US20150136392A1 - Multi-zone Intelligent and Interventionless Single Trip Completion - Google Patents

Multi-zone Intelligent and Interventionless Single Trip Completion Download PDF

Info

Publication number
US20150136392A1
US20150136392A1 US14/084,812 US201314084812A US2015136392A1 US 20150136392 A1 US20150136392 A1 US 20150136392A1 US 201314084812 A US201314084812 A US 201314084812A US 2015136392 A1 US2015136392 A1 US 2015136392A1
Authority
US
United States
Prior art keywords
closure
closing
passage
screen
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/084,812
Inventor
Todd C. Jackson
Marc N. Samuelson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Priority to US14/084,812 priority Critical patent/US20150136392A1/en
Assigned to BAKER HUGHES INCORPORATED reassignment BAKER HUGHES INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JACKSON, TODD C., SAMUELSON, MARC N.
Priority to PCT/US2014/065944 priority patent/WO2015077183A1/en
Publication of US20150136392A1 publication Critical patent/US20150136392A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/261Separate steps of (1) cementing, plugging or consolidating and (2) fracturing or attacking the formation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/004Indexing systems for guiding relative movement between telescoping parts of downhole tools
    • E21B23/006"J-slot" systems, i.e. lug and slot indexing mechanisms
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/124Units with longitudinally-spaced plugs for isolating the intermediate space
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/063Valve or closure with destructible element, e.g. frangible disc
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/08Screens or liners
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/14Obtaining from a multiple-zone well

Definitions

  • the field of the invention is multi zone fracturing and production and more particularly for a one trip method to accomplish such a completion without well intervention.
  • Fracturing is done sequentially in an interval, typically from the bottom up, starting with the lowermost zone that has a fracking sleeve opened, generally with a dropped ball on a seat. Pressuring up shifts the seat and the associated sleeve that supports the seat so that open ports are exposed through which fluid at high pressure and high velocity impinges on the formation to initiate fractures. The port for that zone just fractured is closed and after the entire zone is fractured in this manner the production ports are open. These ports are screened so that production does not produce sand or other particulates. During the fracturing the fracking ports of zones just completed are frequently left open and isolated with another and larger ball dropped on a seat above the still open fracking port to isolate it.
  • the balls can be flowed up to the surface on production or the balls can be blown through the seats or allowed to dissolve or otherwise disappear to facilitate the production that then takes place.
  • the well is put into injection service rather than production from the formation.
  • the fracking port is located behind a breakable member such as a rupture disc with the breaking pressure of each interval set at a different value.
  • the rupture discs allow other well operations to take place before the fracking ports are opened.
  • the preferred opening mechanism is a pressure cycle responsive j-slot assembly.
  • the formation isolation valve is preferably a ball or plug valve that is remotely operated preferably by associated hydraulic lines from the surface.
  • a one trip interventionless method for fracking multiple intervals incorporates a remotely operated passage isolation valve for each interval.
  • a screen backed by a base pipe is provided to route screened production through a shutoff valve before the production reaches the passage in the completion assembly.
  • the shutoff valve is remotely operated as well.
  • the fracking port is associated with a pressure responsive operator such as a j-slot mechanism with a spring return.
  • the j-slot mechanism is behind a rupture disc so that it remains unaffected while other operations are going on in the wellbore.
  • the rupture discs are set at different pressures for the intervals involved. Sequentially, each fracked zone is isolated and the zone above is opened with breaking the rupture disc and applying predetermined number of pressure cycles.
  • the screen valves are remotely operated as needed after the fracking to initiate production from one or more intervals.
  • the FIGURE illustrates one bottom hole assembly for a given interval that can be repeated for a one trip interventionless fracking and production method for one or more intervals.
  • the FIGURE illustrates a wellbore 10 that has a surrounding formation that can be one or more intervals although a single interval 12 is illustrated for clarity and to avoid repetition of components.
  • An isolation valve 14 is in the passage 16 so that an interval or intervals that are already fractured 18 can be isolated.
  • Packer 20 isolates the interval 12 from interval 18 and other packers such as 20 can be used to isolate as many intervals as needed.
  • Valve 14 is preferably remotely operated without an intervention in the passage 16 . The operation can be through control lines, power cable, acoustic signal or pressure cycling to name a few options.
  • a screen 22 is mounted over a tubular 24 with no wall openings so that flow in the screen will all be directed to valve or valves 26 before entering the passage 16 .
  • a control line 28 is shown for operating the valve or valves 26 without intervention but as with valves 14 other means of operation are contemplated as described above as well as other known actuation variations.
  • a burst disc 30 covers a pressure responsive j-slot assembly 32 that after a number of applications and removals of pressure results in opening ports 34 .
  • Each zone has a burst disk that is set to different pressures so that the ports 34 in different intervals will become accessible to pressure cycling at progressive higher pressures in a direction toward the surface.
  • FIG. 1 What is shown in the FIGURE is a single interval assembly that can be repeated any number of times to address as many intervals as is desired and the assemblies can also be spaced out as needed.
  • the lowermost interval can be at hole bottom and in that case the valve 14 for that interval will not be required.
  • the illustrated assembly allows for isolation without intervention of any already fracked intervals with valve 14 , followed by raising pressure to break the burst disc 30 so that pressure cycling can open ports 34 for fracking to begin while screen 22 is effectively blocked off with valves 26 closed.
  • the illustrated interval is fracked the other intervals are sequentially fracked by repeating the above process until all intervals are fracked. Thereafter, any one or more screens 22 can be opened without intervention in passage 16 for production flow.
  • valves 26 can also be selectively closed if an interval produces sand or water.
  • a fracking and production completion can be made in a single trip without well intervention.
  • the bottom hole assemblies that are used for multiple intervals also permit other pressure related activities to occur before the fracking with the fracking ports remaining isolated and closed behind rupture discs. Key components are provided that respond to interventionless signals to make the one trip fracking and production possible.
  • the configuration is composed of 3 major components placed serially in the tubing string.
  • the first component is a remotely controlled intelligent flow control device. This is followed by a fracturing port tool utilizing a “j-style” mechanism.
  • the last element includes a zonal isolation packing element and a valve capable of blocking the tubing string. These two units can be broken into separate elements.
  • the entire configuration can be incorporated into a single tool or built from individual components.
  • the flow control device can be on/off, discrete or continuous choking. Control can be achieved via hydraulic, electro-mechanical or electro-hydraulic control.
  • the inlet to the valve should be placed under the screen to allow flow from the screen-tubing annular area to the inside diameter of the production tubing.
  • the fracturing port will allow tubing to annulus fracturing.
  • the port will initially be run closed.
  • Application of pressure will allow communication to a “j-slot” shifting piston through a burst disc or spring loaded check valve. This pressure will shift the “j-slot” to the second position opening the fracturing port.
  • high pressure will again be applied via the tubing to shift the “j-slot” to the final position, closing the frack port.
  • the final position will be configured such that the application of additional pressure cycles will not shift the “j-slot”.
  • the burst disc/check valve will be arranged such that the lowest frack port in the string requires the lowest pressure for communication. Higher frack ports will require increase pressure to allow shifting of the “j-slot”.
  • the tubing valve will allow for isolation of the tubing string below the frack port being utilized at any point in time.
  • a packing element will allow for annular zonal isolation.
  • the tubing valve will be a ball or butterfly valve (or similar) capable of completely sealing off the lower section of tubing. Control of this valve can be accomplished by pressure/mud pulse or directly via electrical signals form an electro-mechanical/electro-hydraulic flow control valve or from an electric monitoring device. During run-in, the valve will be locked in the open position. An initial signal will cause the valve to close and allow for fracturing through the frack port above the valve. A second signal will cause the valve to open allowing production/communication to lower zones.
  • Control of the fracturing port can be achieved via low pressure instead of high pressure.
  • the unit can be design such that hydrostatic pressure plus fluid head keeps the valve locked into a position. A decrease of this pressure would cause a shift (pressure would not need to be decreased below formation pressure, removal of some fluid weight or artificially applied pressure is sufficient). Upon reapplication of the pressure, the valve will lock into the next position. The final position will still be a locking position to ensure future pressure cycles do not shift the port.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Valve Housings (AREA)
  • Safety Valves (AREA)

Abstract

A one trip interventionless method for fracking multiple intervals incorporates a remotely operated passage isolation valve for each interval. A screen backed by a base pipe is provided to route screened production through a shutoff valve before the production reaches the passage in the completion assembly. The shutoff valve is remotely operated as well. The fracking port is associated with a pressure responsive operator such as a j-slot mechanism with a spring return. The j-slot mechanism is behind a rupture disc so that it remains unaffected while other operations are going on in the wellbore. The rupture discs are set at different pressures for the intervals involved. Sequentially, each fracked zone is isolated and the zone above is opened with breaking the rupture disc and applying predetermined number of pressure cycles. The screen valves are remotely operated as needed after the fracking to initiate production from one or more intervals.

Description

    FIELD OF THE INVENTION
  • The field of the invention is multi zone fracturing and production and more particularly for a one trip method to accomplish such a completion without well intervention.
  • BACKGROUND OF THE INVENTION
  • Fracturing is done sequentially in an interval, typically from the bottom up, starting with the lowermost zone that has a fracking sleeve opened, generally with a dropped ball on a seat. Pressuring up shifts the seat and the associated sleeve that supports the seat so that open ports are exposed through which fluid at high pressure and high velocity impinges on the formation to initiate fractures. The port for that zone just fractured is closed and after the entire zone is fractured in this manner the production ports are open. These ports are screened so that production does not produce sand or other particulates. During the fracturing the fracking ports of zones just completed are frequently left open and isolated with another and larger ball dropped on a seat above the still open fracking port to isolate it. When the whole interval is fractured in that sequential manner, the balls can be flowed up to the surface on production or the balls can be blown through the seats or allowed to dissolve or otherwise disappear to facilitate the production that then takes place. In some instances the well is put into injection service rather than production from the formation.
  • In the past methods to accomplish the steps described above have been with well intervention to close sliding sleeves over fracking port or have simply left those opened fracking ports in that condition and isolated them with dropped balls that landed on higher seats. Some relevant examples of the state of the art can be seen in U.S. Pat. Nos. 6,446,729; 6,983,795; 8,127,847 and 8,342,245. What is needed and provided by the present invention is a way to do a fracking job more intelligently and in a single trip without intervention in the wellbore. Along those lines the present invention has a screen assembly in each interval that can be remotely isolated or opened as well as a formation isolation valve that can be remotely and selectively operated. The fracking port is located behind a breakable member such as a rupture disc with the breaking pressure of each interval set at a different value. The rupture discs allow other well operations to take place before the fracking ports are opened. The preferred opening mechanism is a pressure cycle responsive j-slot assembly. The formation isolation valve is preferably a ball or plug valve that is remotely operated preferably by associated hydraulic lines from the surface. These and other aspects of the present invention will be more readily appreciated by those skilled in the art from a review of the detailed description and the associated drawings while recognizing that the full scope of the invention is to be determined from the appended claims.
  • SUMMARY OF THE INVENTION
  • A one trip interventionless method for fracking multiple intervals incorporates a remotely operated passage isolation valve for each interval. A screen backed by a base pipe is provided to route screened production through a shutoff valve before the production reaches the passage in the completion assembly. The shutoff valve is remotely operated as well. The fracking port is associated with a pressure responsive operator such as a j-slot mechanism with a spring return. The j-slot mechanism is behind a rupture disc so that it remains unaffected while other operations are going on in the wellbore. The rupture discs are set at different pressures for the intervals involved. Sequentially, each fracked zone is isolated and the zone above is opened with breaking the rupture disc and applying predetermined number of pressure cycles. The screen valves are remotely operated as needed after the fracking to initiate production from one or more intervals.
  • BRIEF DESCRIPTION OF THE DRAWING
  • The FIGURE illustrates one bottom hole assembly for a given interval that can be repeated for a one trip interventionless fracking and production method for one or more intervals.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The FIGURE illustrates a wellbore 10 that has a surrounding formation that can be one or more intervals although a single interval 12 is illustrated for clarity and to avoid repetition of components. An isolation valve 14 is in the passage 16 so that an interval or intervals that are already fractured 18 can be isolated. Packer 20 isolates the interval 12 from interval 18 and other packers such as 20 can be used to isolate as many intervals as needed. Valve 14 is preferably remotely operated without an intervention in the passage 16. The operation can be through control lines, power cable, acoustic signal or pressure cycling to name a few options.
  • A screen 22 is mounted over a tubular 24 with no wall openings so that flow in the screen will all be directed to valve or valves 26 before entering the passage 16. A control line 28 is shown for operating the valve or valves 26 without intervention but as with valves 14 other means of operation are contemplated as described above as well as other known actuation variations.
  • A burst disc 30 covers a pressure responsive j-slot assembly 32 that after a number of applications and removals of pressure results in opening ports 34. Each zone has a burst disk that is set to different pressures so that the ports 34 in different intervals will become accessible to pressure cycling at progressive higher pressures in a direction toward the surface.
  • What is shown in the FIGURE is a single interval assembly that can be repeated any number of times to address as many intervals as is desired and the assemblies can also be spaced out as needed. The lowermost interval can be at hole bottom and in that case the valve 14 for that interval will not be required. The illustrated assembly allows for isolation without intervention of any already fracked intervals with valve 14, followed by raising pressure to break the burst disc 30 so that pressure cycling can open ports 34 for fracking to begin while screen 22 is effectively blocked off with valves 26 closed. When the illustrated interval is fracked the other intervals are sequentially fracked by repeating the above process until all intervals are fracked. Thereafter, any one or more screens 22 can be opened without intervention in passage 16 for production flow. Similarly valves 26 can also be selectively closed if an interval produces sand or water.
  • Those skilled in the art will appreciate that a fracking and production completion can be made in a single trip without well intervention. The bottom hole assemblies that are used for multiple intervals also permit other pressure related activities to occur before the fracking with the fracking ports remaining isolated and closed behind rupture discs. Key components are provided that respond to interventionless signals to make the one trip fracking and production possible.
  • The configuration is composed of 3 major components placed serially in the tubing string. The first component is a remotely controlled intelligent flow control device. This is followed by a fracturing port tool utilizing a “j-style” mechanism. The last element includes a zonal isolation packing element and a valve capable of blocking the tubing string. These two units can be broken into separate elements. The entire configuration can be incorporated into a single tool or built from individual components. The flow control device can be on/off, discrete or continuous choking. Control can be achieved via hydraulic, electro-mechanical or electro-hydraulic control. For completions utilizing screen, the inlet to the valve should be placed under the screen to allow flow from the screen-tubing annular area to the inside diameter of the production tubing. The fracturing port will allow tubing to annulus fracturing. The port will initially be run closed. Application of pressure will allow communication to a “j-slot” shifting piston through a burst disc or spring loaded check valve. This pressure will shift the “j-slot” to the second position opening the fracturing port. After completion of the frack, high pressure will again be applied via the tubing to shift the “j-slot” to the final position, closing the frack port. The final position will be configured such that the application of additional pressure cycles will not shift the “j-slot”. The burst disc/check valve will be arranged such that the lowest frack port in the string requires the lowest pressure for communication. Higher frack ports will require increase pressure to allow shifting of the “j-slot”. This will allow each frack port to be opened sequentially. The tubing valve will allow for isolation of the tubing string below the frack port being utilized at any point in time. A packing element will allow for annular zonal isolation. The tubing valve will be a ball or butterfly valve (or similar) capable of completely sealing off the lower section of tubing. Control of this valve can be accomplished by pressure/mud pulse or directly via electrical signals form an electro-mechanical/electro-hydraulic flow control valve or from an electric monitoring device. During run-in, the valve will be locked in the open position. An initial signal will cause the valve to close and allow for fracturing through the frack port above the valve. A second signal will cause the valve to open allowing production/communication to lower zones.
  • Control of the fracturing port can be achieved via low pressure instead of high pressure. The unit can be design such that hydrostatic pressure plus fluid head keeps the valve locked into a position. A decrease of this pressure would cause a shift (pressure would not need to be decreased below formation pressure, removal of some fluid weight or artificially applied pressure is sufficient). Upon reapplication of the pressure, the valve will lock into the next position. The final position will still be a locking position to ensure future pressure cycles do not shift the port.
  • The above description is illustrative of the preferred embodiment and many modifications may be made by those skilled in the art without departing from the invention whose scope is to be determined from the literal and equivalent scope of the claims below:

Claims (17)

We claim:
1. An interventionless completion method for one trip fracking and production from at least one interval, comprising:
running in a bottom hole assembly that comprises at least one set of the following components:
an annular seal;
an isolation valve for selectively closing an internal passage through the assembly;
at least one frack port and associated closure for selective communication with said passage;
a screen with an associated screen valve to selectively allow communication with said passage;
performing, at least one time, the following completion steps without passage intervention with tools and in a single trip:
closing off an annular space with said annular seal;
closing off said passage with said isolation valve;
opening said frack port;
fracking through said now open frack port;
closing said frack port;
opening said screen valve; and
producing through said screen.
2. The method of claim 1, comprising:
running in multiple sets of said components;
locating said sets adjacent a plurality of intervals;
performing said completion steps at each said interval.
3. The method of claim 2, comprising:
performing said completion steps in a sequence that begins furthest from a surface location and moves toward said surface location.
4. The method of claim 1, comprising:
isolating said closure from passage pressures to a predetermined level.
5. The method of claim 4, comprising:
using a breakable member for said isolating.
6. The method of claim 5, comprising:
operating said closure with pressure after breaking said breakable member.
7. The method of claim 6, comprising:
using pressure cycles with a j-slot mechanism for opening and closing said closure.
8. The method of claim 6, comprising:
opening and closing said closure with pressure cycles applied to a spring loaded j-slot mechanism;
disabling said j-slot mechanism from reopening said closure after closing said closure.
9. The method of claim 8, comprising:
opening said screen valve after closing said closure.
10. The method of claim 3, comprising:
isolating said closures from passage pressures to different predetermined levels.
11. The method of claim 10, comprising:
using breakable members for said isolating.
12. The method of claim 11, comprising:
operating said closures with pressure after breaking a respective said breakable member.
13. The method of claim 12, comprising:
using pressure cycles with a j-slot mechanism for opening and closing each said closure.
14. The method of claim 12, comprising:
opening and closing said closures with pressure cycles applied to a spring loaded j-slot mechanism;
disabling said j-slot mechanism from reopening each said closure after closing said closure.
15. The method of claim 14, comprising:
opening at least one said screen valve after closing said closure associated with said screen.
16. The method of claim 10, comprising:
using breakable members set to break at different pressures for said isolating.
17. The method of claim 16, comprising:
using breakable members with progressively higher pressure settings in a direction toward a surface location.
US14/084,812 2013-11-20 2013-11-20 Multi-zone Intelligent and Interventionless Single Trip Completion Abandoned US20150136392A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/084,812 US20150136392A1 (en) 2013-11-20 2013-11-20 Multi-zone Intelligent and Interventionless Single Trip Completion
PCT/US2014/065944 WO2015077183A1 (en) 2013-11-20 2014-11-17 Multi-zone intelligent and interventionless single trip completion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/084,812 US20150136392A1 (en) 2013-11-20 2013-11-20 Multi-zone Intelligent and Interventionless Single Trip Completion

Publications (1)

Publication Number Publication Date
US20150136392A1 true US20150136392A1 (en) 2015-05-21

Family

ID=53172116

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/084,812 Abandoned US20150136392A1 (en) 2013-11-20 2013-11-20 Multi-zone Intelligent and Interventionless Single Trip Completion

Country Status (2)

Country Link
US (1) US20150136392A1 (en)
WO (1) WO2015077183A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10100610B2 (en) 2015-07-21 2018-10-16 Baker Hughes, A Ge Company, Llc Barrier valve closure method for multi-zone stimulation without intervention or surface control lines
US10941640B2 (en) 2018-09-06 2021-03-09 Halliburton Energy Services, Inc. Multi-functional sleeve completion system with return and reverse fluid path
US11261674B2 (en) 2020-01-29 2022-03-01 Halliburton Energy Services, Inc. Completion systems and methods to perform completion operations
US11333002B2 (en) 2020-01-29 2022-05-17 Halliburton Energy Services, Inc. Completion systems and methods to perform completion operations
WO2022192979A1 (en) * 2021-03-15 2022-09-22 Sc Asset Corporation All-in-one system and related method for fracking and completing a well which automatically installs sand screens for sand control immediately after fracking
US11946354B2 (en) 2021-03-15 2024-04-02 Sc Asset Corporation All-in-one system and related method for fracking and completing a well which automatically installs sand screens for sand control immediately after fracking

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10502024B2 (en) 2016-08-19 2019-12-10 Schlumberger Technology Corporation Systems and techniques for controlling and monitoring downhole operations in a well
US20210277736A1 (en) * 2018-06-13 2021-09-09 Halliburton Energy Services, Inc. Setting mechanical barriers in a single run

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7096954B2 (en) * 2001-12-31 2006-08-29 Schlumberger Technology Corporation Method and apparatus for placement of multiple fractures in open hole wells
US20090095486A1 (en) * 2007-10-11 2009-04-16 Williamson Jr Jimmie R Circulation control valve and associated method
US20110284214A1 (en) * 2010-05-19 2011-11-24 Ayoub Joseph A Methods and tools for multiple fracture placement along a wellbore
US20140076578A1 (en) * 2011-05-02 2014-03-20 Peak Completion Technologies, Inc. Downhole Tool
US20140083691A1 (en) * 2012-09-26 2014-03-27 Halliburton Energy Services, Inc. Multiple zone integrated intelligent well completion
US20140102708A1 (en) * 2012-03-08 2014-04-17 Petrowell Limited Selective Fracturing System
US9121247B2 (en) * 2013-03-07 2015-09-01 Geodynamics, Inc. Method and apparatus for establishing injection into a cased bore hole using a time delay toe injection apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2391566B (en) * 2002-07-31 2006-01-04 Schlumberger Holdings Multiple interventionless actuated downhole valve and method
US8245782B2 (en) * 2007-01-07 2012-08-21 Schlumberger Technology Corporation Tool and method of performing rigless sand control in multiple zones
US20110284232A1 (en) * 2010-05-24 2011-11-24 Baker Hughes Incorporated Disposable Downhole Tool
US9309745B2 (en) * 2011-04-22 2016-04-12 Schlumberger Technology Corporation Interventionless operation of downhole tool
EP2732127A4 (en) * 2011-07-12 2016-07-13 Weatherford Lamb Multi-zone screened frac system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7096954B2 (en) * 2001-12-31 2006-08-29 Schlumberger Technology Corporation Method and apparatus for placement of multiple fractures in open hole wells
US20090095486A1 (en) * 2007-10-11 2009-04-16 Williamson Jr Jimmie R Circulation control valve and associated method
US20110284214A1 (en) * 2010-05-19 2011-11-24 Ayoub Joseph A Methods and tools for multiple fracture placement along a wellbore
US20140076578A1 (en) * 2011-05-02 2014-03-20 Peak Completion Technologies, Inc. Downhole Tool
US20140102708A1 (en) * 2012-03-08 2014-04-17 Petrowell Limited Selective Fracturing System
US20140083691A1 (en) * 2012-09-26 2014-03-27 Halliburton Energy Services, Inc. Multiple zone integrated intelligent well completion
US9121247B2 (en) * 2013-03-07 2015-09-01 Geodynamics, Inc. Method and apparatus for establishing injection into a cased bore hole using a time delay toe injection apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10100610B2 (en) 2015-07-21 2018-10-16 Baker Hughes, A Ge Company, Llc Barrier valve closure method for multi-zone stimulation without intervention or surface control lines
US10941640B2 (en) 2018-09-06 2021-03-09 Halliburton Energy Services, Inc. Multi-functional sleeve completion system with return and reverse fluid path
US11261674B2 (en) 2020-01-29 2022-03-01 Halliburton Energy Services, Inc. Completion systems and methods to perform completion operations
US11333002B2 (en) 2020-01-29 2022-05-17 Halliburton Energy Services, Inc. Completion systems and methods to perform completion operations
WO2022192979A1 (en) * 2021-03-15 2022-09-22 Sc Asset Corporation All-in-one system and related method for fracking and completing a well which automatically installs sand screens for sand control immediately after fracking
US11946354B2 (en) 2021-03-15 2024-04-02 Sc Asset Corporation All-in-one system and related method for fracking and completing a well which automatically installs sand screens for sand control immediately after fracking

Also Published As

Publication number Publication date
WO2015077183A1 (en) 2015-05-28

Similar Documents

Publication Publication Date Title
US20150136392A1 (en) Multi-zone Intelligent and Interventionless Single Trip Completion
CA2997105C (en) Apparatus, systems and methods for multi-stage stimulation
US7451816B2 (en) Washpipeless frac pack system
US11060376B2 (en) System for stimulating a well
US8127847B2 (en) Multi-position valves for fracturing and sand control and associated completion methods
US9822619B2 (en) Well flow control with acid actuator
US9416643B2 (en) Selective fracturing system
US7516792B2 (en) Remote intervention logic valving method and apparatus
US7857061B2 (en) Flow control in a well bore
US8540019B2 (en) Fracturing system and method
US20140318780A1 (en) Degradable component system and methodology
EP2356311A1 (en) Valve device and associated methods of selectively communicating between an interior and an exterior of a tubular string
US20070062690A1 (en) Packer washout assembly
US20150068762A1 (en) Apparatus and methods for inhibiting a screen-out condition in a subterranean well fracturing operation
US9410411B2 (en) Method for inducing and further propagating formation fractures
US7934555B2 (en) Multiple zone isolation method
WO2017165682A1 (en) Treatment ported sub and method of use
EP2751377B1 (en) Downhole fluid flow control system and method having dynamic response to local well conditions
US2796938A (en) Tool for treating, testing, and servicing wells
NO339623B1 (en) Arrangement and procedure for the removal of production waste in a well

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAKER HUGHES INCORPORATED, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JACKSON, TODD C.;SAMUELSON, MARC N.;REEL/FRAME:032108/0698

Effective date: 20131126

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION