US20150080529A1 - High modulus urethane adhesive compositions, manufacture and use thereof - Google Patents

High modulus urethane adhesive compositions, manufacture and use thereof Download PDF

Info

Publication number
US20150080529A1
US20150080529A1 US14/391,180 US201314391180A US2015080529A1 US 20150080529 A1 US20150080529 A1 US 20150080529A1 US 201314391180 A US201314391180 A US 201314391180A US 2015080529 A1 US2015080529 A1 US 2015080529A1
Authority
US
United States
Prior art keywords
ple
sam
sample
modulus
samples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/391,180
Inventor
Huide D. Zhu
Andrew R. Kneisel
Daniel P. Sophiea
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Global Technologies LLC
Original Assignee
Dow Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies LLC filed Critical Dow Global Technologies LLC
Priority to US14/391,180 priority Critical patent/US20150080529A1/en
Publication of US20150080529A1 publication Critical patent/US20150080529A1/en
Assigned to DOW GLOBAL TECHNOLOGIES LLC reassignment DOW GLOBAL TECHNOLOGIES LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SOPHIEA, DANIEL P., KNEISEL, ANDREW R., ZHU, HUIDE D.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/20Heterocyclic amines; Salts thereof
    • C08G18/2009Heterocyclic amines; Salts thereof containing one heterocyclic ring
    • C08G18/2018Heterocyclic amines; Salts thereof containing one heterocyclic ring having one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/20Heterocyclic amines; Salts thereof
    • C08G18/2081Heterocyclic amines; Salts thereof containing at least two non-condensed heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4829Polyethers containing at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic

Definitions

  • the present invention relates to a urethane adhesive composition having high modulus and is pump transferable at room temperature.
  • Urethane adhesive compositions are used in many industries. For example, in the automotive industry, urethane adhesive compositions are used to bond glass objects such as windshield, backlight window and quarter glass into the car body structure. In order to provide adequate rigidity and thus better noise, vibration, and harshness (NVH) performance of a car, it's ideal to have urethane adhesive compositions with high modulus performance after they are cured in place. In addition to high modulus, it is also advantageous if such urethane adhesive composition is usable and is also pump transferable at room temperature. Furthermore, it is ideal if the urethane adhesive composition can be used without the need of a paint primer on the car body structure.
  • NSH noise, vibration, and harshness
  • high modulus urethane adhesive compositions can be achieved through the use of rigid polymer resins, e.g. crystalline polyester resins and/or acrylic resins. These compositions typically need the heating during manufacturing and/or application. Furthermore, these compositions typically have high viscosities and therefore difficult to be pumped at room temperature.
  • the present invention provides a urethane adhesive composition with desirable characteristics.
  • the urethane adhesive composition of the present invention contains a) urethane prepolymer resin; b) aromatic polyisocyanate compounds or a blend of aromatic polyisocyanates and aliphatic polyisocyanates; c) catalysts such as organic amines and metal carboxylates for moisture cure; and d) fillers such as carbon black, inorganic fillers (clay, calcium carbonate etc.).
  • the compositions of the present invention can be produced at room temperature and are pump transferable without the need of heating.
  • FIG. 1 illustrates the_E′ values versus temperature for Samples 4 to 7 and Comparative Sample A.
  • the present invention provides a urethane adhesive composition
  • a urethane adhesive composition comprising a urethane prepolymer resin, a polyisocyanate, a catalyst such as an organic amine or a metal carboxylate compound; and a filler.
  • VoronolTM 220-056 is polyoxypropylene diol, having a number average molecular weight of 2000 and is available from The Dow Chemical Company.
  • VoronolTM 232-036 is polyoxypropylene triol, having a number average molecular weight of 4500 and is available from The Dow Chemical Company.
  • MDI is methylene diphenyl diisocyanate available from The Dow Chemical Company.
  • METACURETM T-9 is a stannous octoate catalyst available from Air Products Inc.
  • DABCOTM DC21 is dibutyl tin dicarboxylate available from Air Products Inc.
  • PlatinolTM N is diisononyl phthalate plasticizer available from BASF Co.
  • JEFFCATTM DMDEE is dimorpholino diethyl ether catalyst available from Huntsman Chemical Co.
  • ELFTEXTM S7100 is a standard carbon black available from Cabot Co. Clay used in the Examples is available from Burgess Pigment Co.
  • DesmodurTM N3300 is hexamethylene diisocyanate trimers, available from Bayer Co.
  • PAPITM 20 is polymeric methylene diphenyl diisocyanate available from The Dow Chemical Company.
  • VestanatTM IPDI is isophorone diisocyanate available from Evonik Degussa Company.
  • BETASEALTM 43532 primer is an isocyanate containing primer available from The Dow Chemical Company.
  • PTSITM is p-Toluenesulfonyl Isocyanate available from VANDEMARK CHEMICAL CO.
  • Carbon black is available from Cabot Company.
  • Urethane prepolymer resins are preferably prepared by the reaction between polyoxypropylene diol, polyoxypropylene triol , and methylene diphenyl diisocyanate in the presence of a catalyst and with dialkyl phthalate as solvent as shown in the example of making Prepolymer 1.
  • the urethane prepolymer resins for use in preparing the composition of the invention have an average isocyanate functionality of at least about 2.0 and a molecular weight (weight average) of at least about 2,000.
  • the average isocyanate functionality of the urethane prepolymer resin is at least about 2.2, and is more preferably at least about 2.4.
  • the isocyanate functionality is no greater than about 4.0, more preferably no greater than about 3.5 and most preferably no greater than about 3.0.
  • the weight average molecular weight of the urethane prepolymer is at least about 2,500 and is more preferably at least about 3,000; and is preferably no greater than about 40,000, even more preferably no greater than about 20,000, more preferably no greater than about 15,000 and is most preferably no greater than about 10,000.
  • the composition of the present invention contains about 25 to 75 wt. %, preferably about 30 to 70 wt. %, more preferably 35 to 65 wt. % of the urethane prepolymer resin.
  • Aromatic polyisocyanates or a mixture of aromatic and aliphatic polyisocyanates may be used as polyisocyanates in the present invention.
  • the polyisocyanate comprises an aromatic polyisocyanate with a nominal functionality of more than 2.5.
  • polyisocyanates suitable for use in present invention include PAPITM 20 or DesmodurTM N3300.
  • the composition contains no more than 10 wt. %, preferably no more than 7.5 wt. %, more preferably no more than 5 wt. %, and most preferably no more than 3 wt. % of aromatic polyisocyanates.
  • the composition of the present invention typically contain more than 0.1 wt. %, preferably more than 0.25 wt. %, more preferably more than 0.5 wt. %, and most preferably more than 0.75 wt. % of aromatic polyisocyanates.
  • organic amine catalyst examples include JEFFCATTM DMDEE and alkyl substituted morpholino compounds.
  • organo metallic catalyst include dialkyltin dicarboxylate.
  • the composition of the present invention typically contains no more than 2 wt. %, preferably no more than 1.5 wt. %, more preferably no more than 1 wt. %, and most preferably no more than 0.5 wt. % of organic amines. Further, the composition of the present invention typically contain more than 0.01 wt. %, preferably more than 0.1 wt. %, more preferably more than 0.15 wt. %, and most preferably more than 0.20 wt. % of organic amines.
  • organo metallic catalysts e.g. dialkyltin dicarboxylate
  • the organo metallic compounds are present in an amount of about 60 parts per million (ppm) or greater based on the weight of the composition, more preferably 120 parts by million or greater.
  • the organo metallic compounds are present in an amount of about 1.0 wt. % or less based on the weight of the composition, more preferably 0.5 wt. % or less and most preferably 0.2 wt. % or less.
  • Typical fillers used in the present invention include carbon black, clay, calcium carbonate, thermoplastics, flame-retardant additives, and colorants used alone in combination with each other.
  • the composition of the present invent comprises less than 35 wt. %, preferably less than 30, more preferably less than 25 wt. % of one or more fillers.
  • one or more stabilizers may also be added to the composition.
  • stabilizers suitable for present composition include HALS (hindered amine), UV stabilizers, antioxidants, free radical scavengers, heat stabilizers.
  • HALS hindered amine
  • UV stabilizers hindered amine
  • antioxidants hindered amine
  • free radical scavengers heat stabilizers.
  • the amounts of stabilizers used in the composition can vary based on different applications.
  • a moisture scavenger may be used in the composition.
  • Suitable moisture scavengers include methyl orthoformate (Bayer OF), PTSITM, calcium oxide, functional silanes or oxazolidines from The Dow Chemical Company.
  • the amounts of moisture scavenger used in the composition can vary based on different applications.
  • the process typically includes the following steps:
  • the one or more catalysts were added after fillers in the process of making the present composition. No significant difference was noticed due to this change of adding sequence.
  • Viscosities of prepolymers as described herein are determined according to the procedure disclosed in Bhat, U.S. Pat. No. 5,922, 809 at column 12, lines 38 to 49, incorporated herein by reference. Viscosities of adhesives as described herein are determined using press flow. The press flow is the time it takes for 20 grams of adhesive to pass through a 0.157 inch (4.0 mm) orifice under 80 psi (552 kPa) pressure. 3 day-54° C. heat age press flow is measured on the adhesive sample after 3 day 54° C. heat treatment.
  • the sag test is carried out using the following procedure below.
  • a metal panel of 10 cm height and 30 cm long is standing up vertically on the bench with the its length sitting on the bench.
  • a right angle triangle bead of the adhesive composition of 1.8 cm height and 0.6 cm base is dispensed along the top edge of the panel with the base touching the panel and the height perpendicular to the top edge of the panel.
  • the sag at the tip of the adhesive composition is measured and recorded (in millimeter). The sag can be run on either the fresh material or the heat aged material.
  • Quick knife adhesion (QKA) test is run according to the following.
  • An adhesive bead of 6.3 mm (width) ⁇ 6.3 mm (height) ⁇ 100 mm (length) is placed on the tested substrate and the assembly is cured for a specific time at 23° C. and 50 percent RH (relative humidity).
  • RH relative humidity
  • a slit (20-40mm) is made between the adhesive end and the substrate.
  • the cured bead is then cut with a razor blade at a 45° angle while pulling back the end of the bead at 180° angle to the substrate.
  • the degree of adhesion is evaluated as adhesive failure (AF) and/or cohesive failure (CF).
  • AF adhesive failure
  • CF cohesive failure
  • the cured bead can be separated from the substrate and in case of CF, separation occurs only within the adhesive bead as a result of knife cutting.
  • E′ modulus is measured by dynamic mechanical analyzer (“DMA”). Sample dimension is 4 to 5 mm thickness, 60 mm in length and 12 mm in width. Tested sample is placed on the dual cantilever clamp with 35 mm between the two clamps. The frequency is 1 Hz and amplitude is 150 micrometer. Temperature is scanned from ⁇ 40° C. to 100° C. Both storage modulus (E′) and loss modulus (E′′) are reported.
  • DMA dynamic mechanical analyzer
  • G modulus at 10% strain is obtained from lap shear samples.
  • the lap shear sample is prepared according to the following. First, two steel coupons of 25 mm by 100 mm were primed with BetasealTM 43533ATU. A bead of adhesive composition is applied along the width and at the primed end of the first steel coupon. The primed end of a second steel coupon is immediately pressed on the adhesive bead so that the adhesive bead has a final dimension of 6 mm height, 10 mm width and 25 mm height. The sample is allowed to cure under conditions of 23° C. and 50 percent relative humidity (RH) for about 10 days. The lap shear sample is then pulled at a rate of 4 inch/minute (100 mm/min) with an Instron Tester.
  • Prepolymer 1 is prepared by chemically reacting components in their amounts as listed below.
  • the urethane prepolymer resin prepared with the above procedure (“Prepolymer 1”) has a viscosity measured at 25° C. of about 11160 cps and a NCO of about 1.49%.
  • the comparative sample (Sample A) is prepared by adding the stated amount of Prepolymer 1, DMDEE, DABCO DC21, Desmodur N-3300 hexamethylene diisocyanate trimer if any, and PAPI 20 if any into a 2 gallon mixer.
  • the mixture is degassed under vacuum and mixed for 15 minutes.
  • the vacuum is broken and both carbon black and clay, previously oven dried and cooled to room temperature, are added.
  • the vacuum is applied slowly. When half of the vacuum is achieved, mixing is started to wet out the fillers for 2 minutes.
  • the vacuum valve is then fully opened and mixing is continued under full vacuum for 15 minutes. Thereafter, the vacuum is broken again and the mixture is scraped down.
  • the full vacuum is applied again and the mixture is mixed under vacuum for another 5 minutes. Then, the vacuum is removed with nitrogen and the adhesive composition is packaged into sealed tubes and stored in aluminum bags.
  • Samples 1 to 10 are examples of embodiments of the present invention.
  • Samples 1 to 3 containing polyisocyanate Desmodur N3300, are similarly prepared with various components as listed below.
  • Sample 1 Sample 2 Sample 3 Sample ID Wt % Wt % Wt % Prepolymer I 57.58% 56.58% 55.58% DMDEE 0.28% 0.28% 0.28% DABCO DC-21 0.14% 0.14% 0.14% Desmodur N3300 1.00% 2.00% 3.00% PAPI20 Carbon Black 15.00% 15.00% 15.00% Clay 26.00% 26.00% 26.00% SUM 100.00% 100.00% 100.00%
  • Samples 4 to 7, in accordance with the present invention and containing polyisocyanate PAPI 20, are similarly prepared with various components as listed below.
  • Sample 4 Sample 5 Sample 6 Sample 7 Wt % Wt % Wt % Wt % Wt % Prepolymer I 57.58% 56.58% 55.58% 53.68% DMDEE 0.28% 0.28% 0.28% 0.18% DABCO DC-21 0.14% 0.14% 0.14% 0.14% Desmodur N3300 PAPI20 1.00% 2.00% 3.00% 5.00% Carbon black 15.00% 15.00% 15.00% 15.00% Clay 26.00% 26.00% 26.00% 26.00% 26.00% 26.00% SUM 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
  • Samples 8 to 10 containing IPDI are similarly prepared with various components as listed below.
  • Sample 8 Sample 9 Sample 10 Wt % Wt % Wt % Prepolymer I 57.58% 56.58% 55.58% DMDEE 0.28% 0.28% 0.28% DABCO DC-21 0.14% 0.14% 0.14% IPDI 1.00% 2.00% 3.00% PAPI 20 Carbon black 15.00% 15.00% 15.00% Clay 26.00% 26.00% 26.00% SUM 100.00% 100.00% 100.00%
  • E′ Storage modulus
  • Table 1 provides the E′ modulus results for comparative Sample A and comparative Samples 1 through 3. Samples 1 to 3 have higher modulus than that of Sample A. As the content of N3300 in samples increases, E′ values of the samples also increase.
  • Table 2 lists the storage modulus (E′) results for Samples 4 to 7. Samples 4 to 7 have higher modulus than that of Sample A. As the content of PAPI 20 in the samples increases, the storage modulus has also increased. Comparing Samples 1 to 3 with Samples 4 to 7, it is found surprisingly that samples containing PAPI 20 at the equal weight percentage amounts have much higher modulus than those containing N3300. This higher value of modulus is also true for higher temperatures.
  • Table 3 lists the storage modulus for comparative Samples 8 to 10. These samples show similar increase in storage modulus to comparative Samples 1 to 3 but not as dramatic increase as those of samples 4 to 7 of this invention.
  • Tables 7, 8 and 9 show the Young's Modulus of the samples. All samples have much higher Young's Modulus than that of the comparative Sample A. Samples containing aromatic polyisocyanate show the most significant increase for the Young's modulus.
  • Tables 10, 11 and 12 show the viscosities of these samples. Their viscosities are low enough at room temperature so that compositions are pump transferable.
  • the samples of the present invention have about the same viscosities of the comparative sample. Results from sag test on heat aged samples show that samples with aromatic polyisocyanate have the best sag resistant performance.
  • Table 13 shows the adhesion performance of the urethane adhesive compositions of the present invention. All samples of Samples 4 to 7 have shown the direct adhesion capability towards painted metal substrates with 100% cohesive failure (100% CF).

Abstract

The invention relates to a urethane adhesive composition having high modulus and is pump transferable at room temperature.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a urethane adhesive composition having high modulus and is pump transferable at room temperature.
  • INTRODUCTION
  • Urethane adhesive compositions are used in many industries. For example, in the automotive industry, urethane adhesive compositions are used to bond glass objects such as windshield, backlight window and quarter glass into the car body structure. In order to provide adequate rigidity and thus better noise, vibration, and harshness (NVH) performance of a car, it's ideal to have urethane adhesive compositions with high modulus performance after they are cured in place. In addition to high modulus, it is also advantageous if such urethane adhesive composition is usable and is also pump transferable at room temperature. Furthermore, it is ideal if the urethane adhesive composition can be used without the need of a paint primer on the car body structure.
  • Currently, high modulus urethane adhesive compositions can be achieved through the use of rigid polymer resins, e.g. crystalline polyester resins and/or acrylic resins. These compositions typically need the heating during manufacturing and/or application. Furthermore, these compositions typically have high viscosities and therefore difficult to be pumped at room temperature.
  • SUMMARY OF THE INVENTION
  • The present invention provides a urethane adhesive composition with desirable characteristics. The urethane adhesive composition of the present invention contains a) urethane prepolymer resin; b) aromatic polyisocyanate compounds or a blend of aromatic polyisocyanates and aliphatic polyisocyanates; c) catalysts such as organic amines and metal carboxylates for moisture cure; and d) fillers such as carbon black, inorganic fillers (clay, calcium carbonate etc.). The compositions of the present invention can be produced at room temperature and are pump transferable without the need of heating.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates the_E′ values versus temperature for Samples 4 to 7 and Comparative Sample A.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention provides a urethane adhesive composition comprising a urethane prepolymer resin, a polyisocyanate, a catalyst such as an organic amine or a metal carboxylate compound; and a filler.
  • The specific information about the ingredients/components used in the present invention is described as follows:
  • Voronol™ 220-056 is polyoxypropylene diol, having a number average molecular weight of 2000 and is available from The Dow Chemical Company.
  • Voronol™ 232-036 is polyoxypropylene triol, having a number average molecular weight of 4500 and is available from The Dow Chemical Company.
  • MDI is methylene diphenyl diisocyanate available from The Dow Chemical Company.
  • METACURE™ T-9 is a stannous octoate catalyst available from Air Products Inc. DABCO™ DC21 is dibutyl tin dicarboxylate available from Air Products Inc.
  • Platinol™ N is diisononyl phthalate plasticizer available from BASF Co.
  • JEFFCAT™ DMDEE is dimorpholino diethyl ether catalyst available from Huntsman Chemical Co.
  • ELFTEX™ S7100 is a standard carbon black available from Cabot Co. Clay used in the Examples is available from Burgess Pigment Co.
  • Desmodur™ N3300 is hexamethylene diisocyanate trimers, available from Bayer Co.
  • PAPI™ 20 is polymeric methylene diphenyl diisocyanate available from The Dow Chemical Company.
  • Vestanat™ IPDI is isophorone diisocyanate available from Evonik Degussa Company.
  • BETASEAL™ 43532 primer is an isocyanate containing primer available from The Dow Chemical Company.
  • PTSI™ is p-Toluenesulfonyl Isocyanate available from VANDEMARK CHEMICAL CO.
  • Carbon black is available from Cabot Company.
  • Urethane prepolymer resins are preferably prepared by the reaction between polyoxypropylene diol, polyoxypropylene triol , and methylene diphenyl diisocyanate in the presence of a catalyst and with dialkyl phthalate as solvent as shown in the example of making Prepolymer 1. Generally, the urethane prepolymer resins for use in preparing the composition of the invention have an average isocyanate functionality of at least about 2.0 and a molecular weight (weight average) of at least about 2,000. Preferably, the average isocyanate functionality of the urethane prepolymer resin is at least about 2.2, and is more preferably at least about 2.4. Preferably, the isocyanate functionality is no greater than about 4.0, more preferably no greater than about 3.5 and most preferably no greater than about 3.0. Preferably, the weight average molecular weight of the urethane prepolymer is at least about 2,500 and is more preferably at least about 3,000; and is preferably no greater than about 40,000, even more preferably no greater than about 20,000, more preferably no greater than about 15,000 and is most preferably no greater than about 10,000. The composition of the present invention contains about 25 to 75 wt. %, preferably about 30 to 70 wt. %, more preferably 35 to 65 wt. % of the urethane prepolymer resin.
  • Aromatic polyisocyanates or a mixture of aromatic and aliphatic polyisocyanates may be used as polyisocyanates in the present invention. In one embodiment of the present invention, the polyisocyanate comprises an aromatic polyisocyanate with a nominal functionality of more than 2.5. Examples of polyisocyanates suitable for use in present invention include PAPI™ 20 or Desmodur™ N3300. In preferred embodiments of the present invention, the composition contains no more than 10 wt. %, preferably no more than 7.5 wt. %, more preferably no more than 5 wt. %, and most preferably no more than 3 wt. % of aromatic polyisocyanates. Further, the composition of the present invention typically contain more than 0.1 wt. %, preferably more than 0.25 wt. %, more preferably more than 0.5 wt. %, and most preferably more than 0.75 wt. % of aromatic polyisocyanates.
  • For catalyst, both organic amine catalyst and organo metallic catalyst may be used alone or in combination with each other. Examples of organic amine include JEFFCAT™ DMDEE and alkyl substituted morpholino compounds. Examples of organo metallic catalyst include dialkyltin dicarboxylate.
  • In preferred embodiments where organic amine is used as the catalyst, the composition of the present invention typically contains no more than 2 wt. %, preferably no more than 1.5 wt. %, more preferably no more than 1 wt. %, and most preferably no more than 0.5 wt. % of organic amines. Further, the composition of the present invention typically contain more than 0.01 wt. %, preferably more than 0.1 wt. %, more preferably more than 0.15 wt. %, and most preferably more than 0.20 wt. % of organic amines.
  • In preferred embodiments where organo metallic catalysts are used, e.g. dialkyltin dicarboxylate, the organo metallic compounds are present in an amount of about 60 parts per million (ppm) or greater based on the weight of the composition, more preferably 120 parts by million or greater. Preferably the organo metallic compounds are present in an amount of about 1.0 wt. % or less based on the weight of the composition, more preferably 0.5 wt. % or less and most preferably 0.2 wt. % or less.
  • Typical fillers used in the present invention include carbon black, clay, calcium carbonate, thermoplastics, flame-retardant additives, and colorants used alone in combination with each other. The composition of the present invent comprises less than 35 wt. %, preferably less than 30, more preferably less than 25 wt. % of one or more fillers.
  • In some embodiments of the present invention, one or more stabilizers may also be added to the composition. Examples of stabilizers suitable for present composition include HALS (hindered amine), UV stabilizers, antioxidants, free radical scavengers, heat stabilizers. The amounts of stabilizers used in the composition can vary based on different applications.
  • Further, in some other embodiments, a moisture scavenger may be used in the composition. Suitable moisture scavengers include methyl orthoformate (Bayer OF), PTSI™, calcium oxide, functional silanes or oxazolidines from The Dow Chemical Company. The amounts of moisture scavenger used in the composition can vary based on different applications.
  • To make the composition of the present invention, the process typically includes the following steps:
      • a. Mixing urethane prepolymer, one or more polyisocyanates and one or more catalysts under vacuum.
      • b. Breaking vacuum with nitrogen; then add fillers to the mixture.
      • c. Mixing again under vacuum. Then charge stabilizers if used, and mix again.
      • d. Breaking vacuum with nitrogen and transfer prepared adhesive into air tight tubes.
  • In one embodiment, the one or more catalysts were added after fillers in the process of making the present composition. No significant difference was noticed due to this change of adding sequence.
  • EXAMPLES
  • Some embodiments of the invention will now be described in detail in the following Examples, wherein all parts and percentages are by weight unless otherwise specified.
  • Test Procedures used in the present invention can be described as follows:
  • Viscosities of prepolymers as described herein are determined according to the procedure disclosed in Bhat, U.S. Pat. No. 5,922, 809 at column 12, lines 38 to 49, incorporated herein by reference. Viscosities of adhesives as described herein are determined using press flow. The press flow is the time it takes for 20 grams of adhesive to pass through a 0.157 inch (4.0 mm) orifice under 80 psi (552 kPa) pressure. 3 day-54° C. heat age press flow is measured on the adhesive sample after 3 day 54° C. heat treatment.
  • Tensile strength is determined according to ASTM D412, Die C. Young's Modulus is determined according to ASTM D412, Die C. These tests are completed on an Instron test apparatus.
  • The sag test is carried out using the following procedure below. A metal panel of 10 cm height and 30 cm long is standing up vertically on the bench with the its length sitting on the bench. A right angle triangle bead of the adhesive composition of 1.8 cm height and 0.6 cm base is dispensed along the top edge of the panel with the base touching the panel and the height perpendicular to the top edge of the panel. After 30 minutes, the sag at the tip of the adhesive composition is measured and recorded (in millimeter). The sag can be run on either the fresh material or the heat aged material.
  • Quick knife adhesion (QKA) test is run according to the following. An adhesive bead of 6.3 mm (width)×6.3 mm (height)×100 mm (length) is placed on the tested substrate and the assembly is cured for a specific time at 23° C. and 50 percent RH (relative humidity). When tested, a slit (20-40mm) is made between the adhesive end and the substrate. The cured bead is then cut with a razor blade at a 45° angle while pulling back the end of the bead at 180° angle to the substrate. The degree of adhesion is evaluated as adhesive failure (AF) and/or cohesive failure (CF). In case of AF, the cured bead can be separated from the substrate and in case of CF, separation occurs only within the adhesive bead as a result of knife cutting.
  • Storage modulus (E′ modulus) is measured by dynamic mechanical analyzer (“DMA”). Sample dimension is 4 to 5 mm thickness, 60 mm in length and 12 mm in width. Tested sample is placed on the dual cantilever clamp with 35 mm between the two clamps. The frequency is 1 Hz and amplitude is 150 micrometer. Temperature is scanned from −40° C. to 100° C. Both storage modulus (E′) and loss modulus (E″) are reported.
  • G modulus at 10% strain is obtained from lap shear samples. The lap shear sample is prepared according to the following. First, two steel coupons of 25 mm by 100 mm were primed with Betaseal™ 43533ATU. A bead of adhesive composition is applied along the width and at the primed end of the first steel coupon. The primed end of a second steel coupon is immediately pressed on the adhesive bead so that the adhesive bead has a final dimension of 6 mm height, 10 mm width and 25 mm height. The sample is allowed to cure under conditions of 23° C. and 50 percent relative humidity (RH) for about 10 days. The lap shear sample is then pulled at a rate of 4 inch/minute (100 mm/min) with an Instron Tester. G modulus is then calculated by the program according to the equation: G=(P×t)/(A×d); P=load in Newton, A=bond area (mm2), t=bond height (mm), d=displacement at 10% strain (mm). An average of five lap shear samples is reported for the adhesive G modulus.
  • Preparation of Urethane Prepolymer Resin:
  • Prepolymer 1 is prepared by chemically reacting components in their amounts as listed below.
  • Chemical Name Wt % Weight (g)
    Voranol 220-056 Polyol 22.730% 363.68
    Voranol 232-036 Polyol 32.940% 527.04
    Palatinol N (part I) 2.000% 32.00
    MDI 10.040% 160.64
    Metacure T-9 0.005% 0.08
    Palatinol N (part II) 31.325% 501.20
    Diethyl Malonate 0.960% 15.36
    total 100.00% 1600.0
  • Preparation Procedure:
      • a. Adding diol and triol and Palatinol N (part I) into kettle and mix, heat under nitrogen. Set the temperature at 54° C.
      • b. Adding MDI into kettle when the temperature reaches 54° C.
      • c. Adding the T-9 drop-wise and slowly. Once temperature rises, stop adding
      • T-9 and record #of drops. Observe and record for exothermic temp. Once the peak temp is reached, hold reaction mixture at 80° C. or above (less than 90° C.) for 60 minutes
      • d. Setting the temperature at 60° C. Add Palatinol N (part II), and DEM in and mix for 30 minutes. Get a sample for NCO.
      • e. Packaging under nitrogen and measure the viscosity at room temperature.
  • The urethane prepolymer resin prepared with the above procedure (“Prepolymer 1”) has a viscosity measured at 25° C. of about 11160 cps and a NCO of about 1.49%.
  • Preparation of Urethane Adhesive Composition Samples:
  • The comparative sample (Sample A) is prepared by adding the stated amount of Prepolymer 1, DMDEE, DABCO DC21, Desmodur N-3300 hexamethylene diisocyanate trimer if any, and PAPI 20 if any into a 2 gallon mixer. The mixture is degassed under vacuum and mixed for 15 minutes. The vacuum is broken and both carbon black and clay, previously oven dried and cooled to room temperature, are added. The vacuum is applied slowly. When half of the vacuum is achieved, mixing is started to wet out the fillers for 2 minutes. The vacuum valve is then fully opened and mixing is continued under full vacuum for 15 minutes. Thereafter, the vacuum is broken again and the mixture is scraped down. The full vacuum is applied again and the mixture is mixed under vacuum for another 5 minutes. Then, the vacuum is removed with nitrogen and the adhesive composition is packaged into sealed tubes and stored in aluminum bags.
  • Samples 1 to 10 are examples of embodiments of the present invention.
  • Samples 1 to 3 containing polyisocyanate Desmodur N3300, are similarly prepared with various components as listed below.
  • Sample 1 Sample 2 Sample 3
    Sample ID Wt % Wt % Wt %
    Prepolymer I 57.58% 56.58% 55.58%
    DMDEE 0.28% 0.28% 0.28%
    DABCO DC-21 0.14% 0.14% 0.14%
    Desmodur N3300 1.00% 2.00% 3.00%
    PAPI20
    Carbon Black 15.00% 15.00% 15.00%
    Clay 26.00% 26.00% 26.00%
    SUM 100.00% 100.00% 100.00%
  • Samples 4 to 7, in accordance with the present invention and containing polyisocyanate PAPI 20, are similarly prepared with various components as listed below.
  • Sample 4 Sample 5 Sample 6 Sample 7
    Wt % Wt % Wt % Wt %
    Prepolymer I 57.58% 56.58% 55.58% 53.68%
    DMDEE 0.28% 0.28% 0.28% 0.18%
    DABCO DC-21 0.14% 0.14% 0.14% 0.14%
    Desmodur N3300
    PAPI20 1.00% 2.00% 3.00% 5.00%
    Carbon black 15.00% 15.00% 15.00% 15.00%
    Clay 26.00% 26.00% 26.00% 26.00%
    SUM 100.00% 100.00% 100.00% 100.00%
  • Samples 8 to 10 containing IPDI are similarly prepared with various components as listed below.
  • Sample 8 Sample 9 Sample 10
    Wt % Wt % Wt %
    Prepolymer I 57.58% 56.58% 55.58%
    DMDEE 0.28% 0.28% 0.28%
    DABCO DC-21 0.14% 0.14% 0.14%
    IPDI 1.00% 2.00% 3.00%
    PAPI 20
    Carbon black 15.00% 15.00% 15.00%
    Clay 26.00% 26.00% 26.00%
    SUM 100.00% 100.00% 100.00%
  • Storage modulus (E′) is measured by DMA. Table 1 provides the E′ modulus results for comparative Sample A and comparative Samples 1 through 3. Samples 1 to 3 have higher modulus than that of Sample A. As the content of N3300 in samples increases, E′ values of the samples also increase.
  • TABLE 1
    Storage Modulus Results
    Sample ID
    Sam- Sam- Sam- Sam-
    ple A ple 1 ple 2 ple 3
    N3300 content in samples 0 1% 2% 3%
    DMA, 1 Hz (7 d cure CT)
    1 Hz, 2° C./min, 150 um
    amplitude, 5 mm thickness ×
    60 mm length × 12 mm width
    E′ modulus at 23 C. (3 x), 9.04 12.57 17.77 18.72
    MPa
    E′ modulus at 35 C. (3 x), 7.53 10.23 15.18 15.39
    MPa
    E′ modulus at 60 C. (3 x), 6.18 7.74 11.46 11.39
    MPa
  • Table 2 lists the storage modulus (E′) results for Samples 4 to 7. Samples 4 to 7 have higher modulus than that of Sample A. As the content of PAPI 20 in the samples increases, the storage modulus has also increased. Comparing Samples 1 to 3 with Samples 4 to 7, it is found surprisingly that samples containing PAPI 20 at the equal weight percentage amounts have much higher modulus than those containing N3300. This higher value of modulus is also true for higher temperatures.
  • Values contained in Table 2 also can be charted in FIG. 1 to further illustrate the significant improvement of the present invention over the comparative samples.
  • TABLE 2
    More Storage Modulus Results
    Sample ID
    Sam- Sam- Sam- Sam- Sam-
    ple A ple 4 ple 5 ple 6 ple 7
    PAPI 20 content in sample 0 1% 2% 3% 5%
    DMA, 1 Hz (7 d cure CT)
    1 Hz, 2 C./min, 150 um
    amplitude, 5 mm thickness ×
    60 mm length × 12 mm width
    E′ modulus at 23 C. (3 x) 9.04 17.62 30.38 34.40 55.68
    E′ modulus at 35 C. (3 x) 7.53 14.50 25.79 29.03 47.98
    E′ modulus at 60 C. (3 x) 6.18 11.03 19.88 22.50 37.36
  • Table 3 lists the storage modulus for comparative Samples 8 to 10. These samples show similar increase in storage modulus to comparative Samples 1 to 3 but not as dramatic increase as those of samples 4 to 7 of this invention.
  • TABLE 3
    More Storage Modulus Results
    Sample ID
    Sam- Sam- Sam- Sam-
    DMA, 1 Hz (7 d cure CT) ple A ple 8 ple 9 ple 10
    E′ modulus at 23 C. (3 x) 9.04 12.66 14.96 17.04
    E′ modulus at 35 C. (3 x) 7.53 10.92 12.98 14.76
    E′ modulus at 60 C. (3 x) 6.18 8.78 10.44 11.87
  • Table 4, 5 and 6 list the Shear Modulus (G) results determined on the fully cured samples by Instron at 10% strain. Similar results as the Storage Modules are observed, i.e. the most dramatic increase in shear modulus is observed from Samples 4 to 7 containing aromatic polyisocyanate.
  • TABLE 4
    Shear Modulus Results
    Sample ID
    Sam- Sam- Sam- Sam-
    ple A ple 1 ple 2 ple 3
    G @ 10% tangent, MPa 1.66 2.12 2.33 2.64
  • TABLE 5
    More Shear Modulus Results
    Sample ID
    Sam- Sam- Sam- Sam- Sam-
    ple A ple 4 ple 5 ple 6 ple 7
    G @ 10% tangent, MPa 1.66 2.47 3.18 4.07 4.82
  • TABLE 6
    More Shear Modulus Results
    Sample ID
    Sam- Sam- Sam- Sam-
    ple A ple 8 ple 9 ple 10
    G @ 10% tangent, MPa 1.66 1.72 1.98 2.24
  • Tables 7, 8 and 9 show the Young's Modulus of the samples. All samples have much higher Young's Modulus than that of the comparative Sample A. Samples containing aromatic polyisocyanate show the most significant increase for the Young's modulus.
  • TABLE 7
    Results on Tensile Strength and Young's Modulus
    Sample ID
    Sam- Sam- Sam- Sam-
    ple A ple 1 ple 2 ple 3
    Young's 4.93 ± 0.18 6.35 ± 0.16 7.25 ± 0.14 8.37 ± 0.16
    Modulus MPa MPa MPa MPa
    (1-10%)
  • TABLE 8
    More Results on Tensile Strength and Young's Modulus
    Sample ID
    Sam- Sam- Sam- Sam- Sam-
    ple A ple 4 ple 5 ple 6 ple 7
    Young's 4.93 ± 0.18 7.61 ± 0.20 10.39 ± 0.22 13.16 ± 0.31 18.54 ± 0.72
    Modulus MPa MPa MPa MPa MPa
    (1-10%)
  • TABLE 9
    More Results on Tensile Strength and Young's Modulus
    Sample ID
    Sam- Sam- Sam- Sam-
    ple A ple 8 ple 9 ple 10
    Young's 4.93 ± 0.18 5.85 ± 0.11 6.46 ± 0.12 7.53 ± 0.32
    Modulus MPa MPa MPa MPa
    (1-10%)
  • Tables 10, 11 and 12 show the viscosities of these samples. Their viscosities are low enough at room temperature so that compositions are pump transferable. The samples of the present invention have about the same viscosities of the comparative sample. Results from sag test on heat aged samples show that samples with aromatic polyisocyanate have the best sag resistant performance.
  • TABLE 10
    Viscosity results of the samples
    Sample ID
    Sam- Sam- Sam- Sam-
    ple A ple 1 ple 2 ple 3
    PF Initial, seconds, 24, 23 s 24, 24 s 25, 25 s 25, 25 s
    80 psi/0.157″ 25.1 C. 25.2 C. 25.3 C. 25.1 C.
    PF 3 days at 54 C., 27, 27 s 26, 26 s 28, 28 s 27, 28 s
    seconds, 80 psi/0.157″ 25.4 C. 25.2 C. 25.3 C. 25.2 C.
    Sag after 3 days at 54 C. 1 mm 1 mm 4 mm 3 mm
  • TABLE 11
    More viscosity results of the samples
    Sample ID
    Sam- Sam- Sam- Sam- Sam-
    ple A ple 4 ple 5 ple 6 ple 7
    PF Initial, sec, 24, 23 s 25, 24 s 27, 26 s 30, 30 s 48, 49 s
    80 psi/0.157″ 25.1 C. 25.2 C. 25.1 C. 25.2 C. 25.2 C.
    PF 3 days at 54 C., 27, 27 s 26, 25 s 27, 26 s 30, 30 s 48, 48 s
    seconds, 80 psi/0.157″ 25.4 C. 25.4 C. 25.2 C. 25.4 C. 25.0 c.
    Sag after 3 days at 54 C. 1 mm 0 mm 0 mm 0 mm 0 mm
  • TABLE 12
    More viscosity results of the samples
    Sample ID
    Sam- Sam- Sam- Sam-
    ple A ple 8 ple 9 ple 10
    PF Initial, sec, 24, 23 s 27, 27 s 27, 28 s 25, 25 s
    80 psi/0.157″ 25.1 C. 25.4 C. 25.4 C. 25.3 C.
    PF 3 days at 54 C., 27, 27 s 32, 32 s 31, 30 s 29, 30 s
    seconds, 80 psi/0.157″ 25.4 C. 25.1 C. 25.0 C. 25.1 C.
    Sag after 3 days at 54 C. 1 mm 3 mm 2 mm 3 mm
  • Table 13 shows the adhesion performance of the urethane adhesive compositions of the present invention. All samples of Samples 4 to 7 have shown the direct adhesion capability towards painted metal substrates with 100% cohesive failure (100% CF).
  • TABLE 13
    Adhesion performance results of the samples
    Sample ID
    QKA Primerless: Sample 4 Sample 5 Sample 6 Sample 7
    MAC8000 paint:
    7 d initial, 100CF 100CF 100CF 100CF
    7 d initial and 100CF 100CF 100CF 100CF
    14 d 100/100,
    Uregloss paint:
    7 d initial, 100CF 100CF 100CF 100CF
    7 d initial and 100CF 100CF 100CF 100CF
    14 d 100/100,

Claims (7)

1. A urethane adhesive composition comprising
a) more than about 25 wt. % of a urethane prepolymer resin;
b) more than about 0.25 wt. % of polyisocyanate;
c) more than about 0.1 wt % of an organic amine and/or more than about 60 ppm of an organo metallic catalyst compound; and
d) a filler.
2. The composition according to claim 1 comprising more than about 0.5 wt. % of polyisocyanate.
3. The composition according to claim 2 comprising more than about 1 wt. % of a polyisocyanate.
4. The composition according to claim 1 comprising no more than about 7.5 wt. % of a polyisocyanate.
5. The composition according to claim 4 comprising no more than about 5 wt. % of a polyisocyanate.
6. The composition according to claim 5 comprising no more than about 3 wt. % of a polyisocyanate.
7. The composition of claim 1 wherein the polyisocyanate comprises an aromatic polyisocyanate with a nominal functionality of more than 2.5.
US14/391,180 2012-05-22 2013-04-23 High modulus urethane adhesive compositions, manufacture and use thereof Abandoned US20150080529A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/391,180 US20150080529A1 (en) 2012-05-22 2013-04-23 High modulus urethane adhesive compositions, manufacture and use thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261650189P 2012-05-22 2012-05-22
PCT/US2013/037684 WO2013176815A1 (en) 2012-05-22 2013-04-23 High modulus urethane adhesive compositions, manufacture and use thereof
US14/391,180 US20150080529A1 (en) 2012-05-22 2013-04-23 High modulus urethane adhesive compositions, manufacture and use thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/037684 A-371-Of-International WO2013176815A1 (en) 2012-05-22 2013-04-23 High modulus urethane adhesive compositions, manufacture and use thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/590,824 Continuation US11104831B2 (en) 2012-05-22 2019-10-02 High modulus urethane adhesive compositions, manufacture and use thereof

Publications (1)

Publication Number Publication Date
US20150080529A1 true US20150080529A1 (en) 2015-03-19

Family

ID=48289661

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/391,180 Abandoned US20150080529A1 (en) 2012-05-22 2013-04-23 High modulus urethane adhesive compositions, manufacture and use thereof
US16/590,824 Active US11104831B2 (en) 2012-05-22 2019-10-02 High modulus urethane adhesive compositions, manufacture and use thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/590,824 Active US11104831B2 (en) 2012-05-22 2019-10-02 High modulus urethane adhesive compositions, manufacture and use thereof

Country Status (6)

Country Link
US (2) US20150080529A1 (en)
EP (1) EP2852626B1 (en)
JP (1) JP6196297B2 (en)
KR (1) KR20150013856A (en)
CN (2) CN109265652A (en)
WO (1) WO2013176815A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113614590A (en) * 2019-04-30 2021-11-05 3M创新有限公司 Optical stack

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022261855A1 (en) * 2021-06-16 2022-12-22 Ddp Specialty Electronic Materials Us, Llc One-component polyurethane adhesive

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4758648A (en) 1986-10-20 1988-07-19 Essex Specialty Products, Inc. High speed cure sealant
DE4210277C5 (en) 1992-03-28 2009-02-26 Henkel Ag & Co. Kgaa Adhesive and sealant and its use
EP0764670A1 (en) * 1995-09-25 1997-03-26 Minnesota Mining And Manufacturing Company Reactive hot-melt adhesive and/or sealing composition
US5922809A (en) 1996-01-11 1999-07-13 The Dow Chemical Company One-part moisture curable polyurethane adhesive
US5852137A (en) 1997-01-29 1998-12-22 Essex Specialty Products Polyurethane sealant compositions
JP2005239753A (en) * 2004-02-24 2005-09-08 Yokohama Rubber Co Ltd:The One-pack moisture-curable urethane composition
EP1799738B1 (en) * 2004-10-08 2017-05-03 Dow Global Technologies LLC Low volatile isocyanate monomer containing polyurethane prepolymer and adhesive system
JP4539298B2 (en) * 2004-11-08 2010-09-08 横浜ゴム株式会社 One-part moisture-curing urethane composition
US7361292B2 (en) * 2004-11-08 2008-04-22 Dow Global Technologies Inc. High modulus, nonconductive adhesive useful for installing vehicle windows
ATE424441T1 (en) * 2006-01-23 2009-03-15 Purbond Ag ADHESIVE SYSTEM
RU2009128060A (en) 2006-12-21 2011-01-27 Дау Глобал Текнолоджиз Инк. (Us) COMPOSITION SUITABLE AS ADHESIVE FOR INSTALLING CAR WINDOWS
US8207252B2 (en) 2007-03-07 2012-06-26 Momentive Performance Materials Inc. Moisture-curable silylated polymer resin composition
EP2183294B1 (en) 2007-07-23 2019-01-09 Dow Global Technologies LLC Two part polyurethane curable composition having substantially consistent g-modulus across the range of use temperatures
US20090068479A1 (en) * 2007-09-11 2009-03-12 Sika Technology Ag Moisture-reactive adhesive compositions with very low temperature dependency of the shear modulus
EP2189485B1 (en) * 2008-10-31 2011-02-16 Sika Technology AG Polyurethane composition comprising alpha-silane having anisostropic material properties
WO2011137047A1 (en) * 2010-04-30 2011-11-03 Dow Global Technologies Llc Improved vehicular glass adhesive and method of adhering said glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113614590A (en) * 2019-04-30 2021-11-05 3M创新有限公司 Optical stack

Also Published As

Publication number Publication date
WO2013176815A1 (en) 2013-11-28
EP2852626A1 (en) 2015-04-01
CN104334598A (en) 2015-02-04
JP2015520262A (en) 2015-07-16
KR20150013856A (en) 2015-02-05
JP6196297B2 (en) 2017-09-13
US20200032118A1 (en) 2020-01-30
EP2852626B1 (en) 2019-06-19
US11104831B2 (en) 2021-08-31
CN109265652A (en) 2019-01-25

Similar Documents

Publication Publication Date Title
EP3310868B1 (en) Latent two-part polyurethane adhesives cured with infrared radiation
JP5530355B2 (en) Curable composition of two-part polyurethane having a modulus G that is substantially unchanged throughout the temperature range of use
EP0956310B2 (en) Polyurethane sealant compositions
KR101568069B1 (en) Curable compositions containing isocyanate functional components having improved durability in the cured state
US20060079661A1 (en) Low volatile isocyanate monomer containing polyurethane prepolymer and adhesive system
US9085716B2 (en) Alkoxysilane containing polyurethane adhesive compositions containing calcium carbonate
US9102854B2 (en) Polyurethane sealant compositions having high filler levels
JP2015091972A (en) Adhesive useful for installing vehicle window providing rapid drive away time
US11104831B2 (en) High modulus urethane adhesive compositions, manufacture and use thereof
US11499075B2 (en) Isocyanate functional adhesive which bonds primerless to silanated acrylic polyol based coatings
EP2718345B1 (en) Polyurethane polymers
JP5760691B2 (en) Urethane resin adhesive composition
US20170275509A1 (en) Storage-stable, moisture-curing polyurethane adhesive with rapid adhesive formation on glass
WO2019014582A1 (en) Silylammonium salts as latent polyurethane catalysts
WO2018102333A1 (en) Isocyanate-blocked amidines as latent polyurethane catalysts
WO2022081251A1 (en) One-component polyurethane adhesive
US20230017467A1 (en) A polyurethane composition having low total voc content capable of rapid curing with no need of primer
WO2023033920A1 (en) One-component polyurethane adhesive composition
WO2014024262A1 (en) Urethane resin adhesive composition
JPH03167286A (en) Moisture-curing sealing material composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: DOW GLOBAL TECHNOLOGIES LLC, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHU, HUIDE D.;KNEISEL, ANDREW R.;SOPHIEA, DANIEL P.;SIGNING DATES FROM 20120606 TO 20120614;REEL/FRAME:039129/0183

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION