US20150125522A1 - Oral delivery of peptide pharmaceutical compositions - Google Patents
Oral delivery of peptide pharmaceutical compositions Download PDFInfo
- Publication number
- US20150125522A1 US20150125522A1 US14/484,745 US201414484745A US2015125522A1 US 20150125522 A1 US20150125522 A1 US 20150125522A1 US 201414484745 A US201414484745 A US 201414484745A US 2015125522 A1 US2015125522 A1 US 2015125522A1
- Authority
- US
- United States
- Prior art keywords
- peptide
- solid dosage
- dosage capsule
- capsule
- lowering agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 161
- 239000008194 pharmaceutical composition Substances 0.000 title abstract description 55
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 63
- 239000003623 enhancer Substances 0.000 claims abstract description 55
- 238000010521 absorption reaction Methods 0.000 claims abstract description 45
- 239000002775 capsule Substances 0.000 claims description 76
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid group Chemical group C(CC(O)(C(=O)O)CC(=O)O)(=O)O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 36
- 239000002702 enteric coating Substances 0.000 claims description 28
- 238000009505 enteric coating Methods 0.000 claims description 28
- 239000007787 solid Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 19
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims description 18
- 239000000651 prodrug Substances 0.000 claims description 17
- 229940002612 prodrug Drugs 0.000 claims description 17
- FUJLYHJROOYKRA-QGZVFWFLSA-N O-lauroyl-L-carnitine Chemical group CCCCCCCCCCCC(=O)O[C@H](CC([O-])=O)C[N+](C)(C)C FUJLYHJROOYKRA-QGZVFWFLSA-N 0.000 claims description 12
- 235000017557 sodium bicarbonate Nutrition 0.000 claims description 9
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims description 9
- 230000036407 pain Effects 0.000 claims description 8
- 230000004888 barrier function Effects 0.000 claims description 7
- BHSURCCZOBVHJJ-NWOHMYAQSA-N Deltorphin A Chemical class C([C@H](N)C(=O)N[C@H](CCSC)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(N)=O)C1=CC=C(O)C=C1 BHSURCCZOBVHJJ-NWOHMYAQSA-N 0.000 claims description 6
- MEFKEPWMEQBLKI-AIRLBKTGSA-O S-adenosyl-L-methionine Chemical group O[C@@H]1[C@H](O)[C@@H](C[S+](CC[C@H]([NH3+])C([O-])=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 MEFKEPWMEQBLKI-AIRLBKTGSA-O 0.000 claims description 4
- 239000002552 dosage form Substances 0.000 claims description 3
- COLNVLDHVKWLRT-QMMMGPOBSA-N phenylalanine group Chemical group N[C@@H](CC1=CC=CC=C1)C(=O)O COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 claims description 3
- LSNDLIKCFHLFKO-JTQLQIEISA-N (2s)-2-azaniumyl-3-(4-hydroxy-2,6-dimethylphenyl)propanoate Chemical compound CC1=CC(O)=CC(C)=C1C[C@H](N)C(O)=O LSNDLIKCFHLFKO-JTQLQIEISA-N 0.000 claims 4
- HOGIQTACRLIOHC-JTQLQIEISA-N (2s)-2-(dimethylazaniumyl)-3-phenylpropanoate Chemical group CN(C)[C@H](C(O)=O)CC1=CC=CC=C1 HOGIQTACRLIOHC-JTQLQIEISA-N 0.000 claims 2
- 230000036592 analgesia Effects 0.000 claims 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims 2
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 claims 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 35
- 239000002253 acid Substances 0.000 abstract description 27
- 210000002784 stomach Anatomy 0.000 abstract description 25
- 230000000968 intestinal effect Effects 0.000 abstract description 23
- 230000032258 transport Effects 0.000 abstract description 20
- 239000013543 active substance Substances 0.000 abstract description 14
- 230000001681 protective effect Effects 0.000 abstract description 13
- 210000000936 intestine Anatomy 0.000 abstract description 10
- 230000001965 increasing effect Effects 0.000 abstract description 9
- 102000004196 processed proteins & peptides Human genes 0.000 description 39
- 150000001875 compounds Chemical class 0.000 description 38
- -1 methoxyphenyl Chemical group 0.000 description 28
- 108091005804 Peptidases Proteins 0.000 description 23
- 239000004365 Protease Substances 0.000 description 21
- 102000035195 Peptidases Human genes 0.000 description 20
- 241000282472 Canis lupus familiaris Species 0.000 description 19
- 108010068072 salmon calcitonin Proteins 0.000 description 18
- 229910052739 hydrogen Inorganic materials 0.000 description 17
- 239000001257 hydrogen Substances 0.000 description 17
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 description 16
- 229960003773 calcitonin (salmon synthetic) Drugs 0.000 description 16
- 239000003981 vehicle Substances 0.000 description 16
- 241000700159 Rattus Species 0.000 description 15
- 230000000202 analgesic effect Effects 0.000 description 15
- 230000005792 cardiovascular activity Effects 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 11
- 239000011248 coating agent Substances 0.000 description 11
- 238000000576 coating method Methods 0.000 description 11
- 238000009472 formulation Methods 0.000 description 11
- UEVAHGMTRWGMTB-JBXUNAHCSA-N (2s)-6-amino-2-[[(2s)-2-[[(2r)-2-[[(2s)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]-3-phenylpropanoyl]amino]hexanamide Chemical compound C([C@@H](C(=O)N[C@@H](CCCCN)C(N)=O)NC(=O)[C@@H](CCCN=C(N)N)NC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=CC=C1 UEVAHGMTRWGMTB-JBXUNAHCSA-N 0.000 description 10
- 239000004615 ingredient Substances 0.000 description 10
- 239000004094 surface-active agent Substances 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- FHZPGIUBXYVUOY-VWGYHWLBSA-N Dermorphin Chemical class C([C@H](N)C(=O)N[C@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(N)=O)C1=CC=C(O)C=C1 FHZPGIUBXYVUOY-VWGYHWLBSA-N 0.000 description 9
- 210000004369 blood Anatomy 0.000 description 9
- 239000008280 blood Substances 0.000 description 9
- 108010094098 tyrosyl-arginyl-phenylalanyl-lysinamide Proteins 0.000 description 9
- 230000006870 function Effects 0.000 description 8
- 230000001976 improved effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 230000002708 enhancing effect Effects 0.000 description 7
- 239000008137 solubility enhancer Substances 0.000 description 7
- 239000004480 active ingredient Substances 0.000 description 6
- 239000000556 agonist Substances 0.000 description 6
- 239000004031 partial agonist Substances 0.000 description 6
- 108090000137 Opioid Receptors Proteins 0.000 description 5
- 102000003840 Opioid Receptors Human genes 0.000 description 5
- 229940024606 amino acid Drugs 0.000 description 5
- 235000001014 amino acid Nutrition 0.000 description 5
- 230000000747 cardiac effect Effects 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 229910052736 halogen Inorganic materials 0.000 description 5
- 150000002367 halogens Chemical class 0.000 description 5
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 description 4
- 108010092674 Enkephalins Proteins 0.000 description 4
- 108010025083 TRPV1 receptor Proteins 0.000 description 4
- 0 [1*]C([2*])(N)C[Y]C([1*])([2*])C[Y]C([1*])([2*])C(N)=O Chemical compound [1*]C([2*])(N)C[Y]C([1*])([2*])C[Y]C([1*])([2*])C(N)=O 0.000 description 4
- 125000002252 acyl group Chemical group 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 210000001035 gastrointestinal tract Anatomy 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- 150000002431 hydrogen Chemical group 0.000 description 4
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 210000004379 membrane Anatomy 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 230000002797 proteolythic effect Effects 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 210000000813 small intestine Anatomy 0.000 description 4
- 101500007657 Crotalus durissus terrificus Crotoxin chain gamma Proteins 0.000 description 3
- 150000007650 D alpha amino acids Chemical class 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 150000001371 alpha-amino acids Chemical class 0.000 description 3
- 235000008206 alpha-amino acids Nutrition 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000003613 bile acid Substances 0.000 description 3
- 125000001246 bromo group Chemical group Br* 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 125000001309 chloro group Chemical group Cl* 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 239000003599 detergent Substances 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 125000001153 fluoro group Chemical group F* 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 125000002346 iodo group Chemical group I* 0.000 description 3
- 210000000110 microvilli Anatomy 0.000 description 3
- 210000003097 mucus Anatomy 0.000 description 3
- 239000008203 oral pharmaceutical composition Substances 0.000 description 3
- 239000008014 pharmaceutical binder Substances 0.000 description 3
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 3
- 229960005190 phenylalanine Drugs 0.000 description 3
- 150000003904 phospholipids Chemical class 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920001184 polypeptide Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000017854 proteolysis Effects 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- OGNSCSPNOLGXSM-UHFFFAOYSA-N 2,4-diaminobutyric acid Chemical compound NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 2
- PECYZEOJVXMISF-UHFFFAOYSA-N 3-aminoalanine Chemical compound [NH3+]CC(N)C([O-])=O PECYZEOJVXMISF-UHFFFAOYSA-N 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- UDIFQBCQTMEDDK-UHFFFAOYSA-N C=CCC(C)(C)C.CC(C)(C)CC1CC1 Chemical compound C=CCC(C)(C)C.CC(C)(C)CC1CC1 UDIFQBCQTMEDDK-UHFFFAOYSA-N 0.000 description 2
- CJGXJKVMUHXVHL-UHFFFAOYSA-N CC(C)(C)CC1=CC=CC=C1 Chemical compound CC(C)(C)CC1=CC=CC=C1 CJGXJKVMUHXVHL-UHFFFAOYSA-N 0.000 description 2
- 101800005209 Deltorphin Chemical class 0.000 description 2
- 101800002242 Dermorphin Proteins 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical class NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 108010093625 Opioid Peptides Proteins 0.000 description 2
- 102000001490 Opioid Peptides Human genes 0.000 description 2
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 2
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 235000009697 arginine Nutrition 0.000 description 2
- 229960003121 arginine Drugs 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 125000006278 bromobenzyl group Chemical group 0.000 description 2
- 239000007963 capsule composition Substances 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- YMKDRGPMQRFJGP-UHFFFAOYSA-M cetylpyridinium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 YMKDRGPMQRFJGP-UHFFFAOYSA-M 0.000 description 2
- 229960001927 cetylpyridinium chloride Drugs 0.000 description 2
- 125000004803 chlorobenzyl group Chemical group 0.000 description 2
- OROGSEYTTFOCAN-DNJOTXNNSA-N codeine Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC OROGSEYTTFOCAN-DNJOTXNNSA-N 0.000 description 2
- 210000001072 colon Anatomy 0.000 description 2
- CVSVTCORWBXHQV-UHFFFAOYSA-N creatine Chemical class NC(=[NH2+])N(C)CC([O-])=O CVSVTCORWBXHQV-UHFFFAOYSA-N 0.000 description 2
- 125000002946 cyanobenzyl group Chemical group 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 210000001198 duodenum Anatomy 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 235000010944 ethyl methyl cellulose Nutrition 0.000 description 2
- 125000004175 fluorobenzyl group Chemical group 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 230000004217 heart function Effects 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 2
- 125000006289 hydroxybenzyl group Chemical group 0.000 description 2
- 125000004464 hydroxyphenyl group Chemical group 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 2
- 125000006480 iodobenzyl group Chemical group 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 229920003087 methylethyl cellulose Polymers 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- BQJCRHHNABKAKU-KBQPJGBKSA-N morphine Chemical compound O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BQJCRHHNABKAKU-KBQPJGBKSA-N 0.000 description 2
- 230000002107 myocardial effect Effects 0.000 description 2
- 125000006502 nitrobenzyl group Chemical group 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 229940127240 opiate Drugs 0.000 description 2
- 239000003399 opiate peptide Substances 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 229960003104 ornithine Drugs 0.000 description 2
- 239000008024 pharmaceutical diluent Substances 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 2
- 230000004202 respiratory function Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- FSYKKLYZXJSNPZ-UHFFFAOYSA-N sarcosine Chemical class C[NH2+]CC([O-])=O FSYKKLYZXJSNPZ-UHFFFAOYSA-N 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- XOAAWQZATWQOTB-UHFFFAOYSA-N taurine Chemical class NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical class OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- NMDDZEVVQDPECF-LURJTMIESA-N (2s)-2,7-diaminoheptanoic acid Chemical compound NCCCCC[C@H](N)C(O)=O NMDDZEVVQDPECF-LURJTMIESA-N 0.000 description 1
- ASWBNKHCZGQVJV-UHFFFAOYSA-N (3-hexadecanoyloxy-2-hydroxypropyl) 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(O)COP([O-])(=O)OCC[N+](C)(C)C ASWBNKHCZGQVJV-UHFFFAOYSA-N 0.000 description 1
- XOMRRQXKHMYMOC-NRFANRHFSA-N (3s)-3-hexadecanoyloxy-4-(trimethylazaniumyl)butanoate Chemical compound CCCCCCCCCCCCCCCC(=O)O[C@@H](CC([O-])=O)C[N+](C)(C)C XOMRRQXKHMYMOC-NRFANRHFSA-N 0.000 description 1
- PHIQHXFUZVPYII-ZCFIWIBFSA-O (R)-carnitinium Chemical class C[N+](C)(C)C[C@H](O)CC(O)=O PHIQHXFUZVPYII-ZCFIWIBFSA-O 0.000 description 1
- QGFPXWPVMTWSAE-UHFFFAOYSA-N 1-[(4-tert-butylphenyl)methyl]-3-[[4-(methanesulfonamido)-3-methoxyphenyl]methyl]thiourea Chemical compound C1=C(NS(C)(=O)=O)C(OC)=CC(CNC(=S)NCC=2C=CC(=CC=2)C(C)(C)C)=C1 QGFPXWPVMTWSAE-UHFFFAOYSA-N 0.000 description 1
- XOHUEYCVLUUEJJ-UHFFFAOYSA-N 2,3-Bisphosphoglyceric acid Chemical compound OP(=O)(O)OC(C(=O)O)COP(O)(O)=O XOHUEYCVLUUEJJ-UHFFFAOYSA-N 0.000 description 1
- NMSBTWLFBGNKON-UHFFFAOYSA-N 2-(2-hexadecoxyethoxy)ethanol Chemical compound CCCCCCCCCCCCCCCCOCCOCCO NMSBTWLFBGNKON-UHFFFAOYSA-N 0.000 description 1
- IDOQDZANRZQBTP-UHFFFAOYSA-N 2-[2-(2,4,4-trimethylpentan-2-yl)phenoxy]ethanol Chemical compound CC(C)(C)CC(C)(C)C1=CC=CC=C1OCCO IDOQDZANRZQBTP-UHFFFAOYSA-N 0.000 description 1
- HNUQMTZUNUBOLQ-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-[2-(2-octadecoxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CCCCCCCCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO HNUQMTZUNUBOLQ-UHFFFAOYSA-N 0.000 description 1
- AUZQQIPZESHNMG-UHFFFAOYSA-M 2-carboxy-6-methoxyphenolate Chemical compound COC1=CC=CC(C([O-])=O)=C1O AUZQQIPZESHNMG-UHFFFAOYSA-M 0.000 description 1
- QUDMPGCGJQLFPF-UHFFFAOYSA-N 2-dodecanoyloxyethyl(trimethyl)azanium Chemical compound CCCCCCCCCCCC(=O)OCC[N+](C)(C)C QUDMPGCGJQLFPF-UHFFFAOYSA-N 0.000 description 1
- HBAHZZVIEFRTEY-UHFFFAOYSA-N 2-heptylcyclohex-2-en-1-one Chemical compound CCCCCCCC1=CCCCC1=O HBAHZZVIEFRTEY-UHFFFAOYSA-N 0.000 description 1
- CDOUZKKFHVEKRI-UHFFFAOYSA-N 3-bromo-n-[(prop-2-enoylamino)methyl]propanamide Chemical compound BrCCC(=O)NCNC(=O)C=C CDOUZKKFHVEKRI-UHFFFAOYSA-N 0.000 description 1
- ISAVYTVYFVQUDY-UHFFFAOYSA-N 4-tert-Octylphenol Chemical compound CC(C)(C)CC(C)(C)C1=CC=C(O)C=C1 ISAVYTVYFVQUDY-UHFFFAOYSA-N 0.000 description 1
- IZZIWIAOVZOBLF-UHFFFAOYSA-N 5-methoxysalicylic acid Chemical compound COC1=CC=C(O)C(C(O)=O)=C1 IZZIWIAOVZOBLF-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Chemical class OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Chemical class C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 1
- QYOVMAREBTZLBT-KTKRTIGZSA-N CCCCCCCC\C=C/CCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO QYOVMAREBTZLBT-KTKRTIGZSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- QRYRORQUOLYVBU-VBKZILBWSA-N Carnosic acid Chemical class CC([C@@H]1CC2)(C)CCC[C@]1(C(O)=O)C1=C2C=C(C(C)C)C(O)=C1O QRYRORQUOLYVBU-VBKZILBWSA-N 0.000 description 1
- 108010087806 Carnosine Chemical class 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 1
- OGNSCSPNOLGXSM-GSVOUGTGSA-N D-2,4-diaminobutyric acid Chemical compound NCC[C@@H](N)C(O)=O OGNSCSPNOLGXSM-GSVOUGTGSA-N 0.000 description 1
- SNDPXSYFESPGGJ-SCSAIBSYSA-N D-2-aminopentanoic acid Chemical compound CCC[C@@H](N)C(O)=O SNDPXSYFESPGGJ-SCSAIBSYSA-N 0.000 description 1
- AGPKZVBTJJNPAG-RFZPGFLSSA-N D-Isoleucine Chemical compound CC[C@@H](C)[C@@H](N)C(O)=O AGPKZVBTJJNPAG-RFZPGFLSSA-N 0.000 description 1
- MTCFGRXMJLQNBG-UWTATZPHSA-N D-Serine Chemical compound OC[C@@H](N)C(O)=O MTCFGRXMJLQNBG-UWTATZPHSA-N 0.000 description 1
- 229930195711 D-Serine Natural products 0.000 description 1
- QNAYBMKLOCPYGJ-UWTATZPHSA-N D-alanine Chemical compound C[C@@H](N)C(O)=O QNAYBMKLOCPYGJ-UWTATZPHSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-UHFFFAOYSA-N D-alpha-Ala Natural products CC([NH3+])C([O-])=O QNAYBMKLOCPYGJ-UHFFFAOYSA-N 0.000 description 1
- ODKSFYDXXFIFQN-SCSAIBSYSA-N D-arginine Chemical compound OC(=O)[C@H](N)CCCNC(N)=N ODKSFYDXXFIFQN-SCSAIBSYSA-N 0.000 description 1
- 229930028154 D-arginine Natural products 0.000 description 1
- 229930182845 D-isoleucine Natural products 0.000 description 1
- ROHFNLRQFUQHCH-RXMQYKEDSA-N D-leucine Chemical compound CC(C)C[C@@H](N)C(O)=O ROHFNLRQFUQHCH-RXMQYKEDSA-N 0.000 description 1
- 229930182819 D-leucine Natural products 0.000 description 1
- LRQKBLKVPFOOQJ-RXMQYKEDSA-N D-norleucine Chemical compound CCCC[C@@H](N)C(O)=O LRQKBLKVPFOOQJ-RXMQYKEDSA-N 0.000 description 1
- COLNVLDHVKWLRT-MRVPVSSYSA-N D-phenylalanine Chemical compound OC(=O)[C@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-MRVPVSSYSA-N 0.000 description 1
- 229930182832 D-phenylalanine Natural products 0.000 description 1
- KZSNJWFQEVHDMF-SCSAIBSYSA-N D-valine Chemical compound CC(C)[C@@H](N)C(O)=O KZSNJWFQEVHDMF-SCSAIBSYSA-N 0.000 description 1
- 229930182831 D-valine Natural products 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 108010082495 Dietary Plant Proteins Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 108010049140 Endorphins Proteins 0.000 description 1
- 102000009025 Endorphins Human genes 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 229920003134 Eudragit® polymer Polymers 0.000 description 1
- 239000001828 Gelatine Substances 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Chemical class OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Chemical class 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- LCWXJXMHJVIJFK-UHFFFAOYSA-N Hydroxylysine Chemical class NCC(O)CC(N)CC(O)=O LCWXJXMHJVIJFK-UHFFFAOYSA-N 0.000 description 1
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical class O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 1
- 206010021518 Impaired gastric emptying Diseases 0.000 description 1
- SNDPXSYFESPGGJ-BYPYZUCNSA-N L-2-aminopentanoic acid Chemical compound CCC[C@H](N)C(O)=O SNDPXSYFESPGGJ-BYPYZUCNSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical class OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical class C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical class OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical class OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- RHGKLRLOHDJJDR-BYPYZUCNSA-N L-citrulline Chemical class NC(=O)NCCC[C@H]([NH3+])C([O-])=O RHGKLRLOHDJJDR-BYPYZUCNSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical class OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical class OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical class CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical class CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- SNDPXSYFESPGGJ-UHFFFAOYSA-N L-norVal-OH Natural products CCCC(N)C(O)=O SNDPXSYFESPGGJ-UHFFFAOYSA-N 0.000 description 1
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical class CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical class C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical class C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical class OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical class CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Chemical class CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 229920001367 Merrifield resin Polymers 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- CYZKJBZEIFWZSR-LURJTMIESA-N N(alpha)-methyl-L-histidine Chemical class CN[C@H](C(O)=O)CC1=CNC=N1 CYZKJBZEIFWZSR-LURJTMIESA-N 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical class C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 description 1
- RFMMMVDNIPUKGG-YFKPBYRVSA-N N-acetyl-L-glutamic acid Chemical class CC(=O)N[C@H](C(O)=O)CCC(O)=O RFMMMVDNIPUKGG-YFKPBYRVSA-N 0.000 description 1
- CQOVPNPJLQNMDC-UHFFFAOYSA-N N-beta-alanyl-L-histidine Chemical class NCCC(=O)NC(C(O)=O)CC1=CN=CN1 CQOVPNPJLQNMDC-UHFFFAOYSA-N 0.000 description 1
- RHGKLRLOHDJJDR-UHFFFAOYSA-N Ndelta-carbamoyl-DL-ornithine Chemical class OC(=O)C(N)CCCNC(N)=O RHGKLRLOHDJJDR-UHFFFAOYSA-N 0.000 description 1
- PSHXNVGSVNEJBD-LJQANCHMSA-N O-tetradecanoyl-L-carnitine Chemical compound CCCCCCCCCCCCCC(=O)O[C@H](CC([O-])=O)C[N+](C)(C)C PSHXNVGSVNEJBD-LJQANCHMSA-N 0.000 description 1
- TYBWABJIIOVYOR-UHFFFAOYSA-N OCC(C(O)=O)OP(=O)=O Chemical compound OCC(C(O)=O)OP(=O)=O TYBWABJIIOVYOR-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920000148 Polycarbophil calcium Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Chemical class OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 101100244562 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) oprD gene Proteins 0.000 description 1
- 108010077895 Sarcosine Chemical class 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Chemical class OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- ABBQHOQBGMUPJH-UHFFFAOYSA-M Sodium salicylate Chemical compound [Na+].OC1=CC=CC=C1C([O-])=O ABBQHOQBGMUPJH-UHFFFAOYSA-M 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 108010073771 Soybean Proteins Proteins 0.000 description 1
- 208000007271 Substance Withdrawal Syndrome Diseases 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Chemical class CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Chemical class 0.000 description 1
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 229920004929 Triton X-114 Polymers 0.000 description 1
- 229920004894 Triton X-305 Polymers 0.000 description 1
- 229920004897 Triton X-45 Polymers 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Chemical class C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Chemical class CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- 206010048010 Withdrawal syndrome Diseases 0.000 description 1
- CWRILEGKIAOYKP-SSDOTTSWSA-M [(2r)-3-acetyloxy-2-hydroxypropyl] 2-aminoethyl phosphate Chemical compound CC(=O)OC[C@@H](O)COP([O-])(=O)OCCN CWRILEGKIAOYKP-SSDOTTSWSA-M 0.000 description 1
- BYFLNNAMRBCAOL-UHFFFAOYSA-N [2-[(3,4-dimethylphenyl)methyl]-3-[[4-(methanesulfonamido)phenyl]methylcarbamothioylamino]propyl] 2,2-dimethylpropanoate Chemical compound C1=C(C)C(C)=CC=C1CC(COC(=O)C(C)(C)C)CNC(=S)NCC1=CC=C(NS(C)(=O)=O)C=C1 BYFLNNAMRBCAOL-UHFFFAOYSA-N 0.000 description 1
- 125000004442 acylamino group Chemical group 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 229960003767 alanine Drugs 0.000 description 1
- RNBGYGVWRKECFJ-ZXXMMSQZSA-N alpha-D-fructofuranose 1,6-bisphosphate Chemical compound O[C@H]1[C@H](O)[C@](O)(COP(O)(O)=O)O[C@@H]1COP(O)(O)=O RNBGYGVWRKECFJ-ZXXMMSQZSA-N 0.000 description 1
- RWHOZGRAXYWRNX-VFUOTHLCSA-N alpha-D-glucose 1,6-bisphosphate Chemical compound O[C@H]1[C@H](O)[C@@H](COP(O)(O)=O)O[C@H](OP(O)(O)=O)[C@@H]1O RWHOZGRAXYWRNX-VFUOTHLCSA-N 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 230000003502 anti-nociceptive effect Effects 0.000 description 1
- 229940053200 antiepileptics fatty acid derivative Drugs 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 229960005261 aspartic acid Drugs 0.000 description 1
- 210000004082 barrier epithelial cell Anatomy 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Chemical class OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 230000036765 blood level Effects 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 229960004203 carnitine Drugs 0.000 description 1
- CQOVPNPJLQNMDC-ZETCQYMHSA-N carnosine Chemical class [NH3+]CCC(=O)N[C@H](C([O-])=O)CC1=CNC=N1 CQOVPNPJLQNMDC-ZETCQYMHSA-N 0.000 description 1
- 229940044199 carnosine Drugs 0.000 description 1
- 210000001715 carotid artery Anatomy 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 1
- 150000001841 cholesterols Chemical class 0.000 description 1
- 229960002173 citrulline Drugs 0.000 description 1
- 235000013477 citrulline Nutrition 0.000 description 1
- 229960004126 codeine Drugs 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229960003624 creatine Drugs 0.000 description 1
- 239000006046 creatine Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 108700023159 delta Opioid Receptors Proteins 0.000 description 1
- 102000048124 delta Opioid Receptors Human genes 0.000 description 1
- YSMODUONRAFBET-UHFFFAOYSA-N delta-DL-hydroxylysine Chemical class NCC(O)CCC(N)C(O)=O YSMODUONRAFBET-UHFFFAOYSA-N 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 235000019329 dioctyl sodium sulphosuccinate Nutrition 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Chemical class OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid ester group Chemical class C(CCCCCCCCCCC)(=O)O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 1
- NLEBIOOXCVAHBD-QKMCSOCLSA-N dodecyl beta-D-maltoside Chemical compound O[C@@H]1[C@@H](O)[C@H](OCCCCCCCCCCCC)O[C@H](CO)[C@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 NLEBIOOXCVAHBD-QKMCSOCLSA-N 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 230000002183 duodenal effect Effects 0.000 description 1
- 229960001484 edetic acid Drugs 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 230000004890 epithelial barrier function Effects 0.000 description 1
- 210000005081 epithelial layer Anatomy 0.000 description 1
- YSMODUONRAFBET-UHNVWZDZSA-N erythro-5-hydroxy-L-lysine Chemical class NC[C@H](O)CC[C@H](N)C(O)=O YSMODUONRAFBET-UHNVWZDZSA-N 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 229940025237 fructose 1,6-diphosphate Drugs 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000030136 gastric emptying Effects 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Chemical class 0.000 description 1
- 229960002989 glutamic acid Drugs 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 229960002449 glycine Drugs 0.000 description 1
- ODYPFMHOOQOHEF-UHFFFAOYSA-N hexadecanoylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OCC[N+](C)(C)C ODYPFMHOOQOHEF-UHFFFAOYSA-N 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Chemical class OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 229960002885 histidine Drugs 0.000 description 1
- QRMZSPFSDQBLIX-UHFFFAOYSA-N homovanillic acid Chemical compound COC1=CC(CC(O)=O)=CC=C1O QRMZSPFSDQBLIX-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- OROGSEYTTFOCAN-UHFFFAOYSA-N hydrocodone Natural products C1C(N(CCC234)C)C2C=CC(O)C3OC2=C4C1=CC=C2OC OROGSEYTTFOCAN-UHFFFAOYSA-N 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- QJHBJHUKURJDLG-UHFFFAOYSA-N hydroxy-L-lysine Chemical class NCCCCC(NO)C(O)=O QJHBJHUKURJDLG-UHFFFAOYSA-N 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- 229920003132 hydroxypropyl methylcellulose phthalate Polymers 0.000 description 1
- 229940031704 hydroxypropyl methylcellulose phthalate Drugs 0.000 description 1
- VVIUBCNYACGLLV-UHFFFAOYSA-N hypotaurine Chemical class [NH3+]CCS([O-])=O VVIUBCNYACGLLV-UHFFFAOYSA-N 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 210000005026 intestinal epithelial barrier Anatomy 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Chemical class CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 102000048260 kappa Opioid Receptors Human genes 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- SMEROWZSTRWXGI-HVATVPOCSA-N lithocholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)CC1 SMEROWZSTRWXGI-HVATVPOCSA-N 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 229940117841 methacrylic acid copolymer Drugs 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229960005181 morphine Drugs 0.000 description 1
- 102000051367 mu Opioid Receptors Human genes 0.000 description 1
- 230000004682 mucosal barrier function Effects 0.000 description 1
- 230000003533 narcotic effect Effects 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 1
- 230000000945 opiatelike Effects 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 229950005134 polycarbophil Drugs 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000056 polyoxyethylene ether Polymers 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 229960002429 proline Drugs 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 150000003873 salicylate salts Chemical class 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229940043230 sarcosine Drugs 0.000 description 1
- 230000001624 sedative effect Effects 0.000 description 1
- 229960001153 serine Drugs 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229960004025 sodium salicylate Drugs 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 229940001941 soy protein Drugs 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 229960003080 taurine Drugs 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 229960002898 threonine Drugs 0.000 description 1
- 210000001578 tight junction Anatomy 0.000 description 1
- 238000001269 time-of-flight mass spectrometry Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Chemical class ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 239000001069 triethyl citrate Substances 0.000 description 1
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 1
- 235000013769 triethyl citrate Nutrition 0.000 description 1
- HYPHVSJUVHDHIL-UHFFFAOYSA-N trimethyl(2-tetradecanoyloxyethyl)azanium Chemical compound CCCCCCCCCCCCCC(=O)OCC[N+](C)(C)C HYPHVSJUVHDHIL-UHFFFAOYSA-N 0.000 description 1
- 229960004799 tryptophan Drugs 0.000 description 1
- 229960004441 tyrosine Drugs 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Chemical class OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 229960004295 valine Drugs 0.000 description 1
- 239000004474 valine Chemical class 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 108020001588 κ-opioid receptors Proteins 0.000 description 1
- 108020001612 μ-opioid receptors Proteins 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/08—Peptides having 5 to 11 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/06—Tripeptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/07—Tetrapeptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/16—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
- A61K47/18—Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
- A61K47/183—Amino acids, e.g. glycine, EDTA or aspartame
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/26—Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0053—Mouth and digestive tract, i.e. intraoral and peroral administration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0087—Galenical forms not covered by A61K9/02 - A61K9/7023
- A61K9/0095—Drinks; Beverages; Syrups; Compositions for reconstitution thereof, e.g. powders or tablets to be dispersed in a glass of water; Veterinary drenches
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/4841—Filling excipients; Inactive ingredients
- A61K9/4858—Organic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/4891—Coated capsules; Multilayered drug free capsule shells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
Definitions
- the present invention relates to oral peptide pharmaceutical compositions having analgesic and/or cardiovascular activity, and to methods of enhancing bioavailability of such peptides when administered orally.
- Opiates such as morphine and codeine, or opiate-like synthetic drugs are currently used for the management of moderate to severe pain.
- Many endogenous peptides of mammalian and amphibian origin e.g., the endorphins
- opioid receptors e.g., the endorphins
- analgesic response similar to classic narcotic opiates.
- side effects such as depression of cardiac and respiratory function, tolerance, physical dependence capacity and precipitated withdrawal syndrome are caused by nonspecific interactions between such peptides and central nervous system receptors. Such side effects are due to the interaction of these peptides with multiple opioid receptors.
- peptides with a variety of structural modifications have been developed in an effort to develop peptide-based pharmaceuticals that are specific for a particular opioid receptor sub-type [mu, delta and kappa], and which produce long-lasting antinociceptive effects while minimizing undesirable side effects such as depression of cardiac and/or respiratory function, extended sedative activity, etc.
- Peptide pharmaceuticals known in the prior art including the analgesic peptides described above, frequently have been administered by injection or by nasal administration.
- a more preferred oral administration tends to be problematic because peptide-active compounds are very susceptible to degradation in the stomach and intestines and show poor bioavailability.
- the prior art is not believed to have reported to achieve reproducible blood levels of opioid peptides when administered orally. This is believed to be because peptides lack sufficient stability in the gastrointestinal tract, and tend to be poorly transported through intestinal walls into the blood.
- injection and nasal administration are significantly less convenient, and involve more patient discomfort, than oral administration. Often this inconvenience or discomfort results in substantial patient noncompliance with a treatment regimen.
- peptide pharmaceuticals including, but not limited to, peptide pharmaceuticals having analgesic and/or cardiovascular activity.
- Proteolytic enzymes of both the stomach and intestines may degrade peptides, rendering them inactive before they can be absorbed into the bloodstream. Any amount of peptide that survives proteolytic degradation by proteases of the stomach (typically having acidic pH optima) is later confronted with proteases of the small intestine and enzymes secreted by the pancreas (typically having neutral to basic pH optima). Specific difficulties arising from the oral administration of a peptide involve the relatively large size of the molecule, and the charge distribution it carries. This may make it more difficult for such peptides to penetrate the mucus along intestinal walls or to cross the intestinal brush border membrane into the blood. These additional problems may further contribute to limited bioavailability.
- pharmaceutical peptides e.g., physiologically active peptide agents having analgesic and/or cardiovascular activity.
- the invention provides a pharmaceutical composition for the oral delivery of a peptide having analgesic and/or cardiovascular activity.
- the composition comprises (A) a therapeutically effective amount of an active peptide component (as described below) and (B) at least one absorption enhancer effective to promote bioavailability of the peptide or (C) at least one pharmaceutically acceptable pH-lowering agent, wherein the pH-lowering agent is present in the pharmaceutical composition in a quantity which, if the composition were added to 10 milliliters of 0.1M aqueous sodium bicarbonate solution, would be sufficient to lower the pH of the solution to no higher than 5.5.
- the pharmaceutical composition may include both the absorption enhancer and the pH-lowering agent.
- the pharmaceutical composition of (A), (B), (C) or (D) may also include an acid-resistant protective vehicle effective to transport the pharmaceutical composition through the stomach of a patient while preventing contact between the active peptide component and stomach proteases.
- the invention is directed to a pharmaceutical composition for the oral delivery of a peptide having analgesic and/or cardiovascular activity, wherein the composition comprises (A) a therapeutically effective amount of an active peptide component (as described below) and (B) at least one pharmaceutically acceptable pH-lowering agent, wherein the pH-lowering agent is present in the pharmaceutical composition in a quantity which, if the composition were added to 10 milliliters of 0.1M aqueous sodium bicarbonate solution, would be sufficient to lower the pH of the solution to no higher than 5.5.
- an active peptide component as described below
- pH-lowering agent is present in the pharmaceutical composition in a quantity which, if the composition were added to 10 milliliters of 0.1M aqueous sodium bicarbonate solution, would be sufficient to lower the pH of the solution to no higher than 5.5.
- the pharmaceutical composition may optionally additionally comprise at least one additional component selected from the group consisting of (C) at least one absorption enhancer effective to promote bioavailability of the peptide; and (D) an acid-resistant protective vehicle effective to transport the pharmaceutical composition through the stomach of a patient while preventing contact between the active peptide component and stomach proteases.
- C at least one absorption enhancer effective to promote bioavailability of the peptide
- D an acid-resistant protective vehicle effective to transport the pharmaceutical composition through the stomach of a patient while preventing contact between the active peptide component and stomach proteases.
- the active peptide component for inclusion in the formulation of the invention is selected from among one or more of the following:
- R 1 is selected from the group consisting of hydrogen, C 1 -C 7 branched or unbranched alkyl, phenyl, hydroxyphenyl, methoxyphenyl, benzyl, hydroxybenzyl, methoxybenzyl, aminobenzyl, amidobenzyl, carboxybenzyl, carboxymethylbenzyl, cyanobenzyl, fluorobenzyl, chlorobenzyl, bromobenzyl, iodobenzyl, mercaptobenzyl, and nitrobenzyl; R 2 is hydrogen, methyl, ethyl; or R 1 and R 2 , taken together with the carbon atom to which they are attached, form a cycloalkyl ring containing 3-5 carbon atoms; X is selected from the group consisting of C ⁇ O, N—H, CH 2 , —O—, C ⁇ S and —S—; Y is selected from the group C ⁇ O, N—H, CH 2 , —O
- A is selected from the group consisting of D- ⁇ -amino acids
- B is selected from the group consisting of ⁇ -amino acids
- the overall net positive charge of the peptide is +2 or greater
- R 1 is selected from
- R 2 is selected from
- R 3 and R 4 is each and independently selected from
- R 5 , R 6 , R 7 , R 8 and R9 is each independently selected from
- halogen encompasses chloro, fluoro, bromo and iodo
- n is an integer of from 1 to 5;
- Xaa is L- or D-dimethylphenylalanine
- F An enkephalin peptide
- G A peptide linked to a DMT-Tic-pharmacophore.
- the invention provides a pharmaceutical composition for oral delivery of a compound having analgesic and/or cardiovascular activity, wherein the composition comprises: (A) a therapeutically effective amount of an active compound which is an agonist or a partial agonist of vanilloid receptor VR1; and (B) at least one absorption enhancer effective to promote bioavailability of the compound or (C) at least one pharmaceutically acceptable pH-lowering agent, wherein the pH-lowering agent is present in the pharmaceutical composition in a quantity which, if the composition were added to 10 milliliters of 0.1M aqueous sodium bicarbonate, would be sufficient to lower the pH of the solution to no higher than 5.5.
- the pharmaceutical composition may include both the absorption enhancer and the pH-lowering agent.
- the pharmaceutical composition of (A), (B), (C) or (D) may also include an acid-resistant protective vehicle effective to transport the pharmaceutical composition through the stomach of a patient while preventing contact between the active peptide component and stomach proteases.
- any of the pharmaceutical compositions of the invention may additionally comprise a water-soluble barrier separating the pH-lowering agent from the protective vehicle.
- any of the pharmaceutical compositions may comprise granules containing a pharmaceutical binder and, uniformly dispersed in the binder, at least one of the pH-lowering agent, the absorption enhancer and the peptide having analgesic and/or cardiovascular activity.
- Additional aspects of the invention relate to therapeutic methods involving oral administration of therapeutically effective amounts of pharmaceutical compositions as described herein.
- the invention provides a method for enhancing the oral bioavailability of a compound comprising a peptide having analgesic or cardiovascular activity.
- the method comprises orally delivering a pharmaceutical composition that combines the compound with at least one absorption enhancer effective to promote bioavailability of the compound, or combining the compound with at least one pH-lowering agent, wherein the pH-lowering agent is present in a quantity which, if the composition were added to 10 milliliters of 0.1 M aqueous sodium bicarbonate solution, would be sufficient to lower the pH of the solution to no higher than 5.5.
- the method may also comprise orally delivering a pharmaceutical composition that combines the compound with at least one absorption enhancer in combination with at least one pH-lowering agent.
- the method may also comprise transporting any of the above pharmaceutical compositions through the stomach of a patient by an acid-resistant protective vehicle to prevent contact between the pharmaceutical composition and stomach proteases.
- the invention provides a method for stimulating a mu, delta or kappa-opioid receptor in a mammal in need of such stimulation, wherein the method comprises orally administering to the mammal an effective opioid receptor stimulating amount of one or more of the pharmaceutical compositions described herein.
- the invention provides a method for relieving pain comprising orally administering to a patient in need of pain relief an effective pain-relieving amount of one or more of the pharmaceutical compositions described herein.
- the invention provides a method for improving myocardial contractile force.
- the method comprises orally administering to a patient in need of such improvement an effective contractile force-increasing amount of one or more of the pharmaceutical compositions described herein containing a therapeutically effective amount of a dermorphin analog or a prodrug thereof.
- the invention provides a method for improving cardiac performance of a heart before, during and/or after cardiac transplantation.
- the method comprises orally administering to a patient in need of such improved cardiac performance an effective cardiac performance-improving amount of one or more of the pharmaceutical compositions described herein containing a therapeutically effective amount of a dermorphin analog or a prodrug thereof.
- prodrugs of any of the above-described active peptides useful in forming the compositions of the invention may be used in place of the corresponding peptide, as these will also increase the serum levels of the peptide.
- the prodrug is converted in vivo to the desired active compound by a well-known mechanism.
- the pharmaceutical industry frequently uses salt or ester prodrugs to deliver a large number of pharmaceutical agents. It is, in fact, rare in the pharmaceutical industry that particular active ingredients that are to be delivered to the bloodstream of a patient are not formulated (in their dosage form) as a prodrug which, as noted above, is subsequently converted in vivo to the desired active compound by such well-known mechanism.
- prodrug as used herein is meant to include only those compounds which, when converted in vivo, deliver one or more of the active peptides described and claimed herein to the bloodstream of a subject to whom they are administered.
- a variety of well-known prodrug forms of various functional groups that may appear on the active peptide compounds for use in the invention are set forth in A Textbook of Drug Design and Development , Bundgaard and Krosgaard-Larsen, Ed., (Harwook Academic Publishers GmfH, Chur, Switzerland) 1991 which is incorporated herein by reference.
- FIG. 1 provides, in graphical form, pharmacokinetic profiles following administration of unformulated Dmt-DALDA and Dmt-DALDA formulated with an absorption enhancer and pH-lowering agent by duodenal injection in anesthetized rats.
- FIG. 2A and FIG. 2B provide, in graphical form, pharmacokinetic profiles following administration to beagle dogs of salmon calcitonin (sCT) plus Dmt-DALDA with citric acid and lauroyl carnitine, in a solid dosage capsule formulation, either without ( FIG. 2A ) or with ( FIG. 2B ) an enteric coating.
- sCT salmon calcitonin
- Dmt-DALDA citric acid and lauroyl carnitine
- patients in need of treatment with peptides having analgesic and/or cardiovascular activity are provided with an oral pharmaceutical composition thereof (at appropriate dosage), preferably but not necessarily in tablet or capsule form of an ordinary size in the pharmaceutical industry.
- oral pharmaceutical composition thereof at appropriate dosage
- Patients who may benefit are any who suffer from disorders that respond favorably to increased levels of a peptide-containing compound.
- oral administration of dermorphin, deltorphin and/or enkephalin peptide analogs in accordance with the invention may be used to treat patients in need of pain relief, or those with conditions warranting improved cardiac performance, e.g., by improving myocardial contractile force.
- the pharmaceutical compositions of the invention are believed to overcome a series of different and unrelated natural barriers to bioavailability.
- Various components of the pharmaceutical compositions act to overcome different barriers by mechanisms appropriate to each, and result in synergistic effects on the bioavailability of a peptide active ingredient.
- the peptide active compound may be administered orally.
- proteolytic degradation of the peptide by stomach proteases (most of which are active in the acid pH range) and intestinal or pancreatic proteases (most of which are active in the neutral to basic pH range) is reduced.
- Solubility enhancers aid passage of the peptide active agent through the intestinal epithelial barrier.
- the peptide is transported through the stomach under the protection of an appropriate acid-resistant protective vehicle for substantially preventing contact between the active peptide and any stomach proteases capable of degrading it.
- an appropriate acid-resistant protective vehicle for substantially preventing contact between the active peptide and any stomach proteases capable of degrading it.
- the pH-lowering agent is believed to lower the local intestinal pH (where the active agent has been released) to levels below the optimal range for many intestinal proteases. This decrease in pH reduces the proteolytic activity of the intestinal proteases, thus affording protection to the peptide from potential degradation. The activity of these proteases is diminished by the temporarily acidic local environment provided by the invention. It is preferred that sufficient acid be provided that local intestinal pH is lowered temporarily to 5.5 or below, preferably 4.7 or below and more preferably 3.5 or below.
- the sodium bicarbonate test described below is indicative of the required acid amount.
- conditions of reduced intestinal pH persist for a time period sufficient to protect the peptide agent from proteolytic degradation until at least some of the peptide agent has had an opportunity to cross the intestinal wall into the bloodstream.
- the absorption enhancers of the invention synergistically promote peptide absorption into the blood while conditions of reduced proteolytic activity prevail.
- the mechanism by which the invention is believed to accomplish the goal of enhanced bioavailability is aided by having active components of the pharmaceutical composition released together as simultaneously as possible.
- enteric coating is less likely to interfere with peptide release, or with the release of other components in close time proximity with the peptide.
- the enteric coating should normally add less than 30% to the weight of the remainder of pharmaceutical composition (i.e., the other components of the composition excluding enteric coating).
- it is less than 20% and, more preferably, the enteric coating adds between 10% and 20% to the weight of the uncoated ingredients.
- the absorption enhancer which may be a solubility enhancer and/or transport enhancer (as described in more detail below) aids transport of the peptide agent from the intestine to the blood, and may promote the process so that it better occurs during the time period of reduced intestinal pH and reduced intestinal proteolytic activity.
- Many surface active agents may act as both solubility enhancers and transport (uptake) enhancers.
- enhancing solubility provides (1) a more simultaneous release of the active components of the invention into the aqueous portion of the intestine, (2) better solubility of the peptide in, and transport through, a mucous layer along the intestinal walls.
- an uptake enhancer provides better transport through the brush border membrane of the intestine into the blood, via either transcellular or paracellular transport.
- many preferred compounds may provide both functions. In those instances, preferred embodiments utilizing both of these functions may do so by adding only one additional compound to the pharmaceutical composition. In other embodiments, separate absorption enhancers may provide the two functions separately.
- the pharmaceutical composition for oral delivery may comprise the peptide or compound in combination with an absorption enhancer and a pH-lowering agent, along with an enteric coating to transport the ingredients through the stomach of a patient while preventing contact between the pharmaceutical composition and stomach proteases.
- a pharmaceutical composition for oral delivery that comprises only a peptide with a pH-lowering agent provides a significant increase in bioavailability compared to that offered by the peptide taken alone.
- a pharmaceutical composition for oral delivery comprising only a peptide and an absorption enhancer provides a significant increase in bioavailability, compared to that of the peptide taken alone.
- Peptide active ingredients which may benefit from oral delivery in accordance with the invention include peptides having analgesic or cardiovascular activity.
- peptides having analgesic or cardiovascular activity include peptides having analgesic or cardiovascular activity.
- peptides having analgesic or cardiovascular activity include peptides having analgesic or cardiovascular activity.
- additional peptides, analogs and/or prodrugs may be substituted for the peptides described herein in the formulations prepared according to the invention.
- a peptide for use with the invention may be a dermorphin analog, or a prodrug thereof, of formula I
- R 1 is selected from the group consisting of hydrogen, C 1 -C 7 branched or unbranched alkyl, phenyl, hydroxyphenyl, methoxyphenyl, benzyl, hydroxybenzyl, methoxybenzyl, aminobenzyl, amidobenzyl, carboxybenzyl, carboxymethylbenzyl, cyanobenzyl, fluorobenzyl, chlorobenzyl, bromobenzyl, iodobenzyl, mercaptobenzyl, and nitrobenzyl; R 2 is hydrogen, methyl, ethyl; or R 1 and R 2 , taken together with the carbon atom to which they are attached, form a cycloalkyl ring containing 3-5 carbon atoms; X is selected from the group consisting of C ⁇ O, N—H, CH 2 , —O—, C ⁇ S and —S—; Y is selected from the group C ⁇ O, N—H, CH 2 , —O
- the peptide of the invention is H-Tyrosine-D-Arginine-Phenylalanine-Lysine-NH 2 (“DALDA”).
- the peptide for use with the invention may be a dermorphin analog of formula II, or a prodrug thereof:
- A is selected from the group consisting of D- ⁇ -amino acids
- B is selected from the group consisting of ⁇ -amino acids
- D- ⁇ -amino acids useful in forming the compositions of the invention include, but are not limited to, D-norvaline, D-norleucine, D-arginine, D-alanine, D-valine, D-isoleucine, D-leucine, D-serine, D-phenylalanine and D- ⁇ , ⁇ -diaminobutyric acid.
- Alpha-amino acids useful in forming the compositions of the invention include, but are not limited to phenylalanine, para-fluoro phenylalanine, ornithine, ⁇ , ⁇ -diaminobutyric acid, lysine, norvaline, arginine, ⁇ , ⁇ -diaminopropionic acid and homolysine.
- the overall net positive charge of the peptide may be +2 or +3.
- the peptide may be a DALDA derivative of formula III:
- R 1 is selected from
- R 2 is selected from
- R 3 and R 4 is each and independently selected from
- R 5 , R 6 , R 7 , R 8 and R9 is each independently selected from
- halogen encompasses chloro, fluoro, bromo and iodo
- n is an integer of from 1 to 5.
- R 1 is a linear C 1 -C 6 alkyl
- R 2 is a linear C 1 -C 6 alkyl or hydrogen
- R 3 and R 4 is each and independently selected from a straight C 1 -C 6 alkyl or hydrogen
- R 5 , R 6 , R 7 , R 8 and R 9 is each and independently selected from
- n is an integer from 1 to 5.
- R 1 is CH 3 ;
- R 2 is hydrogen or CH 3 ;
- R 3 and R 4 are both hydrogen
- R 5 , R 6 , R 7 , R 8 and R 9 are all hydrogen
- the dermorphin analog is a peptide represented by the formula:
- DMT-DALDA H-2,6-dimethyltyrosine-D-Arginine-Phenylalanine-Lysine-NH 2 .
- the peptide is a dermorphin analog of formula IV:
- Xaa is L- or D-dimethylphenylalanine.
- the peptide for use with the invention is a deltorphin analog of formula V:
- Xaa is L or D-dimethylphenylalanine.
- An alternate embodiment of the invention involves the inclusion of compounds having analgesic and/or cardiovascular activity which, although not peptides, display characteristics which are similar thereto and which are subject to many of the same considerations with regard to transport and adsorption as the peptides described herein.
- These compounds are agonists or partial agonists of the vanilloid receptor VR1. Examples of these compounds include, but are not limited to:
- the peptide may be linked to a DMT-Tic-Pharmacaphore having the structure
- Peptides for use in the invention include, but are not limited to those selected from the group consisting of
- the peptides having analgesic and/or cardiovascular activity for use in the invention may be prepared in accordance with Examples 2 and 3 of U.S. Pat. No. 5,602,100 to Brown et al., which is incorporated herein by reference.
- Example 2 of the subject patent teaches the method of peptide synthesis.
- Peptides containing c-terminal free acids can be synthesized by linking BOC amino acids using a chloro methyl resin [Merrifield resin], 1% cross linked, 100-200 mesh obtained from Peptides International [Lousiville, Ky.].
- Example 3 describes methodology for use in purifying the resultant peptides.
- a preferred peptide for use in the invention i.e., Dmt-DALDA, may be prepared as shown in Example 1 of U.S. Pat. No. 6,703,483 to Schiller, which is also incorporated by reference.
- Compounds having analgesic and/or cardiovascular activity which are useful in the invention further include agonists or partial agonists of vanilloid receptor VR1.
- Methods for preparing these compounds are set forth in, for example, International Patent Publications WO 02/16318 and WO 02/16319 of Suh, et al., both dated Feb. 28, 2002. Both of these publications are incorporated herein by reference.
- the total amount of the pH-lowering agent to be administered with each administration of the pharmaceutical composition should preferably be an amount which, when it is released into the intestine, is sufficient to lower the local intestinal pH substantially below the pH optima for proteases found there.
- the quantity required will necessarily vary with several factors including the type of pH-lowering agent used (discussed below) and the equivalents of protons provided by a given pH-lowering agent.
- the amount required to provide good bioavailability is an amount which, when added to a solution of 10 milliliters of 0.1 M sodium bicarbonate, lowers the pH of that sodium bicarbonate solution to no higher than 5.5, and preferably no higher than 4.7, most preferably no higher than 3.5.
- Enough acid to lower pH, in the foregoing test, to about 2.8 may been used in some embodiments.
- Preferably at least 300 milligrams, and more preferably at least 400 milligrams of the pH-lowering agent are used in the pharmaceutical composition of the invention.
- the foregoing preferences relate to the total combined weight of all pH-lowering agents where two or more of such agents are used in combination.
- the oral formulation should not include an amount of any base which, when released together with the pH-lowering compound, would prevent the pH of the above-described sodium bicarbonate test from dropping to 5.5 or below.
- the pH-lowering agent of the invention may be any pharmaceutically acceptable compound that is not toxic in the gastrointestinal tract and is capable of either delivering hydrogen ions (a traditional acid) or of inducing higher hydrogen ion content from the local environment. It may also be any combination of such compounds. It is preferred that at least one pH-lowering agent used in the invention have a pKa no higher than 4.2, and preferably no higher than 3.0. It is also preferred that the pH lowering agent have a solubility in water of at least 30 grams per 100 milliliters of water at room temperature.
- Examples of compounds that induce higher hydrogen ion content include aluminum chloride and zinc chloride.
- Pharmaceutically acceptable traditional acids include, but are not limited to acid salts of amino acids (e.g. amino acid hydrochlorides) or derivatives thereof. Examples of these are acid salts of acetylglutamic acid, alanine, arginine, asparagine, aspartic acid, betaine, carnitine, carnosine, citrulline, creatine, glutamic acid, glycine, histidine, hydroxylysine, hydroxyproline, hypotaurine, isoleucine, leucine, lysine, methylhistidine, norleucine, ornithine, phenylalanine, proline, sarcosine, serine, taurine, threonine, tryptophan, tyrosine and valine.
- pH-lowering compounds include carboxylic acids such as acetylsalicylic, acetic, ascorbic, citric, fumaric, glucuronic, glutaric, glyceric, glycocolic, glyoxylic, isocitric, isovaleric, lactic, maleic, oxaloacetic, oxalosuccinic, propionic, pyruvic, succinic, tartaric, valeric, and the like.
- carboxylic acids such as acetylsalicylic, acetic, ascorbic, citric, fumaric, glucuronic, glutaric, glyceric, glycocolic, glyoxylic, isocitric, isovaleric, lactic, maleic, oxaloacetic, oxalosuccinic, propionic, pyruvic, succinic, tartaric, valeric, and the like.
- pH-lowering agents that might not usually be called “acids” in the art, but which may nonetheless be useful in accordance with the invention are phosphate esters (e.g., fructose 1,6 diphosphate, glucose 1,6 diphosphate, phosphoglyceric acid, and diphosphoglyceric acid).
- phosphate esters e.g., fructose 1,6 diphosphate, glucose 1,6 diphosphate, phosphoglyceric acid, and diphosphoglyceric acid.
- CARBOPOL.®. Trademark BF Goodrich
- polymers such as polycarbophil may also be used to lower pH.
- pH lowering agent that achieves the required pH level of no higher than 5.5 in the sodium bicarbonate test discussed above may be used.
- One preferred embodiment utilizes, as at least one of the pH-lowering agents of the pharmaceutical composition, an acid selected from the group consisting of citric acid, tartaric acid and an acid salt of an amino acid.
- DMT-DALDA is the peptide active agent
- certain ratios of pH-lowering agent to DMT-DALDA have proven especially effective. It is preferred that the weight ratio of pH-lowering agent to DMT-DALDA exceed 40:1, preferably 400:1 and most preferably 4000:1.
- the absorption enhancers are preferably present in a quantity that constitutes from 0.1 to 20.0 percent by weight, relative to the overall weight of the pharmaceutical composition (exclusive of the enteric coating).
- Preferred absorption enhancers are surface active agents which act both as solubility enhancers and uptake enhancers.
- solubility enhancers improve the ability of the components of the invention to be solubilized in either the aqueous environment into which they are originally released or into the lipophilic environment of the mucous layer lining the intestinal walls, or both.
- Transport (uptake) enhancers” (which are frequently the same surface active agents used as solubility enhancers) are those which facilitate the ease by which peptide agents cross the intestinal wall.
- One or more absorption enhancers may perform one function only (e.g., solubility), or one or more absorption enhancers may perform the other function only (e.g., uptake), within the scope of the invention. It is also possible to have a mixture of several compounds some of which provide improved solubility, some of which provide improved uptake and/or some of which perform both. Without intending to be bound by theory, it is believed that uptake enhancers may act by (1) increasing disorder of the hydrophobic region of the membrane exterior of intestinal cells, allowing for increased transcellular transport; or (2) leaching membrane proteins resulting in increased transcellular transport; or (3) widening pore radius between cells for increased paracellular transport. Surface active agents are believed to be useful both as solubility enhancers and as uptake enhancers.
- detergents are useful in (1) solubilizing all of the active components quickly into the aqueous environment where they are originally released, (2) enhancing lipophilicity of the components of the invention, especially the peptide active agent, aiding its passage into and through the intestinal mucus, (3) enhancing the ability of the normally polar peptide active agent to cross the epithelial barrier of the brush border membrane; and (4) increasing transcellular or paracellular transport as described above.
- surface active agents When surface active agents are used as the absorption enhancers, it is preferred that they be free flowing powders for facilitating the mixing and loading of capsules during the manufacturing process. Because of inherent characteristics of certain peptides (e.g., their isoelectric point, molecular weight, amino acid composition, etc.) certain surface active agents interact best with certain peptides. Indeed, some can undesirably interact with the charged portions of certain peptides and thus prevent their absorption, thus undesirably resulting in decreased bioavailability.
- any surface active agent used as an absorption enhancer be selected from the group consisting of (i) anionic surface active agents that are cholesterol derivatives (e.g., bile acids), (ii) cationic surface agents (e.g., acyl carnitines, phospholipids and the like), (iii) non-ionic surface active agents, and (iv) mixtures of anionic surface active agents (especially those having linear hydrocarbon regions) together with negative charge neutralizers.
- Negative charge neutralizers include but are not limited to acyl carnitines, cetyl pyridinium chloride, and the like. Acyl carnitines (e.g., lauroyl carnitine) are particularly good absorption enhancers. It is also preferred that the absorption enhancer be soluble at acid pH, particularly in the 3.0 to 5.0 range.
- preferred detergents when used as the absorption enhancers of the invention, are either biodegradable or reabsorbable (e.g. biologically recyclable compounds such as bile acids, phospholipids, and/or acyl carnitines), preferably biodegradable.
- biodegradable or reabsorbable e.g. biologically recyclable compounds such as bile acids, phospholipids, and/or acyl carnitines
- acyl carnitines are believed particularly useful in enhancing paracellular transport.
- Absorption enhancers may also include: (a) salicylates such as sodium salicylate, 3-methoxysalicylate, 5-methoxysalicylate and homovanilate; (b) bile acids such as taurocholic, tauorodeoxycholic, deoxycholic, cholic, glycholic, lithocholate, chenodeoxycholic, ursodeoxycholic, ursocholic, dehydrocholic, fusidic, etc.; (c) non-ionic surfactants such as polyoxyethylene ethers (e.g.
- Tween-20, Tween-80 etc. anionic surfactants such as dioctyl sodium sulfosuccinate;
- anionic surfactants such as dioctyl sodium sulfosuccinate;
- lyso-phospholipids such as lysolecithin and lysophosphatidylethanolamine;
- acylcarnitines, acylcholines and acyl amino acids such as lauroylcarnitine, myristoylcarnitine, palmitoylcarnitine, lauroylcholine, myristoylcholine, palmitoylcholine, hexadecyllysine, N-acylphenylalanine, N-acylglycine etc.
- water soluble phospholipids such as diheptanoylphosphatidylcholine, dioctylphosphatidylcholine etc.
- medium-chain glycerides which are mixtures of mono-, di- and
- cationic ion exchange agents e.g. detergents
- they may prevent the binding of the peptide active agents to mucus.
- Preferred cationic ion exchange agents include protamine chloride or any other polycation.
- a water-soluble barrier separate the pH-lowering agent from the acid resistant protective vehicle.
- a conventional pharmaceutical capsule may, for example, be used for the purpose of providing this barrier.
- Many water soluble barriers are known in the art and include, but are not limited to, hydroxypropyl methylcellulose and conventional pharmaceutical gelatins.
- another peptide such as albumin, casein, soy protein, other animal or vegetable proteins and the like
- another peptide is included to reduce non-specific adsorption (e.g., binding of peptide to the intestinal mucus barrier) thereby lowering the necessary concentration of the expensive peptide active agent.
- the peptide is preferably from 1.0 to 10.0 percent by weight relative to the weight of the overall pharmaceutical composition (excluding protective vehicle).
- this second peptide is not physiologically active and is most preferably a food peptide such as soy bean peptide or the like.
- this second peptide may also increase bioavailability by acting as a protease scavenger that desirably competes with the peptide active agent for protease interaction.
- the second peptide may also aid the active compound's passage through the liver.
- compositions of the invention may optionally also include common pharmaceutical diluents, glycants, lubricants, gelatin capsules, preservatives, colorants and the like in their usual known sizes and amounts.
- any carrier or vehicle that protects the peptide active agent from stomach proteases and then dissolves so that the other ingredients of the invention may be released in the intestine is suitable.
- enteric coatings are known in the art, and are useful in accordance with the invention. Examples include cellulose acetate phthalate, hydroxypropyl methylethylcellulose succinate, hydroxypropyl methylcellulose phthalate, carboxyl methylethylcellulose and methacrylic acid-methyl methacrylate copolymer.
- the active peptide, absorption enhancers such as solubility and/or uptake enhancer(s), and pH-lowering compound(s) are included in a sufficiently viscous protective syrup to permit protected passage of the components of the invention through the stomach.
- enteric coatings for protecting the peptide agent from stomach proteases may be applied, for example, to capsules after the remaining components of the invention have been loaded within the capsule.
- enteric coating is coated on the outside of a tablet or coated on the outer surface of particles of active components which are then pressed into tablet form, or loaded into a capsule, which is itself preferably coated with an enteric coating.
- the carrier or vehicle it is very desirable that all components of the invention be released from the carrier or vehicle, and solubilized in the intestinal environment as simultaneously as possible. It is preferred that the vehicle or carrier release the active components in the small intestine where uptake enhancers that increase transcellular or paracellular transport are less likely to cause undesirable side effects than if the same uptake enhancers were later released in the colon. It is emphasized, however, that the present invention is believed effective in the colon as well as in the small intestine. Numerous vehicles or carriers, in addition to the ones discussed above, are known in the art. It is desirable (especially in optimizing how simultaneously the components of the invention are released) to keep the amount of enteric coating low.
- the enteric coating adds no more than 30% to the weight of the remainder of pharmaceutical composition (the “remainder” being the pharmaceutical composition exclusive of enteric coating itself). More preferably, it adds less than 20%, especially from 12% to 20% to the weight of the uncoated composition.
- the enteric coating preferably should be sufficient to prevent breakdown of the pharmaceutical composition of the invention in 0.1N HCl for at least two hours, then capable of permitting complete release of all contents of the pharmaceutical composition within thirty minutes after pH is increased to 6.3 in a dissolution bath in which said composition is rotating at 100 revolutions per minute.
- the weight ratio of pH-lowering agent(s) to absorption enhancer(s) be between 3:1 and 20:1, preferably 4:1-12:1, and most preferably 5:1-10:1.
- the total weight of all pH-lowering agents and the total weight of all absorption enhancers in a given pharmaceutical composition is included in the foregoing preferred ratios. For example, if a pharmaceutical composition includes two pH-lowering agents and three absorption enhancers, the foregoing ratios will be computed on the total combined weight of both pH-lowering agents and the total combined weight of all three absorption enhancers.
- the pH-lowering agent, the peptide active agent and the absorption enhancer (whether single compounds or a plurality of compounds in each category) be uniformly dispersed in the pharmaceutical composition.
- the pharmaceutical composition comprises granules that include a pharmaceutical binder having the peptide active agent, the pH-lowering agent and the absorption enhancer uniformly dispersed within said binder.
- Preferred granules may also consist of an acid core, surrounded by a uniform layer of organic acid, a layer of enhancer and a layer of peptide that is surrounded by an outer layer of organic acid.
- Granules may be prepared from an aqueous mixture consisting of pharmaceutical binders such as polyvinyl pyrrolidone or hydroxypropyl methylcellulose, together with the pH-lowering agents, absorption enhancers and peptide active agents of the invention.
- pharmaceutical binders such as polyvinyl pyrrolidone or hydroxypropyl methylcellulose
- a preferred pharmaceutical composition of the invention includes a size OO gelatin or HPMC (hydroxypropylmethyl cellulose) capsule filled with 0.25 mg of the active peptide component with analgesic and/or cardiovascular activity, 400 mg of granular citric acid (available for example from Archer Daniels Midland Corp.) and 50 mg lauroyl carnitine (SIGMA)
- All of the ingredients are preferably for eventual insertion into the gelatin or HPMC capsule, and are preferably powders which may be added to a blender in any order. Thereafter, the blender is run for about five minutes until the powders are thoroughly intermixed. Then the mixed powders are loaded into the large end of the gelatine capsules. The other end of the capsule is then added, and the capsule snapped shut.
- 500 or more such capsules may be added to a coating device (e.g., Vector LDCS 20/30 Laboratory Development Coating System (available from Vector Corp., Marion, Iowa)).
- An enteric coating solution is made as follows. Weigh 500 grams of EUDRAGIT L30.
- D-55 (a methacrylic acid copolymer with methacylic acid methyl ester, an enteric coating available from ROHM Pharma Polymers Inc., Maidan, Mass.). Add 411 grams distilled water, 15 grams triethyl citrate and 38 grams talc. This amount of coating will be sufficient to coat about 500 size OO capsules.
- the capsules are weighed and placed into the drum of the coating machine.
- the machine is turned on to rotate the drum (now containing capsules) at 24-28 rpm.
- the temperature of inlet sprayer is preferably about 45.degree. C.
- Exhaust temperatures are preferably about 30.degree. C.
- Uncoated capsule temperature is preferably about 25.degree. C.
- Air flow is about 38 cubic feet per minute.
- a tube from the machine is then inserted into the coating solution prepared as discussed above.
- the pump is then turned on for feeding solution into the coating device. Coating then proceeds automatically.
- the machine can be stopped at any time to weigh capsules to determine if the coating amount is sufficient. Usually coating is allowed to proceed for 60 minutes.
- the pump is then turned off for about five minutes while the machine is still running to help dry the coated capsules.
- the machine can then be turned off.
- the capsule coating is then complete, although it is recommended that the capsules be air dried for about two days.
- the concentration of the expensive active peptide component in the pharmaceutical preparation of the invention may be kept relatively low.
- Specific formulation examples incorporating the DMT-DALDA peptide are set forth infra.
- a single capsule be used at each administration because a single capsule best provides simultaneous release of the polypeptide, pH-lowering agent and absorption enhancers. This is highly desirable because the acid is best able to reduce undesirable proteolytic attack on the polypeptide when the acid is released in close time proximity to release of the polypeptide. Near simultaneous release is best achieved by administering all components of the invention as a single pill or capsule. However, the invention also includes, for example, dividing the required amount of acid and enhancers among two or more capsules which may be administered together such that they together provide the necessary amount of all ingredients. “Pharmaceutical composition,” as used herein includes a complete dosage appropriate to a particular administration to a human patient regardless of how it is subdivided so long as it is for substantially simultaneous administration.
- a first oral pharmaceutical composition in a capsule or tablet which does not contain a protective acid stable vehicle, such that the components will be relatively rapidly released in the stomach and thus be available for immediate pain relief, i.e., within about 10-20 minutes.
- additional capsules or tablets formulated according to the invention with a protective vehicle may then be administered, resulting in bioavailability in the intestine of the active ingredient after the longer time interval that is required for gastric emptying, i.e., typically around two hours.
- a sufficient amount of the peptide (or agonist or partial agonist of vanilloid receptor VR1) is included in the oral formulation of the invention to achieve a serum level (i.e, C max ) of the peptide (or agonist or partial agonist) of from 200 pg/ml to 20 ng/ml, and, more preferably, from 200 pg/ml to 2 ng/ml.
- a serum level i.e, C max
- Dosage levels of the active peptide (and/or the agonist or partial agonist) for achieving the above serum levels preferably range from 100 ⁇ g to 10 mg and more preferably, from 100 ⁇ g to 1 mg. With respect to all of the dosages recommended herein, however, the attending clinician should monitor individual patient response and adjust the dosage accordingly.
- the preferred dosage of the active compounds of the invention is identical for both therapeutic and prophylactic purposes.
- the dosage for each active component discussed herein is the same, regardless of the disease being treated (or prevented).
- the terms “compound” and “composition”, and any associated molecular structure may include any possible stereoisomers thereof, in the form of a racemic mixture or in optically active form.
- dosages herein refer to weight of active compounds unaffected by pharmaceutical excipients, diluents, carriers or other ingredients, although such additional ingredients are desirably included.
- the intraduodanal injection therefore, mimics the release of the components of an enteric-coated capsule formulation which would pass through the esophagus and stomach and release its contents in the duodenum.
- Three of the rats red, white and blue were given Unformulated Dmt-DALDA in which there were no additional components (i.e., other than the Dmt-DALDA), while the other three rats (orange, green and yellow) were given Formulated Dmt-DALDA which included, in addition to the Dmt-DALDA, 0.5M citric acid and lauroyl carnitine (10 mg/ml).
- Samples of blood were taken from the carotid artery through an indwelling catheter before and 5, 15, 30, 60 and 120 minutes after the administration of the respective formulations (i.e., Formulated and Unformulated).
- the blood samples were centrifuged and the resulting plasma supernatants were stored frozen at ⁇ 20° C.
- the plasma samples were subsequently analyzed for Dmt-DALDA by high-performance liquid chromatography (HPLC) through a 50 ⁇ 4.6 mm polysulfoethyl-aspartamide column with a mobile phase of 15.4 mM potassium phosphate (pH 3), 210 mM sodium chloride, and 25% acrylonitrile at a flow rate of 1.5 mL/min.
- HPLC high-performance liquid chromatography
- C max refers to the maximum concentration of peptide detected in the rat plasma.
- the area under the curve (AUC) is a measure of the extent of peptide absorption and is calculated by the trapezoidal rule from a plot of peptide concentration as a function of time.
- T max indicates when the maximum concentration of the Dmt-DALDA in the blood serum was obtained.
- size 00 HPLC capsules were each filled with 758 mg of a powdered blend consisting of citric acid (643 mg), lauroyl carnitine (66 mg), talc (33 mg), salmon calcitonin (sCT) (13 mg) and Dmt-DALDA (2.4 mg).
- Half of the capsules were coated with an enteric coating solution of L30D-55, while the remaining 50% of the capsules were not coated.
- Four fasted dogs were each given 1 uncoated capsule, and 2 weeks later they were each given an enteric coated capsule. After administration of each capsule, samples of blood were taken at 15 minute intervals from an indwelling catheter for up to 4 hours.
- the blood samples were centrifuged and the resulting plasma supernatants were stored frozen at ⁇ 20° C.
- the plasma samples were subsequently analyzed for sCT by a direct ELISA, and for Dmt-DALDA by HPLC-mass spectrometry performed as set forth in Wan, H. and Desiderio, D., Quantitation of [DMT 1 ] DALDA in ovine plasma by on - line liquid chromatography/quadrapole time - of - flight mass spectrometry, Rapid Communications in Mass Spectrometry, 2003; 17, 538-546, the contents of which are incorporated herein by reference.
- Table II provides the standard deviations for the data obtained regarding each of the test dogs, which standard deviations are also indicated in FIGS. 2A and 2B .
- Table IV summarizes the pharmacokinetic parameters in dogs of orally administered sCT and Dmt-DALDA when administered in non-enteric coated versus enteric coated capsules. Peptide was not detected from 1 dog in each group due to (a) Dog 3 vomiting the uncoated capsule and (b) delayed gastric emptying in Dog 2 provided with an enteric coated capsule. C max and AUC are as defined with regard to Table II above.
- the C max and AUC values for both sCT and Dmt-DALDA were significantly enhanced when the peptides were administered in enteric coated capsules versus in non enteric-coated capsules.
- the C max of enteric coated Dmt-DALDA is 4-fold higher than that of non enteric coated Dmt-DALDA.
- the bioavailability of both enteric coated and non-coated Dmt-DALDA is better than that of sCT. It would be expected that the bioavailability of a molecule such as Dmt-DALDA, which is positively charged and hydrophilic, would be extremely poor.
- Dmt-DALDA peptide in accordance with the present invention i.e., H-2,6-dimethyltyrosine-D-Arginine-Phenylalanine-Lysine-NH 2
- DALDA and other analgesic peptides that are analogs of dermorphin or deltorphin, as well as other opioid peptides are highly charged molecules.
- Dmt-DALDA has a 3+ net charge.
- the peptide thus remains available to traverse the epithelial layer in the gastrointestinal tract by paracellular transport through the tight junctions between cells, which are relaxed due to the presence of the acylcarnitine.
- additional active compounds described herein e.g., the various peptides and their prodrugs, which have a similar size, charge and hydrophilicity to Dmt-DALDA, would themselves achieve an unexpectedly improved degree of bioavailability when administered in the oral formulation taught and claimed herein.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Immunology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Physiology (AREA)
- Nutrition Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Rheumatology (AREA)
- Pain & Pain Management (AREA)
- Cardiology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
- The present application is a 35 U.S.C. §119 conversion of Provisional Application Ser. No. 60/580,872 filed Jun. 18, 2004
- 1. Field of the Invention
- The present invention relates to oral peptide pharmaceutical compositions having analgesic and/or cardiovascular activity, and to methods of enhancing bioavailability of such peptides when administered orally.
- 2. Description of the Related Art
- Opiates such as morphine and codeine, or opiate-like synthetic drugs are currently used for the management of moderate to severe pain. Many endogenous peptides of mammalian and amphibian origin (e.g., the endorphins) also bind to opioid receptors and elicit an analgesic response similar to classic narcotic opiates. This led to the hope that these peptides might be produced commercially and administered to patients to, e.g., relieve pain. It was found, however, that side effects such as depression of cardiac and respiratory function, tolerance, physical dependence capacity and precipitated withdrawal syndrome are caused by nonspecific interactions between such peptides and central nervous system receptors. Such side effects are due to the interaction of these peptides with multiple opioid receptors. For this reason, peptides with a variety of structural modifications have been developed in an effort to develop peptide-based pharmaceuticals that are specific for a particular opioid receptor sub-type [mu, delta and kappa], and which produce long-lasting antinociceptive effects while minimizing undesirable side effects such as depression of cardiac and/or respiratory function, extended sedative activity, etc.
- Peptide pharmaceuticals known in the prior art, including the analgesic peptides described above, frequently have been administered by injection or by nasal administration. A more preferred oral administration tends to be problematic because peptide-active compounds are very susceptible to degradation in the stomach and intestines and show poor bioavailability. For example, the prior art is not believed to have reported to achieve reproducible blood levels of opioid peptides when administered orally. This is believed to be because peptides lack sufficient stability in the gastrointestinal tract, and tend to be poorly transported through intestinal walls into the blood. However, injection and nasal administration are significantly less convenient, and involve more patient discomfort, than oral administration. Often this inconvenience or discomfort results in substantial patient noncompliance with a treatment regimen. Thus there is a need in the art for a more effective and reproducible oral administration of peptide pharmaceuticals including, but not limited to, peptide pharmaceuticals having analgesic and/or cardiovascular activity.
- Proteolytic enzymes of both the stomach and intestines may degrade peptides, rendering them inactive before they can be absorbed into the bloodstream. Any amount of peptide that survives proteolytic degradation by proteases of the stomach (typically having acidic pH optima) is later confronted with proteases of the small intestine and enzymes secreted by the pancreas (typically having neutral to basic pH optima). Specific difficulties arising from the oral administration of a peptide involve the relatively large size of the molecule, and the charge distribution it carries. This may make it more difficult for such peptides to penetrate the mucus along intestinal walls or to cross the intestinal brush border membrane into the blood. These additional problems may further contribute to limited bioavailability.
- Recent advances in the field of analgesic peptides have been directed towards the derivatization of these peptides to protect against enzymatic or hydrolytic degradation in order to increase their half lives in circulation, and make them more selective for a specific opioid receptor subclass to avoid deleterious and potentially life-threatening side effects. However, even with such stable and protease-resistant analogs, oral delivery is not feasible due to low bioavailability.
- It is accordingly an object of the present invention to provide a therapeutically effective oral pharmaceutical composition for reliably delivering pharmaceutical peptides, e.g., physiologically active peptide agents having analgesic and/or cardiovascular activity.
- It is a further object of the invention to provide therapeutic methods for enhancing the bioavailability of such peptides.
- In one aspect, the invention provides a pharmaceutical composition for the oral delivery of a peptide having analgesic and/or cardiovascular activity. The composition comprises (A) a therapeutically effective amount of an active peptide component (as described below) and (B) at least one absorption enhancer effective to promote bioavailability of the peptide or (C) at least one pharmaceutically acceptable pH-lowering agent, wherein the pH-lowering agent is present in the pharmaceutical composition in a quantity which, if the composition were added to 10 milliliters of 0.1M aqueous sodium bicarbonate solution, would be sufficient to lower the pH of the solution to no higher than 5.5. In a further embodiment (D), the pharmaceutical composition may include both the absorption enhancer and the pH-lowering agent. In yet a further embodiment (E), the pharmaceutical composition of (A), (B), (C) or (D) may also include an acid-resistant protective vehicle effective to transport the pharmaceutical composition through the stomach of a patient while preventing contact between the active peptide component and stomach proteases.
- In another aspect, the invention is directed to a pharmaceutical composition for the oral delivery of a peptide having analgesic and/or cardiovascular activity, wherein the composition comprises (A) a therapeutically effective amount of an active peptide component (as described below) and (B) at least one pharmaceutically acceptable pH-lowering agent, wherein the pH-lowering agent is present in the pharmaceutical composition in a quantity which, if the composition were added to 10 milliliters of 0.1M aqueous sodium bicarbonate solution, would be sufficient to lower the pH of the solution to no higher than 5.5. The pharmaceutical composition may optionally additionally comprise at least one additional component selected from the group consisting of (C) at least one absorption enhancer effective to promote bioavailability of the peptide; and (D) an acid-resistant protective vehicle effective to transport the pharmaceutical composition through the stomach of a patient while preventing contact between the active peptide component and stomach proteases.
- The active peptide component for inclusion in the formulation of the invention is selected from among one or more of the following:
- (A) A peptide of formula I
- wherein R1 is selected from the group consisting of hydrogen, C1-C7 branched or unbranched alkyl, phenyl, hydroxyphenyl, methoxyphenyl, benzyl, hydroxybenzyl, methoxybenzyl, aminobenzyl, amidobenzyl, carboxybenzyl, carboxymethylbenzyl, cyanobenzyl, fluorobenzyl, chlorobenzyl, bromobenzyl, iodobenzyl, mercaptobenzyl, and nitrobenzyl;
R2 is hydrogen, methyl, ethyl; or
R1 and R2, taken together with the carbon atom to which they are attached, form a cycloalkyl ring containing 3-5 carbon atoms;
X is selected from the group consisting of C═O, N—H, CH2, —O—, C═S and —S—;
Y is selected from the group C═O, N—H, CH2, —O—, C═S and —S—; or
X and Y, taken together, represent an olefin linkage wherein X and Y each have a hydrogen atom attached thereto in a cis or trans configuration; and
n is 1-7;
(B) a peptide of formula II: -
H-Tyrosine-A-Phenylalanine-B—NH2 - wherein:
- A is selected from the group consisting of D-α-amino acids;
- B is selected from the group consisting of α-amino acids; and
- the overall net positive charge of the peptide is +2 or greater,
- (C) A peptide of formula III
- wherein
- R1 is selected from
-
- (i) linear or branched C1-C6 alkyl;
- (ii) C1-C6 alkoxy;
- R2 is selected from
-
- (i) hydrogen;
- (ii) linear or branched C1-C6 alkyl;
- (iii) C1-C6 alkoxy;
- R3 and R4 is each and independently selected from
-
- (i) hydrogen;
- (ii) linear or branched C1-C6 alkyl;
- wherein m=1-3;
- R5, R6, R7, R8 and R9 is each independently selected from
- (i) hydrogen;
- (ii) halogen, where “halogen” encompasses chloro, fluoro, bromo and iodo; and
- (iii) linear or branched C1-C6 alkyl; and
- n is an integer of from 1 to 5;
- (D) A peptide of formula IV
-
Tyrosine-D-alanine-Xaa-Glycine-Tyrosine-Proline-Serine-NH2 - wherein Xaa is L- or D-dimethylphenylalanine;
(E) A peptide of formula V -
Tyrosine-D-alanine-Xaa-Glutamic Acid-Valine-Valine-Glycine-NH2 - wherein Xaa is L- or D-dimethylphenylalanine;
(F) An enkephalin peptide; and
(G) A peptide linked to a DMT-Tic-pharmacophore. - In another aspect, the invention provides a pharmaceutical composition for oral delivery of a compound having analgesic and/or cardiovascular activity, wherein the composition comprises: (A) a therapeutically effective amount of an active compound which is an agonist or a partial agonist of vanilloid receptor VR1; and (B) at least one absorption enhancer effective to promote bioavailability of the compound or (C) at least one pharmaceutically acceptable pH-lowering agent, wherein the pH-lowering agent is present in the pharmaceutical composition in a quantity which, if the composition were added to 10 milliliters of 0.1M aqueous sodium bicarbonate, would be sufficient to lower the pH of the solution to no higher than 5.5. In a further embodiment (D), the pharmaceutical composition may include both the absorption enhancer and the pH-lowering agent. In yet another embodiment (E), the pharmaceutical composition of (A), (B), (C) or (D) may also include an acid-resistant protective vehicle effective to transport the pharmaceutical composition through the stomach of a patient while preventing contact between the active peptide component and stomach proteases.
- In a further aspect, any of the pharmaceutical compositions of the invention may additionally comprise a water-soluble barrier separating the pH-lowering agent from the protective vehicle.
- In another aspect of the invention, any of the pharmaceutical compositions may comprise granules containing a pharmaceutical binder and, uniformly dispersed in the binder, at least one of the pH-lowering agent, the absorption enhancer and the peptide having analgesic and/or cardiovascular activity.
- Additional aspects of the invention relate to therapeutic methods involving oral administration of therapeutically effective amounts of pharmaceutical compositions as described herein.
- In one aspect, the invention provides a method for enhancing the oral bioavailability of a compound comprising a peptide having analgesic or cardiovascular activity. The method comprises orally delivering a pharmaceutical composition that combines the compound with at least one absorption enhancer effective to promote bioavailability of the compound, or combining the compound with at least one pH-lowering agent, wherein the pH-lowering agent is present in a quantity which, if the composition were added to 10 milliliters of 0.1 M aqueous sodium bicarbonate solution, would be sufficient to lower the pH of the solution to no higher than 5.5. The method may also comprise orally delivering a pharmaceutical composition that combines the compound with at least one absorption enhancer in combination with at least one pH-lowering agent. The method may also comprise transporting any of the above pharmaceutical compositions through the stomach of a patient by an acid-resistant protective vehicle to prevent contact between the pharmaceutical composition and stomach proteases.
- In another aspect, the invention provides a method for stimulating a mu, delta or kappa-opioid receptor in a mammal in need of such stimulation, wherein the method comprises orally administering to the mammal an effective opioid receptor stimulating amount of one or more of the pharmaceutical compositions described herein.
- In an additional aspect, the invention provides a method for relieving pain comprising orally administering to a patient in need of pain relief an effective pain-relieving amount of one or more of the pharmaceutical compositions described herein.
- In a further aspect, the invention provides a method for improving myocardial contractile force. The method comprises orally administering to a patient in need of such improvement an effective contractile force-increasing amount of one or more of the pharmaceutical compositions described herein containing a therapeutically effective amount of a dermorphin analog or a prodrug thereof.
- In another aspect, the invention provides a method for improving cardiac performance of a heart before, during and/or after cardiac transplantation. The method comprises orally administering to a patient in need of such improved cardiac performance an effective cardiac performance-improving amount of one or more of the pharmaceutical compositions described herein containing a therapeutically effective amount of a dermorphin analog or a prodrug thereof.
- In the context of the invention, prodrugs of any of the above-described active peptides useful in forming the compositions of the invention may be used in place of the corresponding peptide, as these will also increase the serum levels of the peptide. The prodrug is converted in vivo to the desired active compound by a well-known mechanism. The pharmaceutical industry frequently uses salt or ester prodrugs to deliver a large number of pharmaceutical agents. It is, in fact, rare in the pharmaceutical industry that particular active ingredients that are to be delivered to the bloodstream of a patient are not formulated (in their dosage form) as a prodrug which, as noted above, is subsequently converted in vivo to the desired active compound by such well-known mechanism. The term “prodrug” as used herein is meant to include only those compounds which, when converted in vivo, deliver one or more of the active peptides described and claimed herein to the bloodstream of a subject to whom they are administered. A variety of well-known prodrug forms of various functional groups that may appear on the active peptide compounds for use in the invention are set forth in A Textbook of Drug Design and Development, Bundgaard and Krosgaard-Larsen, Ed., (Harwook Academic Publishers GmfH, Chur, Switzerland) 1991 which is incorporated herein by reference.
- Other features and advantages of the present invention will become apparent from the following detailed description of the invention.
-
FIG. 1 provides, in graphical form, pharmacokinetic profiles following administration of unformulated Dmt-DALDA and Dmt-DALDA formulated with an absorption enhancer and pH-lowering agent by duodenal injection in anesthetized rats. -
FIG. 2A andFIG. 2B provide, in graphical form, pharmacokinetic profiles following administration to beagle dogs of salmon calcitonin (sCT) plus Dmt-DALDA with citric acid and lauroyl carnitine, in a solid dosage capsule formulation, either without (FIG. 2A ) or with (FIG. 2B ) an enteric coating. - In accordance with the invention, patients in need of treatment with peptides having analgesic and/or cardiovascular activity are provided with an oral pharmaceutical composition thereof (at appropriate dosage), preferably but not necessarily in tablet or capsule form of an ordinary size in the pharmaceutical industry. The dosages and frequency of administering the products are discussed in more detail below. Patients who may benefit are any who suffer from disorders that respond favorably to increased levels of a peptide-containing compound. For example, oral administration of dermorphin, deltorphin and/or enkephalin peptide analogs in accordance with the invention may be used to treat patients in need of pain relief, or those with conditions warranting improved cardiac performance, e.g., by improving myocardial contractile force.
- Without intending to be bound by theory, the pharmaceutical compositions of the invention are believed to overcome a series of different and unrelated natural barriers to bioavailability. Various components of the pharmaceutical compositions act to overcome different barriers by mechanisms appropriate to each, and result in synergistic effects on the bioavailability of a peptide active ingredient.
- The peptide active compound may be administered orally. In accordance with the invention, proteolytic degradation of the peptide by stomach proteases (most of which are active in the acid pH range) and intestinal or pancreatic proteases (most of which are active in the neutral to basic pH range) is reduced. Solubility enhancers aid passage of the peptide active agent through the intestinal epithelial barrier.
- Again, without intending to be bound by theory, it appears that, in accordance with one embodiment of the present invention, the peptide is transported through the stomach under the protection of an appropriate acid-resistant protective vehicle for substantially preventing contact between the active peptide and any stomach proteases capable of degrading it. Once the pharmaceutical composition of the invention passes through the stomach and enters the intestinal region where basic to neutral pH predominates, and where proteases tend to have basic to neutral pH optima, the enteric coating or other vehicle releases the peptide and acid (in close proximity to each other).
- The pH-lowering agent is believed to lower the local intestinal pH (where the active agent has been released) to levels below the optimal range for many intestinal proteases. This decrease in pH reduces the proteolytic activity of the intestinal proteases, thus affording protection to the peptide from potential degradation. The activity of these proteases is diminished by the temporarily acidic local environment provided by the invention. It is preferred that sufficient acid be provided that local intestinal pH is lowered temporarily to 5.5 or below, preferably 4.7 or below and more preferably 3.5 or below. The sodium bicarbonate test described below (in the section below captioned “the pH-Lowering Agent”) is indicative of the required acid amount. Preferably, conditions of reduced intestinal pH persist for a time period sufficient to protect the peptide agent from proteolytic degradation until at least some of the peptide agent has had an opportunity to cross the intestinal wall into the bloodstream. The absorption enhancers of the invention synergistically promote peptide absorption into the blood while conditions of reduced proteolytic activity prevail.
- The mechanism by which the invention is believed to accomplish the goal of enhanced bioavailability is aided by having active components of the pharmaceutical composition released together as simultaneously as possible. To this end, it is preferred to keep the volume of enteric coating as low as possible consistent with providing protection from stomach proteases. Thus enteric coating is less likely to interfere with peptide release, or with the release of other components in close time proximity with the peptide. The enteric coating should normally add less than 30% to the weight of the remainder of pharmaceutical composition (i.e., the other components of the composition excluding enteric coating). Preferably, it is less than 20% and, more preferably, the enteric coating adds between 10% and 20% to the weight of the uncoated ingredients.
- The absorption enhancer which may be a solubility enhancer and/or transport enhancer (as described in more detail below) aids transport of the peptide agent from the intestine to the blood, and may promote the process so that it better occurs during the time period of reduced intestinal pH and reduced intestinal proteolytic activity. Many surface active agents may act as both solubility enhancers and transport (uptake) enhancers. Again without intending to be bound by theory, it is believed that enhancing solubility provides (1) a more simultaneous release of the active components of the invention into the aqueous portion of the intestine, (2) better solubility of the peptide in, and transport through, a mucous layer along the intestinal walls. Once the peptide active ingredient reaches the intestinal walls, an uptake enhancer provides better transport through the brush border membrane of the intestine into the blood, via either transcellular or paracellular transport. As discussed in more detail below, many preferred compounds may provide both functions. In those instances, preferred embodiments utilizing both of these functions may do so by adding only one additional compound to the pharmaceutical composition. In other embodiments, separate absorption enhancers may provide the two functions separately.
- Each of the preferred ingredients of the pharmaceutical composition of the invention is separately discussed below. Combinations of multiple pH-lowering agents, or multiple enhancers can be used as well as using just a single pH-lowering agent and/or single enhancer. Some preferred combinations are also discussed below.
- In one embodiment of the present invention, the pharmaceutical composition for oral delivery may comprise the peptide or compound in combination with an absorption enhancer and a pH-lowering agent, along with an enteric coating to transport the ingredients through the stomach of a patient while preventing contact between the pharmaceutical composition and stomach proteases.
- In another embodiment, it has been shown from experiments with several peptides that a pharmaceutical composition for oral delivery that comprises only a peptide with a pH-lowering agent provides a significant increase in bioavailability compared to that offered by the peptide taken alone.
- In yet another embodiment, it has been shown from experimentation with a variety of peptides that a pharmaceutical composition for oral delivery comprising only a peptide and an absorption enhancer provides a significant increase in bioavailability, compared to that of the peptide taken alone.
- Peptide active ingredients which may benefit from oral delivery in accordance with the invention include peptides having analgesic or cardiovascular activity. Several non-limiting examples of such peptides are described below, however, as one of ordinary skill in this art would recognize, various additional peptides, analogs and/or prodrugs may be substituted for the peptides described herein in the formulations prepared according to the invention.
- In a first embodiment, a peptide for use with the invention may be a dermorphin analog, or a prodrug thereof, of formula I
- wherein R1 is selected from the group consisting of hydrogen, C1-C7 branched or unbranched alkyl, phenyl, hydroxyphenyl, methoxyphenyl, benzyl, hydroxybenzyl, methoxybenzyl, aminobenzyl, amidobenzyl, carboxybenzyl, carboxymethylbenzyl, cyanobenzyl, fluorobenzyl, chlorobenzyl, bromobenzyl, iodobenzyl, mercaptobenzyl, and nitrobenzyl;
R2 is hydrogen, methyl, ethyl; or
R1 and R2, taken together with the carbon atom to which they are attached, form a cycloalkyl ring containing 3-5 carbon atoms;
X is selected from the group consisting of C═O, N—H, CH2, —O—, C═S and —S—;
Y is selected from the group C═O, N—H, CH2, —O—, C═S and —S—; or
X and Y, taken together, represent an olefin linkage wherein X and Y each have a hydrogen atom attached thereto in a cis or trans configuration; and
n is 1-7. - Useful dermorphin analogs falling within the scope of formula I include, but are not limited to:
- (C) H-Tyrosine-D-Arginine-Phenylalanine-α,γ-diaminobutyric acid-NH2;
- (F) Nα-amidino-Tyrosine-D-arginine-Phenylalanine-Methyl-β-alanine-OH.
- In a preferred embodiment, the peptide of the invention is H-Tyrosine-D-Arginine-Phenylalanine-Lysine-NH2 (“DALDA”).
- In another embodiment, the peptide for use with the invention may be a dermorphin analog of formula II, or a prodrug thereof:
-
H-Tyrosine-A-Phenylalanine-B—NH2 - wherein:
- A is selected from the group consisting of D-α-amino acids;
- B is selected from the group consisting of α-amino acids; and
- the overall net positive charge of the peptide is +2 or greater
- D-α-amino acids useful in forming the compositions of the invention include, but are not limited to, D-norvaline, D-norleucine, D-arginine, D-alanine, D-valine, D-isoleucine, D-leucine, D-serine, D-phenylalanine and D-α,γ-diaminobutyric acid. Alpha-amino acids useful in forming the compositions of the invention include, but are not limited to phenylalanine, para-fluoro phenylalanine, ornithine, α,γ-diaminobutyric acid, lysine, norvaline, arginine, α,β-diaminopropionic acid and homolysine. In a preferred embodiment, the overall net positive charge of the peptide may be +2 or +3.
In a further embodiment, the peptide may be a DALDA derivative of formula III: - wherein
- R1 is selected from
-
- (i) linear or branched C1-C6 alkyl;
- (ii) C1-C6 alkoxy,
- R2 is selected from
-
- (i) hydrogen;
- (ii) linear or branched C1-C6 alkyl;
- (iii) C1-C6 alkoxy;
- R3 and R4 is each and independently selected from
-
- (i) hydrogen;
- (ii) linear or branched C1-C6 alkyl;
- wherein m=1-3;
- R5, R6, R7, R8 and R9 is each independently selected from
- (i) hydrogen;
- (ii) halogen, where “halogen” encompasses chloro, fluoro, bromo and iodo; and
- (iii) linear or branched C1-C6 alkyl; and
- n is an integer of from 1 to 5.
- More particularly, in one embodiment of the above-described peptide,
R1 is a linear C1-C6 alkyl; - R2 is a linear C1-C6 alkyl or hydrogen;
- R3 and R4 is each and independently selected from a straight C1-C6 alkyl or hydrogen;
- R5, R6, R7, R8 and R9 is each and independently selected from
-
- (i) hydrogen;
- (ii) a halogen selected from chloro, fluoro, bromo and iodo; and
- (iii) linear or branched C1-C6 alkyl, and
- n is an integer from 1 to 5.
- In an alternate version of the subject embodiment,
- R2 is hydrogen or CH3;
- R3 and R4 are both hydrogen;
- R5, R6, R7, R8 and R9 are all hydrogen; and
- n=4.
- In a preferred embodiment, the dermorphin analog is a peptide represented by the formula:
-
H-2,6-dimethyltyrosine-D-Arginine-Phenylalanine-Lysine-NH2. (“DMT-DALDA”) - In an additional embodiment of the invention, the peptide is a dermorphin analog of formula IV:
-
Tyrosine-D-alanine-Xaa-Glycine-Tyrosine-Proline-Serine-NH2 - wherein Xaa is L- or D-dimethylphenylalanine.
In a further embodiment of the invention, the peptide for use with the invention is a deltorphin analog of formula V: -
Tyrosine-D-alanine-Xaa-Glutamic Acid-Valine-Valine-Glycine-NH2 - wherein Xaa is L or D-dimethylphenylalanine.
- An alternate embodiment of the invention involves the inclusion of compounds having analgesic and/or cardiovascular activity which, although not peptides, display characteristics which are similar thereto and which are subject to many of the same considerations with regard to transport and adsorption as the peptides described herein. These compounds are agonists or partial agonists of the vanilloid receptor VR1. Examples of these compounds include, but are not limited to:
- (i) N-[2-(3,4-dimethylbenzyl)-3-(pivaloyloxy)propyl]-N′-[4-(methylsulfonylamino)benzyl]thiourea; and
- (ii) N-(4-tert-butylbenzyl)-N′-[3-methoxy-4-(methylsulfonylamino)benzyl]thiourea.
In an additional embodiment of the invention, the peptide is an enkephalin peptide, or a prodrug thereof. Examples of such enkephalin peptides include, but are not limited to: - (i) H-Tyrosine-Glycine-Glycine-Phenylalanine-Methionine-OH;
- (ii) H-Tyrosine-Glycine-Glycine-Phenylalanine-Leucine-OH;
- (iii) H-Tyrosine-D-alanine-Glycine-N-methyl-phenylalanine-Glycine-ol; and
- (iv) analogs thereof.
- In still another embodiment, the peptide may be linked to a DMT-Tic-Pharmacaphore having the structure
-
H-2′,6′-dimethyl-L-tyrosine-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid. - Peptides for use in the invention include, but are not limited to those selected from the group consisting of
-
- (i) H-DMT-Tic-Glycine-NH-Benzyl; and
- (ii) H-DMT-Tic-NH—CH(CH2—COOH)-1-H-benzimidazole-2-yl.
- The peptides having analgesic and/or cardiovascular activity for use in the invention may be prepared in accordance with Examples 2 and 3 of U.S. Pat. No. 5,602,100 to Brown et al., which is incorporated herein by reference. Example 2 of the subject patent teaches the method of peptide synthesis. Peptides containing c-terminal free acids can be synthesized by linking BOC amino acids using a chloro methyl resin [Merrifield resin], 1% cross linked, 100-200 mesh obtained from Peptides International [Lousiville, Ky.]. Example 3 describes methodology for use in purifying the resultant peptides. In particular, a preferred peptide for use in the invention, i.e., Dmt-DALDA, may be prepared as shown in Example 1 of U.S. Pat. No. 6,703,483 to Schiller, which is also incorporated by reference.
- Compounds having analgesic and/or cardiovascular activity which are useful in the invention further include agonists or partial agonists of vanilloid receptor VR1. Methods for preparing these compounds are set forth in, for example, International Patent Publications WO 02/16318 and WO 02/16319 of Suh, et al., both dated Feb. 28, 2002. Both of these publications are incorporated herein by reference.
- The pH-Lowering Agent
- The total amount of the pH-lowering agent to be administered with each administration of the pharmaceutical composition should preferably be an amount which, when it is released into the intestine, is sufficient to lower the local intestinal pH substantially below the pH optima for proteases found there. The quantity required will necessarily vary with several factors including the type of pH-lowering agent used (discussed below) and the equivalents of protons provided by a given pH-lowering agent. In practice, the amount required to provide good bioavailability is an amount which, when added to a solution of 10 milliliters of 0.1 M sodium bicarbonate, lowers the pH of that sodium bicarbonate solution to no higher than 5.5, and preferably no higher than 4.7, most preferably no higher than 3.5. Enough acid to lower pH, in the foregoing test, to about 2.8 may been used in some embodiments. Preferably at least 300 milligrams, and more preferably at least 400 milligrams of the pH-lowering agent are used in the pharmaceutical composition of the invention. The foregoing preferences relate to the total combined weight of all pH-lowering agents where two or more of such agents are used in combination. The oral formulation should not include an amount of any base which, when released together with the pH-lowering compound, would prevent the pH of the above-described sodium bicarbonate test from dropping to 5.5 or below.
- The pH-lowering agent of the invention may be any pharmaceutically acceptable compound that is not toxic in the gastrointestinal tract and is capable of either delivering hydrogen ions (a traditional acid) or of inducing higher hydrogen ion content from the local environment. It may also be any combination of such compounds. It is preferred that at least one pH-lowering agent used in the invention have a pKa no higher than 4.2, and preferably no higher than 3.0. It is also preferred that the pH lowering agent have a solubility in water of at least 30 grams per 100 milliliters of water at room temperature.
- Examples of compounds that induce higher hydrogen ion content include aluminum chloride and zinc chloride. Pharmaceutically acceptable traditional acids include, but are not limited to acid salts of amino acids (e.g. amino acid hydrochlorides) or derivatives thereof. Examples of these are acid salts of acetylglutamic acid, alanine, arginine, asparagine, aspartic acid, betaine, carnitine, carnosine, citrulline, creatine, glutamic acid, glycine, histidine, hydroxylysine, hydroxyproline, hypotaurine, isoleucine, leucine, lysine, methylhistidine, norleucine, ornithine, phenylalanine, proline, sarcosine, serine, taurine, threonine, tryptophan, tyrosine and valine.
- Other examples of useful pH-lowering compounds include carboxylic acids such as acetylsalicylic, acetic, ascorbic, citric, fumaric, glucuronic, glutaric, glyceric, glycocolic, glyoxylic, isocitric, isovaleric, lactic, maleic, oxaloacetic, oxalosuccinic, propionic, pyruvic, succinic, tartaric, valeric, and the like.
- Other useful pH-lowering agents that might not usually be called “acids” in the art, but which may nonetheless be useful in accordance with the invention are phosphate esters (e.g., fructose 1,6 diphosphate, glucose 1,6 diphosphate, phosphoglyceric acid, and diphosphoglyceric acid). CARBOPOL.®. (Trademark BF Goodrich) and polymers such as polycarbophil may also be used to lower pH.
- Any combination of pH lowering agent that achieves the required pH level of no higher than 5.5 in the sodium bicarbonate test discussed above may be used. One preferred embodiment utilizes, as at least one of the pH-lowering agents of the pharmaceutical composition, an acid selected from the group consisting of citric acid, tartaric acid and an acid salt of an amino acid.
- When DMT-DALDA is the peptide active agent, certain ratios of pH-lowering agent to DMT-DALDA have proven especially effective. It is preferred that the weight ratio of pH-lowering agent to DMT-DALDA exceed 40:1, preferably 400:1 and most preferably 4000:1.
- The absorption enhancers are preferably present in a quantity that constitutes from 0.1 to 20.0 percent by weight, relative to the overall weight of the pharmaceutical composition (exclusive of the enteric coating). Preferred absorption enhancers are surface active agents which act both as solubility enhancers and uptake enhancers. Generically speaking, “solubility enhancers” improve the ability of the components of the invention to be solubilized in either the aqueous environment into which they are originally released or into the lipophilic environment of the mucous layer lining the intestinal walls, or both. “Transport (uptake) enhancers” (which are frequently the same surface active agents used as solubility enhancers) are those which facilitate the ease by which peptide agents cross the intestinal wall.
- One or more absorption enhancers may perform one function only (e.g., solubility), or one or more absorption enhancers may perform the other function only (e.g., uptake), within the scope of the invention. It is also possible to have a mixture of several compounds some of which provide improved solubility, some of which provide improved uptake and/or some of which perform both. Without intending to be bound by theory, it is believed that uptake enhancers may act by (1) increasing disorder of the hydrophobic region of the membrane exterior of intestinal cells, allowing for increased transcellular transport; or (2) leaching membrane proteins resulting in increased transcellular transport; or (3) widening pore radius between cells for increased paracellular transport. Surface active agents are believed to be useful both as solubility enhancers and as uptake enhancers. For example, detergents are useful in (1) solubilizing all of the active components quickly into the aqueous environment where they are originally released, (2) enhancing lipophilicity of the components of the invention, especially the peptide active agent, aiding its passage into and through the intestinal mucus, (3) enhancing the ability of the normally polar peptide active agent to cross the epithelial barrier of the brush border membrane; and (4) increasing transcellular or paracellular transport as described above.
- When surface active agents are used as the absorption enhancers, it is preferred that they be free flowing powders for facilitating the mixing and loading of capsules during the manufacturing process. Because of inherent characteristics of certain peptides (e.g., their isoelectric point, molecular weight, amino acid composition, etc.) certain surface active agents interact best with certain peptides. Indeed, some can undesirably interact with the charged portions of certain peptides and thus prevent their absorption, thus undesirably resulting in decreased bioavailability. It is preferred, when trying to increase the bioavailability of peptides that any surface active agent used as an absorption enhancer be selected from the group consisting of (i) anionic surface active agents that are cholesterol derivatives (e.g., bile acids), (ii) cationic surface agents (e.g., acyl carnitines, phospholipids and the like), (iii) non-ionic surface active agents, and (iv) mixtures of anionic surface active agents (especially those having linear hydrocarbon regions) together with negative charge neutralizers. Negative charge neutralizers include but are not limited to acyl carnitines, cetyl pyridinium chloride, and the like. Acyl carnitines (e.g., lauroyl carnitine) are particularly good absorption enhancers. It is also preferred that the absorption enhancer be soluble at acid pH, particularly in the 3.0 to 5.0 range.
- To reduce the likelihood of side effects, preferred detergents, when used as the absorption enhancers of the invention, are either biodegradable or reabsorbable (e.g. biologically recyclable compounds such as bile acids, phospholipids, and/or acyl carnitines), preferably biodegradable. Acylcarnitines are believed particularly useful in enhancing paracellular transport.
- Absorption enhancers may also include: (a) salicylates such as sodium salicylate, 3-methoxysalicylate, 5-methoxysalicylate and homovanilate; (b) bile acids such as taurocholic, tauorodeoxycholic, deoxycholic, cholic, glycholic, lithocholate, chenodeoxycholic, ursodeoxycholic, ursocholic, dehydrocholic, fusidic, etc.; (c) non-ionic surfactants such as polyoxyethylene ethers (e.g. Brij 36T, Brij 52, Brij 56, Brij 76, Brij 96, Texaphor A6, Texaphor A14, Texaphor A60 etc.), p-t-octyl phenol polyoxyethylenes (Triton X-45, Triton X-100, Triton X-114, Triton X-305 etc.) nonylphenoxypoloxyethylenes (e.g. Igepal CO series), polyoxyethylene sorbitan esters (e.g. Tween-20, Tween-80 etc.); (d) anionic surfactants such as dioctyl sodium sulfosuccinate; (e) lyso-phospholipids such as lysolecithin and lysophosphatidylethanolamine; (f) acylcarnitines, acylcholines and acyl amino acids such as lauroylcarnitine, myristoylcarnitine, palmitoylcarnitine, lauroylcholine, myristoylcholine, palmitoylcholine, hexadecyllysine, N-acylphenylalanine, N-acylglycine etc.; g) water soluble phospholipids such as diheptanoylphosphatidylcholine, dioctylphosphatidylcholine etc.; (h) medium-chain glycerides which are mixtures of mono-, di- and triglycerides containing medium-chain-length fatty acids (caprylic, capric and lauric acids); (i) ethylene-diaminetetraacetic acid; (j) cationic surfactants such as cetylpyridinium chloride; (k) fatty acid derivatives of polyethylene glycol such as Labrasol, Labrafac, etc.; and (l) alkylsaccharides such as lauryl maltoside, lauroyl sucrose, myristoyl sucrose, palmitoyl sucrose, etc.
- In some preferred embodiments, and without intending to be bound by theory, cationic ion exchange agents (e.g. detergents) are included to provide solubility enhancement by another possible mechanism. In particular, they may prevent the binding of the peptide active agents to mucus. Preferred cationic ion exchange agents include protamine chloride or any other polycation.
- It is preferred that a water-soluble barrier separate the pH-lowering agent from the acid resistant protective vehicle. A conventional pharmaceutical capsule may, for example, be used for the purpose of providing this barrier. Many water soluble barriers are known in the art and include, but are not limited to, hydroxypropyl methylcellulose and conventional pharmaceutical gelatins.
- In some preferred embodiments, another peptide (such as albumin, casein, soy protein, other animal or vegetable proteins and the like) is included to reduce non-specific adsorption (e.g., binding of peptide to the intestinal mucus barrier) thereby lowering the necessary concentration of the expensive peptide active agent. When added, the peptide is preferably from 1.0 to 10.0 percent by weight relative to the weight of the overall pharmaceutical composition (excluding protective vehicle). Preferably, this second peptide is not physiologically active and is most preferably a food peptide such as soy bean peptide or the like. Without intending to be bound by theory, this second peptide may also increase bioavailability by acting as a protease scavenger that desirably competes with the peptide active agent for protease interaction. The second peptide may also aid the active compound's passage through the liver.
- All pharmaceutical compositions of the invention may optionally also include common pharmaceutical diluents, glycants, lubricants, gelatin capsules, preservatives, colorants and the like in their usual known sizes and amounts.
- Any carrier or vehicle that protects the peptide active agent from stomach proteases and then dissolves so that the other ingredients of the invention may be released in the intestine is suitable. Many such enteric coatings are known in the art, and are useful in accordance with the invention. Examples include cellulose acetate phthalate, hydroxypropyl methylethylcellulose succinate, hydroxypropyl methylcellulose phthalate, carboxyl methylethylcellulose and methacrylic acid-methyl methacrylate copolymer. In some embodiments, the active peptide, absorption enhancers such as solubility and/or uptake enhancer(s), and pH-lowering compound(s), are included in a sufficiently viscous protective syrup to permit protected passage of the components of the invention through the stomach.
- Suitable enteric coatings for protecting the peptide agent from stomach proteases may be applied, for example, to capsules after the remaining components of the invention have been loaded within the capsule. In other embodiments, enteric coating is coated on the outside of a tablet or coated on the outer surface of particles of active components which are then pressed into tablet form, or loaded into a capsule, which is itself preferably coated with an enteric coating.
- It is very desirable that all components of the invention be released from the carrier or vehicle, and solubilized in the intestinal environment as simultaneously as possible. It is preferred that the vehicle or carrier release the active components in the small intestine where uptake enhancers that increase transcellular or paracellular transport are less likely to cause undesirable side effects than if the same uptake enhancers were later released in the colon. It is emphasized, however, that the present invention is believed effective in the colon as well as in the small intestine. Numerous vehicles or carriers, in addition to the ones discussed above, are known in the art. It is desirable (especially in optimizing how simultaneously the components of the invention are released) to keep the amount of enteric coating low. Preferably, the enteric coating adds no more than 30% to the weight of the remainder of pharmaceutical composition (the “remainder” being the pharmaceutical composition exclusive of enteric coating itself). More preferably, it adds less than 20%, especially from 12% to 20% to the weight of the uncoated composition. The enteric coating preferably should be sufficient to prevent breakdown of the pharmaceutical composition of the invention in 0.1N HCl for at least two hours, then capable of permitting complete release of all contents of the pharmaceutical composition within thirty minutes after pH is increased to 6.3 in a dissolution bath in which said composition is rotating at 100 revolutions per minute.
- It is preferred that the weight ratio of pH-lowering agent(s) to absorption enhancer(s) be between 3:1 and 20:1, preferably 4:1-12:1, and most preferably 5:1-10:1. The total weight of all pH-lowering agents and the total weight of all absorption enhancers in a given pharmaceutical composition is included in the foregoing preferred ratios. For example, if a pharmaceutical composition includes two pH-lowering agents and three absorption enhancers, the foregoing ratios will be computed on the total combined weight of both pH-lowering agents and the total combined weight of all three absorption enhancers.
- It is preferred that the pH-lowering agent, the peptide active agent and the absorption enhancer (whether single compounds or a plurality of compounds in each category) be uniformly dispersed in the pharmaceutical composition. In one embodiment, the pharmaceutical composition comprises granules that include a pharmaceutical binder having the peptide active agent, the pH-lowering agent and the absorption enhancer uniformly dispersed within said binder. Preferred granules may also consist of an acid core, surrounded by a uniform layer of organic acid, a layer of enhancer and a layer of peptide that is surrounded by an outer layer of organic acid. Granules may be prepared from an aqueous mixture consisting of pharmaceutical binders such as polyvinyl pyrrolidone or hydroxypropyl methylcellulose, together with the pH-lowering agents, absorption enhancers and peptide active agents of the invention.
- A preferred pharmaceutical composition of the invention includes a size OO gelatin or HPMC (hydroxypropylmethyl cellulose) capsule filled with 0.25 mg of the active peptide component with analgesic and/or cardiovascular activity, 400 mg of granular citric acid (available for example from Archer Daniels Midland Corp.) and 50 mg lauroyl carnitine (SIGMA)
- All of the ingredients are preferably for eventual insertion into the gelatin or HPMC capsule, and are preferably powders which may be added to a blender in any order. Thereafter, the blender is run for about five minutes until the powders are thoroughly intermixed. Then the mixed powders are loaded into the large end of the gelatine capsules. The other end of the capsule is then added, and the capsule snapped shut. 500 or more such capsules may be added to a coating device (e.g., Vector LDCS 20/30 Laboratory Development Coating System (available from Vector Corp., Marion, Iowa)). An enteric coating solution is made as follows. Weigh 500 grams of EUDRAGIT L30. D-55 (a methacrylic acid copolymer with methacylic acid methyl ester, an enteric coating available from ROHM Pharma Polymers Inc., Maidan, Mass.). Add 411 grams distilled water, 15 grams triethyl citrate and 38 grams talc. This amount of coating will be sufficient to coat about 500 size OO capsules.
- The capsules are weighed and placed into the drum of the coating machine. The machine is turned on to rotate the drum (now containing capsules) at 24-28 rpm. The temperature of inlet sprayer is preferably about 45.degree. C. Exhaust temperatures are preferably about 30.degree. C. Uncoated capsule temperature is preferably about 25.degree. C. Air flow is about 38 cubic feet per minute.
- A tube from the machine is then inserted into the coating solution prepared as discussed above. The pump is then turned on for feeding solution into the coating device. Coating then proceeds automatically. The machine can be stopped at any time to weigh capsules to determine if the coating amount is sufficient. Usually coating is allowed to proceed for 60 minutes. The pump is then turned off for about five minutes while the machine is still running to help dry the coated capsules. The machine can then be turned off. The capsule coating is then complete, although it is recommended that the capsules be air dried for about two days.
- Because of the enhanced bioavailability provided by the present invention, the concentration of the expensive active peptide component in the pharmaceutical preparation of the invention may be kept relatively low. Specific formulation examples incorporating the DMT-DALDA peptide are set forth infra.
- It is preferred that a single capsule be used at each administration because a single capsule best provides simultaneous release of the polypeptide, pH-lowering agent and absorption enhancers. This is highly desirable because the acid is best able to reduce undesirable proteolytic attack on the polypeptide when the acid is released in close time proximity to release of the polypeptide. Near simultaneous release is best achieved by administering all components of the invention as a single pill or capsule. However, the invention also includes, for example, dividing the required amount of acid and enhancers among two or more capsules which may be administered together such that they together provide the necessary amount of all ingredients. “Pharmaceutical composition,” as used herein includes a complete dosage appropriate to a particular administration to a human patient regardless of how it is subdivided so long as it is for substantially simultaneous administration.
- For certain indications, it may be preferred to administer a first oral pharmaceutical composition in a capsule or tablet which does not contain a protective acid stable vehicle, such that the components will be relatively rapidly released in the stomach and thus be available for immediate pain relief, i.e., within about 10-20 minutes. Subsequently, additional capsules or tablets formulated according to the invention with a protective vehicle may then be administered, resulting in bioavailability in the intestine of the active ingredient after the longer time interval that is required for gastric emptying, i.e., typically around two hours.
- In one embodiment of the invention, a sufficient amount of the peptide (or agonist or partial agonist of vanilloid receptor VR1) is included in the oral formulation of the invention to achieve a serum level (i.e, Cmax) of the peptide (or agonist or partial agonist) of from 200 pg/ml to 20 ng/ml, and, more preferably, from 200 pg/ml to 2 ng/ml. Dosage levels of the active peptide (and/or the agonist or partial agonist) for achieving the above serum levels preferably range from 100 μg to 10 mg and more preferably, from 100 μg to 1 mg. With respect to all of the dosages recommended herein, however, the attending clinician should monitor individual patient response and adjust the dosage accordingly. Moreover, except where otherwise stated, the preferred dosage of the active compounds of the invention is identical for both therapeutic and prophylactic purposes. The dosage for each active component discussed herein is the same, regardless of the disease being treated (or prevented). Furthermore, except where otherwise indicated, the terms “compound” and “composition”, and any associated molecular structure may include any possible stereoisomers thereof, in the form of a racemic mixture or in optically active form.
- Except where otherwise noted, or where apparent from context, dosages herein refer to weight of active compounds unaffected by pharmaceutical excipients, diluents, carriers or other ingredients, although such additional ingredients are desirably included.
- The following examples are provided only for the purpose of illustration and are not to be construed as limiting the invention in any manner.
- Applicants have surprisingly discovered, through the use of in vivo tests involving, respectively, rats and dogs, that administering Dmt-DALDA in the oral formulation described herein provides unexpected improvements in bioavailability of the subject peptide.
- With regard to the first series of tests, i.e., on rats, the improved effect is demonstrated by comparing the curves for Formulated DALDA vs. Unformulated DALDA in
FIG. 1 . In the experiments represented in the subject Figure, six anesthetized rats (which were color-coded as: red, white, blue, orange, green and yellow) were given 0.7 mL Dmt-DALDA (1.6 mg/mL) with a syringe through a 27 gauge needle into the duodenum. This injection procedure was followed due to the technical difficulty inherent in preparing capsules which can be swallowed by small animals the size of a rat. The intraduodanal injection, therefore, mimics the release of the components of an enteric-coated capsule formulation which would pass through the esophagus and stomach and release its contents in the duodenum. Three of the rats (red, white and blue) were given Unformulated Dmt-DALDA in which there were no additional components (i.e., other than the Dmt-DALDA), while the other three rats (orange, green and yellow) were given Formulated Dmt-DALDA which included, in addition to the Dmt-DALDA, 0.5M citric acid and lauroyl carnitine (10 mg/ml). Samples of blood were taken from the carotid artery through an indwelling catheter before and 5, 15, 30, 60 and 120 minutes after the administration of the respective formulations (i.e., Formulated and Unformulated). The blood samples were centrifuged and the resulting plasma supernatants were stored frozen at −20° C. The plasma samples were subsequently analyzed for Dmt-DALDA by high-performance liquid chromatography (HPLC) through a 50×4.6 mm polysulfoethyl-aspartamide column with a mobile phase of 15.4 mM potassium phosphate (pH 3), 210 mM sodium chloride, and 25% acrylonitrile at a flow rate of 1.5 mL/min. Peptide was detected with an ultraviolet (UV) detector set at a wavelength of 210 nm. The results show that Dmt-DALDA was virtually undetectable in rats given unformulated Dmt-DALDA, whereas as much as 8 μg/mL of Dmt-DALDA was detected in rats given Dmt-DALDA formulated in citric acid and lauroyl carnitine. These results clearly demonstrate that formulating Dmt-DALDA in an oral formulation according to the present invention increases the Cmax 19-fold and the AUC 110-fold compared to the unformulated peptide (see Table II below). Table I (below) sets forth the values upon which the curves inFIG. 1 are based. Table I, moreover, provides the standard deviations for the data obtained regarding each of the test rats, which standard deviations are also indicated inFIG. 1 . -
TABLE I unformulated red white blue min μg/mL μg/mL μg/mL avg sdev sem 0 0.00 0.00 0.00 0.00 0.00 0.00 5 1.54 0.00 0.00 0.51 0.89 0.51 15 0.00 0.00 0.00 0.00 0.00 0.00 30 0.00 0.00 0.00 0.00 0.00 0.00 60 0.00 0.00 0.00 0.00 0.00 0.00 120 0.00 0.00 0.00 0.00 0.00 0.00 formulated min orange green yellow avg sdev sem 0 0.00 0.00 0.00 0.00 0.00 0.00 5 14.15 2.74 7.19 8.03 5.75 3.32 15 0.80* 4.19 10.75 7.47 4.64 3.28 30 12.02 3.21 10.37 8.53 4.69 2.71 60 died 2.40 7.10 4.75 3.32 2.35 120 0.00 2.29 1.14 1.62 1.14 *poor sampling, not included in mean
Table II (below) summarizes the pharmacokinetic parameters in rats of orally administered unformulated and formulated Dmt-DALDA as those terms are defined above. Data for the individual rats shown inFIG. 1 are summarized. Cmax refers to the maximum concentration of peptide detected in the rat plasma. The area under the curve (AUC) is a measure of the extent of peptide absorption and is calculated by the trapezoidal rule from a plot of peptide concentration as a function of time. Tmax indicates when the maximum concentration of the Dmt-DALDA in the blood serum was obtained. -
TABLE II Unformulated Red White Blue Avg (n = 3) Rat DALDA DALDA DALDA DALDA Cmax (μg/mL) 1.54 0.00 0.00 0.51 AUC (μg/mL-min) 11.52 0.00 0.00 3.84 Tmax (min) 5.00 5.00 Formulated Orange Green Yellow Avg (N = 3) Rat DALDA DALDA DALDA DALDA Cmax (μg/mL) 14.15 4.19 10.75 9.69 AUC (μg/mL-min) 206.28 253.16 809.91 423.12 Tmax (min) 5.00 15.00 15.00 11.67
As shown in Table II, the Cmax and AUC for Dmt-DALDA was significantly enhanced when the peptide was administered in a “formulated” solution containing citric acid (pH-lowering agent) and lauroyl carnitine (absorption enhancer). - A second series of tests was carried out, as noted above, using beagle dogs. The improved bioavailability of orally administered Dmt-DALDA is demonstrated in this second series of tests by comparing the curves for (1) non-enteric coated salmon calcitonin (sCT) and (2) non-enteric coated Dmt-DALDA (DALDA) in
FIG. 2A with the curves for (3) enteric coated sCT and (4) enteric coated DALDA inFIG. 2B . In the experiments represented inFIGS. 2A and 2B , size 00 HPLC capsules were each filled with 758 mg of a powdered blend consisting of citric acid (643 mg), lauroyl carnitine (66 mg), talc (33 mg), salmon calcitonin (sCT) (13 mg) and Dmt-DALDA (2.4 mg). Half of the capsules were coated with an enteric coating solution of L30D-55, while the remaining 50% of the capsules were not coated. Four fasted dogs were each given 1 uncoated capsule, and 2 weeks later they were each given an enteric coated capsule. After administration of each capsule, samples of blood were taken at 15 minute intervals from an indwelling catheter for up to 4 hours. The blood samples were centrifuged and the resulting plasma supernatants were stored frozen at −20° C. The plasma samples were subsequently analyzed for sCT by a direct ELISA, and for Dmt-DALDA by HPLC-mass spectrometry performed as set forth in Wan, H. and Desiderio, D., Quantitation of [DMT 1 ] DALDA in ovine plasma by on-line liquid chromatography/quadrapole time-of-flight mass spectrometry, Rapid Communications in Mass Spectrometry, 2003; 17, 538-546, the contents of which are incorporated herein by reference. - The results summarized in
FIGS. 2A and 2B as plasma peptide concentration normalized to a 1 mg dose as a function of time relative to the average Tmax (i.e., the time at which the maximum amount of peptide was detected) indicate that both peptides, i.e., sCT and Dmt-DALDA, were detected in dogs given uncoated or enteric coated capsules. However, nearly three times as much Dmt-DALDA as sCT was detected in dogs given uncoated capsules; whereas, nearly equal amounts of both peptides were detected in dogs given enteric coated capsules. Moreover, nearly four times as much Dmt-DALDA was detected in the plasma of dogs given enteric coated capsules than those given non-coated capsules. Furthermore, nearly eight times as much sCT was detected in the plasma of dogs given enteric coated capsules than non-coated capsules. The maximum concentration of Dmt-DALDA and sCT in dogs given uncoated capsules was seen 30 minutes after their administration, whereas the maximum concentration of these materials when given in coated capsules was seen 105 minutes after their administration, thus providing the additional time necessary for the oral formulation to pass through the stomach while remaining protected from the proteolytic enzymes therein. These results clearly demonstrate that coating the capsules with an enteric polymer such that the capsule does not release its contents until reaching the small intestine significantly enhances peptide absorption. Table III (below) sets forth the values upon which the curves inFIGS. 2A and 2B are based. The results are summarized in the tables as plasma peptide concentration normalized to a 1 mg dose as a function of time. Table II, moreover, provides the standard deviations for the data obtained regarding each of the test dogs, which standard deviations are also indicated inFIGS. 2A and 2B . -
TABLE III Dog 1 Dog 2 Day 3 Day 4 sCT DALDA sCT DALDA sCT DALDA sCT DALDA Min pg/mL pg/mL pg/mL pg/mL pg/mL pg/mL pg/mL pg/mL Non-enteric Coated Capsules Containing Citric Acid and Lauroyl Carnitine 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 30 2648 4108 3148 6473 0 0 971 5456 45 1343 5104 2151 5602 278 5788 60 561 4066 897 5726 163 4481 75 273 2407 229 4523 101 2934 90 140 2780 182 3568 69 2382 105 121 1938 122 3444 45 3054 120 89 1627 69 2614 26 1759 135 51 1158 44 2697 16 1627 150 31 830 39 2407 12 1544 165 23 913 22 2531 0 1324 180 16 705 15 2075 0 1191 195 11 581 0 1328 0 851 210 0 544 0 1867 0 722 225 0 436 0 1535 0 672 240 0 402 0 1494 0 556 Enteric Coated Capsules Containing Citric Acid and Lauroyl Carnitine 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 30 407 0 0 0 0 0 0 0 45 22650 29440 0 0 0 0 0 0 60 25136 25224 0 0 0 0 0 0 75 6444 19768 0 0 0 0 0 0 90 8167 19021 0 0 0 0 0 0 105 4344 12324 0 0 0 0 13111 4577 120 3193 8108 0 0 0 0 13147 12116 135 2710 10714 0 0 13219 21494 6841 10207 150 1706 9349 0 0 10151 19378 4251 6307 165 1283 6743 0 0 4410 12697 2448 5158 180 1301 5502 0 0 2983 9100 1468 3884 195 459 5008 0 0 1825 4876 1192 2896 210 347 3021 0 0 1194 4772 867 2664 225 331 2896 0 0 734 4884 686 2490 240 179 2527 0 0 626 3651 515 1851 - Table IV (below) summarizes the pharmacokinetic parameters in dogs of orally administered sCT and Dmt-DALDA when administered in non-enteric coated versus enteric coated capsules. Peptide was not detected from 1 dog in each group due to (a) Dog 3 vomiting the uncoated capsule and (b) delayed gastric emptying in
Dog 2 provided with an enteric coated capsule. Cmax and AUC are as defined with regard to Table II above. -
TABLE IV Dog Dog 1 Dog 2Dog 3 Dog 4 Avg (n = 3) dmt- dmt- dmt- dmt- dmt- sCT DALDA sCT DALDA sCT DALDA sCT DALDA sCT DALDA Non-Enteric Capsule Cmax (pg/mL) 2648 5104 3148 6473 0 0 971 5788 2256 5788 AUC (pg/mL-min) 79620 410944 103772 707054 0 0 25227 510934 69539 542977 Tmax (min) 30 45 30 30 30 45 30 40 Enteric Capsule Cmax (pg/mL) 25136 29440 0 0 13219 21494 13147 12116 17167 21017 AUC (pg/mL-min) 1178504 2375695 0 0 522432 1185373 664016 768361 788317 1443143 Tmax (min) 60 45 135 135 120 120 105 100 - As shown in Table IV, the Cmax and AUC values for both sCT and Dmt-DALDA were significantly enhanced when the peptides were administered in enteric coated capsules versus in non enteric-coated capsules. The Cmax of enteric coated Dmt-DALDA is 4-fold higher than that of non enteric coated Dmt-DALDA. Surprisingly, the bioavailability of both enteric coated and non-coated Dmt-DALDA is better than that of sCT. It would be expected that the bioavailability of a molecule such as Dmt-DALDA, which is positively charged and hydrophilic, would be extremely poor. The data indicates that when this peptide is administered in combination with the ingredients of the present invention, either with or without an enteric coating, however, the bioavailability is unexpectedly increased to the point where it is superior to that of sCT, a molecule that has previously been shown to be highly bioavailable when formulated according to the present invention.
- The improvement in oral bioavailability achieved with the Dmt-DALDA peptide in accordance with the present invention, i.e., H-2,6-dimethyltyrosine-D-Arginine-Phenylalanine-Lysine-NH2, is believed to adequately support an expectation of similarly improved results with the remaining active agents described herein. With no intention to be bound by theory, applicants submit in explanation therefor that DALDA and other analgesic peptides that are analogs of dermorphin or deltorphin, as well as other opioid peptides, are highly charged molecules. For example, Dmt-DALDA has a 3+ net charge. It would be expected that these net positive charges would cause the peptide to bind to the negatively charged mucous layer that lines the gastrointestinal tract, thus reducing the bioavailability of the peptide. It is believed, although applicants are not to be bound by such belief, that the negatively charged citric acid (i.e., the pH-lowering agent), which is in excess in the formulation, would neutralize some or all of the positive charges on the peptide and thus prevent the interaction between the peptide and the mucous layer. Additionally, applicants believe that the positive charge on the acylcarnitine absorption enhancer neutralize the negative charge on the mucous layer in the immediate vicinity of the release of the capsule or tablet contents, and therefore would further prevent the positively charged peptide from binding with the mucous layer. The peptide thus remains available to traverse the epithelial layer in the gastrointestinal tract by paracellular transport through the tight junctions between cells, which are relaxed due to the presence of the acylcarnitine. One of ordinary skill in this art would therefore reasonably expect that the additional active compounds described herein, e.g., the various peptides and their prodrugs, which have a similar size, charge and hydrophilicity to Dmt-DALDA, would themselves achieve an unexpectedly improved degree of bioavailability when administered in the oral formulation taught and claimed herein.
- Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. The present invention therefore is not limited by the specific disclosure herein, but only by the claims.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/484,745 US9504727B2 (en) | 2004-06-18 | 2014-09-12 | Oral delivery of peptide pharmaceutical compositions |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US58087204P | 2004-06-18 | 2004-06-18 | |
US11/144,580 US20050282756A1 (en) | 2004-06-18 | 2005-06-02 | Oral delivery of peptide pharmaceutical compositions |
US13/219,132 US8835377B2 (en) | 2004-06-18 | 2011-08-26 | Oral delivery of peptide pharmaceutical compositions |
US14/484,745 US9504727B2 (en) | 2004-06-18 | 2014-09-12 | Oral delivery of peptide pharmaceutical compositions |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/219,132 Continuation US8835377B2 (en) | 2004-06-18 | 2011-08-26 | Oral delivery of peptide pharmaceutical compositions |
Publications (2)
Publication Number | Publication Date |
---|---|
US20150125522A1 true US20150125522A1 (en) | 2015-05-07 |
US9504727B2 US9504727B2 (en) | 2016-11-29 |
Family
ID=35481400
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/144,580 Abandoned US20050282756A1 (en) | 2004-06-18 | 2005-06-02 | Oral delivery of peptide pharmaceutical compositions |
US13/219,132 Expired - Fee Related US8835377B2 (en) | 2004-06-18 | 2011-08-26 | Oral delivery of peptide pharmaceutical compositions |
US14/484,745 Active US9504727B2 (en) | 2004-06-18 | 2014-09-12 | Oral delivery of peptide pharmaceutical compositions |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/144,580 Abandoned US20050282756A1 (en) | 2004-06-18 | 2005-06-02 | Oral delivery of peptide pharmaceutical compositions |
US13/219,132 Expired - Fee Related US8835377B2 (en) | 2004-06-18 | 2011-08-26 | Oral delivery of peptide pharmaceutical compositions |
Country Status (5)
Country | Link |
---|---|
US (3) | US20050282756A1 (en) |
EP (1) | EP1755633A4 (en) |
AU (1) | AU2005262576B2 (en) |
CA (1) | CA2570311A1 (en) |
WO (1) | WO2006007332A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9399017B2 (en) | 2007-05-29 | 2016-07-26 | Enteris Biopharma, Inc. | Peptide pharmaceutical for oral delivery |
US9457086B2 (en) | 2013-03-05 | 2016-10-04 | Enteris Biopharma, Inc. | Pharmaceuticals for oral delivery |
US9833411B2 (en) | 2015-01-12 | 2017-12-05 | Enteris Biopharma, Inc. | Solid oral dosage forms |
WO2022182141A1 (en) * | 2021-02-23 | 2022-09-01 | 경상국립대학교산학협력단 | Composition, for preventing, relieving, or treating disease caused by nitration of protein, containing peptide having tyrosine located at terminal as active ingredient |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050282756A1 (en) | 2004-06-18 | 2005-12-22 | Mehta Nozer M | Oral delivery of peptide pharmaceutical compositions |
US8093207B2 (en) * | 2005-12-09 | 2012-01-10 | Unigene Laboratories, Inc. | Fast-acting oral peptide pharmaceutical products |
TW200843802A (en) * | 2007-02-09 | 2008-11-16 | Drugtech Corp | Compositions for improving gastrointestinal nutrient and drug absorption |
MY161679A (en) | 2010-07-09 | 2017-05-15 | Affibody Ab | Polypeptides |
EP2696847A1 (en) | 2011-04-14 | 2014-02-19 | Novo Nordisk A/S | Fatty acid acylated amino acids for oral peptide delivery |
US20140120162A1 (en) * | 2011-06-06 | 2014-05-01 | Perosphere Inc. | Bioadhesive Drug Delivery Compositions |
CN105126071A (en) * | 2011-06-14 | 2015-12-09 | 康肽德生物医药技术有限公司 | Aromatic-cationic peptides and uses of same |
US20160009767A9 (en) * | 2012-03-28 | 2016-01-14 | Affibody Ab | Oral administration |
JP6590695B2 (en) | 2012-09-25 | 2019-10-16 | アフィボディ・アーベー | Albumin binding polypeptide |
CN104884078B (en) | 2012-10-17 | 2017-06-20 | 诺和诺德股份有限公司 | For the fatty-acylation D amino acid of oral peptide delivery |
EP3083675B1 (en) | 2013-12-20 | 2018-03-07 | Affibody AB | Engineered albumin binding polypeptide |
MX2019001399A (en) | 2016-08-05 | 2019-09-26 | Taurus Dev Company Llc | Room temperature stable oral calcitonin formulation. |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4339428A (en) * | 1980-08-18 | 1982-07-13 | Bristol-Myers Company | Capsule product containing high dosage of aspirin in powder or granulated form and alkaline tablet or pellet comprising magnesium carbonate, calcium carbonate and a magnesium dry component |
US4507276A (en) * | 1982-08-20 | 1985-03-26 | Bristol-Myers Company | Analgesic capsule |
US4693896A (en) * | 1985-10-07 | 1987-09-15 | Fmc Corporation | Ethylcellulose-coated, gastric-disintegrable aspirin tablet |
US5122376A (en) * | 1989-05-12 | 1992-06-16 | Isf Societa Per Azioni | Calcitonin gene related peptide |
US5534496A (en) * | 1992-07-07 | 1996-07-09 | University Of Southern California | Methods and compositions to enhance epithelial drug transport |
US5912014A (en) * | 1996-03-15 | 1999-06-15 | Unigene Laboratories, Inc. | Oral salmon calcitonin pharmaceutical products |
US6184226B1 (en) * | 1998-08-28 | 2001-02-06 | Scios Inc. | Quinazoline derivatives as inhibitors of P-38 α |
US6423334B1 (en) * | 1997-10-01 | 2002-07-23 | Elan Corporation, Plc | Composition and method for enhancing transport across gastrointestinal tract cell layers |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4963525A (en) * | 1985-08-16 | 1990-10-16 | Merck & Co., Inc. | Acylcarnitines as absorption-enhancing agents for drug delivery through mucous membranes of the nasal, buccal, sublingual and vaginal compartments |
US4857335A (en) * | 1987-03-27 | 1989-08-15 | Lim Technology Laboratories, Inc. | Liquid controlled release formulations and method of producing same via multiple emulsion process |
US5602100A (en) * | 1988-06-30 | 1997-02-11 | Astra Ab | Dermorphin analogs having pharmacological activity |
ES2085865T3 (en) * | 1988-06-30 | 1996-06-16 | Astra Ab | DERMORPHINE ANALOGS, THEIR PREPARATION METHODS, PHARMACEUTICAL COMPOSITIONS, AND THERAPEUTIC TREATMENT METHODS THAT USE THEM. |
EP0389950A1 (en) * | 1989-03-23 | 1990-10-03 | Lion Corporation | Melanocyte-stimulating hormone inhibitor and external preparation containing the same |
US5709879A (en) * | 1990-06-29 | 1998-01-20 | Chiron Corporation | Vaccine compositions containing liposomes |
US6468959B1 (en) * | 1991-12-05 | 2002-10-22 | Alfatec-Pharm Gmbh | Peroral dosage form for peptide containing medicaments, in particular insulin |
US5272175A (en) * | 1992-05-20 | 1993-12-21 | G. D. Searle & Co. | Substituted tyrosyl diamide compounds |
US20030032774A1 (en) * | 1994-02-21 | 2003-02-13 | Astrazeneca Ab | Novel opioid peptides for the treatment of pain |
CA2185803C (en) * | 1994-03-18 | 2006-07-11 | Edward M. Rudnic | Emulsified drug delivery systems |
US5807746A (en) | 1994-06-13 | 1998-09-15 | Vanderbilt University | Method for importing biologically active molecules into cells |
JPH09255526A (en) * | 1996-03-27 | 1997-09-30 | Shiseido Co Ltd | Cosmetic for preventing aging |
AU4281999A (en) | 1998-06-10 | 1999-12-30 | Queen's University Of Belfast, The | Peptide |
SE9900961D0 (en) * | 1999-03-16 | 1999-03-16 | Astra Ab | Novel compounds |
EP1230267B1 (en) | 1999-09-27 | 2006-03-29 | Elan Corporation | Membrane translocating peptide drug delivery system |
CA2396711A1 (en) * | 2000-01-27 | 2001-08-02 | Aqua Solution Inc. | Composition for intestinal delivery |
WO2002005748A2 (en) * | 2000-07-18 | 2002-01-24 | Cornell Research Foundation, Inc. | Medicinal uses of mu-opioid receptor agonists |
US6900178B2 (en) | 2000-09-12 | 2005-05-31 | University Of Kentucky Research Foundation | Protection against ischemia and reperfusion injury |
US7316819B2 (en) * | 2001-03-08 | 2008-01-08 | Unigene Laboratories, Inc. | Oral peptide pharmaceutical dosage form and method of production |
US6946150B2 (en) * | 2002-08-14 | 2005-09-20 | Gw Pharma Limited | Pharmaceutical formulation |
US6878805B2 (en) * | 2002-08-16 | 2005-04-12 | Isis Pharmaceuticals, Inc. | Peptide-conjugated oligomeric compounds |
KR20050104152A (en) | 2004-04-28 | 2005-11-02 | 최승호 | Enhancing systems for poorly absorptive drugs |
US20050282756A1 (en) | 2004-06-18 | 2005-12-22 | Mehta Nozer M | Oral delivery of peptide pharmaceutical compositions |
US8093207B2 (en) | 2005-12-09 | 2012-01-10 | Unigene Laboratories, Inc. | Fast-acting oral peptide pharmaceutical products |
US8377863B2 (en) | 2007-05-29 | 2013-02-19 | Unigene Laboratories Inc. | Peptide pharmaceutical for oral delivery |
CN105126071A (en) | 2011-06-14 | 2015-12-09 | 康肽德生物医药技术有限公司 | Aromatic-cationic peptides and uses of same |
WO2014138241A1 (en) | 2013-03-05 | 2014-09-12 | Enteris Biopharma, Inc. | Pharmaceuticals for oral delivery |
-
2005
- 2005-06-02 US US11/144,580 patent/US20050282756A1/en not_active Abandoned
- 2005-06-09 AU AU2005262576A patent/AU2005262576B2/en not_active Ceased
- 2005-06-09 EP EP05757462A patent/EP1755633A4/en not_active Withdrawn
- 2005-06-09 WO PCT/US2005/020255 patent/WO2006007332A1/en not_active Application Discontinuation
- 2005-06-09 CA CA002570311A patent/CA2570311A1/en not_active Abandoned
-
2011
- 2011-08-26 US US13/219,132 patent/US8835377B2/en not_active Expired - Fee Related
-
2014
- 2014-09-12 US US14/484,745 patent/US9504727B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4339428A (en) * | 1980-08-18 | 1982-07-13 | Bristol-Myers Company | Capsule product containing high dosage of aspirin in powder or granulated form and alkaline tablet or pellet comprising magnesium carbonate, calcium carbonate and a magnesium dry component |
US4507276A (en) * | 1982-08-20 | 1985-03-26 | Bristol-Myers Company | Analgesic capsule |
US4693896A (en) * | 1985-10-07 | 1987-09-15 | Fmc Corporation | Ethylcellulose-coated, gastric-disintegrable aspirin tablet |
US5122376A (en) * | 1989-05-12 | 1992-06-16 | Isf Societa Per Azioni | Calcitonin gene related peptide |
US5534496A (en) * | 1992-07-07 | 1996-07-09 | University Of Southern California | Methods and compositions to enhance epithelial drug transport |
US5912014A (en) * | 1996-03-15 | 1999-06-15 | Unigene Laboratories, Inc. | Oral salmon calcitonin pharmaceutical products |
US6423334B1 (en) * | 1997-10-01 | 2002-07-23 | Elan Corporation, Plc | Composition and method for enhancing transport across gastrointestinal tract cell layers |
US6184226B1 (en) * | 1998-08-28 | 2001-02-06 | Scios Inc. | Quinazoline derivatives as inhibitors of P-38 α |
Non-Patent Citations (1)
Title |
---|
Bastin (Organic Process Research & Development 2000, 4, 427-435, 2000) * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9399017B2 (en) | 2007-05-29 | 2016-07-26 | Enteris Biopharma, Inc. | Peptide pharmaceutical for oral delivery |
US9457086B2 (en) | 2013-03-05 | 2016-10-04 | Enteris Biopharma, Inc. | Pharmaceuticals for oral delivery |
US9526785B2 (en) | 2013-03-05 | 2016-12-27 | Enteris Biopharma, Inc. | Pharmaceuticals for oral delivery |
US9744140B2 (en) | 2013-03-05 | 2017-08-29 | Enteris Biopharma, Inc. | Pharmaceuticals for oral delivery |
US9833411B2 (en) | 2015-01-12 | 2017-12-05 | Enteris Biopharma, Inc. | Solid oral dosage forms |
WO2022182141A1 (en) * | 2021-02-23 | 2022-09-01 | 경상국립대학교산학협력단 | Composition, for preventing, relieving, or treating disease caused by nitration of protein, containing peptide having tyrosine located at terminal as active ingredient |
Also Published As
Publication number | Publication date |
---|---|
US8835377B2 (en) | 2014-09-16 |
AU2005262576B2 (en) | 2009-05-28 |
US20050282756A1 (en) | 2005-12-22 |
EP1755633A4 (en) | 2010-05-12 |
US9504727B2 (en) | 2016-11-29 |
AU2005262576A1 (en) | 2006-01-19 |
EP1755633A1 (en) | 2007-02-28 |
CA2570311A1 (en) | 2006-01-19 |
US20120328666A1 (en) | 2012-12-27 |
WO2006007332A1 (en) | 2006-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9504727B2 (en) | Oral delivery of peptide pharmaceutical compositions | |
US8093207B2 (en) | Fast-acting oral peptide pharmaceutical products | |
JP3549542B2 (en) | Oral peptide drugs | |
US9399017B2 (en) | Peptide pharmaceutical for oral delivery | |
AU743202B2 (en) | Oral peptide pharmaceutical products | |
IL125894A (en) | Pharmaceutical composition for oral delivery of a physiologically active peptide agent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNIGENE LABORATORIES INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MEHTA, NOZER M.;STERN, WILLIAM;GILLIGAN, JAMES P.;SIGNING DATES FROM 20050620 TO 20050628;REEL/FRAME:034992/0301 |
|
AS | Assignment |
Owner name: UGP THERAPEUTICS, INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNIGENE LABORATORIES, INC.;REEL/FRAME:039182/0406 Effective date: 20130611 |
|
AS | Assignment |
Owner name: ENTERIS BIOPHARMA, INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UGP THERAPEUTICS, INC.;REEL/FRAME:039184/0797 Effective date: 20160718 |
|
AS | Assignment |
Owner name: ENTERIS BIOPHARMA, INC., NEW JERSEY Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE PREVIOUSLY RECORDED ON REEL 039184 FRAME 0797. ASSIGNOR(S) HEREBY CONFIRMS THE NUNC PRO TUNC ASSIGNMENT EFFECTIVE 02/01/2016;ASSIGNOR:UGP THERAPEUTICS, INC.;REEL/FRAME:039682/0212 Effective date: 20160718 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: CADENCE BANK, N.A., GEORGIA Free format text: SECURITY INTEREST;ASSIGNOR:ENTERIS BIOPHARMA, INC.;REEL/FRAME:050174/0428 Effective date: 20190826 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: ENTERIS BIOPHARMA, INC., TEXAS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CADENCE BANK, A MISSISSIPPI BANK AND SUCCESSOR BY MERGER TO CADENCE BANK, N.A., A NATIONAL BANKING ASSOCIATION, AS AGENT;REEL/FRAME:064149/0741 Effective date: 20230628 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |