US20150072957A1 - Tazobactam Arginine Compositions - Google Patents
Tazobactam Arginine Compositions Download PDFInfo
- Publication number
- US20150072957A1 US20150072957A1 US14/541,890 US201414541890A US2015072957A1 US 20150072957 A1 US20150072957 A1 US 20150072957A1 US 201414541890 A US201414541890 A US 201414541890A US 2015072957 A1 US2015072957 A1 US 2015072957A1
- Authority
- US
- United States
- Prior art keywords
- oxo
- thia
- azabicyclo
- carboxylic acid
- ene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- LPQZKKCYTLCDGQ-WEDXCCLWSA-N tazobactam Chemical compound C([C@]1(C)S([C@H]2N(C(C2)=O)[C@H]1C(O)=O)(=O)=O)N1C=CN=N1 LPQZKKCYTLCDGQ-WEDXCCLWSA-N 0.000 title claims abstract description 158
- 229960003865 tazobactam Drugs 0.000 title claims abstract description 141
- 239000004475 Arginine Substances 0.000 title claims abstract description 132
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 title claims abstract description 132
- 239000000203 mixture Substances 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 claims abstract description 67
- 235000009697 arginine Nutrition 0.000 claims description 130
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 claims description 123
- 239000008194 pharmaceutical composition Substances 0.000 claims description 78
- -1 beta-lactam compound Chemical class 0.000 claims description 59
- 150000001875 compounds Chemical class 0.000 claims description 55
- 239000000243 solution Substances 0.000 claims description 39
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 30
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 claims description 20
- 239000003937 drug carrier Substances 0.000 claims description 19
- 239000003085 diluting agent Substances 0.000 claims description 17
- 239000000126 substance Substances 0.000 claims description 15
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 14
- IVBHGBMCVLDMKU-GXNBUGAJSA-N piperacillin Chemical compound O=C1C(=O)N(CC)CCN1C(=O)N[C@H](C=1C=CC=CC=1)C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 IVBHGBMCVLDMKU-GXNBUGAJSA-N 0.000 claims description 14
- BSIMZHVOQZIAOY-UHFFFAOYSA-N 7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid Chemical compound OC(=O)C1=CCC2CC(=O)N12 BSIMZHVOQZIAOY-UHFFFAOYSA-N 0.000 claims description 10
- NKBWMBRPILTCRD-UHFFFAOYSA-N 2-Methylheptanoic acid Chemical compound CCCCCC(C)C(O)=O NKBWMBRPILTCRD-UHFFFAOYSA-N 0.000 claims description 9
- HGGAKXAHAYOLDJ-FHZUQPTBSA-N 6alpha-[(R)-1-hydroxyethyl]-2-[(R)-tetrahydrofuran-2-yl]pen-2-em-3-carboxylic acid Chemical compound S([C@@H]1[C@H](C(N1C=1C(O)=O)=O)[C@H](O)C)C=1[C@H]1CCCO1 HGGAKXAHAYOLDJ-FHZUQPTBSA-N 0.000 claims description 9
- 125000000446 sulfanediyl group Chemical group *S* 0.000 claims description 9
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 claims description 8
- 229930064664 L-arginine Natural products 0.000 claims description 8
- 235000014852 L-arginine Nutrition 0.000 claims description 8
- 239000007864 aqueous solution Substances 0.000 claims description 8
- 238000004108 freeze drying Methods 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 8
- HVFLCNVBZFFHBT-ZKDACBOMSA-N cefepime Chemical compound S([C@@H]1[C@@H](C(N1C=1C([O-])=O)=O)NC(=O)\C(=N/OC)C=2N=C(N)SC=2)CC=1C[N+]1(C)CCCC1 HVFLCNVBZFFHBT-ZKDACBOMSA-N 0.000 claims description 7
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 6
- 150000003952 β-lactams Chemical class 0.000 claims description 6
- OZBZQLHFHVWHPS-UHFFFAOYSA-N 1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid Chemical compound OC(=O)C1=CCC2CCN12 OZBZQLHFHVWHPS-UHFFFAOYSA-N 0.000 claims description 5
- YAUCGRHYMHRNPV-UHFFFAOYSA-N 2,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid Chemical compound OC(=O)C1(C)C(C)SC2CC(=O)N21 YAUCGRHYMHRNPV-UHFFFAOYSA-N 0.000 claims description 5
- 125000004485 2-pyrrolidinyl group Chemical group [H]N1C([H])([H])C([H])([H])C([H])([H])C1([H])* 0.000 claims description 5
- RBKMMJSQKNKNEV-UHFFFAOYSA-N 3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid Chemical compound OC(=O)C1C(C)(C)SC2CC(=O)N21 RBKMMJSQKNKNEV-UHFFFAOYSA-N 0.000 claims description 5
- RNYSYSXUCVOYRH-UHFFFAOYSA-N 3-methyl-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid Chemical compound C1C(C)=C(C(O)=O)N2C(=O)CC21 RNYSYSXUCVOYRH-UHFFFAOYSA-N 0.000 claims description 5
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 claims description 5
- 229960000379 faropenem Drugs 0.000 claims description 5
- 238000001802 infusion Methods 0.000 claims description 2
- 238000010253 intravenous injection Methods 0.000 claims description 2
- 239000007787 solid Substances 0.000 abstract description 30
- 238000004519 manufacturing process Methods 0.000 abstract description 13
- 239000012453 solvate Substances 0.000 description 42
- 238000000634 powder X-ray diffraction Methods 0.000 description 41
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 36
- 150000003839 salts Chemical group 0.000 description 36
- 150000002148 esters Chemical class 0.000 description 34
- 102000006635 beta-lactamase Human genes 0.000 description 31
- 239000002904 solvent Substances 0.000 description 31
- 108090000204 Dipeptidase 1 Proteins 0.000 description 27
- 239000012296 anti-solvent Substances 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 208000035143 Bacterial infection Diseases 0.000 description 16
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 16
- 241000124008 Mammalia Species 0.000 description 16
- 208000022362 bacterial infectious disease Diseases 0.000 description 16
- 238000002360 preparation method Methods 0.000 description 13
- 239000003795 chemical substances by application Substances 0.000 description 12
- 150000004677 hydrates Chemical class 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 239000012535 impurity Substances 0.000 description 10
- 239000013078 crystal Substances 0.000 description 9
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 9
- 238000001757 thermogravimetry curve Methods 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 239000002244 precipitate Substances 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000004090 dissolution Methods 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 238000000113 differential scanning calorimetry Methods 0.000 description 6
- 208000035475 disorder Diseases 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 241000588724 Escherichia coli Species 0.000 description 5
- 241000588767 Proteus vulgaris Species 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 229940126534 drug product Drugs 0.000 description 5
- 235000019441 ethanol Nutrition 0.000 description 5
- 239000000825 pharmaceutical preparation Substances 0.000 description 5
- 229960002292 piperacillin Drugs 0.000 description 5
- 229940007042 proteus vulgaris Drugs 0.000 description 5
- OSIDWIDMHJFBPU-HACGYAERSA-N (2s,5r,6r)-6-[[3-(2-chlorophenyl)-5-methyl-2h-1,3-oxazole-4-carbonyl]amino]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid Chemical compound C1OC(C)=C(C(=O)N[C@@H]2C(N3[C@H](C(C)(C)S[C@@H]32)C(O)=O)=O)N1C1=CC=CC=C1Cl OSIDWIDMHJFBPU-HACGYAERSA-N 0.000 description 4
- FSTGLKRHSQANLP-UHFFFAOYSA-N 3-[5-(dimethylcarbamoyl)pyrrolidin-2-yl]sulfanyl-6-(1-hydroxyethyl)-4-methyl-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid Chemical compound OC(=O)C=1N2C(=O)C(C(O)C)C2C(C)C=1SC1CCC(C(=O)N(C)C)N1 FSTGLKRHSQANLP-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 241000606124 Bacteroides fragilis Species 0.000 description 4
- 108020004256 Beta-lactamase Proteins 0.000 description 4
- JFPVXVDWJQMJEE-QMTHXVAHSA-N Cefuroxime Chemical compound N([C@@H]1C(N2C(=C(COC(N)=O)CS[C@@H]21)C(O)=O)=O)C(=O)C(=NOC)C1=CC=CO1 JFPVXVDWJQMJEE-QMTHXVAHSA-N 0.000 description 4
- 229930186147 Cephalosporin Natural products 0.000 description 4
- 241000588923 Citrobacter Species 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical class CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 229930182555 Penicillin Natural products 0.000 description 4
- 241000607720 Serratia Species 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- LSQZJLSUYDQPKJ-NJBDSQKTSA-N amoxicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=C(O)C=C1 LSQZJLSUYDQPKJ-NJBDSQKTSA-N 0.000 description 4
- 239000003781 beta lactamase inhibitor Substances 0.000 description 4
- 229940126813 beta-lactamase inhibitor Drugs 0.000 description 4
- 229940041011 carbapenems Drugs 0.000 description 4
- ORFOPKXBNMVMKC-DWVKKRMSSA-N ceftazidime Chemical compound S([C@@H]1[C@@H](C(N1C=1C([O-])=O)=O)NC(=O)\C(=N/OC(C)(C)C(O)=O)C=2N=C(N)SC=2)CC=1C[N+]1=CC=CC=C1 ORFOPKXBNMVMKC-DWVKKRMSSA-N 0.000 description 4
- 229940124587 cephalosporin Drugs 0.000 description 4
- 150000001780 cephalosporins Chemical class 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- ZSKVGTPCRGIANV-ZXFLCMHBSA-N imipenem Chemical compound C1C(SCC\N=C\N)=C(C(O)=O)N2C(=O)[C@H]([C@H](O)C)[C@H]21 ZSKVGTPCRGIANV-ZXFLCMHBSA-N 0.000 description 4
- 239000000314 lubricant Substances 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- LSQZJLSUYDQPKJ-UHFFFAOYSA-N p-Hydroxyampicillin Natural products O=C1N2C(C(O)=O)C(C)(C)SC2C1NC(=O)C(N)C1=CC=C(O)C=C1 LSQZJLSUYDQPKJ-UHFFFAOYSA-N 0.000 description 4
- 150000002960 penicillins Chemical class 0.000 description 4
- 239000003755 preservative agent Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 238000002411 thermogravimetry Methods 0.000 description 4
- 229940126085 β‑Lactamase Inhibitor Drugs 0.000 description 4
- NDIURPSCHWTXDC-UHFFFAOYSA-N 2-(4,5-dimethoxy-2-nitrophenyl)acetohydrazide Chemical compound COC1=CC(CC(=O)NN)=C([N+]([O-])=O)C=C1OC NDIURPSCHWTXDC-UHFFFAOYSA-N 0.000 description 3
- 241000606768 Haemophilus influenzae Species 0.000 description 3
- 241000588772 Morganella morganii Species 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 241000588770 Proteus mirabilis Species 0.000 description 3
- 241000191967 Staphylococcus aureus Species 0.000 description 3
- 239000008186 active pharmaceutical agent Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- GPRBEKHLDVQUJE-QSWIMTSFSA-N cefotaxime Chemical compound N([C@@H]1C(N2C(=C(COC(C)=O)CS[C@@H]21)C(O)=O)=O)C(=O)\C(=N/OC)C1=CSC(N)=N1 GPRBEKHLDVQUJE-QSWIMTSFSA-N 0.000 description 3
- ZCCUWMICIWSJIX-NQJJCJBVSA-N ceftaroline fosamil Chemical compound S([C@@H]1[C@@H](C(N1C=1C([O-])=O)=O)NC(=O)\C(=N/OCC)C=2N=C(NP(O)(O)=O)SN=2)CC=1SC(SC=1)=NC=1C1=CC=[N+](C)C=C1 ZCCUWMICIWSJIX-NQJJCJBVSA-N 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 229940088679 drug related substance Drugs 0.000 description 3
- 239000000796 flavoring agent Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229940076266 morganella morganii Drugs 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 229960000373 tazobactam sodium Drugs 0.000 description 3
- OIXLLKLZKCBCPS-RZVRUWJTSA-N (2s)-2-azanyl-5-[bis(azanyl)methylideneamino]pentanoic acid Chemical compound OC(=O)[C@@H](N)CCCNC(N)=N.OC(=O)[C@@H](N)CCCNC(N)=N OIXLLKLZKCBCPS-RZVRUWJTSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- 241000588626 Acinetobacter baumannii Species 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 241001135228 Bacteroides ovatus Species 0.000 description 2
- 241001148536 Bacteroides sp. Species 0.000 description 2
- 241000606123 Bacteroides thetaiotaomicron Species 0.000 description 2
- HZAQEDJRLABGQF-VOXCGUBDSA-N C[C@]1(CN2C=CN=N2)[C@H](C(=O)[O-])N2C(=O)CC2S1(=O)=O.NC(=[NH2+])CCCC[C@H]([NH3+])C(=O)[O-] Chemical compound C[C@]1(CN2C=CN=N2)[C@H](C(=O)[O-])N2C(=O)CC2S1(=O)=O.NC(=[NH2+])CCCC[C@H]([NH3+])C(=O)[O-] HZAQEDJRLABGQF-VOXCGUBDSA-N 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 2
- 241000588914 Enterobacter Species 0.000 description 2
- 241000588697 Enterobacter cloacae Species 0.000 description 2
- 241000587112 Enterobacteriaceae sp. Species 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 241000588748 Klebsiella Species 0.000 description 2
- 241000588749 Klebsiella oxytoca Species 0.000 description 2
- 241000588747 Klebsiella pneumoniae Species 0.000 description 2
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 2
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 2
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 2
- 206010035664 Pneumonia Diseases 0.000 description 2
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 206010051379 Systemic Inflammatory Response Syndrome Diseases 0.000 description 2
- 206010000269 abscess Diseases 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- MMXKVMNBHPAILY-UHFFFAOYSA-N ethyl laurate Chemical compound CCCCCCCCCCCC(=O)OCC MMXKVMNBHPAILY-UHFFFAOYSA-N 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 2
- 229940011051 isopropyl acetate Drugs 0.000 description 2
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 239000002304 perfume Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 238000011146 sterile filtration Methods 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- 241000589291 Acinetobacter Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 206010003011 Appendicitis Diseases 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- VRSINJNUFSBUSB-KIVIBUQJSA-N C[C@]1(CN2C=CN=N2)[C@H](C(=O)O[Y])N2C(=O)CC2S1(=O)=O.NC(=[NH2+])CCCC[C@H]([NH3+])C(=O)[O-].[CH3-] Chemical compound C[C@]1(CN2C=CN=N2)[C@H](C(=O)O[Y])N2C(=O)CC2S1(=O)=O.NC(=[NH2+])CCCC[C@H]([NH3+])C(=O)[O-].[CH3-] VRSINJNUFSBUSB-KIVIBUQJSA-N 0.000 description 1
- 206010007882 Cellulitis Diseases 0.000 description 1
- 241000588917 Citrobacter koseri Species 0.000 description 1
- 241000193468 Clostridium perfringens Species 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 206010060803 Diabetic foot infection Diseases 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 208000004145 Endometritis Diseases 0.000 description 1
- 241000194032 Enterococcus faecalis Species 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000001828 Gelatine Substances 0.000 description 1
- 208000008745 Healthcare-Associated Pneumonia Diseases 0.000 description 1
- 208000036209 Intraabdominal Infections Diseases 0.000 description 1
- 238000002768 Kirby-Bauer method Methods 0.000 description 1
- 201000008225 Klebsiella pneumonia Diseases 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 241000588655 Moraxella catarrhalis Species 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- 241000588652 Neisseria gonorrhoeae Species 0.000 description 1
- SHQSVMDWKBRBGB-UHFFFAOYSA-N O=C1CCC1 Chemical compound O=C1CCC1 SHQSVMDWKBRBGB-UHFFFAOYSA-N 0.000 description 1
- 241000606210 Parabacteroides distasonis Species 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 208000029082 Pelvic Inflammatory Disease Diseases 0.000 description 1
- 206010034576 Peripheral ischaemia Diseases 0.000 description 1
- 206010035717 Pneumonia klebsiella Diseases 0.000 description 1
- 241001135223 Prevotella melaninogenica Species 0.000 description 1
- 238000012356 Product development Methods 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 241000588777 Providencia rettgeri Species 0.000 description 1
- 241000588778 Providencia stuartii Species 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 206010037597 Pyelonephritis acute Diseases 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- 241001138501 Salmonella enterica Species 0.000 description 1
- 241000607715 Serratia marcescens Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 241000191963 Staphylococcus epidermidis Species 0.000 description 1
- 241000193985 Streptococcus agalactiae Species 0.000 description 1
- 201000005010 Streptococcus pneumonia Diseases 0.000 description 1
- 241000193998 Streptococcus pneumoniae Species 0.000 description 1
- 241000193996 Streptococcus pyogenes Species 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- 241000748245 Villanova Species 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 201000001555 acute pyelonephritis Diseases 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 238000002814 agar dilution Methods 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 238000009635 antibiotic susceptibility testing Methods 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003782 beta lactam antibiotic agent Substances 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 238000002815 broth microdilution Methods 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000012050 conventional carrier Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000013583 drug formulation Substances 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 229940032049 enterococcus faecalis Drugs 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000003979 granulating agent Substances 0.000 description 1
- 229940047650 haemophilus influenzae Drugs 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000009878 intermolecular interaction Effects 0.000 description 1
- 230000008863 intramolecular interaction Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 238000001683 neutron diffraction Methods 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 125000004971 nitroalkyl group Chemical group 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 239000006186 oral dosage form Substances 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 206010034674 peritonitis Diseases 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- OVARTBFNCCXQKS-UHFFFAOYSA-N propan-2-one;hydrate Chemical compound O.CC(C)=O OVARTBFNCCXQKS-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002510 pyrogen Substances 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000012956 testing procedure Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 208000019206 urinary tract infection Diseases 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000002132 β-lactam antibiotic Substances 0.000 description 1
- 229940124586 β-lactam antibiotics Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D499/00—Heterocyclic compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula:, e.g. penicillins, penems; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
- C07D499/897—Compounds with substituents other than a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, directly attached in position 2
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/403—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/4164—1,3-Diazoles
- A61K31/4188—1,3-Diazoles condensed with other heterocyclic ring systems, e.g. biotin, sorbinil
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/425—Thiazoles
- A61K31/429—Thiazoles condensed with heterocyclic ring systems
- A61K31/43—Compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula, e.g. penicillins, penems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/425—Thiazoles
- A61K31/429—Thiazoles condensed with heterocyclic ring systems
- A61K31/43—Compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula, e.g. penicillins, penems
- A61K31/431—Compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula, e.g. penicillins, penems containing further heterocyclic rings, e.g. ticarcillin, azlocillin, oxacillin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/4353—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/4427—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
- A61K31/444—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring heteroatom, e.g. amrinone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/496—Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/53—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with three nitrogens as the only ring hetero atoms, e.g. chlorazanil, melamine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/54—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
- A61K31/542—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame ortho- or peri-condensed with heterocyclic ring systems
- A61K31/545—Compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins, cefaclor, or cephalexine
- A61K31/546—Compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins, cefaclor, or cephalexine containing further heterocyclic rings, e.g. cephalothin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/66—Phosphorus compounds
- A61K31/675—Phosphorus compounds having nitrogen as a ring hetero atom, e.g. pyridoxal phosphate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/19—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D499/00—Heterocyclic compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula:, e.g. penicillins, penems; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
- C07D499/04—Preparation
- C07D499/14—Preparation of salts
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D499/00—Heterocyclic compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula:, e.g. penicillins, penems; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
- C07D499/86—Heterocyclic compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula:, e.g. penicillins, penems; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring with only atoms other than nitrogen atoms directly attached in position 6 and a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- This disclosure relates to solid forms of (2S,3S,5R)-3-((1H-1,2,3-triazol-1-yl)methyl)-3-methyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid 4,4-dioxide (tazobactam), and related compositions and methods.
- the crystal state of a compound may be important when the compound is used for pharmaceutical purposes. Compared with an amorphous solid, the solid physical properties of a crystalline compound may change, which may affect its suitability for pharmaceutical use. For example, a particular crystalline compound may overcome the disadvantage of other solid forms of the compound that readily absorb moisture (e.g., high hygroscopicity). For an ionic drug substance, high hygroscopicity may diminish the drug product's stability profile by a host of mechanisms, as the drug substance may have a propensity to absorb water.
- Water that is absorbed from the environment may lead to degradation products and/or impurities in a drug product or add to the cost of manufacturing the drug product with acceptably low levels of water.
- One compound that can be obtained in amorphous or various crystalline salt forms is (2S,3S,5R)-3-((1H-1,2,3-triazol-1-yl)methyl)-3-methyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid 4,4-dioxide, or tazobactam.
- tazobactam There is a need for solid forms of tazobactam with reduced hygroscopicity for use in drug substance and drug product development.
- Solid forms of tazobactam e.g., arginine salt forms of tazobactam
- compositions comprising these solid forms, are provided herein, in addition to various methods of preparing these compositions.
- certain crystalline tazobactam arginine solid forms are provided herein that have the advantageous characteristic of being less hygroscopic.
- These crystalline tazobactam arginine solid forms can have good thermal stability and light stability in the process of preparation, packing, transportation and storage. Crystalline compounds of tazobactam arginine can also possess other properties that may be beneficial to the preparation of various drug formulations.
- Tazobactam arginine can be a salt consisting of the conjugate base of (2S,3S,5R)-3-((1H-1,2,3-triazol-1-yl)methyl)-3-methyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid 4,4-dioxide (tazobactam) and the conjugate acid of (S)-2-amino-5-guanidinopentanoic acid (L-arginine) in a 1:1 ratio, as represented by the structure below.
- crystalline tazobactam arginine solid form designated herein as “polymorph Ia” or “tazobactam arginine polymorph Ia”), characterized by an X-ray powder diffraction pattern having peaks expressed in degrees 2-Theta at angles of 4.8° ⁇ 0.3°, 8.9° ⁇ 0.3°, 11.3° ⁇ 0.3°, 14.9° ⁇ 0.3°, 18.0° ⁇ 0.3°, 19.4° ⁇ 0.3°, 21.3° ⁇ 0.3°, 22.8° ⁇ 0.3°, and 24.3° ⁇ 0.3°.
- the crystalline tazobactam arginine can be further characterized by a differential scanning calorimetry thermogram having a characteristic peak expressed in units of ° C. at a temperature of 209.2 ⁇ 3.
- the crystalline tazobactam arginine is further characterized by a thermogravimetry curve with an onset temperature of 201.9° C. ⁇ 3° C.
- compositions comprising a compound having a beta-lactam chemical sub-structure (e.g., a beta-lactam antibiotic compound) and crystalline tazobactam arginine (e.g., of the polymorph Ia solid form).
- a compound having a beta-lactam chemical sub-structure e.g., a beta-lactam antibiotic compound
- crystalline tazobactam arginine e.g., of the polymorph Ia solid form
- a method for the treatment of bacterial infections in a mammal comprising administering to said mammal a therapeutically effective amount of a crystalline tazobactam arginine compound (e.g., of the polymorph Ia solid form).
- a crystalline tazobactam arginine compound e.g., of the polymorph Ia solid form.
- the crystalline tazobactam arginine can be characterized by an X-ray powder diffraction pattern having peaks expressed in degrees 2-Theta at angles of 4.8° ⁇ 0.3°, 8.9° ⁇ 0.3°, 11.3° ⁇ 0.3°, 14.9° ⁇ 0.3°, 18.0° ⁇ 0.3°, 19.4° ⁇ 0.3°, 21.3° ⁇ 0.3°, 22.8° ⁇ 0.3° and 24.3° ⁇ 0.3°.
- a method for the treatment of bacterial infections in a mammal comprising administering to said mammal a therapeutically effective amount of a pharmaceutical composition comprising an beta-lactam compound and a crystalline tazobactam arginine compound (e.g., of the polymorph Ia solid form).
- a pharmaceutical composition comprising an beta-lactam compound and a crystalline tazobactam arginine compound (e.g., of the polymorph Ia solid form).
- the crystalline tazobactam arginine can be characterized by an X-ray powder diffraction pattern having peaks expressed in degrees 2-Theta at angles of 4.8° ⁇ 0.3°, 8.9° ⁇ 0.3°, 11.3° ⁇ 0.3°, 14.9° ⁇ 0.3°, 18.0° ⁇ 0.3°, 19.4° ⁇ 0.3°, 21.3° ⁇ 0.3°, 22.8° ⁇ 0.3° and 24.3° ⁇ 0.3°.
- a method for detecting or identifying an agent that inhibits one or more beta-lactamase-producing organisms comprising combining:
- composition comprising one or more beta-lactamase-producing organisms
- crystalline tazobactam arginine wherein the crystalline tazobactam arginine is characterized by an X-ray powder diffraction pattern having peaks expressed in degrees 2-Theta at angles of 4.8° ⁇ 0.3°, 8.9° ⁇ 0.3°, 11.3° ⁇ 0.3°, 14.9° ⁇ 0.3°, 18.0° ⁇ 0.3°, 19.4° ⁇ 0.3°, 21.3° ⁇ 0.3°, 22.8° ⁇ 0.3° and 24.3° ⁇ 0.3°; and detecting or measuring a change in the activity of the beta-lactamase-producing organisms, wherein a decrease in the activity of the beta-lactamase-producing organisms indicates that the test agent inhibits the beta-lactamase-producing organisms.
- FIG. 1 depicts the X-ray powder diffraction pattern of polymorph Ia (Example 2).
- FIG. 2 depicts the differential scanning calorimetry (DVS) thermogram of polymorph Ia.
- FIG. 3 depicts the thermogravimetry curve of polymorph Ia.
- FIG. 4 depicts the X-ray powder diffraction pattern of polymorph Ib.
- FIG. 5 depicts the X-ray powder diffraction pattern of tazobactam arginine amorphous.
- FIG. 6 depicts the X-ray power diffraction pattern of polymorph Ia (Example 4).
- FIG. 7 depicts the 1 H-NMR spectrum of polymorph Ia.
- FIG. 8 depicts the DVS graph of tazobactam arginine amorphous (Example 6a).
- FIG. 9 depicts the DVS graph of polymorph Ia (Example 6b).
- FIG. 10 depicts the DVS graph of amorphous tazobactam sodium (Example 6c).
- Tazobactam arginine may occur in an amorphous solid form or in a crystalline solid form.
- Crystalline solid forms of tazobactam arginine may exist in one or more unique polymorph forms, which may additionally comprise one or more equivalents of water or solvent (i.e., hydrates or solvates, respectively).
- Tazobactam arginine is the salt of the conjugate base of tazobactam and the conjugate acid of (S)-2-amino-5-guanidinopentanoic acid (L-arginine) in a 1:1 ratio, as represented by the structure below.
- crystalline tazobactam arginine and hydrates and solvates thereof.
- crystalline tazobactam arginine polymorph Ia also referred to herein as “polymorph Ia” or “tazobactam arginine polymorph Ia”
- crystalline tazobactam arginine polymorph Ib also referred to herein as “polymorph Ib” or “tazobactam arginine polymorph Ib”.
- polymorphism The ability of a substance to exist in more than one crystal form is defined as polymorphism; the different crystal forms of a particular substance are referred to as “polymorphs.”
- polymorphism is affected by the ability of a molecule of a substance to change its conformation or to form different intermolecular or intra-molecular interactions, particularly hydrogen bonds, which is reflected in different atom arrangements in the crystal lattices of different polymorphs.
- morphology which refers to the external shape of the crystal and the planes present, without reference to the internal structure. Crystals can display different morphology based on different conditions, such as, for example, growth rate, stirring, and the presence of impurities.
- the different polymorphs of a substance can possess different energies of the crystal lattice and, thus, in solid state they can show different physical properties such as form, density, melting point, color, stability, solubility, dissolution rate, etc., which can, in turn, affect the stability, dissolution rate and/or bioavailability of a given polymorph and its suitability for use as a pharmaceutical and in pharmaceutical compositions.
- tazobactam arginine Access to different polymorphs of tazobactam arginine is desirable for other reasons as well.
- One such reason is that different polymorphs of a compound (e.g., tazobactam arginine) can incorporate different impurities, or chemical residues, upon crystallization. Certain polymorphs incorporate very little, or no, chemical residues. Accordingly, the formation of certain polymorph forms of a compound may result in purification of the compound.
- Tazobactam arginine polymorph Ia exhibits low hygroscopicity relative to amorphous tazobactam arginine and amorphous tazobactam sodium.
- Low hygroscopicity of a solid compound is desirable for several reasons. For example, compounds that are highly hygroscopic may be chemically unstable, or unsuitable for formulating as a drug product due to changes of the drug form's physical characteristics (e.g., bulk density, dissolution rate, etc.) that can occur if it is stored in settings with varying relative humidity.
- hygroscopicity can impact large-scale manufacturing and handling of a compound. For example, it may be difficult to determine the true weight of a hygroscopic active agent when preparing a pharmaceutical composition comprising that agent.
- the compounds of the invention are identifiable on the basis of characteristic peaks in an X-ray powder diffraction analysis.
- X-ray powder diffraction also referred to as XRPD, is a scientific technique using X-ray, neutron, or electron diffraction on powder, microcrystalline, or other solid materials for structural characterization of the materials.
- polymorph Ia (also referred to herein as “tazobactam arginine polymorph Ia”) and is characterized by an X-ray powder diffraction pattern having one or more characteristic peaks expressed in degrees 2-Theta at angles selected from 8.9° ⁇ 0.3°, 18.0° ⁇ 0.3° and 21.3° ⁇ 0.3°.
- polymorph Ia is characterized by an X-ray powder diffraction pattern having one or more peaks expressed in degrees 2-Theta at angles selected from 4.8° ⁇ 0.3°, 11.3° ⁇ 0.3° and 14.9° ⁇ 0.3°.
- polymorph Ia is characterized by an X-ray powder diffraction pattern having one or more peaks expressed in degrees 2-Theta at angles selected from 19.4° ⁇ 0.3°, 22.8° ⁇ 0.3° and 24.3° ⁇ 0.3°.
- polymorph Ia is characterized by an X-ray powder diffraction pattern having 3-6 peaks expressed in degrees 2-Theta at angles selected from 8.9° ⁇ 0.3°, 18.0° ⁇ 0.3°, 21.3° ⁇ 0.3°, 4.8° ⁇ 0.3°, 11.3° ⁇ 0.3°, 14.9° ⁇ 0.3°, 19.4° ⁇ 0.3°, 22.8° ⁇ 0.3° and 24.3° ⁇ 0.3°.
- polymorph Ia is characterized by an X-ray powder diffraction pattern having characteristic peaks expressed in degrees 2-Theta at angles of 8.9° ⁇ 0.3°, 18.0° ⁇ 0.3° and 21.3° ⁇ 0.3°.
- polymorph Ia is characterized by an X-ray powder diffraction pattern having 3-6 peaks expressed in degrees 2-Theta at angles selected from 8.9° ⁇ 0.2°, 18.0° ⁇ 0.2°, 21.3° ⁇ 0.2°, 4.8° ⁇ 0.2°, 11.3° ⁇ 0.2°, 14.9° ⁇ 0.2°, 19.4° ⁇ 0.2°, 22.8° ⁇ 0.2° and 24.3° ⁇ 0.2°.
- polymorph Ia is characterized by an X-ray powder diffraction pattern having characteristic peaks expressed in degrees 2-Theta at angles of 8.9° ⁇ 0.2°, 18.0° ⁇ 0.2° and 21.3° ⁇ 0.2°.
- polymorph Ia is characterized by an X-ray powder diffraction pattern having 6-9 peaks expressed in degrees 2-Theta at angles selected from 8.9° ⁇ 0.3°, 18.0° ⁇ 0.3°, 21.3° ⁇ 0.3°, 4.8° ⁇ 0.3°, 11.3° ⁇ 0.3°, 14.9° ⁇ 0.3°, 19.4° ⁇ 0.3°, 22.8° ⁇ 0.3° and 24.3° ⁇ 0.3°.
- polymorph Ia is characterized by an X-ray powder diffraction pattern having characteristic peaks expressed in degrees 2-Theta at angles of 4.8° ⁇ 0.3°, 8.9° ⁇ 0.3°, 11.3° ⁇ 0.3°, 14.9° ⁇ 0.3°, 18.0° ⁇ 0.3°, 19.4° ⁇ 0.3°, 21.3° ⁇ 0.3° 22.8° ⁇ 0.3° and 24.3° ⁇ 0.3°.
- polymorph Ia is characterized by an X-ray powder diffraction pattern having 6-9 peaks expressed in degrees 2-Theta at angles selected from 8.9° ⁇ 0.2°, 18.0° ⁇ 0.2°, 21.3° ⁇ 0.2°, 4.8° ⁇ 0.2°, 11.3° ⁇ 0.2°, 14.9° ⁇ 0.2°, 19.4° ⁇ 0.2°, 22.8° ⁇ 0.2° and 24.3° ⁇ 0.2°.
- polymorph Ia is characterized by an X-ray powder diffraction pattern having characteristic peaks expressed in degrees 2-Theta at angles of 4.8° ⁇ 0.2°, 8.9° ⁇ 0.2°, 11.3° ⁇ 0.2°, 14.9° ⁇ 0.2°, 18.0° ⁇ 0.2°, 19.4° ⁇ 0.2°, 21.3° ⁇ 0.2° 22.8° ⁇ 0.2° and 24.3° ⁇ 0.2°.
- composition comprising crystalline tazobactam arginine characterized by an X-ray powder diffraction pattern having peaks expressed in degrees 2-Theta ⁇ 0.3° at angles of 4.8°, 8.9°, 11.3°, 14.9°, 18.0°, 19.4°, 21.3°, 22.8° and 24.3°.
- composition comprising crystalline tazobactam arginine characterized by an X-ray powder diffraction pattern having peaks expressed in degrees 2-Theta ⁇ 0.2° at angles of 4.8°, 8.9°, 11.3°, 14.9°, 18.0°, 19.4°, 21.3°, 22.8° and 24.3°.
- composition comprising crystalline tazobactam arginine characterized by an X-ray powder diffraction pattern having peaks expressed in degrees 2-Theta ⁇ 0.1° at angles of 4.8°, 8.9°, 11.3°, 14.9°, 18.0°, 19.4°, 21.3°, 22.8° and 24.3°.
- composition comprising crystalline tazobactam arginine characterized by an X-ray powder diffraction pattern having peaks expressed in degrees 2-Theta at angles of about 4.8°, 8.9°, 11.3°, 14.9°, 18.0°, 19.4°, 21.3°, 22.8° and 24.3°.
- polymorph Ia is characterized by an X-ray powder diffraction pattern having peaks substantially in accordance with FIG. 1 .
- polymorph Ia is characterized by an X-ray powder diffraction pattern having peaks substantially in accordance with Table 1.
- polymorph Ia is characterized by a differential scanning calorimetry thermogram having a characteristic peak expressed in units of ° C. at a temperature of 209.2 ⁇ 3.
- polymorph Ia is characterized by a differential scanning calorimetry thermogram substantially in accordance with FIG. 2 .
- polymorph Ia is characterized by a thermogravimetry curve with an onset temperature of 201.8° C. ⁇ 3° C.
- polymorph Ia is characterized by a thermogravimetry curve substantially in accordance with FIG. 3 .
- polymorph Ia may contain impurities.
- impurities include undesired polymorph forms, or residual organic and inorganic molecules such as solvents, water or salts.
- polymorph Ia is substantially free from impurities. In another embodiment, polymorph Ia contains less than 10% by weight total impurities. In another embodiment, polymorph Ia contains less than 5% by weight total impurities. In another embodiment, polymorph Ia contains less than 1% by weight total impurities. In yet another embodiment, polymorph Ia contains less than 0.1% by weight total impurities.
- polymorph Ib is tazobactam arginine trihydrate.
- crystalline tazobactam polymorph Ib is characterized by an X-ray powder diffraction pattern having peaks expressed in degrees 2-Theta at angles of 4.4° ⁇ 0.3°, 9.7° ⁇ 0.3°, 17.3° ⁇ 0.3°, 20.2° ⁇ 0.3°, and 22.0° ⁇ 0.3°.
- polymorph Ib is characterized by an X-ray powder diffraction pattern having peaks substantially in accordance with FIG. 4 .
- composition comprising one or more compounds selected from amorphous tazobactam arginine, polymorph Ia and polymorph Ib.
- the composition comprises one or more compounds selected from tazobactam arginine and polymorph Ia.
- polymorph Ia is a crystalline solid substantially free of amorphous tazobactam arginine.
- substantially free of amorphous tazobactam arginine means that the compound contains no significant amount of amorphous tazobactam arginine.
- at least about 95% by weight of crystalline polymorph Ia is present.
- at least about 99% by weight of crystalline polymorph Ia is present.
- polymorph Ia is substantially free from polymorph Ib.
- the term “substantially free of polymorph Ib” means that the compound contains no significant amount of polymorph Ib. In certain embodiments, at least about 95% by weight of crystalline polymorph Ia is present. In still other embodiments of the invention, at least about 99% by weight of crystalline polymorph Ia is present.
- crystalline tazobactam arginine comprising:
- tazobactam acid may first be combined with the solvent, and the resulting mixture then combined with arginine.
- arginine may first be combined with the solvent, and the resulting mixture then combined with tazobactam acid.
- tazobactam acid and arginine may be combined, and the resulting mixture then combined with the solvent.
- the above method is a method of making tazobactam arginine polymorph Ia, said method further comprising: (3) drying the precipitated crystalline tazobactam arginine to afford polymorph Ia.
- the antisolvent is added to the solution of tazobactam arginine. In another embodiment, the solution of tazobactam argine is added to the antisolvent.
- the solvent is selected from the group consisting of water and acetic acid.
- the antisolvent is selected from the group consisting of alcohols, ethers, esters, ketones, nitriles, amides, nitroalkanes, nitroarenes, substituted or unsubstituted aromatic solvents, substituted or unsubstituted aliphatic solvents and mixtures thereof.
- the antisolvent is selected from the group consisting of acetone, acetonitrile, 1-butanol, cyclohexane, dichloromethane, diisopropyl ether, dimethylformamide, dimethylsulfoxide, 1,4-dioxane, ethanol, ethyl acetate, heptanes, methanol, isopropyl acetate, methyl ethyl ketone, methyl isobutyl ketone, N-methyl-2-pyrrolidinone, nitromethane, 2-propanol, tert-butylmethyl ether, tetrahydrofuran, toluene and mixtures thereof.
- the solvent is water.
- the antisolvent is acetone.
- the antisolvent is isopropanol.
- crystalline tazobactam arginine comprising:
- the above method is a method of making tazobactam arginine polymorph Ia, said method further comprising: (3) drying the precipitated crystalline tazobactam arginine to afford polymorph Ia.
- crystalline tazobactam arginine e.g., polymorph Ia
- crystalline tazobactam arginine comprising:
- any one of the above methods is a method of making tazobactam arginine polymorph Ia and the method further comprises: (3) drying the precipitated crystalline tazobactam arginine to afford polymorph Ia.
- crystalline tazobactam arginine comprising:
- Y is a metal atom or ion and X ⁇ is a halide ion.
- crystalline tazobactam arginine comprising:
- Y is a metal atom or ion and X ⁇ is a halogen ion.
- crystalline tazobactam arginine produced according to the any one of the preceding methods.
- crystalline tazobactam arginine obtainable by any one of the preceding methods.
- the processes and methods described herein may also further comprise adding one or more seed crystals of crystalline tazobactam arginine (e.g., polymorph Ia or polymorph Ib).
- crystalline tazobactam arginine e.g., polymorph Ia or polymorph Ib.
- precipitate refers to the formation of a solid substance from a solution containing the same substance.
- a substance which precipitates from solution may be amorphous or crystalline. Precipitation may occur under a variety of conditions known to those of skill in the art, including the treatment of a solution of a solute (e.g., solute A in solvent B) with an antisolvent (i.e., a solvent that is miscible with solvent B, but does not dissolve solute A).
- solvent/antisolvent pairs include water/acetone and water/isopropanol.
- a pharmaceutical composition comprising tazobactam arginine polymorph Ia.
- a pharmaceutical composition comprising crystalline tazobactam arginine, hydrates or solvates thereof, and one or more beta-lactam compounds, and a pharmaceutically acceptable carrier or diluent.
- the pharmaceutical composition is useful for treating a bacterial infection.
- the bacterial infection can result from either gram-negative or gram-positive organisms.
- the crystalline tazobactam arginine is polymorph Ia. Polymorph Ia is characterized as described above.
- a pharmaceutical composition prepared by a method comprising the step of combining crystalline tazobactam arginine, or hydrates or solvates thereof, and a beta-lactam compound.
- the crystalline tazobactam arginine is polymorph Ia. Polymorph Ia is characterized as described above.
- beta-lactam compound is a compound possessing one or more beta-lactam moieties, i.e.,
- beta-lactam compounds described herein can be selected from the group consisting of penicillins, cephalosporins, carbapenems, and combinations thereof.
- said one or more beta-lactam compounds are selected from the compounds listed in Table 2, and pharmaceutically acceptable isomers, salts, esters, hydrates, solvates, or combinations thereof.
- the pharmaceutical composition comprises polymorph Ia and (2S,5R,6R)-3,3-dimethyl-7-oxo-6-(2-phenylacetamido)-4-thia-1-zabicyclo[3.2.0]heptane-2-carboxylic acid or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof, and a pharmaceutically acceptable carrier or diluent.
- the pharmaceutical composition comprises polymorph Ia and (5R,6S)-6-[(1R)-1-hydroxyethyl]-3-( ⁇ 2-[(iminomethyl)amino]ethyl ⁇ thio)-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof, and a pharmaceutically acceptable carrier or diluent.
- the pharmaceutical composition comprises polymorph Ia and (5R,6S)-6-((R)-1-hydroxyethyl)-7-oxo-3-((R)-tetrahydrofuran-2-yl)-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof, and a pharmaceutically acceptable carrier or diluent.
- the pharmaceutical composition comprises polymorph Ia and (2S,5R,6R)-6- ⁇ [3-(2-chlorophenyl)-5-methyl-oxazole-4-carbonyl]amino ⁇ -3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof, and a pharmaceutically acceptable carrier or diluent.
- the pharmaceutical composition comprises polymorph Ia and (6R,7R,Z)-7-(2-(2-aminothiazol-4-yl)-2-(2-carboxypropan-2-yloxyimino)acetamido)-8-oxo-3-(pyridinium-1-ylmethyl)-5-thia-1-aza-bicyclo[4.2.0]oct-2-ene-2-carboxylate, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof, and a pharmaceutically acceptable carrier or diluent.
- the pharmaceutical composition comprises polymorph Ia and (6R,7R,Z)-3-(acetoxymethyl)-7-(2-(2-aminothiazol-4-yl)-2-(methoxyimino)acetamido)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof, and a pharmaceutically acceptable carrier or diluent.
- the pharmaceutical composition comprises polymorph Ia and (6R,7R)-7-[(2Z)-2-ethoxyimino-2-[5-(phosphonoamino)-1,2,4-thiadiazol-3-yl]acetyl]amino]-3-[4-(1-methylpyridin-1-ium-4-yl)-1,3-thiazol-2-yl]sulfanyl]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof, and a pharmaceutically acceptable carrier or diluent.
- the pharmaceutical composition comprises polymorph Ia and (6R,7R,Z)-7-(2-(2-aminothiazol-4-yl)-2-(methoxyimino)acetamido)-3-((1-methylpyrrolidinium-1-yl)methyl)-8-oxo-5-thia-1-aza-bicyclo[4.2.0]oct-2-ene-2-carboxylate, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof, and a pharmaceutically acceptable carrier or diluent.
- the pharmaceutical composition comprises polymorph Ia and (6R,7R)-3- ⁇ [(aminocarbonyl)oxy]methyl ⁇ -7- ⁇ [(2Z)-2-(2-furyl)-2-(methoxyimino)acetyl]amino ⁇ -8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof, and a pharmaceutically acceptable carrier or diluent.
- the pharmaceutical composition comprises polymorph Ia and (6R,7R)-7- ⁇ [(2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)acetyl]amino ⁇ -3- ⁇ [(2-methyl-5,6-dioxo-1,2,5,6-tetrahydro-1,2,4-triazin-3-yl)thio]methyl ⁇ -8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof, and a pharmaceutically acceptable carrier or diluent.
- the pharmaceutical composition comprises polymorph Ia and (2S,5R,6R)-6- ⁇ [(2R)-2-amino-2-(4-hydroxyphenyl)-acetyl]amino ⁇ -3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof, and a pharmaceutically acceptable carrier or diluent.
- the pharmaceutical composition comprises polymorph Ia and (2S,5R,6R)-6-[(R)-2-(4-ethyl-2,3-dioxo-1-piperazinecarboxamido)-2-phenylacetamido]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof, and a pharmaceutically acceptable carrier or diluent.
- the pharmaceutical composition comprises polymorph Ia and 3-[5-(dimethylcarbamoyl)pyrrolidin-2-yl]sulfanyl-6-(1-hydroxyethyl)-4-methyl-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof, and a pharmaceutically acceptable carrier or diluent.
- compositions comprising compounds of the invention can be identified by comparison of the compositions' X-ray powder diffraction patterns to an X-ray powder diffraction pattern of a compound of the invention. It will be appreciated that pharmaceutical compositions comprising a compound of the invention may exhibit non-identical X-ray powder diffraction patterns as compared to an X-ray powder diffraction pattern of a pure compound of the invention.
- composition includes preparations suitable for administration to mammals, e.g., humans.
- the compounds of the present invention are administered as pharmaceuticals to mammals, e.g., humans, they can be given per se or as a pharmaceutical composition containing, for example, 0.1% to 99.9% (more preferably, 0.5 to 90%) of active ingredient in combination with a pharmaceutically acceptable carrier.
- compositions described herein can be formulated to have any concentration desired (i.e., any concentration of crystalline tazobactam arginine, or a hydrate or solvate thereof, and any concentration of a beta-lactam compound).
- the composition is formulated such that it comprises at least a therapeutically effective amount of both compounds (i.e., a therapeutically effective amount of the combination of crystalline tazobactam arginine, or a hydrate or solvate thereof, and the beta-lactam compound).
- the composition is formulated such that it would not cause one or more unwanted side effects.
- the compounds of the invention can be combined with a pharmaceutically acceptable carrier according to conventional pharmaceutical compounding techniques.
- pharmaceutically acceptable carrier may include any and all solvents, diluents, or other liquid vehicle, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, solid binders, lubricants and the like, as suited to the particular dosage form desired.
- Gennaro (Mack Publishing Co., Easton, Pa., 1990) discloses various carriers used in formulating pharmaceutical compositions and known techniques for the preparation thereof. Except insofar as any conventional carrier medium is incompatible with the compounds such as by producing any undesirable biological effect or otherwise interacting in a deleterious manner with any other component(s) of the pharmaceutical composition, its use is contemplated to be within the scope of this invention.
- materials which can serve as pharmaceutically acceptable carriers include, but are not limited to, sugars such as lactose, glucose and sucrose; starches such as corn starch and potato starch; cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatine; talc; excipients such as cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil; safflower oil, sesame oil; olive oil; corn oil and soybean oil; glycols; such as propylene glycol; esters such as ethyl oleate and ethyl laurate; agar; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen free water; isotonic saline (“normal saline”); Ringer's solution; ethyl alcohol, and phosphate buffer solutions, as well as other non-toxic compatible
- the carrier may take a wide variety of forms depending on the form of the preparation desired for administration, e.g. oral, nasal, rectal, vaginal, parenteral (including intravenous injections or infusions).
- oral, nasal, rectal, vaginal, parenteral including intravenous injections or infusions.
- parenteral including intravenous injections or infusions.
- any of the usual pharmaceutical media may be employed.
- Usual pharmaceutical media include, for example, water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents, and the like in the case of oral liquid preparations (such as for example, suspensions, solutions, emulsions and elixirs); aerosols; or carriers such as starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents and the like, in the case of oral solid preparations (such as for example, powders, capsules, and tablets).
- oral liquid preparations such as for example, suspensions, solutions, emulsions and elixirs
- aerosols or carriers such as starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents and the like
- oral solid preparations such as for example, powders, capsules, and tablets.
- wetting agents such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the compositions.
- compositions include those suitable for oral, sublingual, nasal rectal, vaginal, topical, buccal and parenteral (including subcutaneous, intramuscular, and intravenous) administration, although the most suitable route will depend on the nature and severity of the condition being treated.
- the compositions may be conveniently presented in unit dosage form, and prepared by any of the methods well known in the art of pharmacy.
- the pharmaceutical composition is formulated for oral administration in the form of a pill, capsule, lozenge or tablet.
- the pharmaceutical composition is in the form of a suspension.
- compositions disclosed herein can be prepared via lyophilization.
- lyophilization is a process of drying in which water is sublimed from a frozen solution of one or more solutes. Specific methods of lyophilization are described in Remington's Pharmaceutical Sciences, Chapter 84, page 1565, Eighteenth Edition, A. R. Gennaro, (Mack Publishing Co., Easton, Pa., 1990).
- compositions comprising crystalline tazobactam arginine (e.g., polymorph Ia) and one or more beta-lactam compounds are formulated for parenteral administration.
- pharmaceutical compositions comprising tazobactam arginine and one or more beta-lactam compounds are formulated for oral administration.
- Tazobactam arginine inhibits or decreases the activity of beta-lactamases (e.g., bacterial beta-lactamases), and can be combined with beta-lactam compounds (e.g., antibiotics), thereby broadening the spectrum of the beta-lactam compound and increasing the beta-lactam compound's efficacy against organisms that produce beta-lactamase.
- beta-lactamases e.g., bacterial beta-lactamases
- beta-lactam compounds e.g., antibiotics
- a method for the treatment of bacterial infections in a mammal comprising administering to said mammal a therapeutically effective amount of tazobactam arginine polymorph Ia.
- a method for the treatment of bacterial infections in a mammal comprising administering to said mammal a therapeutically effective amount of a pharmaceutical composition comprising tazobactam arginine polymorph Ia.
- a method for the treatment of bacterial infections in a mammal comprising administering to said mammal a therapeutically effective amount of a pharmaceutical composition comprising crystalline tazobactam arginine and one or more beta-lactam compounds, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof.
- the mammal is human.
- tazobactam arginine is polymorph Ia.
- said one or more beta-lactam compounds are selected from the group consisting of penicillins, cephalosporins, carbapenems, and combinations thereof.
- the beta-lactam compound is selected from the compounds listed in Table 2, and pharmaceutically acceptable isomers, salts, esters, hydrates, solvates, or combinations thereof.
- the pharmaceutical composition comprises polymorph Ia and (2S,5R,6R)-3,3-dimethyl-7-oxo-6-(2-phenylacetamido)-4-thia-1-zabicyclo[3.2.0]heptane-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof.
- the pharmaceutical composition comprises polymorph Ia and (5R,6S)-6-[(1R)-1-hydroxyethyl]-3-( ⁇ 2-[(iminomethyl)amino]ethyl ⁇ thio)-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof.
- the pharmaceutical composition comprises polymorph Ia and (5R,6S)-6-((R)-1-hydroxyethyl)-7-oxo-3-((R)-tetrahydrofuran-2-yl)-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof.
- the pharmaceutical composition comprises polymorph Ia and (2S,5R,6R)-6- ⁇ [3-(2-chlorophenyl)-5-methyl-oxazole-4-carbonyl]amino ⁇ -3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof.
- the pharmaceutical composition comprises polymorph Ia and (6R,7R,Z)-7-(2-(2-aminothiazol-4-yl)-2-(2-carboxypropan-2-yloxyimino)acetamido)-8-oxo-3-(pyridinium-1-ylmethyl)-5-thia-1-aza-bicyclo[4.2.0]oct-2-ene-2-carboxylate, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof.
- the pharmaceutical composition comprises polymorph Ia and (6R,7R,Z)-3-(acetoxymethyl)-7-(2-(2-aminothiazol-4-yl)-2-(methoxyimino)acetamido)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof.
- the pharmaceutical composition comprises polymorph Ia and (6R,7R)-7-R2Z)-2-ethoxyimino-2-[5-(phosphonoamino)-1,2,4-thiadiazol-3-yl]acetyl]amino]-3-[4-(1-methylpyridin-1-ium-4-yl)-1,3-thiazol-2-yl]sulfanyl]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof.
- the pharmaceutical composition comprises polymorph Ia and (6R,7R,Z)-7-(2-(2-aminothiazol-4-yl)-2-(methoxyimino)acetamido)-3-((1-methylpyrrolidinium-1-yl)methyl)-8-oxo-5-thia-1-aza-bicyclo[4.2.0]oct-2-ene-2-carboxylate, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof.
- the pharmaceutical composition comprises polymorph Ia and (6R,7R)-3- ⁇ [(aminocarbonyl)oxy]methyl ⁇ -7- ⁇ [(2Z)-2-(2-furyl)-2-(methoxyimino)acetyl]amino ⁇ -8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof.
- the pharmaceutical composition comprises polymorph Ia and (6R,7R)-7- ⁇ [(2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)acetyl]amino ⁇ -3- ⁇ [(2-methyl-5,6-dioxo-1,2,5,6-tetrahydro-1,2,4-triazin-3-yl)thio]methyl ⁇ -8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof.
- the pharmaceutical composition comprises polymorph Ia and (2S,5R,6R)-6- ⁇ [(2R)-2-amino-2-(4-hydroxyphenyl)-acetyl]amino ⁇ -3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof.
- the pharmaceutical composition comprises polymorph Ia and 3-[5-(dimethylcarbamoyl)pyrrolidin-2-yl]sulfanyl-6-(1-hydroxyethyl)-4-methyl-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof.
- the pharmaceutical composition comprises polymorph Ia and (2S,5R,6R)-6-[(R)-2-(4-ethyl-2,3-dioxo-1-piperazinecarboxamido)-2-phenylacetamido]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof.
- the bacterial infection is caused by bacteria that are susceptible to the composition comprising polymorph Ia and (2S,5R,6R)-6-[(R)-2-(4-ethyl-2,3-dioxo-1-piperazinecarboxamido)-2-phenylacetamido]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof.
- a method for the treatment of bacterial infections in a mammal comprising administering to said mammal a therapeutically effective amount of a pharmaceutical composition comprising an antibiotic and a crystalline tazobactam arginine compound (e.g., of the polymorph Ia solid form).
- a pharmaceutical composition comprising an antibiotic and a crystalline tazobactam arginine compound (e.g., of the polymorph Ia solid form).
- the crystalline tazobactam arginine can be characterized by an X-ray powder diffraction pattern having peaks expressed in degrees 2-Theta at angles of 4.8° ⁇ 0.3°, 8.9° ⁇ 0.3°, 11.3° ⁇ 0.3°, 14.9° ⁇ 0.3°, 18.0° ⁇ 0.3°, 19.4° ⁇ 0.3°, 21.3° ⁇ 0.3°, 22.8° ⁇ 0.3° and 24.3° ⁇ 0.3°.
- Non-limiting examples of bacterial infections that can be treated by the methods of the invention include infections caused by: aerobic and facultative gram-positive microorganisms (e.g., Staphylococcus aureus, Enterococcus faecalis, Staphylococcus epidermidis, Streptococcus agalactiae, Streptococcus pneumonia, Streptococcus pyogenes, Viridans group streptococci ), aerobic and facultative gram-negative microorganisms (e.g., Acinetobacter baumanii, Escherichia coli, Haemophilus influenza, Klebsiella pneumonia, Pseudomonas aeruginosa, Citrobacter koseri, Moraxella catarrhalis, Morganella morganii, Neisseria gonorrhoeae, Proteus mirabilis, Proteus vulgaris, Serratia marcescens, Providencia stuartii
- bacterial infection resulting from beta-lactamase-producing organisms are treated or controlled.
- beta-lactamase-producing organisms include:
- ESBL extended-spectrum beta-lactamase-producing organisms selected from the group consisting of Enterobacteriaceae spp.: Escherichia coli, Klebsiella spp. (including K. pneumoniae and K. oxytoca ), Proteus mirabilis, Proteus vulgaris, Enterobacter spp., Serratia spp., Citrobacter spp., Pseudomonas spp., Acinetobacter spp.) and Bacteroides spp.;
- CSBL conventional-spectrum beta-lactamase
- Inducible-AmpC-type beta-lactamases such as Citrobacter spp., Serratia spp., Morganella morganii, Proteus vulgaris, and Enterobacter cloacae.
- bacterial infection is associated with one or more of the following conditions:
- Appendicitis (complicated by rupture or abscess) and peritonitis caused by piperacillin-resistant beta-lactamase producing strains of Escherichia coli or the following members of the Bacteroides fragilis group: B. fragilis, B. ovatus, B. thetaiotaomicron, or B. vulgates;
- Nosocomial pneumonia caused by piperacillin-resistant, beta-lactamase producing strains of Staphylococcus aureus and by Acinetobacter baumanii, Haemophilus influenzae, Klebsiella pneumoniae, and Pseudomonas aeruginosa.
- crystalline tazobactam arginine and hydrates and solvates thereof, in combination with one or more beta-lactam compounds, for the manufacture of a medicament for the treatment of bacterial infection.
- the bacterial infection can result from either gram-negative or gram-positive organisms.
- the crystalline tazobactam arginine is polymorph Ia.
- Polymorph Ia is characterized as described above.
- Said one or more beta-lactam compounds can be selected from the group consisting of penicillins, cephalosporins, carbapenems, and combinations thereof.
- said one or more beta-lactam compounds are selected from the compounds listed in Table 2, and pharmaceutically acceptable isomers, salts, esters, hydrates, solvates, or combinations thereof.
- tazobactam arginine and hydrates and solvates thereof, for use in a method of treating bacterial infection.
- a combination of tazobactam arginine and one or more beta-lactam compounds is used in said method.
- treating describes the management and care of a patient for the purpose of combating a disease, condition, or disorder and includes the administration of a pharmaceutical composition of the present invention to alleviate the symptoms or complications of a disease, condition or disorder, or to eliminate the disease, condition or disorder.
- the term “treat” can also include treatment of a cell in vitro or an animal model.
- a “therapeutically effective amount” of a compound of the invention is meant a sufficient amount of the compound to treat the disorder (e.g., bacterial infection).
- the specific therapeutically effective amount that is required for the treatment of any particular patient or organism will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound or composition employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts (see, for example, Goodman and Gilman's, “The Pharmacological Basis of Therapeutics”, Tenth Edition, A.
- a method for detecting or identifying an agent that will inhibit one or more beta-lactamase-producing organisms comprising combining:
- composition comprising one or more beta-lactamase-producing organisms
- activity refers to the ability of the beta-lactamase-producing organism to reproduce and/or infect another organism, or “activity” refers to the presence of an indicator of the ability of the beta-lactamase-producing organism to reproduce and/or infect another organism.
- Methods for detecting and/or measuring changes in the activity of beta-lactamase-producing organisms are known to those of skill in the art.
- compositions of the subject invention may be assessed by standard testing procedures.
- Non-limiting examples of such a procedure include the Kirby-Bauer method, the Stokes test, the E-test, broth dilution and agar dilution for determination of minimum inhibitory concentration (MIC), as described in “Approved Standard. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically,” 3.sup.rd ed., published 1993 by the National Committee for Clinical Laboratory standards, Villanova, Pa., USA.
- the methods described herein are performed using automation (e.g., Siemens' MicroScan Systems).
- the beta-lactamase inhibitor is tazobactam arginine.
- the beta-lactamase inhibitor is tazobactam arginine polymorph Ia.
- test agent can be selected from the group consisting of penicillins, cephalosporins, carbapenems, and combinations thereof.
- the test agent is selected from the compounds listed in Table 2, and pharmaceutically acceptable isomers, salts, esters, hydrates, solvates, or combinations thereof.
- beta-lactamase-producing organisms are selected from the group comprising:
- ESBL extended-spectrum beta-lactamase-producing organisms selected from the group consisting of Enterobacteriaceae spp.: Escherichia coli, Klebsiella spp. (including K. pneumoniae and K. oxytoca ), Proteus mirabilis, Proteus vulgaris, Enterobacter spp., Serratia spp., Citrobacter spp.) and Bacteroides spp.;
- CSBL conventional-spectrum beta-lactamase
- Inducible-AmpC-type beta-lactamases such as Citrobacter spp., Serratia spp., Morganella morganii, Proteus vulgaris, and Enterobacter cloacae.
- Tazobactam arginine amorphous (1.00 g) was dissolved in 10.0 mL of deionized water. 30 mL of acetone was added to the aqueous solution by drop-wise addition. The mixture was allowed to sit overnight at ambient temperature, resulting in white fine needles. After filtration and vacuum drying for 4 hours, tazobactam arginine polymorph Ia (516 mg) was obtained. The XRPD spectrum of the tazobactam arginine polymorph Ia is depicted in FIG. 1 .
- the 1 H-NMR spectrum ( FIG. 7 ) of polymorph Ia indicates a stoichiometry of 1:1 tazobactam acid:arginine.
- Tazobactam arginine amorphous exhibited approximately 10.7% weight increase at 95% relative humidity (RH). See FIG. 8 .
- Tazobactam arginine polymorph Ia exhibited approximately 0.2% weight increase at 95% RH. See FIG. 9 .
- the solvent solubility screen was carried out using a solvent addition technique. For each of 25 solvent systems, the following procedure was used: (1) about 20 mg of crystalline tazobactam arginine was placed into a vial; (2) solvent was added to the vial in 5 volume aliquots (100 ⁇ L) until complete dissolution, or 100 volumes, had been added; (3) between additions, the sample was heated to about 50° C. in order to determine the approximate solubility at an elevated temperature; (4) if 100 volumes was reached and complete dissolution was not observed, solubility was calculated to be below that point. Results of the solvent solubility screen are shown in Table 3.
- Beta-lactam compounds No. IUPAC Name CAS No. 1 (2S,5R,6R)-6-[(R)-2-(4-ethyl-2,3-dioxo-1-piperazinecarboxamido)-2- 61477-96-1 phenylacetamido]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane- 2-carboxylic acid 2 (2S,5R,6R)-3,3-dimethyl-7-oxo-6-(2-phenylacetamido)-4-thia-1- 61-33-6 zabicyclo[3.2.0]heptane-2-carboxylic acid 3 (5R,6S)-6-[(1R)-1-hydroxyethyl]-3-( ⁇ 2-[(iminomethyl)amino]ethyl ⁇ thio)- 74431-23-5 7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2--
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- This application is a continuation of U.S. patent application Ser. No. 14/181,041, filed on Feb. 14, 2014, which was a continuation of U.S. patent application Ser. No. 13/828,534, filed on Mar. 14, 2013, which was a continuation of U.S. patent application Ser. No. 13/628,742, filed on Sep. 27, 2012. The entire contents of these applications are incorporated herein by reference.
- This disclosure relates to solid forms of (2S,3S,5R)-3-((1H-1,2,3-triazol-1-yl)methyl)-3-methyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-
carboxylic acid 4,4-dioxide (tazobactam), and related compositions and methods. - The crystal state of a compound may be important when the compound is used for pharmaceutical purposes. Compared with an amorphous solid, the solid physical properties of a crystalline compound may change, which may affect its suitability for pharmaceutical use. For example, a particular crystalline compound may overcome the disadvantage of other solid forms of the compound that readily absorb moisture (e.g., high hygroscopicity). For an ionic drug substance, high hygroscopicity may diminish the drug product's stability profile by a host of mechanisms, as the drug substance may have a propensity to absorb water. Water that is absorbed from the environment (packaging materials, exposure to air, or in the case of formulated products, from other materials), may lead to degradation products and/or impurities in a drug product or add to the cost of manufacturing the drug product with acceptably low levels of water.
- One compound that can be obtained in amorphous or various crystalline salt forms is (2S,3S,5R)-3-((1H-1,2,3-triazol-1-yl)methyl)-3-methyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-
carboxylic acid 4,4-dioxide, or tazobactam. There is a need for solid forms of tazobactam with reduced hygroscopicity for use in drug substance and drug product development. - Solid forms of tazobactam (e.g., arginine salt forms of tazobactam) and compositions comprising these solid forms, are provided herein, in addition to various methods of preparing these compositions. Compared with previous crystalline forms of tazobactam, certain crystalline tazobactam arginine solid forms are provided herein that have the advantageous characteristic of being less hygroscopic. These crystalline tazobactam arginine solid forms can have good thermal stability and light stability in the process of preparation, packing, transportation and storage. Crystalline compounds of tazobactam arginine can also possess other properties that may be beneficial to the preparation of various drug formulations.
- Crystalline tazobactam arginine, and hydrates and solvates thereof, can be obtained in various solid forms. Tazobactam arginine can be a salt consisting of the conjugate base of (2S,3S,5R)-3-((1H-1,2,3-triazol-1-yl)methyl)-3-methyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-
carboxylic acid 4,4-dioxide (tazobactam) and the conjugate acid of (S)-2-amino-5-guanidinopentanoic acid (L-arginine) in a 1:1 ratio, as represented by the structure below. - In one aspect, provided herein is a particularly preferred crystalline tazobactam arginine solid form (designated herein as “polymorph Ia” or “tazobactam arginine polymorph Ia”), characterized by an X-ray powder diffraction pattern having peaks expressed in degrees 2-Theta at angles of 4.8°±0.3°, 8.9°±0.3°, 11.3°±0.3°, 14.9°±0.3°, 18.0°±0.3°, 19.4°±0.3°, 21.3°±0.3°, 22.8°±0.3°, and 24.3°±0.3°. The crystalline tazobactam arginine can be further characterized by a differential scanning calorimetry thermogram having a characteristic peak expressed in units of ° C. at a temperature of 209.2±3. In another embodiment, the crystalline tazobactam arginine is further characterized by a thermogravimetry curve with an onset temperature of 201.9° C.±3° C.
- Also provided are pharmaceutical compositions comprising a compound having a beta-lactam chemical sub-structure (e.g., a beta-lactam antibiotic compound) and crystalline tazobactam arginine (e.g., of the polymorph Ia solid form).
- In another aspect, provided herein is a method for the treatment of bacterial infections in a mammal, comprising administering to said mammal a therapeutically effective amount of a crystalline tazobactam arginine compound (e.g., of the polymorph Ia solid form). The crystalline tazobactam arginine can be characterized by an X-ray powder diffraction pattern having peaks expressed in degrees 2-Theta at angles of 4.8°±0.3°, 8.9°±0.3°, 11.3°±0.3°, 14.9°±0.3°, 18.0°±0.3°, 19.4°±0.3°, 21.3°±0.3°, 22.8°±0.3° and 24.3°±0.3°.
- In another aspect, provided herein is a method for the treatment of bacterial infections in a mammal, comprising administering to said mammal a therapeutically effective amount of a pharmaceutical composition comprising an beta-lactam compound and a crystalline tazobactam arginine compound (e.g., of the polymorph Ia solid form). The crystalline tazobactam arginine can be characterized by an X-ray powder diffraction pattern having peaks expressed in degrees 2-Theta at angles of 4.8°±0.3°, 8.9°±0.3°, 11.3°±0.3°, 14.9°±0.3°, 18.0°±0.3°, 19.4°±0.3°, 21.3°±0.3°, 22.8°±0.3° and 24.3°±0.3°.
- In another aspect, provided herein is a method for detecting or identifying an agent that inhibits one or more beta-lactamase-producing organisms, said method comprising combining:
- (a) a test agent;
- (b) a composition comprising one or more beta-lactamase-producing organisms; and
- (c) crystalline tazobactam arginine, wherein the crystalline tazobactam arginine is characterized by an X-ray powder diffraction pattern having peaks expressed in degrees 2-Theta at angles of 4.8°±0.3°, 8.9°±0.3°, 11.3°±0.3°, 14.9°±0.3°, 18.0°±0.3°, 19.4°±0.3°, 21.3°±0.3°, 22.8°±0.3° and 24.3°±0.3°; and detecting or measuring a change in the activity of the beta-lactamase-producing organisms, wherein a decrease in the activity of the beta-lactamase-producing organisms indicates that the test agent inhibits the beta-lactamase-producing organisms.
-
FIG. 1 depicts the X-ray powder diffraction pattern of polymorph Ia (Example 2). -
FIG. 2 depicts the differential scanning calorimetry (DVS) thermogram of polymorph Ia. -
FIG. 3 depicts the thermogravimetry curve of polymorph Ia. -
FIG. 4 depicts the X-ray powder diffraction pattern of polymorph Ib. -
FIG. 5 depicts the X-ray powder diffraction pattern of tazobactam arginine amorphous. -
FIG. 6 depicts the X-ray power diffraction pattern of polymorph Ia (Example 4). -
FIG. 7 depicts the 1H-NMR spectrum of polymorph Ia. -
FIG. 8 depicts the DVS graph of tazobactam arginine amorphous (Example 6a). -
FIG. 9 depicts the DVS graph of polymorph Ia (Example 6b). -
FIG. 10 depicts the DVS graph of amorphous tazobactam sodium (Example 6c). - Tazobactam arginine may occur in an amorphous solid form or in a crystalline solid form. Crystalline solid forms of tazobactam arginine may exist in one or more unique polymorph forms, which may additionally comprise one or more equivalents of water or solvent (i.e., hydrates or solvates, respectively).
- Tazobactam arginine is the salt of the conjugate base of tazobactam and the conjugate acid of (S)-2-amino-5-guanidinopentanoic acid (L-arginine) in a 1:1 ratio, as represented by the structure below.
- Accordingly, provided herein is crystalline tazobactam arginine, and hydrates and solvates thereof. In particular, provided herein is crystalline tazobactam arginine polymorph Ia, also referred to herein as “polymorph Ia” or “tazobactam arginine polymorph Ia”, and crystalline tazobactam arginine polymorph Ib, also referred to herein as “polymorph Ib” or “tazobactam arginine polymorph Ib”.
- The ability of a substance to exist in more than one crystal form is defined as polymorphism; the different crystal forms of a particular substance are referred to as “polymorphs.” In general, polymorphism is affected by the ability of a molecule of a substance to change its conformation or to form different intermolecular or intra-molecular interactions, particularly hydrogen bonds, which is reflected in different atom arrangements in the crystal lattices of different polymorphs. In contrast, the overall external form of a substance is known as “morphology,” which refers to the external shape of the crystal and the planes present, without reference to the internal structure. Crystals can display different morphology based on different conditions, such as, for example, growth rate, stirring, and the presence of impurities.
- The different polymorphs of a substance can possess different energies of the crystal lattice and, thus, in solid state they can show different physical properties such as form, density, melting point, color, stability, solubility, dissolution rate, etc., which can, in turn, affect the stability, dissolution rate and/or bioavailability of a given polymorph and its suitability for use as a pharmaceutical and in pharmaceutical compositions.
- Access to different polymorphs of tazobactam arginine is desirable for other reasons as well. One such reason is that different polymorphs of a compound (e.g., tazobactam arginine) can incorporate different impurities, or chemical residues, upon crystallization. Certain polymorphs incorporate very little, or no, chemical residues. Accordingly, the formation of certain polymorph forms of a compound may result in purification of the compound.
- Tazobactam arginine polymorph Ia exhibits low hygroscopicity relative to amorphous tazobactam arginine and amorphous tazobactam sodium. Low hygroscopicity of a solid compound is desirable for several reasons. For example, compounds that are highly hygroscopic may be chemically unstable, or unsuitable for formulating as a drug product due to changes of the drug form's physical characteristics (e.g., bulk density, dissolution rate, etc.) that can occur if it is stored in settings with varying relative humidity. Also, hygroscopicity can impact large-scale manufacturing and handling of a compound. For example, it may be difficult to determine the true weight of a hygroscopic active agent when preparing a pharmaceutical composition comprising that agent.
- In certain embodiments, the compounds of the invention are identifiable on the basis of characteristic peaks in an X-ray powder diffraction analysis. X-ray powder diffraction, also referred to as XRPD, is a scientific technique using X-ray, neutron, or electron diffraction on powder, microcrystalline, or other solid materials for structural characterization of the materials.
- One embodiment of crystalline tazobactam arginine is referred to as polymorph Ia (also referred to herein as “tazobactam arginine polymorph Ia”) and is characterized by an X-ray powder diffraction pattern having one or more characteristic peaks expressed in degrees 2-Theta at angles selected from 8.9°±0.3°, 18.0°±0.3° and 21.3°±0.3°. In another embodiment, polymorph Ia is characterized by an X-ray powder diffraction pattern having one or more peaks expressed in degrees 2-Theta at angles selected from 4.8°±0.3°, 11.3°±0.3° and 14.9°±0.3°. In still another embodiment, polymorph Ia is characterized by an X-ray powder diffraction pattern having one or more peaks expressed in degrees 2-Theta at angles selected from 19.4°±0.3°, 22.8°±0.3° and 24.3°±0.3°.
- In another embodiment, polymorph Ia is characterized by an X-ray powder diffraction pattern having 3-6 peaks expressed in degrees 2-Theta at angles selected from 8.9°±0.3°, 18.0°±0.3°, 21.3°±0.3°, 4.8°±0.3°, 11.3°±0.3°, 14.9°±0.3°, 19.4°±0.3°, 22.8°±0.3° and 24.3°±0.3°. In a particular embodiment, polymorph Ia is characterized by an X-ray powder diffraction pattern having characteristic peaks expressed in degrees 2-Theta at angles of 8.9°±0.3°, 18.0°±0.3° and 21.3°±0.3°.
- In yet another embodiment, polymorph Ia is characterized by an X-ray powder diffraction pattern having 3-6 peaks expressed in degrees 2-Theta at angles selected from 8.9°±0.2°, 18.0°±0.2°, 21.3°±0.2°, 4.8°±0.2°, 11.3°±0.2°, 14.9°±0.2°, 19.4°±0.2°, 22.8°±0.2° and 24.3°±0.2°. In a particular embodiment, polymorph Ia is characterized by an X-ray powder diffraction pattern having characteristic peaks expressed in degrees 2-Theta at angles of 8.9°±0.2°, 18.0°±0.2° and 21.3°±0.2°.
- In still another embodiment, polymorph Ia is characterized by an X-ray powder diffraction pattern having 6-9 peaks expressed in degrees 2-Theta at angles selected from 8.9°±0.3°, 18.0°±0.3°, 21.3°±0.3°, 4.8°±0.3°, 11.3°±0.3°, 14.9°±0.3°, 19.4°±0.3°, 22.8°±0.3° and 24.3°±0.3°. In a particular embodiment, polymorph Ia is characterized by an X-ray powder diffraction pattern having characteristic peaks expressed in degrees 2-Theta at angles of 4.8°±0.3°, 8.9°±0.3°, 11.3°±0.3°, 14.9°±0.3°, 18.0°±0.3°, 19.4°±0.3°, 21.3°±0.3° 22.8°±0.3° and 24.3°±0.3°.
- In still another embodiment, polymorph Ia is characterized by an X-ray powder diffraction pattern having 6-9 peaks expressed in degrees 2-Theta at angles selected from 8.9°±0.2°, 18.0°±0.2°, 21.3°±0.2°, 4.8°±0.2°, 11.3°±0.2°, 14.9°±0.2°, 19.4°±0.2°, 22.8°±0.2° and 24.3°±0.2°. In a particular embodiment, polymorph Ia is characterized by an X-ray powder diffraction pattern having characteristic peaks expressed in degrees 2-Theta at angles of 4.8°±0.2°, 8.9°±0.2°, 11.3°±0.2°, 14.9°±0.2°, 18.0°±0.2°, 19.4°±0.2°, 21.3°±0.2° 22.8°±0.2° and 24.3°±0.2°.
- In still another embodiment, provided herein is a composition comprising crystalline tazobactam arginine characterized by an X-ray powder diffraction pattern having peaks expressed in degrees 2-Theta±0.3° at angles of 4.8°, 8.9°, 11.3°, 14.9°, 18.0°, 19.4°, 21.3°, 22.8° and 24.3°.
- In still another embodiment, provided herein is a composition comprising crystalline tazobactam arginine characterized by an X-ray powder diffraction pattern having peaks expressed in degrees 2-Theta±0.2° at angles of 4.8°, 8.9°, 11.3°, 14.9°, 18.0°, 19.4°, 21.3°, 22.8° and 24.3°.
- In still another embodiment, provided herein is a composition comprising crystalline tazobactam arginine characterized by an X-ray powder diffraction pattern having peaks expressed in degrees 2-Theta±0.1° at angles of 4.8°, 8.9°, 11.3°, 14.9°, 18.0°, 19.4°, 21.3°, 22.8° and 24.3°.
- In still another embodiment, provided herein is a composition comprising crystalline tazobactam arginine characterized by an X-ray powder diffraction pattern having peaks expressed in degrees 2-Theta at angles of about 4.8°, 8.9°, 11.3°, 14.9°, 18.0°, 19.4°, 21.3°, 22.8° and 24.3°.
- In one embodiment, polymorph Ia is characterized by an X-ray powder diffraction pattern having peaks substantially in accordance with
FIG. 1 . In another embodiment, polymorph Ia is characterized by an X-ray powder diffraction pattern having peaks substantially in accordance with Table 1. - The compounds of the invention may also be defined by their differential scanning calorimetry (DSC) thermograms. In one embodiment, polymorph Ia is characterized by a differential scanning calorimetry thermogram having a characteristic peak expressed in units of ° C. at a temperature of 209.2±3. In a particular embodiment, polymorph Ia is characterized by a differential scanning calorimetry thermogram substantially in accordance with
FIG. 2 . - The compounds of the invention can be also be defined by their thermogravimetry (TG) signals. In one embodiment, polymorph Ia is characterized by a thermogravimetry curve with an onset temperature of 201.8° C.±3° C. In a particular embodiment, polymorph Ia is characterized by a thermogravimetry curve substantially in accordance with
FIG. 3 . - In certain embodiments, polymorph Ia may contain impurities. Non-limiting examples of impurities include undesired polymorph forms, or residual organic and inorganic molecules such as solvents, water or salts.
- In another embodiment, polymorph Ia is substantially free from impurities. In another embodiment, polymorph Ia contains less than 10% by weight total impurities. In another embodiment, polymorph Ia contains less than 5% by weight total impurities. In another embodiment, polymorph Ia contains less than 1% by weight total impurities. In yet another embodiment, polymorph Ia contains less than 0.1% by weight total impurities.
- In another aspect, provided herein is crystalline tazobactam arginine polymorph Ib. In one embodiment, polymorph Ib is tazobactam arginine trihydrate. In another embodiment, crystalline tazobactam polymorph Ib is characterized by an X-ray powder diffraction pattern having peaks expressed in degrees 2-Theta at angles of 4.4°±0.3°, 9.7°±0.3°, 17.3°±0.3°, 20.2°±0.3°, and 22.0°±0.3°. In a particular embodiment, polymorph Ib is characterized by an X-ray powder diffraction pattern having peaks substantially in accordance with
FIG. 4 . - In another aspect, provided herein is a composition comprising one or more compounds selected from amorphous tazobactam arginine, polymorph Ia and polymorph Ib. In one embodiment, the composition comprises one or more compounds selected from tazobactam arginine and polymorph Ia.
- In certain embodiments, polymorph Ia is a crystalline solid substantially free of amorphous tazobactam arginine. As used herein, the term “substantially free of amorphous tazobactam arginine” means that the compound contains no significant amount of amorphous tazobactam arginine. In certain embodiments, at least about 95% by weight of crystalline polymorph Ia is present. In still other embodiments of the invention, at least about 99% by weight of crystalline polymorph Ia is present.
- In another embodiment, polymorph Ia is substantially free from polymorph Ib. As used herein, the term “substantially free of polymorph Ib “means that the compound contains no significant amount of polymorph Ib. In certain embodiments, at least about 95% by weight of crystalline polymorph Ia is present. In still other embodiments of the invention, at least about 99% by weight of crystalline polymorph Ia is present.
- Provided herein is a method of making crystalline tazobactam arginine comprising:
- (1) combining tazobactam acid, arginine and a solvent, such that a solution of tazobactam arginine is formed; and
- (2) combining an antisolvent with the solution, wherein the antisolvent is miscible with the solvent and wherein tazobactam arginine is partially or completely insoluble in the antisolvent, such that crystalline tazobactam arginine precipitates from the solution.
- In step (1), tazobactam acid may first be combined with the solvent, and the resulting mixture then combined with arginine. Alternatively, arginine may first be combined with the solvent, and the resulting mixture then combined with tazobactam acid. Alternatively, tazobactam acid and arginine may be combined, and the resulting mixture then combined with the solvent.
- In one embodiment, the above method is a method of making tazobactam arginine polymorph Ia, said method further comprising: (3) drying the precipitated crystalline tazobactam arginine to afford polymorph Ia.
- In one embodiment, the antisolvent is added to the solution of tazobactam arginine. In another embodiment, the solution of tazobactam argine is added to the antisolvent. In certain embodiments, the solvent is selected from the group consisting of water and acetic acid. In certain embodiments, the antisolvent is selected from the group consisting of alcohols, ethers, esters, ketones, nitriles, amides, nitroalkanes, nitroarenes, substituted or unsubstituted aromatic solvents, substituted or unsubstituted aliphatic solvents and mixtures thereof. In certain embodiments, the antisolvent is selected from the group consisting of acetone, acetonitrile, 1-butanol, cyclohexane, dichloromethane, diisopropyl ether, dimethylformamide, dimethylsulfoxide, 1,4-dioxane, ethanol, ethyl acetate, heptanes, methanol, isopropyl acetate, methyl ethyl ketone, methyl isobutyl ketone, N-methyl-2-pyrrolidinone, nitromethane, 2-propanol, tert-butylmethyl ether, tetrahydrofuran, toluene and mixtures thereof. Experiments determining solubility of crystalline tazobactam arginine in a variety of solvents are described in Experiment 6, and results are summarized in Table 3. In a preferred embodiment, the solvent is water. In another preferred embodiment, the antisolvent is acetone. In yet another preferred embodiment, the antisolvent is isopropanol.
- Accordingly, provided herein is a method of making crystalline tazobactam arginine comprising:
- (1) combining tazobactam acid, arginine and water, such that an aqueous solution of tazobactam arginine is formed; and
- (2) combining acetone with the aqueous solution, such that crystalline tazobactam arginine precipitates from the solution.
- In one embodiment, the above method is a method of making tazobactam arginine polymorph Ia, said method further comprising: (3) drying the precipitated crystalline tazobactam arginine to afford polymorph Ia.
- In another aspect, provided herein is a method of making crystalline tazobactam arginine (e.g., polymorph Ia) comprising:
- (1) combining tazobactam arginine and a solvent, such that a solution of tazobactam arginine is formed; and
- (2) combining an antisolvent with the solution, wherein the antisolvent is miscible with the solvent and wherein tazobactam arginine is partially or completely insoluble in the antisolvent, such that crystalline tazobactam arginine precipitates from the solution.
- In another aspect, provided herein is a method of making crystalline tazobactam arginine comprising:
- (1) combining tazobactam acid, arginine and a solvent/antisolvent mixture, such that a solution of tazobactam arginine is formed; and
- (2) combining an antisolvent with the solution, wherein the antisolvent is miscible with the solvent and wherein tazobactam arginine is partially or completely insoluble in the antisolvent, such that crystalline tazobactam arginine precipitates from the solution.
- In certain embodiments, any one of the above methods is a method of making tazobactam arginine polymorph Ia and the method further comprises: (3) drying the precipitated crystalline tazobactam arginine to afford polymorph Ia.
- In another aspect, provided herein is a method of making crystalline tazobactam arginine comprising:
- (1) combining a compound according to formula (I), a compound according to formula (II), and a solvent, such that a solution comprising tazobactam arginine is formed, and such that crystalline tazobactam arginine precipitates from the solution.
- In one embodiment, Y is a metal atom or ion and X− is a halide ion.
- In still another aspect, provided herein is a method of making crystalline tazobactam arginine comprising:
- (1) combining a compound according for formula (I), a compound according to formula (II), and a solvent, such that a solution comprising tazobactam arginine is formed; and
- (2) combining an antisolvent with the solution, wherein the antisolvent is miscible with the solvent and wherein tazobactam arginine is partially or completely insoluble in the antisolvent, such that crystalline tazobactam arginine precipitates from the solution. In one embodiment, Y is a metal atom or ion and X− is a halogen ion.
- In another aspect, provided herein is crystalline tazobactam arginine produced according to the any one of the preceding methods. In another aspect, provided herein is crystalline tazobactam arginine obtainable by any one of the preceding methods.
- The processes and methods described herein may also further comprise adding one or more seed crystals of crystalline tazobactam arginine (e.g., polymorph Ia or polymorph Ib).
- As used herein, the verb “precipitate” refers to the formation of a solid substance from a solution containing the same substance. A substance which precipitates from solution may be amorphous or crystalline. Precipitation may occur under a variety of conditions known to those of skill in the art, including the treatment of a solution of a solute (e.g., solute A in solvent B) with an antisolvent (i.e., a solvent that is miscible with solvent B, but does not dissolve solute A). Non-limiting examples of solvent/antisolvent pairs include water/acetone and water/isopropanol.
- In one aspect, provided herein is a pharmaceutical composition comprising tazobactam arginine polymorph Ia.
- In another aspect, provided herein is a pharmaceutical composition comprising crystalline tazobactam arginine, hydrates or solvates thereof, and one or more beta-lactam compounds, and a pharmaceutically acceptable carrier or diluent. In one embodiment, the pharmaceutical composition is useful for treating a bacterial infection. The bacterial infection can result from either gram-negative or gram-positive organisms. In one embodiment, the crystalline tazobactam arginine is polymorph Ia. Polymorph Ia is characterized as described above.
- In yet another aspect, provided herein is a pharmaceutical composition prepared by a method comprising the step of combining crystalline tazobactam arginine, or hydrates or solvates thereof, and a beta-lactam compound. In one embodiment, the crystalline tazobactam arginine is polymorph Ia. Polymorph Ia is characterized as described above.
- A “beta-lactam compound” is a compound possessing one or more beta-lactam moieties, i.e.,
- substituted one or more times as valency permits. In certain non-limiting embodiments the beta-lactam compounds described herein can be selected from the group consisting of penicillins, cephalosporins, carbapenems, and combinations thereof. In certain embodiments, said one or more beta-lactam compounds are selected from the compounds listed in Table 2, and pharmaceutically acceptable isomers, salts, esters, hydrates, solvates, or combinations thereof.
- The following compounds are listed in Table 2:
-
- (2S,5R,6R)-6-[(R)-2-(4-ethyl-2,3-dioxo-1-piperazinecarboxamido)-2-phenylacetamido]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid;
- (2S,5R,6R)-3,3-dimethyl-7-oxo-6-(2-phenylacetamido)-4-thia-1-zabicyclo[3.2.0]heptane-2-carboxylic acid;
- (5R,6S)-6-[(1R)-1-hydroxyethyl]-3-({2-[(iminomethyl)amino]ethyl}thio)-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid;
- (5R,6S)-6-((R)-1-hydroxyethyl)-7-oxo-3-((R)-tetrahydrofuran-2-yl)-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid;
- (2S,5R,6R)-6-{[3-(2-chlorophenyl)-5-methyl-oxazole-4-carbonyl]amino}-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid;
- (6R,7R,Z)-7-(2-(2-aminothiazol-4-yl)-2-(2-carboxypropan-2-yloxyimino)acetamido)-8-oxo-3-(pyridinium-1-ylmethyl)-5-thia-1-aza-bicyclo[4.2.0]oct-2-ene-2-carboxylate;
- 6R,7R,Z)-3-(acetoxymethyl)-7-(2-(2-aminothiazol-4-yl)-2-(methoxyimino)acetamido)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid;
- (6R,7R)-7-[(2Z)-2-ethoxyimino-2-[5-(phosphonoamino)-1,2,4-thiadiazol-3-yl]acetyl]amino]-3-[4-(1-methylpyridin-1-ium-4-yl)-1,3-thiazol-2-yl]sulfanyl]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate;
- (6R,7R,Z)-7-(2-(2-aminothiazol-4-yl)-2-(methoxyimino)acetamido)-3-((1-methylpyrrolidinium-1-yl)methyl)-8-oxo-5-thia-1-aza-bicyclo[4.2.0]oct-2-ene-2-carboxylate;
- (6R,7R)-3-{[(aminocarbonyl)oxy]methyl}-7-{[(2Z)-2-(2-furyl)-2-(methoxyimino)acetyl]amino}-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid;
- (6R,7R)-7-{[(2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)acetyl]amino}-3-{[(2-methyl-5,6-dioxo-1,2,5,6-tetrahydro-1,2,4-triazin-3-yl)thio]methyl}-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid;
- (2S,5R,6R)-6-{[(2R)-2-amino-2-(4-hydroxyphenyl)-acetyl]amino}-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid;
- 3-[5-(dimethylcarbamoyl) pyrrolidin-2-yl]sulfanyl-6-(1-hydroxyethyl)-4-methyl-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid.
- In a particular embodiment, the pharmaceutical composition comprises polymorph Ia and (2S,5R,6R)-3,3-dimethyl-7-oxo-6-(2-phenylacetamido)-4-thia-1-zabicyclo[3.2.0]heptane-2-carboxylic acid or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof, and a pharmaceutically acceptable carrier or diluent.
- In another particular embodiment, the pharmaceutical composition comprises polymorph Ia and (5R,6S)-6-[(1R)-1-hydroxyethyl]-3-({2-[(iminomethyl)amino]ethyl}thio)-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof, and a pharmaceutically acceptable carrier or diluent.
- In another particular embodiment, the pharmaceutical composition comprises polymorph Ia and (5R,6S)-6-((R)-1-hydroxyethyl)-7-oxo-3-((R)-tetrahydrofuran-2-yl)-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof, and a pharmaceutically acceptable carrier or diluent.
- In another particular embodiment, the pharmaceutical composition comprises polymorph Ia and (2S,5R,6R)-6-{[3-(2-chlorophenyl)-5-methyl-oxazole-4-carbonyl]amino}-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof, and a pharmaceutically acceptable carrier or diluent.
- In another particular embodiment, the pharmaceutical composition comprises polymorph Ia and (6R,7R,Z)-7-(2-(2-aminothiazol-4-yl)-2-(2-carboxypropan-2-yloxyimino)acetamido)-8-oxo-3-(pyridinium-1-ylmethyl)-5-thia-1-aza-bicyclo[4.2.0]oct-2-ene-2-carboxylate, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof, and a pharmaceutically acceptable carrier or diluent.
- In another particular embodiment, the pharmaceutical composition comprises polymorph Ia and (6R,7R,Z)-3-(acetoxymethyl)-7-(2-(2-aminothiazol-4-yl)-2-(methoxyimino)acetamido)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof, and a pharmaceutically acceptable carrier or diluent.
- In another particular embodiment, the pharmaceutical composition comprises polymorph Ia and (6R,7R)-7-[(2Z)-2-ethoxyimino-2-[5-(phosphonoamino)-1,2,4-thiadiazol-3-yl]acetyl]amino]-3-[4-(1-methylpyridin-1-ium-4-yl)-1,3-thiazol-2-yl]sulfanyl]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof, and a pharmaceutically acceptable carrier or diluent.
- In another particular embodiment, the pharmaceutical composition comprises polymorph Ia and (6R,7R,Z)-7-(2-(2-aminothiazol-4-yl)-2-(methoxyimino)acetamido)-3-((1-methylpyrrolidinium-1-yl)methyl)-8-oxo-5-thia-1-aza-bicyclo[4.2.0]oct-2-ene-2-carboxylate, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof, and a pharmaceutically acceptable carrier or diluent.
- In another particular embodiment, the pharmaceutical composition comprises polymorph Ia and (6R,7R)-3-{[(aminocarbonyl)oxy]methyl}-7-{[(2Z)-2-(2-furyl)-2-(methoxyimino)acetyl]amino}-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof, and a pharmaceutically acceptable carrier or diluent.
- In another particular embodiment, the pharmaceutical composition comprises polymorph Ia and (6R,7R)-7-{[(2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)acetyl]amino}-3-{[(2-methyl-5,6-dioxo-1,2,5,6-tetrahydro-1,2,4-triazin-3-yl)thio]methyl}-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof, and a pharmaceutically acceptable carrier or diluent.
- In another particular embodiment, the pharmaceutical composition comprises polymorph Ia and (2S,5R,6R)-6-{[(2R)-2-amino-2-(4-hydroxyphenyl)-acetyl]amino}-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof, and a pharmaceutically acceptable carrier or diluent.
- In another particular embodiment, the pharmaceutical composition comprises polymorph Ia and (2S,5R,6R)-6-[(R)-2-(4-ethyl-2,3-dioxo-1-piperazinecarboxamido)-2-phenylacetamido]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof, and a pharmaceutically acceptable carrier or diluent.
- In another particular embodiment, the pharmaceutical composition comprises polymorph Ia and 3-[5-(dimethylcarbamoyl)pyrrolidin-2-yl]sulfanyl-6-(1-hydroxyethyl)-4-methyl-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof, and a pharmaceutically acceptable carrier or diluent.
- Pharmaceutical compositions comprising compounds of the invention can be identified by comparison of the compositions' X-ray powder diffraction patterns to an X-ray powder diffraction pattern of a compound of the invention. It will be appreciated that pharmaceutical compositions comprising a compound of the invention may exhibit non-identical X-ray powder diffraction patterns as compared to an X-ray powder diffraction pattern of a pure compound of the invention.
- The term “pharmaceutical composition” includes preparations suitable for administration to mammals, e.g., humans. When the compounds of the present invention are administered as pharmaceuticals to mammals, e.g., humans, they can be given per se or as a pharmaceutical composition containing, for example, 0.1% to 99.9% (more preferably, 0.5 to 90%) of active ingredient in combination with a pharmaceutically acceptable carrier.
- The pharmaceutical compositions described herein can be formulated to have any concentration desired (i.e., any concentration of crystalline tazobactam arginine, or a hydrate or solvate thereof, and any concentration of a beta-lactam compound). In some embodiments, the composition is formulated such that it comprises at least a therapeutically effective amount of both compounds (i.e., a therapeutically effective amount of the combination of crystalline tazobactam arginine, or a hydrate or solvate thereof, and the beta-lactam compound). In some embodiments, the composition is formulated such that it would not cause one or more unwanted side effects.
- The compounds of the invention (i.e., polymorphs, hydrates and solvates of tazobactam arginine) can be combined with a pharmaceutically acceptable carrier according to conventional pharmaceutical compounding techniques. As used herein, “pharmaceutically acceptable carrier” may include any and all solvents, diluents, or other liquid vehicle, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, solid binders, lubricants and the like, as suited to the particular dosage form desired. Remington's Pharmaceutical Sciences, Eighteenth Edition, A. R. Gennaro (Mack Publishing Co., Easton, Pa., 1990) discloses various carriers used in formulating pharmaceutical compositions and known techniques for the preparation thereof. Except insofar as any conventional carrier medium is incompatible with the compounds such as by producing any undesirable biological effect or otherwise interacting in a deleterious manner with any other component(s) of the pharmaceutical composition, its use is contemplated to be within the scope of this invention. Some examples of materials which can serve as pharmaceutically acceptable carriers include, but are not limited to, sugars such as lactose, glucose and sucrose; starches such as corn starch and potato starch; cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatine; talc; excipients such as cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil; safflower oil, sesame oil; olive oil; corn oil and soybean oil; glycols; such as propylene glycol; esters such as ethyl oleate and ethyl laurate; agar; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen free water; isotonic saline (“normal saline”); Ringer's solution; ethyl alcohol, and phosphate buffer solutions, as well as other non-toxic compatible lubricants such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, releasing agents, coating agents, sweetening, flavoring and perfuming agents, trehalose, or reducing or non-reducing sugars, 5% dextrose (D5W), preservatives and antioxidants can also be present in the composition, according to the judgment of the formulator.
- Furthermore, the carrier may take a wide variety of forms depending on the form of the preparation desired for administration, e.g. oral, nasal, rectal, vaginal, parenteral (including intravenous injections or infusions). In preparing compositions for oral dosage form any of the usual pharmaceutical media may be employed. Usual pharmaceutical media include, for example, water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents, and the like in the case of oral liquid preparations (such as for example, suspensions, solutions, emulsions and elixirs); aerosols; or carriers such as starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents and the like, in the case of oral solid preparations (such as for example, powders, capsules, and tablets).
- Wetting agents, emulsifiers and lubricants, such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the compositions.
- Pharmaceutical compositions include those suitable for oral, sublingual, nasal rectal, vaginal, topical, buccal and parenteral (including subcutaneous, intramuscular, and intravenous) administration, although the most suitable route will depend on the nature and severity of the condition being treated. The compositions may be conveniently presented in unit dosage form, and prepared by any of the methods well known in the art of pharmacy. In certain embodiments, the pharmaceutical composition is formulated for oral administration in the form of a pill, capsule, lozenge or tablet. In other embodiments, the pharmaceutical composition is in the form of a suspension.
- The pharmaceutical compositions disclosed herein can be prepared via lyophilization. As is known to those skilled in the art, lyophilization is a process of drying in which water is sublimed from a frozen solution of one or more solutes. Specific methods of lyophilization are described in Remington's Pharmaceutical Sciences, Chapter 84, page 1565, Eighteenth Edition, A. R. Gennaro, (Mack Publishing Co., Easton, Pa., 1990).
- In a preferred embodiment, pharmaceutical compositions comprising crystalline tazobactam arginine (e.g., polymorph Ia) and one or more beta-lactam compounds are formulated for parenteral administration. In another preferred embodiment, pharmaceutical compositions comprising tazobactam arginine and one or more beta-lactam compounds are formulated for oral administration.
- Tazobactam arginine inhibits or decreases the activity of beta-lactamases (e.g., bacterial beta-lactamases), and can be combined with beta-lactam compounds (e.g., antibiotics), thereby broadening the spectrum of the beta-lactam compound and increasing the beta-lactam compound's efficacy against organisms that produce beta-lactamase. A compound or a composition possesses efficacy against an organism if it kills or weakens the organism, or inhibits or prevents reproduction the organism.
- In one aspect, provided herein is a method for the treatment of bacterial infections in a mammal, comprising administering to said mammal a therapeutically effective amount of tazobactam arginine polymorph Ia.
- In another aspect, provided herein is a method for the treatment of bacterial infections in a mammal, comprising administering to said mammal a therapeutically effective amount of a pharmaceutical composition comprising tazobactam arginine polymorph Ia.
- In yet another aspect, provided herein is a method for the treatment of bacterial infections in a mammal, comprising administering to said mammal a therapeutically effective amount of a pharmaceutical composition comprising crystalline tazobactam arginine and one or more beta-lactam compounds, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof. In one embodiment, the mammal is human. In another embodiment, tazobactam arginine is polymorph Ia. In yet another embodiment, said one or more beta-lactam compounds are selected from the group consisting of penicillins, cephalosporins, carbapenems, and combinations thereof. In certain embodiments, the beta-lactam compound is selected from the compounds listed in Table 2, and pharmaceutically acceptable isomers, salts, esters, hydrates, solvates, or combinations thereof.
- The following compounds are listed in Table 2: (2S,5R,6R)-6-[(R)-2-(4-ethyl-2,3-dioxo-1-piperazinecarboxamido)-2-phenylacetamido]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid; (2S,5R,6R)-3,3-dimethyl-7-oxo-6-(2-phenylacetamido)-4-thia-1-zabicyclo[3.2.0]heptane-2-carboxylic acid; (5R,6S)-6-[(1R)-1-hydroxyethyl]-3-({2-[(iminomethyl)amino]ethyl}thio)-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid; (5R,6S)-6-((R)-1-hydroxyethyl)-7-oxo-3-((R)-tetrahydrofuran-2-yl)-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid; (2S,5R,6R)-6-{[3-(2-chlorophenyl)-5-methyl-oxazole-4-carbonyl]amino}-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid; (6R,7R,Z)-7-(2-(2-aminothiazol-4-yl)-2-(2-carboxypropan-2-yloxyimino)acetamido)-8-oxo-3-(pyridinium-1-ylmethyl)-5-thia-1-aza-bicyclo[4.2.0]oct-2-ene-2-carboxylate; (6R,7R,Z)-3-(acetoxymethyl)-7-(2-(2-aminothiazol-4-yl)-2-(methoxyimino)acetamido)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid; (6R,7R)-7-[(2Z)-2-ethoxyimino-2-[5-(phosphonoamino)-1,2,4-thiadiazol-3-yl]acetyl]amino]-3-[4-(1-methylpyridin-1-ium-4-yl)-1,3-thiazol-2-yl]sulfanyl]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate; (6R,7R,Z)-7-(2-(2-aminothiazol-4-yl)-2-(methoxyimino)acetamido)-3-((1-methylpyrrolidinium-1-yl)methyl)-8-oxo-5-thia-1-aza-bicyclo[4.2.0]oct-2-ene-2-carboxylate; (6R,7R)-3-{[(aminocarbonyl)oxy]methyl}-7-{[(2Z)-2-(2-furyl)-2-(methoxyimino)acetyl]amino}-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid; (6R,7R)-7-{[(2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)acetyl]amino}-3-{[(2-methyl-5,6-dioxo-1,2,5,6-tetrahydro-1,2,4-triazin-3-yl)thio]methyl}-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid; (2S,5R,6R)-6-{[(2R)-2-amino-2-(4-hydroxyphenyl)-acetyl]amino}-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid; 3-[5-(dimethylcarbamoyl)pyrrolidin-2-yl]sulfanyl-6-(1-hydroxyethyl)-4-methyl-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid.
- In a particular embodiment of the method, the pharmaceutical composition comprises polymorph Ia and (2S,5R,6R)-3,3-dimethyl-7-oxo-6-(2-phenylacetamido)-4-thia-1-zabicyclo[3.2.0]heptane-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof.
- In another particular embodiment of the method, the pharmaceutical composition comprises polymorph Ia and (5R,6S)-6-[(1R)-1-hydroxyethyl]-3-({2-[(iminomethyl)amino]ethyl}thio)-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof.
- In another particular embodiment of the method, the pharmaceutical composition comprises polymorph Ia and (5R,6S)-6-((R)-1-hydroxyethyl)-7-oxo-3-((R)-tetrahydrofuran-2-yl)-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof.
- In another particular embodiment of the method, the pharmaceutical composition comprises polymorph Ia and (2S,5R,6R)-6-{[3-(2-chlorophenyl)-5-methyl-oxazole-4-carbonyl]amino}-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof.
- In another particular embodiment of the method, the pharmaceutical composition comprises polymorph Ia and (6R,7R,Z)-7-(2-(2-aminothiazol-4-yl)-2-(2-carboxypropan-2-yloxyimino)acetamido)-8-oxo-3-(pyridinium-1-ylmethyl)-5-thia-1-aza-bicyclo[4.2.0]oct-2-ene-2-carboxylate, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof.
- In another particular embodiment of the method, the pharmaceutical composition comprises polymorph Ia and (6R,7R,Z)-3-(acetoxymethyl)-7-(2-(2-aminothiazol-4-yl)-2-(methoxyimino)acetamido)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof.
- In another particular embodiment of the method, the pharmaceutical composition comprises polymorph Ia and (6R,7R)-7-R2Z)-2-ethoxyimino-2-[5-(phosphonoamino)-1,2,4-thiadiazol-3-yl]acetyl]amino]-3-[4-(1-methylpyridin-1-ium-4-yl)-1,3-thiazol-2-yl]sulfanyl]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof.
- In another particular embodiment of the method, the pharmaceutical composition comprises polymorph Ia and (6R,7R,Z)-7-(2-(2-aminothiazol-4-yl)-2-(methoxyimino)acetamido)-3-((1-methylpyrrolidinium-1-yl)methyl)-8-oxo-5-thia-1-aza-bicyclo[4.2.0]oct-2-ene-2-carboxylate, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof.
- In another particular embodiment of the method, the pharmaceutical composition comprises polymorph Ia and (6R,7R)-3-{[(aminocarbonyl)oxy]methyl}-7-{[(2Z)-2-(2-furyl)-2-(methoxyimino)acetyl]amino}-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof.
- In another particular embodiment of the method, the pharmaceutical composition comprises polymorph Ia and (6R,7R)-7-{[(2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)acetyl]amino}-3-{[(2-methyl-5,6-dioxo-1,2,5,6-tetrahydro-1,2,4-triazin-3-yl)thio]methyl}-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof.
- In another particular embodiment of the method, the pharmaceutical composition comprises polymorph Ia and (2S,5R,6R)-6-{[(2R)-2-amino-2-(4-hydroxyphenyl)-acetyl]amino}-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof.
- In another particular embodiment of the method, the pharmaceutical composition comprises polymorph Ia and 3-[5-(dimethylcarbamoyl)pyrrolidin-2-yl]sulfanyl-6-(1-hydroxyethyl)-4-methyl-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof.
- In another particular embodiment of the method, the pharmaceutical composition comprises polymorph Ia and (2S,5R,6R)-6-[(R)-2-(4-ethyl-2,3-dioxo-1-piperazinecarboxamido)-2-phenylacetamido]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof. In another particular embodiment, the bacterial infection is caused by bacteria that are susceptible to the composition comprising polymorph Ia and (2S,5R,6R)-6-[(R)-2-(4-ethyl-2,3-dioxo-1-piperazinecarboxamido)-2-phenylacetamido]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid, or a pharmaceutically acceptable isomer, salt, ester, hydrate, solvate, or combination thereof.
- In another aspect, provided herein is a method for the treatment of bacterial infections in a mammal, comprising administering to said mammal a therapeutically effective amount of a pharmaceutical composition comprising an antibiotic and a crystalline tazobactam arginine compound (e.g., of the polymorph Ia solid form). The crystalline tazobactam arginine can be characterized by an X-ray powder diffraction pattern having peaks expressed in degrees 2-Theta at angles of 4.8°±0.3°, 8.9°±0.3°, 11.3°±0.3°, 14.9°±0.3°, 18.0°±0.3°, 19.4°±0.3°, 21.3°±0.3°, 22.8°±0.3° and 24.3°±0.3°.
- Non-limiting examples of bacterial infections that can be treated by the methods of the invention include infections caused by: aerobic and facultative gram-positive microorganisms (e.g., Staphylococcus aureus, Enterococcus faecalis, Staphylococcus epidermidis, Streptococcus agalactiae, Streptococcus pneumonia, Streptococcus pyogenes, Viridans group streptococci), aerobic and facultative gram-negative microorganisms (e.g., Acinetobacter baumanii, Escherichia coli, Haemophilus influenza, Klebsiella pneumonia, Pseudomonas aeruginosa, Citrobacter koseri, Moraxella catarrhalis, Morganella morganii, Neisseria gonorrhoeae, Proteus mirabilis, Proteus vulgaris, Serratia marcescens, Providencia stuartii, Providencia rettgeri, Salmonella enterica), gram-positive anaerobes (Clostridium perfringens), and gram-negative anaerobes (e.g., Bacteroides fragilis group (e.g., B. fragilis, B. ovatus, B. thetaiotaomicron, and B. vulgates), Bacteroides distasonis, Prevotella melaninogenica).
- In certain embodiments of the methods described herein, bacterial infection resulting from beta-lactamase-producing organisms are treated or controlled. Non-limiting examples of beta-lactamase-producing organisms include:
- (1) ESBL (extended-spectrum beta-lactamase)-producing organisms selected from the group consisting of Enterobacteriaceae spp.: Escherichia coli, Klebsiella spp. (including K. pneumoniae and K. oxytoca), Proteus mirabilis, Proteus vulgaris, Enterobacter spp., Serratia spp., Citrobacter spp., Pseudomonas spp., Acinetobacter spp.) and Bacteroides spp.;
- (2) CSBL (conventional-spectrum beta-lactamase)-producing organisms, known to those of skill in the art; and
- (3) Inducible-AmpC-type beta-lactamases, such as Citrobacter spp., Serratia spp., Morganella morganii, Proteus vulgaris, and Enterobacter cloacae.
- In certain embodiments of the methods described herein, bacterial infection is associated with one or more of the following conditions:
- Appendicitis (complicated by rupture or abscess) and peritonitis caused by piperacillin-resistant beta-lactamase producing strains of Escherichia coli or the following members of the Bacteroides fragilis group: B. fragilis, B. ovatus, B. thetaiotaomicron, or B. vulgates;
- Uncomplicated and complicated skin and skin structure infections, including cellulitis, cutaneous abscesses, and ischemic/diabetic foot infections caused by piperacillin-resistant, beta-lactamase producing strains of Staphylococcus aureus;
- Postpartum endometritis or pelvic inflammatory disease caused by piperacillin-resistant, beta-lactamase producing strains of Escherichia coli;
- Community-acquired pneumonia (moderate severity only) caused by piperacillin-resistant, beta-lactamase producing strains of Haemophilus influenza;
- Nosocomial pneumonia (moderate to severe) caused by piperacillin-resistant, beta-lactamase producing strains of Staphylococcus aureus and by Acinetobacter baumanii, Haemophilus influenzae, Klebsiella pneumoniae, and Pseudomonas aeruginosa.
- Complicated intra-abdominal infections; Complicated urinary tract infections (cUTIs); Acute Pyelonephritis; Systemic Inflammatory Response Syndrome (SIRS).
- Also provided herein is the use of a crystalline tazobactam arginine, and hydrates and solvates thereof, in combination with one or more beta-lactam compounds, for the manufacture of a medicament for the treatment of bacterial infection. The bacterial infection can result from either gram-negative or gram-positive organisms. In one embodiment, the crystalline tazobactam arginine is polymorph Ia. Polymorph Ia is characterized as described above. Said one or more beta-lactam compounds can be selected from the group consisting of penicillins, cephalosporins, carbapenems, and combinations thereof. In certain embodiments, said one or more beta-lactam compounds are selected from the compounds listed in Table 2, and pharmaceutically acceptable isomers, salts, esters, hydrates, solvates, or combinations thereof.
- Also provided herein is tazobactam arginine, and hydrates and solvates thereof, for use in a method of treating bacterial infection. In some embodiments, a combination of tazobactam arginine and one or more beta-lactam compounds is used in said method.
- As used herein, “treating”, “treat” or “treatment” describes the management and care of a patient for the purpose of combating a disease, condition, or disorder and includes the administration of a pharmaceutical composition of the present invention to alleviate the symptoms or complications of a disease, condition or disorder, or to eliminate the disease, condition or disorder. The term “treat” can also include treatment of a cell in vitro or an animal model.
- By a “therapeutically effective amount” of a compound of the invention is meant a sufficient amount of the compound to treat the disorder (e.g., bacterial infection). The specific therapeutically effective amount that is required for the treatment of any particular patient or organism (e.g., a mammal) will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound or composition employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts (see, for example, Goodman and Gilman's, “The Pharmacological Basis of Therapeutics”, Tenth Edition, A. Gilman, J. Hardman and L. Limbird, eds., McGraw-Hill Press, 155-173, 2001, which is incorporated herein by reference in its entirety). The therapeutically effective amount for a given situation can be readily determined by routine experimentation and is within the skill and judgment of the ordinary clinician.
- Provided herein is a method for detecting or identifying an agent that will inhibit one or more beta-lactamase-producing organisms, said method comprising combining:
- (a) a test agent;
- (b) a composition comprising one or more beta-lactamase-producing organisms; and
- (c) a beta-lactamase inhibitor; and
- detecting or measuring a change in the activity of the beta-lactamase-producing organisms, wherein a decrease in the activity of the beta-lactamase-producing organisms indicates that the test agent inhibits the beta-lactamase-producing organisms.
- As used in the above method, “activity” refers to the ability of the beta-lactamase-producing organism to reproduce and/or infect another organism, or “activity” refers to the presence of an indicator of the ability of the beta-lactamase-producing organism to reproduce and/or infect another organism. Methods for detecting and/or measuring changes in the activity of beta-lactamase-producing organisms are known to those of skill in the art.
- In another aspect, provided herein is a method of determining the susceptibility of a beta-lactamase-producing organism to a composition comprising a beta-lactam compound and a beta-lactamase inhibitor. The in vitro activity of compositions of the subject invention may be assessed by standard testing procedures. Non-limiting examples of such a procedure include the Kirby-Bauer method, the Stokes test, the E-test, broth dilution and agar dilution for determination of minimum inhibitory concentration (MIC), as described in “Approved Standard. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically,” 3.sup.rd ed., published 1993 by the National Committee for Clinical Laboratory standards, Villanova, Pa., USA. In certain embodiments, the methods described herein are performed using automation (e.g., Siemens' MicroScan Systems).
- In one embodiment of the above methods, the beta-lactamase inhibitor is tazobactam arginine. In a preferred embodiment, the beta-lactamase inhibitor is tazobactam arginine polymorph Ia.
- The test agent can be selected from the group consisting of penicillins, cephalosporins, carbapenems, and combinations thereof. In some embodiments, the test agent is selected from the compounds listed in Table 2, and pharmaceutically acceptable isomers, salts, esters, hydrates, solvates, or combinations thereof.
- In certain embodiments of the methods described herein, beta-lactamase-producing organisms are selected from the group comprising:
- (1) ESBL (extended-spectrum beta-lactamase)-producing organisms selected from the group consisting of Enterobacteriaceae spp.: Escherichia coli, Klebsiella spp. (including K. pneumoniae and K. oxytoca), Proteus mirabilis, Proteus vulgaris, Enterobacter spp., Serratia spp., Citrobacter spp.) and Bacteroides spp.;
- (2) CSBL (conventional-spectrum beta-lactamase)-producing organisms, known to those of skill in the art; and
- (3) Inducible-AmpC-type beta-lactamases, such as Citrobacter spp., Serratia spp., Morganella morganii, Proteus vulgaris, and Enterobacter cloacae.
- L-arginine (2.9 g) was dissolved in 100 mL of deionized water and 5.0 g of tazobactam acid was then added, resulting a homogenous solution. The solution was lyophilized overnight to yield tazobactam arginine amorphous as an off-white solid (8.0 g). The XRPD spectrum of the tazobactam arginine amorphous is depicted in
FIG. 5 . - Tazobactam arginine amorphous (1.00 g) was dissolved in 10.0 mL of deionized water. 30 mL of acetone was added to the aqueous solution by drop-wise addition. The mixture was allowed to sit overnight at ambient temperature, resulting in white fine needles. After filtration and vacuum drying for 4 hours, tazobactam arginine polymorph Ia (516 mg) was obtained. The XRPD spectrum of the tazobactam arginine polymorph Ia is depicted in
FIG. 1 . - L-arginine (1.16 g) was charged to the reactor and dissolved in a mixture of deionized water-acetone (1:1, v/v, 40 mL) by mechanically stirring at 300 rpm, 30° C. over 5 min. Tazobactam acid (2.00 g) was then added to the above solution over 2 min with the observed pH change from 10.5±0.5 to 5.9±0.5. After adding 34.5 mL of acetone over 30 min at 30° C., crystallization started, then the suspension was cooled down to 15° C. at 0.1° C./min and kept stirring at 15° C. for additional 1.5 hr. White fine needle crystals were filtered out and vacuum dried for 2 hours at 35° C. to obtain 2.59 g (82% yield) of tazobactam arginine polymorph Ia.
-
- 1) 20 g of tazobactam acid and 1 equivalent of L-arginine was placed into a jacketed, glass, 1 liter laboratory reactor with an overhead stirrer.
- 2) 5 volumes (relative to tazobactam acid weight) of ambient temperature (ca. 22° C.) water was added to the reactor and stirred at 480 rpm. The reactor temperature was maintained between 23-27° C. with a target temperature of 25° C. The reaction was stirred for 10-15 minutes in order to obtain complete dissolution. Stirring at 480 rpm was maintained throughout the reaction.
- 3) 0.75 vol. ambient temperature deionised water was added to the reactor. This step was included to account for the sterile filtration and washing step required in the process.
- 4) 8 volumes (160 ml) of acetone was added over 10 minutes.
- 5) The reaction mixture was aged for 15 minutes, at which point precipitation of tazobactam arginine begins.
- 6) A controlled cool was started from 25° C. down to 10° C. over 1.5 hours at a rate of 10° C./hour.
- 7) After reaching 10° C., 18 volumes of acetone was added over two hours (i.e., total acetone added throughout reaction was 26 volumes).
- 8) After the acetone addition, the reaction mixture was allowed to age for 1 hour.
- 9) The reaction mixture was filtered and washed with 5 volumes of cold acetone (ca. 4° C.).
- 10) The resulting solid was dried at ambient (ca. 22° C.) under vacuum and nitrogen bleed for 24 hours with regular mixing of the solid, to furnish polymorph Ia in 90% yield. The XRPD spectrum of the tazobactam arginine polymorph Ia is depicted in
FIG. 6 . - The 1H-NMR spectrum (
FIG. 7 ) of polymorph Ia indicates a stoichiometry of 1:1 tazobactam acid:arginine. -
- 1) 20 g of tazobactam acid and 1 equivalent of L-arginine was placed into a 1 liter reactor.
- 2) 5 volumes (ca. 100 ml) of water (relative to tazobactam acid weight) was added to the reactor and stirred at 300 rpm (25° C.) for 10-15 minutes in order to obtain complete dissolution.
- 3) A further 0.75 vol water was then added to account for washing in sterile filtration step.
- 4) 6 volumes (120 ml) of ispopropanol was added over ca. 15 minutes in order to initiate precipitation.
- 5) The suspension was then aged for 15 minutes before cooling down to 10° C. over 1.5 hours at a rate of 10° C./hour.
- 6) After reaching 10° C., isopropanol addition was started at a rate of 185 ml/hour, adding a further 16 volumes (i.e., total isopropanol added throughout reaction was 24 volumes).
- 7) The reaction was then allowed to age for 1 hour.
- 8) The suspension was filtered and washed with 5 volumes of cold isopropanol (ca. 4° C.).
- 9) The resulting solid was then dried at ambient under vacuum and nitrogen bleed for 24 hours with regular mixing of the solids to yield tazobactam arginine crystalline polymorph Ia.
- Analysis by DVS was performed on a VTI SGA-100 water vapor sorption analyser using approximately 18-23 mg of each sample. Each sample was pre-dried at 60° C. for a maximum of 1 hour and then analyzed at 25° C. in 10% relative humidity (RH) steps from 5-95% (adsorption) and then 90-10% RH (desorption). The sample was equilibrated to each humidity level for a maximum of 3 hours or until constant weight was attained. Equilibrium criteria were set at less than 0.0050% weight change within 5 minutes.
- (6a) Tazobactam arginine amorphous exhibited approximately 10.7% weight increase at 95% relative humidity (RH). See
FIG. 8 . - (6 b) Tazobactam arginine polymorph Ia exhibited approximately 0.2% weight increase at 95% RH. See
FIG. 9 . - (6 c) Amorphous tazobactam sodium exhibited approximately 80% weight increase at 95% RH. See
FIG. 10 . - The solvent solubility screen was carried out using a solvent addition technique. For each of 25 solvent systems, the following procedure was used: (1) about 20 mg of crystalline tazobactam arginine was placed into a vial; (2) solvent was added to the vial in 5 volume aliquots (100 μL) until complete dissolution, or 100 volumes, had been added; (3) between additions, the sample was heated to about 50° C. in order to determine the approximate solubility at an elevated temperature; (4) if 100 volumes was reached and complete dissolution was not observed, solubility was calculated to be below that point. Results of the solvent solubility screen are shown in Table 3.
-
- I. X-Ray Powder Diffraction (XRPD) experiments were performed using a Bruker D8 Advance X-ray powder diffractometer utilizing a zero return silicon plate. A suitable amount of sample was placed directly on the sample holder, pressed flat to smooth, and analyzed from 3°-40° 20 using Bragg-Brentano optics. A step size of 0.01° and a step time of 0.3 sec/step were utilized. Analysis was started immediately following sample preparation.
- II. Differential Scanning calorimetry (DSC) experiments were performed on a TA Instruments Q100 instrument. A temperature range of 40° C. to 300° C. with a ramp rate of 10° C./minute was utilized. Approximately 1.0 mg of sample was weighed into a tared aluminum sample pan and sealed hermetically. A small hole was pushed into the cover of the sample pan to allow for pressure release.
- III. Thermo Gravimetric Analysis (TGA) experiments were performed on a
TA Instruments 5000 instrument from 20 to 300° C. with a heating rate of 10° C./minute for all samples. -
-
TABLE 1 XRPD Scanning Data of Tazobactam Arginine Polymorph Ia (FIG. 1) Chord Mid. D (Obs. Intensity Max Int. Intensity I. Breadth 2-Theta ° Angstrom % % Cps Count 2-Theta ° 4.818 18.27951 33.5 130 7043 0.166 8.978 9.83463 100.0 364 21035 0.174 9.916 8.90757 8.7 32.3 1832 0.168 11.301 7.81865 27.8 104 5844 0.167 14.521 6.09321 20.2 75.5 4251 0.108 14.902 5.93864 27.8 102 5850 0.162 15.93 5.56039 1.9 7.2 394 0.148 16.947 5.23254 1.2 4.96 253 0.169 17.581 5.04332 6.8 24.8 1429 0.182 18.046 4.91261 48.7 184 10242 0.189 18.863 4.70152 2.6 9.41 545 0.159 19.418 4.5672 31.6 115 6637 0.166 19.943 4.44853 9.3 33.8 1966 0.181 21.31 4.1658 41.4 151 8714 0.192 22.797 3.89704 9.1 33.2 1921 0.201 23.587 3.76939 14.7 53.1 3082 0.171 24.345 3.65381 19.6 71.2 4116 0.208 25.169 3.53603 2.3 8.44 479 0.185 25.895 3.43955 5.4 19.7 1129 0.152 26.221 3.39654 5.0 15.6 1061 0.146 26.689 3.33736 11.1 40 2329 0.192 27.249 3.27088 5.0 19.1 1052 0.25 28.09 3.17445 5.6 20.2 1184 0.269 28.886 3.08881 3.2 11.4 666 0.219 30.129 2.96435 4.2 15.6 884 0.184 30.585 2.92187 1.8 6.17 369 0.313 31.413 2.84617 5.6 20.1 1174 0.212 32.162 2.78029 2.8 9.87 583 0.285 33.878 2.64293 1.1 2.36 236 0.109 34.419 2.60386 3.2 11.5 676 0.239 35.529 2.52408 6.0 21.9 1254 0.344 36.598 2.45267 3.0 11 621 0.269 37.924 2.37119 1.8 6.41 371 0.276 38.818 2.31643 1.4 2.74 295 0.172 39.398 2.28753 1.1 3.56 236 0.196 -
TABLE 2 Beta-lactam compounds No. IUPAC Name CAS No. 1 (2S,5R,6R)-6-[(R)-2-(4-ethyl-2,3-dioxo-1-piperazinecarboxamido)-2- 61477-96-1 phenylacetamido]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane- 2-carboxylic acid 2 (2S,5R,6R)-3,3-dimethyl-7-oxo-6-(2-phenylacetamido)-4-thia-1- 61-33-6 zabicyclo[3.2.0]heptane-2-carboxylic acid 3 (5R,6S)-6-[(1R)-1-hydroxyethyl]-3-({2-[(iminomethyl)amino]ethyl}thio)- 74431-23-5 7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid 4 (5R,6S)-6-((R)-1-hydroxyethyl)-7-oxo-3-((R)-tetrahydrofuran-2-yl)-4-thia- 106560-14-9 1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid faropenem 5 (2S,5R,6R)-6-{[3-(2-chlorophenyl)-5-methyl-oxazole-4-carbonyl]amino}- 61-72-3 3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid 6 (6R,7R,Z)-7-(2-(2-aminothiazol-4-yl)-2-(2-carboxypropan-2- 72558-82-8 yloxyimino)acetamido)-8-oxo-3-(pyridinium-1-ylmethyl)-5-thia-1-aza- bicyclo[4.2.0] oct-2-ene-2-carboxylate 7 (6R,7R,Z)-3-(acetoxymethyl)-7-(2-(2-aminothiazol-4-yl)-2- 63527-52-6 (methoxyimino)acetamido)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2- carboxylic acid 8 (6R,7R)-7-[(2Z)-2-ethoxyimino-2-[5-(phosphonoamino)-1,2,4-thiadiazol- 400827-46-5 3-yl]acetyl]amino]-3-[4-(1-methylpyridin-1-ium-4-yl)-1,3-thiazol-2- yl]sulfanyl]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate 9 (6R,7R,Z)-7-(2-(2-aminothiazol-4-yl)-2-(methoxyimino)acetamido)- 88040-23-7 3-((1-methylpyrrolidinium-1-yl)methyl)-8-oxo-5-thia-1-aza- bicyclo[4.2.0]oct-2-ene-2-carboxylate 10 (6R,7R)-3-{[(aminocarbonyl)oxy]methyl}-7-{[(2Z)-2-(2-furyl)-2- 55268-75-2 (methoxyimino) acetyl]amino}-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene- 2-carboxylic acid 11 (6R,7R)-7-{[(2Z)-2-(2-amino-1,3-thiazol-4-yl)-2- 73384-59-5 (methoxyimino)acetyl]amino}-3-{[(2-methyl-5,6-dioxo-1,2,5,6-tetrahydro- 1,2,4-triazin-3-yl)thio]methyl}-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene- 2-carboxylic acid 12 (2S,5R,6R)-6-{[(2R)-2-amino-2-(4-hydroxyphenyl)-acetyl]amino}-3,3- 26787-78-0 dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid 13 3-[5-(dimethylcarbamoyl) pyrrolidin-2-yl] sulfanyl-6-(1-hydroxyethyl)-4- 119478-56-7 methyl-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid -
TABLE 3 Solvent solubility screen results Solubility @ 22° C. Solubility @ 50° C. Solvent (mg/ml) (mg/ml) Acetic acid >100 mg/ml >200 mg/ml Acetone <10 mg/ml <10 mg/ml Acetonitrile <10 mg/ml <10 mg/ml 1-butanol <10 mg/ml <10 mg/ml Cyclohexane <10 mg/ml <10 mg/ml Dichloromethane <10 mg/ml <10 mg/ml Diisopropyl ether <10 mg/ml <10 mg/ml Dimethylformamide <10 mg/ml <10 mg/ml Dimethylsulfoxide <10 mg/ml ca.10 mg/ml 1,4-Dioxane <10 mg/ml <10 mg/ml Ethanol <10 mg/ml <10 mg/ml Ethyl acetate <10 mg/ml <10 mg/ml Heptane <10 mg/ml <10 mg/ml Methanol <10 mg/ml <10 mg/ml Isopropyl acetate <10 mg/ml <10 mg/ml Methyl acetate <10 mg/ml <10 mg/ml Methylethyl ketone <10 mg/ml <10 mg/ml Methyl isobutyl ketone <10 mg/ml <10 mg/ml N-Methyl-2-pyrrolidone <10 mg/ml <10 mg/ml Nitromethane <10 mg/ml <10 mg/ml 2-Propanol <10 mg/ml <10 mg/ml tert-Butylmethyl ether <10 mg/ml <10 mg/ml Tetrahydrofuran <10 mg/ml <10 mg/ml Toluene <10 mg/ml <10 mg/ml Water >100 mg/ml >200 mg/ml
Claims (25)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/541,890 US20150072957A1 (en) | 2012-09-27 | 2014-11-14 | Tazobactam Arginine Compositions |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/628,742 US8476425B1 (en) | 2012-09-27 | 2012-09-27 | Tazobactam arginine compositions |
US13/828,534 US8685957B1 (en) | 2012-09-27 | 2013-03-14 | Tazobactam arginine compositions |
US14/181,041 US20140228337A1 (en) | 2012-09-27 | 2014-02-14 | Tazobactam Arginine Compositions |
US14/541,890 US20150072957A1 (en) | 2012-09-27 | 2014-11-14 | Tazobactam Arginine Compositions |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/181,041 Continuation US20140228337A1 (en) | 2012-09-27 | 2014-02-14 | Tazobactam Arginine Compositions |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150072957A1 true US20150072957A1 (en) | 2015-03-12 |
Family
ID=48671186
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/628,742 Active US8476425B1 (en) | 2012-09-27 | 2012-09-27 | Tazobactam arginine compositions |
US13/828,534 Active US8685957B1 (en) | 2012-09-27 | 2013-03-14 | Tazobactam arginine compositions |
US14/181,041 Abandoned US20140228337A1 (en) | 2012-09-27 | 2014-02-14 | Tazobactam Arginine Compositions |
US14/541,890 Abandoned US20150072957A1 (en) | 2012-09-27 | 2014-11-14 | Tazobactam Arginine Compositions |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/628,742 Active US8476425B1 (en) | 2012-09-27 | 2012-09-27 | Tazobactam arginine compositions |
US13/828,534 Active US8685957B1 (en) | 2012-09-27 | 2013-03-14 | Tazobactam arginine compositions |
US14/181,041 Abandoned US20140228337A1 (en) | 2012-09-27 | 2014-02-14 | Tazobactam Arginine Compositions |
Country Status (1)
Country | Link |
---|---|
US (4) | US8476425B1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2463181B (en) | 2007-05-14 | 2013-03-27 | Univ New York State Res Found | Induction of a physiological dispersion response in bacterial cells in a biofilm |
US8476425B1 (en) | 2012-09-27 | 2013-07-02 | Cubist Pharmaceuticals, Inc. | Tazobactam arginine compositions |
WO2014052799A1 (en) * | 2012-09-27 | 2014-04-03 | Cubist Pharmaceuticals, Inc. | Tazobactam arginine antibiotic compositions |
US9320740B2 (en) | 2013-03-15 | 2016-04-26 | Merck Sharp & Dohme Corp. | Ceftolozane-tazobactam pharmaceutical compositions |
US9872906B2 (en) | 2013-03-15 | 2018-01-23 | Merck Sharp & Dohme Corp. | Ceftolozane antibiotic compositions |
KR102226197B1 (en) | 2013-03-15 | 2021-03-11 | 머크 샤프 앤드 돔 코포레이션 | Ceftolozane antibiotic compositions |
US20150094293A1 (en) | 2013-09-27 | 2015-04-02 | Calixa Therapeutics, Inc. | Solid forms of ceftolozane |
CN106795175A (en) | 2014-08-15 | 2017-05-31 | 默沙东公司 | The synthesis of cephalosporin compound |
US11541105B2 (en) | 2018-06-01 | 2023-01-03 | The Research Foundation For The State University Of New York | Compositions and methods for disrupting biofilm formation and maintenance |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7498312B2 (en) * | 2003-04-14 | 2009-03-03 | Wyeth Holdings Corporation | Compositions containing piperacillin and tazobactam useful for injection |
US20090156518A1 (en) * | 2006-08-25 | 2009-06-18 | Hesheng Zhang | Stable pharmaceutical composition comprising beta-lactam antibiotic and buffer |
Family Cites Families (216)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL37879A (en) | 1970-10-27 | 1974-12-31 | Ciba Geigy Ag | 3-unsubstituted cephalosporin derivatives,process for their manufacture and compositions containing them |
US4299829A (en) | 1976-03-12 | 1981-11-10 | Fujisawa Pharmaceutical Co., Ltd. | 2-Lower alkyl-7-substituted-2 or 3-cephem 4-carboxylic acid compounds |
US4464369A (en) | 1977-03-14 | 1984-08-07 | Fujisawa Pharmaceutical Co., Ltd. | 7-Acylamino-3-cephem-4-carboxylic acid derivatives and pharmaceutical compositions |
PH17188A (en) | 1977-03-14 | 1984-06-14 | Fujisawa Pharmaceutical Co | New cephem and cepham compounds and their pharmaceutical compositions and method of use |
US4409217A (en) | 1977-03-14 | 1983-10-11 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
US4496562A (en) | 1977-03-14 | 1985-01-29 | Fujisawa Pharmaceutical Co., Ltd. | 7-Substituted-3-cephem-4-carboxylic acid esters |
JPS543087A (en) | 1977-06-03 | 1979-01-11 | Fujisawa Pharmaceut Co Ltd | Preparation of cephalosporin compound |
GB1604738A (en) | 1977-07-28 | 1981-12-16 | Yamanouchi Pharma Co Ltd | 1,3-dithietane-2-carboxylic acid derivatives and the preparation thereof |
JPS609719B2 (en) | 1977-08-06 | 1985-03-12 | 武田薬品工業株式会社 | Cephalosporin derivatives and their production method |
US4370326A (en) | 1977-09-13 | 1983-01-25 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds and composition |
IT1192287B (en) | 1977-11-14 | 1988-03-31 | Fujisawa Pharmaceutical Co | PHARMACEUTICAL ACTION DERIVATIVES OF CEPHALOSPORANIC ACID AND RELATED PREPARATION PROCEDURE |
US4363807A (en) | 1978-04-06 | 1982-12-14 | Fujisawa Pharmaceutical Company, Limited | Cepham compounds |
SE7804231L (en) | 1978-04-14 | 1979-10-15 | Haessle Ab | Gastric acid secretion |
AR228726A1 (en) | 1978-05-26 | 1983-04-15 | Glaxo Group Ltd | PROCEDURE FOR THE PREPARATION OF ANTIBIOTIC (6R, 7R) -7 - ((Z) -2- (2-AMINOTIAZOL-4-IL) -2- (2-CARBOXIPROP-2-OXIIMINO) ACETAMIDO) -3- (1- PIRIDINIOMETIL) CEF-3-EM-4-CARBOXILATO |
US4264597A (en) | 1978-06-06 | 1981-04-28 | Masashi Hashimoto | Cephalosporin analogues and processes for the preparation thereof |
US4268509A (en) | 1978-07-10 | 1981-05-19 | Fujisawa Pharmaceutical Co., Ltd. | New cephem compounds and processes for preparation thereof |
US4284631A (en) | 1978-07-31 | 1981-08-18 | Fujisawa Pharmaceutical Co., Ltd. | 7-Substituted cephem compounds and pharmaceutical antibacterial compositions containing them |
US4305937A (en) | 1978-08-17 | 1981-12-15 | Fujisawa Pharmaceutical Co., Ltd. | 2-Lower alkyl-7-substituted-2 or 3-cephem-4-carboxylic acid compounds and antibacterial pharmaceutical compositions containing them |
US4703046A (en) | 1978-09-08 | 1987-10-27 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds and processes for preparation thereof |
DE2967053D1 (en) | 1978-09-12 | 1984-07-19 | Fujisawa Pharmaceutical Co | Starting compounds for preparing cephem compounds and processes for their preparation |
US4327093A (en) | 1978-10-24 | 1982-04-27 | Fujisawa Pharmaceutical Co., Ltd. | 3,7-Disubstituted-2 or 3-cephem-4-carboxylic acid compounds |
DE2945248A1 (en) | 1978-11-13 | 1980-05-22 | Fujisawa Pharmaceutical Co | CEPHEM COMPOUNDS, METHOD FOR THEIR PRODUCTION AND ANTIBACTERIAL PHARMACEUTICAL AGENTS CONTAINING THE SAME |
AU536842B2 (en) | 1978-12-29 | 1984-05-24 | Fujisawa Pharmaceutical Co., Ltd. | Cephalosporin antibiotics |
US4332798A (en) | 1978-12-29 | 1982-06-01 | Fujisawa Pharmaceutical Co., Ltd. | 7-Amino-thia-diazole oxyimino derivatives of cephem and cephem compounds |
US4390534A (en) | 1978-12-29 | 1983-06-28 | Fujisawa Pharmaceutical Co., Ltd. | Cephem and cepham compounds |
US4291031A (en) | 1979-02-19 | 1981-09-22 | Fujisawa Pharmaceutical Co., Ltd. | 3-Phosphonocephalosporanic acid derivatives, and pharmaceutical composition comprising the same |
US4339449A (en) | 1979-03-27 | 1982-07-13 | Fujisawa Pharmaceutical Company, Limited | Analogous compounds of cephalosporins, and pharmaceutical composition comprising the same |
FR2462439A1 (en) | 1979-07-26 | 1981-02-13 | Roussel Uclaf | NOVEL PROCESS FOR THE PREPARATION OF PRODUCTS DERIVED FROM 7 - / (2-ARYL) 2-HYDROXYIMINO ACETAMIDO / CEPHALOSPORANIC ACID |
DE3069560D1 (en) | 1979-09-03 | 1984-12-06 | Fujisawa Pharmaceutical Co | Cephem compounds, processes for their preparation and pharmaceutical compositions containing them |
US4381299A (en) | 1980-03-07 | 1983-04-26 | Fujisawa Pharmaceutical Co., Ltd. | 7-Amino-thiadiazole oxyimino derivatives of cephem and cepham compounds |
US4332800A (en) | 1979-10-12 | 1982-06-01 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
US4338313A (en) | 1979-10-12 | 1982-07-06 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
US4409214A (en) | 1979-11-19 | 1983-10-11 | Fujisawa Pharmaceutical, Co., Ltd. | 7-Acylamino-3-vinylcephalosporanic acid derivatives and processes for the preparation thereof |
US4409215A (en) | 1979-11-19 | 1983-10-11 | Fujisawa Pharmaceutical Co., Ltd. | 7-Acylamino-3-substituted cephalosporanic acid derivatives and processes for the preparation thereof |
US4420477A (en) | 1979-11-30 | 1983-12-13 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
US4443443A (en) | 1979-12-17 | 1984-04-17 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
US4405617A (en) | 1980-02-11 | 1983-09-20 | Fujisawa Pharmaceutical Co., Ltd. | 3-(Propynyltetrazol)thiomethyl-3-cephems |
JPS56125392A (en) | 1980-03-06 | 1981-10-01 | Fujisawa Pharmaceut Co Ltd | Cepham and cephem compound and preparation thereof |
US4470980A (en) | 1980-03-07 | 1984-09-11 | Interx Research Corp. | Method of increasing oral absorption of β-lactam antibiotics |
EP0043546B1 (en) | 1980-07-04 | 1986-01-29 | Fujisawa Pharmaceutical Co., Ltd. | 7-oxo-cephalosporins and 6-oxo-penicillins, their analogues and process for their preparation |
US4443444A (en) | 1980-08-11 | 1984-04-17 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
DE3175156D1 (en) | 1980-08-29 | 1986-09-25 | Fujisawa Pharmaceutical Co | New cephem compounds and processes for preparation thereof |
US4416879A (en) | 1980-09-08 | 1983-11-22 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
GR78245B (en) | 1980-09-12 | 1984-09-26 | Ciba Geigy Ag | |
US4367228A (en) | 1980-10-29 | 1983-01-04 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compound and composition |
US4431642A (en) | 1980-12-01 | 1984-02-14 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
ES507942A0 (en) | 1980-12-15 | 1983-02-01 | Fujisawa Pharmaceutical Co | A PROCEDURE FOR PREPARING DERIVATIVES OF 7-ACYLAMINOCEFHALOSPORANIC ACID. |
US4427677A (en) | 1980-12-31 | 1984-01-24 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
DE3177090D1 (en) | 1980-12-31 | 1989-09-28 | Fujisawa Pharmaceutical Co | 7-acylaminocephalosporanic acid derivatives and processes for the preparation thereof |
GR76342B (en) | 1981-02-02 | 1984-08-06 | Fujisawa Pharmaceutical Co | |
US4336253A (en) | 1981-03-11 | 1982-06-22 | Eli Lilly And Company | Cephalosporin antibiotics |
JPS6011917B2 (en) | 1981-04-09 | 1985-03-28 | 山之内製薬株式会社 | Novel cephalosporin compounds |
DE3118732A1 (en) | 1981-05-12 | 1982-12-02 | Hoechst Ag, 6000 Frankfurt | CEPHALOSPORINE DERIVATIVES AND METHOD FOR THEIR PRODUCTION |
JPS57193489A (en) | 1981-05-21 | 1982-11-27 | Fujisawa Pharmaceut Co Ltd | Syn-isomer of 7-substituted-3-cephem-4-carboxylic acid ester and its preparation |
GR75487B (en) | 1981-06-22 | 1984-07-23 | Fujisawa Pharmaceutical Co | |
IE53429B1 (en) | 1981-08-03 | 1988-11-09 | Fujisawa Pharmaceutical Co | New cephem compounds and processes for preparation thereof |
US4430499A (en) | 1981-09-08 | 1984-02-07 | Eli Lilly And Company | 7-[2-(2-Aminooxazol-4-yl)-2-(oximino)acetamido]cephalosporin antibiotics |
US4436912A (en) | 1981-09-08 | 1984-03-13 | Eli Lilly And Company | 7-[2-(2-Aminooxazol-4-yl)-2-(oximino)acetamido cephalosporin antibiotics and intermediates therefor |
US4577014A (en) | 1981-09-08 | 1986-03-18 | Eli Lilly And Company | Thieno and furopyridinium-substituted cephalosporins |
JPS5859991A (en) | 1981-09-14 | 1983-04-09 | Fujisawa Pharmaceut Co Ltd | Novel cephem compound and its preparation |
US4521413A (en) | 1981-09-14 | 1985-06-04 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
US4450270A (en) | 1981-10-02 | 1984-05-22 | Eli Lilly And Company | Dioximino cephalosporin antibiotics |
US4402955A (en) | 1981-10-02 | 1983-09-06 | Eli Lilly And Company | Dioximino cephalosporin antibiotics |
US4501739A (en) | 1982-01-19 | 1985-02-26 | Eli Lilly And Company | Thieno and furopyridinium-substituted cephalosporins |
DE3207840A1 (en) | 1982-03-04 | 1983-09-15 | Hoechst Ag, 6230 Frankfurt | "CEPHALOSPORINE DERIVATIVES AND METHOD FOR THE PRODUCTION THEREOF" |
US4640915A (en) | 1982-03-29 | 1987-02-03 | Fujisawa Pharmaceutical Co., Ltd. | 1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid derivatives |
JPS58225091A (en) | 1982-06-21 | 1983-12-27 | Taiho Yakuhin Kogyo Kk | Penicillin derivative and its preparation |
AU541028B2 (en) | 1982-06-21 | 1984-12-13 | Taiho Pharmaceutical Co., Ltd. | 6-unsubstituted penicillin derivatives |
US4563449A (en) | 1982-07-19 | 1986-01-07 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
US4546101A (en) | 1982-09-10 | 1985-10-08 | Fujisawa Pharmaceutical Co., Ltd. | New cephem compounds useful for treating infectious diseases in human being and animals and processes for preparation thereof |
GB8323034D0 (en) | 1983-08-26 | 1983-09-28 | Fujisawo Pharmaceutical Co Ltd | 7-substituted-3-vinyl-3-cephem compounds |
US4609730A (en) | 1982-11-22 | 1986-09-02 | Fujisawa Pharmaceutical Co., Ltd. | 7-[substituted imino-2-(2-aminothiazol-4-yl)-acetamido]-3(2,2-dihalovinyl or ethynyl)-3-cephem-4-carboxylic acid (syn isomers), having antimicrobial activities |
GR79043B (en) | 1982-12-06 | 1984-10-02 | Fujisawa Pharmaceutical Co | |
US4608373A (en) | 1982-12-13 | 1986-08-26 | Yamanouchi Pharmaceutical Co., Ltd. | Cephem compounds |
US4487768A (en) | 1982-12-22 | 1984-12-11 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
US4463003A (en) | 1982-12-22 | 1984-07-31 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
DE3247613A1 (en) | 1982-12-23 | 1984-07-05 | Hoechst Ag, 6230 Frankfurt | CEPHALOSPORINE DERIVATIVES AND METHOD FOR THEIR PRODUCTION |
US4562073A (en) | 1982-12-24 | 1985-12-31 | Taiho Pharmaceutical Company Limited | Penicillin derivatives |
US4499088A (en) | 1983-01-04 | 1985-02-12 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
DE3316798A1 (en) | 1983-05-07 | 1984-11-08 | Hoechst Ag, 6230 Frankfurt | METHOD FOR PRODUCING CEPHEM COMPOUNDS |
FR2550200B1 (en) | 1983-08-01 | 1988-04-08 | Fujisawa Pharmaceutical Co | PROCESS FOR THE PREPARATION OF CEPHEM COMPOUNDS WITH ANTIMICROBIAL ACTIVITY AND NOVEL PRODUCTS THUS OBTAINED |
EP0137442A3 (en) | 1983-10-08 | 1986-01-15 | Hoechst Aktiengesellschaft | Cephalosporin derivatives and process for their preparation |
US4690921A (en) | 1983-10-11 | 1987-09-01 | Yamanouchi Pharmaceutical Co., Ltd. | Cephalosporin compounds and salts thereof |
US4692443A (en) | 1983-10-17 | 1987-09-08 | Eli Lilly And Company | 3-bicyclicpyridinium-methyl cephalosporins |
US4748172A (en) | 1983-10-17 | 1988-05-31 | Eli Lilly And Company | 3-bicyclicpyridinium-methyl cephalosporins |
GB8329030D0 (en) | 1983-10-31 | 1983-11-30 | Fujisawa Pharmaceutical Co | Cephem compounds |
GB8401093D0 (en) | 1984-01-16 | 1984-02-15 | Fujisawa Pharmaceutical Co | Cephem compounds |
JPS60169486A (en) | 1984-02-10 | 1985-09-02 | Yamanouchi Pharmaceut Co Ltd | Preparation of 7-amino-3-substituted methyl-3-cephem-4- carboxylic acid and lower alkylsilyl derivative thereof |
GB8406231D0 (en) | 1984-03-09 | 1984-04-11 | Fujisawa Pharmaceutical Co | Cephem compounds |
JPS60214792A (en) | 1984-04-06 | 1985-10-28 | Taiho Yakuhin Kogyo Kk | Penamylacid ester derivative |
US4705851A (en) | 1984-09-28 | 1987-11-10 | Fujisawa Pharmaceutical Co., Ltd. | Process for the preparation of 3-phosphoniummethyl-3-cephem compounds |
US4761410A (en) | 1985-01-14 | 1988-08-02 | Fujisawa Pharmaceutical Co., Ltd. | Cephem Compounds |
AU586215B2 (en) | 1985-01-21 | 1989-07-06 | Nippon Pharmaceutical Development Institute Company Limited | Novel ```-lactam antibiotics |
GB8504072D0 (en) | 1985-02-18 | 1985-03-20 | Fujisawa Pharmaceutical Co | Cephem compounds |
JPS6230789A (en) | 1985-08-01 | 1987-02-09 | Yamanouchi Pharmaceut Co Ltd | 7-formylaminocephalosporin compound and production thereof |
CN86107947A (en) | 1985-11-22 | 1987-05-27 | 藤沢药品工业株式会社 | New cephem compounds and preparation method thereof |
DE3789466T2 (en) | 1986-03-17 | 1994-07-28 | Fujisawa Pharmaceutical Co | 3,7-disubstituted-3-cephem compounds and process for their preparation. |
US4833134A (en) | 1986-08-19 | 1989-05-23 | Takeda Chemical Industries, Ltd. | Cephem compounds |
CA1293719C (en) | 1986-09-22 | 1991-12-31 | Takao Takaya | Cephem compounds and processes for preparation thereof |
US5162520A (en) | 1986-09-22 | 1992-11-10 | Fujisawa Pharmaceutical Co., Ltd. | Intermediates for cephem compounds |
US4882434A (en) | 1986-10-29 | 1989-11-21 | Takeda Chemical Industries, Ltd. | Gamma-lactonecarboxylic acid derivatives and their use as antibacterial agents or intermediates |
EP0272455B1 (en) | 1986-11-24 | 1993-02-10 | Fujisawa Pharmaceutical Co., Ltd. | 3-Pyrrolidinylthio-1-azabicyclo [3.2.0] hept-2-ene-2-carboxylic acid compounds |
KR880006244A (en) | 1986-11-24 | 1988-07-22 | 후지사와 도모 기찌 로 | 3-Pyrrolidinylthio-1-azabibischloro [3.2.0] hapt2-ene-2-carboxylic acid compound and preparation method thereof |
AU1630988A (en) | 1987-05-30 | 1988-12-01 | Kyoto Pharmaceutical Industries, Ltd. | Cephalosporin compound and pharmaceutical composition thereof |
IE61679B1 (en) | 1987-08-10 | 1994-11-16 | Fujisawa Pharmaceutical Co | Water-soluble antibiotic composition and water-soluble salts of new cephem compounds |
EP0303172A3 (en) | 1987-08-14 | 1991-05-15 | F. Hoffmann-La Roche Ag | Oxyimino-cephalosporins |
US5138066A (en) | 1987-08-14 | 1992-08-11 | Hoffmann-La Roche, Inc. | Intermediates for cephalosporins with sulfur-containing oxyimino side chain |
US5073550A (en) | 1987-08-14 | 1991-12-17 | Hoffmann-La Roche Inc. | Cephalosphorins with sulfur-containing oxyimino side chain |
ZA885709B (en) | 1987-08-19 | 1989-04-26 | Fujisawa Pharmaceutical Co | Novel crystalline 7-(2-(2-aminothiazol-4-yl)-2-hydroxyiminoacetamido)-3-vinyl-3-cephem-4-carboxylic acid(syn isomer) |
US5663163A (en) | 1987-09-07 | 1997-09-02 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds and processes for preparation thereof |
US5210080A (en) | 1987-09-07 | 1993-05-11 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
IE63094B1 (en) | 1987-09-14 | 1995-03-22 | Fujisawa Pharmaceutical Co | Cephem compound and a process for preparation thereof |
DK637888A (en) | 1987-11-24 | 1989-05-25 | Hoffmann La Roche | carboxylic esters |
GB8804058D0 (en) | 1988-02-22 | 1988-03-23 | Fujisawa Pharmaceutical Co | 3-alkenyl-1-azabicyclo(3 2 0)hept-2-ene-2-carboxylic acid compounds |
JP2648750B2 (en) | 1988-03-02 | 1997-09-03 | 大塚化学株式会社 | Method for producing β-lactam derivative |
US5173485A (en) | 1988-03-09 | 1992-12-22 | Fujisawa Pharmaceutical Company, Ltd. | Cephem compounds |
CS273349B2 (en) | 1988-03-31 | 1991-03-12 | Hoffmann La Roche | Method of cephalosporin's new derivatives production |
US5336768A (en) | 1988-05-24 | 1994-08-09 | Hoffmann-La Roche Inc. | Antibacterial cephalosporin compounds |
KR900006811B1 (en) | 1988-05-11 | 1990-09-21 | 주식회사 럭 키 | Cephalosphorin derivatives and its process |
US4963544A (en) | 1988-05-23 | 1990-10-16 | Fujisawa Pharmaceutical Company, Ltd. | 3-pyrrolidinylthio-1-azabicyclo[3.2.0]-hept-2-ene-2-carboxylic acid compounds |
US5244890A (en) | 1988-06-06 | 1993-09-14 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
EP0997466A1 (en) | 1988-10-24 | 2000-05-03 | PROCTER & GAMBLE PHARMACEUTICALS, INC. | Novel antimicrobial lactam-quinolones |
JP2785195B2 (en) | 1989-01-11 | 1998-08-13 | ソニー株式会社 | Optical encoder for disk drive |
GB8905301D0 (en) | 1989-03-08 | 1989-04-19 | Fujisawa Pharmaceutical Co | New cephem compound and a process for preparation thereof |
JPH0347187A (en) | 1989-04-12 | 1991-02-28 | Yamanouchi Pharmaceut Co Ltd | New cephalosporin derivative |
US5102877A (en) | 1989-04-28 | 1992-04-07 | Fujisawa Pharmaceutical Co., Ltd. | 1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid compounds |
NO903360L (en) | 1989-08-11 | 1991-02-12 | Ici Pharma | ANTIBIOTIC COMPOUNDS. |
GB8923844D0 (en) | 1989-10-23 | 1989-12-13 | Fujisawa Pharmaceutical Co | Carbapenem compounds |
US5215982A (en) | 1989-11-10 | 1993-06-01 | Fujisawa Pharmaceutical Co., Ltd. | Cephem compounds |
US4982596A (en) | 1990-01-26 | 1991-01-08 | Buell Industries, Inc. | Die for manufacturing a fastener blank |
KR910015587A (en) | 1990-02-27 | 1991-09-30 | 후지사와 토모키치로 | Cefem compound |
US5095012A (en) | 1990-08-23 | 1992-03-10 | Bristol-Myers Squibb Company | Antibiotic c-7 catechol-substituted cephalosporin compounds, compositions, and method of use thereof |
US5234920A (en) | 1990-08-23 | 1993-08-10 | Bristol-Myers Squibb Company | Antibiotic C-7 catechol-substituted cephalosporin compounds, compositions, and method of use thereof |
US5286721A (en) | 1990-10-15 | 1994-02-15 | Fujisawa Pharmaceutical Co., Ltd. | 1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid compounds |
US5281589A (en) | 1991-06-15 | 1994-01-25 | Cheil Foods & Chemicals, Inc. | 3-fused pyridiniummethyl cephalosporins |
US5523400A (en) | 1993-04-16 | 1996-06-04 | Hoffmann-La Roche Inc. | Cephalosporin antibiotics |
KR100194994B1 (en) | 1993-06-05 | 1999-06-15 | 손경식 | New cefem compound |
US5763603A (en) | 1993-11-06 | 1998-06-09 | Taiho Pharmaceutical Co., Ltd. | Crystalline tazobactam, and its production and use |
EP0664117A1 (en) | 1994-01-25 | 1995-07-26 | F. Hoffmann-La Roche Ag | Liposome solutions |
TW293010B (en) | 1994-04-20 | 1996-12-11 | Hui-Po Wang | Method for preparing cephalosporin derivatives |
EP0723966A4 (en) | 1994-08-16 | 1997-01-29 | Meiji Seika Co | Novel cephem derivative |
DE4440141A1 (en) | 1994-11-10 | 1996-05-15 | Hoechst Ag | Novel crystalline cephem acid addition salts and process for their preparation |
ATE341554T1 (en) | 1996-04-04 | 2006-10-15 | Shionogi & Co | CEPHEM COMPOUNDS AND MEDICATIONS CONTAINING THESE COMPOUNDS |
AU5006499A (en) | 1998-07-23 | 2000-02-14 | Intrabiotics Pharmaceuticals, Inc. | Compositions and methods for the treatment or prevention of pulmonary infections |
TW526202B (en) | 1998-11-27 | 2003-04-01 | Shionogi & Amp Co | Broad spectrum cephem having benzo[4,5-b]pyridium methyl group of antibiotic activity |
US6207661B1 (en) | 1999-02-22 | 2001-03-27 | Baxter International Inc. | Premixed formulation of piperacillin sodium and tazobactam sodium injection |
AU781218B2 (en) | 1999-08-16 | 2005-05-12 | Revaax Pharmaceuticals, Llc | Pharmaceutical compositions comprising clavulanic acid or derivative thereof for the treatment of behavioral diseases |
WO2011101710A1 (en) | 2010-02-16 | 2011-08-25 | Wockhardt Research Centre | Efflux pump inhibitors |
JP3743822B2 (en) | 2000-08-11 | 2006-02-08 | 大塚化学ホールディングス株式会社 | Penicillin crystals and production method thereof |
JP3743823B2 (en) | 2000-08-11 | 2006-02-08 | 大塚化学ホールディングス株式会社 | Penicillin crystals and production method thereof |
US6599893B2 (en) | 2000-08-29 | 2003-07-29 | Essential Therapeutics, Inc. | Cephalosporin antibiotics and prodrugs thereof |
JP3306473B1 (en) | 2001-05-01 | 2002-07-24 | 大塚化学株式会社 | Anhydrous crystal of β-lactam compound and method for producing the same |
US7179801B2 (en) | 2001-05-01 | 2007-02-20 | Astellas Pharma Inc. | Cephem compounds |
JP2002338578A (en) | 2001-05-14 | 2002-11-27 | Otsuka Chem Co Ltd | HYDRATE CRYSTAL OF beta-LACTAM COMPOUND |
US7166626B2 (en) | 2001-06-18 | 2007-01-23 | Revaax Pharmaceuticals, Llc | Therapeutic treatment for sexual dysfunction |
TWI335332B (en) | 2001-10-12 | 2011-01-01 | Theravance Inc | Cross-linked vancomycin-cephalosporin antibiotics |
AU2003210925A1 (en) | 2002-02-07 | 2003-09-02 | Rutgers, The State University | Antibiotic polymers |
TW200305422A (en) | 2002-03-18 | 2003-11-01 | Shionogi & Co | Broad spectrum cefem compounds |
ES2384707T3 (en) | 2002-05-24 | 2012-07-11 | Theravance, Inc. | Cross-linked antibiotics of glycopeptides and cephalosporins |
CA2487883C (en) | 2002-06-07 | 2011-04-19 | Orchid Chemicals & Pharmaceuticals Limited | Process for preparation of penam derivatives from cepham derivatives |
WO2004019901A2 (en) | 2002-08-30 | 2004-03-11 | Orchid Chemicals & Pharmaceuticals Ltd. | Sustained release pharmaceutical composition |
US9211259B2 (en) | 2002-11-29 | 2015-12-15 | Foamix Pharmaceuticals Ltd. | Antibiotic kit and composition and uses thereof |
DK1556389T6 (en) | 2002-10-30 | 2015-05-11 | Astellas Pharma Inc | cephem |
WO2004039776A2 (en) | 2002-11-01 | 2004-05-13 | Orchid Chemicals & Pharmaceuticals Ltd | A process for the preparation of benzyl 2-oxo-4- (heteroaryl) dithio-alpha-isoprenyl-1- azetidineazetate derivatives |
DE10304403A1 (en) | 2003-01-28 | 2004-08-05 | Röhm GmbH & Co. KG | Process for the preparation of an oral dosage form with immediate disintegration and drug release |
WO2004098643A1 (en) | 2003-04-14 | 2004-11-18 | Wyeth Holdings Corporation | Compositions containing piperacillin and tazobactam useful for injection |
ES2335013T3 (en) | 2003-05-23 | 2010-03-18 | Theravance, Inc. | GLUCOPEPTIDE-CEPHALOSPORIN ANTIBIOTICS RETICULATED. |
DE602004012269T2 (en) | 2003-07-11 | 2009-04-30 | Theravance, Inc., South San Francisco | CROSS-LINKED GLYCOPEPTIDE-CEPHALOSPORIN ANTIBIOTICS |
US7589233B2 (en) | 2003-07-29 | 2009-09-15 | Signature R&D Holdings, Llc | L-Threonine derivatives of high therapeutic index |
US8173840B2 (en) | 2003-07-29 | 2012-05-08 | Signature R&D Holdings, Llc | Compounds with high therapeutic index |
US7273935B2 (en) | 2003-08-21 | 2007-09-25 | Orchid Chemicals & Pharmaceuticals, Ltd. | Process for the preparation of 3-methylcepham derivatives |
TW200524943A (en) | 2003-09-18 | 2005-08-01 | Fujisawa Pharmaceutical Co | Cephem compounds |
FR2860235A1 (en) | 2003-09-29 | 2005-04-01 | Yang Ji Chemical Company Ltd | USE OF A COMPOUND OF FORMULA (I) INHIBITOR OF AROMATASE FOR THERAPEUTIC PURPOSES AND COMPOUNDS OF FORMULA (I) AS SUCH |
TW200523264A (en) | 2003-10-09 | 2005-07-16 | Otsuka Chemical Co Ltd | CMPB crystal and method for producing the same |
TW200519119A (en) | 2003-10-10 | 2005-06-16 | Otsuka Chemical Co Ltd | PENAM crystal and process for producing the same |
JP4535366B2 (en) | 2003-12-03 | 2010-09-01 | 塩野義製薬株式会社 | Method for producing cephem agent |
CN1913890A (en) | 2004-01-30 | 2007-02-14 | 惠氏公司 | Compositions substantially free of galactomannan containing piperacillin and tazobactam |
TW200530255A (en) | 2004-03-05 | 2005-09-16 | Shionogi & Co | 3-pyridiniummethylcefem compound |
US7417143B2 (en) | 2004-04-07 | 2008-08-26 | Orchid Chemicals & Pharmaceuticals Limited | Process for the preparation of Tazobactam in pure form |
CN1706388A (en) * | 2004-06-09 | 2005-12-14 | 北京盛世伟唐科技有限公司 | New antibiotic composition |
EP1799209A1 (en) | 2004-10-14 | 2007-06-27 | Wyeth | Compositions containing piperacillin, tazobactam and a aminocarboxilic acid in a sodium lactate diluent |
US20060099253A1 (en) | 2004-10-20 | 2006-05-11 | Wyeth | Antibiotic product formulation |
US20060173177A1 (en) | 2005-01-28 | 2006-08-03 | Gego Csaba L | Process for preparation of penam derivatives |
KR100822519B1 (en) | 2005-02-15 | 2008-04-16 | 주식회사종근당 | Gastric-retentive controlled release mono-matrix tablet |
AU2006339311A1 (en) | 2005-06-07 | 2007-09-07 | Foamix Ltd. | Antibiotic kit and composition and uses thereof |
ITMI20051630A1 (en) | 2005-09-02 | 2007-03-03 | Acs Dobfar Spa | INJECTABLE STERILE PHARMACEUTICAL FORMULATION CONTAINING AT LEAST TWO ACTIVE PRINCIPLES |
EP1787641A1 (en) | 2005-11-22 | 2007-05-23 | Helm AG | Tazobactam-piperacillin lyophilisate |
WO2007065862A1 (en) | 2005-12-05 | 2007-06-14 | Sandoz Ag | Process for the perparation of lyophilized piperacilline sodium with improved stability after reconstitution |
WO2007086013A1 (en) | 2006-01-25 | 2007-08-02 | Jegannathan Srinivas | Formulation comprising of ceftazidime, tazobactam and linezolid |
WO2007086014A1 (en) | 2006-01-25 | 2007-08-02 | Jegannathan Srinivas | Formulation comprising cefpirome, tazobactam and linezolid |
WO2007086011A1 (en) | 2006-01-25 | 2007-08-02 | Jegannathan Srinivas | Formulation comprising cefepime, tazobactam and linezolid |
WO2008075207A2 (en) | 2006-04-04 | 2008-06-26 | Foamix Ltd. | Anti-infection augmentation foamable compositions and kit and uses thereof |
EP2015755A4 (en) | 2006-04-28 | 2010-02-24 | Wockhardt Ltd | Improvements in therapy for treating resistant bacterial infections |
US20070286817A1 (en) | 2006-06-07 | 2007-12-13 | Wyeth | Treating cystic fibrosis with antibiotics via a swirler delivery |
WO2007145868A1 (en) | 2006-06-07 | 2007-12-21 | Wyeth | Treating cystic fibrosis with antibiotics via an aerosol drug |
US20070286818A1 (en) | 2006-06-07 | 2007-12-13 | Wyeth | Treating cystic fibrosis with antibiotics via an aerosol drug |
PE20080712A1 (en) | 2006-06-07 | 2008-05-22 | Wyeth Corp | TREATMENT OF CYYSTIC FIBROSIS WITH ANTIBIOTICS BY SUPPLYING A WHIRLPOOL |
EP2046802B1 (en) | 2006-07-12 | 2013-08-21 | Allecra Therapeutics GmbH | 2-substituted methyl penam derivatives |
CN101129381B (en) | 2006-08-25 | 2012-02-01 | 天津和美生物技术有限公司 | Antibiotic compound containing beta-lactam antibiotic and ion chelating agent |
CN101129383B (en) | 2006-08-25 | 2014-04-02 | 天津和美生物技术有限公司 | Antibiotic compound containing aminoglycoside antibiotic |
AU2007293068C1 (en) | 2006-09-07 | 2013-09-19 | Boehringer Ingelheim Animal Health USA Inc. | Soft chewable, tablet, and long-acting injectable veterinary antibiotic formulations |
FI119678B (en) | 2006-11-28 | 2009-02-13 | Ipsat Therapies Oy | Use of beta-lactamase |
ES2633020T3 (en) | 2006-12-10 | 2017-09-18 | Yu, Chongxi-Techfields Biochem | Systems for transdermal administration of beta-lactam antibiotics |
DE102007009242A1 (en) | 2007-02-22 | 2008-09-18 | Evonik Röhm Gmbh | Pellets with enteric-coated matix |
WO2008113177A1 (en) | 2007-03-20 | 2008-09-25 | Centre De Recherche Sur Les Biotechnologies Marines | Compositions comprising polyunsaturated fatty acid monoglycerides or derivatives thereof and uses thereof |
ITMI20070568A1 (en) | 2007-03-22 | 2008-09-23 | Acs Dobfar Spa | INJECTABLE STERILE PHARMACEUTICAL COMOSIATION HAVING PIPERACILLIN SODIUM AND TAZOBACTAM SODIUM AS ACTIVE PRINCIPLES |
US20090098088A1 (en) | 2007-10-10 | 2009-04-16 | The Procter & Gamble Company | Methods And Kits For The Treatment Of Diverticular Conditions |
ITPI20080025A1 (en) | 2008-03-31 | 2009-10-01 | Italmed S R L | COMPOSITION FOR DENTAL USE FOR THE TREATMENT OF PERIMPLANTS |
BRPI0911998A2 (en) | 2008-05-01 | 2015-10-13 | Procter & Gamble | Methods and Kits for the Treatment of Inflammatory Bowel Disorder Conditions |
US20110190252A1 (en) | 2008-07-30 | 2011-08-04 | Alan Watson | Compositions including clavulanic acid and related methods of use |
EP2440523A4 (en) | 2009-06-10 | 2014-03-19 | Chongxi Yu | High penetration compositions or prodrugs of antimicrobials and antimicrobial-related compounds |
WO2011017125A1 (en) | 2009-07-28 | 2011-02-10 | Anacor Pharmaceuticals, Inc. | Trisubstituted boron-containing molecules |
WO2011112435A1 (en) | 2010-03-09 | 2011-09-15 | Merck Sharp & Dohme Corp. | FtsZ INHIBITORS AS POTENTIATORS OF BETA-LACTAM ANTIBIOTICS AGAINST METHICILLIN-RESISTANT STAPHYLOCOCCUS |
JP2013523830A (en) | 2010-04-06 | 2013-06-17 | プリサイエンス ラブス, エルエルシー | Methods of treatment with 3-bromopyruvate and other selective inhibitors of ATP production |
EP2862569A1 (en) | 2011-09-09 | 2015-04-22 | Cubist Pharmaceuticals, Inc. | Methods for treating intrapulmonary infections |
US8476425B1 (en) | 2012-09-27 | 2013-07-02 | Cubist Pharmaceuticals, Inc. | Tazobactam arginine compositions |
-
2012
- 2012-09-27 US US13/628,742 patent/US8476425B1/en active Active
-
2013
- 2013-03-14 US US13/828,534 patent/US8685957B1/en active Active
-
2014
- 2014-02-14 US US14/181,041 patent/US20140228337A1/en not_active Abandoned
- 2014-11-14 US US14/541,890 patent/US20150072957A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7498312B2 (en) * | 2003-04-14 | 2009-03-03 | Wyeth Holdings Corporation | Compositions containing piperacillin and tazobactam useful for injection |
US20090156518A1 (en) * | 2006-08-25 | 2009-06-18 | Hesheng Zhang | Stable pharmaceutical composition comprising beta-lactam antibiotic and buffer |
Also Published As
Publication number | Publication date |
---|---|
US20140088067A1 (en) | 2014-03-27 |
US20140228337A1 (en) | 2014-08-14 |
US8685957B1 (en) | 2014-04-01 |
US8476425B1 (en) | 2013-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8685957B1 (en) | Tazobactam arginine compositions | |
AU2018203806B2 (en) | Tazobactam arginine antibiotic compositions | |
TW201431866A (en) | Boronic acid derivatives and therapeutic uses thereof | |
JPH0128036B2 (en) | ||
US9090631B2 (en) | Process for purifying cefotiam hydrochloride | |
US20140275001A1 (en) | Crystalline form of a beta-lactamase inhibitor | |
CN102180890B (en) | Cefathiamidine hydrate and preparation method and application thereof | |
US8895728B2 (en) | Method for preparing cefmenoxime hydrochloride compound | |
WO2014096176A1 (en) | Novel crystalline forms of ceftaroline fosamil | |
US7534782B2 (en) | Crystal of 1-methylcarbapenem solvate | |
EP1534717B1 (en) | Beta-lactamase inhibitor prodrug | |
TW202200157A (en) | Crystalline form of compound ii', compound, uses thereof, method of preparing the same, and pharmaceutical composition | |
JP2021102642A (en) | Crystalline β-lactamase inhibitor | |
US20080227768A1 (en) | Crystal of 1-Methylcarbapenem Compound | |
US20110118462A1 (en) | N-heterocyclic substituent-containing antibiotic, preparation and use thereof | |
US20140128359A1 (en) | N-Heterocyclic Substituent-Containing Antibiotic, Preparation and Use Thereof | |
JP2006526612A (en) | Beta-lactamase inhibitor / prodrug | |
JP2017105714A (en) | Multiple drug discharge pump inhibitor | |
JPH04338392A (en) | New cephem derivative and preparation thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CUBIST PHARMACEUTICALS, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LAI, JAN-JI;GU, JIAN-QIAO;JURKAUSKAS, VALDAS;AND OTHERS;SIGNING DATES FROM 20130117 TO 20130122;REEL/FRAME:034200/0918 Owner name: CALIXA THERAPEUTICS, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CUBIST PHARMACEUTICALS, INC.;REEL/FRAME:034200/0975 Effective date: 20130718 |
|
AS | Assignment |
Owner name: MERCK SHARP & DOHME CORP., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CALIXA THERAPEUTICS, INC.;REEL/FRAME:037198/0658 Effective date: 20150610 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |