US20150093329A1 - In vivo detection of apoptosis - Google Patents

In vivo detection of apoptosis Download PDF

Info

Publication number
US20150093329A1
US20150093329A1 US14/485,199 US201414485199A US2015093329A1 US 20150093329 A1 US20150093329 A1 US 20150093329A1 US 201414485199 A US201414485199 A US 201414485199A US 2015093329 A1 US2015093329 A1 US 2015093329A1
Authority
US
United States
Prior art keywords
labeling agent
affinity labeling
apoptosis
animal
caspase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/485,199
Inventor
Gary Johnson
Brian W. Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEED RESEARCH AND DEVELOPMENT LLC
Original Assignee
SEED RESEARCH AND DEVELOPMENT LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEED RESEARCH AND DEVELOPMENT LLC filed Critical SEED RESEARCH AND DEVELOPMENT LLC
Priority to US14/485,199 priority Critical patent/US20150093329A1/en
Assigned to IMMUNOCHEMISTRY TECHNOLOGIES, LLC reassignment IMMUNOCHEMISTRY TECHNOLOGIES, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JOHNSON, GARY, LEE, BRIAN W.
Assigned to SEED RESEARCH AND DEVELOPMENT, LLC reassignment SEED RESEARCH AND DEVELOPMENT, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IMMUNOCHEMISTRY TECHNOLOGIES, LLC
Publication of US20150093329A1 publication Critical patent/US20150093329A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0056Peptides, proteins, polyamino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0004Screening or testing of compounds for diagnosis of disorders, assessment of conditions, e.g. renal clearance, gastric emptying, testing for diabetes, allergy, rheuma, pancreas functions
    • A61K49/0008Screening agents using (non-human) animal models or transgenic animal models or chimeric hosts, e.g. Alzheimer disease animal model, transgenic model for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • A61K49/0041Xanthene dyes, used in vivo, e.g. administered to a mice, e.g. rhodamines, rose Bengal
    • A61K49/0043Fluorescein, used in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0052Small organic molecules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers

Definitions

  • Annexin V is not cell permeant, is slow to penetrate any tissues, has high background, and does not detect early apoptotic cells (Kietselaer et al., 2003; Belhocine et al., 2004; Boersma et al., 2005; Watanabe et al., 2006; Vanderheyden et al., 2006; and Corsten et al., 2006).
  • Annexin V binds positively to normal and healthy bone marrow derived cells (Dillon, 2001). It has been reported that Annexin V does not bind to all tumor cells (Dicker, 2005).
  • FIG. 1 Low magnification bright-field image composite of SCK mammary tumors taken through a window chamber. Each mouse was injected with 2 ⁇ 10 5 SCK tumor cells. The tumors were allowed to grow for 7 days. A low level of hemorrhaging was seen in both control and test mice.
  • FIG. 2 Low magnification bright-field image composite of SCK mammary tumors taken through a window chamber.
  • the control mouse was injected with a placebo and the test mouse was injected with 8.0 mg/kg of arsenic trioxide (ATO). Increased levels of hemorrhaging can be seen in the mouse that received the ATO treatment.
  • the photographs were taken 3 hours after completion of treatment.
  • FIG. 3 Low magnification bright-field image composite of SCK mammary tumors taken through a window chamber.
  • the control mouse was injected with a placebo and the test mouse was injected with 8.0 mg/kg of ATO.
  • Increased levels of hemorrhaging can be seen in mice that received the ATO treatment, the amount of hemorrhaging has also increased over time when compared to the 3 hour post treatment photograph.
  • the photographs were taken 24 hours after completion of treatment.
  • FIG. 4 High magnification photograph using an excitation at 488 nm with a fluorescein filter to detect fluorescence.
  • the mouse was injected with 2 ⁇ 10 5 SCK tumor cells. The tumor was allowed to grow for 7 days.
  • the mouse was then injected intravenously (I.V.) through the tail vein with 8 ⁇ g of the apoptosis detection reagent FAM-VAD-FMK prior to therapeutic treatment.
  • the reagent was allowed to circulate in the mouse for 30 minutes before photographing with 488 nm excitation.
  • the results demonstrate a low level of apoptosis which is expected in a fast growing SCK tumor.
  • FIG. 5 High magnification photograph using an excitation at 488 nm with a fluorescein filter to detect fluorescence.
  • the mouse was injected with 8.0 mg/kg of ATO. After 3 hours post ATO treatment, the mouse was injected intravenously through the tail vein with 8 ⁇ g of FAM-VAD-FMK. The reagent was allowed to circulate in the mouse for 30 minutes before photographing with 488 nm excitation. The results demonstrate a high level of apoptosis.
  • FIG. 6 High magnification photograph using an excitation at 488 nm with a fluorescein filter to detect fluorescence.
  • the mouse was injected with 8.0 mg/kg of ATO. After 24 hours post ATO treatment, the mouse was injected intravenously through the tail vein with 8 ⁇ g of FAM-VAD-FMK. The reagent was allowed to circulate in the mouse for 30 minutes before photographing with 488 nm excitation. The results demonstrate a higher level of apoptosis.
  • FIG. 7 Each mouse was injected with 2 ⁇ 10 5 SCK tumor cells. The tumors were allowed to grow for 7 days.
  • the control mouse was injected with a placebo and the test mouse was injected with 8.0 mg/kg of ATO. After 24 hours of treatment the mice were injected intravenously through the tail vein with 8 ⁇ g of FAM-VAD-FMK. The reagent was allowed to circulate in the mouse for 30 minutes before excising the tumors. The tumors were then broken apart and the cells were dispersed. The cells were then analyzed by flow cytometry. Flow cytometry analysis demonstrated that the treated mouse had an apoptosis induction rate of 39% while the control mouse had an apoptosis induction rate of only 18%.
  • FIG. 8 Apoptosis imaging of FSaII tumor in DSFC in a nu/nu mouse. 10 ⁇ capture of apoptosis prior to ATO injection, 45 minutes after 12.0 ⁇ g of FAM-VAD-FMK were injected intravenously through the tail vein. Very little apoptosis is visible.
  • FIG. 9 Same tumor as in FIG. 8 . 10 ⁇ capture of apoptosis 3 hours post ATO (8.0 mg/kg) injection. 45 minutes after 12.0 ⁇ g of FAM-VAD-FMK were injected intravenously through the tail vein. The increase in apoptosis within the tumor is clear.
  • kits useful for determining the apoptotic state of cells in vivo, such as in an organism such as an animal.
  • This invention provides cell permeant probes that bind specifically to up-regulated caspase and apoptosis-associated enzymes, which allows for the detection and imaging of apoptosis events in vivo.
  • Certain embodiments of the invention provide a method for in vivo determination of the apoptotic state of one or more cells in an animal, including detecting the presence or abundance of at least one caspase affinity labeling agent in the cells of an animal into which at least one caspase affinity labeling agent has been introduced, wherein the presence or abundance of the caspase affinity labeling agent correlates with the apoptotic state of the cells.
  • Certain embodiments of the invention provide a method for in vivo determination of whether a therapeutic agent modulates apoptosis in one or more cells in an animal, including detecting the presence of at least one caspase affinity labeling agent in the cells of an animal that has been previously treated with the therapeutic agent and into which at least one caspase affinity labeling agent has been introduced, wherein the presence of the caspase affinity labeling agent correlates with the ability of the therapeutic agent to modulate apoptosis.
  • the method determines whether the therapeutic agent increases or decreases apoptosis.
  • Certain embodiments of the invention provide a method for in vivo determination of whether a radiation treatment modulates apoptosis in one or more cells in an animal, including detecting the presence of at least one caspase affinity labeling agent in the cells of an animal into which at least one caspase affinity labeling agent has been introduced, wherein the animal has been previously treated with radiation, wherein the presence of the caspase affinity labeling agent correlates with the ability of the radiation to modulate apoptosis.
  • the method determines whether the radiation treatment increases or decreases apoptosis.
  • Certain embodiments of the invention provide an in vivo diagnostic method for determining the presence or absence of a disease characterized by the presence of apoptosis including detecting the presence of at least one caspase affinity labeling agent in the cells of the animal into which at least one caspase affinity labeling agent has been introduced, wherein the presence or absence of the at least one caspase affinity labeling agent correlates with the presence or absence of the disease.
  • the diseases include but are not limited to eye disease such as glaucoma, retinal diseases such as macular degeneration and proliferative retinopathy; neurodegenerative diseases such as neuropathy, Alzheimer's disease, multiple sclerosis, Huntington's disease and others; and cardiac disease.
  • Certain embodiments of the invention provide an in vivo method for evaluating the sensitivity of a disease to at least one therapeutic agent or treatment, including detecting the presence or abundance of at least one caspase affinity labeling agent in the cells of an animal into which at least one caspase affinity labeling agent has been introduced, wherein the animal has previously received the therapeutic agent or treatment, wherein the presence or abundance of the caspase affinity labeling agent correlates with the sensitivity of the disease to the at least one therapeutic agent or treatment.
  • Certain embodiments of the invention provide a method for the monitoring of cancer treatment in an animal, including: detecting the presence or abundance of at least one caspase affinity labeling agent in the cells of the animal into which at least one caspase affinity labeling agent has been introduced that has received a therapeutic agent or treatment, wherein the presence or abundance of at least one caspase affinity labeling agent correlates with the efficacy of the therapeutic agent or treatment.
  • Certain embodiments of the invention provide a method for the monitoring of leukemia treatment in an animal, including detecting the presence or abundance of at least one caspase affinity labeling agent in the cells of the animal into which at least one caspase affinity labeling agent has been introduced that has received a therapeutic agent or treatment, wherein the presence or abundance of at least one caspase affinity labeling agent correlates with the efficacy of the therapeutic agent or treatment.
  • Certain embodiments of the invention provide a method for the monitoring of blood and bone marrow disease treatment in an animal including detecting the presence or abundance of at least one caspase affinity labeling agent in the cells of an animal into which at least one caspase affinity labeling agent has been introduced that has received a therapeutic agent or treatment, wherein the presence or abundance of at least one caspase affinity labeling agent correlates with the efficacy of the therapeutic agent or treatment.
  • Certain embodiments of the invention provide a method for determining if one or more compounds within a chemical library modulate caspase activity in an animal including determining the level of at least one caspase affinity labeling agent in cells of an animal into which at least one caspase affinity labeling agent has been introduced, wherein the animal has been contacted with one or more compounds from the library, and determining whether the one or more compounds modulate the caspase activity.
  • Certain embodiments of the invention provide a method for determining if one or more compounds within a chemical library modulate apoptosis in an animal including determining the level of at least one caspase affinity labeling agent in cells of an animal into which at least one caspase affinity labeling agent has been introduced, wherein the animal has been contacted with one or more compounds from the library, and determining whether the one or more compounds modulate apoptosis.
  • the determination step includes comparing the level of affinity labeling agent in the animal with a control animal not exposed to the compound.
  • the determination step is a longitudinal study that is comprised of a comparison of the level of affinity labeling agent in the animal before exposure to the compound and after the animal has been exposed to the compound.
  • the animal is contacted with the affinity labeling agent before exposure to the compound and a second time, after exposure to the compound.
  • detection is carried out using NMR, MRI, CT, CAT, or PET scans; a flow cytometer; a laser scanning cytometer; a fluorescence microplate reader; a luminescence microplate reader, a chromogenic microplate reader; a fluorescence microscope; a confocal microscope; a luminescence microscope, or scintigraphy; a bright-field microscope; a whole animal fluorescence imaging systems (optical imaging system); or a whole animal luminescence imaging system, or a combination thereof.
  • detection is carried out using a Window Chamber inserted into the animal.
  • detection is carried out using a fluorescence microscope; a confocal microscope; a bright-field microscope, or luminescence microscope.
  • detection is carried out or confirmed by removing a sample from the animal such as by extraction, biopsy, venipuncture, dissection, or other suitable methods and detection is carried out on a sample that has been removed from the animal.
  • detection is via a flow cytometer; a laser scanning cytometer; a fluorescence microplate reader; a chromogenic microplate reader; a fluorescence microscope; a confocal microscope; a bright-field microscope; a luminescence microplate reader; or a luminescence microscope.
  • the presence or abundance of the affinity labeling agent is detected in the bone marrow, thymus, lymph nodes, spleen or circulating blood of the animal.
  • the presence or abundance of the affinity labeling agent is detected in peripheral blood monocytes (PBMCs).
  • PBMCs peripheral blood monocytes
  • the cells are included in tissues, organs or tumors of the animal.
  • the caspase affinity labeling agent is introduced into the animal by intravenous, intravascular, intraperitoneal, intravitreal, intraocular, intracranial, intrapleural, intrathoracic, intramuscular, intrapulmonary, injection, perfusion, or lavage administration.
  • the term animal refers to any type of living organism, e.g., a multi-cellular organism.
  • the animal is a mammal.
  • the mammal is a human male or female.
  • Certain embodiments of the invention provide an assay kit including packaging materials and one or more caspase affinity labeling agents and instructions for using the caspase affinity labeling agents to determine the level of apoptosis in vivo.
  • the caspase affinity labeling agent is a cell permeant probe consisting of a compound of formula I:
  • L 1 is a detectable group that may comprise gadolinium (Gd), Terbium (Tb), Europium (Eu) or any other Lanthanide series element (e.g., Ce, Pr, Nd, Pm, Sm, Dy, Ho, Er, Tm, Yb, or Lu) or Iron (Fe), Manganese (Mn), Rhenium (Re), or Technetium (Tc).
  • the detectable group may be suitable for nuclear magnetic resonance (NMR) or magnetic resonance imaging (MRI) detection, or luminescence or scintigraphy.
  • the detectable group may be iodine (I) or barium (Ba), e.g., for computer tomography (CT scan) or computer axial tomography (CAT scan) detection.
  • the detectable group may be a positron emitter (such as 11 C, 13 N, 15 O or 64 Cu), e.g., for positron emission tomography (PET scan).
  • the detectable group may be a fluorescent label (e.g., a fluorescein derivative, sulforhodamine derivative, Cy dye derivative, BODIPY derivative, coumarin derivative, Quantum Dot, or any fluorescent dye that can be attached, e.g., to an amino group, directly or by linkers).
  • the detectable group may be a radioisotope (e.g. 3 H, 14 C, or 35 S).
  • a 1 is a direct bond or a linker that can simply be a covalent bond.
  • the detectable group may be attached directly, e.g., to the N-terminal amino group of the peptide or amino acid (e.g., amide linkage L-(C ⁇ O)—NH—R).
  • a 1 can also be any member of the class of linkers well known to the art. Linkers are typically about 4-18 atoms long, including carbon, nitrogen, oxygen or sulfur atoms;
  • X 1 is absent, an amino acid, or a peptide which may be a peptide having about 1 to 10 amino acids, e.g., about 2 to 4 amino acids (e.g., V, VA, YVA, DEV, LEE, LEH, VDVA, IET, WHE or AEV).
  • X 1 may be a natural amino acid (e.g., A, V, or E).
  • R 1 ′ may be a methylene carboxy (ethanoic) side-chain (CH 2 —COOH) as caspases typically have an aspartate in the P 1 position of the peptide substrate.
  • R 1 ′ may be an aspartic acid side-chain (CH 2 —COOH) or an ester of aspartic acid (e.g., —CH 2 CO 2 R, where R is C 1 -C 6 alkyl or benzyl, CH 3 , C 2 H 5 or CH 2 C 6 H 5 ), for example.
  • Certain caspase affinity labeling probes may contain the same labels and a 1 to 5 amino acid sequence, but utilize an aza-peptide epoxide modification of the aspartic acid (see, e.g., U.S. Pat. No.
  • kits useful for determining the apoptotic state of cells in an organism such as a human.
  • the invention provides a method for in vivo determination of the apoptotic state of one or more cells (e.g., viable whole cells), which may, e.g., be included in tissues, organs or tumors, in mammals such as humans, including: 1) contacting the cells in vivo with at least one caspase affinity labeling agent that is introduced into the subject, e.g., by intravenous, intravascular, intraperitoneal, intravitreal, intraocular, intracranial, intrapleural, intrathoracic, intramuscular, intrapulmonary, injection, perfusion, or lavage administration; and 2) detecting the presence or abundance of at least one affinity labeling agent in the cells; wherein the presence or abundance of the caspase affinity labeling agent correlates with the apoptotic state of the cells.
  • cells e.g., viable whole cells
  • at least one caspase affinity labeling agent that is introduced into the subject, e.g., by intravenous, intravascular, intraperitoneal, intravitreal, intraocular, intra
  • the caspase affinity labeling agent is a cell permeant probe. It is believed that the caspase affinity labeling agent may inhibit active caspases by binding covalently to the active catalytic site and is retained within the cell. It is believed that these labeled membrane permeant probes penetrate the cell membrane of live cells and covalently bind to active caspase enzymes in apoptotic cells, thereby allowing for specific and sensitive detection of apoptosis (Bedner et al., 2000, Smolewski et al., 2001, and Smolewski et al., 2002). In certain embodiments of the invention, the caspase affinity labeling agent is a compound of formula I:
  • L 1 is a detectable group that may comprise gadolinium (Gd), Terbium (Tb), Europium (Eu) or any other Lanthanide series element (e.g., Ce, Pr, Nd, Pm, Sm, Dy, Ho, Er, Tm, Yb, or Lu) or Iron (Fe), Manganese (Mn), Rhenium (Re), or Technetium (Tc).
  • the detectable group may be suitable for nuclear magnetic resonance (NMR) or magnetic resonance imaging (MRI) detection, or luminescence or scintigraphy.
  • the detectable group may be iodine (I) or barium (Ba), e.g., for computer tomography (CT scan) and computer axial tomography (CAT scan) detection.
  • the detectable group may be a positron emitter (such as 11 C, 13 N, 15 O, or 64 Cu), e.g., for positron emission tomography (PET scan).
  • the detectable group may be a fluorescent label (e.g., a fluorescein derivative, sulforhodamine derivative, Cy dye derivative, BODIPY derivative, coumarin derivative, Quantum Dot, or any fluorescent dye that can be attached, e.g., to an amino group, directly or by linkers.
  • the detectable group may be a radioisotope (e.g. 3 H, 14 C, 35 S).
  • a 1 is a direct bond or a linker that can simply be a covalent bond.
  • the detectable group may be attached directly, e.g., to the N-terminal amino group of the peptide or amino acid (e.g., amide linkage L-(C ⁇ O)—NH—R).
  • a 1 can also be any member of the class of linkers well known to the art. Linkers are typically about 4-18 atoms long, including carbon, nitrogen, oxygen or sulfur atoms.
  • X 1 is absent, an amino acid, or a peptide which may be a peptide having about 1 to 10 amino acids, e.g., about 2 to 4 amino acids (e.g., V, VA, YVA, DEV, LEE, LEH, VDVA, IET, WHE or AEV).
  • X 1 may be a natural amino acid (e.g., A, V, or E).
  • R 1 ′ may be a methylene carboxy (ethanoic) side-chain (CH 2 —COOH) as caspases typically have an aspartate in the P 1 position of the peptide substrate.
  • R 1 ′ may be an aspartic acid side-chain (CH 2 —COOH) or an ester of aspartic acid (e.g., —CH 2 CO 2 R, where R is C 1 -C 6 alkyl or benzyl, CH 3 , C 2 H 5 or CH 2 C 6 H 5 ), for example.
  • Certain caspase affinity labeling probes may contain the same labels and a 1 to 5 amino acid sequence, but utilize an aza-peptide epoxide modification of the aspartic acid (see, e.g., U.S. Pat. No.
  • reporter label is used interchangeably with “detectable group”.
  • One example is an Asp(OMe)-FMK modified reactive end that is believed to bind to the cysteine residue in the catalytic site of active caspases.
  • a fluorescent labeled FMK caspase ligand is a carboxyfluorescein-valanyl-alanyl-aspartyl(O-methyl)-fluoromethyl ketone.
  • a metal chelate labeled FMK caspase ligand is a Tc-valanyl-alanyl-aspartyl(O-methyl)-fluoromethyl ketone.
  • the following structure is an example of an aza-peptide epoxide modification of the reactive end that is believed to bind to the cysteine residue in the catalytic site of active caspases.
  • fluorescent labeled aza-peptide epoxide modified caspase ligand is a carboxyfluorescein-valanyl-alanyl- aza aspartyl (O-methyl)-Epoxide.
  • One example of a metal chelate labeled aza-peptide epoxide modified caspase ligand is a Tc-valanyl-alanyl- aza aspartyl(O-methyl)-Epoxide.
  • An Asp(OMe)-OPh modified reactive end is believed to bind to the cysteine residue in the catalytic site of active caspases.
  • fluorescent labeled OPh caspase ligand is carboxyfluorescein-valanyl-alanyl-aspartyl(O-methyl)-benzoyloxymethyl ketone.
  • OPh caspase ligand Tc-valanyl-alanyl-aspartyl(O-methyl)-benzoyloxymethyl ketone.
  • the agent may be further processed into a vial by dissolving it in a suitable organic solvent such as acetone, acetonitrile, dimethylformamide (DMF), dimethylsulfoxide (DMSO), 1,4-dioxane or tetrahydrofuran.
  • a suitable organic solvent such as acetone, acetonitrile, dimethylformamide (DMF), dimethylsulfoxide (DMSO), 1,4-dioxane or tetrahydrofuran.
  • the agent may then be diluted into a suitable non-aqueous or aqueous liquid and dispensed into individual vials.
  • the individual vials may be cooled to less than 0° C., lyophilized under vacuum between 10 to 500 millitor to dryness at ⁇ 80° C. to +100° C., with or without a liquid nitrogen or dry ice trap.
  • Individual vials can then be capped and stored between ⁇ 80° C. and 20° C.
  • the in vivo apoptosis detection and imaging kits may include one or more vials of reagent (e.g., processed and lyophilized reagent) and an appropriate Injection Buffer (e.g., a bottle of 10 ⁇ Injection Buffer).
  • a 10 ⁇ Injection Buffer may be prepared according to the following recipe in endotoxin free DI H 2 O: 87.66 g/L of NaCl (1.5 M), 60.53 g/L of Na 2 HPO 4 .12H 2 O+4.84 g/L of NaH 2 PO 4 .2H 2 O (0.2 M phosphate), pH 6.9.
  • the reagent Prior to use, the reagent may be dissolved in DMSO and may be used immediately or aliquoted and stored, e.g., at less than ⁇ 20° C.
  • the 10 ⁇ Injection Buffer may be diluted 1:10 in endotoxin free DI H 2 O and filter sterilized resulting in a final pH of 7.4.
  • the reagent may be diluted to injection concentrations in the sterilized 1 ⁇ Injection Buffer.
  • the reagent may be injected into the animal between 0.1 micromoles per kg and 1.0 milimoles per kg. It may then be allowed to circulate throughout the animal, e.g., for from about 5 minutes to several hours before detection and imaging of apoptosis.
  • Certain embodiments of the invention provide a method for in vivo determination of whether a therapeutic agent induces apoptosis in one or more viable whole cells, tissues, organs or tumors in mammals, including humans, including: 1) treating the subject with the therapeutic agent; 2) introducing a caspase affinity labeling agent into the subject; and 3) detecting the presence of the group L in the cells, tissues, organs, or tumors, wherein the presence of L correlates with the ability of the agent to induce apoptosis.
  • Certain embodiments of the present invention also provide a method for in vivo determination of whether a therapeutic agent reduces or inhibits apoptosis in one or more viable whole cells, tissues, organs, or tumors in mammals, including humans, including: 1) treating the subject with the therapeutic agent; 2) introducing a caspase affinity labeling agent into the subject; and 3) detecting the presence of the group L in the cells, tissues, organs, or tumors, wherein the presence of L correlates in a negative sense, with whether the therapeutic agent reduces or inhibits apoptosis.
  • Certain embodiments of the present invention also provide a method for in vivo determination of whether a radiation treatment induces apoptosis in one or more viable whole cells, tissues, organs, or tumors in mammals, including humans, including: 1) treating the subject with radiation; 2) introducing a caspase affinity labeling agent into the subject; and 3) detecting the presence of the group L in the cells, tissues, organs, or tumors, wherein the presence of L correlates with the ability of the agent to induce apoptosis.
  • Certain embodiments of the invention provide a method or in vivo determination of whether a radiation reduces or inhibits apoptosis in one or more viable whole cells, tissues, organs, or tumors in mammals, including humans, including: 1) treating the subject with the radiation; 2) introducing a caspase affinity labeling agent into the subject; and 3) detecting the presence of the group L in the cells, tissues, organs, or tumors, wherein the presence of L correlates in a negative sense, with whether the therapeutic agent reduces or inhibits apoptosis.
  • Certain embodiments of the invention provide an in vivo diagnostic method for determining the presence or absence of a disease characterized by the presence of apoptosis in one or more viable whole cells, tissues, organs, or tumors in mammals, including humans, including: 1) introducing a caspase affinity labeling agent into the subject; and 2) detecting the presence of the group L in the cells, tissues, organs, or tumors; wherein the presence of L correlates with the presence or absence of the disease.
  • Certain embodiments of the invention provide an in vivo diagnostic method to diagnose macular degeneration and proliferative retinopathy by determining the presence or absence of a disease characterized by the presence of apoptosis in one or more viable whole cells within the retina in mammals, including humans, including: 1) introducing a caspase affinity labeling agent into the subject; and 2) detecting the presence of the group in the retina; wherein the presence of L correlates with the presence or absence of the disease.
  • Certain embodiments of the invention provide an in vivo diagnostic method to diagnose glaucoma by determining the presence or absence of a disease characterized by the presence of apoptosis in one or more viable retinal glial cells in mammals, including humans, including: 1), introducing a caspase affinity labeling agent into the subject; and 2) detecting the presence of the group L in the retinal glial cells; wherein the presence of L correlates with the presence or absence of the disease.
  • Certain embodiments of the invention provide an in vivo diagnostic method to asses the amount of damage in cardiac disease by determining the presence or absence of a disease characterized by the presence of apoptosis in one or more viable whole cells within cardiac tissue in mammals, including humans, including: 1) introducing a caspase affinity labeling agent into the subject; and 2) detecting the presence of the group L in the cardiac tissues; wherein the presence of L correlates with the presence or absence of the disease.
  • Certain embodiments of the invention provide an in vivo diagnostic method to asses the amount of damage in neurodegenerative disease by determining the presence or absence of a disease characterized by the presence of apoptosis in one or more viable whole cells and neurons within nerve tissue and the brain in mammals, including humans, including: 1) introducing a caspase affinity labeling agent into the subject; and 2) detecting the presence of the group L in the nerve tissues; wherein the presence of L correlates with the presence or absence of the disease.
  • Certain embodiments of the invention provide an in vivo method for evaluating the sensitivity of a disease in a mammal to a therapeutic agent or treatment, wherein the presence- or level of apoptotic activity correlates with the sensitivity of the disease in mammals, including humans, including: 1) subjecting the mammal to the therapeutic agent or treatment, 2) introducing a caspase affinity labeling agent into the subject; and 3) detecting the presence or abundance of the affinity labeling agent in the cells, tissues, organs, or tumors; wherein the presence or abundance correlates with the sensitivity.
  • Certain embodiments of the invention provide a method for the monitoring of cancer treatment, wherein the presence- or level of apoptotic activity correlates with the efficacy of the treatment in mammals, including humans, including: 1) subjecting the subject to the therapeutic agent or treatment; 2) introducing a caspase affinity labeling agent into the subject; and 3) detecting the presence or abundance of each of the affinity labeling agent in the cells, tissues, organs, or tumors; wherein the presence or abundance of apoptosis correlates with efficacy.
  • Certain embodiments of the invention provide a method for the monitoring of leukemia treatment, wherein the presence- or level of apoptotic activity correlates with the efficacy of the treatment in mammals, including humans, including: 1) subjecting the subject to the therapeutic agent or treatment; 2) introducing a caspase affinity labeling agent into the subject; and 3) detecting the presence or abundance of the affinity labeling agent in the bone marrow, thymus, lymph nodes, spleen and circulating blood; wherein the presence or abundance of apoptosis correlates with efficacy.
  • Certain embodiments of the invention provide a method for the monitoring of blood and bone marrow disease treatment, wherein the presence- or level of apoptotic activity correlates with the efficacy of the treatment in mammals, including humans, including: 1) subjecting the subject to the therapeutic agent or treatment; 2) introducing a caspase affinity labeling agent into the subject; 3) drawing blood and preparing peripheral blood monocytes (PBMCs); and 4) detecting the presence or abundance of the affinity labeling agent in the cells; wherein the presence or abundance of apoptosis correlates with treatment efficacy.
  • PBMCs peripheral blood monocytes
  • Certain embodiments of the invention provide a method for the monitoring of leukemia treatment, wherein the presence- or level of apoptotic activity correlates with the efficacy of the treatment, in mammals, including humans, including: 1) subjecting the subject to the therapeutic agent or treatment; 2) introducing a caspase affinity labeling agent into the subject; 3) drawing blood and preparing peripheral blood monocytes (PBMCs); and 4) detecting the presence or abundance of the affinity labeling agent in the cells; wherein the presence or abundance of apoptosis correlates with treatment efficacy.
  • PBMCs peripheral blood monocytes
  • Certain embodiments of the invention provide a method for determining if one or more compounds, e.g., within a chemical library, modulate caspase activity in a mammal including,
  • Certain embodiments of the invention provide a method for determining if one or more compounds, e.g., within a chemical library, induces apoptosis in mammals, including humans, including,
  • Certain embodiments of the invention provide a method for determining if one or more compounds, e.g., within a chemical library, reduces apoptosis in mammals, including humans, including,
  • Certain embodiments of the invention provide a method for longitudinal determination if one or more compounds, e.g., within a chemical library, modulate caspase activity in a mammal including,
  • Certain embodiments of the invention provide a method for determining if one or more compounds, e.g., within a chemical library, induces apoptosis in mammals, including humans, including,
  • Certain embodiments of the invention provide a method for determining if one or more compounds, e.g., within a chemical library, reduces apoptosis in mammals, including humans, including,
  • detection is carried out using NMR, MRI, CT, CAT, PET scans, or scintigraphy; flow cytometer; a laser scanning cytometer; a fluorescence microplate reader; a luminescence microplate reader, a chromogenic microplate reader; a fluorescence microscope; a confocal microscope; a luminescence microscope; a bright-field microscope; whole animal fluorescence imaging systems (optical imaging systems); or a whole animal luminescence imaging system.
  • detection is carried out using a Window Chamber inserted into the test subject for direct observation.
  • detection is carried out using a fluorescence microscope; a confocal microscope; a bright-field microscope, or luminescence microscope.
  • detection is carried out and/or confirmed by removing a sample from the test subject such as by extraction, biopsy, venipuncture, dissection, or other suitable methods and detection by flow cytometer; a laser scanning cytometer; a fluorescence microplate reader; a chromogenic microplate reader; a fluorescence microscope; a confocal microscope; a bright-field microscope; a luminescence microplate reader; or a luminescence microscope.
  • kits such as an assay kit including packaging materials including 1) one or more caspase affinity labeling agents; 2) 10 ⁇ injection buffer; and 3) instructions for using the compound to determine the level of apoptosis in vivo.
  • SCK mammary tumors were evaluated for levels of apoptosis induction in tumors following irradiation treatment with arsenic trioxide (ATO) and heat.
  • a window chamber used for viewing tumors, was placed over a fold of skin in A/J mice. 2 ⁇ 10 5 SCK mammary carcinoma cells were injected into the skin fold. The tumors were allowed to grow for 7 to 9 days. In the test mice, tumors were irradiated with 20 Gy, 8 mg/kg ATO and 2 hours later the tumors were heated at 41.5° C. for 60 minutes. Control mice were not treated with irradiation or heat and a placebo was injected instead of ATO.
  • test mice were first irradiated with 20 Gy. This was immediately followed by an intraperitoneal (I.P.) injection of ATO.
  • the ATO was dissolved in water and injected in a solution of PBS with 5% w/v of dextrose at a concentration of 8 mg/kg. After 2 hours the tumors were heated at 41.5° C. for 60 minutes. Control mice received an I.P. injection of PBS with 5% dextrose.
  • Apoptosis was detected by injecting the in vivo apoptosis detection reagent FAM-VAD-FMK into the tail vein of control and test mice.
  • a processed vial of reagent containing 52 ⁇ g of FAM-VAD-FMK was dissolved into 50 of DMSO. This solution was diluted by adding 200 ⁇ L of sterile 1 ⁇ injection buffer. Of the diluted reagent, 40 ⁇ L (8.3 ⁇ g) was injected I.V. through the tail vein and allowed to circulate in the mouse for 30 minutes.
  • the level of apoptosis in each tumor was viewed directly through the window chambers at high magnification with an excitation wavelength of 488 nm and using a FITC filter.
  • mice were given FAM-VAD-FMK injections following placebo injections. These mice showed a low level of apoptosis, as would be expected in a fast growing tumor ( FIG. 4 ).
  • Test mice that received ATO treatment were given FAM-VAD-FMK injections at 3 hours and 24 hours after ATO treatment, and apoptosis was evaluated as before. After 3 hours, there was a substantial increase in the level of apoptosis, as seen in FIG. 5 . The level of apoptosis was even higher after 24 hours ( FIG. 6 ).
  • mice In another set of mice, the tumors were allowed to grow for 7 days. Control mice received placebo injections as before and test mice received ATO injections as before. After 24 hours all mice received I.V. injections of FAM-VAD-FMK as before.
  • the in vivo apoptosis detection and imaging reagent was allowed to circulate through each mouse for 30 minutes. After imaging tumor-associated apoptosis in vivo, tumor tissue was collected from the window chamber by scraping the tumor out of the chamber into a trypsin solution, stirring for 30 minutes with 10 ⁇ g/ml DNase and 5 ⁇ g/ml collagenase, filtering the suspension using a 70 ⁇ M cell strainer.
  • Flow cytometry was then performed using a FACS Caliber flow cytometer (Becton Dickinson Immunocytometry System, San Jose, Calif.) for the analysis of apoptosis in the cell population obtained from the window chamber. All data was acquired with an event acquisition set for 10,000 events. Data was analyzed using CellQuest Pro cytometer software. The results indicated a two-fold increase in apoptosis with the control mouse having 18% apoptotic cells and the test mouse having 39% apoptotic cells ( FIG. 7 ).
  • a longitudinal study was performed in nu/nu mice to asses the efficacy of arsenic trioxide (ATO) on FSaII murine fibrosarcoma tumors before and after ATO treatment through a window chamber.
  • ATO arsenic trioxide
  • DSFC Dorsal skin flap chambers
  • Antibiotic ointment (bacitracin zinc/polymyxin B sulfate/neomycin sulfate) was used on the edges of the wound inside the DSFC window. A glass window was placed in the chamber to cover the exposed tissue and secured with a snap C-ring. The surgical wound procedure was then repeated in the opposite DSFC window so that a very thin, transparent layer of fascia and vessels remained visible through both windows (created to facilitate microscope light transmission through the tissue). Finally, the chamber was sutured to the skin.
  • mice After surgery, the animals were housed in barrier cages inside a humidified incubator maintained at 32° C. with unrestricted access to food and water. To minimize risk of infection, all mice were given amoxicillin in their drinking water (250 mg per 5 mL water) after DSFC implantation and throughout the experiment.
  • Tumor cells were implanted into one side of the chamber by temporary removal of the C-ring and glass cover slip.
  • 1 ⁇ 10 5 FSaII murine fibrosarcoma tumor cells in 10 ⁇ L Matrigel (BD Biosciences, Bedford, Mass.) were added on top of the fascia and the window closed back over the tissue as described above. Cells were placed within the chamber 24 hrs post surgery. Mice were checked daily for general health as well as for vessel presence, tumor progression and chamber-skin interaction. Images were taken of the tumor by removing the C-ring and glass cover slip and attaching the chamber of the anesthetized mouse to a modified microscope stage.
  • Arsenic trioxide was originally obtained from Cell Therapeutics, Inc. (Seattle, Wash.) under the brand name, Trisenox, at a concentration of 1.0 mg/mL. Mice to be injected were weighed and ATO was injected IP at a dose of 8.0 mg ATO per kilogram of mouse body weight.
  • FAM-VAD-FMK carboxyfluorescein-valanyl-alanyl-aspartyl(O-methyl)-fluoromethyl ketone
  • a processed vial of reagent containing 52 ⁇ g of FAM-VAD-FMK was dissolved into 50 ⁇ L of DMSO. This solution was diluted by adding 2504 of sterile 1 ⁇ injection buffer. Of the diluted reagent, 70 ⁇ L (12.0 ⁇ g) was injected IV through the tail vein and allowed to circulate in the mouse for 45 minutes. The level of apoptosis in each tumor was viewed directly through the window chambers at lox magnification with an excitation wavelength of 488 nm and using a FITC filter.
  • results The tumors were allowed to grow for 9 days. FAM-VAD-FMK was injected and allowed to circulate for 45 minutes. The DFSC C-ring and glass cover were removed and the mouse was connected to the microscope. A 10 ⁇ photograph was taken using a 488 nm excitation with a FITC filter ( FIG. 8 ). This photograph shows a lack of apoptosis occurring in the tumor. The same mouse was then injected with ATO as described above. The ATO was allowed to work for 3 hours before the mouse was injected a second time with FAM-VAD-FMK. After 45 minutes the mouse was again connected to the microscope and the same tumor was photographed ( FIG. 9 ). This photograph shows a significant level of apoptosis in the mouse tumor.
  • the objective of this project was to develop an in vivo animal model for the detection of morphine-mediated apoptosis.
  • Drugs of abuse including morphine
  • Apoptosis is initiated through a variety of complex pathways that lead to the activation of cysteine proteases known as caspases.
  • the detection of apoptosis is important for the understanding of the adverse effects of drugs, e.g., drugs of abuse, e.g., morphine.
  • drugs of abuse e.g., morphine.
  • morphine cysteine proteases
  • the objective of this study was to develop an in vivo model for the detection of apoptosis induced by morphine.
  • mice were divided into 4 groups, dependent on the treatment. One group received a placebo, a second group received LPS to stimulate cells, a third group received morphine, and a fourth group received morphine and LPS. After the mice were given their respective treatments, they received IV injections of FAM-VAD-FMK. A processed vial of reagent containing 52 ⁇ g of FAM-VAD-FMK was dissolved into 50 ⁇ L of DMSO. This solution was diluted by adding 200 ⁇ L of sterile 1 ⁇ injection buffer. Of the diluted reagent, 40 ⁇ L (8.3 ⁇ g) was injected N through the tail vein and allowed to circulate in the mouse for 45 minutes.
  • Spleen, Liver, Thymus, and CNS tissues were isolated from different treatment groups, frozen and mounted on glass slides.
  • Table 1 is a summary of quantitative results of apoptosis induced by LPS, morphine, and morphine+LPS in the spleen, thymus, liver and CNS.
  • In vivo apoptosis detection was made by intravenous injection of 8.3 ⁇ g of FAM-VAD-FMK with a 45 minute incubation time.
  • Spleen, Liver, Thymus, and CNS tissues were isolated from different treatment groups, frozen and mounted on glass slides. Sections were photographed and analyzed by MetaMorph analysis program for apoptosis positive cell counts. Counts were analyzed by statistics software.

Abstract

The invention provides methods and products, such as kits, useful for determining the apoptotic state of cells in an organism, comprising detecting the presence or abundance of at least one caspase affinity labeling agent in the cells of an animal into which at least one caspase affinity labeling agent has been introduced, wherein the presence or abundance of the caspase affinity labeling agent correlates with the apoptotic state of the cells.

Description

    RELATED APPLICATION(S)
  • This patent document claims the benefit of priority of U.S. application Ser. No. 60/729,227, filed Oct. 21, 2005, which application is herein incorporated by reference.
  • BACKGROUND
  • There have been attempts at in vivo apoptosis detection and imaging using Annexin V and Annexin V derivatives (see, e.g., Kietselaer et al., 2003; Belhocine et al., 2004; Reddy, 2005; Boersma et al., 2005; Watanabe et al., 2006; Vanderheyden et al., 2006; and Corsten et al., 2006). Other attempts using novel compounds that rely on the perturbation and alterations of the normal organization of the cell plasma membrane have also been attempted (see, e.g., U.S. Patent Application Publications 2005/0244812 and 2005/0276750).
  • None of the previously described methods uses a cell permeant probe for the detection and imaging of apoptosis. As a result of this and other issues, all of the aforementioned methods have been plagued with problems resulting in high backgrounds and lack of binding to certain apoptotic tumor cells. Annexin V is not cell permeant, is slow to penetrate any tissues, has high background, and does not detect early apoptotic cells (Kietselaer et al., 2003; Belhocine et al., 2004; Boersma et al., 2005; Watanabe et al., 2006; Vanderheyden et al., 2006; and Corsten et al., 2006). Leading to high background, Annexin V binds positively to normal and healthy bone marrow derived cells (Dillon, 2001). It has been reported that Annexin V does not bind to all tumor cells (Dicker, 2005).
  • In the Ziv publications (U.S. Patent Application Publications 2005/0244812 and 2005/0276750), it is reported that their compounds accumulate in apoptotic cells at a rate faster than they accumulate in cells that are not undergoing cell wall turnover. This leads to high background levels and lack of specificity similar to Annexin V. Requiring a compromised cell state also prohibits the detection of cells that are in the early stages of apoptosis.
  • Thus, previously described methods of in vivo apoptosis detection and imaging lack specificity and sensitivity and are subject to high background. The use of sensitive and specific cell permeant inhibitor probes that bind to specific active enzymes and proteases involved in apoptosis has not been described.
  • Thus, methods and products for in vivo determination of the apoptotic state of cells in an organism are needed.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1. Low magnification bright-field image composite of SCK mammary tumors taken through a window chamber. Each mouse was injected with 2×105 SCK tumor cells. The tumors were allowed to grow for 7 days. A low level of hemorrhaging was seen in both control and test mice.
  • FIG. 2. Low magnification bright-field image composite of SCK mammary tumors taken through a window chamber. The control mouse was injected with a placebo and the test mouse was injected with 8.0 mg/kg of arsenic trioxide (ATO). Increased levels of hemorrhaging can be seen in the mouse that received the ATO treatment. The photographs were taken 3 hours after completion of treatment.
  • FIG. 3. Low magnification bright-field image composite of SCK mammary tumors taken through a window chamber. The control mouse was injected with a placebo and the test mouse was injected with 8.0 mg/kg of ATO. Increased levels of hemorrhaging can be seen in mice that received the ATO treatment, the amount of hemorrhaging has also increased over time when compared to the 3 hour post treatment photograph. The photographs were taken 24 hours after completion of treatment.
  • FIG. 4. High magnification photograph using an excitation at 488 nm with a fluorescein filter to detect fluorescence. The mouse was injected with 2×105 SCK tumor cells. The tumor was allowed to grow for 7 days. The mouse was then injected intravenously (I.V.) through the tail vein with 8 μg of the apoptosis detection reagent FAM-VAD-FMK prior to therapeutic treatment. The reagent was allowed to circulate in the mouse for 30 minutes before photographing with 488 nm excitation. The results demonstrate a low level of apoptosis which is expected in a fast growing SCK tumor.
  • FIG. 5. High magnification photograph using an excitation at 488 nm with a fluorescein filter to detect fluorescence. The mouse was injected with 8.0 mg/kg of ATO. After 3 hours post ATO treatment, the mouse was injected intravenously through the tail vein with 8 μg of FAM-VAD-FMK. The reagent was allowed to circulate in the mouse for 30 minutes before photographing with 488 nm excitation. The results demonstrate a high level of apoptosis.
  • FIG. 6. High magnification photograph using an excitation at 488 nm with a fluorescein filter to detect fluorescence. The mouse was injected with 8.0 mg/kg of ATO. After 24 hours post ATO treatment, the mouse was injected intravenously through the tail vein with 8 μg of FAM-VAD-FMK. The reagent was allowed to circulate in the mouse for 30 minutes before photographing with 488 nm excitation. The results demonstrate a higher level of apoptosis.
  • FIG. 7. Each mouse was injected with 2×105 SCK tumor cells. The tumors were allowed to grow for 7 days. The control mouse was injected with a placebo and the test mouse was injected with 8.0 mg/kg of ATO. After 24 hours of treatment the mice were injected intravenously through the tail vein with 8 μg of FAM-VAD-FMK. The reagent was allowed to circulate in the mouse for 30 minutes before excising the tumors. The tumors were then broken apart and the cells were dispersed. The cells were then analyzed by flow cytometry. Flow cytometry analysis demonstrated that the treated mouse had an apoptosis induction rate of 39% while the control mouse had an apoptosis induction rate of only 18%.
  • FIG. 8. Apoptosis imaging of FSaII tumor in DSFC in a nu/nu mouse. 10× capture of apoptosis prior to ATO injection, 45 minutes after 12.0 μg of FAM-VAD-FMK were injected intravenously through the tail vein. Very little apoptosis is visible.
  • FIG. 9. Same tumor as in FIG. 8. 10× capture of apoptosis 3 hours post ATO (8.0 mg/kg) injection. 45 minutes after 12.0 μg of FAM-VAD-FMK were injected intravenously through the tail vein. The increase in apoptosis within the tumor is clear.
  • SUMMARY OF CERTAIN EMBODIMENTS OF THE INVENTION
  • Accordingly, certain embodiments of the invention provide methods and products, such as kits, useful for determining the apoptotic state of cells in vivo, such as in an organism such as an animal.
  • This invention provides cell permeant probes that bind specifically to up-regulated caspase and apoptosis-associated enzymes, which allows for the detection and imaging of apoptosis events in vivo.
  • Certain embodiments of the invention provide a method for in vivo determination of the apoptotic state of one or more cells in an animal, including detecting the presence or abundance of at least one caspase affinity labeling agent in the cells of an animal into which at least one caspase affinity labeling agent has been introduced, wherein the presence or abundance of the caspase affinity labeling agent correlates with the apoptotic state of the cells.
  • Certain embodiments of the invention provide a method for in vivo determination of whether a therapeutic agent modulates apoptosis in one or more cells in an animal, including detecting the presence of at least one caspase affinity labeling agent in the cells of an animal that has been previously treated with the therapeutic agent and into which at least one caspase affinity labeling agent has been introduced, wherein the presence of the caspase affinity labeling agent correlates with the ability of the therapeutic agent to modulate apoptosis. In certain embodiments of the invention, the method determines whether the therapeutic agent increases or decreases apoptosis.
  • Certain embodiments of the invention provide a method for in vivo determination of whether a radiation treatment modulates apoptosis in one or more cells in an animal, including detecting the presence of at least one caspase affinity labeling agent in the cells of an animal into which at least one caspase affinity labeling agent has been introduced, wherein the animal has been previously treated with radiation, wherein the presence of the caspase affinity labeling agent correlates with the ability of the radiation to modulate apoptosis. In certain embodiments of the invention, the method determines whether the radiation treatment increases or decreases apoptosis.
  • Certain embodiments of the invention provide an in vivo diagnostic method for determining the presence or absence of a disease characterized by the presence of apoptosis including detecting the presence of at least one caspase affinity labeling agent in the cells of the animal into which at least one caspase affinity labeling agent has been introduced, wherein the presence or absence of the at least one caspase affinity labeling agent correlates with the presence or absence of the disease.
  • In some embodiments of the invention, the diseases include but are not limited to eye disease such as glaucoma, retinal diseases such as macular degeneration and proliferative retinopathy; neurodegenerative diseases such as neuropathy, Alzheimer's disease, multiple sclerosis, Huntington's disease and others; and cardiac disease.
  • Certain embodiments of the invention provide an in vivo method for evaluating the sensitivity of a disease to at least one therapeutic agent or treatment, including detecting the presence or abundance of at least one caspase affinity labeling agent in the cells of an animal into which at least one caspase affinity labeling agent has been introduced, wherein the animal has previously received the therapeutic agent or treatment, wherein the presence or abundance of the caspase affinity labeling agent correlates with the sensitivity of the disease to the at least one therapeutic agent or treatment.
  • Certain embodiments of the invention provide a method for the monitoring of cancer treatment in an animal, including: detecting the presence or abundance of at least one caspase affinity labeling agent in the cells of the animal into which at least one caspase affinity labeling agent has been introduced that has received a therapeutic agent or treatment, wherein the presence or abundance of at least one caspase affinity labeling agent correlates with the efficacy of the therapeutic agent or treatment.
  • Certain embodiments of the invention provide a method for the monitoring of leukemia treatment in an animal, including detecting the presence or abundance of at least one caspase affinity labeling agent in the cells of the animal into which at least one caspase affinity labeling agent has been introduced that has received a therapeutic agent or treatment, wherein the presence or abundance of at least one caspase affinity labeling agent correlates with the efficacy of the therapeutic agent or treatment.
  • Certain embodiments of the invention provide a method for the monitoring of blood and bone marrow disease treatment in an animal including detecting the presence or abundance of at least one caspase affinity labeling agent in the cells of an animal into which at least one caspase affinity labeling agent has been introduced that has received a therapeutic agent or treatment, wherein the presence or abundance of at least one caspase affinity labeling agent correlates with the efficacy of the therapeutic agent or treatment.
  • Certain embodiments of the invention provide a method for determining if one or more compounds within a chemical library modulate caspase activity in an animal including determining the level of at least one caspase affinity labeling agent in cells of an animal into which at least one caspase affinity labeling agent has been introduced, wherein the animal has been contacted with one or more compounds from the library, and determining whether the one or more compounds modulate the caspase activity.
  • Certain embodiments of the invention provide a method for determining if one or more compounds within a chemical library modulate apoptosis in an animal including determining the level of at least one caspase affinity labeling agent in cells of an animal into which at least one caspase affinity labeling agent has been introduced, wherein the animal has been contacted with one or more compounds from the library, and determining whether the one or more compounds modulate apoptosis.
  • In certain embodiments of the invention, the determination step includes comparing the level of affinity labeling agent in the animal with a control animal not exposed to the compound.
  • In certain embodiments, the determination step is a longitudinal study that is comprised of a comparison of the level of affinity labeling agent in the animal before exposure to the compound and after the animal has been exposed to the compound. In this case the animal is contacted with the affinity labeling agent before exposure to the compound and a second time, after exposure to the compound.
  • In certain embodiments of the invention, detection is carried out using NMR, MRI, CT, CAT, or PET scans; a flow cytometer; a laser scanning cytometer; a fluorescence microplate reader; a luminescence microplate reader, a chromogenic microplate reader; a fluorescence microscope; a confocal microscope; a luminescence microscope, or scintigraphy; a bright-field microscope; a whole animal fluorescence imaging systems (optical imaging system); or a whole animal luminescence imaging system, or a combination thereof.
  • In certain embodiments of the invention, detection is carried out using a Window Chamber inserted into the animal.
  • In certain embodiments of the invention, detection is carried out using a fluorescence microscope; a confocal microscope; a bright-field microscope, or luminescence microscope.
  • In certain embodiments of the invention, detection is carried out or confirmed by removing a sample from the animal such as by extraction, biopsy, venipuncture, dissection, or other suitable methods and detection is carried out on a sample that has been removed from the animal.
  • In certain embodiments of the invention, detection is via a flow cytometer; a laser scanning cytometer; a fluorescence microplate reader; a chromogenic microplate reader; a fluorescence microscope; a confocal microscope; a bright-field microscope; a luminescence microplate reader; or a luminescence microscope.
  • In certain embodiments of the invention, the presence or abundance of the affinity labeling agent is detected in the bone marrow, thymus, lymph nodes, spleen or circulating blood of the animal.
  • In certain embodiments of the invention, the presence or abundance of the affinity labeling agent is detected in peripheral blood monocytes (PBMCs).
  • In certain embodiments of the invention, the cells are included in tissues, organs or tumors of the animal.
  • In certain embodiments of the invention, the caspase affinity labeling agent is introduced into the animal by intravenous, intravascular, intraperitoneal, intravitreal, intraocular, intracranial, intrapleural, intrathoracic, intramuscular, intrapulmonary, injection, perfusion, or lavage administration.
  • As used herein, the term animal refers to any type of living organism, e.g., a multi-cellular organism. In certain embodiments of the invention, the animal is a mammal. In certain embodiments of the invention, the mammal is a human male or female.
  • Certain embodiments of the invention provide an assay kit including packaging materials and one or more caspase affinity labeling agents and instructions for using the caspase affinity labeling agents to determine the level of apoptosis in vivo.
  • In certain embodiments of the invention, the caspase affinity labeling agent is a cell permeant probe consisting of a compound of formula I:

  • L1-A1-X1—NH—CH(R1′)C(═O)CH2F  (I)
  • wherein:
  • L1 is a detectable group that may comprise gadolinium (Gd), Terbium (Tb), Europium (Eu) or any other Lanthanide series element (e.g., Ce, Pr, Nd, Pm, Sm, Dy, Ho, Er, Tm, Yb, or Lu) or Iron (Fe), Manganese (Mn), Rhenium (Re), or Technetium (Tc). The detectable group may be suitable for nuclear magnetic resonance (NMR) or magnetic resonance imaging (MRI) detection, or luminescence or scintigraphy. The detectable group may be iodine (I) or barium (Ba), e.g., for computer tomography (CT scan) or computer axial tomography (CAT scan) detection. The detectable group may be a positron emitter (such as 11C, 13N, 15O or 64Cu), e.g., for positron emission tomography (PET scan). The detectable group may be a fluorescent label (e.g., a fluorescein derivative, sulforhodamine derivative, Cy dye derivative, BODIPY derivative, coumarin derivative, Quantum Dot, or any fluorescent dye that can be attached, e.g., to an amino group, directly or by linkers). The detectable group may be a radioisotope (e.g. 3H, 14C, or 35S).
  • A1 is a direct bond or a linker that can simply be a covalent bond. The detectable group may be attached directly, e.g., to the N-terminal amino group of the peptide or amino acid (e.g., amide linkage L-(C═O)—NH—R). A1 can also be any member of the class of linkers well known to the art. Linkers are typically about 4-18 atoms long, including carbon, nitrogen, oxygen or sulfur atoms;
  • X1 is absent, an amino acid, or a peptide which may be a peptide having about 1 to 10 amino acids, e.g., about 2 to 4 amino acids (e.g., V, VA, YVA, DEV, LEE, LEH, VDVA, IET, WHE or AEV). For a compound of formula (I), X1 may be a natural amino acid (e.g., A, V, or E). For a compound of formula (I), R1′ may be a methylene carboxy (ethanoic) side-chain (CH2—COOH) as caspases typically have an aspartate in the P1 position of the peptide substrate.
  • R1′ may be an aspartic acid side-chain (CH2—COOH) or an ester of aspartic acid (e.g., —CH2CO2R, where R is C1-C6 alkyl or benzyl, CH3, C2H5 or CH2C6H5), for example. Certain caspase affinity labeling probes may contain the same labels and a 1 to 5 amino acid sequence, but utilize an aza-peptide epoxide modification of the aspartic acid (see, e.g., U.S. Pat. No. 7,056,947 B2), or an aza-peptide Michael acceptor (Ekici et al., 2004), an aldehyde modification of the aspartic terminal carboxyl group (HC═O), a chloromethyl ketone group (CH2Cl), or an acyloxy reactive group ((C═O)O-Ar, where Ar is [2,6-(CF3)2]benzoate or various derivative of same (Krantz et al., 1991, and Thornberry et al., 1994).
  • DETAILED DESCRIPTION
  • Certain embodiments of the invention provide methods and products, such as kits, useful for determining the apoptotic state of cells in an organism such as a human.
  • In some embodiments, the invention provides a method for in vivo determination of the apoptotic state of one or more cells (e.g., viable whole cells), which may, e.g., be included in tissues, organs or tumors, in mammals such as humans, including: 1) contacting the cells in vivo with at least one caspase affinity labeling agent that is introduced into the subject, e.g., by intravenous, intravascular, intraperitoneal, intravitreal, intraocular, intracranial, intrapleural, intrathoracic, intramuscular, intrapulmonary, injection, perfusion, or lavage administration; and 2) detecting the presence or abundance of at least one affinity labeling agent in the cells; wherein the presence or abundance of the caspase affinity labeling agent correlates with the apoptotic state of the cells.
  • In some embodiments of the invention, the caspase affinity labeling agent is a cell permeant probe. It is believed that the caspase affinity labeling agent may inhibit active caspases by binding covalently to the active catalytic site and is retained within the cell. It is believed that these labeled membrane permeant probes penetrate the cell membrane of live cells and covalently bind to active caspase enzymes in apoptotic cells, thereby allowing for specific and sensitive detection of apoptosis (Bedner et al., 2000, Smolewski et al., 2001, and Smolewski et al., 2002). In certain embodiments of the invention, the caspase affinity labeling agent is a compound of formula I:

  • L1-A1-X1—NH—CH(R1′)C(═O)CH2F  (I)
  • wherein:
  • L1 is a detectable group that may comprise gadolinium (Gd), Terbium (Tb), Europium (Eu) or any other Lanthanide series element (e.g., Ce, Pr, Nd, Pm, Sm, Dy, Ho, Er, Tm, Yb, or Lu) or Iron (Fe), Manganese (Mn), Rhenium (Re), or Technetium (Tc). The detectable group may be suitable for nuclear magnetic resonance (NMR) or magnetic resonance imaging (MRI) detection, or luminescence or scintigraphy. The detectable group may be iodine (I) or barium (Ba), e.g., for computer tomography (CT scan) and computer axial tomography (CAT scan) detection. The detectable group may be a positron emitter (such as 11C, 13N, 15O, or 64Cu), e.g., for positron emission tomography (PET scan). The detectable group may be a fluorescent label (e.g., a fluorescein derivative, sulforhodamine derivative, Cy dye derivative, BODIPY derivative, coumarin derivative, Quantum Dot, or any fluorescent dye that can be attached, e.g., to an amino group, directly or by linkers. The detectable group may be a radioisotope (e.g. 3H, 14C, 35S).
  • A1 is a direct bond or a linker that can simply be a covalent bond. The detectable group may be attached directly, e.g., to the N-terminal amino group of the peptide or amino acid (e.g., amide linkage L-(C═O)—NH—R). A1 can also be any member of the class of linkers well known to the art. Linkers are typically about 4-18 atoms long, including carbon, nitrogen, oxygen or sulfur atoms.
  • X1 is absent, an amino acid, or a peptide which may be a peptide having about 1 to 10 amino acids, e.g., about 2 to 4 amino acids (e.g., V, VA, YVA, DEV, LEE, LEH, VDVA, IET, WHE or AEV). For a compound of formula (I), X1 may be a natural amino acid (e.g., A, V, or E). For a compound of formula (I), R1′ may be a methylene carboxy (ethanoic) side-chain (CH2—COOH) as caspases typically have an aspartate in the P1 position of the peptide substrate.
  • R1′ may be an aspartic acid side-chain (CH2—COOH) or an ester of aspartic acid (e.g., —CH2CO2R, where R is C1-C6 alkyl or benzyl, CH3, C2H5 or CH2C6H5), for example. Certain caspase affinity labeling probes may contain the same labels and a 1 to 5 amino acid sequence, but utilize an aza-peptide epoxide modification of the aspartic acid (see, e.g., U.S. Pat. No. 7,056,947 B2), or an aza-peptide Michael acceptor (Ekici et al., 2004), an aldehyde modification of the aspartic terminal carboxyl group (HC═O), a chloromethyl ketone group (CH2Cl), or an acyloxy reactive group ((C═O)O-Ar, where Ar is [2,6-(CF3)2]benzoate or various derivative of same (Krantz et al., 1991, and Thornberry et al., 1994).
  • The following structures are examples of compounds of formula I, but the invention is not limited to these structures. The term “reporter label” is used interchangeably with “detectable group”.
  • One example is an Asp(OMe)-FMK modified reactive end that is believed to bind to the cysteine residue in the catalytic site of active caspases.
  • Figure US20150093329A1-20150402-C00001
  • One example of a fluorescent labeled FMK caspase ligand is a carboxyfluorescein-valanyl-alanyl-aspartyl(O-methyl)-fluoromethyl ketone.
  • Figure US20150093329A1-20150402-C00002
  • One example of a metal chelate labeled FMK caspase ligand is a Tc-valanyl-alanyl-aspartyl(O-methyl)-fluoromethyl ketone.
  • Figure US20150093329A1-20150402-C00003
  • Once the fluoromethyl ketone peptides enter the cell and come into contact with an active caspase, it is believed that the sequence is recognized by the catalytic site and forms a covalent bond through a three step process. In the first step it is believed that the formation of a thiohemiketal intermediate occurs.
  • Figure US20150093329A1-20150402-C00004
  • It is believed that the thiohemiketal intermediate undergoes a rearrangement to form a three membered sulfonium intermediate.
  • Figure US20150093329A1-20150402-C00005
  • It is believed that the second intermediate rearranges to give the final stable thioether adduct, which is retained within the apoptotic cell.
  • Figure US20150093329A1-20150402-C00006
  • The following structure is an example of an aza-peptide epoxide modification of the reactive end that is believed to bind to the cysteine residue in the catalytic site of active caspases.
  • Figure US20150093329A1-20150402-C00007
  • One example of a fluorescent labeled aza-peptide epoxide modified caspase ligand is a carboxyfluorescein-valanyl-alanyl-azaaspartyl (O-methyl)-Epoxide.
  • Figure US20150093329A1-20150402-C00008
  • One example of a metal chelate labeled aza-peptide epoxide modified caspase ligand is a Tc-valanyl-alanyl-azaaspartyl(O-methyl)-Epoxide.
  • Figure US20150093329A1-20150402-C00009
  • It is believed that once the aza-peptide epoxide modified peptides enter the cell and come into contact with an active caspase, the sequence is recognized by the catalytic site and forms a covalent bond where the active site cysteine nucleophilically attacks the three-member ring forming the final product that will remain in the apoptotic cell.
  • Figure US20150093329A1-20150402-C00010
  • An Asp(OMe)-OPh modified reactive end is believed to bind to the cysteine residue in the catalytic site of active caspases.
  • Figure US20150093329A1-20150402-C00011
  • One example of a fluorescent labeled OPh caspase ligand is carboxyfluorescein-valanyl-alanyl-aspartyl(O-methyl)-benzoyloxymethyl ketone.
  • Figure US20150093329A1-20150402-C00012
  • One example of a metal chelate labeled OPh caspase ligand is Tc-valanyl-alanyl-aspartyl(O-methyl)-benzoyloxymethyl ketone.
  • Figure US20150093329A1-20150402-C00013
  • Following synthesis, the agent may be further processed into a vial by dissolving it in a suitable organic solvent such as acetone, acetonitrile, dimethylformamide (DMF), dimethylsulfoxide (DMSO), 1,4-dioxane or tetrahydrofuran. Once dissolved, the agent may then be diluted into a suitable non-aqueous or aqueous liquid and dispensed into individual vials. The individual vials may be cooled to less than 0° C., lyophilized under vacuum between 10 to 500 millitor to dryness at −80° C. to +100° C., with or without a liquid nitrogen or dry ice trap. Individual vials can then be capped and stored between −80° C. and 20° C.
  • The in vivo apoptosis detection and imaging kits may include one or more vials of reagent (e.g., processed and lyophilized reagent) and an appropriate Injection Buffer (e.g., a bottle of 10× Injection Buffer). A 10× Injection Buffer may be prepared according to the following recipe in endotoxin free DI H2O: 87.66 g/L of NaCl (1.5 M), 60.53 g/L of Na2HPO4.12H2O+4.84 g/L of NaH2PO4.2H2O (0.2 M phosphate), pH 6.9.
  • Prior to use, the reagent may be dissolved in DMSO and may be used immediately or aliquoted and stored, e.g., at less than −20° C. The 10× Injection Buffer may be diluted 1:10 in endotoxin free DI H2O and filter sterilized resulting in a final pH of 7.4. The reagent may be diluted to injection concentrations in the sterilized 1× Injection Buffer. The reagent may be injected into the animal between 0.1 micromoles per kg and 1.0 milimoles per kg. It may then be allowed to circulate throughout the animal, e.g., for from about 5 minutes to several hours before detection and imaging of apoptosis.
  • Certain embodiments of the invention provide a method for in vivo determination of whether a therapeutic agent induces apoptosis in one or more viable whole cells, tissues, organs or tumors in mammals, including humans, including: 1) treating the subject with the therapeutic agent; 2) introducing a caspase affinity labeling agent into the subject; and 3) detecting the presence of the group L in the cells, tissues, organs, or tumors, wherein the presence of L correlates with the ability of the agent to induce apoptosis.
  • Certain embodiments of the present invention also provide a method for in vivo determination of whether a therapeutic agent reduces or inhibits apoptosis in one or more viable whole cells, tissues, organs, or tumors in mammals, including humans, including: 1) treating the subject with the therapeutic agent; 2) introducing a caspase affinity labeling agent into the subject; and 3) detecting the presence of the group L in the cells, tissues, organs, or tumors, wherein the presence of L correlates in a negative sense, with whether the therapeutic agent reduces or inhibits apoptosis.
  • Certain embodiments of the present invention also provide a method for in vivo determination of whether a radiation treatment induces apoptosis in one or more viable whole cells, tissues, organs, or tumors in mammals, including humans, including: 1) treating the subject with radiation; 2) introducing a caspase affinity labeling agent into the subject; and 3) detecting the presence of the group L in the cells, tissues, organs, or tumors, wherein the presence of L correlates with the ability of the agent to induce apoptosis.
  • Certain embodiments of the invention provide a method or in vivo determination of whether a radiation reduces or inhibits apoptosis in one or more viable whole cells, tissues, organs, or tumors in mammals, including humans, including: 1) treating the subject with the radiation; 2) introducing a caspase affinity labeling agent into the subject; and 3) detecting the presence of the group L in the cells, tissues, organs, or tumors, wherein the presence of L correlates in a negative sense, with whether the therapeutic agent reduces or inhibits apoptosis.
  • Certain embodiments of the invention provide an in vivo diagnostic method for determining the presence or absence of a disease characterized by the presence of apoptosis in one or more viable whole cells, tissues, organs, or tumors in mammals, including humans, including: 1) introducing a caspase affinity labeling agent into the subject; and 2) detecting the presence of the group L in the cells, tissues, organs, or tumors; wherein the presence of L correlates with the presence or absence of the disease.
  • Certain embodiments of the invention provide an in vivo diagnostic method to diagnose macular degeneration and proliferative retinopathy by determining the presence or absence of a disease characterized by the presence of apoptosis in one or more viable whole cells within the retina in mammals, including humans, including: 1) introducing a caspase affinity labeling agent into the subject; and 2) detecting the presence of the group in the retina; wherein the presence of L correlates with the presence or absence of the disease.
  • Certain embodiments of the invention provide an in vivo diagnostic method to diagnose glaucoma by determining the presence or absence of a disease characterized by the presence of apoptosis in one or more viable retinal glial cells in mammals, including humans, including: 1), introducing a caspase affinity labeling agent into the subject; and 2) detecting the presence of the group L in the retinal glial cells; wherein the presence of L correlates with the presence or absence of the disease.
  • Certain embodiments of the invention provide an in vivo diagnostic method to asses the amount of damage in cardiac disease by determining the presence or absence of a disease characterized by the presence of apoptosis in one or more viable whole cells within cardiac tissue in mammals, including humans, including: 1) introducing a caspase affinity labeling agent into the subject; and 2) detecting the presence of the group L in the cardiac tissues; wherein the presence of L correlates with the presence or absence of the disease.
  • Certain embodiments of the invention provide an in vivo diagnostic method to asses the amount of damage in neurodegenerative disease by determining the presence or absence of a disease characterized by the presence of apoptosis in one or more viable whole cells and neurons within nerve tissue and the brain in mammals, including humans, including: 1) introducing a caspase affinity labeling agent into the subject; and 2) detecting the presence of the group L in the nerve tissues; wherein the presence of L correlates with the presence or absence of the disease.
  • Certain embodiments of the invention provide an in vivo method for evaluating the sensitivity of a disease in a mammal to a therapeutic agent or treatment, wherein the presence- or level of apoptotic activity correlates with the sensitivity of the disease in mammals, including humans, including: 1) subjecting the mammal to the therapeutic agent or treatment, 2) introducing a caspase affinity labeling agent into the subject; and 3) detecting the presence or abundance of the affinity labeling agent in the cells, tissues, organs, or tumors; wherein the presence or abundance correlates with the sensitivity.
  • Certain embodiments of the invention provide a method for the monitoring of cancer treatment, wherein the presence- or level of apoptotic activity correlates with the efficacy of the treatment in mammals, including humans, including: 1) subjecting the subject to the therapeutic agent or treatment; 2) introducing a caspase affinity labeling agent into the subject; and 3) detecting the presence or abundance of each of the affinity labeling agent in the cells, tissues, organs, or tumors; wherein the presence or abundance of apoptosis correlates with efficacy.
  • Certain embodiments of the invention provide a method for the monitoring of leukemia treatment, wherein the presence- or level of apoptotic activity correlates with the efficacy of the treatment in mammals, including humans, including: 1) subjecting the subject to the therapeutic agent or treatment; 2) introducing a caspase affinity labeling agent into the subject; and 3) detecting the presence or abundance of the affinity labeling agent in the bone marrow, thymus, lymph nodes, spleen and circulating blood; wherein the presence or abundance of apoptosis correlates with efficacy.
  • Certain embodiments of the invention provide a method for the monitoring of blood and bone marrow disease treatment, wherein the presence- or level of apoptotic activity correlates with the efficacy of the treatment in mammals, including humans, including: 1) subjecting the subject to the therapeutic agent or treatment; 2) introducing a caspase affinity labeling agent into the subject; 3) drawing blood and preparing peripheral blood monocytes (PBMCs); and 4) detecting the presence or abundance of the affinity labeling agent in the cells; wherein the presence or abundance of apoptosis correlates with treatment efficacy.
  • Certain embodiments of the invention provide a method for the monitoring of leukemia treatment, wherein the presence- or level of apoptotic activity correlates with the efficacy of the treatment, in mammals, including humans, including: 1) subjecting the subject to the therapeutic agent or treatment; 2) introducing a caspase affinity labeling agent into the subject; 3) drawing blood and preparing peripheral blood monocytes (PBMCs); and 4) detecting the presence or abundance of the affinity labeling agent in the cells; wherein the presence or abundance of apoptosis correlates with treatment efficacy.
  • Certain embodiments of the invention provide a method for determining if one or more compounds, e.g., within a chemical library, modulate caspase activity in a mammal including,
  • contacting the mammal, including humans, with one or more compounds, and
  • contacting the subject as with a caspase affinity labeling agent; and
  • determining the level of the affinity labeling agent in the subject, and
  • comparing the level of affinity labeling agent in the subject with a control subject not exposed to the compound to determine whether the compound modulated the caspase activity.
  • Certain embodiments of the invention provide a method for determining if one or more compounds, e.g., within a chemical library, induces apoptosis in mammals, including humans, including,
  • contacting the subject with one or more compounds, and
  • contacting the subject with an apoptosis affinity labeling agent; and
  • determining the level of the affinity labeling agent in the subject, and
  • comparing the level of affinity labeling agent in the subject with a control subject not exposed to the compound to determine whether the compound induces apoptosis.
  • Certain embodiments of the invention provide a method for determining if one or more compounds, e.g., within a chemical library, reduces apoptosis in mammals, including humans, including,
  • contacting the subject with one or more compounds, and
  • contacting the subject with an apoptosis affinity labeling agent; and
  • determining the level of the affinity labeling agent in the subject, and
  • comparing the level of affinity labeling agent in the subject with a control subject not exposed to the compound to determine whether the compound reduces apoptosis.
  • Certain embodiments of the invention provide a method for longitudinal determination if one or more compounds, e.g., within a chemical library, modulate caspase activity in a mammal including,
  • contacting the subject as with a caspase affinity labeling agent before contacting the subject with one or more compounds; and
  • determining the level of the affinity labeling agent in the subject, and
  • contacting the mammal, including humans, with one or more compounds, then
  • contacting the subject as with a caspase affinity labeling agent; and
  • determining the level of the affinity labeling agent in the subject, and
  • comparing the level of affinity labeling agent in the subject before exposure to the compound to determine whether the compound modulated the caspase activity.
  • Certain embodiments of the invention provide a method for determining if one or more compounds, e.g., within a chemical library, induces apoptosis in mammals, including humans, including,
  • contacting the subject as with a caspase affinity labeling agent before contacting the subject with one or more compounds; and
  • determining the level of the affinity labeling agent in the subject, and
  • contacting the mammal, including humans, with one or more compounds, then
  • contacting the subject as with a caspase affinity labeling agent; and
  • determining the level of the affinity labeling agent in the subject, and
  • comparing the level of affinity labeling agent in the subject before exposure to the compound to determine whether the compound induces caspase activity.
  • Certain embodiments of the invention provide a method for determining if one or more compounds, e.g., within a chemical library, reduces apoptosis in mammals, including humans, including,
  • contacting the subject as with a caspase affinity labeling agent before contacting the subject with one or more compounds; and
  • determining the level of the affinity labeling agent in the subject, and
  • contacting the mammal, including humans, with one or more compounds, then
  • contacting the subject as with a caspase affinity labeling agent; and
  • determining the level of the affinity labeling agent in the subject, and
  • comparing the level of affinity labeling agent in the subject before exposure to the compound to determine whether the compound reduces caspase activity.
  • In certain embodiments of the invention, detection is carried out using NMR, MRI, CT, CAT, PET scans, or scintigraphy; flow cytometer; a laser scanning cytometer; a fluorescence microplate reader; a luminescence microplate reader, a chromogenic microplate reader; a fluorescence microscope; a confocal microscope; a luminescence microscope; a bright-field microscope; whole animal fluorescence imaging systems (optical imaging systems); or a whole animal luminescence imaging system.
  • In certain embodiments of the invention, detection is carried out using a Window Chamber inserted into the test subject for direct observation.
  • In certain embodiments of the invention, detection is carried out using a fluorescence microscope; a confocal microscope; a bright-field microscope, or luminescence microscope.
  • In certain embodiments of the invention, detection is carried out and/or confirmed by removing a sample from the test subject such as by extraction, biopsy, venipuncture, dissection, or other suitable methods and detection by flow cytometer; a laser scanning cytometer; a fluorescence microplate reader; a chromogenic microplate reader; a fluorescence microscope; a confocal microscope; a bright-field microscope; a luminescence microplate reader; or a luminescence microscope.
  • Certain embodiments of the invention provide a kit such as an assay kit including packaging materials including 1) one or more caspase affinity labeling agents; 2) 10× injection buffer; and 3) instructions for using the compound to determine the level of apoptosis in vivo.
  • The invention has been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within the spirit, and scope, of the invention.
  • Example 1
  • Using a mouse window chamber model, SCK mammary tumors were evaluated for levels of apoptosis induction in tumors following irradiation treatment with arsenic trioxide (ATO) and heat. A window chamber, used for viewing tumors, was placed over a fold of skin in A/J mice. 2×105 SCK mammary carcinoma cells were injected into the skin fold. The tumors were allowed to grow for 7 to 9 days. In the test mice, tumors were irradiated with 20 Gy, 8 mg/kg ATO and 2 hours later the tumors were heated at 41.5° C. for 60 minutes. Control mice were not treated with irradiation or heat and a placebo was injected instead of ATO.
  • After allowing the tumors to grow 7 days, the test mice were first irradiated with 20 Gy. This was immediately followed by an intraperitoneal (I.P.) injection of ATO. The ATO was dissolved in water and injected in a solution of PBS with 5% w/v of dextrose at a concentration of 8 mg/kg. After 2 hours the tumors were heated at 41.5° C. for 60 minutes. Control mice received an I.P. injection of PBS with 5% dextrose.
  • Prior to treatment, tumors were examined in control mice and designated test mice. Low magnification bright-field image composite photographs of SCK mammary tumors taken through a window chamber reveal a low level of hemorrhaging in all tumors (FIG. 1).
  • Three hours post treatment, low magnification bright-field image composite photographs show continued low levels of hemorrhaging in control mice and high levels of hemorrhaging in test mice (FIG. 2) demonstrating the efficacy of the treatment. After 24 hours the control mice had the same levels of hemorrhaging and the levels of hemorrhaging continued to increase in the test mice that received the treatment (FIG. 3).
  • Apoptosis was detected by injecting the in vivo apoptosis detection reagent FAM-VAD-FMK into the tail vein of control and test mice. A processed vial of reagent containing 52 μg of FAM-VAD-FMK was dissolved into 50 of DMSO. This solution was diluted by adding 200 μL of sterile 1× injection buffer. Of the diluted reagent, 40 μL (8.3 μg) was injected I.V. through the tail vein and allowed to circulate in the mouse for 30 minutes. The level of apoptosis in each tumor was viewed directly through the window chambers at high magnification with an excitation wavelength of 488 nm and using a FITC filter.
  • Control mice were given FAM-VAD-FMK injections following placebo injections. These mice showed a low level of apoptosis, as would be expected in a fast growing tumor (FIG. 4). Test mice that received ATO treatment were given FAM-VAD-FMK injections at 3 hours and 24 hours after ATO treatment, and apoptosis was evaluated as before. After 3 hours, there was a substantial increase in the level of apoptosis, as seen in FIG. 5. The level of apoptosis was even higher after 24 hours (FIG. 6).
  • In another set of mice, the tumors were allowed to grow for 7 days. Control mice received placebo injections as before and test mice received ATO injections as before. After 24 hours all mice received I.V. injections of FAM-VAD-FMK as before. The in vivo apoptosis detection and imaging reagent was allowed to circulate through each mouse for 30 minutes. After imaging tumor-associated apoptosis in vivo, tumor tissue was collected from the window chamber by scraping the tumor out of the chamber into a trypsin solution, stirring for 30 minutes with 10 μg/ml DNase and 5 μg/ml collagenase, filtering the suspension using a 70 μM cell strainer. Flow cytometry was then performed using a FACS Caliber flow cytometer (Becton Dickinson Immunocytometry System, San Jose, Calif.) for the analysis of apoptosis in the cell population obtained from the window chamber. All data was acquired with an event acquisition set for 10,000 events. Data was analyzed using CellQuest Pro cytometer software. The results indicated a two-fold increase in apoptosis with the control mouse having 18% apoptotic cells and the test mouse having 39% apoptotic cells (FIG. 7).
  • Example 2
  • A longitudinal study was performed in nu/nu mice to asses the efficacy of arsenic trioxide (ATO) on FSaII murine fibrosarcoma tumors before and after ATO treatment through a window chamber.
  • Dorsal skin flap chambers (DSFC) were surgically implanted into the backs of nu/nu mice as follows. Entire implantation procedure was conducted within a laminar flow hood to preserve a sterile field. Skin was washed twice with betadine and allowed to dry. One sterilized chamber piece containing a round window (9 mm) was placed on one side of the dorsal skin fold. Holes for three connecting screws were made through the skin fold connecting with another chamber piece with a similar window. The assembly was then tightened together with screws and nuts through the chamber piece spacers. A circle of cutaneous tissue and fascia was carefully cut away from the skin fold inside the DSFC window, exposing the blood vessels of the subcutaneous tissue adjacent to the striated muscles of the opposing skin fold. Antibiotic ointment (bacitracin zinc/polymyxin B sulfate/neomycin sulfate) was used on the edges of the wound inside the DSFC window. A glass window was placed in the chamber to cover the exposed tissue and secured with a snap C-ring. The surgical wound procedure was then repeated in the opposite DSFC window so that a very thin, transparent layer of fascia and vessels remained visible through both windows (created to facilitate microscope light transmission through the tissue). Finally, the chamber was sutured to the skin.
  • After surgery, the animals were housed in barrier cages inside a humidified incubator maintained at 32° C. with unrestricted access to food and water. To minimize risk of infection, all mice were given amoxicillin in their drinking water (250 mg per 5 mL water) after DSFC implantation and throughout the experiment.
  • Tumor cells were implanted into one side of the chamber by temporary removal of the C-ring and glass cover slip. 1×105 FSaII murine fibrosarcoma tumor cells in 10 μL Matrigel (BD Biosciences, Bedford, Mass.) were added on top of the fascia and the window closed back over the tissue as described above. Cells were placed within the chamber 24 hrs post surgery. Mice were checked daily for general health as well as for vessel presence, tumor progression and chamber-skin interaction. Images were taken of the tumor by removing the C-ring and glass cover slip and attaching the chamber of the anesthetized mouse to a modified microscope stage.
  • Anti-vascular agent and administration: Arsenic trioxide (ATO) was originally obtained from Cell Therapeutics, Inc. (Seattle, Wash.) under the brand name, Trisenox, at a concentration of 1.0 mg/mL. Mice to be injected were weighed and ATO was injected IP at a dose of 8.0 mg ATO per kilogram of mouse body weight.
  • In vivo apoptosis detection reagent carboxyfluorescein-valanyl-alanyl-aspartyl(O-methyl)-fluoromethyl ketone (FAM-VAD-FMK), preparation and administration: A processed vial of reagent containing 52 μg of FAM-VAD-FMK was dissolved into 50 μL of DMSO. This solution was diluted by adding 2504 of sterile 1× injection buffer. Of the diluted reagent, 70 μL (12.0 μg) was injected IV through the tail vein and allowed to circulate in the mouse for 45 minutes. The level of apoptosis in each tumor was viewed directly through the window chambers at lox magnification with an excitation wavelength of 488 nm and using a FITC filter.
  • Results: The tumors were allowed to grow for 9 days. FAM-VAD-FMK was injected and allowed to circulate for 45 minutes. The DFSC C-ring and glass cover were removed and the mouse was connected to the microscope. A 10× photograph was taken using a 488 nm excitation with a FITC filter (FIG. 8). This photograph shows a lack of apoptosis occurring in the tumor. The same mouse was then injected with ATO as described above. The ATO was allowed to work for 3 hours before the mouse was injected a second time with FAM-VAD-FMK. After 45 minutes the mouse was again connected to the microscope and the same tumor was photographed (FIG. 9). This photograph shows a significant level of apoptosis in the mouse tumor.
  • Final conclusion: The IV injection of a in vivo apotosis detection reagent (FAM-VAD-FMK) works for the in vivo detection of apoptosis in living tissue in an animal. It can also be used to perform longitudinal studies in the same animal with no side-effects from the reagent. This method represents a new and valuable method to reliably demonstrate anti-cancer drug activity in living normal or malignant tissue.
  • Example 3
  • The objective of this project was to develop an in vivo animal model for the detection of morphine-mediated apoptosis. Drugs of abuse, including morphine, have been shown to induce apoptosis in cultured cells. Apoptosis is initiated through a variety of complex pathways that lead to the activation of cysteine proteases known as caspases. The detection of apoptosis is important for the understanding of the adverse effects of drugs, e.g., drugs of abuse, e.g., morphine. Although there are techniques for the detection of apoptosis, those techniques are generally limited to removing the cells from their natural environment. This mechanical processing is known to induce apoptosis, potentially resulting in exaggerated positive results. The objective of this study was to develop an in vivo model for the detection of apoptosis induced by morphine.
  • To test the effects of morphine, the mice were divided into 4 groups, dependent on the treatment. One group received a placebo, a second group received LPS to stimulate cells, a third group received morphine, and a fourth group received morphine and LPS. After the mice were given their respective treatments, they received IV injections of FAM-VAD-FMK. A processed vial of reagent containing 52 μg of FAM-VAD-FMK was dissolved into 50 μL of DMSO. This solution was diluted by adding 200 μL of sterile 1× injection buffer. Of the diluted reagent, 40 μL (8.3 μg) was injected N through the tail vein and allowed to circulate in the mouse for 45 minutes.
  • Spleen, Liver, Thymus, and CNS tissues were isolated from different treatment groups, frozen and mounted on glass slides. The various cell types were adjusted to 1×106 cells/mL and cytospun on a glass slide for analysis by fluorescence microscopy. Sections were photographed and analyzed by MetaMorph analysis program for apoptosis positive cell counts. Counts were analyzed by statistics software. Morphine statistically enhanced LPS induced apoptosis in the Spleen and Thymus (p=0.012 and 0.0018 respectively). An increase in apoptosis was detected in the liver and central nervous system, however, they were not statistically significant. Morphine alone did not induce apoptosis. Quantitative results are summarized in Table 1.
  • Conclusion: In contrast to previously published reports on morphine mediating in vitro apoptosis of immune cells, this study demonstrates that morphine alone did not significantly induce apoptosis. However, morphine did enhanced apoptosis of LPS activated cells detected in spleen, bone marrow and liver tissues.
  • Table 1 is a summary of quantitative results of apoptosis induced by LPS, morphine, and morphine+LPS in the spleen, thymus, liver and CNS. In vivo apoptosis detection was made by intravenous injection of 8.3 μg of FAM-VAD-FMK with a 45 minute incubation time. Spleen, Liver, Thymus, and CNS tissues were isolated from different treatment groups, frozen and mounted on glass slides. Sections were photographed and analyzed by MetaMorph analysis program for apoptosis positive cell counts. Counts were analyzed by statistics software.
  • TABLE 1
    Tissues Treatments Animals Counts
    Spleen Placebo 1/4 26 
    Morphine 2/4  39 ± 12
    LPS 3/4 48 ± 6
    Morphine + LPS 4/4  117 ± 23*
    Liver Placebo 1/4 11 
    Morphine 3/4 12 ± 3
    LPS 3/4 17 ± 5
    Morphine + LPS 4/4  78 ± 16
    Thymus Placebo 0/4 0
    Morphine 2/4 12 ± 6
    LPS 2/4 21 ± 7
    Morphine + LPS 4/4  103 ± 13*
    CNS Placebo 0/4 0
    Morphine 0/4 0
    LPS 1/4   6.5
    Morphine + LPS 2/4 22.5 ± 28 
  • DOCUMENTS
    • Bedner, E., Smolewski, P., Amstad, P., and Darzynkiewicz, Z. (2000) Activation of caspases measured in situ by binding of fluorochrome-labeled inhibitors of caspases (FLICA): correlation with DNA fragmentation. Exp. Cell Res. 259, 308-313.
    • Belhocine, T., Steinmetz, N. LI, C., Green, Blankenberg, F. G. (2004) The imaging of apoptosis with the radiolabeled annexin V: optimal timing for clinical feasibility. Technol Cancer Res Treat 3(1), 23-32.
    • Boersma, Kietselaer, B. L., Stolk, L. M., Bennaghmouch, A. Hofstra, L., Narula, J., Heidendal, G. A., Reutelingsperger, C. P. (2005) Past, present, and future of annexin A-5: from protein discovery to clinical applications. J Nucl Med 46(12), 2035-2050.
    • Corsten, M. F., Hofstra, L., Narula, J., and Reutelingsperger, C. P,M. (2006) Counting heads in the war against cancer: defining the role of annexin A5 imaging in cancer treatment and surveillance. Cancer Res 66, 1255-1260.
    • Dicker, D. T., Kim, S. H., Jin, Z., and El-Deiry, W. S. (2005) Heterogeneity in non-invasive detection of apoptosis among human tumor cell lines using annexin-V tagged with EGFP or Qdot-705. Cancer Biol. Ther., 9, 1014-1017.
    • Dillon, S. R., Constantinescu, A., a nd Schlissel, M. S. (2001) Annexin V binds to positively selected B cells. J of Immunol 166, 58-71
    • Ekici, O. D., Gotz, M.Gg, James, K.Ee., Li, Z. Z., Rukamp, B. J., Asgian, J. L., Caffrey, C. R., Hansell, E., Dvorak, J., McKerrow, J. H., Potempa, J., Travis, J., Mikolajczyk, J., Salvesen, G. S., and Powers, J. C. (2004) Aza-peptide Michael acceptors: a new class of inhibitors specific for caspases and other clan CD cysteine proteases. J. Med. Chem. 47(8)1889-1892.
    • Kietselaer B. L.J. H., Hofstra, L, Dumont, E. A.W. J., Reutelingsperger, C. P., and Heidendal, G. A. (2003) The role of labeled Annexin A5 in imaging of programmed cell death. From animal to clinical imaging. Q J Nucl Med, 47(4), 349-361.
    • Krantz, A., Copp, L. J., Coles, P. J., Smith, R. A., Heard, S. B. (1991) Peptidyl (acyloxy) methyl ketones and the quiescent affinity label concept: the departing group as a . . . Biochemistry 30, 4678-4687.
    • Reddy, G. K. (2005) Noninvasive visualization of apoptosis using radiolabeled annexin V could predict response to chemotherapy. Clin Lung Cancer 7(3), 166-167.
    • Smolewski, P., Bedner, E., Du, L., Hsieh, T. Wu, J. M., Phelps, D. J., and Darzynkiewicz, Z. (2001) Detection of caspases activation by fluorochrome-labeled inhibitors: Multiparameter analysis by laser scanning cytometry. Cytometry 44, 73-82.
    • Smolewski, P., Grabarek, J., Lee, B. W., Johnson, G. L., and Darzynkiewicz, Z. (2002) Kinetics of HL-60 cell entry to apoptosis during treatment with TNF-α or camptothecin assayed by the stathmo-apoptosis method. Cytometry 47, 143-149.
    • Thornberry, N. A., Peterson, E. P., Zhao, J. J., and Howard, P. R. (1994) Inactivation of interleukin-1beta converting enzyme by peptide (acyloxy) methyl ketones. Biochemistry 33, 3934-3940.
    • Vanderheyden, J. L., Liu, G., He, J., Patel, B., Tait J. F., and Hnatowich, D. J. (2006) Evaluation of 99m Tc-MAG3-annesin V: influence of the chelate on in vitro and in vivo properties in mice. Nucl Med Biol 33(1), 135-144.
    • Watanabe, H., Murata, Y., Miura, M., Hasegawa, M. Kawamoto, T., and Shibuya, H. (2006) In vivo visualization of radiation-induced apoptosis using 1251-annexin V. Nucl Med Commun 27(1), 81-89.
    • U.S. Patent Application Publication 2005/0244812 A1
    • U.S. Patent Application Publication 2005/0276750 A1
    • U.S. Pat. No. 7,056,947 B2
  • All publications and patent documents cited herein are incorporated by reference herein, as though individually incorporated by reference.
  • The invention has been described with references to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within the spirit and scope of the invention.

Claims (21)

1-5. (canceled)
6. An in vivo diagnostic method for determining the presence or absence of a disease characterized by the presence of apoptosis comprising detecting the presence of at least one caspase affinity labeling agent in the cells of an animal into which at least one caspase affinity labeling agent has been introduced, wherein the presence or absence of at least one caspase affinity labeling agent correlates with the presence or absence of the disease;
wherein the caspase affinity labeling agent is a compound of formula I:

L1-A1-X1—NH—CH(R1′)C(═O)CH2F  (I)
wherein:
Li is a detectable group;
Ai is a direct bond or a linker;
Xi is absent, an amino acid, or a peptide; and
R1′ is an aspartic acid side-chain, an ester of aspartic acid, an aza-peptide epoxide modification of the aspartic acid, an aza-peptide Michael acceptor, an aldehyde modification of the aspartic terminal carboxyl group, a chloromethyl ketone group, or an acyloxy reactive group.
7. The method of claim 6 wherein the disease is a neurodegenerative disease or a cardiac disease.
8. The method of claim 7 wherein the disease is glaucoma, macular degeneration, proliferative retinopathy, neuropathy, Alzheimer's disease, multiple sclerosis, or Huntington's disease.
9-40. (canceled)
41. The method of claim 6, wherein detection is carried out using NMR, MRI, CT, CAT, PET scan, scintigraphy, a flow cytometer, a laser scanning cytometer, a fluorescence microplate reader, a luminescence microplate reader, a chromogenic microplate reader, a fluorescence microscope, a confocal microscope, a luminescence microscope, a bright-field microscope, a whole animal fluorescence imaging system, a whole animal luminescence imaging system, or a combination thereof.
42. The method of claim 6, wherein detection is carried out using a window chamber that has been inserted into the animal.
43. The method of claim 6, wherein detection is carried out using a fluorescence microscope, a confocal microscope, a bright-field microscope, or a luminescence microscope.
44. The method of claim 6, wherein the caspase affinity labeling agent is introduced into the animal by intravenous, intravascular, intraperitoneal, intravitreal, intraocular, intracranial, intrapleural, intrathoracic, intramuscular, intrapulmonary, injection, perfusion, or lavage administration.
45. The method of claim 44, wherein the caspase affinity labeling agent is introduced into the animal by intravenous administration.
46. The method of claim 6, wherein the animal is a mammal.
47. The method of claim 48, wherein the mammal is a human.
48. The method of claim 6, wherein the detectable group comprises a Lanthanide series element.
49. The method of claim 6, wherein the detectable group comprises a positron emitter.
50. The method of claim 6, wherein the detectable group comprises a fluorescent label.
51. The method of claim 6, wherein the detectable group comprises a radioisotope.
52. The method of claim 6, wherein the detectable group is Gd, Tb, Eu, Ce, Pr, Nd, Pm, Sm, Dy, Ho, Er, Tm, Yb, Lu, Fe, Mn, Re, and Tc, I, Ba, 11C, 13N, 15O, 64Cu, a fluorescein, a sulforhodamine, a Cy dye, a BODIPY, a coumarin, 3H, 14C, or 35S.
53. The method of claim 6, wherein X1 is the amino acid or amino acid sequence V, VA, YVA, DEV, LEE, LEH, VDVA (SEQ ID NO:1), IET, WHE, AEV, A, V, or E.
54. The method of claim 6, wherein R1′ is CH2—COOH, or —CH2CO2R, wherein R is C1-C6 alkyl or benzyl, CH3, C2H5, or CH2C6H5.
55. The method of claim 6, wherein the caspase affinity labeling agent is carboxyfluorescein-valanyl-alanyl-aspartyl(O-methyl)-fluoromethyl ketone.
56. The method of claim 6, wherein the caspase affinity labeling agent binds covalently to the active catalytic site of a caspase and is retained within the cell.
US14/485,199 2005-10-21 2014-09-12 In vivo detection of apoptosis Abandoned US20150093329A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/485,199 US20150093329A1 (en) 2005-10-21 2014-09-12 In vivo detection of apoptosis

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US72922705P 2005-10-21 2005-10-21
PCT/US2006/040047 WO2007050319A1 (en) 2005-10-21 2006-10-12 In vivo detection of apoptosis
US9103108A 2008-09-15 2008-09-15
US13/480,072 US20120328515A1 (en) 2005-10-21 2012-05-24 In vivo detection of apoptosis
US14/485,199 US20150093329A1 (en) 2005-10-21 2014-09-12 In vivo detection of apoptosis

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/480,072 Division US20120328515A1 (en) 2005-10-21 2012-05-24 In vivo detection of apoptosis

Publications (1)

Publication Number Publication Date
US20150093329A1 true US20150093329A1 (en) 2015-04-02

Family

ID=37968120

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/091,031 Active 2028-11-07 US8187573B2 (en) 2005-10-21 2006-10-12 In vivo detection of apoptosis
US13/480,072 Abandoned US20120328515A1 (en) 2005-10-21 2012-05-24 In vivo detection of apoptosis
US14/485,199 Abandoned US20150093329A1 (en) 2005-10-21 2014-09-12 In vivo detection of apoptosis

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US12/091,031 Active 2028-11-07 US8187573B2 (en) 2005-10-21 2006-10-12 In vivo detection of apoptosis
US13/480,072 Abandoned US20120328515A1 (en) 2005-10-21 2012-05-24 In vivo detection of apoptosis

Country Status (8)

Country Link
US (3) US8187573B2 (en)
EP (1) EP1946101A4 (en)
JP (3) JP2009512700A (en)
KR (1) KR101449507B1 (en)
AU (1) AU2006306592A1 (en)
CA (1) CA2626392A1 (en)
IL (1) IL190949A0 (en)
WO (1) WO2007050319A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101449507B1 (en) * 2005-10-21 2014-10-13 씨드 리써치 앤드 디벨롭먼트, 엘엘씨 In vivo detection of apoptosis
WO2016065174A1 (en) * 2014-10-22 2016-04-28 Seed Research And Development Llc Caspase probes for detection of apoptosis
WO2016090169A1 (en) * 2014-12-03 2016-06-09 Seed Research And Development Llc Intracellular caspase probes for detection of apoptosis and inflammation and kits containing such probes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050136492A1 (en) * 2001-12-21 2005-06-23 Phelps David J. Affinity labeling of enzymes for detection of enzyme activity level in living cells
US20070082377A1 (en) * 2005-10-07 2007-04-12 Olin Michael R Cytotoxicity assays
US8187573B2 (en) * 2005-10-21 2012-05-29 Immunochemistry Technologies, Llc In vivo detection of apoptosis

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6756207B1 (en) * 1997-02-27 2004-06-29 Cellomics, Inc. System for cell-based screening
RU2228765C2 (en) * 1997-04-30 2004-05-20 Зе Бод Оф Трастиз Оф Зе Лелэнд Стэнфорд Джунио Юнивесити Method for visualizing cell deaths in the mammalian object body area in vivo
KR20010041905A (en) * 1998-03-16 2001-05-25 시토비아 인크. Dipeptide caspase inhibitors and the use thereof
AU755564B2 (en) 1998-06-20 2002-12-12 Washington University Membrane-permeant peptide complexes for medical imaging, diagnostics, and pharmaceutical therapy
US6589503B1 (en) * 1998-06-20 2003-07-08 Washington University Membrane-permeant peptide complexes for medical imaging, diagnostics, and pharmaceutical therapy
CA2351545C (en) * 1998-08-19 2010-06-15 University Health Network The use of high frequency ultrasound imaging to detect and monitor the process of apoptosis in living tissues, ex-vivo tissues and cell-culture
CA2360054A1 (en) * 1999-01-19 2000-07-20 Robert C. Leif Reagent system and method for increasing the luminescence of lanthanide (iii) macrocyclic complexes
EP1283728A2 (en) 2000-05-23 2003-02-19 Amersham Health AS Contrast agents
IL145210A (en) 2000-12-06 2011-12-29 Aposense Ltd Use of pmbc in the preparation of an agent for the selective binding of cells, a method for the detection of apoptosis and a pharmaceutical composition for the treatment of a disease characterized by the presence of apoptosis in cells, tissues or cellular structures
WO2003060466A2 (en) 2001-12-21 2003-07-24 Immunochemistry Technologies, Llc Affinity labeling of serine proteases for simultaneous detection of multiple serine protease activity levels
WO2003059877A2 (en) 2001-12-21 2003-07-24 Immunochemistry Technologies, Llc Novel affinity labels
US20050171023A1 (en) * 2002-04-05 2005-08-04 Cai Sui X. Caspase inhibitors for the treatment of diseases and conditions caused by exposure to radionuclides, biological agents, or chemical agents
IL153183A (en) 2002-06-04 2010-05-17 Aposense Ltd Agents for imaging and diagnostic methods using them
US7056947B2 (en) 2002-07-05 2006-06-06 Georgia Tech Research Corp. Aza-peptide epoxides
JP2006519777A (en) 2003-02-07 2006-08-31 メルク フロスト カナダ リミテツド Irreversible caspase-3 inhibitors as active site probes
KR20050034922A (en) * 2003-10-10 2005-04-15 주식회사 엘지생명과학 Caspase inhibitor comprising 2-alkyl-4-oxobutanoyl group and pharmaceutical composition thereof
GB0327494D0 (en) * 2003-11-26 2003-12-31 Amersham Plc Novel imaging agents

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050136492A1 (en) * 2001-12-21 2005-06-23 Phelps David J. Affinity labeling of enzymes for detection of enzyme activity level in living cells
US20070082377A1 (en) * 2005-10-07 2007-04-12 Olin Michael R Cytotoxicity assays
US8187573B2 (en) * 2005-10-21 2012-05-29 Immunochemistry Technologies, Llc In vivo detection of apoptosis

Also Published As

Publication number Publication date
US20120328515A1 (en) 2012-12-27
KR20080072859A (en) 2008-08-07
AU2006306592A1 (en) 2007-05-03
IL190949A0 (en) 2009-09-22
EP1946101A4 (en) 2011-08-10
JP2015204844A (en) 2015-11-19
EP1946101A1 (en) 2008-07-23
US8187573B2 (en) 2012-05-29
US20090142260A1 (en) 2009-06-04
JP2013165729A (en) 2013-08-29
CA2626392A1 (en) 2007-05-03
JP2009512700A (en) 2009-03-26
WO2007050319A1 (en) 2007-05-03
KR101449507B1 (en) 2014-10-13

Similar Documents

Publication Publication Date Title
Choi et al. Core-shell silica nanoparticles as fluorescent labels for nanomedicine
Dorward et al. Imaging inflammation: molecular strategies to visualize key components of the inflammatory cascade, from initiation to resolution
US20110213121A1 (en) Nanoparticle sensor for measuring protease activity and method for manufacturing the same
CN104955484B (en) Prostate-specific antigen medicament and its application method for prostate cancer imaging
CN103402547B (en) Switching mode fluorescent nanoparticle probe and use its fluorescent molecules imaging method
JP2019509252A (en) Imaging systems and methods for tissue differentiation, eg, visualization during surgery
DE102007028090A1 (en) Activatable diagnostic and therapeutic compound
Kovar et al. Characterization of IRDye 800CW chlorotoxin as a targeting agent for brain tumors
CN107735402A (en) Texaphyrin phospholipid conjugates and preparation method thereof
CN102821777B (en) Use of a neurofilament peptide for the treatment of glioma
CN103582492A (en) Factor XII inhibitors for the treatment of silent brain ischemia and ischemia of other organs
JP6754531B2 (en) Molecular probe for detecting Gram-negative bacteria in vitro and in vivo
US20150093329A1 (en) In vivo detection of apoptosis
Cohen et al. Delta-opioid receptor (δOR) targeted near-infrared fluorescent agent for imaging of lung cancer: Synthesis and evaluation in vitro and in vivo
US20230149567A1 (en) Mechanical opening of lipid bilayers by molecular nanomachines
US20060193781A1 (en) Magnetic resonance imaging of metal concentrations
AU2015272006A1 (en) In vivo detection of apoptosis
US10520504B2 (en) Fluorescent polybranched probes for detecting bacteria and/or fungi in vitro and in vivo
AU2013202374A1 (en) In vivo detection of apoptosis
JP2009512700A5 (en)
CN113358614B (en) Staining method for living cell imaging
NL2027653B1 (en) Targeting system with improved uptake
Alifu et al. NIR-II fluorescence microscopic bioimaging for intrahepatic angiography and the early detection of Echinococcus multilocularis microlesions
WO2023086964A1 (en) Cd44-binding peptide reagents and methods
CN113358615A (en) Application of melane and fluorescein sodium double staining method in living cell imaging

Legal Events

Date Code Title Description
AS Assignment

Owner name: SEED RESEARCH AND DEVELOPMENT, LLC, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:IMMUNOCHEMISTRY TECHNOLOGIES, LLC;REEL/FRAME:033737/0072

Effective date: 20140702

Owner name: IMMUNOCHEMISTRY TECHNOLOGIES, LLC, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JOHNSON, GARY;LEE, BRIAN W.;REEL/FRAME:033737/0068

Effective date: 20080529

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION