US20150171086A1 - Selective Growth of a Work-Function Metal in a Replacement Metal Gate of a Semiconductor Device - Google Patents
Selective Growth of a Work-Function Metal in a Replacement Metal Gate of a Semiconductor Device Download PDFInfo
- Publication number
- US20150171086A1 US20150171086A1 US14/630,504 US201514630504A US2015171086A1 US 20150171086 A1 US20150171086 A1 US 20150171086A1 US 201514630504 A US201514630504 A US 201514630504A US 2015171086 A1 US2015171086 A1 US 2015171086A1
- Authority
- US
- United States
- Prior art keywords
- recess
- fet
- layer
- metal
- wfm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 57
- 239000002184 metal Substances 0.000 title claims abstract description 57
- 239000004065 semiconductor Substances 0.000 title claims abstract description 45
- 239000000758 substrate Substances 0.000 claims abstract description 38
- 230000004888 barrier function Effects 0.000 claims abstract description 36
- 239000007769 metal material Substances 0.000 claims abstract description 16
- 230000005669 field effect Effects 0.000 claims abstract description 15
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 10
- 229910000449 hafnium oxide Inorganic materials 0.000 claims description 3
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 27
- 239000000463 material Substances 0.000 abstract description 22
- 230000008569 process Effects 0.000 abstract description 13
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 abstract description 7
- 229910052721 tungsten Inorganic materials 0.000 abstract description 7
- 239000010937 tungsten Substances 0.000 abstract description 7
- 238000013459 approach Methods 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 93
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 19
- 229920005591 polysilicon Polymers 0.000 description 19
- 238000000151 deposition Methods 0.000 description 14
- 230000008021 deposition Effects 0.000 description 12
- 238000012545 processing Methods 0.000 description 12
- 125000006850 spacer group Chemical group 0.000 description 9
- 238000000231 atomic layer deposition Methods 0.000 description 7
- 238000005229 chemical vapour deposition Methods 0.000 description 7
- 238000000059 patterning Methods 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000000226 double patterning lithography Methods 0.000 description 4
- 150000002736 metal compounds Chemical class 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000000873 masking effect Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 238000001289 rapid thermal chemical vapour deposition Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000000038 ultrahigh vacuum chemical vapour deposition Methods 0.000 description 2
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229910002451 CoOx Inorganic materials 0.000 description 1
- 229910003182 MoCx Inorganic materials 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 229910019897 RuOx Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000313 electron-beam-induced deposition Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000007737 ion beam deposition Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- VRIVJOXICYMTAG-IYEMJOQQSA-L iron(ii) gluconate Chemical compound [Fe+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O VRIVJOXICYMTAG-IYEMJOQQSA-L 0.000 description 1
- 229910000311 lanthanide oxide Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 208000001491 myopia Diseases 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
- H01L27/0924—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31144—Etching the insulating layers by chemical or physical means using masks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32139—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823821—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823828—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
- H01L21/823842—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different gate conductor materials or different gate conductor implants, e.g. dual gate structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
- H01L27/0922—Combination of complementary transistors having a different structure, e.g. stacked CMOS, high-voltage and low-voltage CMOS
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/4966—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/517—Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
Definitions
- This invention relates generally to the field of semiconductors and, more particularly, to forming a replacement metal gate (RMG) of a semiconductor device.
- RMG replacement metal gate
- MOS transistors using polysilicon gate electrodes are known.
- Polysilicon material is able to tolerate high temperature processing better than most metals, so that polysilicon can be annealed at high temperatures along with source and drain regions.
- polysilicon blocks ion implantation of doped atoms into a channel region, facilitating the formation of self-aligned source and drain structures after gate patterning is completed.
- polysilicon materials as compared to most metal materials, result in polysilicon gate electrodes that operate at much slower speeds than gates made of metallic materials.
- One way of compensating for the higher resistance of polysilicon materials is to perform extensive silicide processing on the polysilicon materials so that the speed of operation of the polysilicon materials is increased to acceptable levels.
- Another way of compensating for the higher resistance polysilicon materials is to replace a polysilicon gate device with a metal gate device.
- This replacement can be done with a replacement metal gate (RMG) process, wherein the higher temperature processing is performed while the polysilicon is present in the substrate, and, after such processing, the polysilicon is removed and replaced with metal to form the replacement metal gate.
- RMG replacement metal gate
- a device with a disposable polysilicon gate is processed, and the disposable gate and dielectrics are etched away, exposing an original gate oxide.
- the disposable polysilicon gate is then replaced by a metal gate having lower resistivity than the polysilicon material.
- RMG is desirable for achieving a device target at 20 nm and beyond.
- gate resistance increases and more low-resistance metal such as tungsten (W) is needed relative to higher resistance work-function metal (WFM) such as TiN. Therefore, it is necessary for gate WFM chamfering to be performed.
- device 100 comprises a stack of layers (i.e., a substrate 102 , a source/drain (S/D) layer 104 formed over the substrate, and an interlayer dielectric (IDL) layer 106 formed over the S/D layer 104 ), and a recess 110 formed therein.
- S/D source/drain
- IDL interlayer dielectric
- Device 100 further comprises a set of spacers 112 positioned adjacent recess 110 , and a plurality of layers formed over device 100 and within recess 110 , i.e., a hafnium oxide (HfO2) layer 114 , a barrier layer 116 (e.g., titanium nitride (TiN)), a work-function (WF) layer 118 , a capping layer 120 (e.g., TiN), and an organic dielectric layer (ODL) 122 or any other patterning mask material, which is recessed.
- HfO2 hafnium oxide
- barrier layer 116 e.g., titanium nitride (TiN)
- WF work-function
- WF work-function
- capping layer 120 e.g., TiN
- ODL organic dielectric layer
- a pinch-off of TiN 220 causes a seam/void 230 to form in recess 210 , which results in a non-uniform or catastrophic metal recess. Therefore, this approach is also undesirable.
- a replacement metal gate (RMG) of a semiconductor device In general, approaches for forming a replacement metal gate (RMG) of a semiconductor device, are disclosed. Specifically, provided is a p-channel field effect transistor (p-FET) and an n-channel field effect transistor (n-FET) formed over a substrate, the p-FET and the n-FET each having a recess formed therein, a high-k layer, a barrier layer, and an optional metal layer formed within each recess, a work-function metal (WFM) selectively grown within the recess of the n-FET, and a metal material (e.g., Tungsten) formed within each recess.
- WFM work-function metal
- the risk of mask materials filling into each gate recess is reduced.
- the selective WFM growth e.g., of a single-element metal as opposed to a metal compound improves fill-in of the metal material, which lowers gate resistance in the device.
- One aspect of the present invention includes method for forming a replacement metal gate (RMG) of a semiconductor device, the method comprising: providing a set of field effect transistors (FET) formed over a substrate, each of the set of FETs having a recess formed therein; forming a high-k layer over the semiconductor device and within each recess; forming a barrier layer over the high-k layer; forming an organic dielectric layer (ODL) within each recess; recessing the ODL to a desired height within each recess; removing the high-k layer and the barrier layer from atop the semiconductor device selective to the ODL within each recess; removing the ODL from within each recess; selectively growing a work-function metal (WFM) within one of the recesses; and forming a metal material within each recess.
- FET field effect transistors
- WFM work-function metal
- Another aspect of the present invention includes a method for selectively growing a work-function metal (WFM) within a replacement metal gate (RMG) of a semiconductor device, the method comprising: providing a p-channel field effect transistor (p-FET) and an n-channel field effect transistor (n-FET) formed over a substrate, the p-FET and the n-FET each having a recess formed therein; forming a high-k layer over the semiconductor device and within each recess; forming a barrier layer over the high-k layer; forming an organic dielectric layer (ODL) within each recess; recessing the ODL to a desired height within each recess; removing the high-k layer and the barrier layer from atop the semiconductor device selective to the ODL within each recess; removing the ODL from within each recess; and selectively growing a work-function metal (WFM) within one of the recesses.
- WFM work-function metal
- Yet another aspect of the present invention includes a semiconductor device, comprising: a p-channel field effect transistor (p-FET) and an n-channel field effect transistor (n-FET) formed over a substrate, the p-FET and the n-FET each having a recess formed therein; a high-k layer formed within each recess; a barrier layer formed over the high-k layer within each recess; a work-function metal (WFM) selectively grown within the recess of the n-FET; and a metal material formed within each recess.
- p-FET p-channel field effect transistor
- n-FET n-channel field effect transistor
- FIG. 1 shows a cross-sectional view of a WFM recess process in a prior art semiconductor device
- FIG. 2 shows a cross-sectional view of another WFM recess process in a prior art semiconductor device
- FIG. 3 shows a cross-sectional view of a semiconductor device following a dummy polysilicon pull according to illustrative embodiments
- FIG. 4 shows a cross-sectional view of the semiconductor device following deposition of a first barrier layer according to illustrative embodiments
- FIG. 5 shows a cross-sectional view of the semiconductor device following deposition of a metal layer according to illustrative embodiments
- FIG. 6 shows a cross-sectional view of the semiconductor device following deposition and patterning of the ODL according to illustrative embodiments
- FIG. 7 shows a cross-sectional view of the semiconductor device following metal chamfering to remove the first barrier layer selective to the ODL according to illustrative embodiments
- FIG. 8 shows a cross-sectional view of the semiconductor device following removal of the ODL according to illustrative embodiments
- FIG. 9 shows a cross-sectional view of the semiconductor device following removal of the cobalt from the p-FET according to illustrative embodiments
- FIG. 10 shows a cross-sectional view of the semiconductor device following selective growth of the n-FET WFM according to illustrative embodiments
- FIG. 11 shows a cross-sectional view of the semiconductor device following formation of a second barrier layer and a metal material according to illustrative embodiments.
- FIG. 12 shows a cross-sectional view of a semiconductor device, in which no metal layer is present, following formation of a second barrier layer and a metal material according to illustrative embodiments.
- first element such as a first structure, e.g., a first layer
- second element such as a second structure, e.g. a second layer
- intervening elements such as an interface structure, e.g. interface layer
- depositing may include any now known or later developed techniques appropriate for the material to be deposited including but not limited to, for example: chemical vapor deposition (CVD), low-pressure CVD (LPCVD), plasma-enhanced CVD (PECVD), semi-atmosphere CVD (SACVD) and high density plasma CVD (HDPCVD), rapid thermal CVD (RTCVD), ultra-high vacuum CVD (UHVCVD), limited reaction processing CVD (LRPCVD), metal-organic CVD (MOCVD), sputtering deposition, ion beam deposition, electron beam deposition, laser assisted deposition, thermal oxidation, thermal nitridation, spin-on methods, physical vapor deposition (PVD), atomic layer deposition (ALD), chemical oxidation, molecular beam epitaxy (MBE), plating, evaporation.
- CVD chemical vapor deposition
- LPCVD low-pressure CVD
- PECVD plasma-enhanced CVD
- SACVD semi-
- a replacement metal gate (RMG) of a semiconductor device is disclosed.
- p-FET p-channel field effect transistor
- n-FET n-channel field effect transistor
- WFM work-function metal
- a metal material e.g., Tungsten
- FIG. 3 shows a cross sectional view of a semiconductor device 300 according to an embodiment of the invention.
- Device 300 comprises a substrate 302 having an n-FET 304 and a p-FET 306 formed thereon, n-FET 304 and p-FET 306 each having a recess 310 formed therein. Each recess 310 is formed following a dummy polysilicon pull, as is known in the art.
- Device 300 further comprises source/drains (S/D) 312 , a liner layer 314 (e.g., SiN), an oxide interlayer dielectric (ILD) 318 , and a set of spacers 320 .
- S/D source/drains
- liner layer 314 e.g., SiN
- ILD oxide interlayer dielectric
- ILD 318 may be formed by a deposition technique known in the art, for example CVD, high-density plasma chemical vapor deposition (HDPCVD), ALD, spin-on, sputtering, or other suitable methods. ILD 318 may also contain a material that has a high etching selectivity with the polysilicon of substrate 302 . As shown, each recess 310 is formed between each set of spacers 320 .
- substrate 302 includes a silicon substrate, e.g., a wafer, either planar or finned.
- substrate as used herein is intended to include a semiconductor substrate, a semiconductor epitaxial layer deposited or otherwise formed on a semiconductor substrate and/or any other type of semiconductor body, and all such structures are contemplated as falling within the scope of the present invention.
- the semiconductor substrate may comprise a semiconductor wafer (e.g., silicon, SiGe, or an SOI wafer) or one or more die on a wafer, and any epitaxial layers or other type semiconductor layers formed thereover or associated therewith.
- a portion or entire semiconductor substrate may be amorphous, polycrystalline, or single-crystalline.
- the semiconductor substrate employed in the present invention may also comprise a hybrid oriented (HOT) semiconductor substrate in which the HOT substrate has surface regions of different crystallographic orientation.
- the semiconductor substrate may be doped, undoped or contain doped regions and undoped regions therein.
- the semiconductor substrate may contain regions with strain and regions without strain therein, or contain regions of tensile strain and compressive strain.
- substrate 302 may be planar or finned.
- fins usually include silicon and form the body of the transistor device.
- the channel of the transistor is formed in this vertical fin.
- a gate is provided over (e.g., wrapping around) the fin. This type of gate allows greater control of the channel.
- Other advantages of FinFET devices include reduced short channel effect and higher current flow. FinFET devices offer several advantages over traditional, planar devices. These advantages may include better chip area efficiency, improved carrier mobility, and fabrication processing that is compatible with the fabrication processing of planar devices. Thus, it may be desirable to design an integrated circuit (IC) chip using FinFET devices for a portion of, or the entire IC chip.
- IC integrated circuit
- N-FET 304 and p-FET 306 may be fabricated using any suitable process including one or more photolithography and etch processes.
- the photolithography process may include forming a photoresist layer (not shown) overlying substrate 302 (e.g., on a silicon layer), exposing the resist to a pattern, performing post-exposure bake processes, and developing the resist to form a masking element including the resist.
- the masking element may then be used to form n-FET 304 and p-FET 306 into the silicon layer, e.g., using reactive ion etch (RIE) and/or other suitable processes.
- RIE reactive ion etch
- n-FET 304 and p-FET 306 are formed by a double-patterning lithography (DPL) process.
- DPL is a method of constructing a pattern on a substrate by dividing the pattern into two interleaved patterns. DPL allows enhanced feature (e.g., fin) density.
- high-k layer 424 and a barrier layer 426 are formed over device 400 , including within each recess 410 .
- high-k layer 424 comprises a hafnium oxide (HfO2) layer deposited to thickness of approximately 2 nm
- barrier layer 426 comprises a titanium nitride (TiN) layer deposited to a thickness of approximately 1 nm.
- High-k layer 424 and barrier layer 426 may be formed using ALD, which involves the deposition of successive monolayers over a substrate within a deposition chamber typically maintained at sub-atmospheric pressure.
- An exemplary ALD method includes feeding a single vaporized precursor to a deposition chamber effective to form a first monolayer over a substrate received therein. Thereafter, the flow of the first deposition precursor is ceased and an inert purge gas is flowed through the chamber effective to remove any remaining first precursor, which is not adhering to the substrate from the chamber. Subsequently, a second vapor precursor different from the first is flowed to the chamber effective to form a second monolayer on/with the first monolayer. The second monolayer might react with the first monolayer. Additional precursors can form successive monolayers, or the above process can be repeated until a desired thickness and composition layer has been formed over the substrate.
- high-k generally refers to a dielectric material having a dielectric constant (k) value greater than that of silicon oxide.
- the high-k material has a dielectric constant greater than 5, more preferably greater than about 10 .
- Exemplary high-k materials include, without limitation, HfO 2 , ZrO 2 , Al 2 O 3 , TiO 2 , Ta 2 O 5 , lanthanide oxides and mixtures thereof, silicates and materials such as YSZ (yttria-stabilized zirconia), BST, BT, ST, and SBT.
- Barrier layer 426 may comprise metals, metal nitrides, and other conductive metal compounds from vapor phase reactants.
- Metals, metal nitrides, metal carbides, metal borides, conductive oxides and other conductive metal compounds that can serve as substrate materials over which noble metals can be selectively deposited may include, for example and without limitation, selections from the group consisting of Ta, TaN, TaC x , TaB x , Ti, TiN, TiC x , TiB x , Nb, NbN, NbC x , NbB x Mo, MoN, MoC x , MoB x , W, WN, WC x , WB x , V, Cr, Fe, Cu, Co, Ni, Cd, Zn, Al, Ag, Au, Ru, RuO x , Rh, Pt, Pd, Ir, IrO x and Os.
- a single-element metal layer 530 (e.g., cobalt) is formed over barrier layer 526 .
- Metal layer 530 may be formed (e.g., using ALD) to a thickness of approximately 1 nm, which is adequate to act as a seeding layer for a subsequent selective growth of a WMF, which is preferably a single-element, “true” metal (e.g., Co, Ti, Al, etc.), as opposed to a metal compound (e.g., TiN, TiO2, etc.).
- Metal layer 530 conforms to device 500 , including within each recess 510 , as shown.
- ODL 632 is formed within each recess 610 to a desired height ‘H’.
- ODL 632 or other similar masking materials (e.g., an organic planarization layer (OPL)), could be used as a metal chamfer mask.
- ODL 632 may include a photo-sensitive organic polymer or an etch type organic compound.
- the photo-sensitive organic polymer may be polyacrylate resin, epoxy resin, phenol resin, polyamide resin, polyimide resin, unsaturated polyester resin, polyphenylenether resin, polyphenylenesulfide resin, or benzocyclobutene (BCB). These materials may be formed within each recess 610 using spin-on techniques or vapor deposition techniques.
- a metal chamfer is then performed, as shown in FIG. 7 .
- a wet/dry etch is performed to remove of high-k layer 724 , barrier layer 726 , and metal layer 730 from device 700 selective to ODL 732 within each recess 710 .
- ODL 832 is then removed from within each recess 810 , followed by removal of metal layer 930 from p-FET 906 , as shown in FIG. 9 .
- a WFM 1034 (e.g., a single-element metal, which can serve to tune threshold voltage for NFET) is formed over metal layer 1030 within recess 1010 of n-FET 1004 .
- WFM 1034 is selectively grown over metal layer 1030 and may comprise aluminum (Al) or an Al/Ti multilayer stack, where the Al/Ti thickness can be tuned for target composition ratio to achieve the desired work function. Both Al and Ti could be selectively grown on the seeding metal layer 1030 . Since Co can be oxidized in previous patterning steps, an optional in-situ H2 plasma treatment subsequently performed reduces CoOx back to Co to achieve the selective growth.
- an additional drive-in anneal may be needed for Co/AI or Co/Al/Ti to be mixed. It will be appreciated that the selective growth of NFET WFM 1034 eliminates the need for an additional chamfer because there is no growth on the dielectric top (i.e., horizontal) surfaces of HfO2 layer 1024 , barrier layer 1026 , and metal layer 1030 , or on the sidewalls of spacers 1020 .
- a second barrier layer 1136 (e.g., TiN) is formed over device 1100 and within each recess 1110 , followed by deposition and planarization of a metal material 1140 (e.g., Tungsten) within each recess 1110 .
- second barrier layer 1136 is formed over WFM 1134 and the sidewalls of spacers 1120 in recess 1110 of n-FET 1104 , and over the sidewall of spacers 1120 in recess 1110 of p-FET 1106 .
- Metal material 1140 is deposited over all of device 1100 , and removed, e.g., via CMP, selective to ILD 118 and set of spacers 1120 . As such, the RMG stacks are formed for both n-FET 1104 and p-FET 1106 .
- FIG. 12 another embodiment for selectively growing WFM within the n-FET is shown.
- processing is similar to that shown in FIGS. 3-11 .
- no metal layer e.g., cobalt
- WFM 1234 is selectively grown directly on barrier layer 1226 , and subsequently removed from p-FET 1206 , resulting in device 1200 shown in FIG. 12 .
- second barrier layer 1236 is formed over device 1200 and within each recess 1210 , followed by deposition and planarization of metal material 1240 (e.g., Tungsten) within each recess 1210 .
- metal material 1240 e.g., Tungsten
- second barrier layer 1236 is formed over WFM 1234 and the sidewalls of spacers 1220 in recess 1210 of n-FET 1204 , and over the sidewall of spacers 1220 in recess 1210 of p-FET 1206 .
- embodiments of the invention have at least the following advantages.
- design tools can be provided and configured to create the datasets used to pattern the semiconductor layers as described herein.
- data sets can be created to perform the processing steps described herein, including: providing a p-channel field effect transistor (p-FET) and an n-channel field effect transistor (n-FET) formed over a substrate, the p-FET and the n-FET each having a recess formed therein; forming a high-k layer over the semiconductor device and within each recess; forming a barrier layer over the high-k layer; forming an organic dielectric layer (ODL) within each recess; recessing the ODL to a desired height within each recess; removing the high-k layer and the barrier layer from atop the semiconductor device selective to the ODL within each recess; removing the ODL from within each recess; selectively growing a work-function metal (WFM) within one of the recesses; forming a second barrier layer within each recess after the WFM is selective
- WFM work
- Such design tools can include a collection of one or more modules and can also be comprised of hardware, software or a combination thereof.
- a tool can be a collection of one or more software modules, hardware modules, software/hardware modules or any combination or permutation thereof.
- a tool can be a computing device or other appliance on which software runs or in which hardware is implemented.
- a module might be implemented utilizing any form of hardware, software, or a combination thereof. For example, one or more processors, controllers, ASICs, PLAs, logical components, software routines or other mechanisms might be implemented to make up a module.
- the various modules described herein might be implemented as discrete modules or the functions and features described can be shared in part or in total among one or more modules.
- the various features and functionality described herein may be implemented in any given application and can be implemented in one or more separate or shared modules in various combinations and permutations. Even though various features or elements of functionality may be individually described or claimed as separate modules, one of ordinary skill in the art will understand that these features and functionality can be shared among one or more common software and hardware elements, and such description shall not require or imply that separate hardware or software components are used to implement such features or functionality.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Approaches for forming a replacement metal gate (RMG) of a semiconductor device, are disclosed. Specifically provided is a p-channel field effect transistor (p-FET) and an n-channel field effect transistor (n-FET) formed over a substrate, the p-FET and the n-FET each having a recess formed therein, a high-k layer and a barrier layer formed within each recess, a work-function metal (WFM) selectively grown within the recess of the n-FET, wherein the high-k layer, barrier layer, and WFM are each recessed to a desired height within the recesses, and a metal material (e.g., Tungsten) formed within each recess. By providing a WFM chamfer earlier in the process, the risk of mask materials filling into each gate recess is reduced. Furthermore, the selective WFM growth improves fill-in of the metal material, which lowers gate resistance in the device.
Description
- 1. Technical Field
- This invention relates generally to the field of semiconductors and, more particularly, to forming a replacement metal gate (RMG) of a semiconductor device.
- 2. Related Art
- Metal-oxide-semiconductor (MOS) transistors using polysilicon gate electrodes are known. Polysilicon material is able to tolerate high temperature processing better than most metals, so that polysilicon can be annealed at high temperatures along with source and drain regions. In addition, polysilicon blocks ion implantation of doped atoms into a channel region, facilitating the formation of self-aligned source and drain structures after gate patterning is completed.
- The high resistivities of polysilicon materials, as compared to most metal materials, result in polysilicon gate electrodes that operate at much slower speeds than gates made of metallic materials. One way of compensating for the higher resistance of polysilicon materials is to perform extensive silicide processing on the polysilicon materials so that the speed of operation of the polysilicon materials is increased to acceptable levels.
- Another way of compensating for the higher resistance polysilicon materials is to replace a polysilicon gate device with a metal gate device. This replacement can be done with a replacement metal gate (RMG) process, wherein the higher temperature processing is performed while the polysilicon is present in the substrate, and, after such processing, the polysilicon is removed and replaced with metal to form the replacement metal gate. More specifically, a device with a disposable polysilicon gate is processed, and the disposable gate and dielectrics are etched away, exposing an original gate oxide. The disposable polysilicon gate is then replaced by a metal gate having lower resistivity than the polysilicon material.
- RMG is desirable for achieving a device target at 20 nm and beyond. However, as gate dimensions shrink, gate resistance increases and more low-resistance metal such as tungsten (W) is needed relative to higher resistance work-function metal (WFM) such as TiN. Therefore, it is necessary for gate WFM chamfering to be performed. This is demonstrated in
prior art device 100 ofFIG. 1 . Here,device 100 comprises a stack of layers (i.e., asubstrate 102, a source/drain (S/D)layer 104 formed over the substrate, and an interlayer dielectric (IDL)layer 106 formed over the S/D layer 104), and arecess 110 formed therein.Device 100 further comprises a set ofspacers 112 positionedadjacent recess 110, and a plurality of layers formed overdevice 100 and withinrecess 110, i.e., a hafnium oxide (HfO2)layer 114, a barrier layer 116 (e.g., titanium nitride (TiN)), a work-function (WF)layer 118, a capping layer 120 (e.g., TiN), and an organic dielectric layer (ODL) 122 or any other patterning mask material, which is recessed. However, tight PC dimensions make metal chamfering challenging. In this embodiment, a narrow gap (e.g., less than 2 nm) is difficult to fill in with the ODL or any other patterning mask material. - In another approach, shown in
FIG. 2 , a pinch-off ofTiN 220 causes a seam/void 230 to form inrecess 210, which results in a non-uniform or catastrophic metal recess. Therefore, this approach is also undesirable. - In general, approaches for forming a replacement metal gate (RMG) of a semiconductor device, are disclosed. Specifically, provided is a p-channel field effect transistor (p-FET) and an n-channel field effect transistor (n-FET) formed over a substrate, the p-FET and the n-FET each having a recess formed therein, a high-k layer, a barrier layer, and an optional metal layer formed within each recess, a work-function metal (WFM) selectively grown within the recess of the n-FET, and a metal material (e.g., Tungsten) formed within each recess. By performing a chamfer of the high-k layer, barrier layer, and the metal layer earlier in the process, the risk of mask materials filling into each gate recess is reduced. Furthermore, the selective WFM growth (e.g., of a single-element metal as opposed to a metal compound) improves fill-in of the metal material, which lowers gate resistance in the device.
- One aspect of the present invention includes method for forming a replacement metal gate (RMG) of a semiconductor device, the method comprising: providing a set of field effect transistors (FET) formed over a substrate, each of the set of FETs having a recess formed therein; forming a high-k layer over the semiconductor device and within each recess; forming a barrier layer over the high-k layer; forming an organic dielectric layer (ODL) within each recess; recessing the ODL to a desired height within each recess; removing the high-k layer and the barrier layer from atop the semiconductor device selective to the ODL within each recess; removing the ODL from within each recess; selectively growing a work-function metal (WFM) within one of the recesses; and forming a metal material within each recess.
- Another aspect of the present invention includes a method for selectively growing a work-function metal (WFM) within a replacement metal gate (RMG) of a semiconductor device, the method comprising: providing a p-channel field effect transistor (p-FET) and an n-channel field effect transistor (n-FET) formed over a substrate, the p-FET and the n-FET each having a recess formed therein; forming a high-k layer over the semiconductor device and within each recess; forming a barrier layer over the high-k layer; forming an organic dielectric layer (ODL) within each recess; recessing the ODL to a desired height within each recess; removing the high-k layer and the barrier layer from atop the semiconductor device selective to the ODL within each recess; removing the ODL from within each recess; and selectively growing a work-function metal (WFM) within one of the recesses.
- Yet another aspect of the present invention includes a semiconductor device, comprising: a p-channel field effect transistor (p-FET) and an n-channel field effect transistor (n-FET) formed over a substrate, the p-FET and the n-FET each having a recess formed therein; a high-k layer formed within each recess; a barrier layer formed over the high-k layer within each recess; a work-function metal (WFM) selectively grown within the recess of the n-FET; and a metal material formed within each recess.
- These and other features of this invention will be more readily understood from the following detailed description of the various aspects of the invention taken in conjunction with the accompanying drawings in which:
-
FIG. 1 shows a cross-sectional view of a WFM recess process in a prior art semiconductor device; -
FIG. 2 shows a cross-sectional view of another WFM recess process in a prior art semiconductor device; -
FIG. 3 shows a cross-sectional view of a semiconductor device following a dummy polysilicon pull according to illustrative embodiments; -
FIG. 4 shows a cross-sectional view of the semiconductor device following deposition of a first barrier layer according to illustrative embodiments; -
FIG. 5 shows a cross-sectional view of the semiconductor device following deposition of a metal layer according to illustrative embodiments; -
FIG. 6 shows a cross-sectional view of the semiconductor device following deposition and patterning of the ODL according to illustrative embodiments; -
FIG. 7 shows a cross-sectional view of the semiconductor device following metal chamfering to remove the first barrier layer selective to the ODL according to illustrative embodiments; -
FIG. 8 shows a cross-sectional view of the semiconductor device following removal of the ODL according to illustrative embodiments; -
FIG. 9 shows a cross-sectional view of the semiconductor device following removal of the cobalt from the p-FET according to illustrative embodiments; -
FIG. 10 shows a cross-sectional view of the semiconductor device following selective growth of the n-FET WFM according to illustrative embodiments; -
FIG. 11 shows a cross-sectional view of the semiconductor device following formation of a second barrier layer and a metal material according to illustrative embodiments; and -
FIG. 12 shows a cross-sectional view of a semiconductor device, in which no metal layer is present, following formation of a second barrier layer and a metal material according to illustrative embodiments. - The drawings are not necessarily to scale. The drawings are merely representations, not intended to portray specific parameters of the invention. The drawings are intended to depict only typical embodiments of the invention, and therefore should not be considered as limiting in scope. In the drawings, like numbering represents like elements.
- Furthermore, certain elements in some of the figures may be omitted, or illustrated not-to-scale, for illustrative clarity. The cross-sectional views may be in the form of “slices”, or “near-sighted” cross-sectional views, omitting certain background lines, which would otherwise be visible in a “true” cross-sectional view, for illustrative clarity. Also, for clarity, some reference numbers may be omitted in certain drawings.
- Exemplary embodiments will now be described more fully herein with reference to the accompanying drawings, in which exemplary embodiments are shown. It will be appreciated that this disclosure may be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth herein. Rather, these exemplary embodiments are provided so that this disclosure will be thorough and complete and will fully convey the scope of this disclosure to those skilled in the art. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of this disclosure. For example, as used herein, the singular forms “a”, “an”, and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Furthermore, the use of the terms “a”, “an”, etc., do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced items. It will be further understood that the terms “comprises” and/or “comprising”, or “includes” and/or “including”, when used in this specification, specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof.
- Reference throughout this specification to “one embodiment,” “an embodiment,” “embodiments,” “exemplary embodiments,” or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment,” “in an embodiment,” “in embodiments” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment.
- The terms “overlying” or “atop”, “positioned on” or “positioned atop”, “underlying”, “beneath” or “below” mean that a first element, such as a first structure, e.g., a first layer, is present on a second element, such as a second structure, e.g. a second layer, wherein intervening elements, such as an interface structure, e.g. interface layer, may be present between the first element and the second element.
- As used herein, “depositing” may include any now known or later developed techniques appropriate for the material to be deposited including but not limited to, for example: chemical vapor deposition (CVD), low-pressure CVD (LPCVD), plasma-enhanced CVD (PECVD), semi-atmosphere CVD (SACVD) and high density plasma CVD (HDPCVD), rapid thermal CVD (RTCVD), ultra-high vacuum CVD (UHVCVD), limited reaction processing CVD (LRPCVD), metal-organic CVD (MOCVD), sputtering deposition, ion beam deposition, electron beam deposition, laser assisted deposition, thermal oxidation, thermal nitridation, spin-on methods, physical vapor deposition (PVD), atomic layer deposition (ALD), chemical oxidation, molecular beam epitaxy (MBE), plating, evaporation.
- As mentioned above, approaches for forming a replacement metal gate (RMG) of a semiconductor device are disclosed. Specifically, provided is a p-channel field effect transistor (p-FET) and an n-channel field effect transistor (n-FET) formed over a substrate, the p-FET and the n-FET each having a recess formed therein, a barrier layer formed within each recess, a work-function metal (WFM) selectively grown within the recess of the n-FET, and a metal material (e.g., Tungsten) formed within each recess. By performing a WFM chamfer earlier in the process, the risk of mask materials filling into each gate recess is reduced. Furthermore, the selective WFM growth methodology makes it easier to fill-in of the patterning mask material such as ODL, because of the reduced required WFM thickness before metal chamfering.
- With reference again to the figures,
FIG. 3 shows a cross sectional view of asemiconductor device 300 according to an embodiment of the invention.Device 300 comprises asubstrate 302 having an n-FET 304 and a p-FET 306 formed thereon, n-FET 304 and p-FET 306 each having arecess 310 formed therein. Eachrecess 310 is formed following a dummy polysilicon pull, as is known in the art.Device 300 further comprises source/drains (S/D) 312, a liner layer 314 (e.g., SiN), an oxide interlayer dielectric (ILD) 318, and a set ofspacers 320.ILD 318 may be formed by a deposition technique known in the art, for example CVD, high-density plasma chemical vapor deposition (HDPCVD), ALD, spin-on, sputtering, or other suitable methods.ILD 318 may also contain a material that has a high etching selectivity with the polysilicon ofsubstrate 302. As shown, eachrecess 310 is formed between each set ofspacers 320. - In one embodiment,
substrate 302 includes a silicon substrate, e.g., a wafer, either planar or finned. The term “substrate” as used herein is intended to include a semiconductor substrate, a semiconductor epitaxial layer deposited or otherwise formed on a semiconductor substrate and/or any other type of semiconductor body, and all such structures are contemplated as falling within the scope of the present invention. For example, the semiconductor substrate may comprise a semiconductor wafer (e.g., silicon, SiGe, or an SOI wafer) or one or more die on a wafer, and any epitaxial layers or other type semiconductor layers formed thereover or associated therewith. A portion or entire semiconductor substrate may be amorphous, polycrystalline, or single-crystalline. In addition to the aforementioned types of semiconductor substrates, the semiconductor substrate employed in the present invention may also comprise a hybrid oriented (HOT) semiconductor substrate in which the HOT substrate has surface regions of different crystallographic orientation. The semiconductor substrate may be doped, undoped or contain doped regions and undoped regions therein. The semiconductor substrate may contain regions with strain and regions without strain therein, or contain regions of tensile strain and compressive strain. - Furthermore,
substrate 302 may be planar or finned. In a typical finned substrate, he fins usually include silicon and form the body of the transistor device. The channel of the transistor is formed in this vertical fin. A gate is provided over (e.g., wrapping around) the fin. This type of gate allows greater control of the channel. Other advantages of FinFET devices include reduced short channel effect and higher current flow. FinFET devices offer several advantages over traditional, planar devices. These advantages may include better chip area efficiency, improved carrier mobility, and fabrication processing that is compatible with the fabrication processing of planar devices. Thus, it may be desirable to design an integrated circuit (IC) chip using FinFET devices for a portion of, or the entire IC chip. - N-
FET 304 and p-FET 306 may be fabricated using any suitable process including one or more photolithography and etch processes. The photolithography process may include forming a photoresist layer (not shown) overlying substrate 302 (e.g., on a silicon layer), exposing the resist to a pattern, performing post-exposure bake processes, and developing the resist to form a masking element including the resist. The masking element may then be used to form n-FET 304 and p-FET 306 into the silicon layer, e.g., using reactive ion etch (RIE) and/or other suitable processes. In one embodiment, n-FET 304 and p-FET 306 are formed by a double-patterning lithography (DPL) process. DPL is a method of constructing a pattern on a substrate by dividing the pattern into two interleaved patterns. DPL allows enhanced feature (e.g., fin) density. - Next, as shown in
FIG. 4 , a high-k layer 424 and abarrier layer 426 are formed overdevice 400, including within eachrecess 410. In this embodiment, high-k layer 424 comprises a hafnium oxide (HfO2) layer deposited to thickness of approximately 2 nm, whilebarrier layer 426 comprises a titanium nitride (TiN) layer deposited to a thickness of approximately 1 nm. High-k layer 424 andbarrier layer 426 may be formed using ALD, which involves the deposition of successive monolayers over a substrate within a deposition chamber typically maintained at sub-atmospheric pressure. With typical ALD, successive mono-atomic layers are adsorbed to a substrate and/or reacted with the outer layer on the substrate, typically by successive feeding of different deposition precursors to the substrate surface. An exemplary ALD method includes feeding a single vaporized precursor to a deposition chamber effective to form a first monolayer over a substrate received therein. Thereafter, the flow of the first deposition precursor is ceased and an inert purge gas is flowed through the chamber effective to remove any remaining first precursor, which is not adhering to the substrate from the chamber. Subsequently, a second vapor precursor different from the first is flowed to the chamber effective to form a second monolayer on/with the first monolayer. The second monolayer might react with the first monolayer. Additional precursors can form successive monolayers, or the above process can be repeated until a desired thickness and composition layer has been formed over the substrate. - Furthermore, it will be appreciated that “high-k” generally refers to a dielectric material having a dielectric constant (k) value greater than that of silicon oxide. Preferably, the high-k material has a dielectric constant greater than 5, more preferably greater than about 10. Exemplary high-k materials include, without limitation, HfO2, ZrO2, Al2O3, TiO2, Ta2O5, lanthanide oxides and mixtures thereof, silicates and materials such as YSZ (yttria-stabilized zirconia), BST, BT, ST, and SBT.
Barrier layer 426 may comprise metals, metal nitrides, and other conductive metal compounds from vapor phase reactants. Metals, metal nitrides, metal carbides, metal borides, conductive oxides and other conductive metal compounds that can serve as substrate materials over which noble metals can be selectively deposited may include, for example and without limitation, selections from the group consisting of Ta, TaN, TaCx, TaBx, Ti, TiN, TiCx, TiBx, Nb, NbN, NbCx, NbBxMo, MoN, MoCx, MoBx, W, WN, WCx, WBx, V, Cr, Fe, Cu, Co, Ni, Cd, Zn, Al, Ag, Au, Ru, RuOx, Rh, Pt, Pd, Ir, IrOx and Os. - In an exemplary embodiment, as shown in
FIG. 5 , a single-element metal layer 530 (e.g., cobalt) is formed overbarrier layer 526.Metal layer 530 may be formed (e.g., using ALD) to a thickness of approximately 1 nm, which is adequate to act as a seeding layer for a subsequent selective growth of a WMF, which is preferably a single-element, “true” metal (e.g., Co, Ti, Al, etc.), as opposed to a metal compound (e.g., TiN, TiO2, etc.).Metal layer 530 conforms todevice 500, including within eachrecess 510, as shown. - Next,
device 600 is patterned for metal chamfering, as shown inFIG. 6 . Here, an organic dielectric layer (ODL) 632 is formed within eachrecess 610 to a desired height ‘H’.ODL 632, or other similar masking materials (e.g., an organic planarization layer (OPL)), could be used as a metal chamfer mask. ODL 632 (or OPL) may include a photo-sensitive organic polymer or an etch type organic compound. For instance, the photo-sensitive organic polymer may be polyacrylate resin, epoxy resin, phenol resin, polyamide resin, polyimide resin, unsaturated polyester resin, polyphenylenether resin, polyphenylenesulfide resin, or benzocyclobutene (BCB). These materials may be formed within eachrecess 610 using spin-on techniques or vapor deposition techniques. - A metal chamfer is then performed, as shown in
FIG. 7 . In this embodiment, a wet/dry etch is performed to remove of high-k layer 724,barrier layer 726, andmetal layer 730 fromdevice 700 selective toODL 732 within eachrecess 710. As shown inFIG. 8 , ODL 832 is then removed from within eachrecess 810, followed by removal ofmetal layer 930 from p-FET 906, as shown inFIG. 9 . - Next, as shown in
FIG. 10 , a WFM 1034 (e.g., a single-element metal, which can serve to tune threshold voltage for NFET) is formed overmetal layer 1030 withinrecess 1010 of n-FET 1004. In an exemplary embodiment,WFM 1034 is selectively grown overmetal layer 1030 and may comprise aluminum (Al) or an Al/Ti multilayer stack, where the Al/Ti thickness can be tuned for target composition ratio to achieve the desired work function. Both Al and Ti could be selectively grown on the seedingmetal layer 1030. Since Co can be oxidized in previous patterning steps, an optional in-situ H2 plasma treatment subsequently performed reduces CoOx back to Co to achieve the selective growth. In one embodiment, an additional drive-in anneal may be needed for Co/AI or Co/Al/Ti to be mixed. It will be appreciated that the selective growth ofNFET WFM 1034 eliminates the need for an additional chamfer because there is no growth on the dielectric top (i.e., horizontal) surfaces ofHfO2 layer 1024,barrier layer 1026, andmetal layer 1030, or on the sidewalls ofspacers 1020. - Processing continues as shown in
FIG. 11 , wherein a second barrier layer 1136 (e.g., TiN) is formed overdevice 1100 and within eachrecess 1110, followed by deposition and planarization of a metal material 1140 (e.g., Tungsten) within eachrecess 1110. As shown,second barrier layer 1136 is formed over WFM 1134 and the sidewalls ofspacers 1120 inrecess 1110 of n-FET 1104, and over the sidewall ofspacers 1120 inrecess 1110 of p-FET 1106.Metal material 1140 is deposited over all ofdevice 1100, and removed, e.g., via CMP, selective toILD 118 and set ofspacers 1120. As such, the RMG stacks are formed for both n-FET 1104 and p-FET 1106. - Turning now to
FIG. 12 , another embodiment for selectively growing WFM within the n-FET is shown. In this embodiment, processing is similar to that shown inFIGS. 3-11 . However, no metal layer (e.g., cobalt) is formed over high-k layer 1224 andbarrier layer 1226. Instead, WFM 1234 is selectively grown directly onbarrier layer 1226, and subsequently removed from p-FET 1206, resulting indevice 1200 shown inFIG. 12 . Processing then continues, andsecond barrier layer 1236 is formed overdevice 1200 and within eachrecess 1210, followed by deposition and planarization of metal material 1240 (e.g., Tungsten) within eachrecess 1210. As shown,second barrier layer 1236 is formed over WFM 1234 and the sidewalls ofspacers 1220 inrecess 1210 of n-FET 1204, and over the sidewall ofspacers 1220 inrecess 1210 of p-FET 1206. - As shown and described herein, embodiments of the invention have at least the following advantages. First, early WFM chamfering eliminates the issue of mask materials filling into gate trench. Second, the selective metal growth makes it easier to increase the amount of tungsten present in the device, which lowers gate resistance.
- In various embodiments, design tools can be provided and configured to create the datasets used to pattern the semiconductor layers as described herein. For example, data sets can be created to perform the processing steps described herein, including: providing a p-channel field effect transistor (p-FET) and an n-channel field effect transistor (n-FET) formed over a substrate, the p-FET and the n-FET each having a recess formed therein; forming a high-k layer over the semiconductor device and within each recess; forming a barrier layer over the high-k layer; forming an organic dielectric layer (ODL) within each recess; recessing the ODL to a desired height within each recess; removing the high-k layer and the barrier layer from atop the semiconductor device selective to the ODL within each recess; removing the ODL from within each recess; selectively growing a work-function metal (WFM) within one of the recesses; forming a second barrier layer within each recess after the WFM is selectively grown within the recess of the n-FET; and forming a metal material within each recess.
- Such design tools can include a collection of one or more modules and can also be comprised of hardware, software or a combination thereof. Thus, for example, a tool can be a collection of one or more software modules, hardware modules, software/hardware modules or any combination or permutation thereof. As another example, a tool can be a computing device or other appliance on which software runs or in which hardware is implemented. As used herein, a module might be implemented utilizing any form of hardware, software, or a combination thereof. For example, one or more processors, controllers, ASICs, PLAs, logical components, software routines or other mechanisms might be implemented to make up a module. In implementation, the various modules described herein might be implemented as discrete modules or the functions and features described can be shared in part or in total among one or more modules. In other words, as would be apparent to one of ordinary skill in the art after reading this description, the various features and functionality described herein may be implemented in any given application and can be implemented in one or more separate or shared modules in various combinations and permutations. Even though various features or elements of functionality may be individually described or claimed as separate modules, one of ordinary skill in the art will understand that these features and functionality can be shared among one or more common software and hardware elements, and such description shall not require or imply that separate hardware or software components are used to implement such features or functionality.
- It is apparent that there has been provided approaches for selectively growing a WFM within RMGs of a semiconductor device. While the invention has been particularly shown and described in conjunction with exemplary embodiments, it will be appreciated that variations and modifications will occur to those skilled in the art. For example, although the illustrative embodiments are described herein as a series of acts or events, it will be appreciated that the present invention is not limited by the illustrated ordering of such acts or events unless specifically stated. Some acts may occur in different orders and/or concurrently with other acts or events apart from those illustrated and/or described herein, in accordance with the invention. In addition, not all illustrated steps may be required to implement a methodology in accordance with the present invention. Furthermore, the methods according to the present invention may be implemented in association with the formation and/or processing of structures illustrated and described herein as well as in association with other structures not illustrated. Therefore, it is to be understood that the appended claims are intended to cover all such modifications and changes that fall within the true spirit of the invention.
Claims (6)
1-15. (canceled)
16. A semiconductor device, comprising:
a p-channel field effect transistor (p-FET) and an n-channel field effect transistor (n-FET) formed over a substrate, the p-FET and the n-FET each having a recess formed therein;
a high-k layer formed within each recess;
a barrier layer formed over the high-k layer within each recess;
a work-function metal (WFM) selectively grown within the recess of the n-FET; and
a metal material formed within each recess.
17. The device according to claim 16 , further comprising a metal layer formed over the barrier layer within the recess of the n-FET.
18. The device according to claim 16 , further comprising a second barrier layer formed over the WFM within the recess of the n-FET and over the barrier layer within the recess of the p-FET.
19. The device according to claim 16 , wherein the high-k layer comprises hafnium oxide, and wherein the barrier layer comprises titanium nitride.
20. The device according to claim 16 , the n-FET and p-FET each comprising a fin-shaped FET.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/630,504 US20150171086A1 (en) | 2013-10-17 | 2015-02-24 | Selective Growth of a Work-Function Metal in a Replacement Metal Gate of a Semiconductor Device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/056,144 US9018711B1 (en) | 2013-10-17 | 2013-10-17 | Selective growth of a work-function metal in a replacement metal gate of a semiconductor device |
US14/630,504 US20150171086A1 (en) | 2013-10-17 | 2015-02-24 | Selective Growth of a Work-Function Metal in a Replacement Metal Gate of a Semiconductor Device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/056,144 Division US9018711B1 (en) | 2013-10-17 | 2013-10-17 | Selective growth of a work-function metal in a replacement metal gate of a semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150171086A1 true US20150171086A1 (en) | 2015-06-18 |
Family
ID=52825453
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/056,144 Expired - Fee Related US9018711B1 (en) | 2013-10-17 | 2013-10-17 | Selective growth of a work-function metal in a replacement metal gate of a semiconductor device |
US14/630,504 Abandoned US20150171086A1 (en) | 2013-10-17 | 2015-02-24 | Selective Growth of a Work-Function Metal in a Replacement Metal Gate of a Semiconductor Device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/056,144 Expired - Fee Related US9018711B1 (en) | 2013-10-17 | 2013-10-17 | Selective growth of a work-function metal in a replacement metal gate of a semiconductor device |
Country Status (1)
Country | Link |
---|---|
US (2) | US9018711B1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9496361B1 (en) | 2015-08-27 | 2016-11-15 | United Microelectronics Corp. | Selectively deposited metal gates and method of manufacturing thereof |
US9960284B2 (en) * | 2015-10-30 | 2018-05-01 | Globalfoundries Inc. | Semiconductor structure including a varactor |
US10032890B2 (en) | 2015-12-08 | 2018-07-24 | Samsung Electronics Co., Ltd. | Method of manufacturing semiconductor devices |
US10177042B2 (en) | 2015-10-21 | 2019-01-08 | Samsung Electronics Co., Ltd. | Semiconductor device and method for fabricating the same |
US10367078B2 (en) * | 2017-11-09 | 2019-07-30 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor devices and FinFET devices having shielding layers |
US10636890B2 (en) | 2018-05-08 | 2020-04-28 | Globalfoundries Inc. | Chamfered replacement gate structures |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150118836A1 (en) * | 2013-10-28 | 2015-04-30 | United Microelectronics Corp. | Method of fabricating semiconductor device |
US9570319B2 (en) * | 2014-05-30 | 2017-02-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of manufacturing a semiconductor device |
US9190488B1 (en) * | 2014-08-13 | 2015-11-17 | Globalfoundries Inc. | Methods of forming gate structure of semiconductor devices and the resulting devices |
US9379221B1 (en) * | 2015-01-08 | 2016-06-28 | International Business Machines Corporation | Bottom-up metal gate formation on replacement metal gate finFET devices |
US9613959B2 (en) | 2015-07-28 | 2017-04-04 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method of forming metal gate to mitigate antenna defect |
US9722038B2 (en) * | 2015-09-11 | 2017-08-01 | International Business Machines Corporation | Metal cap protection layer for gate and contact metallization |
KR102480219B1 (en) | 2015-09-16 | 2022-12-26 | 삼성전자주식회사 | Semiconductor devices and methods of manufacturing semiconductor devices |
US9673101B2 (en) | 2015-09-30 | 2017-06-06 | International Business Machines Corporation | Minimize middle-of-line contact line shorts |
US9865703B2 (en) * | 2015-12-31 | 2018-01-09 | International Business Machines Corporation | High-K layer chamfering to prevent oxygen ingress in replacement metal gate (RMG) process |
US10283605B2 (en) | 2016-01-29 | 2019-05-07 | Taiwan Semiconductor Manufacturing Co., Ltd | Self-aligned metal gate etch back process and device |
US10038076B2 (en) | 2016-08-08 | 2018-07-31 | International Business Machines Corporation | Parasitic capacitance reducing contact structure in a finFET |
US20180138123A1 (en) * | 2016-11-15 | 2018-05-17 | Globalfoundries Inc. | Interconnect structure and method of forming the same |
US9780197B1 (en) | 2016-12-14 | 2017-10-03 | Globalfoundries Inc. | Method of controlling VFET channel length |
DE102017117794A1 (en) * | 2016-12-15 | 2018-06-21 | Taiwan Semiconductor Manufacturing Co., Ltd. | RETENTION AND SELECTIVE DEPOSITION OF A METAL GATE |
US10879370B2 (en) * | 2016-12-15 | 2020-12-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | Etching back and selective deposition of metal gate |
US10056303B1 (en) | 2017-04-21 | 2018-08-21 | Globalfoundries Inc. | Integration scheme for gate height control and void free RMG fill |
KR20220129116A (en) * | 2017-06-23 | 2022-09-22 | 메르크 파텐트 게엠베하 | Methods of atomic layer deposition for selective film growth |
TWI729181B (en) * | 2017-08-03 | 2021-06-01 | 聯華電子股份有限公司 | Semiconductor device and method for fabricating the same |
US10014180B1 (en) | 2017-08-21 | 2018-07-03 | Globalfoundries Inc. | Tungsten gate and method for forming |
CN110690199B (en) | 2018-07-06 | 2023-07-25 | 三星电子株式会社 | Semiconductor device with a semiconductor layer having a plurality of semiconductor layers |
US10727317B2 (en) | 2018-10-04 | 2020-07-28 | International Business Machines Corporation | Bottom contact formation for vertical transistor devices |
US10804163B2 (en) * | 2018-10-31 | 2020-10-13 | Taiwan Semiconductor Manufacturing Company Ltd. | Method of metal gate formation and structures formed by the same |
CN110752180B (en) * | 2019-10-25 | 2022-03-08 | 中国科学院微电子研究所 | Substrate and preparation method thereof |
CN113314530A (en) * | 2020-02-27 | 2021-08-27 | 台湾积体电路制造股份有限公司 | Method of manufacturing semiconductor device and semiconductor device |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020177263A1 (en) * | 2001-05-24 | 2002-11-28 | International Business Machines Corporation | Damascene double-gate MOSFET with vertical channel regions |
US20030067017A1 (en) * | 2001-10-05 | 2003-04-10 | Meikei Ieong | Variable threshold voltage double gated transistors and method of fabrication |
US20040142524A1 (en) * | 2002-08-12 | 2004-07-22 | Grupp Daniel E. | Insulated gate field effect transistor having passivated Schottky barriers to the channel |
US20050020020A1 (en) * | 2002-07-16 | 2005-01-27 | Nadine Collaert | Integrated semiconductor fin device and a method for manufacturing such device |
US20050148137A1 (en) * | 2003-12-30 | 2005-07-07 | Brask Justin K. | Nonplanar transistors with metal gate electrodes |
US20050153530A1 (en) * | 2004-01-09 | 2005-07-14 | International Business Machines Corporation | Fet gate structure with metal gate electrode and silicide contact |
US20060071285A1 (en) * | 2004-09-29 | 2006-04-06 | Suman Datta | Inducing strain in the channels of metal gate transistors |
US20060086977A1 (en) * | 2004-10-25 | 2006-04-27 | Uday Shah | Nonplanar device with thinned lower body portion and method of fabrication |
US20070111419A1 (en) * | 2005-09-28 | 2007-05-17 | Doyle Brian S | CMOS Devices with a single work function gate electrode and method of fabrication |
US20070262389A1 (en) * | 2004-01-16 | 2007-11-15 | Robert Chau | Tri-gate transistors and methods to fabricate same |
US20090042405A1 (en) * | 2004-09-08 | 2009-02-12 | Doczy Mark L | Method for making a semiconductor device having a high-k gate dielectric layer and a metal gate electrode |
US20110062526A1 (en) * | 2009-09-14 | 2011-03-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Metal gate transistor, integrated circuits, systems, and fabrication methods thereof |
US20110193181A1 (en) * | 2003-11-12 | 2011-08-11 | Samsung Electronics Co., Ltd. | Semiconductor device having different metal gate structures |
US20110215409A1 (en) * | 2010-03-04 | 2011-09-08 | International Business Machines Corporation | Structure and method to make replacement metal gate and contact metal |
US20120248509A1 (en) * | 2011-03-30 | 2012-10-04 | International Business Machines Corporation | Structure and process for metal fill in replacement metal gate integration |
US20120313178A1 (en) * | 2011-06-13 | 2012-12-13 | Po-Jui Liao | Semiconductor device having metal gate and manufacturing method thereof |
US20130026578A1 (en) * | 2011-07-28 | 2013-01-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device and method of manufacturing the same |
US20130280900A1 (en) * | 2012-04-24 | 2013-10-24 | United Microelectronics Corp. | Manufacturing method for semiconductor device having metal gate |
US20130295758A1 (en) * | 2012-05-02 | 2013-11-07 | Samsung Electronics Co., Ltd. | Method of manufacturing semiconductor device |
US20130299914A1 (en) * | 2012-05-14 | 2013-11-14 | Ju-youn Kim | Semiconductor device and method for manufacturing the device |
US20140084383A1 (en) * | 2012-09-27 | 2014-03-27 | Globalfoundries Inc. | Methods of forming 3-d semiconductor devices using a replacement gate technique and a novel 3-d device |
US20140256094A1 (en) * | 2013-03-08 | 2014-09-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFETs and Methods for Forming the Same |
US20140312423A1 (en) * | 2013-04-18 | 2014-10-23 | International Business Machines Corporation | Simplified multi-threshold voltage scheme for fully depleted soi mosfets |
US20140349476A1 (en) * | 2013-05-27 | 2014-11-27 | United Microelectronics Corp. | Manufacturing method for forming a semiconductor structure |
US20140349452A1 (en) * | 2013-05-22 | 2014-11-27 | United Microelectronics Corp. | Method for manufacturing semiconductor devices |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3634320B2 (en) * | 2002-03-29 | 2005-03-30 | 株式会社東芝 | Semiconductor device and manufacturing method of semiconductor device |
KR100502407B1 (en) * | 2002-04-11 | 2005-07-19 | 삼성전자주식회사 | Gate Structure Having High-k Dielectric And Highly Conductive Electrode And Method Of Forming The Same |
US7745270B2 (en) * | 2007-12-28 | 2010-06-29 | Intel Corporation | Tri-gate patterning using dual layer gate stack |
US8436404B2 (en) * | 2009-12-30 | 2013-05-07 | Intel Corporation | Self-aligned contacts |
KR101777662B1 (en) * | 2010-10-06 | 2017-09-14 | 삼성전자 주식회사 | Method for forming gate of semiconductor device |
US8232204B1 (en) * | 2011-06-29 | 2012-07-31 | International Business Machines Corporation | Method of forming borderless contact for transistor |
US9041076B2 (en) | 2013-02-03 | 2015-05-26 | International Business Machines Corporation | Partial sacrificial dummy gate with CMOS device with high-k metal gate |
US8785283B2 (en) | 2012-12-05 | 2014-07-22 | United Microelectronics Corp. | Method for forming semiconductor structure having metal connection |
US9054172B2 (en) | 2012-12-05 | 2015-06-09 | United Microelectrnics Corp. | Semiconductor structure having contact plug and method of making the same |
US8921226B2 (en) | 2013-01-14 | 2014-12-30 | United Microelectronics Corp. | Method of forming semiconductor structure having contact plug |
US9349812B2 (en) * | 2013-05-27 | 2016-05-24 | United Microelectronics Corp. | Semiconductor device with self-aligned contact and method of manufacturing the same |
-
2013
- 2013-10-17 US US14/056,144 patent/US9018711B1/en not_active Expired - Fee Related
-
2015
- 2015-02-24 US US14/630,504 patent/US20150171086A1/en not_active Abandoned
Patent Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020177263A1 (en) * | 2001-05-24 | 2002-11-28 | International Business Machines Corporation | Damascene double-gate MOSFET with vertical channel regions |
US20030067017A1 (en) * | 2001-10-05 | 2003-04-10 | Meikei Ieong | Variable threshold voltage double gated transistors and method of fabrication |
US20050020020A1 (en) * | 2002-07-16 | 2005-01-27 | Nadine Collaert | Integrated semiconductor fin device and a method for manufacturing such device |
US20040142524A1 (en) * | 2002-08-12 | 2004-07-22 | Grupp Daniel E. | Insulated gate field effect transistor having passivated Schottky barriers to the channel |
US20110193181A1 (en) * | 2003-11-12 | 2011-08-11 | Samsung Electronics Co., Ltd. | Semiconductor device having different metal gate structures |
US20050148137A1 (en) * | 2003-12-30 | 2005-07-07 | Brask Justin K. | Nonplanar transistors with metal gate electrodes |
US20050153530A1 (en) * | 2004-01-09 | 2005-07-14 | International Business Machines Corporation | Fet gate structure with metal gate electrode and silicide contact |
US20070262389A1 (en) * | 2004-01-16 | 2007-11-15 | Robert Chau | Tri-gate transistors and methods to fabricate same |
US20090042405A1 (en) * | 2004-09-08 | 2009-02-12 | Doczy Mark L | Method for making a semiconductor device having a high-k gate dielectric layer and a metal gate electrode |
US20060071285A1 (en) * | 2004-09-29 | 2006-04-06 | Suman Datta | Inducing strain in the channels of metal gate transistors |
US20060086977A1 (en) * | 2004-10-25 | 2006-04-27 | Uday Shah | Nonplanar device with thinned lower body portion and method of fabrication |
US20070111419A1 (en) * | 2005-09-28 | 2007-05-17 | Doyle Brian S | CMOS Devices with a single work function gate electrode and method of fabrication |
US20110062526A1 (en) * | 2009-09-14 | 2011-03-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Metal gate transistor, integrated circuits, systems, and fabrication methods thereof |
US20110215409A1 (en) * | 2010-03-04 | 2011-09-08 | International Business Machines Corporation | Structure and method to make replacement metal gate and contact metal |
US20120248509A1 (en) * | 2011-03-30 | 2012-10-04 | International Business Machines Corporation | Structure and process for metal fill in replacement metal gate integration |
US20120313178A1 (en) * | 2011-06-13 | 2012-12-13 | Po-Jui Liao | Semiconductor device having metal gate and manufacturing method thereof |
US20130026578A1 (en) * | 2011-07-28 | 2013-01-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device and method of manufacturing the same |
US20130280900A1 (en) * | 2012-04-24 | 2013-10-24 | United Microelectronics Corp. | Manufacturing method for semiconductor device having metal gate |
US20130295758A1 (en) * | 2012-05-02 | 2013-11-07 | Samsung Electronics Co., Ltd. | Method of manufacturing semiconductor device |
US20130299914A1 (en) * | 2012-05-14 | 2013-11-14 | Ju-youn Kim | Semiconductor device and method for manufacturing the device |
US20140084383A1 (en) * | 2012-09-27 | 2014-03-27 | Globalfoundries Inc. | Methods of forming 3-d semiconductor devices using a replacement gate technique and a novel 3-d device |
US20140256094A1 (en) * | 2013-03-08 | 2014-09-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFETs and Methods for Forming the Same |
US20140312423A1 (en) * | 2013-04-18 | 2014-10-23 | International Business Machines Corporation | Simplified multi-threshold voltage scheme for fully depleted soi mosfets |
US20140349452A1 (en) * | 2013-05-22 | 2014-11-27 | United Microelectronics Corp. | Method for manufacturing semiconductor devices |
US20140349476A1 (en) * | 2013-05-27 | 2014-11-27 | United Microelectronics Corp. | Manufacturing method for forming a semiconductor structure |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9496361B1 (en) | 2015-08-27 | 2016-11-15 | United Microelectronics Corp. | Selectively deposited metal gates and method of manufacturing thereof |
US10177042B2 (en) | 2015-10-21 | 2019-01-08 | Samsung Electronics Co., Ltd. | Semiconductor device and method for fabricating the same |
US9960284B2 (en) * | 2015-10-30 | 2018-05-01 | Globalfoundries Inc. | Semiconductor structure including a varactor |
US10886419B2 (en) | 2015-10-30 | 2021-01-05 | Globalfoundries Inc. | Semiconductor structure including a varactor and method for the formation thereof |
US10032890B2 (en) | 2015-12-08 | 2018-07-24 | Samsung Electronics Co., Ltd. | Method of manufacturing semiconductor devices |
US10367078B2 (en) * | 2017-11-09 | 2019-07-30 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor devices and FinFET devices having shielding layers |
US10636890B2 (en) | 2018-05-08 | 2020-04-28 | Globalfoundries Inc. | Chamfered replacement gate structures |
Also Published As
Publication number | Publication date |
---|---|
US20150108577A1 (en) | 2015-04-23 |
US9018711B1 (en) | 2015-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9018711B1 (en) | Selective growth of a work-function metal in a replacement metal gate of a semiconductor device | |
US10553493B2 (en) | Fabrication of a vertical transistor with self-aligned bottom source/drain | |
US10236355B2 (en) | Fabrication of a vertical fin field effect transistor with a reduced contact resistance | |
KR101799636B1 (en) | Structure and method for finfet device | |
US8008145B2 (en) | High-K metal gate structure fabrication method including hard mask | |
US20200075737A1 (en) | Wrap-around-contact structure for top source/drain in vertical fets | |
US10497796B1 (en) | Vertical transistor with reduced gate length variation | |
US11088139B2 (en) | Asymmetric threshold voltage VTFET with intrinsic dual channel epitaxy | |
DE112018005623T5 (en) | PRODUCTION OF LOGIC UNITS AND POWER UNITS ON THE SAME SUBSTRATE | |
US9679817B2 (en) | Semiconductor structures and methods of forming the same | |
CN108122742A (en) | The manufacturing method of semiconductor device structure | |
US11810948B2 (en) | Semiconductor device and method | |
US11855141B2 (en) | Local epitaxy nanofilms for nanowire stack GAA device | |
US10134633B1 (en) | Self-aligned contact with CMP stop layer | |
US10886395B2 (en) | Method for fabricating tunneling field effect transistor having interfacial layer containing nitrogen | |
US11315835B2 (en) | Methods of forming an IC product comprising transistor devices with different threshold voltage levels | |
US20230238240A1 (en) | Semiconductor device and method for fabricating the same | |
US11670697B2 (en) | Semiconductor device and manufacturing method thereof | |
US11824100B2 (en) | Gate structure of semiconductor device and method of forming same | |
US11264481B2 (en) | Self-aligned source and drain contacts | |
CN106158749B (en) | Selective growth of work function metal in replacement metal gate of semiconductor device | |
TWI575581B (en) | Selective growth of a work-function metal in a replacement metal gate of a semiconductor device | |
US12107006B2 (en) | Method for manufacturing semiconductor structure with dielectric feature | |
US12087838B2 (en) | Self-aligned contact hard mask structure of semiconductor device and method of forming same | |
US20230147329A1 (en) | Single Process Double Gate and Variable Threshold Voltage MOSFET |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GLOBALFOUNDRIES INC., CAYMAN ISLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CAI, XIUYU;KIM, HOON;ZHANG, XUNYUAN;SIGNING DATES FROM 20131015 TO 20131016;REEL/FRAME:035030/0049 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES U.S. INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:056987/0001 Effective date: 20201117 |