit Gesellschaft M.B.H. | Cutting tool |
US5431513A (en) * | 1994-07-25 | 1995-07-11 | General Motors Corporation | Adjustable boring bar with improved accuracy |
US6109841A (en) * | 1995-11-07 | 2000-08-29 | Johne & Co., Prazisionswerkzeuge GmbH | Drilling tool with replaceable bit |
JPH09290304A (en) * | 1996-04-26 | 1997-11-11 | Mitsubishi Materials Corp | Throwaway tip for poking cutter |
US5904450A (en) * | 1996-07-05 | 1999-05-18 | Iscar Ltd | Cutting insert with a rounded corner |
US6076999A (en) * | 1996-07-08 | 2000-06-20 | Sandvik Aktiebolag | Boring bar |
JP2001079710A (en) * | 1999-07-09 | 2001-03-27 | Mitsubishi Materials Corp | Throwaway tip |
US6543970B1 (en) * | 1999-10-22 | 2003-04-08 | Sandvik Aktiebolag | Double negative cutting insert for tools for chip removing machining |
JP2001173633A (en) * | 1999-12-21 | 2001-06-26 | Toshiba Mach Co Ltd | Main spindle of machine tool |
US20030177643A1 (en) * | 2002-03-22 | 2003-09-25 | Noga Engineering, Ltd. | Hand tool and knife for deburring |
US20070059110A1 (en) * | 2003-04-28 | 2007-03-15 | Taegutec Ltd. | Tool holder assembly for multifunction machine and adapter for the same |
US20060013664A1 (en) * | 2004-07-15 | 2006-01-19 | Heinz Kaiser Ag | Boring tool |
US20080191429A1 (en) * | 2004-08-31 | 2008-08-14 | Raymond Tugend | Bore Head |
US8393831B2 (en) * | 2009-06-02 | 2013-03-12 | Tungaloy, Corporation | Indexable drill and drill body |
Also Published As
Publication number | Publication date |
---|---|
EP2435202A4 (en) | 2012-10-17 |
US8992139B2 (en) | 2015-03-31 |
EP2435202A2 (en) | 2012-04-04 |
WO2009145693A2 (en) | 2009-12-03 |
JP2012513314A (en) | 2012-06-14 |
JP5820371B2 (en) | 2015-11-24 |
WO2009145693A3 (en) | 2010-04-01 |
US20120063861A1 (en) | 2012-03-15 |
WO2009145693A8 (en) | 2011-05-26 |
ES2435265T3 (en) | 2013-12-17 |
CN102448644A (en) | 2012-05-09 |
EP2435202B1 (en) | 2013-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20150174665A1 (en) | Holder for a cutting tool, a cutting tool and a cutting insert | |
JP5800017B2 (en) | Cutting insert clamping device, cutting tool and cutting insert | |
WO2016117461A1 (en) | Bit | |
KR101614568B1 (en) | Removable insert-type cutting instrument | |
US9468977B2 (en) | Cylindrical grinding process and as-ground part resulting from such process | |
JP5056019B2 (en) | Blade replacement type cutting tool | |
US20150306676A1 (en) | Hydraulic expansion chuck | |
JP5725111B2 (en) | Cutting tools | |
US10507533B2 (en) | Drill | |
KR20110081218A (en) | Tool for cutting hole inner surface and method of cutting hole inner surface | |
US11305359B2 (en) | Device for securing a boring bar | |
JP5234682B2 (en) | Tool holder | |
CN111479644A (en) | Tool for machining workpieces | |
JP2013504444A (en) | Reamer for cutting workpieces | |
KR101575567B1 (en) | The boring bar | |
EP2662169A2 (en) | Cutting tool | |
KR102232345B1 (en) | Interchangeable ball mill | |
US20200030894A1 (en) | Drilling Tool Comprising A Replaceable Cutting Disk | |
JP7545789B2 (en) | Hole finishing tool and method for manufacturing hole finishing product | |
US20060013665A1 (en) | Tool holder assembly | |
CN205342099U (en) | Pipe fitting terminal surface chamfer device | |
JP5309866B2 (en) | Claw mechanism for throwaway rotary cutting tools and throwaway inserts | |
CN217121973U (en) | Adjustable grinding reamer for machining precision holes of hydraulic parts of engineering machinery | |
US20210129231A1 (en) | Drilling tool | |
EP3199274A1 (en) | A cutting tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GKN AEROSPACE SWEDEN AB, SWEDEN Free format text: CHANGE OF NAME;ASSIGNOR:VOLVO AERO AKTIEBOLAG;REEL/FRAME:035111/0857 Effective date: 20121001 |
|
AS | Assignment |
Owner name: VOLVO AERO CORPORATION, SWEDEN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WRETLAND, ANDERS;HAGWARD, TORE;REEL/FRAME:035180/0601 Effective date: 20111205 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |