US20150162699A1 - In-vehicle device - Google Patents

In-vehicle device Download PDF

Info

Publication number
US20150162699A1
US20150162699A1 US14/279,798 US201414279798A US2015162699A1 US 20150162699 A1 US20150162699 A1 US 20150162699A1 US 201414279798 A US201414279798 A US 201414279798A US 2015162699 A1 US2015162699 A1 US 2015162699A1
Authority
US
United States
Prior art keywords
vehicle
protection cover
wall portion
side connector
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/279,798
Other versions
US9346367B2 (en
Inventor
Kazunori Tanaka
Kyoko Higashino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Assigned to MITSUBISHI ELECTRIC CORPORATION reassignment MITSUBISHI ELECTRIC CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HIGASHINO, KYOKO, TANAKA, KAZUNORI
Publication of US20150162699A1 publication Critical patent/US20150162699A1/en
Application granted granted Critical
Publication of US9346367B2 publication Critical patent/US9346367B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/533Bases, cases made for use in extreme conditions, e.g. high temperature, radiation, vibration, corrosive environment, pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/73Means for mounting coupling parts to apparatus or structures, e.g. to a wall
    • H01R13/74Means for mounting coupling parts in openings of a panel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2201/00Connectors or connections adapted for particular applications
    • H01R2201/26Connectors or connections adapted for particular applications for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to an in-vehicle device, such as a vehicle AC generator mounted on a vehicle and connected to a vehicle-side connector.
  • a first housing is formed of a terminal holding portion, a tubular hood portion protruding from a front surface of the terminal holding portion toward a tip end, and a tubular regulatory portion protruding from the front surface of the terminal holding portion on a more outer peripheral side than the hood portion toward the tip end, all of which are integrated into one unit and made of a synthetic resin material with excellent heat resistance.
  • the hood portion surrounding a tip end of a male terminal metal fitting attached to the terminal holding portion is fit in a space between a terminal storing portion provided to an engine-side connector (wire harness) and a tubular fitting portion surrounding the terminal storing portion, so that the male terminal metal fitting and a female terminal metal fitting in the terminal storing portion are connected to each other.
  • the tubular regulatory portion externally fits onto the tubular fitting portion all along the circumference, and thereby regulates relative displacement even when the tubular fitting portion undergoes deformation toward the outer periphery due to high temperatures. Hence, the tubular regulatory portion prevents rattling between the housing and the connector in a reliable mariner (see, for example, Patent Document 1)
  • a fitting structure is described by way of example with another connector.
  • the female connector is regulated so as not to fall off by a connector attachment plate and an electric component provided with the male connector is regulated so as not to fall off by an electric component attachment plate (instrument panel).
  • the respective attachment plates are made of a synthetic resin material and formed by integral molding. The respective attachment plates are fit together elastically by a fitting protrusion and a recess (see, for example, Patent Document 2).
  • the tubular regulatory portion of substantially the same shape as the outer peripheral shape of the hood portion is externally fit to the tubular fitting portion all along the circumference.
  • the both are fit together at a tip end of the tubular fitting portion and most (outer periphery) of the tubular fitting portion is in a free state.
  • Vibrations that the vehicle AC generator mounted on the vehicle undergoes are considerably large depending on a model and the vehicle AC generator fails to endure the vibrations by merely fitting the resin members together. Hence, it cannot be said that fine sliding-induced wear between the terminal metal fittings is perfectly suppressed.
  • the invention was devised to solve the problems discussed above and has an object to provide an in-vehicle device capable of maintaining a high vibration-resistant connection state with a vehicle-side connector to which the in-vehicle device is connected when mounted on a vehicle.
  • An in-vehicle device includes: a terminal to which a vehicle-side connector is connected; a hood portion surrounding the terminal; a protection cover functioning with one of purposes of holding and protecting constituent components including the terminal and the hood portion; and a damper mechanical portion formed integrally with the protection cover and installed on a periphery of the hood portion.
  • an in-vehicle device includes: a terminal; a hood portion surrounding the terminal; and a protection cover functioning with one of purposes of holding and protecting constituent components including the terminal and the hood portion.
  • a vehicle-side connector is inserted in a space between an outer peripheral surface of the hood portion and an inner surface of the protection cover, and thereby the vehicle-side connector, the terminal, and. the hood portion are fit together and the vehicle-side connector is elastically held.
  • the damper mechanical portion is formed of a part of the protection cover installed on the periphery of the hood portion. Hence, vibrations can be absorbed in the damper mechanical portion and it becomes possible to maintain a high vibration-resistant connection state with the vehicle-side connector.
  • the in-vehicle device of the invention is configured in such a manner that the vehicle-side connector is inserted in a space between the outer peripheral surface of the hood portion and the inner surface of the protection cover, so that the vehicle-side connector, the terminal, and the hood portion are fit together and the vehicle-side connector is elastically held. Hence, vibrations can be absorbed and it becomes possible to maintain a high vibration-resistant connection state with the vehicle-side connector.
  • FIG. 1 is a sectional side view of a vehicle AC generator as an in-vehicle device according to a first embodiment of the invention
  • FIG. 2 is a rear view of the vehicle AC generator of FIG. 1 ;
  • FIG. 3 is a cross section of a major portion showing a state in which a vehicle-side connector is attached to the vehicle AC generator of FIG. 1 ;
  • FIG. 4 is a plan view of a protection cover of the vehicle AC generator of FIG. 1 ;
  • FIG. 5 is an enlarged plan view of a major portion of a damper mechanical portion of the protection cover of FIG. 4 ;
  • FIG. 6 is a cross section taken on the line A-A of FIG. 5 ;
  • FIG. 7 is a front-side perspective view of the major portion of the damper mechanical portion according to the first embodiment of the invention.
  • FIG. 8 is a back-side perspective view of the major portion of the damper mechanical portion according to the first embodiment of the invention.
  • FIG. 9 is a perspective view showing a state in which the vehicle-side connector is attached to the damper mechanical portion of the protection cover of FIG. 4 when viewed from a back side of the protection cover;
  • FIG. 10 is a plan view of FIG. 9 ;
  • FIG. 11A is a front view of a major portion of a protection cover of a vehicle AC generator according to a second embodiment of the invention.
  • FIG. 11B is a back-side view of the major portion of the protection cover of the vehicle AC generator according to the second embodiment of the invention.
  • FIG. 12A is a front-side perspective view of the major portion of the protection cover of the vehicle AC generator according to the second embodiment of the invention.
  • FIG. 12B is a back-side perspective view of the major portion of the protection cover of the vehicle AC generator according to the second embodiment of the invention.
  • FIG. 13 is a cross section of a damper mechanical portion of a protection cover taken along a vehicle-side connector insertion direction in a vehicle AC generator according to a third embodiment of the invention.
  • FIG. 14 is a cross section of the damper mechanical portion of the protection cover taken along the vehicle-side connector insertion direction in a vehicle AC generator according to a modification of the third embodiment of the invention.
  • FIG. 15 is a sectional side view of a major portion showing another example of a connector connection portion of the vehicle AC generator.
  • FIG. 1 is a sectional side view showing a vehicle AC generator 1 as an example of the in-vehicle device according to the first embodiment of the invention.
  • a rear side (left of the sheet surface) of the vehicle AC generator 1 is covered with a protection cover 15 and a connector connection portion 17 to be connected to a vehicle-side connector is installed in an upper part on the rear side.
  • FIG. 2 is a rear view of the vehicle AC generator 1 of FIG. 1 and it is also a front view when the connector connection portion 17 and its periphery are viewed in an insertion direction. Also, FIG.
  • FIG. 3 is a cross section simply showing an attachment state of a damper mechanical portion of the invention and the vehicle-side connector.
  • the invention is characterized in that a hood portion 171 surrounding a terminal 16 of the in-vehicle device and a damper mechanical portion 18 formed integrally with the protection cover 15 are formed so as to have a double tube structure, and a fitting portion (tubular fitting portion 102 ) of a vehicle-side connector 100 is elastically held in a clearance of the double tube.
  • a fitting portion (tubular fitting portion 102 ) of a vehicle-side connector 100 is elastically held in a clearance of the double tube.
  • an inner surface of the damper mechanical portion 18 and an outer surface of the tubular fitting portion 102 are in contact with each other and held in this state, so that vibrations are absorbed on the side of the damper mechanical portion 18 .
  • the vehicle AC generator 1 as an example of the in-vehicle device includes a casing 4 formed of a front bracket 2 and a rear bracket 3 substantially shaped like a cup, a shaft 6 supported on the casing 4 in a rotatable manner via a pair of bearings 5 , a pulley 7 firmly fixed to the shaft 6 at an end extending frontward with respect to the casing 4 , a rotor 8 fixed to the shaft 6 and installed inside the casing 4 , a stator 9 fixed to the casing 4 so as to surround the rotor 8 , a pair of slip rings 10 fit to the shaft 6 in an extending portion extending rearward with respect to the casing 4 , and a pair of brushes 11 installed so as to slide on the slip rings 10 and supplying a current to the rotor 8 from the vehicle-side connector 100 .
  • the rotor 8 includes a field winding (not shown) generating a flux when an excitation current is flown through and a core 81 provided so as to cover the field winding and generating a magnetic pole with the flux.
  • the stator 9 includes a cylindrical stator core 91 and a stator winding 92 coiled around the stator core 91 and generating AC with a variance of the flux from the field winding in association with rotations of the rotor 8 .
  • the stator 9 is installed so as to surround the rotor 8 with both axial ends of the stator core 91 being pinched at opening ends of the front bracket 2 and the rear bracket 3 .
  • the vehicle AC generator 1 includes a brush holder 12 storing the brushes 11 , a voltage adjustor device 13 installed on an outer diameter side of the brush holder 12 and adjusting magnitude of an AC voltage generated at the stator 9 , a rectifier device 14 formed substantially in the shape of a capital C and installed to an outer peripheral portion of the slip rings 10 in a fan shape with its center on the shaft 6 in a plane orthogonal to a shaft center of the shaft 6 and rectifying an AC voltage generated at the stator 9 to a DC voltage, and a protection cover 15 formed of a resin molded article attached to the rear bracket 3 so as to cover the brush holder 12 , the voltage adjustor device 13 , and the rectifier device 14 .
  • desired terminals functioning so as to establish electrical connections are provided by insert molding using insulating resin or the like.
  • the voltage adjustor device 13 has a connector connection portion 17 as an integral part thereof, and is formed of a corresponding terminal 16 (terminal portion) among multiple insert terminals (not shown) provided to the voltage adjustor device 13 and a hood portion 171 formed in substantially a tubular shape by molding so as to surround and thereby protect the terminal 16 .
  • An air gap necessary for an insertion work of the vehicle-side connector 100 is secured around the connector connection portion 17 .
  • the damper mechanical portion 18 is molded integrally with the protection cover 15 so as to surround the air gap and extend rearward with respect to the device.
  • FIG. 3 An attachment state of the damper mechanical portion 18 and the vehicle-side connector 100 is shown simply in a cross section of FIG. 3 .
  • the hood portion 171 of substantially a tubular shape and the damper mechanical portion 18 of substantially a tubular shape surrounding the hood portion 171 together form a double tube structure.
  • an inner peripheral surface of the hood portion 171 and an outer peripheral surface of a terminal storing portion 101 which is a fitting portion of the vehicle-side connector 100 described below
  • an outer peripheral surface of the hood portion 171 and an inner peripheral surface of a tubular fitting portion 102 which is a fitting portion of the vehicle-side connector 100 described below
  • an outer peripheral surface of the tubular fitting portion 102 which is a fitting portion of the vehicle-side connector 100 described below
  • an inner surface of the damper mechanical portion 18 are elastically held.
  • FIG. 4 is a plan view of the protection cover 15 provided with the damper mechanical portion 18 .
  • the damper mechanical portion 18 is formed integrally with the protection cover 15 and a recess 18 a used to adjust insertion condition of the vehicle-side connector 100 is formed in a part of the damper mechanical portion 18 .
  • the connector connection portion 17 is exposed to a portion surrounded by the damper mechanical portion 18 .
  • FIG. 5 is an enlarged plan view of a major portion of the damper mechanical portion 18 and it is also a back side view when the protection cover 15 is viewed from the cover inner side.
  • FIG. 6 is a cross section taken on the line A-A of FIG. 5 and this is a cross section of the damper mechanical portion 18 along a vehicle-side connector insertion direction.
  • the damper mechanical portion 18 is formed of an outer wall portion 181 provided so as to surround the connection connection portion 17 and linked to a base portion of the protection cover 15 while protruding outward from a vehicle-side connector insertion opening 15 a , an inner wall portion 182 (rip portion) spaced apart from the hood portion 171 of the connection connection portion 17 and held on the inner side of the outer wail portion 181 while extending parallel to between the outer wall portion 181 and the hood portion 171 , and a coupling portion 183 connecting a tip end of the outer wall portion 181 and a tip end of the inner wall portion 182 .
  • the damper mechanical portion 18 is formed integrally with the protection cover 15
  • the outer wall portion 181 and the inner wall portion 182 together form the double tube structure inside the damper mechanical portion 18 .
  • the coupling portion 183 is formed so as to guide the vehicle-side connector 100 during insertion by making its surface round in the vicinity of the inner wall portion 182 .
  • the cross section of the damper mechanical portion 18 is of substantially the shape of a capital U.
  • the tip end of the outer wall portion 181 of the damper mechanical portion 18 is located on the outer side than the tip end of the inner wall portion 182 .
  • An amount of protrusion of the tip end of the outer wall portion 181 from the base portion of the protection cover 15 Is larger than an amount of protrusion of the tip end of the inner wall portion 182 .
  • a height of the outer wall portion 181 protruding from the vehicle-side connector insertion opening 15 a of the protection cover 15 is about 10 to 12 9mm
  • a radius r of the curve of the coupling portion 183 is about 2 mm
  • a thickness of the outer wall portion 181 and the inner wall portion 182 is about 1 to 1.5 mm
  • a clearance between the outer wall portion 181 and the inner wall portion 182 is about 1.5 to 3 mm. It is needless to say that these dimensions are changed when the need arises to suit a device to which the invention is applied.
  • FIG. 7 is a front-side perspective view of the major portion of the damper mechanical portion 18 of the protection cover 15 and FIG. 8 is a back-side perspective view of the major portion of the damper mechanical portion 18 of the protection cover 15 .
  • the vehicle-side connector 100 includes the terminal storing portion 101 storing the in-vehicle device terminals and the tubular fitting portion 102 surrounding the terminal storing portion 101 .
  • An outer periphery of the tubular fitting portion 102 is formed in a dimension that allows press-fit to the inner wall portion 182 of the damper mechanical portion 18 .
  • FIG. 10 is a plan view of FIG. 9 and it is a view when the protection cover 15 is observed from the inner side (the terminal storing portion 101 of the vehicle-side connector 100 is omitted).
  • a convex portion of the tubular fitting portion 102 is in contact with the inner wall portion 182 of the damper mechanical portion 18 in at least two opposing surfaces (both side surfaces) of the tubular fitting portion 102 .
  • the tubular fitting portion 102 of the vehicle-side connector 100 is press-fit toward the lower end (opening end side) of the inner wall portion 182 of the damper mechanical portion 18 .
  • the vehicle-side connector 100 is held by the protection cover 15 in the configuration that absorbs vibrations. It thus becomes possible to avoid inconveniences arising from sliding-induced wear in a connection portion between the terminal 16 of the voltage adjustor device 13 , which is a part of electrical connection of the vehicle AC generator 1 , and the terminal storing portion 101 of the vehicle-side connector 100 .
  • the inner wall portion 182 of the damper mechanical portion 18 is formed in a region surrounded by the outer wall portion 181 .
  • the outer wall portion 181 is furnished with not only a function of protecting the vehicle-side connector 100 but also a function of protecting the inner wall portion 182 from an external impact.
  • the inner wall portion 182 can be therefore formed in a flexible shape that suits to exert the damper function.
  • the vehicle AC generator 1 as the in-vehicle device according to the first embodiment of the invention is configured in such a manner that the damper mechanical portion 18 is formed of the protection cover 15 and vibrations are absorbed in the damper mechanical portion 18 . Owing to this configuration, it becomes possible to enhance the vibration resistance.
  • FIG. 11A is a front view and FIG. 11B is a back side view of a major portion of a protection cover 15 of a second embodiment.
  • FIG. 12A is a front-side perspective view of the major portion and FIG. 12B is a back-side perspective view of the major portion of the protection cover 15 of the second embodiment.
  • the first embodiment above has described a case where the inner wall portion 182 of the damper mechanical portion 18 is provided substantially continuously along the connector connection portion 17 . On the contrary, the inner wall portion 182 is divided to multiple parts by providing slits 18 c in the second embodiment.
  • FIGS. 11A and 11B and FIGS. 12A and 12B show a case where the slits 18 c are provided at two points in the inner wall portion 182 of the damper mechanical portion 18 by way of example. It should be appreciated, however, that the number of formed points and dimensions of the slits 18 c can be changed when the need arises to suit a device to which the invention is applied.
  • FIG. 13 is a cross section of a damper mechanical portion 18 of a third embodiment along the vehicle-side connector insertion direction.
  • the first embodiment above has described a case as is shown in FIG. 6 where the outer wail portion 181 and the inner wall portion 182 of the damper mechanical portion 18 have substantially the same thickness.
  • the third embodiment is configured in such a manner that a thickness V of an inner wall portion 182 a is smaller than a thickness W of an outer wall portion 181 a and the outer wall portion 181 a and the inner wall portion 182 a are connected by a coupling portion 183 a . Owing to this configuration, it becomes possible to suppress unwanted deflection and deformation in the outer wall portion 181 a and also to obtain a higher damper effect in the inner wall portion 182 a.
  • the cross section of FIG. 13 shows that the coupling portion 183 a of the damper mechanical portion 18 is formed so as to have a round cross section. It should be appreciated, however, that it is also possible to adopt a taper shape considerably inclining toward the inner wall portion 182 a as is shown in the cross section of FIG. 14 as the shape of the coupling portion 183 b .
  • the press-fit guiding function can be adjusted by adjusting an angle of the inclination.
  • the press-fit guiding function can be more intensified by increasing the angle of inclination.
  • the single terminal 16 is provided with the rather small hood portion 171 in the first embodiment above. It should be appreciated, however, that a rather large hood portion surrounding more than one terminal having a cross section of a tubular shape or substantially an elliptical shape is also adoptable. Further, the hood portion having a cross section of a square shape, an oblong shape, a polygonal shape or any other shapes is also adoptable. In practice, the vehicle AC generator 1 maintains its versatility by making the connection connection portion 17 adaptable to the vehicle-side connector 100 of various shapes.
  • the opening shape of the damper mechanical portion 18 provided to the protection cover 15 to insert the vehicle-side connector is not limited to the rectangular shape as is shown in the drawing and the opening can be of various shapes, such as a semi-circular shape, a long elliptical shape, and a polygonal shape.
  • FIG. 15 is a sectional side view of a major portion of the vehicle AC generator showing another example of the connector connection portion provided to the in-vehicle device.
  • the first embodiment above has described a case where the connector connection portion 17 and the vehicle-side connector insertion opening 15 a are formed on the front side of the protection cover 15 (left in the sheet surface of FIG. 1 and the rear side of the vehicle AC generator 1 ) according to a layout of the vehicle wiring. It is, however, also possible to install, as is shown in FIG. 15 , the connector connection portion 17 and the vehicle-side connector insertion opening 15 a on the side surface side of the protection cover 15 (upper side in the sheet surface of FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Connector Housings Or Holding Contact Members (AREA)
  • Motor Or Generator Frames (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)

Abstract

An in-vehicle device includes: a terminal to which a vehicle-side connector is connected; a hood portion surrounding the terminal; a protection cover functioning with a purpose of holding or protecting constituent components of the in-vehicle device; and a damper mechanical portion formed integrally with the protection cover and installed on a periphery of the hood portion. The damper mechanical portion has an cuter wall portion linked to a base portion of the protection cover and an inner wall portion spaced. apart from an outer surface of the hood portion and held on an inner side of the outer wall portion.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to an in-vehicle device, such as a vehicle AC generator mounted on a vehicle and connected to a vehicle-side connector.
  • 2. Description of the Related Art
  • According to a structure of a vehicle connector connection portion of an AC generator (auxiliary machine provided in an engine room) in the related art, a first housing is formed of a terminal holding portion, a tubular hood portion protruding from a front surface of the terminal holding portion toward a tip end, and a tubular regulatory portion protruding from the front surface of the terminal holding portion on a more outer peripheral side than the hood portion toward the tip end, all of which are integrated into one unit and made of a synthetic resin material with excellent heat resistance. The hood portion surrounding a tip end of a male terminal metal fitting attached to the terminal holding portion is fit in a space between a terminal storing portion provided to an engine-side connector (wire harness) and a tubular fitting portion surrounding the terminal storing portion, so that the male terminal metal fitting and a female terminal metal fitting in the terminal storing portion are connected to each other.
  • The tubular regulatory portion externally fits onto the tubular fitting portion all along the circumference, and thereby regulates relative displacement even when the tubular fitting portion undergoes deformation toward the outer periphery due to high temperatures. Hence, the tubular regulatory portion prevents rattling between the housing and the connector in a reliable mariner (see, for example, Patent Document 1)
  • Also, a fitting structure is described by way of example with another connector. According to this structure, while a female connector and a male connector are properly fit together, the female connector is regulated so as not to fall off by a connector attachment plate and an electric component provided with the male connector is regulated so as not to fall off by an electric component attachment plate (instrument panel). The respective attachment plates are made of a synthetic resin material and formed by integral molding. The respective attachment plates are fit together elastically by a fitting protrusion and a recess (see, for example, Patent Document 2).
  • [Patent Document 1] JP-A-2013-4376
  • [Patent Document 2] JP-A-9-55262
  • In the AC generator in the related art, the tubular regulatory portion of substantially the same shape as the outer peripheral shape of the hood portion is externally fit to the tubular fitting portion all along the circumference. However, the both are fit together at a tip end of the tubular fitting portion and most (outer periphery) of the tubular fitting portion is in a free state. Vibrations that the vehicle AC generator mounted on the vehicle undergoes are considerably large depending on a model and the vehicle AC generator fails to endure the vibrations by merely fitting the resin members together. Hence, it cannot be said that fine sliding-induced wear between the terminal metal fittings is perfectly suppressed.
  • On the other hand, in an example in which the connector is fit to an attachment plate, because the attachment plate is large for the connector, when the connector undergoes large vibrations, it is likely that the attachment plate absorbs the vibrations.
  • SUMMARY OF THE INVENTION
  • The invention was devised to solve the problems discussed above and has an object to provide an in-vehicle device capable of maintaining a high vibration-resistant connection state with a vehicle-side connector to which the in-vehicle device is connected when mounted on a vehicle.
  • An in-vehicle device according to an aspect of the invention includes: a terminal to which a vehicle-side connector is connected; a hood portion surrounding the terminal; a protection cover functioning with one of purposes of holding and protecting constituent components including the terminal and the hood portion; and a damper mechanical portion formed integrally with the protection cover and installed on a periphery of the hood portion.
  • Also, an in-vehicle device according to another aspect of the invention includes: a terminal; a hood portion surrounding the terminal; and a protection cover functioning with one of purposes of holding and protecting constituent components including the terminal and the hood portion. A vehicle-side connector is inserted in a space between an outer peripheral surface of the hood portion and an inner surface of the protection cover, and thereby the vehicle-side connector, the terminal, and. the hood portion are fit together and the vehicle-side connector is elastically held.
  • According to the in-vehicle devices of the invention, the damper mechanical portion is formed of a part of the protection cover installed on the periphery of the hood portion. Hence, vibrations can be absorbed in the damper mechanical portion and it becomes possible to maintain a high vibration-resistant connection state with the vehicle-side connector.
  • Also, the in-vehicle device of the invention is configured in such a manner that the vehicle-side connector is inserted in a space between the outer peripheral surface of the hood portion and the inner surface of the protection cover, so that the vehicle-side connector, the terminal, and the hood portion are fit together and the vehicle-side connector is elastically held. Hence, vibrations can be absorbed and it becomes possible to maintain a high vibration-resistant connection state with the vehicle-side connector.
  • The foregoing and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a sectional side view of a vehicle AC generator as an in-vehicle device according to a first embodiment of the invention;
  • FIG. 2 is a rear view of the vehicle AC generator of FIG. 1;
  • FIG. 3 is a cross section of a major portion showing a state in which a vehicle-side connector is attached to the vehicle AC generator of FIG. 1;
  • FIG. 4 is a plan view of a protection cover of the vehicle AC generator of FIG. 1;
  • FIG. 5 is an enlarged plan view of a major portion of a damper mechanical portion of the protection cover of FIG. 4;
  • FIG. 6 is a cross section taken on the line A-A of FIG. 5;
  • FIG. 7 is a front-side perspective view of the major portion of the damper mechanical portion according to the first embodiment of the invention;
  • FIG. 8 is a back-side perspective view of the major portion of the damper mechanical portion according to the first embodiment of the invention;
  • FIG. 9 is a perspective view showing a state in which the vehicle-side connector is attached to the damper mechanical portion of the protection cover of FIG. 4 when viewed from a back side of the protection cover;
  • FIG. 10 is a plan view of FIG. 9;
  • FIG. 11A is a front view of a major portion of a protection cover of a vehicle AC generator according to a second embodiment of the invention;
  • FIG. 11B is a back-side view of the major portion of the protection cover of the vehicle AC generator according to the second embodiment of the invention;
  • FIG. 12A is a front-side perspective view of the major portion of the protection cover of the vehicle AC generator according to the second embodiment of the invention;
  • FIG. 12B is a back-side perspective view of the major portion of the protection cover of the vehicle AC generator according to the second embodiment of the invention;
  • FIG. 13 is a cross section of a damper mechanical portion of a protection cover taken along a vehicle-side connector insertion direction in a vehicle AC generator according to a third embodiment of the invention;
  • FIG. 14 is a cross section of the damper mechanical portion of the protection cover taken along the vehicle-side connector insertion direction in a vehicle AC generator according to a modification of the third embodiment of the invention; and
  • FIG. 15 is a sectional side view of a major portion showing another example of a connector connection portion of the vehicle AC generator.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment
  • Hereinafter, an in-vehicle device according to a first embodiment of the invention will be described according to FIG. 1 through FIG. 10. FIG. 1 is a sectional side view showing a vehicle AC generator 1 as an example of the in-vehicle device according to the first embodiment of the invention. Referring to FIG. 1, a rear side (left of the sheet surface) of the vehicle AC generator 1 is covered with a protection cover 15 and a connector connection portion 17 to be connected to a vehicle-side connector is installed in an upper part on the rear side. FIG. 2 is a rear view of the vehicle AC generator 1 of FIG. 1 and it is also a front view when the connector connection portion 17 and its periphery are viewed in an insertion direction. Also, FIG. 3 is a cross section simply showing an attachment state of a damper mechanical portion of the invention and the vehicle-side connector. The invention is characterized in that a hood portion 171 surrounding a terminal 16 of the in-vehicle device and a damper mechanical portion 18 formed integrally with the protection cover 15 are formed so as to have a double tube structure, and a fitting portion (tubular fitting portion 102) of a vehicle-side connector 100 is elastically held in a clearance of the double tube. In this instance, an inner surface of the damper mechanical portion 18 and an outer surface of the tubular fitting portion 102 are in contact with each other and held in this state, so that vibrations are absorbed on the side of the damper mechanical portion 18.
  • As is shown in FIG. 1, the vehicle AC generator 1 as an example of the in-vehicle device includes a casing 4 formed of a front bracket 2 and a rear bracket 3 substantially shaped like a cup, a shaft 6 supported on the casing 4 in a rotatable manner via a pair of bearings 5, a pulley 7 firmly fixed to the shaft 6 at an end extending frontward with respect to the casing 4, a rotor 8 fixed to the shaft 6 and installed inside the casing 4, a stator 9 fixed to the casing 4 so as to surround the rotor 8, a pair of slip rings 10 fit to the shaft 6 in an extending portion extending rearward with respect to the casing 4, and a pair of brushes 11 installed so as to slide on the slip rings 10 and supplying a current to the rotor 8 from the vehicle-side connector 100.
  • The rotor 8 includes a field winding (not shown) generating a flux when an excitation current is flown through and a core 81 provided so as to cover the field winding and generating a magnetic pole with the flux.
  • The stator 9 includes a cylindrical stator core 91 and a stator winding 92 coiled around the stator core 91 and generating AC with a variance of the flux from the field winding in association with rotations of the rotor 8. The stator 9 is installed so as to surround the rotor 8 with both axial ends of the stator core 91 being pinched at opening ends of the front bracket 2 and the rear bracket 3.
  • The vehicle AC generator 1 includes a brush holder 12 storing the brushes 11, a voltage adjustor device 13 installed on an outer diameter side of the brush holder 12 and adjusting magnitude of an AC voltage generated at the stator 9, a rectifier device 14 formed substantially in the shape of a capital C and installed to an outer peripheral portion of the slip rings 10 in a fan shape with its center on the shaft 6 in a plane orthogonal to a shaft center of the shaft 6 and rectifying an AC voltage generated at the stator 9 to a DC voltage, and a protection cover 15 formed of a resin molded article attached to the rear bracket 3 so as to cover the brush holder 12, the voltage adjustor device 13, and the rectifier device 14. For a circuit board (not shown) of the brush holder 12, the voltage adjustor device 13, and the rectifier device 14, desired terminals functioning so as to establish electrical connections are provided by insert molding using insulating resin or the like.
  • Also, as is shown in the sectional side view of the vehicle AC generator 1 of FIG. 1, the voltage adjustor device 13 has a connector connection portion 17 as an integral part thereof, and is formed of a corresponding terminal 16 (terminal portion) among multiple insert terminals (not shown) provided to the voltage adjustor device 13 and a hood portion 171 formed in substantially a tubular shape by molding so as to surround and thereby protect the terminal 16. An air gap necessary for an insertion work of the vehicle-side connector 100 is secured around the connector connection portion 17. Further, the damper mechanical portion 18 is molded integrally with the protection cover 15 so as to surround the air gap and extend rearward with respect to the device.
  • An attachment state of the damper mechanical portion 18 and the vehicle-side connector 100 is shown simply in a cross section of FIG. 3. As is shown in the drawing, the hood portion 171 of substantially a tubular shape and the damper mechanical portion 18 of substantially a tubular shape surrounding the hood portion 171 together form a double tube structure. In a case where the vehicle-side connector 100 is inserted, an inner peripheral surface of the hood portion 171 and an outer peripheral surface of a terminal storing portion 101, which is a fitting portion of the vehicle-side connector 100 described below, and an outer peripheral surface of the hood portion 171 and an inner peripheral surface of a tubular fitting portion 102, which is a fitting portion of the vehicle-side connector 100 described below, are fit together and held in this state. Also, an outer peripheral surface of the tubular fitting portion 102, which is a fitting portion of the vehicle-side connector 100 described below, and an inner surface of the damper mechanical portion 18 are elastically held.
  • FIG. 4 is a plan view of the protection cover 15 provided with the damper mechanical portion 18. As is shown in the drawing, the damper mechanical portion 18 is formed integrally with the protection cover 15 and a recess 18 a used to adjust insertion condition of the vehicle-side connector 100 is formed in a part of the damper mechanical portion 18. The connector connection portion 17 is exposed to a portion surrounded by the damper mechanical portion 18.
  • FIG. 5 is an enlarged plan view of a major portion of the damper mechanical portion 18 and it is also a back side view when the protection cover 15 is viewed from the cover inner side. Also, FIG. 6 is a cross section taken on the line A-A of FIG. 5 and this is a cross section of the damper mechanical portion 18 along a vehicle-side connector insertion direction.
  • As are shown in FIG. 5 and FIG. 6, the damper mechanical portion 18 is formed of an outer wall portion 181 provided so as to surround the connection connection portion 17 and linked to a base portion of the protection cover 15 while protruding outward from a vehicle-side connector insertion opening 15 a, an inner wall portion 182 (rip portion) spaced apart from the hood portion 171 of the connection connection portion 17 and held on the inner side of the outer wail portion 181 while extending parallel to between the outer wall portion 181 and the hood portion 171, and a coupling portion 183 connecting a tip end of the outer wall portion 181 and a tip end of the inner wall portion 182. As has been described above, the damper mechanical portion 18 is formed integrally with the protection cover 15 Also, the outer wall portion 181 and the inner wall portion 182 together form the double tube structure inside the damper mechanical portion 18.
  • As is shown in the cross section of FIG. 6, the coupling portion 183 is formed so as to guide the vehicle-side connector 100 during insertion by making its surface round in the vicinity of the inner wall portion 182. Also, the cross section of the damper mechanical portion 18 is of substantially the shape of a capital U. The tip end of the outer wall portion 181 of the damper mechanical portion 18 is located on the outer side than the tip end of the inner wall portion 182. An amount of protrusion of the tip end of the outer wall portion 181 from the base portion of the protection cover 15 Is larger than an amount of protrusion of the tip end of the inner wall portion 182.
  • Regarding dimensions of the respective components forming the damper mechanical portion 18, for example, a height of the outer wall portion 181 protruding from the vehicle-side connector insertion opening 15 a of the protection cover 15 is about 10 to 12 9mm, a radius r of the curve of the coupling portion 183 is about 2 mm, a thickness of the outer wall portion 181 and the inner wall portion 182 is about 1 to 1.5 mm, and a clearance between the outer wall portion 181 and the inner wall portion 182 is about 1.5 to 3 mm. It is needless to say that these dimensions are changed when the need arises to suit a device to which the invention is applied.
  • Also, FIG. 7 is a front-side perspective view of the major portion of the damper mechanical portion 18 of the protection cover 15 and FIG. 8 is a back-side perspective view of the major portion of the damper mechanical portion 18 of the protection cover 15.
  • FIG. 9 is a perspective view showing a state in which the vehicle-side connector 100 is guided by the rounded portion of the damper mechanical portion 18 and attached to the damper mechanical portion 18 when viewed from the back side (inner side) of the protection cover 15. For ease of visual understanding of the fitting state, FIG. 9 shows only the periphery of the damper mechanical portion 18 of the protection cover 15. In actuality, however, forming members, such as the connector connection portion 17 of the in-vehicle device, are installed inside the protection cover 15 and fit together with the vehicle-side connector 100.
  • The vehicle-side connector 100 includes the terminal storing portion 101 storing the in-vehicle device terminals and the tubular fitting portion 102 surrounding the terminal storing portion 101. An outer periphery of the tubular fitting portion 102 is formed in a dimension that allows press-fit to the inner wall portion 182 of the damper mechanical portion 18.
  • FIG. 10 is a plan view of FIG. 9 and it is a view when the protection cover 15 is observed from the inner side (the terminal storing portion 101 of the vehicle-side connector 100 is omitted). As is shown in FIG. 10, while the tubular fitting portion 102 of the vehicle-side connector 100 is elastically held by the damper mechanical portion 18, a convex portion of the tubular fitting portion 102 is in contact with the inner wall portion 182 of the damper mechanical portion 18 in at least two opposing surfaces (both side surfaces) of the tubular fitting portion 102. The tubular fitting portion 102 of the vehicle-side connector 100 is press-fit toward the lower end (opening end side) of the inner wall portion 182 of the damper mechanical portion 18. Consequently, the vehicle-side connector 100 is held by the protection cover 15 in the configuration that absorbs vibrations. It thus becomes possible to avoid inconveniences arising from sliding-induced wear in a connection portion between the terminal 16 of the voltage adjustor device 13, which is a part of electrical connection of the vehicle AC generator 1, and the terminal storing portion 101 of the vehicle-side connector 100.
  • The inner wall portion 182 of the damper mechanical portion 18 is formed in a region surrounded by the outer wall portion 181. Hence, the outer wall portion 181 is furnished with not only a function of protecting the vehicle-side connector 100 but also a function of protecting the inner wall portion 182 from an external impact. The inner wall portion 182 can be therefore formed in a flexible shape that suits to exert the damper function.
  • As has been described, the vehicle AC generator 1 as the in-vehicle device according to the first embodiment of the invention is configured in such a manner that the damper mechanical portion 18 is formed of the protection cover 15 and vibrations are absorbed in the damper mechanical portion 18. Owing to this configuration, it becomes possible to enhance the vibration resistance.
  • Second Embodiment
  • FIG. 11A is a front view and FIG. 11B is a back side view of a major portion of a protection cover 15 of a second embodiment. FIG. 12A is a front-side perspective view of the major portion and FIG. 12B is a back-side perspective view of the major portion of the protection cover 15 of the second embodiment. The first embodiment above has described a case where the inner wall portion 182 of the damper mechanical portion 18 is provided substantially continuously along the connector connection portion 17. On the contrary, the inner wall portion 182 is divided to multiple parts by providing slits 18 c in the second embodiment. By providing the slits 18 c to the inner wall portion 182 along the vehicle-side connector insertion direction, it becomes possible to suppress cracking of the inner wall portion 182 when the vehicle-side connector 100 is press-fit or when the device is mounted on the vehicle. It thus becomes possible to avoid inconveniences, such as unwanted deformation.
  • FIGS. 11A and 11B and FIGS. 12A and 12B show a case where the slits 18 c are provided at two points in the inner wall portion 182 of the damper mechanical portion 18 by way of example. It should be appreciated, however, that the number of formed points and dimensions of the slits 18 c can be changed when the need arises to suit a device to which the invention is applied.
  • Third Embodiment
  • FIG. 13 is a cross section of a damper mechanical portion 18 of a third embodiment along the vehicle-side connector insertion direction. The first embodiment above has described a case as is shown in FIG. 6 where the outer wail portion 181 and the inner wall portion 182 of the damper mechanical portion 18 have substantially the same thickness. On the contrary, the third embodiment is configured in such a manner that a thickness V of an inner wall portion 182 a is smaller than a thickness W of an outer wall portion 181 a and the outer wall portion 181 a and the inner wall portion 182 a are connected by a coupling portion 183 a. Owing to this configuration, it becomes possible to suppress unwanted deflection and deformation in the outer wall portion 181 a and also to obtain a higher damper effect in the inner wall portion 182 a.
  • The configuration described above is a mere example and various other shapes are adoptable as well.
  • For example, the cross section of FIG. 13 shows that the coupling portion 183 a of the damper mechanical portion 18 is formed so as to have a round cross section. It should be appreciated, however, that it is also possible to adopt a taper shape considerably inclining toward the inner wall portion 182 a as is shown in the cross section of FIG. 14 as the shape of the coupling portion 183 b. In this case, the press-fit guiding function can be adjusted by adjusting an angle of the inclination. The press-fit guiding function can be more intensified by increasing the angle of inclination. Hence, improvements of workability during the vehicle-side connector insertion can be expected.
  • Also, regarding the connector connection portion 17, the single terminal 16 is provided with the rather small hood portion 171 in the first embodiment above. It should be appreciated, however, that a rather large hood portion surrounding more than one terminal having a cross section of a tubular shape or substantially an elliptical shape is also adoptable. Further, the hood portion having a cross section of a square shape, an oblong shape, a polygonal shape or any other shapes is also adoptable. In practice, the vehicle AC generator 1 maintains its versatility by making the connection connection portion 17 adaptable to the vehicle-side connector 100 of various shapes.
  • It goes without saying that the opening shape of the damper mechanical portion 18 provided to the protection cover 15 to insert the vehicle-side connector is not limited to the rectangular shape as is shown in the drawing and the opening can be of various shapes, such as a semi-circular shape, a long elliptical shape, and a polygonal shape.
  • FIG. 15 is a sectional side view of a major portion of the vehicle AC generator showing another example of the connector connection portion provided to the in-vehicle device. The first embodiment above has described a case where the connector connection portion 17 and the vehicle-side connector insertion opening 15 a are formed on the front side of the protection cover 15 (left in the sheet surface of FIG. 1 and the rear side of the vehicle AC generator 1) according to a layout of the vehicle wiring. It is, however, also possible to install, as is shown in FIG. 15, the connector connection portion 17 and the vehicle-side connector insertion opening 15 a on the side surface side of the protection cover 15 (upper side in the sheet surface of FIG. 15 and on the outer peripheral surface side of the vehicle AC generator 1) in alignment with a direction of the terminal 16 a. In short, it is needless to say that the locations of the connector connection portion 17 and the vehicle-side connector insertion opening 15 a can be changed appropriately when the need arises according to a device to which the invention is applied.
  • It should be appreciated that the respective embodiments of the invention can be combined without any restriction within the scope of the invention and the respective embodiments can be modified and omitted as the need arises.
  • Various modifications and alterations of this invention will be apparent to those skilled in the art without departing from the scope and spirit of this invention, and it should be understood that this is not limited to the illustrative embodiments set forth herein.

Claims (9)

What is claimed is:
1. An in-vehicle device, comprising:
a terminal to which a vehicle-side connector is connected;
a hood portion surrounding the terminal;
a protection cover functioning with one of purposes of holding and protecting constituent components including the terminal and the hood portion; and
a damper mechanical portion formed integrally with the protection cover and installed around the hood portion.
2. The in-vehicle device according to claim 1, wherein:
the damper mechanical portion has an outer wall portion linked to a base portion of the protection cover and an inner wall portion spaced apart from the hood portion and held on an inner side of the outer wall portion.
3. The in-vehicle device according to claim 2, wherein:
the damper mechanical portion has a coupling portion that connects a tip end of the outer wall portion and a tip end of the inner wall portion.
4. The in-vehicle device according to claim 3, wherein:
the tip end of the outer wall portion of the damper mechanical portion is located on an outer side than the tip end of the inner wall portion.
5. The in-vehicle device according to claim 4, wherein:
the coupling portion of the damper mechanical portion has a surface which is formed to be round in a vicinity of the inner wall portion.
6. The in-vehicle device according to claim 2, wherein:
the inner wall portion of the damper mechanical portion is provided with a slit along a vehicle-side connector insertion direction.
7. The in-vehicle device according to claim 2, wherein:
the inner wall portion of the damper mechanical portion is formed of a member thinner than a member forming the outer wall portion.
8. An in-vehicle device, comprising:
a terminal;
a hood portion surrounding the terminal; and
a protection cover functioning with one of purposes of holding and protecting constituent components including the terminal and the hood portion,
wherein a vehicle-side connector is inserted in a space between an outer peripheral surface of the hood portion and an inner surface of the protection cover, and thereby the vehicle-side connector, the terminal, and the hood portion are fit together and the vehicle-side connector is elastically held.
9. The in-vehicle device according to claim 8, wherein:
the protection cover elastically holds the vehicle-side connector in a portion in contact with an outer peripheral surface of the vehicle-side connector.
US14/279,798 2013-12-11 2014-05-16 In-vehicle device Active US9346367B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-255598 2013-12-11
JP2013255598A JP5674906B1 (en) 2013-12-11 2013-12-11 Vehicle-mounted equipment

Publications (2)

Publication Number Publication Date
US20150162699A1 true US20150162699A1 (en) 2015-06-11
US9346367B2 US9346367B2 (en) 2016-05-24

Family

ID=52672629

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/279,798 Active US9346367B2 (en) 2013-12-11 2014-05-16 In-vehicle device

Country Status (3)

Country Link
US (1) US9346367B2 (en)
JP (1) JP5674906B1 (en)
CN (1) CN104716770B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6963533B2 (en) * 2018-05-23 2021-11-10 サンデン・オートモーティブコンポーネント株式会社 Electric compressor for vehicles

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030129864A1 (en) * 2002-01-07 2003-07-10 Peloza Kirk B. Automotive connector with improved retention ability
US20080085636A1 (en) * 2006-10-10 2008-04-10 Denso Corporation Connector with built-in circuit element
US20090221181A1 (en) * 2006-03-17 2009-09-03 Amphenol-Tuchel Electronics Gmbh Electrical plug-type connector
US20090318009A1 (en) * 2008-06-20 2009-12-24 Delphi Technologies, Inc. Connector retainer
US7645154B2 (en) * 2007-10-04 2010-01-12 Ford Global Technologies, Llc USB connector protective cover
US8011945B2 (en) * 2009-11-05 2011-09-06 Hyundai Motor Company Locking device and high voltage shield connector having the same
US8998644B2 (en) * 2010-10-08 2015-04-07 Sumitomo Wiring Systems, Ltd. Connector holder

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531158U (en) * 1991-09-25 1993-04-23 株式会社カンセイ Electrical connector
CN1100237A (en) * 1993-06-29 1995-03-15 惠特克公司 Vibration proof electrical connector housing
JPH0955262A (en) 1995-08-10 1997-02-25 Sumitomo Wiring Syst Ltd Engagement structure for connector
JP2001176602A (en) * 1999-12-20 2001-06-29 Sumitomo Wiring Syst Ltd Vibrationproofing cover of connector
JP3977092B2 (en) * 2001-02-09 2007-09-19 古河電気工業株式会社 Grommet and connector using the same
JP2004215382A (en) * 2002-12-27 2004-07-29 Namiki Precision Jewel Co Ltd Portable electronic device equipped with small motor for vibration generations
CN2867646Y (en) * 2006-01-12 2007-02-07 中国电子科技集团公司第三十研究所 Locking USB interface apparatus
JP2008123913A (en) * 2006-11-14 2008-05-29 Auto Network Gijutsu Kenkyusho:Kk Inner conductor terminal and coaxial connector
CN201417852Y (en) * 2009-05-07 2010-03-03 塞尔福(厦门)工业有限公司 A U-disk plug device for car electronic products
JP2013004376A (en) 2011-06-17 2013-01-07 Sumitomo Wiring Syst Ltd Connector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030129864A1 (en) * 2002-01-07 2003-07-10 Peloza Kirk B. Automotive connector with improved retention ability
US20090221181A1 (en) * 2006-03-17 2009-09-03 Amphenol-Tuchel Electronics Gmbh Electrical plug-type connector
US20080085636A1 (en) * 2006-10-10 2008-04-10 Denso Corporation Connector with built-in circuit element
US7645154B2 (en) * 2007-10-04 2010-01-12 Ford Global Technologies, Llc USB connector protective cover
US20090318009A1 (en) * 2008-06-20 2009-12-24 Delphi Technologies, Inc. Connector retainer
US8011945B2 (en) * 2009-11-05 2011-09-06 Hyundai Motor Company Locking device and high voltage shield connector having the same
US8998644B2 (en) * 2010-10-08 2015-04-07 Sumitomo Wiring Systems, Ltd. Connector holder

Also Published As

Publication number Publication date
CN104716770A (en) 2015-06-17
JP2015115152A (en) 2015-06-22
CN104716770B (en) 2017-10-24
US9346367B2 (en) 2016-05-24
JP5674906B1 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
US10523092B2 (en) Vehicle AC power generator
JP2010273450A (en) Electric motor
JP2007202255A (en) Radio noise countermeasure structure of blower motor
JP2009038926A (en) Ac generator for vehicle
JP2015070658A (en) Dc motor
US9525317B2 (en) Automotive rotary electric machine
JP2013051800A (en) Protector and protector mounting structure
US9346367B2 (en) In-vehicle device
RU2726953C2 (en) Electric motor, in particular for fans for combustion air or for mixture of air and gaseous combustion product, in gas burners, stator assembly for such electric motor and assembly method for such a stator assembly
JP6095794B2 (en) Rotating electric machine for vehicles
CN110318978A (en) Vehicle-mounted motor compressor
JP6329835B2 (en) Terminal structure of power distribution parts
EP2787608A1 (en) Rotating electrical machine for vehicle
JP2020031509A (en) Holder and wiring harness
US7554233B2 (en) On-vehicle alternator capable of adjustably orienting output cable
US11780387B2 (en) Clamp and clamp-equipped wire harness
EP1630934B1 (en) Brush holder assembly of alternator for vehicle
JP5795086B2 (en) AC generator for vehicles
JP5333871B2 (en) Rotating electric machine
CN109923763B (en) Protective cover for rotating electric machine
JP2021057952A (en) Clamp and wire harness
KR101820136B1 (en) Wire harness protector
JP2017127155A (en) Electric motor
JP5766265B2 (en) Regulator for vehicle alternator
JPWO2015019587A1 (en) Brush holder assembly and commutator motor provided with the brush holder assembly

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITSUBISHI ELECTRIC CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TANAKA, KAZUNORI;HIGASHINO, KYOKO;REEL/FRAME:032916/0901

Effective date: 20140303

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY