US20150096330A1 - Glass manufacturing apparatus and method for manufacturing glass sheet - Google Patents

Glass manufacturing apparatus and method for manufacturing glass sheet Download PDF

Info

Publication number
US20150096330A1
US20150096330A1 US14/046,419 US201314046419A US2015096330A1 US 20150096330 A1 US20150096330 A1 US 20150096330A1 US 201314046419 A US201314046419 A US 201314046419A US 2015096330 A1 US2015096330 A1 US 2015096330A1
Authority
US
United States
Prior art keywords
draw
pair
draw rolls
rolls
glass ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/046,419
Other versions
US9593033B2 (en
Inventor
Tomohiro Aburada
Steven Roy Burdette
Masumi Kihata
Chris Scott Kogge
Gautam Narendra Kudva
Michael Yoshiya Nishimoto
Gary Graham Squier
David John Ulrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Assigned to CORNING INCORPORATED reassignment CORNING INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ABURADA, Tomohiro, KIHATA, Masumi, KOGGE, Chris Scott, NISHIMOTO, MICHAEL YOSHIYA, SQUIER, GARY GRAHAM, ULRICH, DAVID JOHN, BURDETTE, STEVEN ROY, KUDVA, GAUTAM NARENDRA
Priority to US14/046,419 priority Critical patent/US9593033B2/en
Priority to JP2016519760A priority patent/JP6473445B2/en
Priority to PCT/US2014/058200 priority patent/WO2015050843A1/en
Priority to KR1020167010162A priority patent/KR102232259B1/en
Priority to CN201480065896.XA priority patent/CN105793202B/en
Priority to TW103134441A priority patent/TWI637919B/en
Publication of US20150096330A1 publication Critical patent/US20150096330A1/en
Publication of US9593033B2 publication Critical patent/US9593033B2/en
Application granted granted Critical
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/068Means for providing the drawing force, e.g. traction or draw rollers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/0006Re-forming shaped glass by drawing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • Exemplary embodiments of the present disclosure relate to an apparatus and method to manufacture glass sheet, and to fusion down draw apparatus and method to manufacture glass sheet.
  • the fusion down draw glass manufacturing may include a lower pull roll apparatus having a master motor to rotate a lower pair of rolls at a constant angular velocity and an upper pull roll apparatus with upper slave motors configured to rotate an upper pair of rolls at torques that match a predetermined percentage of the measured torque of the master motor of the lower pair of rolls.
  • the fusion down draw glass manufacturing process may include a control device configured to independently operate the upper pull roll apparatus and the lower pull roll apparatus such that the upper pair of draw rolls rotates with a substantially constant torque and the lower pair of draw rolls rotates with a substantially constant angular velocity.
  • Exemplary embodiments of the present disclosure provide a glass manufacturing apparatus to form a glass ribbon.
  • Exemplary embodiments of the present disclosure also provide a method to manufacture a glass ribbon.
  • An exemplary embodiment discloses an apparatus configured to produce a glass ribbon.
  • the apparatus includes a forming device that produces a glass ribbon including a width extending between a first edge portion and a second edge portion, a first pull roll apparatus, a second pull roll apparatus, a third pull roll apparatus, and a control device configured to independently operate the first pull roll apparatus, the second pull roll apparatus, and the third pull roll apparatus.
  • the first pull roll apparatus includes a first upstream pair of draw rolls to draw the first edge portion of the glass ribbon from the forming device along a draw path extending transverse to the width of the glass ribbon.
  • the second pull roll apparatus includes a first midstream pair of draw rolls positioned downstream along the draw path from the first upstream pair of draw rolls, such that the first midstream pair of draw rolls further draws the first edge portion of the glass ribbon along the draw path.
  • the third pull roll apparatus includes a first downstream pair of draw rolls positioned downstream along the draw path from the first midstream pair of draw rolls to further draw the first edge portion of the glass ribbon along the draw path.
  • the control device independently operates the first pull roll apparatus, the second pull roll apparatus, and the third pull roll apparatus such that at least one draw roll of the first upstream pair of draw rolls rotates with a substantially constant torque, at least one draw roll of the first midstream pair of draw rolls rotates with a substantially constant torque and at least one draw roll of the first downstream pair of draw rolls rotates with a substantially constant angular velocity.
  • An exemplary embodiment also discloses a method of manufacturing a glass ribbon.
  • the method includes providing a first pull roll apparatus comprising a first upstream pair of draw rolls, a second pull roll apparatus comprising a first midstream pair of draw rolls positioned downstream along a draw path from the first upstream pair of draw rolls, and a third pull roll apparatus comprising a first downstream pair of draw rolls positioned downstream along the draw path from the first midstream pair of draw rolls.
  • the method includes forming a glass ribbon with a width extending between a first edge portion and a second edge portion, and independently operating the first pull roll apparatus such that at least one draw roll of the first upstream pair of draw rolls rotates with a substantially constant torque to draw the first edge portion of the glass ribbon along the draw path.
  • the method includes independently operating the second pull roll apparatus such that at least one draw roll of the first midstream pair of draw rolls rotates with a substantially constant torque to further draw the first edge portion of the glass ribbon along the draw path and independently operating the third pull roll apparatus such that at least one of the first downstream pair of draw rolls rotates with a substantially constant angular velocity to further draw the first edge portion of the glass ribbon along the draw path.
  • FIG. 1 illustrates a glass manufacturing apparatus according to an exemplary embodiment of the disclosure.
  • FIG. 2 is a side view of the glass manufacturing apparatus of FIG. 1 according to an exemplary embodiment of the disclosure.
  • FIG. 3 is a top view of the glass manufacturing apparatus of FIG. 1 at a first elevation according to an exemplary embodiment of the disclosure.
  • FIG. 4 is a top view of the glass manufacturing apparatus of FIG. 1 at a second elevation according to an exemplary embodiment of the disclosure.
  • FIG. 5 is a top view of the glass manufacturing apparatus of FIG. 1 at a third elevation according to an exemplary embodiment of the disclosure.
  • FIG. 6 illustrates a glass manufacturing apparatus according to an exemplary embodiment of the disclosure.
  • FIG. 7 is a top view of the glass manufacturing apparatus of FIG. 6 at an intermediate elevation according to an exemplary embodiment of the disclosure.
  • FIG. 8 illustrates an exemplary graph of independent constant force input control at two different elevations according to exemplary embodiments of the disclosure.
  • FIG. 9 illustrates an exemplary graph of the forces experienced at the lowest draw rolls according to exemplary embodiments of the disclosure.
  • FIG. 10 illustrates an exemplary graph of the speed of the lowest draw rolls according to exemplary embodiments of the disclosure.
  • the glass manufacturing apparatus 101 can include a forming device 103 to produce a glass ribbon 105 including a width “W” extending between a first edge portion 105 a and a second edge portion 105 b of the glass ribbon 105 .
  • the glass manufacturing apparatus 101 can include a pull roll device 115 and a separating device 119 .
  • Various forming devices may be used in accordance with aspects of the disclosure.
  • the forming device 103 includes an opening 133 that receives molten glass 123 which flows into a trough 135 .
  • the molten glass 123 from the trough 135 then overflows and runs down two sides 137 a and 137 b before fusing together at a root 139 of the forming device 103 .
  • the root 139 is where the two sides 137 a, 137 b come together and where the two overflow walls of molten glass 123 flowing over each of the two sides 137 a, 137 b fuse together as the glass ribbon 105 drawn downward off the root 139 .
  • a portion of the glass ribbon 105 is drawn off the root 139 into a viscous zone 141 wherein the glass ribbon 105 begins thinning to a final thickness.
  • the portion of the glass ribbon 105 is then drawn from the viscous zone 141 into a setting zone 143 (visco-elastic zone).
  • the setting zone 143 the portion of the glass ribbon 105 is set from a viscous state to an elastic state with the desired profile.
  • the portion of the glass ribbon 105 is then drawn from the setting zone 143 to an elastic zone 145 . Once in the elastic zone 145 , the glass ribbon 105 may be deformed, within limits, without permanently changing the profile of the glass ribbon 105 .
  • a separating device 119 may be provided to sequentially separate a plurality of glass sheets 147 a, 147 b from the glass ribbon 105 over a period of time.
  • the separating device 119 may comprise the illustrated traveling anvil machine although further separating devices may be provided in further examples.
  • the glass manufacturing apparatus 101 further includes a pull roll device 115 schematically illustrated in FIGS. 1 and 2 .
  • the pull roll device 215 may be provided to help draw the glass ribbon 105 from the root 139 and may isolate transmission of forces up the glass ribbon 105 from the elastic zone 145 to the setting zone 143 .
  • the pull roll devices of the present disclosure can draw the glass ribbon to the desired thickness while also reducing residual stress within the glass sheet.
  • the pull roll device 115 can be located within the viscous zone 141 , the setting zone 143 , and the elastic zone 145 .
  • the first pull roll apparatus (discussed more fully below) is located within the viscous zone 141 or may be located at the top of the setting zone 143 adjacent to the viscous zone 141 .
  • the second pull roll apparatus (discussed more fully below) is located within the setting zone 143 and the third pull roll apparatus (discussed more fully below) is located within the elastic zone 145 .
  • FIG. 1 , FIG. 2 , and FIG. 3 illustrate a first example of the pull roll device 115 in accordance with one exemplary embodiment of the disclosure although other pull roll device 115 constructions may be provided in further examples.
  • the pull roll device 115 can include a first pull roll apparatus 149 including a first upstream pair of draw rolls 151 configured to draw the first edge portion 105 a of the glass ribbon 105 from the forming device 103 along a draw path 153 extending transverse to the width “W” of the glass ribbon 105 .
  • the first upstream pair of draw rolls 151 can include a first pull roll member 155 a and a second pull roll member 155 b.
  • the first and second pull roll members 155 a, 155 b can each be provided with a respective refractory roll covering 157 a, 157 b configured to engage the first edge portion 105 a of the glass ribbon 105 therebetween.
  • At least one of the first and second pull roll members 155 a, 155 b may be provided with a respective motor 159 a, 159 b.
  • both the first and second pull roll members 155 a, 155 b are provided with a respective motor 159 a, 159 b.
  • first and second pull roll members 155 a, 155 b are provided with a motor wherein the other pull roll member may be provided with a bearing such that only one of the first and second pull roll members 155 a, 155 b is driven.
  • the first pull roll apparatus 149 can include a second upstream pair of draw rolls 161 configured to draw the second edge portion 105 b of the glass ribbon 105 from the forming device 103 along the draw path 153 .
  • the second upstream pair of draw rolls 161 can include a first pull roll member 163 a and a second pull roll member 163 b.
  • the first and second pull roll members 163 a, 163 b can each be provided with a respective refractory roll covering 165 a, 165 b configured to engage the second edge portion 105 b of the glass ribbon 105 therebetween.
  • At least one of the first and second pull roll members 163 a, 163 b may be provided with a respective motor 167 a, 167 b.
  • both the first and second pull roll members 163 a, 163 b are provided with a respective motor 167 a, 167 b.
  • only one of the first and second pull roll members 167 a, 167 b is provided with a motor wherein the other pull roll member may be provided with a bearing such that only one of the first and second pull roll members 167 a, 167 b is driven.
  • the pull roll device 115 further includes a second pull roll apparatus 169 including a first midstream pair of draw rolls 171 positioned downstream along the draw path 153 from the first upstream pair of draw rolls 151 , wherein the first midstream pair of draw rolls 171 are configured to further draw the first edge portion 105 a of the glass ribbon 105 along the draw path 153 .
  • the first midstream pair of draw rolls 171 can include a first pull roll member 173 a and a second pull roll member 173 b.
  • the first and second pull roll members 173 a, 173 b can each be provided with a respective refractory roll covering 175 a, 175 b configured to engage the first edge portion 105 a of the glass ribbon 205 therebetween. At least one of the first and second pull roll members 173 a, 173 b may be provided with a respective motor 177 a, 177 b. For example, as shown, both the first and second pull roll members 173 a, 173 b are provided with a respective motor 177 a, 177 b.
  • only one of the first and second pull roll members 173 a, 173 b is provided with a motor wherein the other pull roll member may be provided with a bearing such that only one of the first and second pull roll members 173 a, 173 b is driven.
  • the second pull roll apparatus 169 can include a second midstream pair of draw rolls 179 positioned downstream along the draw path 153 from the second upstream pair of draw rolls 161 , wherein the second midstream pair of draw rolls 179 are configured to further draw the second edge portion 105 b of the glass ribbon 105 along the draw path 153 .
  • the second midstream pair of draw rolls 179 can include a first pull roll member 181 a and a second pull roll member 181 b.
  • the first and second pull roll members 181 a, 181 b can each be provided with a respective refractory roll covering 183 a, 183 b configured to engage the second edge portion 105 b of the glass ribbon 105 therebetween. At least one of the first and second pull roll members 181 a, 181 b may be provided with a respective motor 185 a, 185 b. For example, as shown, both the first and second pull roll members 181 a, 181 b are provided with a respective motor 185 a, 185 b.
  • only one of the first and second pull roll members 181 a, 181 b is provided with a motor wherein the other pull roll member may be provided with a bearing such that only one of the first and second pull roll members 181 a, 181 b is driven.
  • the pull roll device 115 further includes a third pull roll apparatus 187 including a first downstream pair of draw rolls 189 positioned downstream along the draw path 153 from the first midstream pair of draw rolls 171 , wherein the first downstream pair of draw rolls 189 are configured to further draw the first edge portion 105 a of the glass ribbon 105 along the draw path 153 .
  • the first downstream pair of draw rolls 189 can include a first pull roll member 191 a and a second pull roll member 191 b.
  • the first and second pull roll members 191 a, 191 b can each be provided with a respective refractory roll covering 193 a, 193 b configured to engage the first edge portion 105 a of the glass ribbon 105 therebetween. At least one of the first and second pull roll members 191 a, 191 b may be provided with a respective motor 195 a, 195 b. For example, as shown, both the first and second pull roll members 191 a, 191 b are provided with a respective motor 195 a, 195 b.
  • only one of the first and second pull roll members 191 a, 191 b is provided with a motor wherein the other pull roll member may be provided with a bearing such that only one of the first and second pull roll members 191 a, 191 b is driven.
  • the third pull roll apparatus 187 can include a second downstream pair of draw rolls 197 positioned downstream along the draw path 153 from the second midstream pair of draw rolls 179 , wherein the second downstream pair of draw rolls 197 are configured to further draw the second edge portion 105 b of the glass ribbon 105 along the draw path 153 .
  • the second downstream pair of draw rolls 197 can include a first pull roll member 199 a and a second pull roll member 199 b.
  • the first and second pull roll members 199 a, 199 b can each be provided with a respective refractory roll covering 201 a, 201 b configured to engage the second edge portion 105 b of the glass ribbon 105 therebetween. At least one of the first and second pull roll members 199 a, 199 b may be provided with a respective motor 203 a, 203 b. For example, as shown, both the first and second pull roll members 199 a, 199 b are provided with a respective motor 203 a, 203 b.
  • first and second pull roll members 199 a, 199 b are provided with a motor wherein the other pull roll member may be provided with a bearing such that only one of the first and second pull roll members 199 a, 199 b is driven.
  • the pulling roll device 115 may also include optional pair(s) of edge rolls 202 ( 202 a, 202 b ) and 204 and/or optional pair(s) of idle stub rolls 206 , 208 (See FIGS. 1 , 2 , and 6 ).
  • the pull roll device 115 can further include an intermediate pull roll apparatus 205 including a first intermediate pair of draw rolls 207 positioned downstream along the draw path 153 from the first midstream pair of draw rolls 171 and upstream along the draw path from the first downstream pair of draw rolls 189 .
  • the first intermediate pair of draw rolls 207 are configured to further draw the first edge portion 105 a of the glass ribbon 105 along the draw path 153 .
  • the first intermediate pair of draw rolls 207 can include a first pull roll member 209 a and a second pull roll member 209 b.
  • the first and second pull roll members 209 a, 209 b can each be provided with a respective refractory roll covering 211 a, 211 b configured to engage the first edge portion 105 a of the glass ribbon 105 therebetween. At least one of the first and second pull roll members 209 a, 209 b may be provided with a respective motor 213 a, 213 b. For example, as shown, both the first and second pull roll members 213 a, 213 b are provided with a respective motor 213 a, 213 b.
  • only one of the first and second pull roll members 209 a, 209 b is provided with a motor wherein the other pull roll member may be provided with a bearing such that only one of the first and second pull roll members 209 a, 209 b is driven.
  • the intermediate pull roll apparatus 205 can include a second intermediate pair of draw rolls 215 positioned downstream along the draw path 153 from the second midstream pair of draw rolls 179 and upstream along the draw path 153 from the second downstream pair of draw rolls 197 .
  • the second midstream pair of draw rolls 215 are configured to further draw the second edge portion 105 b of the glass ribbon 105 along the draw path 153 .
  • the second intermediate pair of draw rolls 215 can include a first pull roll member 217 a and a second pull roll member 217 b.
  • the first and second pull roll members 217 a, 217 b can each be provided with a respective refractory roll covering 219 a, 219 b configured to engage the second edge portion 105 b of the glass ribbon 105 therebetween. At least one of the first and second pull roll members 217 a, 217 b may be provided with a respective motor 221 a, 221 b. For example, as shown, both the first and second pull roll members 217 a, 217 b are provided with a respective motor 221 a, 221 b.
  • only one of the first and second pull roll members 217 a, 217 b is provided with a motor wherein the other pull roll member may be provided with a bearing such that only one of the first and second pull roll members 217 a, 217 b is driven.
  • the intermediate pull roll apparatus 205 is described and illustrated as positioned at a fourth elevation between the second pull roll apparatus 169 and the third pull roll apparatus 187 , the disclosure is not limited to these exemplary embodiments.
  • the intermediate pull roll apparatus 205 may be positioned at various elevations of the pull roll device 115 . Further, the intermediate pull roll apparatus 205 may be modular such that multiple pull roll apparatus 205 may be included in the pull roll device 115 and positioned along the draw path 153 at various elevations.
  • first and second pull roll members can also be referred to as a draw roll of the pair of draw rolls.
  • the pull roll device 115 of the glass manufacturing apparatus 101 can further include a control device 223 (e.g., programmable logic controller) configured to independently operate the first pull roll apparatus 149 , the second pull roll apparatus 169 , and the third pull roll apparatus 187 such that at least one of the first upstream pair of draw rolls 151 rotates with a substantially constant torque, at least one of the first midstream pair of draw rolls 171 rotates with a substantially constant torque, and at least one of the first downstream pair of draw rolls 189 rotates with a substantially constant angular velocity.
  • the control device 223 can communicate 225 with the pull roll apparatus 149 , 169 , 187 , 205 through cables, wireless networks, wired networks, combinations thereof, and the like.
  • Independent operation of the first, second, and third pull roll apparatus 149 , 169 , 187 means that one of the first, second, and third pull roll apparatus may be operated without being affected by operation of the other of the first, second, and third pull roll apparatus.
  • independently operating the first pull roll apparatus 149 with the control device 223 provides for the control device to operate the first pull roll apparatus 149 without considering changes in operating parameters of the second pull roll apparatus 169 or the third pull roll apparatus 187 .
  • independently operating the second pull roll apparatus 169 with the control device 223 provides for the control device to operate the second pull roll apparatus 169 without considering changes in operating parameters of the first pull roll apparatus 149 or the third pull roll apparatus 187 .
  • independently operating the third pull roll apparatus 187 with the control device 223 provides for the control device to operate the third pull roll apparatus 187 without considering changes in operating parameters of the first pull roll apparatus 149 or the second pull roll apparatus 169 .
  • the first upstream pair of draw rolls 151 can include a single motor associated with one of the first or second pull roll members 155 a, 155 b.
  • the control device 223 can operate the single motor such that the associated first or second pull roll members 155 a, 155 b is rotated with a substantially constant torque.
  • each of the first and second pull roll members 155 a, 155 b may be provided with a corresponding motor 159 a, 159 b.
  • the control device 223 may operate the motors 159 a, 159 b such that at least one, such as both, of the first upstream pair of draw rolls 151 rotate with a substantially constant torque. Rotating both pull roll members 159 a, 159 b of the first upstream pair of draw rolls 151 with a substantially constant torque may be desirable to apply force equally at both sides of the first edge portion 105 a of the glass ribbon 105 .
  • first pull roll apparatus 149 may also include an optional second upstream pair of draw rolls 161 .
  • the second upstream pair of draw rolls 161 can include a single motor associated with one of the first or second pull roll members 163 a, 163 b.
  • the control device 223 can operate the single motor such that the associated first or second pull roll members 163 a, 163 b is rotated with a substantially constant torque.
  • each of the first and second pull roll members 163 a, 163 b may be provided with a corresponding motor 167 a, 167 b.
  • control device 223 may operate the motors 167 a, 167 b such that at least one, such as both, of the second upstream pair of draw rolls 161 rotate with a substantially constant torque. Rotating both pull roll members 163 a, 163 b of the second upstream pair of draw rolls 161 with a substantially constant torque may be desirable to apply force equally at both sides of the second edge portion 105 b of the glass ribbon 105 .
  • control device 223 can operate one or both of the motors associated with the first upstream pair of draw rolls 151 with a substantially constant first torque and can simultaneously operate one or both of the motors associated with the second upstream pair of draw rolls 161 to rotate with a substantially constant second torque that is substantially equal to the first torque.
  • Providing substantially equal first and second torques can be desired, for example, to apply substantially the same force to the glass ribbon 105 and the first and second edge portions 105 a, 105 b.
  • second pull roll apparatus 169 may also include an optional second midstream pair of draw rolls 179 .
  • the second midstream pair of draw rolls 179 can include a single motor associated with one of the first or second pull roll members 181 a, 181 b.
  • the control device 223 can operate the single motor such that the associated first or second pull roll members 181 a, 181 b is rotated with a substantially constant torque.
  • each of the first and second pull roll members 181 a, 181 b may be provided with a corresponding motor 185 a, 185 b.
  • control device 223 may operate the motors 185 a, 185 b such that at least one, such as both, of the second midstream pair of draw rolls 179 rotate with a substantially constant torque. Rotating both pull roll members 181 a, 181 b of the second midstream pair of draw rolls 179 with a substantially constant torque may be desirable to apply force equally at both sides of the second edge portion 105 b of the glass ribbon 105 .
  • control device 223 can operate one or both of the motors associated with the first midstream pair of draw rolls 171 with a substantially constant first torque and can simultaneously operate one or both of the motors associated with the second midstream pair of draw rolls 179 to rotate with a substantially constant second torque that is substantially equal to the first torque.
  • Providing substantially equal first and second torques can be desired, for example, to apply substantially the same force to the glass ribbon 105 and the first and second edge portions 105 a, 105 b.
  • first downstream pair of draw rolls 189 can include a single motor associated with one of the first or second pull roll members 191 a, 191 b.
  • the control device 223 can operate the single motor such that the associated first or second pull roll members 191 a, 191 b rotates with a substantially constant angular velocity.
  • each of the first and second pull roll members 191 a, 191 b may be provided with a corresponding motor 195 a, 195 b.
  • the control device 223 may operate the motors 195 a, 195 b such that at least one, such as both, of the first downstream pair of draw rolls 189 rotate with a substantially constant angular velocity. Rotating both pull roll members 191 a, 191 b of the first downstream pair of draw rolls 189 with a substantially constant angular velocity may be desirable to draw the glass ribbon equally at both sides of the first edge portion 105 a of the glass ribbon 105 .
  • third pull roll apparatus 187 may also include an optional second downstream pair of draw rolls 197 .
  • the second downstream pair of draw rolls 197 can include a single motor associated with one of the first or second pull roll members 199 a, 199 b.
  • the control device 223 can operate the single motor such that the associated first or second pull roll members 199 a, 199 b is rotated with a substantially constant angular velocity.
  • each of the first and second pull roll members 199 a, 199 b may be provided with a corresponding motor 203 a, 203 b.
  • control device 223 may operate at least one, such as both, of the second downstream pair of draw rolls 197 to rotate with a substantially constant angular velocity. Rotating both pull roll members 199 a, 199 b of the second downstream pair of draw rolls 197 with a substantially constant angular velocity may be desirable to draw the glass ribbon equally at both sides of the second edge portion 105 b of the glass ribbon 105 .
  • control device 223 can operate one or both of the motors associated with the first downstream pair of draw rolls 189 with a substantially constant first angular velocity and can simultaneously operate one or both of the motors associated with the second downstream pair of draw rolls 197 to rotate with a substantially constant second angular velocity that is substantially equal to the first angular velocity.
  • Providing substantially equal first and second angular velocities can be desired, for example, to draw the glass ribbon equally at the first and second edge portions 105 a, 105 b.
  • control device 223 can be configured to independently operate the first pull roll apparatus 149 such that at least one of the first and second upstream pair of draw rolls 151 , 161 rotates with a substantially constant torque; however, the embodiments are not so limited. That is, the control device 223 can be configured in an exemplary embodiment to independently operate the first pull roll apparatus 149 such that at least one of the first and second upstream pair of draw rolls 151 , 161 rotates not with constant torque, but with a substantially constant angular velocity. Further, the control device 223 can be configured to independently operate the second pull roll apparatus 169 such that at least one of the first and second midstream pair of draw rolls 171 , 179 rotates not with constant torque, but with a substantially constant angular velocity.
  • the control device 223 can further be configured to independently operate the intermediate pull roll apparatus 205 such that at least one of the first and second intermediate pair of draw rolls 207 , 215 rotates with a substantially constant torque.
  • the control device 223 can be configured to independently operate the intermediate pull roll apparatus 205 such that at least one of the first and second intermediate pair of draw rolls 207 , 215 rotates not with constant torque, but with a substantially constant angular velocity.
  • Control scheme “A” includes the control device 223 configured to independently operate the first pull roll apparatus 149 such that at least one of the first and second upstream pair of draw rolls 151 , 161 rotates with a substantially constant torque, to independently operate the second pull roll apparatus 169 such that at least one of the first and second midstream pair of draw rolls 171 , 179 rotates with a substantially constant torque, to independently operate the third pull roll apparatus 187 such that at least one of the first and second downstream pair of draw rolls 189 , 197 rotates with a substantially constant angular velocity, and the control device 223 configured to independently operate the intermediate pull roll apparatus 205 , if provided, such that at least one of the first and second intermediate pair of draw rolls 207 , 215 , rotates with a substantially constant torque or such that at least one of the first and second intermediate pair of draw rolls 207 , 215 , rotates not with constant torque, but with a substantially constant torque
  • Control scheme “E” includes the control device 223 configured to independently operate the first pull roll apparatus 149 such that at least one of the first and second upstream pair of draw rolls 151 , 161 rotates with a substantially constant torque, to independently operate the second pull roll apparatus 169 such that at least one of the first and second midstream pair of draw rolls 171 , 179 rotates with a substantially constant torque, to independently operate the third pull roll apparatus 187 such that at least one of the first and second downstream pair of draw rolls 189 , 197 rotates with a substantially constant torque, and the control device 223 configured to independently operate the intermediate pull roll apparatus 205 , if provided, such that at least one of the first and second intermediate pair of draw rolls 207 , 215 , rotates with a substantially constant torque.
  • the pairs of draw rolls discussed throughout the application may have similar constructions and orientations as set forth in U.S. Patent Application Publication No. 2009/0107182 that published on Apr. 30, 2009 to Anderson et al., which is herein incorporated by reference in its entirety.
  • any of the pairs of draw rolls may be vertically downtilted or horizontally level rolls with respect to the glass ribbon.
  • any of the pairs of rolls may be positioned to have a predetermined horizontal angle ⁇ that a respective face of the rolls would be positioned relative to a respective major surface 227 , 229 of the glass ribbon 105 .
  • the horizontal angle ⁇ can be desirable to provide an appropriate level of cross-draw tension 231 and/or accommodate a taper effect that may occur during normal roll wear.
  • FIGS. 1 and 6 illustrate examples where each of the first pull roll members 155 a, 163 a, 173 a, 181 a, 191 a, 199 a, 209 a, 217 a of the pairs of draw rolls can comprise vertically downtilted rolls with respect to the glass ribbon 105 .
  • the second pull roll members 155 b, 163 b, 173 b, 181 b, 191 b, 199 b, 209 b, 217 b of the pairs of draw rolls can likewise comprise vertically downtilted rolls with respect to the glass ribbon 105 .
  • the downtilt angle of any pair of the draw rolls may be different or the same as any other pair of draw rolls depending on process considerations.
  • Downtilting of the first and/or second upstream pair of draw rolls 151 , 161 can provide a desired level of cross-draw tension 231 between the two pairs of draw rolls 151 , 161 .
  • Downtilting of the first and/or second midstream pair of draw rolls 171 , 179 can provide a desired level of cross-draw tension 233 between the two pairs of draw rolls 171 , 179 .
  • Downtilting of the first and/or second downstream pair of draw rolls 189 , 197 can provide a desired level of cross-draw tension 235 between the two pairs of draw rolls 189 , 197 .
  • downtilting the first and/or second intermediate pair of draw rolls 207 , 215 can provide a desired level of cross-draw tension 237 between the two pairs of draw rolls 207 , 215 .
  • control device 223 may be configured to activate an automatic positioner (not shown) or a manual mechanism may be used to adjust the downtilt position of the vertically downtilted rolls so as to control (or tune) the average cross-draw tension 231 , 233 , 235 , 237 across the glass ribbon 105 .
  • one or more of the pairs of draw rolls 151 , 161 , 171 , 179 , 189 , 197 , 207 , 215 may be horizontally level rolls with respect to the glass ribbon wherein the rotation axis of the draw rolls extend substantially perpendicular to the draw path 105 of the glass ribbon.
  • Providing one or both of the pairs of rolls of the pull roll device as horizontally level rolls may be desired if cross-wise tension is not necessary across the width of the glass ribbon along the pairs of rolls.
  • the method can include the steps of providing the first pull roll apparatus 149 including the first upstream pair of draw rolls 151 .
  • the first pull roll apparatus 149 may optionally be provided with a second upstream pair of draw rolls 161 .
  • the method further includes the step of providing the second pull roll apparatus 169 including the first midstream pair of draw rolls 171 positioned downstream along the draw path 153 from the first upstream pair of draw rolls 151 .
  • the second pull roll apparatus 169 may optionally be provided with a second midstream pair of draw rolls 179 positioned downstream along the draw path 153 from the second upstream pair of draw rolls 161 .
  • the method further includes the step of providing the third pull roll apparatus 187 including the first downstream pair of draw rolls 189 positioned downstream along the draw path 153 from the first midstream pair of draw rolls 171 .
  • the third pull roll apparatus 187 may optionally be provided with a second downstream pair of draw rolls 197 positioned downstream along the draw path 153 from the second midstream pair of draw rolls 179 .
  • the method further includes the step of providing the intermediate pull roll apparatus 205 including the first intermediate pair of draw rolls 207 positioned downstream along the draw path 153 from the first midstream pair of draw rolls 171 and upstream along the draw path 153 from the first downstream pair of draw rolls 189 .
  • the intermediate pull roll apparatus 205 may optionally be provided with a second intermediate pair of draw rolls 215 positioned downstream along the draw path 153 from the second midstream pair of draw rolls 179 and upstream along the draw path 153 from the second downstream pair of draw rolls 197 .
  • the method further includes the step of forming the glass ribbon 105 with the width “W” extending between the first edge portion 105 a and the second edge portion 105 b.
  • the first pull roll apparatus 149 can be independently operated, for example, with the control device 223 without input from the second pull roll apparatus 169 or input from the third pull roll apparatus 187 , or, when any intermediate pull roll apparatus 205 is provided, without input from the intermediate pull roll apparatus 205 .
  • the first pull roll apparatus 149 can be independently operated such that at least one draw roll (pull roll member 155 a, 155 b ) of the first upstream pair of draw rolls 151 rotates with a substantially constant torque to draw the first edge portion 105 a of the glass ribbon 105 along the draw path 153 .
  • the first pull roll apparatus 149 can be operated such that both draw rolls (pull roll members 155 a, 155 b ) of the first upstream pair of draw rolls 151 rotate with a substantially constant torque.
  • the second upstream pair of draw rolls 161 can also be independently operated such that at least one draw roll (pull roll member 163 a, 163 b ) of the second upstream pair of draw rolls 161 rotates with a substantially constant torque to draw the second edge portion 105 b of the glass ribbon 105 along the draw path 153 .
  • the first pull roll apparatus 149 can be operated such that both of the draw rolls (pull roll members 163 a, 163 b ) of the second upstream pair of draw rolls 161 rotate with a substantially constant torque. As such, a desired tension 239 along the draw path 153 may be maintained in the glass ribbon 105 between the root 139 and the first pull roll apparatus 149 .
  • the method further independently operates the second pull roll apparatus 169 such that at least one draw roll (pull roll member 173 a, 173 b ) of the first midstream pair of draw rolls 171 rotates with a substantially constant torque to further draw the first edge portion 105 a of the glass ribbon 105 along the draw path 153 .
  • the method can include the step of operating the second pull roll apparatus 169 such that both draw rolls (pull roll members 173 a, 173 b ) of the first midstream pair of draw rolls 171 rotate with a substantially constant torque.
  • the second midstream pair of draw rolls 179 can also be independently operated such that at least one draw roll (pull roll member 181 a, 181 b ) of the second midstream pair of draw rolls 179 rotates with a substantially constant torque to draw the second edge portion 105 b of the glass ribbon 105 along the draw path 153 .
  • the second pull roll apparatus 169 can be operated such that both of the draw rolls (pull roll members 181 a, 181 b ) of the second midstream pair of draw rolls 179 rotate with a substantially constant torque. As such, a desired tension 241 along the draw path 153 may be maintained in the glass ribbon 105 between the first pull roll apparatus 149 and the second pull roll apparatus 169 .
  • the method further independently operates the third pull roll apparatus 187 such that at least one draw roll (pull roll member 191 a, 191 b ) of the first downstream pair of draw rolls 189 rotates with a substantially constant angular velocity to further draw the first edge portion 105 a of the glass ribbon 105 along the draw path 153 .
  • the method can include the step of operating the third pull roll apparatus 187 such that both draw rolls (pull roll members 191 a, 191 b ) of the first downstream pair of draw rolls 189 rotate with a substantially constant angular velocity.
  • the second downstream pair of draw rolls 197 can also be independently operated such that at least one draw roll (pull roll member 199 a, 199 b ) of the second downstream pair of draw rolls 197 rotates with a substantially constant angular velocity to further draw the second edge portion 105 b of the glass ribbon 105 along the draw path 153 .
  • the method can include the step of operating the third pull roll apparatus 187 such that both draw rolls (pull roll members 199 a, 199 b ) of the second downstream pair of draw rolls 197 rotate with a substantially constant angular velocity. As such, a desired tension 243 along the draw path 153 may be maintained in the glass ribbon 105 between the second pull roll apparatus 169 and the third pull roll apparatus 187 .
  • the method further independently operates the intermediate pull roll apparatus 205 such that at least one draw roll (pull roll member 209 a, 209 b ) of the first intermediate pair of draw rolls 207 rotates with a substantially constant torque to further draw the first edge portion 105 a of the glass ribbon 105 along the draw path 153 ( FIGS. 6 and 7 ).
  • the method can include the step of operating the intermediate pull roll apparatus 205 such that both draw rolls (pull roll members 209 a, 209 b ) of the first intermediate pair of draw rolls 207 rotate with a substantially constant torque.
  • the second intermediate pair of draw rolls 215 can also be independently operated such that at least one draw roll (pull roll member 217 a, 217 b ) of the second intermediate pair of draw rolls 215 rotates with a substantially constant torque to further draw the second edge portion 105 b of the glass ribbon 105 along the draw path 153 .
  • the method can include the step of operating the intermediate pull roll apparatus 205 such that both draw rolls (pull roll members 217 a, 217 b ) of the second intermediate pair of draw rolls 215 rotate with a substantially constant torque.
  • a desired tension 245 along the draw path 153 may be maintained in the glass ribbon 105 between the second pull roll apparatus 169 and the intermediate pull roll apparatus 205 and a desired tension 247 along the draw path 153 may be maintained in the glass ribbon 105 between the intermediate pull roll apparatus 205 and the third pull roll apparatus 187 .
  • each one of the pull roll apparatus can be operated in a constant torque mode or a constant angular velocity mode.
  • the pull roll apparatus can be operated in the Control schemes of Table 1.
  • the first pull roll apparatus 149 can be operated in constant torque mode
  • the second pull roll apparatus 169 can be operated in constant angular velocity mode
  • the third pull roll apparatus 187 operated in constant angular velocity mode
  • the intermediate pull roll apparatus 205 if provided, operated in constant angular velocity mode in Control scheme “C” of Table 1.
  • the method can further include the step of sequentially separating a plurality of glass sheets 147 a, 147 b from the glass ribbon 105 over a period of time at a location downstream along the draw path 153 from the first downstream pair of draw rolls 189 .
  • the separating device 119 may be periodically activated to sequentially separate a plurality of glass sheets 147 a, 147 b as the glass ribbon 105 is drawn from the forming device 103 .
  • FIG. 8 shows constant force at two different elevations, for example, curve 249 shows the constant force at the first pull roll apparatus 149 in the viscous zone 141 in FIG. 1 and curve 251 shows the constant force at the second pull roll apparatus 169 in the setting (visco-elastic) zone 143 in FIG. 1 .
  • the control device 223 can be configured by a user to independently operate the first pull roll apparatus 149 and the second pull roll apparatus 169 at constant force over time. Hence, the glass ribbon 105 experiences constant vertical forces from the root 139 to the lowest roll, the third pull roll apparatus 187 .
  • the lowest roll the third pull roll apparatus 187 , operates as the master roll and operates at constant velocity to control the speed of the glass ribbon 105 .
  • FIG. 9 shows an example graph of the forces applied to the glass ribbon 105 by the first and second downstream pair of draw rolls 189 , 197 .
  • the Y-axis is force (pounds) and the X-axis is time (hours: minutes).
  • One plot 253 represents the force being applied to the glass ribbon 105 by the first downstream pair of draw rolls 189 at the first edge portion 105 a while the other plot 255 represents the force being applied to the glass ribbon 105 by the second downstream pair of draw rolls 197 at the second edge portion 105 b.
  • the force diagram shows a saw tooth pattern associated with the gradual change in glass ribbon 105 weight due to growth and the abrupt change in glass ribbon 105 weight due to snap-off of a glass sheet 147 a from the glass ribbon 105 .
  • the third pull roll apparatus 187 is located downstream of the visco-elastic zone 143 as described by the viscosity equation (Equation 1), in the elastic zone 145 as shown in FIG. 1 , the first and second downstream pair of draw rolls 189 , 197 isolate propagation of perturbations into the visco-elastic (setting) zone 143 .
  • Viscosity ( ⁇ ) has units of Pa ⁇ s and Shear Modulus (G) has units of Pa. Therefore ⁇ /G has units of time.
  • the first and second upstream pair of draw rolls 151 , 161 and the first and second midstream pair of draw rolls 171 , 179 apply a substantially constant force to the first and second edge portions 105 a, 105 b of the glass ribbon 105 along the draw path 153 and the first and second downstream pair of draw rolls 189 , 197 apply a varying force to the first and second edge portions 105 a, 105 b of the glass ribbon 105 along the draw path 153 .
  • FIG. 10 shows the first and second downstream pairs of draw rolls 189 , 197 of the third pull roll apparatus 187 , which is the lowest (or master) pull roll apparatus, speed as a function of time (hours: minutes) and shows that the constant speed (each tick mark is 0.2 in/min (50.8 mm/min)) controls glass ribbon 105 thickness and maintains superior attributes. This speed is readily adjusted via the control device 223 to obtain the desired product specifications, such as thickness.
  • first and second upstream pair of draw rolls 151 , 161 each applies a substantially constant force (e.g., 8 pounds) to the respective first and second edge portions 105 a, 105 b of the glass ribbon 105 in a direction opposite the draw direction 257 .
  • a substantially constant force e.g. 8 pounds
  • first and second midstream pair of draw rolls 171 , 179 also each applies a substantially constant force (e.g., 6 pounds) to the respective first and second edge portions 105 a, 105 b of the glass ribbon 105 in a direction opposite the draw direction 257 .
  • first and second downstream pair of draw rolls 189 , 197 each applies a varying force to the respective first and second edge portions 105 a, 105 b of the glass ribbon 105 from in a direction of the draw direction 257 (e.g., from about 5 pounds) to in a direction opposite the draw direction 257 (e.g., to about 18 pounds).
  • first edge portion 105 a is constantly maintained in tension between the first upstream pair of draw rolls 151 , the first midstream pair of draw rolls 171 , and the first downstream pair of draw rolls 189 throughout the period of time.
  • second edge portion 105 b is constantly maintained in tension between the second upstream pair of draw rolls 161 , the second midstream pair of draw rolls 179 , and the second downstream pair of draw rolls 197 throughout the period of time.
  • all forces on both edges 105 a, 105 b may act in the positive or negative direction with respect to the draw direction 257 depending on the apparatus set up.
  • the first and second downstream pairs of draw rolls 189 , 197 each applies a varying force due to the constant angular velocity associated with the draw rolls 189 , 197 .
  • the patterns 259 , 261 of the plots 253 , 255 represents the changing force as the glass ribbon 105 increases in length while the patterns 263 , 265 represent the sudden change in force that occurs during separation of a glass sheet 147 a from the glass ribbon 105 .
  • the constant torque of the first and second upstream pair of draw rolls 151 , 161 can maintain a substantially constant force to the glass ribbon 105
  • the constant torque of the first and second midstream pair of draw rolls 171 , 179 can also maintain a substantially constant force to the glass ribbon 105 .
  • force disturbances can be prevented from being transmitted up the glass ribbon into the setting zone 143 where stress concentrations and corresponding surface defects may be undesirably frozen into the glass ribbon 105 .
  • methods of the present disclosure can independently operate the first pull roll apparatus 149 over a period of time such that the first upstream pair of draw rolls 151 apply a substantially constant force to the first edge portion 105 a of the glass ribbon 105 along the draw path 153 .
  • the method can further include the step of independently operating the second pull roll apparatus 169 over the period of time such that at least one of the first downstream pair of draw rolls 171 apply a substantially constant force to the first edge portion 105 a of the glass ribbon 105 along the draw path 153 .
  • the method can further include the step of independently operating the third pull roll apparatus 187 over the period of time such that at least one of the first downstream pair of draw rolls 189 rotates with a substantially constant angular velocity and the first downstream pair of draw rolls 189 apply a varying force to the first edge portion 105 a of the glass ribbon 105 along the draw path 153 .
  • the method can further include the step of sequentially separating a plurality of glass sheets 147 a from the glass ribbon 105 over the period of time at a location downstream along the draw path 153 from the first downstream pair of draw rolls 189 .
  • the first pull roll apparatus 149 can be provided with a second upstream pair of draw rolls 161 .
  • the method can further include the step of operating the first pull roll apparatus 149 such that the second upstream pair of draw rolls 161 apply a substantially constant force to the second edge portion 105 b of the glass ribbon 105 along the draw path 153 .
  • the second pull roll apparatus 169 can include a second midstream pair of draw rolls 179 positioned downstream along the draw path 153 from the second upstream pair of draw rolls 161 .
  • the method can further include the step of operating the second pull roll apparatus 169 such that the second midstream pair of draw rolls 179 apply a substantially constant force to the second edge portion 105 b of the glass ribbon 105 along the draw path 153 .
  • the third pull roll apparatus 187 can include a second downstream pair of draw rolls 197 positioned downstream along the draw path 153 from the second midstream pair of draw rolls 179 .
  • the method can further include the step of operating the third pull roll apparatus 187 such that at least one of the second downstream pair of draw rolls 197 rotates with a substantially constant angular velocity and the second downstream pair of draw rolls 197 apply a varying force to the second edge portion 105 b of the glass ribbon 105 along the draw path 153 .
  • the method can further include the step of independently operating the intermediate pull roll apparatus 205 , when provided, over the period of time such that at least one of the first intermediate pair of draw rolls 207 apply a substantially constant force to the first edge portion 105 a of the glass ribbon 105 along the draw path 153 .
  • the intermediate pull roll apparatus 205 can be provided with a second intermediate pair of draw rolls 215 .
  • the method can further include the step of operating the intermediate pull roll apparatus 205 such that the second intermediate pair of draw rolls 215 apply a substantially constant force to the second edge portion 105 b of the glass ribbon 105 along the draw path 153 .
  • the pull roll device 115 can be used to improve the consistency of a cross-draw tension and/or down-draw sheet tension in the glass ribbon which reduces residual stress and improves glass flatness on the manufactured glass ribbon. More specifically, the pull roll device 115 can be used to control and improve the consistency of the cross-draw tension and/or down-draw sheet tension in the area where the glass ribbon is passing through the setting zone where the product stress and flatness are set in the glass ribbon.
  • a pull roll device may only have an upper pull roll apparatus and a lower pull roll apparatus.
  • a pinch force to achieve the necessary constant torque or constant velocity at the upper pull roll apparatus and the lower pull roll apparatus, respectively, would have to be too great for large weight glass ribbon, such that the pinch force between a pair of draw rolls would crack the glass ribbon.
  • Large weight glass ribbon may be present when manufacturing large glass sheets of large width and large length and a small thickness.
  • operating the upstream pairs of draw rolls, the midstream pairs of draw rolls, and when provided, the intermediate pairs of draw rolls, in substantially constant torque mode as set forth by exemplary embodiments of the present application and as shown by plots 249 , 251 provides further advantages over operating the upstream pairs of draw rolls and the midstream pairs of draw rolls with a substantially constant angular velocity.
  • a constant angular velocity of the upstream and midstream pairs of draw rolls, and when provided, the intermediate pairs of draw rolls may provide different tensions at different diameters in the rolls.
  • operating the upstream and midstream pairs of draw rolls, and when provided, the intermediate pairs of draw rolls, at substantially constant torques allows consistent vertical tension to be achieved over time.
  • operating the upstream and midstream pairs of draw rolls, and when provided, the intermediate pairs of draw rolls, with substantially constant torque can avoid the risk of buckling or crack out that may occur when trying to adjust the speed of the upstream or midstream pairs of draw rolls, or when provided, the intermediate pairs of draw rolls, to compensate for roll wear.
  • operating the upstream and midstream pairs of draw rolls, and when provided, the intermediate pairs of draw rolls, with a substantially constant torque can avoid the risk of the rolls skipping if the constant angular velocity is too slow.
  • Fifth, operating the upstream and midstream pairs of draw rolls, and when provided, the intermediate pairs of draw rolls can avoid excess pull force variability that may occur due to roll run-out in constant angular velocity mode.
  • exemplary embodiments of the disclosure enable increased traction on the glass ribbon due to the use of multiple elevations of driven rolls. Accordingly, larger, heavier sheets, and thinner sheets with flatter surfaces may be manufactured.
  • Exemplary embodiments of the disclosure enable application of modular design that readily extends into four or more elevations.
  • Exemplary embodiments of the disclosure enable the placement of driven rolls at the desired elevations to provide the vertical and cross draw forces required to maintain flat glass ribbon through the visco-elastic zone. Accordingly, longer and wider visco-elastic zones can be achieved.
  • Exemplary embodiments of the disclosure enable placement of the lowest roll below the visco-elastic zone to maintain constant vertical force from the root through the visco-elastic zone as well as to isolate the visco-elastic zone from perturbations downstream, for example, perturbations such as impact of ribbon growth and snap-off of the ribbon into sheet.
  • modules may be implemented as a hardware circuit comprising custom VLSI circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components.
  • a module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices or the like.
  • a module may also be implemented with valves, pistons, gears, connecting members, and springs, or the like.
  • Modules may also be implemented in software for execution by various types of processors.
  • An identified module of executable code may, for instance, comprise one or more physical or logical blocks of computer instructions, which may, for instance, be organized as an object, procedure, or function. Nevertheless, the executables of an identified module need not be physically located together, but may comprise disparate instructions stored in different locations which, when joined logically together, comprise the module and achieve the stated purpose for the module.
  • a module of executable code may be a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several memory devices.
  • operational data may be identified and illustrated herein within modules, and may be embodied in any suitable form and organized within any suitable type of data structure. Operational data may be collected as a single data set, or may be distributed over different locations including over different storage devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

A glass manufacturing apparatus comprises a forming device configured to produce a glass ribbon and a control device configured to independently operate a first pull roll apparatus, a second pull roll apparatus, and a third pull roll apparatus such that at least one of a first upstream pair of draw rolls rotates with a substantially constant torque, at least one of a first midstream pair of draw rolls rotates with a substantially constant torque, and at least one of a first downstream pair of draw rolls rotates with a substantially constant angular velocity. In further examples, methods of manufacturing a glass ribbon are provided.

Description

    BACKGROUND
  • 1. Field
  • Exemplary embodiments of the present disclosure relate to an apparatus and method to manufacture glass sheet, and to fusion down draw apparatus and method to manufacture glass sheet.
  • 2. Discussion of the Background
  • Recently, interest in fusion down draw as a method of manufacturing glass sheets has been receiving increasing interest. The fusion down draw glass manufacturing may include a lower pull roll apparatus having a master motor to rotate a lower pair of rolls at a constant angular velocity and an upper pull roll apparatus with upper slave motors configured to rotate an upper pair of rolls at torques that match a predetermined percentage of the measured torque of the master motor of the lower pair of rolls.
  • As described in co-pending U.S. patent application Ser. No. 13/305,810, filed Nov. 29, 2011, the entire contents of which hereby are incorporated by reference as if fully set forth herein, the master/slave configuration of the lower/upper pull roll apparatus can be beneficial under various process applications.
  • Further, the fusion down draw glass manufacturing process may include a control device configured to independently operate the upper pull roll apparatus and the lower pull roll apparatus such that the upper pair of draw rolls rotates with a substantially constant torque and the lower pair of draw rolls rotates with a substantially constant angular velocity.
  • As glass sheet requirements become more demanding, capabilities of these pull roll apparatuses may be exceeded.
  • The above information disclosed in this Background section is only for enhancement of understanding of the background of the disclosure and therefore it may contain information that does not form any part of the prior art nor what the prior art may suggest to a person of ordinary skill in the art.
  • SUMMARY
  • Exemplary embodiments of the present disclosure provide a glass manufacturing apparatus to form a glass ribbon.
  • Exemplary embodiments of the present disclosure also provide a method to manufacture a glass ribbon.
  • Additional features will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the disclosed exemplary embodiments.
  • An exemplary embodiment discloses an apparatus configured to produce a glass ribbon. The apparatus includes a forming device that produces a glass ribbon including a width extending between a first edge portion and a second edge portion, a first pull roll apparatus, a second pull roll apparatus, a third pull roll apparatus, and a control device configured to independently operate the first pull roll apparatus, the second pull roll apparatus, and the third pull roll apparatus. The first pull roll apparatus includes a first upstream pair of draw rolls to draw the first edge portion of the glass ribbon from the forming device along a draw path extending transverse to the width of the glass ribbon. The second pull roll apparatus includes a first midstream pair of draw rolls positioned downstream along the draw path from the first upstream pair of draw rolls, such that the first midstream pair of draw rolls further draws the first edge portion of the glass ribbon along the draw path. The third pull roll apparatus includes a first downstream pair of draw rolls positioned downstream along the draw path from the first midstream pair of draw rolls to further draw the first edge portion of the glass ribbon along the draw path. The control device independently operates the first pull roll apparatus, the second pull roll apparatus, and the third pull roll apparatus such that at least one draw roll of the first upstream pair of draw rolls rotates with a substantially constant torque, at least one draw roll of the first midstream pair of draw rolls rotates with a substantially constant torque and at least one draw roll of the first downstream pair of draw rolls rotates with a substantially constant angular velocity.
  • An exemplary embodiment also discloses a method of manufacturing a glass ribbon. The method includes providing a first pull roll apparatus comprising a first upstream pair of draw rolls, a second pull roll apparatus comprising a first midstream pair of draw rolls positioned downstream along a draw path from the first upstream pair of draw rolls, and a third pull roll apparatus comprising a first downstream pair of draw rolls positioned downstream along the draw path from the first midstream pair of draw rolls. The method includes forming a glass ribbon with a width extending between a first edge portion and a second edge portion, and independently operating the first pull roll apparatus such that at least one draw roll of the first upstream pair of draw rolls rotates with a substantially constant torque to draw the first edge portion of the glass ribbon along the draw path. The method includes independently operating the second pull roll apparatus such that at least one draw roll of the first midstream pair of draw rolls rotates with a substantially constant torque to further draw the first edge portion of the glass ribbon along the draw path and independently operating the third pull roll apparatus such that at least one of the first downstream pair of draw rolls rotates with a substantially constant angular velocity to further draw the first edge portion of the glass ribbon along the draw path.
  • It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the disclosure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are included to provide a further understanding of the exemplary embodiments and are incorporated in and constitute a part of this specification, illustrate exemplary embodiments of the disclosure, and together with the description serve to explain the principles of the disclosure.
  • FIG. 1 illustrates a glass manufacturing apparatus according to an exemplary embodiment of the disclosure.
  • FIG. 2 is a side view of the glass manufacturing apparatus of FIG. 1 according to an exemplary embodiment of the disclosure.
  • FIG. 3 is a top view of the glass manufacturing apparatus of FIG. 1 at a first elevation according to an exemplary embodiment of the disclosure.
  • FIG. 4 is a top view of the glass manufacturing apparatus of FIG. 1 at a second elevation according to an exemplary embodiment of the disclosure.
  • FIG. 5 is a top view of the glass manufacturing apparatus of FIG. 1 at a third elevation according to an exemplary embodiment of the disclosure.
  • FIG. 6 illustrates a glass manufacturing apparatus according to an exemplary embodiment of the disclosure.
  • FIG. 7 is a top view of the glass manufacturing apparatus of FIG. 6 at an intermediate elevation according to an exemplary embodiment of the disclosure.
  • FIG. 8 illustrates an exemplary graph of independent constant force input control at two different elevations according to exemplary embodiments of the disclosure.
  • FIG. 9 illustrates an exemplary graph of the forces experienced at the lowest draw rolls according to exemplary embodiments of the disclosure.
  • FIG. 10 illustrates an exemplary graph of the speed of the lowest draw rolls according to exemplary embodiments of the disclosure.
  • DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS
  • The disclosure is described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments are shown. The claims may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure is thorough, and will fully convey the scope of the claims to those skilled in the art. In the drawings, the size and relative sizes of layers and regions may be exaggerated for clarity. Like reference numerals in the drawings denote like elements.
  • It will be understood that when an element is referred to as being “on” or “connected to” another element, it can be directly on or directly connected to the other element, or intervening elements may be present. In contrast, when an element is referred to as being “directly on” or “directly connected to” another element, there are no intervening elements present. It will be understood that for the purposes of this disclosure, “at least one of X, Y, and Z” can be construed as X only, Y only, Z only, or any combination of two or more items X, Y, and Z (e.g., XYZ, XYY, YZ, ZZ).
  • Referring now to FIGS. 1 and 2, there is shown schematic front and side views of an exemplary embodiment of a glass manufacturing apparatus 101 that may be used in accordance with aspects of the disclosure. The glass manufacturing apparatus 101 is illustrated as a down draw fusion apparatus although other forming apparatus may be used in further examples. In one example, the glass manufacturing apparatus 101 can include a forming device 103 to produce a glass ribbon 105 including a width “W” extending between a first edge portion 105 a and a second edge portion 105 b of the glass ribbon 105.
  • As further illustrated in FIGS. 1 and 2, the glass manufacturing apparatus 101 can include a pull roll device 115 and a separating device 119. Various forming devices may be used in accordance with aspects of the disclosure. For example, as shown in FIGS. 1 and 2, the forming device 103 includes an opening 133 that receives molten glass 123 which flows into a trough 135. The molten glass 123 from the trough 135 then overflows and runs down two sides 137 a and 137 b before fusing together at a root 139 of the forming device 103. The root 139 is where the two sides 137 a, 137 b come together and where the two overflow walls of molten glass 123 flowing over each of the two sides 137 a, 137 b fuse together as the glass ribbon 105 drawn downward off the root 139.
  • A portion of the glass ribbon 105 is drawn off the root 139 into a viscous zone 141 wherein the glass ribbon 105 begins thinning to a final thickness. The portion of the glass ribbon 105 is then drawn from the viscous zone 141 into a setting zone 143 (visco-elastic zone). In the setting zone 143, the portion of the glass ribbon 105 is set from a viscous state to an elastic state with the desired profile. The portion of the glass ribbon 105 is then drawn from the setting zone 143 to an elastic zone 145. Once in the elastic zone 145, the glass ribbon 105 may be deformed, within limits, without permanently changing the profile of the glass ribbon 105.
  • After the portion of the glass ribbon 105 enters the elastic zone 145, a separating device 119 may be provided to sequentially separate a plurality of glass sheets 147 a, 147 b from the glass ribbon 105 over a period of time. The separating device 119 may comprise the illustrated traveling anvil machine although further separating devices may be provided in further examples.
  • The glass manufacturing apparatus 101 further includes a pull roll device 115 schematically illustrated in FIGS. 1 and 2. As discussed more fully below, the pull roll device 215 may be provided to help draw the glass ribbon 105 from the root 139 and may isolate transmission of forces up the glass ribbon 105 from the elastic zone 145 to the setting zone 143. As such, the pull roll devices of the present disclosure can draw the glass ribbon to the desired thickness while also reducing residual stress within the glass sheet. As shown, the pull roll device 115 can be located within the viscous zone 141, the setting zone 143, and the elastic zone 145. Indeed, as illustrated in the drawings, the first pull roll apparatus (discussed more fully below) is located within the viscous zone 141 or may be located at the top of the setting zone 143 adjacent to the viscous zone 141. The second pull roll apparatus (discussed more fully below) is located within the setting zone 143 and the third pull roll apparatus (discussed more fully below) is located within the elastic zone 145.
  • FIG. 1, FIG. 2, and FIG. 3 illustrate a first example of the pull roll device 115 in accordance with one exemplary embodiment of the disclosure although other pull roll device 115 constructions may be provided in further examples. The pull roll device 115 can include a first pull roll apparatus 149 including a first upstream pair of draw rolls 151 configured to draw the first edge portion 105 a of the glass ribbon 105 from the forming device 103 along a draw path 153 extending transverse to the width “W” of the glass ribbon 105.
  • As shown, the first upstream pair of draw rolls 151 can include a first pull roll member 155 a and a second pull roll member 155 b. The first and second pull roll members 155 a, 155 b can each be provided with a respective refractory roll covering 157 a, 157 b configured to engage the first edge portion 105 a of the glass ribbon 105 therebetween. At least one of the first and second pull roll members 155 a, 155 b may be provided with a respective motor 159 a, 159 b. For example, as shown, both the first and second pull roll members 155 a, 155 b are provided with a respective motor 159 a, 159 b. In further examples, only one of the first and second pull roll members 155 a, 155 b is provided with a motor wherein the other pull roll member may be provided with a bearing such that only one of the first and second pull roll members 155 a, 155 b is driven.
  • In another example, in addition or in alternative to the first upstream pair of draw rolls 151, the first pull roll apparatus 149 can include a second upstream pair of draw rolls 161 configured to draw the second edge portion 105 b of the glass ribbon 105 from the forming device 103 along the draw path 153. As shown, the second upstream pair of draw rolls 161 can include a first pull roll member 163 a and a second pull roll member 163 b. The first and second pull roll members 163 a, 163 b can each be provided with a respective refractory roll covering 165 a, 165 b configured to engage the second edge portion 105 b of the glass ribbon 105 therebetween. At least one of the first and second pull roll members 163 a, 163 b may be provided with a respective motor 167 a, 167 b. For example, as shown, both the first and second pull roll members 163 a, 163 b are provided with a respective motor 167 a, 167 b. In further examples, only one of the first and second pull roll members 167 a, 167 b is provided with a motor wherein the other pull roll member may be provided with a bearing such that only one of the first and second pull roll members 167 a, 167 b is driven.
  • As shown in FIG. 1, FIG. 2, and FIG. 4, the pull roll device 115 further includes a second pull roll apparatus 169 including a first midstream pair of draw rolls 171 positioned downstream along the draw path 153 from the first upstream pair of draw rolls 151, wherein the first midstream pair of draw rolls 171 are configured to further draw the first edge portion 105 a of the glass ribbon 105 along the draw path 153. As shown, the first midstream pair of draw rolls 171 can include a first pull roll member 173 a and a second pull roll member 173 b. The first and second pull roll members 173 a, 173 b can each be provided with a respective refractory roll covering 175 a, 175 b configured to engage the first edge portion 105 a of the glass ribbon 205 therebetween. At least one of the first and second pull roll members 173 a, 173 b may be provided with a respective motor 177 a, 177 b. For example, as shown, both the first and second pull roll members 173 a, 173 b are provided with a respective motor 177 a, 177 b. In further examples, only one of the first and second pull roll members 173 a, 173 b is provided with a motor wherein the other pull roll member may be provided with a bearing such that only one of the first and second pull roll members 173 a, 173 b is driven.
  • In another example, in addition or in alternative to the first midstream pair of draw rolls 171, the second pull roll apparatus 169 can include a second midstream pair of draw rolls 179 positioned downstream along the draw path 153 from the second upstream pair of draw rolls 161, wherein the second midstream pair of draw rolls 179 are configured to further draw the second edge portion 105 b of the glass ribbon 105 along the draw path 153. As shown, the second midstream pair of draw rolls 179 can include a first pull roll member 181 a and a second pull roll member 181 b. The first and second pull roll members 181 a, 181 b can each be provided with a respective refractory roll covering 183 a, 183 b configured to engage the second edge portion 105 b of the glass ribbon 105 therebetween. At least one of the first and second pull roll members 181 a, 181 b may be provided with a respective motor 185 a, 185 b. For example, as shown, both the first and second pull roll members 181 a, 181 b are provided with a respective motor 185 a, 185 b. In further examples, only one of the first and second pull roll members 181 a, 181 b is provided with a motor wherein the other pull roll member may be provided with a bearing such that only one of the first and second pull roll members 181 a, 181 b is driven.
  • As shown in FIG. 1, FIG. 2, and FIG. 5, the pull roll device 115 further includes a third pull roll apparatus 187 including a first downstream pair of draw rolls 189 positioned downstream along the draw path 153 from the first midstream pair of draw rolls 171, wherein the first downstream pair of draw rolls 189 are configured to further draw the first edge portion 105 a of the glass ribbon 105 along the draw path 153. As shown, the first downstream pair of draw rolls 189 can include a first pull roll member 191 a and a second pull roll member 191 b. The first and second pull roll members 191 a, 191 b can each be provided with a respective refractory roll covering 193 a, 193 b configured to engage the first edge portion 105 a of the glass ribbon 105 therebetween. At least one of the first and second pull roll members 191 a, 191 b may be provided with a respective motor 195 a, 195 b. For example, as shown, both the first and second pull roll members 191 a, 191 b are provided with a respective motor 195 a, 195 b. In further examples, only one of the first and second pull roll members 191 a, 191 b is provided with a motor wherein the other pull roll member may be provided with a bearing such that only one of the first and second pull roll members 191 a, 191 b is driven.
  • In another example, in addition or in alternative to the first downstream pair of draw rolls 189, the third pull roll apparatus 187 can include a second downstream pair of draw rolls 197 positioned downstream along the draw path 153 from the second midstream pair of draw rolls 179, wherein the second downstream pair of draw rolls 197 are configured to further draw the second edge portion 105 b of the glass ribbon 105 along the draw path 153. As shown, the second downstream pair of draw rolls 197 can include a first pull roll member 199 a and a second pull roll member 199 b. The first and second pull roll members 199 a, 199 b can each be provided with a respective refractory roll covering 201 a, 201 b configured to engage the second edge portion 105 b of the glass ribbon 105 therebetween. At least one of the first and second pull roll members 199 a, 199 b may be provided with a respective motor 203 a, 203 b. For example, as shown, both the first and second pull roll members 199 a, 199 b are provided with a respective motor 203 a, 203 b. In further examples, only one of the first and second pull roll members 199 a, 199 b is provided with a motor wherein the other pull roll member may be provided with a bearing such that only one of the first and second pull roll members 199 a, 199 b is driven. It should be appreciated that the pulling roll device 115 may also include optional pair(s) of edge rolls 202 (202 a, 202 b) and 204 and/or optional pair(s) of idle stub rolls 206, 208 (See FIGS. 1, 2, and 6).
  • As shown in FIG. 6 and FIG. 7, the pull roll device 115 can further include an intermediate pull roll apparatus 205 including a first intermediate pair of draw rolls 207 positioned downstream along the draw path 153 from the first midstream pair of draw rolls 171 and upstream along the draw path from the first downstream pair of draw rolls 189. The first intermediate pair of draw rolls 207 are configured to further draw the first edge portion 105 a of the glass ribbon 105 along the draw path 153. As shown, the first intermediate pair of draw rolls 207 can include a first pull roll member 209 a and a second pull roll member 209 b. The first and second pull roll members 209 a, 209 b can each be provided with a respective refractory roll covering 211 a, 211 b configured to engage the first edge portion 105 a of the glass ribbon 105 therebetween. At least one of the first and second pull roll members 209 a, 209 b may be provided with a respective motor 213 a, 213 b. For example, as shown, both the first and second pull roll members 213 a, 213 b are provided with a respective motor 213 a, 213 b. In further examples, only one of the first and second pull roll members 209 a, 209 b is provided with a motor wherein the other pull roll member may be provided with a bearing such that only one of the first and second pull roll members 209 a, 209 b is driven.
  • In another example, in addition or in alternative to the first intermediate pair of draw rolls 207, the intermediate pull roll apparatus 205 can include a second intermediate pair of draw rolls 215 positioned downstream along the draw path 153 from the second midstream pair of draw rolls 179 and upstream along the draw path 153 from the second downstream pair of draw rolls 197. The second midstream pair of draw rolls 215 are configured to further draw the second edge portion 105 b of the glass ribbon 105 along the draw path 153. As shown, the second intermediate pair of draw rolls 215 can include a first pull roll member 217 a and a second pull roll member 217 b. The first and second pull roll members 217 a, 217 b can each be provided with a respective refractory roll covering 219 a, 219 b configured to engage the second edge portion 105 b of the glass ribbon 105 therebetween. At least one of the first and second pull roll members 217 a, 217 b may be provided with a respective motor 221 a, 221 b. For example, as shown, both the first and second pull roll members 217 a, 217 b are provided with a respective motor 221 a, 221 b. In further examples, only one of the first and second pull roll members 217 a, 217 b is provided with a motor wherein the other pull roll member may be provided with a bearing such that only one of the first and second pull roll members 217 a, 217 b is driven.
  • Although the intermediate pull roll apparatus 205 is described and illustrated as positioned at a fourth elevation between the second pull roll apparatus 169 and the third pull roll apparatus 187, the disclosure is not limited to these exemplary embodiments. The intermediate pull roll apparatus 205 may be positioned at various elevations of the pull roll device 115. Further, the intermediate pull roll apparatus 205 may be modular such that multiple pull roll apparatus 205 may be included in the pull roll device 115 and positioned along the draw path 153 at various elevations.
  • While each pair of draw rolls has been described as including a first and second pull roll member, the first and second pull roll members can also be referred to as a draw roll of the pair of draw rolls.
  • The pull roll device 115 of the glass manufacturing apparatus 101 can further include a control device 223 (e.g., programmable logic controller) configured to independently operate the first pull roll apparatus 149, the second pull roll apparatus 169, and the third pull roll apparatus 187 such that at least one of the first upstream pair of draw rolls 151 rotates with a substantially constant torque, at least one of the first midstream pair of draw rolls 171 rotates with a substantially constant torque, and at least one of the first downstream pair of draw rolls 189 rotates with a substantially constant angular velocity. The control device 223 can communicate 225 with the pull roll apparatus 149, 169, 187, 205 through cables, wireless networks, wired networks, combinations thereof, and the like. Independent operation of the first, second, and third pull roll apparatus 149, 169, 187, for purposes of this disclosure, means that one of the first, second, and third pull roll apparatus may be operated without being affected by operation of the other of the first, second, and third pull roll apparatus. As such, for example, independently operating the first pull roll apparatus 149 with the control device 223 provides for the control device to operate the first pull roll apparatus 149 without considering changes in operating parameters of the second pull roll apparatus 169 or the third pull roll apparatus 187. Also, for example, independently operating the second pull roll apparatus 169 with the control device 223 provides for the control device to operate the second pull roll apparatus 169 without considering changes in operating parameters of the first pull roll apparatus 149 or the third pull roll apparatus 187. Further, for example, independently operating the third pull roll apparatus 187 with the control device 223 provides for the control device to operate the third pull roll apparatus 187 without considering changes in operating parameters of the first pull roll apparatus 149 or the second pull roll apparatus 169.
  • As mentioned previously, the first upstream pair of draw rolls 151 can include a single motor associated with one of the first or second pull roll members 155 a, 155 b. In such an example, the control device 223 can operate the single motor such that the associated first or second pull roll members 155 a, 155 b is rotated with a substantially constant torque. As further described above, each of the first and second pull roll members 155 a, 155 b may be provided with a corresponding motor 159 a, 159 b. In such examples, the control device 223 may operate the motors 159 a, 159 b such that at least one, such as both, of the first upstream pair of draw rolls 151 rotate with a substantially constant torque. Rotating both pull roll members 159 a, 159 b of the first upstream pair of draw rolls 151 with a substantially constant torque may be desirable to apply force equally at both sides of the first edge portion 105 a of the glass ribbon 105.
  • As mentioned previously, first pull roll apparatus 149 may also include an optional second upstream pair of draw rolls 161. In such examples, the second upstream pair of draw rolls 161 can include a single motor associated with one of the first or second pull roll members 163 a, 163 b. In such an example, the control device 223 can operate the single motor such that the associated first or second pull roll members 163 a, 163 b is rotated with a substantially constant torque. As further described above, each of the first and second pull roll members 163 a, 163 b may be provided with a corresponding motor 167 a, 167 b. In such examples, the control device 223 may operate the motors 167 a, 167 b such that at least one, such as both, of the second upstream pair of draw rolls 161 rotate with a substantially constant torque. Rotating both pull roll members 163 a, 163 b of the second upstream pair of draw rolls 161 with a substantially constant torque may be desirable to apply force equally at both sides of the second edge portion 105 b of the glass ribbon 105.
  • Although not required, in some examples, the control device 223 can operate one or both of the motors associated with the first upstream pair of draw rolls 151 with a substantially constant first torque and can simultaneously operate one or both of the motors associated with the second upstream pair of draw rolls 161 to rotate with a substantially constant second torque that is substantially equal to the first torque. Providing substantially equal first and second torques can be desired, for example, to apply substantially the same force to the glass ribbon 105 and the first and second edge portions 105 a, 105 b.
  • As mentioned previously, second pull roll apparatus 169 may also include an optional second midstream pair of draw rolls 179. In such examples, the second midstream pair of draw rolls 179 can include a single motor associated with one of the first or second pull roll members 181 a, 181 b. In such an example, the control device 223 can operate the single motor such that the associated first or second pull roll members 181 a, 181 b is rotated with a substantially constant torque. As further described above, each of the first and second pull roll members 181 a, 181 b may be provided with a corresponding motor 185 a, 185 b. In such examples, the control device 223 may operate the motors 185 a, 185 b such that at least one, such as both, of the second midstream pair of draw rolls 179 rotate with a substantially constant torque. Rotating both pull roll members 181 a, 181 b of the second midstream pair of draw rolls 179 with a substantially constant torque may be desirable to apply force equally at both sides of the second edge portion 105 b of the glass ribbon 105.
  • Although not required, in some examples, the control device 223 can operate one or both of the motors associated with the first midstream pair of draw rolls 171 with a substantially constant first torque and can simultaneously operate one or both of the motors associated with the second midstream pair of draw rolls 179 to rotate with a substantially constant second torque that is substantially equal to the first torque. Providing substantially equal first and second torques can be desired, for example, to apply substantially the same force to the glass ribbon 105 and the first and second edge portions 105 a, 105 b.
  • As mentioned previously, first downstream pair of draw rolls 189 can include a single motor associated with one of the first or second pull roll members 191 a, 191 b. In such an example, the control device 223 can operate the single motor such that the associated first or second pull roll members 191 a, 191 b rotates with a substantially constant angular velocity. As further described above, each of the first and second pull roll members 191 a, 191 b may be provided with a corresponding motor 195 a, 195 b. In such examples, the control device 223 may operate the motors 195 a, 195 b such that at least one, such as both, of the first downstream pair of draw rolls 189 rotate with a substantially constant angular velocity. Rotating both pull roll members 191 a, 191 b of the first downstream pair of draw rolls 189 with a substantially constant angular velocity may be desirable to draw the glass ribbon equally at both sides of the first edge portion 105 a of the glass ribbon 105.
  • As mentioned previously, third pull roll apparatus 187 may also include an optional second downstream pair of draw rolls 197. In such examples, the second downstream pair of draw rolls 197 can include a single motor associated with one of the first or second pull roll members 199 a, 199 b. In such an example, the control device 223 can operate the single motor such that the associated first or second pull roll members 199 a, 199 b is rotated with a substantially constant angular velocity. As further described above, each of the first and second pull roll members 199 a, 199 b may be provided with a corresponding motor 203 a, 203 b. In such examples, the control device 223 may operate at least one, such as both, of the second downstream pair of draw rolls 197 to rotate with a substantially constant angular velocity. Rotating both pull roll members 199 a, 199 b of the second downstream pair of draw rolls 197 with a substantially constant angular velocity may be desirable to draw the glass ribbon equally at both sides of the second edge portion 105 b of the glass ribbon 105.
  • Although not required, in some examples, the control device 223 can operate one or both of the motors associated with the first downstream pair of draw rolls 189 with a substantially constant first angular velocity and can simultaneously operate one or both of the motors associated with the second downstream pair of draw rolls 197 to rotate with a substantially constant second angular velocity that is substantially equal to the first angular velocity. Providing substantially equal first and second angular velocities can be desired, for example, to draw the glass ribbon equally at the first and second edge portions 105 a, 105 b.
  • As mentioned, the control device 223 can be configured to independently operate the first pull roll apparatus 149 such that at least one of the first and second upstream pair of draw rolls 151, 161 rotates with a substantially constant torque; however, the embodiments are not so limited. That is, the control device 223 can be configured in an exemplary embodiment to independently operate the first pull roll apparatus 149 such that at least one of the first and second upstream pair of draw rolls 151, 161 rotates not with constant torque, but with a substantially constant angular velocity. Further, the control device 223 can be configured to independently operate the second pull roll apparatus 169 such that at least one of the first and second midstream pair of draw rolls 171, 179 rotates not with constant torque, but with a substantially constant angular velocity.
  • The control device 223 can further be configured to independently operate the intermediate pull roll apparatus 205 such that at least one of the first and second intermediate pair of draw rolls 207, 215 rotates with a substantially constant torque. Alternatively, the control device 223 can be configured to independently operate the intermediate pull roll apparatus 205 such that at least one of the first and second intermediate pair of draw rolls 207, 215 rotates not with constant torque, but with a substantially constant angular velocity.
  • Table 1 provides five different independent Control schemes according to exemplary embodiments of the disclosure. For example, as shown in Table 1, Control scheme “A” includes the control device 223 configured to independently operate the first pull roll apparatus 149 such that at least one of the first and second upstream pair of draw rolls 151, 161 rotates with a substantially constant torque, to independently operate the second pull roll apparatus 169 such that at least one of the first and second midstream pair of draw rolls 171, 179 rotates with a substantially constant torque, to independently operate the third pull roll apparatus 187 such that at least one of the first and second downstream pair of draw rolls 189, 197 rotates with a substantially constant angular velocity, and the control device 223 configured to independently operate the intermediate pull roll apparatus 205, if provided, such that at least one of the first and second intermediate pair of draw rolls 207, 215, rotates with a substantially constant torque or such that at least one of the first and second intermediate pair of draw rolls 207, 215, rotates not with constant torque, but with a substantially constant angular velocity.
  • As another example shown in Table 1, Control scheme “E” includes the control device 223 configured to independently operate the first pull roll apparatus 149 such that at least one of the first and second upstream pair of draw rolls 151, 161 rotates with a substantially constant torque, to independently operate the second pull roll apparatus 169 such that at least one of the first and second midstream pair of draw rolls 171, 179 rotates with a substantially constant torque, to independently operate the third pull roll apparatus 187 such that at least one of the first and second downstream pair of draw rolls 189, 197 rotates with a substantially constant torque, and the control device 223 configured to independently operate the intermediate pull roll apparatus 205, if provided, such that at least one of the first and second intermediate pair of draw rolls 207, 215, rotates with a substantially constant torque.
  • TABLE 1
    Pull Roll Apparatus Control
    Elevation Position A B C D E
    1 upstream torque torque torque velocity torque
    2 midstream torque torque velocity velocity torque
    intermediate intermediate torque/ torque/ velocity velocity torque
    (optional) (various) velocity velocity
    3 downstream velocity velocity velocity velocity torque
  • In some examples, the pairs of draw rolls discussed throughout the application may have similar constructions and orientations as set forth in U.S. Patent Application Publication No. 2009/0107182 that published on Apr. 30, 2009 to Anderson et al., which is herein incorporated by reference in its entirety. For example, any of the pairs of draw rolls may be vertically downtilted or horizontally level rolls with respect to the glass ribbon.
  • Moreover, as shown in FIGS. 3 and 4, any of the pairs of rolls (horizontally level or downtilted) may be positioned to have a predetermined horizontal angle θ that a respective face of the rolls would be positioned relative to a respective major surface 227, 229 of the glass ribbon 105. The horizontal angle θ can be desirable to provide an appropriate level of cross-draw tension 231 and/or accommodate a taper effect that may occur during normal roll wear.
  • FIGS. 1 and 6 illustrate examples where each of the first pull roll members 155 a, 163 a, 173 a, 181 a, 191 a, 199 a, 209 a, 217 a of the pairs of draw rolls can comprise vertically downtilted rolls with respect to the glass ribbon 105. The second pull roll members 155 b, 163 b, 173 b, 181 b, 191 b, 199 b, 209 b, 217 b of the pairs of draw rolls can likewise comprise vertically downtilted rolls with respect to the glass ribbon 105. The downtilt angle of any pair of the draw rolls may be different or the same as any other pair of draw rolls depending on process considerations. Downtilting of the first and/or second upstream pair of draw rolls 151, 161 can provide a desired level of cross-draw tension 231 between the two pairs of draw rolls 151, 161. Downtilting of the first and/or second midstream pair of draw rolls 171, 179 can provide a desired level of cross-draw tension 233 between the two pairs of draw rolls 171, 179. Downtilting of the first and/or second downstream pair of draw rolls 189, 197 can provide a desired level of cross-draw tension 235 between the two pairs of draw rolls 189, 197. Likewise, downtilting the first and/or second intermediate pair of draw rolls 207, 215 can provide a desired level of cross-draw tension 237 between the two pairs of draw rolls 207, 215.
  • In some examples, the control device 223 may be configured to activate an automatic positioner (not shown) or a manual mechanism may be used to adjust the downtilt position of the vertically downtilted rolls so as to control (or tune) the average cross-draw tension 231, 233, 235, 237 across the glass ribbon 105.
  • In further examples, one or more of the pairs of draw rolls 151, 161, 171, 179, 189, 197, 207, 215 may be horizontally level rolls with respect to the glass ribbon wherein the rotation axis of the draw rolls extend substantially perpendicular to the draw path 105 of the glass ribbon. Providing one or both of the pairs of rolls of the pull roll device as horizontally level rolls may be desired if cross-wise tension is not necessary across the width of the glass ribbon along the pairs of rolls.
  • Methods of manufacturing the glass ribbon 105 will now be described with respect to the pull roll device 115 illustrated in FIGS. 1-7.
  • Referring to FIGS. 1, 2, and 3, the method can include the steps of providing the first pull roll apparatus 149 including the first upstream pair of draw rolls 151. In another example, the first pull roll apparatus 149 may optionally be provided with a second upstream pair of draw rolls 161.
  • Referring to FIGS. 1, 2, and 4, the method further includes the step of providing the second pull roll apparatus 169 including the first midstream pair of draw rolls 171 positioned downstream along the draw path 153 from the first upstream pair of draw rolls 151. In a further example, the second pull roll apparatus 169 may optionally be provided with a second midstream pair of draw rolls 179 positioned downstream along the draw path 153 from the second upstream pair of draw rolls 161.
  • The method further includes the step of providing the third pull roll apparatus 187 including the first downstream pair of draw rolls 189 positioned downstream along the draw path 153 from the first midstream pair of draw rolls 171. In a further example, the third pull roll apparatus 187 may optionally be provided with a second downstream pair of draw rolls 197 positioned downstream along the draw path 153 from the second midstream pair of draw rolls 179.
  • Optionally, the method further includes the step of providing the intermediate pull roll apparatus 205 including the first intermediate pair of draw rolls 207 positioned downstream along the draw path 153 from the first midstream pair of draw rolls 171 and upstream along the draw path 153 from the first downstream pair of draw rolls 189. In a further example, the intermediate pull roll apparatus 205 may optionally be provided with a second intermediate pair of draw rolls 215 positioned downstream along the draw path 153 from the second midstream pair of draw rolls 179 and upstream along the draw path 153 from the second downstream pair of draw rolls 197.
  • The method further includes the step of forming the glass ribbon 105 with the width “W” extending between the first edge portion 105 a and the second edge portion 105 b. The first pull roll apparatus 149 can be independently operated, for example, with the control device 223 without input from the second pull roll apparatus 169 or input from the third pull roll apparatus 187, or, when any intermediate pull roll apparatus 205 is provided, without input from the intermediate pull roll apparatus 205. For instance, the first pull roll apparatus 149 can be independently operated such that at least one draw roll (pull roll member 155 a, 155 b) of the first upstream pair of draw rolls 151 rotates with a substantially constant torque to draw the first edge portion 105 a of the glass ribbon 105 along the draw path 153. In one example, the first pull roll apparatus 149 can be operated such that both draw rolls (pull roll members 155 a, 155 b) of the first upstream pair of draw rolls 151 rotate with a substantially constant torque.
  • The second upstream pair of draw rolls 161, if provided, can also be independently operated such that at least one draw roll (pull roll member 163 a, 163 b) of the second upstream pair of draw rolls 161 rotates with a substantially constant torque to draw the second edge portion 105 b of the glass ribbon 105 along the draw path 153. In one example, the first pull roll apparatus 149 can be operated such that both of the draw rolls (pull roll members 163 a, 163 b) of the second upstream pair of draw rolls 161 rotate with a substantially constant torque. As such, a desired tension 239 along the draw path 153 may be maintained in the glass ribbon 105 between the root 139 and the first pull roll apparatus 149.
  • The method further independently operates the second pull roll apparatus 169 such that at least one draw roll (pull roll member 173 a, 173 b) of the first midstream pair of draw rolls 171 rotates with a substantially constant torque to further draw the first edge portion 105 a of the glass ribbon 105 along the draw path 153. In one example, the method can include the step of operating the second pull roll apparatus 169 such that both draw rolls (pull roll members 173 a, 173 b) of the first midstream pair of draw rolls 171 rotate with a substantially constant torque.
  • The second midstream pair of draw rolls 179, if provided, can also be independently operated such that at least one draw roll (pull roll member 181 a, 181 b) of the second midstream pair of draw rolls 179 rotates with a substantially constant torque to draw the second edge portion 105 b of the glass ribbon 105 along the draw path 153. In one example, the second pull roll apparatus 169 can be operated such that both of the draw rolls (pull roll members 181 a, 181 b) of the second midstream pair of draw rolls 179 rotate with a substantially constant torque. As such, a desired tension 241 along the draw path 153 may be maintained in the glass ribbon 105 between the first pull roll apparatus 149 and the second pull roll apparatus 169.
  • The method further independently operates the third pull roll apparatus 187 such that at least one draw roll (pull roll member 191 a, 191 b) of the first downstream pair of draw rolls 189 rotates with a substantially constant angular velocity to further draw the first edge portion 105 a of the glass ribbon 105 along the draw path 153. In one example, the method can include the step of operating the third pull roll apparatus 187 such that both draw rolls (pull roll members 191 a, 191 b) of the first downstream pair of draw rolls 189 rotate with a substantially constant angular velocity.
  • The second downstream pair of draw rolls 197, if provided, can also be independently operated such that at least one draw roll (pull roll member 199 a, 199 b) of the second downstream pair of draw rolls 197 rotates with a substantially constant angular velocity to further draw the second edge portion 105 b of the glass ribbon 105 along the draw path 153. In one example, the method can include the step of operating the third pull roll apparatus 187 such that both draw rolls (pull roll members 199 a, 199 b) of the second downstream pair of draw rolls 197 rotate with a substantially constant angular velocity. As such, a desired tension 243 along the draw path 153 may be maintained in the glass ribbon 105 between the second pull roll apparatus 169 and the third pull roll apparatus 187.
  • When provided, the method further independently operates the intermediate pull roll apparatus 205 such that at least one draw roll (pull roll member 209 a, 209 b) of the first intermediate pair of draw rolls 207 rotates with a substantially constant torque to further draw the first edge portion 105 a of the glass ribbon 105 along the draw path 153 (FIGS. 6 and 7). In one example, the method can include the step of operating the intermediate pull roll apparatus 205 such that both draw rolls (pull roll members 209 a, 209 b) of the first intermediate pair of draw rolls 207 rotate with a substantially constant torque.
  • The second intermediate pair of draw rolls 215, if provided, can also be independently operated such that at least one draw roll (pull roll member 217 a, 217 b) of the second intermediate pair of draw rolls 215 rotates with a substantially constant torque to further draw the second edge portion 105 b of the glass ribbon 105 along the draw path 153. In one example, the method can include the step of operating the intermediate pull roll apparatus 205 such that both draw rolls (pull roll members 217 a, 217 b) of the second intermediate pair of draw rolls 215 rotate with a substantially constant torque. As such, a desired tension 245 along the draw path 153 may be maintained in the glass ribbon 105 between the second pull roll apparatus 169 and the intermediate pull roll apparatus 205 and a desired tension 247 along the draw path 153 may be maintained in the glass ribbon 105 between the intermediate pull roll apparatus 205 and the third pull roll apparatus 187.
  • While the exemplary embodiments describe the first pull roll apparatus 149 operated in constant torque mode, the second pull roll apparatus 169 operated in constant torque mode, the third pull roll apparatus 187 operated in constant angular velocity mode, and the intermediate pull roll apparatus 205 operated in constant torque mode, the disclosure is not so limited. That is, each one of the pull roll apparatus can be operated in a constant torque mode or a constant angular velocity mode. For example, the pull roll apparatus can be operated in the Control schemes of Table 1. For example, the first pull roll apparatus 149 can be operated in constant torque mode, the second pull roll apparatus 169 can be operated in constant angular velocity mode, the third pull roll apparatus 187 operated in constant angular velocity mode, and the intermediate pull roll apparatus 205, if provided, operated in constant angular velocity mode in Control scheme “C” of Table 1.
  • The method can further include the step of sequentially separating a plurality of glass sheets 147 a, 147 b from the glass ribbon 105 over a period of time at a location downstream along the draw path 153 from the first downstream pair of draw rolls 189. For example, as shown in FIGS. 1 and 2, the separating device 119 may be periodically activated to sequentially separate a plurality of glass sheets 147 a, 147 b as the glass ribbon 105 is drawn from the forming device 103.
  • FIG. 8 shows constant force at two different elevations, for example, curve 249 shows the constant force at the first pull roll apparatus 149 in the viscous zone 141 in FIG. 1 and curve 251 shows the constant force at the second pull roll apparatus 169 in the setting (visco-elastic) zone 143 in FIG. 1. The control device 223 can be configured by a user to independently operate the first pull roll apparatus 149 and the second pull roll apparatus 169 at constant force over time. Hence, the glass ribbon 105 experiences constant vertical forces from the root 139 to the lowest roll, the third pull roll apparatus 187.
  • As shown in FIG. 1, the lowest roll, the third pull roll apparatus 187, operates as the master roll and operates at constant velocity to control the speed of the glass ribbon 105.
  • FIG. 9 shows an example graph of the forces applied to the glass ribbon 105 by the first and second downstream pair of draw rolls 189, 197. The Y-axis is force (pounds) and the X-axis is time (hours: minutes). One plot 253 represents the force being applied to the glass ribbon 105 by the first downstream pair of draw rolls 189 at the first edge portion 105 a while the other plot 255 represents the force being applied to the glass ribbon 105 by the second downstream pair of draw rolls 197 at the second edge portion 105 b. The force diagram shows a saw tooth pattern associated with the gradual change in glass ribbon 105 weight due to growth and the abrupt change in glass ribbon 105 weight due to snap-off of a glass sheet 147 a from the glass ribbon 105. Since the third pull roll apparatus 187 is located downstream of the visco-elastic zone 143 as described by the viscosity equation (Equation 1), in the elastic zone 145 as shown in FIG. 1, the first and second downstream pair of draw rolls 189, 197 isolate propagation of perturbations into the visco-elastic (setting) zone 143.
  • η ( T ) G = 10000 sec [ Equation 1 ]
  • Where Viscosity (η) has units of Pa·s and Shear Modulus (G) has units of Pa. Therefore η/G has units of time.
  • As shown in FIGS. 8 and 9, throughout a period of time, the first and second upstream pair of draw rolls 151, 161 and the first and second midstream pair of draw rolls 171, 179 apply a substantially constant force to the first and second edge portions 105 a, 105 b of the glass ribbon 105 along the draw path 153 and the first and second downstream pair of draw rolls 189, 197 apply a varying force to the first and second edge portions 105 a, 105 b of the glass ribbon 105 along the draw path 153.
  • FIG. 10 shows the first and second downstream pairs of draw rolls 189, 197 of the third pull roll apparatus 187, which is the lowest (or master) pull roll apparatus, speed as a function of time (hours: minutes) and shows that the constant speed (each tick mark is 0.2 in/min (50.8 mm/min)) controls glass ribbon 105 thickness and maintains superior attributes. This speed is readily adjusted via the control device 223 to obtain the desired product specifications, such as thickness.
  • As shown in FIG. 1, the glass ribbon 105 is drawn in a draw direction 257 along the draw path 153. Turning back to FIGS. 8, 9, and 10, throughout the period of time, first and second upstream pair of draw rolls 151, 161 each applies a substantially constant force (e.g., 8 pounds) to the respective first and second edge portions 105 a, 105 b of the glass ribbon 105 in a direction opposite the draw direction 257. Throughout the period of time, first and second midstream pair of draw rolls 171, 179 also each applies a substantially constant force (e.g., 6 pounds) to the respective first and second edge portions 105 a, 105 b of the glass ribbon 105 in a direction opposite the draw direction 257. As further illustrated, the first and second downstream pair of draw rolls 189, 197 each applies a varying force to the respective first and second edge portions 105 a, 105 b of the glass ribbon 105 from in a direction of the draw direction 257 (e.g., from about 5 pounds) to in a direction opposite the draw direction 257 (e.g., to about 18 pounds). As such, the first edge portion 105 a is constantly maintained in tension between the first upstream pair of draw rolls 151, the first midstream pair of draw rolls 171, and the first downstream pair of draw rolls 189 throughout the period of time. Likewise, the second edge portion 105 b is constantly maintained in tension between the second upstream pair of draw rolls 161, the second midstream pair of draw rolls 179, and the second downstream pair of draw rolls 197 throughout the period of time. In further examples, all forces on both edges 105 a, 105 b may act in the positive or negative direction with respect to the draw direction 257 depending on the apparatus set up.
  • As further shown in FIG. 9, the first and second downstream pairs of draw rolls 189, 197 each applies a varying force due to the constant angular velocity associated with the draw rolls 189, 197. The patterns 259, 261 of the plots 253, 255 represents the changing force as the glass ribbon 105 increases in length while the patterns 263, 265 represent the sudden change in force that occurs during separation of a glass sheet 147 a from the glass ribbon 105. During the same period of time, the constant torque of the first and second upstream pair of draw rolls 151, 161 can maintain a substantially constant force to the glass ribbon 105, and the constant torque of the first and second midstream pair of draw rolls 171, 179 can also maintain a substantially constant force to the glass ribbon 105. As such, force disturbances can be prevented from being transmitted up the glass ribbon into the setting zone 143 where stress concentrations and corresponding surface defects may be undesirably frozen into the glass ribbon 105.
  • As such, methods of the present disclosure can independently operate the first pull roll apparatus 149 over a period of time such that the first upstream pair of draw rolls 151 apply a substantially constant force to the first edge portion 105 a of the glass ribbon 105 along the draw path 153. The method can further include the step of independently operating the second pull roll apparatus 169 over the period of time such that at least one of the first downstream pair of draw rolls 171 apply a substantially constant force to the first edge portion 105 a of the glass ribbon 105 along the draw path 153. The method can further include the step of independently operating the third pull roll apparatus 187 over the period of time such that at least one of the first downstream pair of draw rolls 189 rotates with a substantially constant angular velocity and the first downstream pair of draw rolls 189 apply a varying force to the first edge portion 105 a of the glass ribbon 105 along the draw path 153. The method can further include the step of sequentially separating a plurality of glass sheets 147 a from the glass ribbon 105 over the period of time at a location downstream along the draw path 153 from the first downstream pair of draw rolls 189.
  • As discussed above, the first pull roll apparatus 149 can be provided with a second upstream pair of draw rolls 161. In such examples, the method can further include the step of operating the first pull roll apparatus 149 such that the second upstream pair of draw rolls 161 apply a substantially constant force to the second edge portion 105 b of the glass ribbon 105 along the draw path 153. As mention previously, the second pull roll apparatus 169 can include a second midstream pair of draw rolls 179 positioned downstream along the draw path 153 from the second upstream pair of draw rolls 161. The method can further include the step of operating the second pull roll apparatus 169 such that the second midstream pair of draw rolls 179 apply a substantially constant force to the second edge portion 105 b of the glass ribbon 105 along the draw path 153. Still further, as mention previously, the third pull roll apparatus 187 can include a second downstream pair of draw rolls 197 positioned downstream along the draw path 153 from the second midstream pair of draw rolls 179. In such examples, the method can further include the step of operating the third pull roll apparatus 187 such that at least one of the second downstream pair of draw rolls 197 rotates with a substantially constant angular velocity and the second downstream pair of draw rolls 197 apply a varying force to the second edge portion 105 b of the glass ribbon 105 along the draw path 153.
  • The method can further include the step of independently operating the intermediate pull roll apparatus 205, when provided, over the period of time such that at least one of the first intermediate pair of draw rolls 207 apply a substantially constant force to the first edge portion 105 a of the glass ribbon 105 along the draw path 153. As discussed above, the intermediate pull roll apparatus 205 can be provided with a second intermediate pair of draw rolls 215. In such examples, the method can further include the step of operating the intermediate pull roll apparatus 205 such that the second intermediate pair of draw rolls 215 apply a substantially constant force to the second edge portion 105 b of the glass ribbon 105 along the draw path 153.
  • The pull roll device 115 can be used to improve the consistency of a cross-draw tension and/or down-draw sheet tension in the glass ribbon which reduces residual stress and improves glass flatness on the manufactured glass ribbon. More specifically, the pull roll device 115 can be used to control and improve the consistency of the cross-draw tension and/or down-draw sheet tension in the area where the glass ribbon is passing through the setting zone where the product stress and flatness are set in the glass ribbon.
  • In a comparative exemplary embodiment, a pull roll device may only have an upper pull roll apparatus and a lower pull roll apparatus. In such a comparative pull roll device, a pinch force to achieve the necessary constant torque or constant velocity at the upper pull roll apparatus and the lower pull roll apparatus, respectively, would have to be too great for large weight glass ribbon, such that the pinch force between a pair of draw rolls would crack the glass ribbon. Large weight glass ribbon may be present when manufacturing large glass sheets of large width and large length and a small thickness.
  • Moreover, operating the upstream pairs of draw rolls, the midstream pairs of draw rolls, and when provided, the intermediate pairs of draw rolls, in substantially constant torque mode as set forth by exemplary embodiments of the present application and as shown by plots 249, 251 provides further advantages over operating the upstream pairs of draw rolls and the midstream pairs of draw rolls with a substantially constant angular velocity. First, a constant angular velocity of the upstream and midstream pairs of draw rolls, and when provided, the intermediate pairs of draw rolls, may provide different tensions at different diameters in the rolls. In contrast, operating the upstream and midstream pairs of draw rolls, and when provided, the intermediate pairs of draw rolls, at substantially constant torques allows consistent vertical tension to be achieved over time. Indeed, operating with substantially constant torques nearly compensates for wear of the rolls. Forces change slightly with roll diameter as the roll wears at constant torque, but the effect is very small. Velocity control has a much higher sensitivity to roll diameter. Second, a constant angular velocity of the upstream and midstream pairs of draw rolls, and when provided, the intermediate pairs of draw rolls, may prove difficult to correlate with the sheet speed due to the diameter uncertainty of the roll. In contrast, operating the upstream and midstream pairs of draw rolls, and when provided, the intermediate pairs of draw rolls, with substantially constant torque removes the need to correlate to obtain the proper angular velocity of the roller. Third, operating the upstream and midstream pairs of draw rolls, and when provided, the intermediate pairs of draw rolls, with substantially constant torque can avoid the risk of buckling or crack out that may occur when trying to adjust the speed of the upstream or midstream pairs of draw rolls, or when provided, the intermediate pairs of draw rolls, to compensate for roll wear. Fourth, operating the upstream and midstream pairs of draw rolls, and when provided, the intermediate pairs of draw rolls, with a substantially constant torque can avoid the risk of the rolls skipping if the constant angular velocity is too slow. Fifth, operating the upstream and midstream pairs of draw rolls, and when provided, the intermediate pairs of draw rolls, can avoid excess pull force variability that may occur due to roll run-out in constant angular velocity mode.
  • Thus, exemplary embodiments of the disclosure enable increased traction on the glass ribbon due to the use of multiple elevations of driven rolls. Accordingly, larger, heavier sheets, and thinner sheets with flatter surfaces may be manufactured.
  • Exemplary embodiments of the disclosure enable application of modular design that readily extends into four or more elevations.
  • Exemplary embodiments of the disclosure enable the placement of driven rolls at the desired elevations to provide the vertical and cross draw forces required to maintain flat glass ribbon through the visco-elastic zone. Accordingly, longer and wider visco-elastic zones can be achieved.
  • Exemplary embodiments of the disclosure enable placement of the lowest roll below the visco-elastic zone to maintain constant vertical force from the root through the visco-elastic zone as well as to isolate the visco-elastic zone from perturbations downstream, for example, perturbations such as impact of ribbon growth and snap-off of the ribbon into sheet.
  • Some of the functional units, such as the control device, described in this specification have been labeled as modules, in order to emphasize their implementation independence. For example, a module may be implemented as a hardware circuit comprising custom VLSI circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components. A module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices or the like. A module may also be implemented with valves, pistons, gears, connecting members, and springs, or the like.
  • Modules may also be implemented in software for execution by various types of processors. An identified module of executable code may, for instance, comprise one or more physical or logical blocks of computer instructions, which may, for instance, be organized as an object, procedure, or function. Nevertheless, the executables of an identified module need not be physically located together, but may comprise disparate instructions stored in different locations which, when joined logically together, comprise the module and achieve the stated purpose for the module.
  • A module of executable code may be a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several memory devices. Similarly, operational data may be identified and illustrated herein within modules, and may be embodied in any suitable form and organized within any suitable type of data structure. Operational data may be collected as a single data set, or may be distributed over different locations including over different storage devices.
  • Reference throughout this specification to embodiments, examples, exemplary embodiments, and similar language throughout this specification may, but do not necessarily, refer to the same embodiment. Furthermore, the described features, structures, or characteristics of the subject matter described herein with reference to an exemplary embodiment may be combined in any suitable manner in one or more exemplary embodiments. In the description, numerous specific details are provided, such as examples of controls, structures, algorithms, programming, software modules, user selections, hardware modules, hardware circuits, hardware chips, processes, compositions, articles, etc., to provide a thorough understanding of embodiments of the subject matter. One skilled in the relevant art will recognize, however, that the subject matter may be practiced without one or more of the specific details, or with other methods, components, materials, and so forth. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the disclosed subject matter.
  • The methods described above are generally set forth in logical flow. As such, the depicted order and labeled steps are indicative of representative embodiments. Other steps and methods may be conceived that are equivalent in function, logic, or effect to one or more steps, or portions thereof, of the methods illustrated in the exemplary embodiments.
  • Additionally, the format and descriptions employed are provided to explain the logical steps and are understood not to limit the scope of the methods illustrated. Additionally, the order in which a particular method occurs may or may not strictly adhere to the order of the corresponding steps described.
  • It will be apparent to those skilled in the art that various modifications and variations can be made in the present disclosure without departing from the spirit or scope of the claimed invention. Thus, it is intended that the present claimed invention cover the modifications and variations of this disclosure provided they come within the scope of the appended claims and their equivalents.

Claims (19)

What is claimed is:
1. A glass manufacturing apparatus, comprising:
a forming device configured to produce a glass ribbon including a width extending between a first edge portion and a second edge portion;
a first pull roll apparatus comprising a first upstream pair of draw rolls configured to draw the first edge portion of the glass ribbon from the forming device along a draw path extending transverse to the width of the glass ribbon;
a second pull roll apparatus comprising a first midstream pair of draw rolls positioned downstream along the draw path from the first upstream pair of draw rolls, wherein the first midstream pair of draw rolls are configured to further draw the first edge portion of the glass ribbon along the draw path;
a third pull roll apparatus comprising a first downstream pair of draw rolls positioned downstream along the draw path from the first midstream pair of draw rolls, wherein the first downstream pair of draw rolls are configured to further draw the first edge portion of the glass ribbon along the draw path; and
a control device configured to independently operate the first pull roll apparatus, the second pull roll apparatus, and the third pull roll apparatus such that at least one draw roll of the first upstream pair of draw rolls rotates with a substantially constant torque, at least one draw roll of the first midstream pair of draw rolls rotates with a substantially constant torque and at least one draw roll of the first downstream pair of draw rolls rotates with a substantially constant angular velocity.
2. The apparatus of claim 1, further comprising an intermediate pull roll apparatus comprising an intermediate pair of draw rolls positioned downstream along the draw path from the first midstream pair of draw rolls and upstream along the draw path from the first downstream pair of draw rolls, wherein the intermediate pair of draw rolls are configured to further draw the first edge portion of the glass ribbon along the draw path,
wherein the control device is configured to independently operate the intermediate pull roll apparatus such that at least one draw roll of the intermediate pair of draw rolls rotates with a substantially constant torque.
3. The apparatus of claim 1, wherein the control device is configured to operate the first pull roll apparatus such that both draw rolls of the first upstream pair of draw rolls rotate with a substantially constant torque, the second pull roll apparatus such that both draw rolls of the first midstream pair of draw rolls rotate with a substantially constant torque, and the third pull roll apparatus such that both draw rolls of the first downstream pair of draw rolls rotate with a substantially constant angular velocity.
4. The apparatus of claim 1, wherein
the first pull roll apparatus further comprises a second upstream pair of draw rolls configured to draw the second edge portion of the glass ribbon from the forming device along the draw path,
the second pull roll apparatus further comprises a second midstream pair of draw rolls positioned downstream along the draw path from the second upstream pair of draw rolls configured to further draw the second edge portion of the glass ribbon from the forming device along the draw path,
the third pull roll apparatus further comprises a second downstream pair of draw rolls positioned downstream along the draw path from the second midstream pair of draw rolls configured to further draw the second edge portion of the glass ribbon from the forming device along the draw path, and
wherein the control device is further configured to operate the first pull roll apparatus such that at least one of the draw rolls of the second upstream pair of draw rolls rotates with a substantially constant torque, to operate the second pull roll apparatus such that at least one draw roll of the second midstream pair of draw rolls rotates with a substantially constant torque, and to operate the third pull roll apparatus such that at least one draw roll of the second downstream pair of draw rolls rotates with a substantially constant angular velocity.
5. The apparatus of claim 4, wherein the control device is further configured to operate the first pull roll apparatus such that both draw rolls of the second upstream pair of draw rolls rotate with a substantially constant torque, to operate the second pull roll apparatus such that both draw rolls of the second midstream pair of draw rolls rotate with a substantially constant torque, and to operate the third pull roll apparatus such that both draw rolls of the second downstream pair of draw rolls rotate with a substantially constant angular velocity.
6. A method of manufacturing a glass ribbon, comprising:
providing a first pull roll apparatus comprising a first upstream pair of draw rolls, a second pull roll apparatus comprising a first midstream pair of draw rolls positioned downstream along a draw path from the first upstream pair of draw rolls, and a third pull roll apparatus comprising a first downstream pair of draw rolls positioned downstream along the draw path from the first midstream pair of draw rolls;
forming a glass ribbon with a width extending between a first edge portion and a second edge portion;
independently operating the first pull roll apparatus such that at least one draw roll of the first upstream pair of draw rolls rotates with a substantially constant torque to draw the first edge portion of the glass ribbon along the draw path;
independently operating the second pull roll apparatus such that at least one draw roll of the first midstream pair of draw rolls rotates with a substantially constant torque to further draw the first edge portion of the glass ribbon along the draw path; and
independently operating the third pull roll apparatus such that at least one of the first downstream pair of draw rolls rotates with a substantially constant angular velocity to further draw the first edge portion of the glass ribbon along the draw path.
7. The method of claim 6, further comprising:
independently operating the first pull roll apparatus such that both of the draw rolls of the first upstream pair of draw rolls rotates with a substantially constant torque;
independently operating the second pull roll apparatus such that both of the draw rolls of the first midstream pair of draw rolls rotates with a substantially constant torque; and
independently operating the third pull roll apparatus such that both of the draw rolls of the first downstream pair of draw rolls rotates with a substantially constant angular velocity.
8. The method of claim 7, further comprising:
providing the first pull roll apparatus with a second upstream pair of draw rolls, the second pull roll apparatus with a second midstream pair of draw rolls positioned downstream along the draw path from the second upstream pair of draw rolls, and the third pull roll apparatus with a second downstream pair of draw rolls positioned downstream along the draw path from the second midstream pair of draw rolls;
independently operating the first pull roll apparatus such that at least one of the draw rolls of the second upstream pair of draw rolls rotates with a substantially constant torque to draw the second edge portion of the glass ribbon along the draw path;
independently operating the second pull roll apparatus such that at least one of the draw rolls of the second midstream pair of draw rolls rotates with a substantially constant torque to further draw the second edge portion of the glass ribbon along the draw path; and
independently operating the third pull roll apparatus such that at least one of the draw rolls of the second downstream pair of draw rolls rotates with a substantially constant angular velocity to further draw the second edge portion of the glass ribbon along the draw path.
9. The method of claim 8, further comprising:
independently operating the first pull roll apparatus such that both of the draw rolls of the second upstream pair of draw rolls rotate with a substantially constant torque to draw the second edge portion of the glass ribbon along the draw path;
independently operating the second pull roll apparatus such that both of the draw rolls of the second midstream pair of draw rolls rotate with a substantially constant torque to further draw the second edge portion of the glass ribbon along the draw path; and
independently operating the third pull roll apparatus such that both of the draw rolls of the second downstream pair of draw rolls rotates with a substantially constant angular velocity to further draw the second edge portion of the glass ribbon along the draw path.
10. The method of claim 8, wherein the glass ribbon comprises a viscoelastic zone along the draw path and an elastic zone downstream along the draw path from the viscoelastic zone, and
wherein, the first upstream pair of draw rolls draws the first edge portion along the draw path in the viscoelastic zone, the second upstream pair of draw rolls draws the second edge portion along the draw path in the viscoelastic zone, the first midstream pair of draw rolls draws the first edge portion along the draw path in the viscoelastic zone, the second midstream pair of draw rolls draws the second edge portion along the draw path in the viscoelastic zone, the first downstream pair of draw rolls draws the first edge portion along the draw path downstream of the viscoelastic zone of the glass ribbon, and the second downstream pair of draw rolls draws the second edge portion of the glass ribbon along the draw path downstream of the viscoelastic zone.
11. The method of claim 8, further comprising sequentially separating a plurality of glass sheets from the glass ribbon over a period of time at a location downstream along the draw path from the first downstream pair of draw rolls and the second downstream pair of draw rolls, wherein, throughout the period of time, the first upstream pair of draw rolls apply a substantially constant force to the first edge portion of the glass ribbon along the draw path, the second upstream pair of draw rolls apply a substantially constant force to the second edge portion of the glass ribbon along the draw path, the first midstream pair of draw rolls apply a substantially constant force to the first edge portion of the glass ribbon along the draw path, the second midstream pair of draw rolls apply a substantially constant force to the second edge portion of the glass ribbon along the draw path, the first downstream pair of draw rolls apply a varying force to the first edge portion of the glass ribbon along the draw path, and the second downstream pair of draw rolls apply a varying force to the second edge portion of the glass ribbon along the draw path.
12. The method of claim 11, wherein the glass ribbon is drawn in a draw direction along the draw path, and wherein, throughout the period of time, the first upstream pair of draw rolls apply a substantially constant force to the first edge portion of the glass ribbon in a direction opposite the draw direction, the second upstream pair of draw rolls apply a substantially constant force to the second edge portion of the glass ribbon in the direction opposite the draw direction, the first midstream pair of draw rolls apply a substantially constant force to the first edge portion of the glass ribbon in the direction opposite the draw direction, the second midstream pair of draw rolls apply a substantially constant force to the second edge portion of the glass ribbon in the direction opposite the draw direction, the first downstream pair of draw rolls apply a varying force to the first edge portion of the glass ribbon in the direction of the draw direction, and the second downstream pair of draw rolls apply a varying force to the second edge portion of the glass ribbon in the direction of the draw direction,
wherein, throughout the period of time, the first edge portion is constantly maintained in tension between the first upstream pair of draw rolls and the first midstream pair of draw rolls and between the first midstream pair of draw rolls and the first downstream pair of draw rolls, and the second edge portion is constantly maintained in tension between the second upstream pair of draw rolls and the second midstream pair of draw rolls and between the second midstream pair of draw rolls and the second downstream pair of draw rolls.
13. The method of claim 12, wherein, throughout the period of time, the glass ribbon is constantly maintained in tension in a lateral direction transverse to the draw direction between the first upstream pair of draw rolls and the second upstream pair of draw rolls, between the first midstream pair of draw rolls and the second midstream pair of draw rolls, and between the first downstream pair of draw rolls and the second downstream pair of draw rolls.
14. The method of claim 6, further comprising:
providing an intermediate pull roll apparatus comprising an intermediate module pair of draw rolls positioned downstream along the draw path from the first midstream pair of draw rolls and upstream along the draw path from the first downstream pair of draw rolls;
independently operating the intermediate pull roll apparatus such that at least one draw roll of the intermediate pair of draw rolls rotates with a substantially constant torque to further draw the first edge portion of the glass ribbon along the draw path.
15. The method of claim 6, further comprising sequentially separating a plurality of glass sheets from the glass ribbon over a period of time at a location downstream along the draw path from the first downstream pair of draw rolls, wherein, throughout the period of time, the first upstream pair of draw rolls apply a substantially constant force to the first edge portion of the glass ribbon along the draw path, the first midstream pair of draw rolls apply a substantially constant force to the first edge portion of the glass ribbon along the draw path and the first downstream pair of draw rolls apply a varying force to the first edge portion of the glass ribbon along the draw path.
16. The method of claim 15, wherein the glass ribbon is drawn in a draw direction along the draw path, and wherein, throughout the period of time, the first upstream pair of draw rolls apply a substantially constant force to the first edge portion of the glass ribbon in a direction opposite the draw direction, the first midstream pair of draw rolls apply a substantially constant force to the first edge portion of the glass ribbon in a direction opposite the draw direction, and the first downstream pair of draw rolls apply a varying force to the first edge portion of the glass ribbon in a direction of the draw direction,
wherein the first edge portion is constantly maintained in tension between the first upstream pair of draw rolls and the first midstream pair of draw rolls throughout the period of time, and
wherein the first edge portion is constantly maintained in tension between the first midstream pair of draw rolls and the first downstream pair of draw rolls throughout the period of time.
17. The method of claim 15, wherein the glass ribbon is drawn in a draw direction along the draw path, and wherein, throughout the period of time, the first upstream pair of draw rolls apply a substantially constant force to the first edge portion of the glass ribbon in a direction of the draw direction, the first midstream pair of draw rolls apply a substantially constant force to the first edge portion of the glass ribbon in a direction of the draw direction, and the first downstream pair of draw rolls apply a varying force to the first edge portion of the glass ribbon in a direction of the draw direction,
wherein the first edge portion is constantly maintained in tension between the first upstream pair of draw rolls and the first midstream pair of draw rolls throughout the period of time, and
wherein the first edge portion is constantly maintained in tension between the first midstream pair of draw rolls and the first downstream pair of draw rolls throughout the period of time.
18. The method of claim 15, wherein the glass ribbon is drawn in a draw direction along the draw path, and wherein, throughout the period of time, the first upstream pair of draw rolls apply a substantially constant force to the first edge portion of the glass ribbon in a direction opposite the draw direction, the first midstream pair of draw rolls apply a substantially constant force to the first edge portion of the glass ribbon in a direction opposite the draw direction, and the first downstream pair of draw rolls apply a varying force to the first edge portion of the glass ribbon in a direction opposite the draw direction,
wherein the first edge portion is constantly maintained in tension between the first upstream pair of draw rolls and the first midstream pair of draw rolls throughout the period of time, and
wherein the first edge portion is constantly maintained in tension between the first midstream pair of draw rolls and the first downstream pair of draw rolls throughout the period of time.
19. The method of claim 6, wherein the glass ribbon comprises a viscoelastic zone along the draw path and an elastic zone downstream along the draw path from the viscoelastic zone, and
the first upstream pair of draw rolls draws the first edge portion of the glass ribbon along the draw path in the viscoelastic zone, the first midstream pair of draw rolls draws the first edge portion of the glass ribbon along the draw path in the viscoelastic zone, and the first downstream pair of draw rolls draws the first edge portion of the glass ribbon along the draw path downstream of the viscoelastic zone.
US14/046,419 2013-10-04 2013-10-04 Glass manufacturing apparatus and method for manufacturing glass sheet Active 2033-12-14 US9593033B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/046,419 US9593033B2 (en) 2013-10-04 2013-10-04 Glass manufacturing apparatus and method for manufacturing glass sheet
CN201480065896.XA CN105793202B (en) 2013-10-04 2014-09-30 For manufacturing the glass manufacturing equipment and method of sheet glass
PCT/US2014/058200 WO2015050843A1 (en) 2013-10-04 2014-09-30 Glass manufacturing apparatus and method for manufacturing glass sheet
KR1020167010162A KR102232259B1 (en) 2013-10-04 2014-09-30 Glass manufacturing apparatus and method for manufacturing glass sheet
JP2016519760A JP6473445B2 (en) 2013-10-04 2014-09-30 Glass manufacturing apparatus and glass sheet manufacturing method
TW103134441A TWI637919B (en) 2013-10-04 2014-10-02 Glass manufacturing apparatus and method for manufacturing glass sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/046,419 US9593033B2 (en) 2013-10-04 2013-10-04 Glass manufacturing apparatus and method for manufacturing glass sheet

Publications (2)

Publication Number Publication Date
US20150096330A1 true US20150096330A1 (en) 2015-04-09
US9593033B2 US9593033B2 (en) 2017-03-14

Family

ID=52775846

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/046,419 Active 2033-12-14 US9593033B2 (en) 2013-10-04 2013-10-04 Glass manufacturing apparatus and method for manufacturing glass sheet

Country Status (6)

Country Link
US (1) US9593033B2 (en)
JP (1) JP6473445B2 (en)
KR (1) KR102232259B1 (en)
CN (1) CN105793202B (en)
TW (1) TWI637919B (en)
WO (1) WO2015050843A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9670086B2 (en) * 2011-11-29 2017-06-06 Corning Incorporated Glass manufacturing apparatus and methods
CN109311722A (en) * 2016-06-21 2019-02-05 康宁股份有限公司 For drawing more height driving equipments of glass manufacturing equipment of the bottom with tension force
CN111902373A (en) * 2018-02-26 2020-11-06 康宁公司 Support device for cables

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6945454B2 (en) * 2015-05-18 2021-10-06 コーニング インコーポレイテッド Tension control in glass manufacturing equipment
JP6834379B2 (en) * 2016-11-11 2021-02-24 日本電気硝子株式会社 Flat glass manufacturing method and flat glass manufacturing equipment
CN112566874A (en) * 2018-08-13 2021-03-26 Agc株式会社 Glass plate manufacturing device and molding member used in glass plate manufacturing device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090107182A1 (en) * 2007-10-29 2009-04-30 James Gary Anderson Pull roll apparatus and method for controlling glass sheet tension
US20110100056A1 (en) * 2009-10-29 2011-05-05 Anderson James G Low friction edge roll to minimize force cycling
US20110209502A1 (en) * 2010-02-26 2011-09-01 Ahdi El Kahlout Methods and apparatus for reducing heat loss from an edge director
US20110314870A1 (en) * 2009-02-23 2011-12-29 Fredholm Allan M Glass manufacturing system and method for forming a high quality thin glass sheet
US20130008208A1 (en) * 2010-09-30 2013-01-10 Avanstrate Inc. Method of manufacturing glass sheet
US20130133371A1 (en) * 2011-11-29 2013-05-30 Steven Roy Burdette Glass manufacturing apparatus and methods
US20130219964A1 (en) * 2012-02-29 2013-08-29 Gautam Narendra Kudva Glass manufacturing apparatus and methods
US20130319050A1 (en) * 2012-05-31 2013-12-05 Corning Incorporated Glass manufacturing apparatus and methods for manufacturing a glass ribbon

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1586618A (en) 1922-07-07 1926-06-01 Libbey Owens Sheet Glass Co Method and apparatus for drawing sheet glass
BE637111A (en) 1962-09-29
NL6404083A (en) 1963-11-07 1965-05-10
US3338696A (en) 1964-05-06 1967-08-29 Corning Glass Works Sheet forming apparatus
GB1085010A (en) 1965-08-25 1967-09-27 Ford Motor Co Float method of manufacturing glass
NL135739C (en) 1966-08-15
GB1313743A (en) 1969-07-28 1973-04-18 Pilkington Brothers Ltd Manufacture of float glass
BE755351A (en) 1969-09-10 1971-03-01 Glaverbel METHOD AND DEVICE FOR THE MANUFACTURE OF SHEET GLASS
BE757057A (en) 1969-10-06 1971-04-05 Corning Glass Works METHOD AND APPARATUS FOR CHECKING THE THICKNESS OF A NEWLY STRETCHED SHEET OF GLASS
GB1315365A (en) 1970-06-04 1973-05-02 Pilkington Brothers Ltd Manufacture of float glass
US3926605A (en) 1974-06-27 1975-12-16 Ppg Industries Inc Method and apparatus for forming a ribbon of glass on a molten metal bath
US4354866A (en) 1980-04-04 1982-10-19 Ppg Industries, Inc. Method of bidirectionally attenuating glass in a float process with edge cooling
US4375370A (en) 1980-04-04 1983-03-01 Ppg Industries, Inc. Thermal control in a method of bidirectionally attenuating glass in a float process
US4612030A (en) 1985-06-11 1986-09-16 Smids Ronald E Method and apparatus for making variegated, cathedral, antique or flashed glass in a continuous sheet
JPH05124827A (en) 1991-10-31 1993-05-21 Hoya Corp Device for producing glass plate and production of glass plate
JP3093000B2 (en) 1991-10-31 2000-09-25 ホーヤ株式会社 Glass plate manufacturing equipment
JP3335291B2 (en) 1997-04-16 2002-10-15 ホーヤ株式会社 Method and apparatus for manufacturing glass plate
JP3586142B2 (en) 1999-07-22 2004-11-10 エヌエッチ・テクノグラス株式会社 Glass plate manufacturing method, glass plate manufacturing apparatus, and liquid crystal device
US6616025B1 (en) 2000-08-31 2003-09-09 Corning Incorporated Automated flat glass separator
US7122242B2 (en) 2002-04-05 2006-10-17 Ppg Industries Ohio, Inc. Wedge shaped glass and methods of forming wedged glass
US7430880B2 (en) 2004-06-02 2008-10-07 Corning Incorporated Pull roll assembly for drawing a glass sheet
US20060042314A1 (en) 2004-08-27 2006-03-02 Abbott John S Iii Noncontact glass sheet stabilization device used in fusion forming of a glass sheet
US7415923B2 (en) * 2004-10-18 2008-08-26 American Excelsior Company Method of and system for sedimentation retaining barrier packing and handling
EP1721872A1 (en) 2005-05-10 2006-11-15 Corning Incorporated Method of producing a glass sheet
JP4753067B2 (en) 2005-08-18 2011-08-17 日本電気硝子株式会社 Sheet glass forming method
EP2064157B1 (en) 2006-09-20 2016-02-10 Corning Incorporated Temperature compensation for shape-induced in-plane stresses in glass substrates
US8037716B2 (en) 2009-02-27 2011-10-18 Corning Incorporated Thermal control of the bead portion of a glass ribbon
US8047085B2 (en) 2009-05-27 2011-11-01 Corning Incorporated Force monitoring methods and apparatus
KR20120046734A (en) 2009-08-07 2012-05-10 아사히 가라스 가부시키가이샤 Method for manufacturing ultra-thin glass substrate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090107182A1 (en) * 2007-10-29 2009-04-30 James Gary Anderson Pull roll apparatus and method for controlling glass sheet tension
US20110314870A1 (en) * 2009-02-23 2011-12-29 Fredholm Allan M Glass manufacturing system and method for forming a high quality thin glass sheet
US20110100056A1 (en) * 2009-10-29 2011-05-05 Anderson James G Low friction edge roll to minimize force cycling
US20110209502A1 (en) * 2010-02-26 2011-09-01 Ahdi El Kahlout Methods and apparatus for reducing heat loss from an edge director
US20130008208A1 (en) * 2010-09-30 2013-01-10 Avanstrate Inc. Method of manufacturing glass sheet
US20130133371A1 (en) * 2011-11-29 2013-05-30 Steven Roy Burdette Glass manufacturing apparatus and methods
US20130219964A1 (en) * 2012-02-29 2013-08-29 Gautam Narendra Kudva Glass manufacturing apparatus and methods
US20130319050A1 (en) * 2012-05-31 2013-12-05 Corning Incorporated Glass manufacturing apparatus and methods for manufacturing a glass ribbon

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9670086B2 (en) * 2011-11-29 2017-06-06 Corning Incorporated Glass manufacturing apparatus and methods
CN109311722A (en) * 2016-06-21 2019-02-05 康宁股份有限公司 For drawing more height driving equipments of glass manufacturing equipment of the bottom with tension force
JP2019522617A (en) * 2016-06-21 2019-08-15 コーニング インコーポレイテッド Multiple height drive for glass manufacturing equipment with tension control in BOD
CN111902373A (en) * 2018-02-26 2020-11-06 康宁公司 Support device for cables

Also Published As

Publication number Publication date
TWI637919B (en) 2018-10-11
TW201518220A (en) 2015-05-16
JP6473445B2 (en) 2019-02-20
KR102232259B1 (en) 2021-03-26
WO2015050843A1 (en) 2015-04-09
CN105793202B (en) 2019-10-29
US9593033B2 (en) 2017-03-14
JP2016536242A (en) 2016-11-24
CN105793202A (en) 2016-07-20
KR20160068794A (en) 2016-06-15

Similar Documents

Publication Publication Date Title
US9593033B2 (en) Glass manufacturing apparatus and method for manufacturing glass sheet
US8627684B2 (en) Pull roll apparatus and method for controlling glass sheet tension
US9388065B2 (en) Glass manufacturing apparatus and methods for manufacturing a glass ribbon
US9670086B2 (en) Glass manufacturing apparatus and methods
KR101881590B1 (en) Apparatus and Method for Making Glass Sheet with Improved Sheet Stability
CN202482207U (en) Equipment for manufacturing target elastic glass board through continuously moving front-driving glass belt
TWI613162B (en) Device and method for engaging and tensioning a glass ribbon and method for making a glass sheet
KR20190022671A (en) Multi-lifting drive for a glass manufacturing apparatus with tension control at the draw bottom
JP2017528398A (en) Continuous processing of flexible glass ribbon
US20190010072A1 (en) Method and apparatus for continuous processing of a flexible glass ribbon
EP3297961B1 (en) Tension control in glass manufacturing apparatuses
JP2018522801A (en) Continuous processing of flexible glass ribbon with reduced mechanical stress
CN205522898U (en) Optical film applying device
JP2016113342A (en) Production method of glass film
US20180319695A1 (en) Methods and apparatuses for forming laminated glass articles
JP2016518294A (en) Automatic balancing device for lateral tension of base paper using rolls
CN103802002B (en) A kind of band steel edging deburring device

Legal Events

Date Code Title Description
AS Assignment

Owner name: CORNING INCORPORATED, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ABURADA, TOMOHIRO;BURDETTE, STEVEN ROY;KIHATA, MASUMI;AND OTHERS;SIGNING DATES FROM 20131001 TO 20131003;REEL/FRAME:031350/0169

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4