US20150153755A1 - Method and System for Rating Building Energy Performance - Google Patents

Method and System for Rating Building Energy Performance Download PDF

Info

Publication number
US20150153755A1
US20150153755A1 US14/399,394 US201314399394A US2015153755A1 US 20150153755 A1 US20150153755 A1 US 20150153755A1 US 201314399394 A US201314399394 A US 201314399394A US 2015153755 A1 US2015153755 A1 US 2015153755A1
Authority
US
United States
Prior art keywords
rating
building
energy
set forth
database
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/399,394
Inventor
Dean H. Durst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AREVS LLC
Original Assignee
AREVS LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AREVS LLC filed Critical AREVS LLC
Priority to US14/399,394 priority Critical patent/US20150153755A1/en
Publication of US20150153755A1 publication Critical patent/US20150153755A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q90/00Systems or methods specially adapted for administrative, commercial, financial, managerial or supervisory purposes, not involving significant data processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/02Computing arrangements based on specific mathematical models using fuzzy logic

Definitions

  • the present invention relates generally to the field of rating the energy efficiency of buildings, and more specifically to methods and systems for automatically estimating established building energy rating methods.
  • the HERS Index is on a scale from 0 to 150. 0 is a zero net energy home, and 100 is the “standard” new home built in strict accordance with 2004 residential energy code and Energy Star Standards. Homes scoring above 100 are less energy efficient than the “standard” model. The lower the number on the HERS scale, the more energy efficient the home.
  • the HERS Index rating is the nationally accepted method of rating the energy efficiency of new homes. The HERS rating method is used for rating the energy performance of newly constructed homes, and requires two inspections during the construction process and a final testing of the completed structure. More detail is available at www.resnet.us/hers-index.
  • a system for predicting energy factors comprising: a user interface for receiving: a HERS index; a date range; a building square footage; a building location; a computer; a database comprising:average temperature for zipcode for a given day; an calculation module providing an estimate of the BTU/sqft/HDD, wherein said output is a function of said HERS index, date range, square footage and a building location.
  • FIG. 1 is a block diagram of a first general embodiment system for providing a building energy rating.
  • FIG. 2 is a block diagram of a second embodiment system for providing an estimate of an asset based energy rating.
  • FIG. 3 is a block diagram of a third embodiment system for providing a building energy rating.
  • the terms “horizontal”, “vertical”, “left”, “right”, “up” and “down”, as well as adjectival and adverbial derivatives thereof simply refer to the orientation of the illustrated structure as the particular drawing figure faces the reader.
  • the terms “inwardly” and “outwardly” generally refer to the orientation of a surface relative to its axis of elongation, or axis of rotation, as appropriate.
  • the disclosed invention embodiments provide a system and method for providing a building energy performance rating given a set of characteristics associated with a building.
  • a building is broadly defined as a manmade structure used for shelter including a house, an apartment building, a commercial building, or any other similar structure.
  • the disclosed embodiments provide a system and method for determining an energy performance rating needing only the limited information of an actual heating bill, a building's livable area, and the geographic location of a building.
  • the disclosed embodiments are able to provide an accurate estimate of the popular RESNET and HERS Index rating systems, without the need for a lengthy inspection and/or an extensive questionnaire based process.
  • the disclosed embodiments include an advanced algorithm which utilizes a large database of building data and geographic temperature data to calculate a most likely performance rating for a building based on limited information provided. Other calculations, such as estimated yearly heating fuel costs, cooling costs, ad or electricity costs are also provided by the system. In order to predict energy performance ratings with a higher degree of certainty, additional building data may be provided to the system including: the number of occupants residing at a building, the number of rooms and room types, actual past electricity usage records, local heating fuel and electricity costs, and other similar data.
  • System 100 receives building data 106 as input, and provides an energy rating number (“ERN”) energy performance rating 151 as output.
  • System 100 has the major components of temperature database 174 , degree day calculation module 170 , and performance rating calculation module 160 .
  • Building data 106 that is provided to system 100 includes both energy performance based data and static, physical characteristic based data. More specifically, building data 106 includes a measurement of energy usage over a given period of time, which consists of energy usage start date 111 , energy usage end date 112 , and energy usage amount 114 .
  • the energy usage start date 111 , and energy usage end date 112 are typical month-date-year date values which are typically available from a heating bill.
  • a heating bill may have a energy usage start date 111 of Jan. 1, 2012, and an energy usage end date 112 of Jan. 31, 2012.
  • a more accurate measurement of the exact start date and end date may include a time of day.
  • the energy usage amount 114 is provided in BTU's (British Thermal Units). Many utility companies provide the number of BTU's used in a bill period. Alternatively, the energy usage amount may be provided in other energy units, such as gallons or liters of heating fuel, kilowatt-hours of electricity, kilograms or tons of pellets, therms of natural gas, cords of wood, or any other similar energy unit. Whatever type of energy unit is originally provided, the usage amount is converted to a common unit type, such as BTU's.
  • Building data 106 also includes the building's geographic location 113 .
  • Geographic location 113 may be provided in formats such as zip code, mailing address, GPS coordinates, or some other similar geographic location type. Whatever unit the geographic location is originally provided in, it is then converted to a geographic zip code for further processing by the system.
  • Building data 106 additionally includes building area 115 .
  • Building area 115 is a measurement of the livable area in the building. The provided livable area is converted into units of square feet (sq. ft.) when received by system 100 .
  • Degree day calculation module 170 provides the cumulative number of degree days at a given geographic location for a provided date range. More specifically, degree day calculation module 170 is provided an energy usage data start date 111 and end date 112 , as well as geographic location 113 , and in return determines the number of degree days 154 at the provided geographic location for the provided date range. As used herein, a degree day is the sum of the difference between the average temperature at a given geographic location and an either heating or cooling threshold temperature 171 for a given time period. For example, a user may want to know the number heating degree days for the time period of Jan. 1, 2012 to Jan. 3, 2012 at the geographic zip code location of 14203, using a threshold temperature of 65 degrees Fahrenheit.
  • Degree day calculation module 170 will first determine the average temperatures on of days Jan. 1, Jan. 2, and Jan. 3, 2012. Module 170 will then subtract the average temperature of each day from the threshold temperature of 65 degrees. The sum of these differences is provided by module 170 as the total (heating) degree days 154 .
  • Temperature database 174 consists of a number of historically recorded temperatures for given dates at given geographic locations. More specifically, temperature database 174 has a number of database records 175 , each database record 175 including geographic location 176 , temperature 177 , and date-time 178 . Geographic location 176 is a zip code or other similar geographic location type. Temperature 177 is a temperature measured in Fahrenheit, Celsius, or other scale. In this embodiment, temperature 177 is an average temperature recorded over a given day (such as the average temperature recorded over a day). However, other temperature measurements, such as a high or low temperature recorded over a day, or an instantaneous temperature measured at a specific date-time may be used in addition, or as an alternative to a daily average temperature.
  • Degree day calculation module 170 uses temperature database 174 by sequentially requesting the average temperature for each day in the appropriate date range for the provided geographic zip code. As shown in FIG. 1 . temperature database 174 receives the requested date-time from module 170 as shown by line 155 . Similarly, temperature database receives the geographic zip code as shown by line 156 . Temperature database 174 in response provides module 170 the average temperature for the provided date-time and geographic zip code as shown on return line 157 .
  • Performance rating calculation module 160 calculates ERN performance rating 151 based on data received from degree day calculation module 170 and building data 106 . More specifically, performance rating calculation module 160 receives total degree days 154 from degree day module 170 . Performance rating calculation module 160 also receives energy usage amount 114 and building area 115 from building data 106 . Performance rating calculation module uses function/algorithm 162 to calculate performance rating 151 from inputs 114 , 115 , and 154 . In a most basic form, function/algorithm 162 uses the following function to calculate the ERN energy performance rating:
  • ERN (energy usage)/(degree days)/(building area)
  • function/algorithm 162 is a nonlinear function which converts the ERN to an alpha score which is a letter grade in the set [A+, A, A ⁇ , B+, B, B ⁇ , C+, C, C ⁇ , D+, D, D ⁇ , F]. More specifically, in this alternative embodiment, the function will provide the alpha score letter output according to the following table:
  • System 100 is implemented on a microprocessor having a memory for holding software and data.
  • system 100 can be implemented on a server computer, a desktop computer, a smartphone, or other similar system.
  • Temperature database 174 is implemented as a MySQL database, however other database systems, such as Oracle DB, Microsoft SQL, Postgre, or other similar database may be used.
  • the software may be programmed in Excel, java, C++, C, python, or some other similar language.
  • the computer system 100 is implemented on may include an operating system such as MacOS X, Microsoft Windows 7 , linux, or other similar operating system.
  • FIG. 2 Shown in FIG. 2 is a second embodiment system 200 for determining an ERN performance rating 151 and for providing a correlated RESNET and HERS rating 142 .
  • System 200 is similar to system 100 , but also has housing database 105 , and correlation engine 140 .
  • Housing database 105 contains data records for a number of buildings. The data record for each building includes both building data 106 and certified asset based rating data 107 .
  • Asset based ratings 107 includes certified asset based ratings such as RESNET rating 116 and HERS rating 117 . Having a large database of buildings with certified asset based ratings and performance based building data allows system 200 to accurately correlate performance based data to asset based data as is described in detail below.
  • Correlation engine 140 receives the calculated ERN 151 for each building entry in database 105 and determines a correlation function to correlate the ERN with the asset based RESNET rating 116 and/or the asset based HERS rating 117 . More specifically, correlation engine 140 uses a function to correlate the ERN entries to the asset based ratings 107 .
  • a simple function which may be used by correlation engine 140 is an interpolation function. Another simple function is a linear regression, in which a slope and intercept are calculated using well known methods. More advanced versions of a correlation function involve using a higher order curve fit involve using higher order coefficients as described in Coope, I. D. (1993), in “Circle fitting by linear and nonlinear least squares”, Journal of Optimization Theory and Applications 76 (2): 381. Other advanced correlation functions such as fuzzy logic and neural networks may also be used.
  • System 300 has the major components of server computer 120 and user computer 192 .
  • User 190 provides actual past housing/heating data to user computer 192 as shown at 181 , which is then relayed to server computer 120 .
  • Server computer 120 calculates a an estimated performance rating which is relayed through user computer 192 back to user 190 as shown at 182 .
  • User computer 192 is used to relay experimental data 106 to server computer 120 , and also relay the estimated performance rating from server computer 120 to user 190 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Public Health (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

A method of predicting energy usage having the steps of providing a computer, providing a temperature database, providing a building asset rating database, receiving inputs from a user having a floor area measure of a building, an energy usage measurement, an energy usage start date, an energy usage end date, and a geographic location identifier, determining an estimated energy rating as a function of said inputs, said temperature database, and said building asset rating database, and providing said estimated energy rating to said user.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority from U.S. provisional app. no. 61/647,415 which was filed on 15 May 2012, and U.S. provisional app. no. 61/769,193 which was filed on 25 Feb 2013, each of which is incorporated by reference in its entirety.
  • TECHNICAL FIELD
  • The present invention relates generally to the field of rating the energy efficiency of buildings, and more specifically to methods and systems for automatically estimating established building energy rating methods.
  • BACKGROUND ART
  • Several types of energy performance rating systems are known. Such systems are typically asset based, that is based upon physical characteristics and inspections of a given building. Two such systems are provided by the US Department of Energy, and RESNET. Both are nationally recognized as using certified rating methods. The Department of Energy's rating system is the newly released Home Energy Score, which rates houses on a scale of 1 to 10, with 10 being the most efficient and 1 being a home in need of extreme weatherization measures. The Department of Energy's rating is accomplished via a 3 page questionnaire which assesses building “characteristics” and is essentially designed to be a very high level (not detailed) asset assessment of a home's energy efficiency. A more detailed explanation is available at homeenergyscore.lbl.gov.
  • RESNET created and utilizes the Home Energy Rating Score Index (the “HERS Index”). The HERS Index number is on a scale from 0 to 150. 0 is a zero net energy home, and 100 is the “standard” new home built in strict accordance with 2004 residential energy code and Energy Star Standards. Homes scoring above 100 are less energy efficient than the “standard” model. The lower the number on the HERS scale, the more energy efficient the home. The HERS Index rating is the nationally accepted method of rating the energy efficiency of new homes. The HERS rating method is used for rating the energy performance of newly constructed homes, and requires two inspections during the construction process and a final testing of the completed structure. More detail is available at www.resnet.us/hers-index.
  • BRIEF SUMMARY OF THE INVENTION
  • With parenthetical reference to the corresponding parts, portions or surfaces of the disclosed embodiment, merely for the purposes of illustration and not by way of limitation, provided is. A system for predicting energy factors comprising: a user interface for receiving: a HERS index; a date range; a building square footage; a building location; a computer; a database comprising:average temperature for zipcode for a given day; an calculation module providing an estimate of the BTU/sqft/HDD, wherein said output is a function of said HERS index, date range, square footage and a building location.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram of a first general embodiment system for providing a building energy rating.
  • FIG. 2 is a block diagram of a second embodiment system for providing an estimate of an asset based energy rating.
  • FIG. 3 is a block diagram of a third embodiment system for providing a building energy rating.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • At the outset, it should be clearly understood that like reference numerals are intended to identify the same structural elements, portions or surfaces consistently throughout the several drawing figures, as such elements, portions or surfaces may be further described or explained by the entire written specification, of which this detailed description is an integral part. Unless otherwise indicated, the drawings are intended to be read (e.g., cross-hatching, arrangement of parts, proportion, degree, etc.) together with the specification, and are to be considered a portion of the entire written description of this invention. As used in the following description, the terms “horizontal”, “vertical”, “left”, “right”, “up” and “down”, as well as adjectival and adverbial derivatives thereof (e.g., “horizontally”, “rightwardly”, “upwardly”, etc.), simply refer to the orientation of the illustrated structure as the particular drawing figure faces the reader. Similarly, the terms “inwardly” and “outwardly” generally refer to the orientation of a surface relative to its axis of elongation, or axis of rotation, as appropriate.
  • The disclosed invention embodiments provide a system and method for providing a building energy performance rating given a set of characteristics associated with a building. A building is broadly defined as a manmade structure used for shelter including a house, an apartment building, a commercial building, or any other similar structure. The disclosed embodiments provide a system and method for determining an energy performance rating needing only the limited information of an actual heating bill, a building's livable area, and the geographic location of a building. The disclosed embodiments are able to provide an accurate estimate of the popular RESNET and HERS Index rating systems, without the need for a lengthy inspection and/or an extensive questionnaire based process. The disclosed embodiments include an advanced algorithm which utilizes a large database of building data and geographic temperature data to calculate a most likely performance rating for a building based on limited information provided. Other calculations, such as estimated yearly heating fuel costs, cooling costs, ad or electricity costs are also provided by the system. In order to predict energy performance ratings with a higher degree of certainty, additional building data may be provided to the system including: the number of occupants residing at a building, the number of rooms and room types, actual past electricity usage records, local heating fuel and electricity costs, and other similar data.
  • Referring now to the drawings, and more particularly to FIG. 1, shown at 100 is a system for providing an energy performance rating. System 100 receives building data 106 as input, and provides an energy rating number (“ERN”) energy performance rating 151 as output. System 100 has the major components of temperature database 174, degree day calculation module 170, and performance rating calculation module 160.
  • Building data 106 that is provided to system 100 includes both energy performance based data and static, physical characteristic based data. More specifically, building data 106 includes a measurement of energy usage over a given period of time, which consists of energy usage start date 111, energy usage end date 112, and energy usage amount 114. The energy usage start date 111, and energy usage end date 112 are typical month-date-year date values which are typically available from a heating bill. For example, a heating bill may have a energy usage start date 111 of Jan. 1, 2012, and an energy usage end date 112 of Jan. 31, 2012. As an alternative, a more accurate measurement of the exact start date and end date may include a time of day. The energy usage amount 114 is provided in BTU's (British Thermal Units). Many utility companies provide the number of BTU's used in a bill period. Alternatively, the energy usage amount may be provided in other energy units, such as gallons or liters of heating fuel, kilowatt-hours of electricity, kilograms or tons of pellets, therms of natural gas, cords of wood, or any other similar energy unit. Whatever type of energy unit is originally provided, the usage amount is converted to a common unit type, such as BTU's.
  • Building data 106 also includes the building's geographic location 113. Geographic location 113 may be provided in formats such as zip code, mailing address, GPS coordinates, or some other similar geographic location type. Whatever unit the geographic location is originally provided in, it is then converted to a geographic zip code for further processing by the system. Building data 106 additionally includes building area 115. Building area 115 is a measurement of the livable area in the building. The provided livable area is converted into units of square feet (sq. ft.) when received by system 100.
  • Degree day calculation module 170 provides the cumulative number of degree days at a given geographic location for a provided date range. More specifically, degree day calculation module 170 is provided an energy usage data start date 111 and end date 112, as well as geographic location 113, and in return determines the number of degree days 154 at the provided geographic location for the provided date range. As used herein, a degree day is the sum of the difference between the average temperature at a given geographic location and an either heating or cooling threshold temperature 171 for a given time period. For example, a user may want to know the number heating degree days for the time period of Jan. 1, 2012 to Jan. 3, 2012 at the geographic zip code location of 14203, using a threshold temperature of 65 degrees Fahrenheit. Degree day calculation module 170 will first determine the average temperatures on of days Jan. 1, Jan. 2, and Jan. 3, 2012. Module 170 will then subtract the average temperature of each day from the threshold temperature of 65 degrees. The sum of these differences is provided by module 170 as the total (heating) degree days 154.
  • In order to calculate the degree days, module 170 uses historical temperature database 174. Temperature database 174 consists of a number of historically recorded temperatures for given dates at given geographic locations. More specifically, temperature database 174 has a number of database records 175, each database record 175 including geographic location 176, temperature 177, and date-time 178. Geographic location 176 is a zip code or other similar geographic location type. Temperature 177 is a temperature measured in Fahrenheit, Celsius, or other scale. In this embodiment, temperature 177 is an average temperature recorded over a given day (such as the average temperature recorded over a day). However, other temperature measurements, such as a high or low temperature recorded over a day, or an instantaneous temperature measured at a specific date-time may be used in addition, or as an alternative to a daily average temperature.
  • Degree day calculation module 170 uses temperature database 174 by sequentially requesting the average temperature for each day in the appropriate date range for the provided geographic zip code. As shown in FIG. 1. temperature database 174 receives the requested date-time from module 170 as shown by line 155. Similarly, temperature database receives the geographic zip code as shown by line 156. Temperature database 174 in response provides module 170 the average temperature for the provided date-time and geographic zip code as shown on return line 157.
  • Performance rating calculation module 160 calculates ERN performance rating 151 based on data received from degree day calculation module 170 and building data 106. More specifically, performance rating calculation module 160 receives total degree days 154 from degree day module 170. Performance rating calculation module 160 also receives energy usage amount 114 and building area 115 from building data 106. Performance rating calculation module uses function/algorithm 162 to calculate performance rating 151 from inputs 114, 115, and 154. In a most basic form, function/algorithm 162 uses the following function to calculate the ERN energy performance rating:

  • ERN=(energy usage)/(degree days)/(building area)
  • In another form, a scaling constant is multiplied by the result:

  • Scaled ERN=(constant)×(energy usage)/(degree days)/(building area)
  • In another embodiment, function/algorithm 162 is a nonlinear function which converts the ERN to an alpha score which is a letter grade in the set [A+, A, A−, B+, B, B−, C+, C, C−, D+, D, D−, F]. More specifically, in this alternative embodiment, the function will provide the alpha score letter output according to the following table:
  • Alpha Score ERN
    A+ 0.00 ≦ ERN < 3.25
    A 3.25 ≦ ERN < 4.62
    A− 4.62 ≦ ERN < 5.67
    B+ 5.67 ≦ ERN < 6.17
    B 6.17 ≦ ERN < 7.50
    B− 7.50 ≦ ERN < 8.50
    C+ 8.50 ≦ ERN < 9.50
    C 9.50 ≦ ERN < 10.50
    C− 10.50 ≦ ERN < 11.00
    D+ 11.00 ≦ ERN < 11.5
    D 11.5 ≦ ERN < 13.00
    D− 13.00 ≦ ERN < 14.00
    F 14.00 ≦ ERN
  • System 100 is implemented on a microprocessor having a memory for holding software and data. In alternative embodiments, system 100 can be implemented on a server computer, a desktop computer, a smartphone, or other similar system. Temperature database 174 is implemented as a MySQL database, however other database systems, such as Oracle DB, Microsoft SQL, Postgre, or other similar database may be used. The software may be programmed in Excel, java, C++, C, python, or some other similar language. The computer system 100 is implemented on may include an operating system such as MacOS X, Microsoft Windows 7, linux, or other similar operating system.
  • Shown in FIG. 2 is a second embodiment system 200 for determining an ERN performance rating 151 and for providing a correlated RESNET and HERS rating 142. System 200 is similar to system 100, but also has housing database 105, and correlation engine 140. Housing database 105 contains data records for a number of buildings. The data record for each building includes both building data 106 and certified asset based rating data 107. Asset based ratings 107 includes certified asset based ratings such as RESNET rating 116 and HERS rating 117. Having a large database of buildings with certified asset based ratings and performance based building data allows system 200 to accurately correlate performance based data to asset based data as is described in detail below.
  • Correlation engine 140 receives the calculated ERN 151 for each building entry in database 105 and determines a correlation function to correlate the ERN with the asset based RESNET rating 116 and/or the asset based HERS rating 117. More specifically, correlation engine 140 uses a function to correlate the ERN entries to the asset based ratings 107. A simple function which may be used by correlation engine 140 is an interpolation function. Another simple function is a linear regression, in which a slope and intercept are calculated using well known methods. More advanced versions of a correlation function involve using a higher order curve fit involve using higher order coefficients as described in Coope, I. D. (1993), in “Circle fitting by linear and nonlinear least squares”, Journal of Optimization Theory and Applications 76 (2): 381. Other advanced correlation functions such as fuzzy logic and neural networks may also be used.
  • Shown in FIG. 3, is third embodiment building performance rating estimation system 300. System 300 has the major components of server computer 120 and user computer 192. User 190 provides actual past housing/heating data to user computer 192 as shown at 181, which is then relayed to server computer 120. Server computer 120 calculates a an estimated performance rating which is relayed through user computer 192 back to user 190 as shown at 182.
  • User computer 192 is used to relay experimental data 106 to server computer 120, and also relay the estimated performance rating from server computer 120 to user 190.
  • Therefore, while the presently-preferred form of the building energy performance rating system and method of building energy performance rating are disclosed and described, and several modifications discussed, persons skilled in this art will readily appreciate that various additional changes may be made without departing from the scope of the invention.

Claims (16)

1. A method of predicting energy usage comprising the steps of:
providing a computer;
providing a temperature database;
providing a building asset rating database;
receiving inputs from a user comprising:
an floor area measure of a building;
an energy usage measurement;
an energy usage start date;
an energy usage end date; and
a geographic location identifier;
determining an estimated energy rating as a function of said inputs, said temperature database, and said building asset rating database; and
providing said estimated energy rating to said user.
2. The method as set forth in claim 1, wherein said temperature database comprises data records having a geographic location identifier, a temperature, and a date-time.
3. The method as set forth in claim 2, wherein said geographic location identifier is a zip code.
4. The method as set forth in claim 1, wherein said building asset rating database comprises building data records having an energy usage measurement, an energy usage start date, an energy usage end date, a geographic location, and an asset-based energy rating.
5. The method as set forth in claim 4, wherein said asset-based energy rating is a HERS rating.
6. The method as set forth in claim 1, and further comprising the step of inserting actual building data into said building asset rating database.
7. The method as set forth in claim 1, wherein said step of determining an estimated energy rating as a function of said inputs comprises the steps of:
calculating the number of degree days between said energy usage start date and said energy usage end date for said building data geographic location identifier using data in said temperature database;
calculating the energy usage per unit floor area per degree day;
correlating the calculated energy usage per unit floor area per degree day with an asset-based energy rating in said building asset rating database.
8. The method as set forth in claim 7, wherein said step of correlating comprises performing numerical interpolation.
9. The method as set forth in claim 7, wherein said step of correlating comprises performing linear regression.
10. The method as set forth in claim 7, wherein said step of correlating comprises performing numerical curve fit.
11. The method as set forth in claim 1, and further comprising the step of inserting actual building data into said building asset rating database.
12. The method as set forth in claim 1, and further comprising the steps of:
connecting said computer to a network; and
providing a web interface to said user.
13. The method as set forth in claim 1, and further comprising the step of providing said user an estimate of energy costs for a given time period.
14. The method as set forth in claim 1, wherein said inputs further comprises a number of building occupants, an electricity usage measurement, or a number of building rooms.
15. The method as set forth in claim 1, wherein said building asset rating database comprises multiple asset-based ratings selected from the group of HERS home energy rating system, and RESNET rating.
16. The method as set forth in claim 1, and further comprising the step of providing said user a letter based estimated energy rating between A and F.
US14/399,394 2012-05-15 2013-05-15 Method and System for Rating Building Energy Performance Abandoned US20150153755A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/399,394 US20150153755A1 (en) 2012-05-15 2013-05-15 Method and System for Rating Building Energy Performance

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261647415P 2012-05-15 2012-05-15
US201361769193P 2013-02-25 2013-02-25
PCT/US2013/041258 WO2013173527A2 (en) 2012-05-15 2013-05-15 Method and system for rating building energy performance
US14/399,394 US20150153755A1 (en) 2012-05-15 2013-05-15 Method and System for Rating Building Energy Performance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/041258 A-371-Of-International WO2013173527A2 (en) 2012-05-15 2013-05-15 Method and system for rating building energy performance

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/238,321 Continuation US11221639B2 (en) 2012-05-15 2019-01-02 Method and system for rating building energy performance

Publications (1)

Publication Number Publication Date
US20150153755A1 true US20150153755A1 (en) 2015-06-04

Family

ID=48670763

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/399,394 Abandoned US20150153755A1 (en) 2012-05-15 2013-05-15 Method and System for Rating Building Energy Performance
US16/238,321 Active US11221639B2 (en) 2012-05-15 2019-01-02 Method and system for rating building energy performance

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/238,321 Active US11221639B2 (en) 2012-05-15 2019-01-02 Method and system for rating building energy performance

Country Status (2)

Country Link
US (2) US20150153755A1 (en)
WO (1) WO2013173527A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113777945A (en) * 2016-08-18 2021-12-10 霍尼韦尔国际公司 Residential energy efficiency rating system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230273635A1 (en) * 2012-05-15 2023-08-31 Arevs, Llc Method and System for Rating Building Energy Performance
WO2023048457A1 (en) * 2021-09-23 2023-03-30 단국대학교 산학협력단 Building state analysis method and analysis device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110137763A1 (en) * 2009-12-09 2011-06-09 Dirk Aguilar System that Captures and Tracks Energy Data for Estimating Energy Consumption, Facilitating its Reduction and Offsetting its Associated Emissions in an Automated and Recurring Fashion

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8107804B2 (en) * 2005-11-07 2012-01-31 Groupe Énerstat Inc. Energy accummulator system
US20070203860A1 (en) * 2006-02-24 2007-08-30 Gridpoint, Inc. Energy budget manager
GB0724165D0 (en) * 2007-12-11 2008-01-23 Irt Surveys Ltd Quantification of energy loss from buildings
US8155900B1 (en) * 2009-01-29 2012-04-10 Comverge, Inc. Method and system for calculating energy metrics of a building and one or more zones within the building
CN102576451A (en) * 2009-05-08 2012-07-11 埃森哲环球服务有限公司 Building energy consumption analysis system
US8406933B2 (en) * 2009-08-18 2013-03-26 Control4 Corporation Systems and methods for estimating the effects of a request to change power usage
WO2011072332A1 (en) * 2009-12-16 2011-06-23 Commonwealth Scientific And Industrial Research Organisation Hvac control system and method
JP5914891B2 (en) * 2011-09-15 2016-05-11 パナソニックIpマネジメント株式会社 Energy saving evaluation device, energy saving evaluation method, server device, program

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110137763A1 (en) * 2009-12-09 2011-06-09 Dirk Aguilar System that Captures and Tracks Energy Data for Estimating Energy Consumption, Facilitating its Reduction and Offsetting its Associated Emissions in an Automated and Recurring Fashion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113777945A (en) * 2016-08-18 2021-12-10 霍尼韦尔国际公司 Residential energy efficiency rating system

Also Published As

Publication number Publication date
US11221639B2 (en) 2022-01-11
WO2013173527A2 (en) 2013-11-21
US20190272000A1 (en) 2019-09-05
WO2013173527A3 (en) 2014-04-17

Similar Documents

Publication Publication Date Title
Jylhä et al. Energy demand for the heating and cooling of residential houses in Finland in a changing climate
Hamilton et al. Energy efficiency in the British housing stock: Energy demand and the Homes Energy Efficiency Database
Belzer et al. Climate change impacts on US commercial building energy consumption: an analysis using sample survey data
Galvin Estimating broad-brush rebound effects for household energy consumption in the EU 28 countries and Norway: some policy implications of Odyssee data
Yang et al. A combined GIS-archetype approach to model residential space heating energy: A case study for the Netherlands including validation
US11221639B2 (en) Method and system for rating building energy performance
Panão et al. Modelling aggregate hourly electricity consumption based on bottom-up building stock
Brøgger et al. Estimating the influence of rebound effects on the energy-saving potential in building stocks
US20210199321A1 (en) Residential energy efficiency rating system
Irsag et al. Long term energy demand projection and potential for energy savings of Croatian tourism–catering trade sector
Sjögren et al. An approach to evaluate the energy performance of buildings based on incomplete monthly data
Ross et al. Uncertainty quantification in life cycle assessments: exploring distribution choice and greater data granularity to characterize product use
Reilly et al. Development and implementation of a simplified residential energy asset rating model
Lam et al. An analysis of climatic influences on chiller plant electricity consumption
Armstrong et al. The impact of home energy efficiency interventions and winter fuel payments on winter-and cold-related mortality and morbidity in England: a natural equipment mixed-methods study
Rohdin et al. On the use of change-point models to describe the energy performance of historic buildings
Burzynski et al. Space heating and hot water demand analysis of dwellings connected to district heating scheme in UK
Novikova et al. Assessment of energy-saving potential, associated costs and co-benefits of public buildings in Albania
Lee et al. Impacts of lighting and plug load variations on residential building energy consumption targeting zero energy building goals
US20230273635A1 (en) Method and System for Rating Building Energy Performance
Akander et al. Assessing the Myths on Energy Efficiency When Retrofitting Multifamily Buildings in a Northern Region
Kotchen Do Building Energy Codes Have a Lasting Effect on Energy Consumption? New Evidence from Residential Billing Data in Florida
Dale et al. Price impact on the demand for water and energy in California Residences
Frei et al. Impact of Measurement Uncertainty on Building Modeling and Retrofitting Decisions
Ramirez Camargo A GIS-based method for predicting hourly domestic energy need for space conditioning and water heating of districts and municipalities

Legal Events

Date Code Title Description
STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION