US20150071987A1 - Immunostimulatory compositions, particles, and uses related thereto - Google Patents
Immunostimulatory compositions, particles, and uses related thereto Download PDFInfo
- Publication number
- US20150071987A1 US20150071987A1 US14/374,729 US201314374729A US2015071987A1 US 20150071987 A1 US20150071987 A1 US 20150071987A1 US 201314374729 A US201314374729 A US 201314374729A US 2015071987 A1 US2015071987 A1 US 2015071987A1
- Authority
- US
- United States
- Prior art keywords
- antigen
- particle
- molecule
- gpi
- cancer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002245 particle Substances 0.000 title claims description 121
- 239000000203 mixture Substances 0.000 title abstract description 58
- 230000003308 immunostimulating effect Effects 0.000 title abstract description 31
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 126
- 229930004094 glycosylphosphatidylinositol Natural products 0.000 claims abstract description 23
- 108091007433 antigens Proteins 0.000 claims description 98
- 102000036639 antigens Human genes 0.000 claims description 98
- 239000000427 antigen Substances 0.000 claims description 97
- 210000004027 cell Anatomy 0.000 claims description 90
- 239000012528 membrane Substances 0.000 claims description 58
- 210000004379 membrane Anatomy 0.000 claims description 58
- 101000884281 Rattus norvegicus Signal transducer CD24 Proteins 0.000 claims description 50
- 201000011510 cancer Diseases 0.000 claims description 48
- 239000002671 adjuvant Substances 0.000 claims description 42
- 150000002632 lipids Chemical class 0.000 claims description 39
- 108010043671 prostatic acid phosphatase Proteins 0.000 claims description 34
- 102100035703 Prostatic acid phosphatase Human genes 0.000 claims description 32
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 claims description 30
- 108010072866 Prostate-Specific Antigen Proteins 0.000 claims description 26
- 102100038358 Prostate-specific antigen Human genes 0.000 claims description 26
- 102000013462 Interleukin-12 Human genes 0.000 claims description 24
- 108010065805 Interleukin-12 Proteins 0.000 claims description 24
- 239000012634 fragment Substances 0.000 claims description 21
- 108010035053 B7-1 Antigen Proteins 0.000 claims description 19
- 108010040721 Flagellin Proteins 0.000 claims description 16
- 241000700605 Viruses Species 0.000 claims description 16
- 108010002350 Interleukin-2 Proteins 0.000 claims description 15
- 239000000439 tumor marker Substances 0.000 claims description 13
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims description 12
- -1 CD31 Proteins 0.000 claims description 11
- 206010060862 Prostate cancer Diseases 0.000 claims description 11
- HVCOBJNICQPDBP-UHFFFAOYSA-N 3-[3-[3,5-dihydroxy-6-methyl-4-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxydecanoyloxy]decanoic acid;hydrate Chemical compound O.OC1C(OC(CC(=O)OC(CCCCCCC)CC(O)=O)CCCCCCC)OC(C)C(O)C1OC1C(O)C(O)C(O)C(C)O1 HVCOBJNICQPDBP-UHFFFAOYSA-N 0.000 claims description 10
- 229930186217 Glycolipid Natural products 0.000 claims description 10
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 claims description 10
- 108091034117 Oligonucleotide Proteins 0.000 claims description 10
- 150000003904 phospholipids Chemical class 0.000 claims description 10
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 claims description 9
- 150000002634 lipophilic molecules Chemical class 0.000 claims description 9
- 108010010995 MART-1 Antigen Proteins 0.000 claims description 8
- 108010052285 Membrane Proteins Proteins 0.000 claims description 8
- 102100035917 Peripheral myelin protein 22 Human genes 0.000 claims description 8
- 101710199257 Peripheral myelin protein 22 Proteins 0.000 claims description 8
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 claims description 7
- 101000599852 Homo sapiens Intercellular adhesion molecule 1 Proteins 0.000 claims description 7
- 108050008953 Melanoma-associated antigen Proteins 0.000 claims description 7
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 claims description 7
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 claims description 6
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 claims description 6
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 claims description 6
- 229920006395 saturated elastomer Polymers 0.000 claims description 6
- 150000004671 saturated fatty acids Chemical class 0.000 claims description 6
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 claims description 6
- 150000004670 unsaturated fatty acids Chemical class 0.000 claims description 6
- 235000021122 unsaturated fatty acids Nutrition 0.000 claims description 6
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 claims description 5
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 claims description 5
- 239000002158 endotoxin Substances 0.000 claims description 5
- 229920006008 lipopolysaccharide Polymers 0.000 claims description 5
- 108060001253 CD99 Proteins 0.000 claims description 4
- 102000024905 CD99 Human genes 0.000 claims description 4
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 claims description 4
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 claims description 4
- 102100033183 Epithelial membrane protein 1 Human genes 0.000 claims description 4
- 102100023328 G-protein coupled estrogen receptor 1 Human genes 0.000 claims description 4
- 101710113573 G-protein coupled estrogen receptor 1 Proteins 0.000 claims description 4
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 claims description 4
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 claims description 4
- 101001008874 Homo sapiens Mast/stem cell growth factor receptor Kit Proteins 0.000 claims description 4
- 101000620359 Homo sapiens Melanocyte protein PMEL Proteins 0.000 claims description 4
- 101000623901 Homo sapiens Mucin-16 Proteins 0.000 claims description 4
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 claims description 4
- 102000016200 MART-1 Antigen Human genes 0.000 claims description 4
- 102100027754 Mast/stem cell growth factor receptor Kit Human genes 0.000 claims description 4
- 102100022430 Melanocyte protein PMEL Human genes 0.000 claims description 4
- 102100028389 Melanoma antigen recognized by T-cells 1 Human genes 0.000 claims description 4
- 102100023123 Mucin-16 Human genes 0.000 claims description 4
- 102100024616 Platelet endothelial cell adhesion molecule Human genes 0.000 claims description 4
- 102100023097 Protein S100-A1 Human genes 0.000 claims description 4
- 102100021487 Protein S100-B Human genes 0.000 claims description 4
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 claims description 4
- 102100026497 Zinc finger protein 654 Human genes 0.000 claims description 4
- 210000004955 epithelial membrane Anatomy 0.000 claims description 4
- 108010008594 epithelial membrane protein-1 Proteins 0.000 claims description 4
- GZQKNULLWNGMCW-PWQABINMSA-N lipid A (E. coli) Chemical compound O1[C@H](CO)[C@@H](OP(O)(O)=O)[C@H](OC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCCCC)[C@@H](NC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCC)[C@@H]1OC[C@@H]1[C@@H](O)[C@H](OC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](NC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](OP(O)(O)=O)O1 GZQKNULLWNGMCW-PWQABINMSA-N 0.000 claims description 4
- 108010008707 Mucin-1 Proteins 0.000 claims description 3
- 102100034256 Mucin-1 Human genes 0.000 claims description 3
- 108010063954 Mucins Proteins 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 3
- 230000000735 allogeneic effect Effects 0.000 claims description 2
- 239000002502 liposome Substances 0.000 claims description 2
- 239000000693 micelle Substances 0.000 claims description 2
- 239000002356 single layer Substances 0.000 claims description 2
- 239000000277 virosome Substances 0.000 claims description 2
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 claims 4
- 102000015728 Mucins Human genes 0.000 claims 1
- 108090000623 proteins and genes Proteins 0.000 abstract description 71
- 102000004169 proteins and genes Human genes 0.000 abstract description 69
- 238000011282 treatment Methods 0.000 abstract description 60
- 238000012546 transfer Methods 0.000 abstract description 36
- 238000000034 method Methods 0.000 abstract description 33
- 230000000139 costimulatory effect Effects 0.000 abstract description 24
- 229960005486 vaccine Drugs 0.000 abstract description 20
- 230000001225 therapeutic effect Effects 0.000 abstract description 16
- 238000002255 vaccination Methods 0.000 abstract description 7
- 102000004127 Cytokines Human genes 0.000 description 27
- 108090000695 Cytokines Proteins 0.000 description 27
- 238000010348 incorporation Methods 0.000 description 26
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 25
- 210000004881 tumor cell Anatomy 0.000 description 24
- 150000001413 amino acids Chemical class 0.000 description 22
- 206010022000 influenza Diseases 0.000 description 21
- 230000014509 gene expression Effects 0.000 description 20
- 241000699670 Mus sp. Species 0.000 description 19
- 229940024606 amino acid Drugs 0.000 description 17
- 206010006187 Breast cancer Diseases 0.000 description 14
- 102000000588 Interleukin-2 Human genes 0.000 description 14
- 208000026310 Breast neoplasm Diseases 0.000 description 12
- 101710154606 Hemagglutinin Proteins 0.000 description 11
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 11
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 11
- 101710176177 Protein A56 Proteins 0.000 description 11
- 108090000765 processed proteins & peptides Proteins 0.000 description 11
- 108010006232 Neuraminidase Proteins 0.000 description 10
- 102000005348 Neuraminidase Human genes 0.000 description 10
- 230000028993 immune response Effects 0.000 description 10
- 102000004196 processed proteins & peptides Human genes 0.000 description 10
- 229940022399 cancer vaccine Drugs 0.000 description 9
- 238000009566 cancer vaccine Methods 0.000 description 9
- 210000004443 dendritic cell Anatomy 0.000 description 9
- 239000000185 hemagglutinin Substances 0.000 description 9
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 8
- 241000238631 Hexapoda Species 0.000 description 8
- 238000013459 approach Methods 0.000 description 8
- 239000011859 microparticle Substances 0.000 description 8
- 229920001184 polypeptide Polymers 0.000 description 8
- 108010043685 GPI-Linked Proteins Proteins 0.000 description 7
- 102000002702 GPI-Linked Proteins Human genes 0.000 description 7
- 101710139410 1-phosphatidylinositol phosphodiesterase Proteins 0.000 description 6
- 206010009944 Colon cancer Diseases 0.000 description 6
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 6
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 6
- 102100037097 Protein disulfide-isomerase A3 Human genes 0.000 description 6
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 6
- 210000000612 antigen-presenting cell Anatomy 0.000 description 6
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 6
- 238000000684 flow cytometry Methods 0.000 description 6
- 208000028564 B-cell non-Hodgkin lymphoma Diseases 0.000 description 5
- 101150029707 ERBB2 gene Proteins 0.000 description 5
- 102000001708 Protein Isoforms Human genes 0.000 description 5
- 108010029485 Protein Isoforms Proteins 0.000 description 5
- 108010076504 Protein Sorting Signals Proteins 0.000 description 5
- 210000001744 T-lymphocyte Anatomy 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 229960000397 bevacizumab Drugs 0.000 description 5
- 210000000170 cell membrane Anatomy 0.000 description 5
- 208000029742 colonic neoplasm Diseases 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 210000003743 erythrocyte Anatomy 0.000 description 5
- 230000001506 immunosuppresive effect Effects 0.000 description 5
- 201000005202 lung cancer Diseases 0.000 description 5
- 208000020816 lung neoplasm Diseases 0.000 description 5
- 230000003612 virological effect Effects 0.000 description 5
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 4
- UEJJHQNACJXSKW-UHFFFAOYSA-N 2-(2,6-dioxopiperidin-3-yl)-1H-isoindole-1,3(2H)-dione Chemical compound O=C1C2=CC=CC=C2C(=O)N1C1CCC(=O)NC1=O UEJJHQNACJXSKW-UHFFFAOYSA-N 0.000 description 4
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 4
- 101000945496 Homo sapiens Proliferation marker protein Ki-67 Proteins 0.000 description 4
- 102000003812 Interleukin-15 Human genes 0.000 description 4
- 108090000172 Interleukin-15 Proteins 0.000 description 4
- 239000000232 Lipid Bilayer Substances 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 4
- 102100034836 Proliferation marker protein Ki-67 Human genes 0.000 description 4
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 4
- 239000002246 antineoplastic agent Substances 0.000 description 4
- 229940098773 bovine serum albumin Drugs 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 4
- 229960005395 cetuximab Drugs 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000012217 deletion Methods 0.000 description 4
- 230000037430 deletion Effects 0.000 description 4
- 229960003668 docetaxel Drugs 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 210000002865 immune cell Anatomy 0.000 description 4
- 208000032839 leukemia Diseases 0.000 description 4
- 201000001441 melanoma Diseases 0.000 description 4
- 229940127084 other anti-cancer agent Drugs 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 108091008146 restriction endonucleases Proteins 0.000 description 4
- 229960003433 thalidomide Drugs 0.000 description 4
- 229960000575 trastuzumab Drugs 0.000 description 4
- SSOORFWOBGFTHL-OTEJMHTDSA-N (4S)-5-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[2-[(2S)-2-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S,3S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-5-carbamimidamido-1-[[(2S)-5-carbamimidamido-1-[[(1S)-4-carbamimidamido-1-carboxybutyl]amino]-1-oxopentan-2-yl]amino]-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-1-oxohexan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]carbamoyl]pyrrolidin-1-yl]-2-oxoethyl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-(1H-imidazol-4-yl)-1-oxopropan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-4-[[(2S)-2-[[(2S)-2-[[(2S)-2,6-diaminohexanoyl]amino]-3-methylbutanoyl]amino]propanoyl]amino]-5-oxopentanoic acid Chemical compound CC[C@H](C)[C@H](NC(=O)[C@@H](NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H]1CCCN1C(=O)CNC(=O)[C@H](Cc1c[nH]c2ccccc12)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](Cc1ccccc1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](Cc1ccccc1)NC(=O)[C@H](Cc1c[nH]cn1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@@H](N)CCCCN)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O SSOORFWOBGFTHL-OTEJMHTDSA-N 0.000 description 3
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 3
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 3
- 229940031764 Gp100:209-217(210M) vaccine Drugs 0.000 description 3
- 108090000144 Human Proteins Proteins 0.000 description 3
- 102000003839 Human Proteins Human genes 0.000 description 3
- 108010064593 Intercellular Adhesion Molecule-1 Proteins 0.000 description 3
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 3
- 102000000440 Melanoma-associated antigen Human genes 0.000 description 3
- 102000012404 Orosomucoid Human genes 0.000 description 3
- 241001494479 Pecora Species 0.000 description 3
- 206010035226 Plasma cell myeloma Diseases 0.000 description 3
- 206010039491 Sarcoma Diseases 0.000 description 3
- 230000006052 T cell proliferation Effects 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 229960004039 finasteride Drugs 0.000 description 3
- DBEPLOCGEIEOCV-WSBQPABSSA-N finasteride Chemical compound N([C@@H]1CC2)C(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H](C(=O)NC(C)(C)C)[C@@]2(C)CC1 DBEPLOCGEIEOCV-WSBQPABSSA-N 0.000 description 3
- 206010017758 gastric cancer Diseases 0.000 description 3
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 3
- 229960005277 gemcitabine Drugs 0.000 description 3
- 239000012642 immune effector Substances 0.000 description 3
- 229940121354 immunomodulator Drugs 0.000 description 3
- 238000009169 immunotherapy Methods 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 210000004962 mammalian cell Anatomy 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012737 microarray-based gene expression Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000012243 multiplex automated genomic engineering Methods 0.000 description 3
- 102000039446 nucleic acids Human genes 0.000 description 3
- 108020004707 nucleic acids Proteins 0.000 description 3
- 150000007523 nucleic acids Chemical class 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 3
- 229960004618 prednisone Drugs 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 210000000952 spleen Anatomy 0.000 description 3
- 206010041823 squamous cell carcinoma Diseases 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 229960001603 tamoxifen Drugs 0.000 description 3
- 230000004614 tumor growth Effects 0.000 description 3
- LKJPYSCBVHEWIU-KRWDZBQOSA-N (R)-bicalutamide Chemical compound C([C@@](O)(C)C(=O)NC=1C=C(C(C#N)=CC=1)C(F)(F)F)S(=O)(=O)C1=CC=C(F)C=C1 LKJPYSCBVHEWIU-KRWDZBQOSA-N 0.000 description 2
- VSNHCAURESNICA-NJFSPNSNSA-N 1-oxidanylurea Chemical compound N[14C](=O)NO VSNHCAURESNICA-NJFSPNSNSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- NDMPLJNOPCLANR-UHFFFAOYSA-N 3,4-dihydroxy-15-(4-hydroxy-18-methoxycarbonyl-5,18-seco-ibogamin-18-yl)-16-methoxy-1-methyl-6,7-didehydro-aspidospermidine-3-carboxylic acid methyl ester Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 NDMPLJNOPCLANR-UHFFFAOYSA-N 0.000 description 2
- AOJJSUZBOXZQNB-VTZDEGQISA-N 4'-epidoxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-VTZDEGQISA-N 0.000 description 2
- LGZKGOGODCLQHG-CYBMUJFWSA-N 5-[(2r)-2-hydroxy-2-(3,4,5-trimethoxyphenyl)ethyl]-2-methoxyphenol Chemical compound C1=C(O)C(OC)=CC=C1C[C@@H](O)C1=CC(OC)=C(OC)C(OC)=C1 LGZKGOGODCLQHG-CYBMUJFWSA-N 0.000 description 2
- OZPFIJIOIVJZMN-SFHVURJKSA-N 6-[(7s)-7-hydroxy-5,6-dihydropyrrolo[1,2-c]imidazol-7-yl]-n-methylnaphthalene-2-carboxamide Chemical compound C1=CC2=CC(C(=O)NC)=CC=C2C=C1[C@]1(O)C2=CN=CN2CC1 OZPFIJIOIVJZMN-SFHVURJKSA-N 0.000 description 2
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 2
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 2
- 108010088751 Albumins Proteins 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 2
- BFYIZQONLCFLEV-DAELLWKTSA-N Aromasine Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC(=C)C2=C1 BFYIZQONLCFLEV-DAELLWKTSA-N 0.000 description 2
- 208000023275 Autoimmune disease Diseases 0.000 description 2
- 208000003950 B-cell lymphoma Diseases 0.000 description 2
- 238000011725 BALB/c mouse Methods 0.000 description 2
- 208000035143 Bacterial infection Diseases 0.000 description 2
- 108010006654 Bleomycin Proteins 0.000 description 2
- 108010037003 Buserelin Proteins 0.000 description 2
- 108010029697 CD40 Ligand Proteins 0.000 description 2
- 102100032937 CD40 ligand Human genes 0.000 description 2
- 102100022002 CD59 glycoprotein Human genes 0.000 description 2
- KLWPJMFMVPTNCC-UHFFFAOYSA-N Camptothecin Natural products CCC1(O)C(=O)OCC2=C1C=C3C4Nc5ccccc5C=C4CN3C2=O KLWPJMFMVPTNCC-UHFFFAOYSA-N 0.000 description 2
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 2
- 108010092160 Dactinomycin Proteins 0.000 description 2
- ZBNZXTGUTAYRHI-UHFFFAOYSA-N Dasatinib Chemical compound C=1C(N2CCN(CCO)CC2)=NC(C)=NC=1NC(S1)=NC=C1C(=O)NC1=C(C)C=CC=C1Cl ZBNZXTGUTAYRHI-UHFFFAOYSA-N 0.000 description 2
- WEAHRLBPCANXCN-UHFFFAOYSA-N Daunomycin Natural products CCC1(O)CC(OC2CC(N)C(O)C(C)O2)c3cc4C(=O)c5c(OC)cccc5C(=O)c4c(O)c3C1 WEAHRLBPCANXCN-UHFFFAOYSA-N 0.000 description 2
- ZQZFYGIXNQKOAV-OCEACIFDSA-N Droloxifene Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=C(O)C=CC=1)\C1=CC=C(OCCN(C)C)C=C1 ZQZFYGIXNQKOAV-OCEACIFDSA-N 0.000 description 2
- 102000001301 EGF receptor Human genes 0.000 description 2
- 108060006698 EGF receptor Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- HTIJFSOGRVMCQR-UHFFFAOYSA-N Epirubicin Natural products COc1cccc2C(=O)c3c(O)c4CC(O)(CC(OC5CC(N)C(=O)C(C)O5)c4c(O)c3C(=O)c12)C(=O)CO HTIJFSOGRVMCQR-UHFFFAOYSA-N 0.000 description 2
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 2
- VWUXBMIQPBEWFH-WCCTWKNTSA-N Fulvestrant Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3[C@H](CCCCCCCCCS(=O)CCCC(F)(F)C(F)(F)F)CC2=C1 VWUXBMIQPBEWFH-WCCTWKNTSA-N 0.000 description 2
- 208000032612 Glial tumor Diseases 0.000 description 2
- 206010018338 Glioma Diseases 0.000 description 2
- BLCLNMBMMGCOAS-URPVMXJPSA-N Goserelin Chemical compound C([C@@H](C(=O)N[C@H](COC(C)(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N1[C@@H](CCC1)C(=O)NNC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 BLCLNMBMMGCOAS-URPVMXJPSA-N 0.000 description 2
- 108010069236 Goserelin Proteins 0.000 description 2
- 101000897400 Homo sapiens CD59 glycoprotein Proteins 0.000 description 2
- 101001046686 Homo sapiens Integrin alpha-M Proteins 0.000 description 2
- 101000950687 Homo sapiens Mitogen-activated protein kinase 7 Proteins 0.000 description 2
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 2
- XDXDZDZNSLXDNA-TZNDIEGXSA-N Idarubicin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XDXDZDZNSLXDNA-TZNDIEGXSA-N 0.000 description 2
- XDXDZDZNSLXDNA-UHFFFAOYSA-N Idarubicin Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XDXDZDZNSLXDNA-UHFFFAOYSA-N 0.000 description 2
- 206010062016 Immunosuppression Diseases 0.000 description 2
- 102100022338 Integrin alpha-M Human genes 0.000 description 2
- 108010064600 Intercellular Adhesion Molecule-3 Proteins 0.000 description 2
- 101710148794 Intercellular adhesion molecule 2 Proteins 0.000 description 2
- 102100037872 Intercellular adhesion molecule 2 Human genes 0.000 description 2
- 102100037871 Intercellular adhesion molecule 3 Human genes 0.000 description 2
- 102000003810 Interleukin-18 Human genes 0.000 description 2
- 108090000171 Interleukin-18 Proteins 0.000 description 2
- 102100039879 Interleukin-19 Human genes 0.000 description 2
- 108050009288 Interleukin-19 Proteins 0.000 description 2
- 108090000978 Interleukin-4 Proteins 0.000 description 2
- 102000004388 Interleukin-4 Human genes 0.000 description 2
- 108090001005 Interleukin-6 Proteins 0.000 description 2
- 102000004889 Interleukin-6 Human genes 0.000 description 2
- 208000008839 Kidney Neoplasms Diseases 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 2
- 239000005517 L01XE01 - Imatinib Substances 0.000 description 2
- 239000005411 L01XE02 - Gefitinib Substances 0.000 description 2
- 239000005551 L01XE03 - Erlotinib Substances 0.000 description 2
- 239000002067 L01XE06 - Dasatinib Substances 0.000 description 2
- 108010000817 Leuprolide Proteins 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 102000012750 Membrane Glycoproteins Human genes 0.000 description 2
- 108010090054 Membrane Glycoproteins Proteins 0.000 description 2
- 102100037805 Mitogen-activated protein kinase 7 Human genes 0.000 description 2
- 241001183012 Modified Vaccinia Ankara virus Species 0.000 description 2
- 208000034578 Multiple myelomas Diseases 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- 108010061952 Orosomucoid Proteins 0.000 description 2
- 206010061535 Ovarian neoplasm Diseases 0.000 description 2
- 229930012538 Paclitaxel Natural products 0.000 description 2
- 208000030852 Parasitic disease Diseases 0.000 description 2
- 208000007452 Plasmacytoma Diseases 0.000 description 2
- 229920000954 Polyglycolide Polymers 0.000 description 2
- 206010038389 Renal cancer Diseases 0.000 description 2
- 208000006265 Renal cell carcinoma Diseases 0.000 description 2
- 206010041660 Splenomegaly Diseases 0.000 description 2
- 208000005718 Stomach Neoplasms Diseases 0.000 description 2
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 2
- IVTVGDXNLFLDRM-HNNXBMFYSA-N Tomudex Chemical compound C=1C=C2NC(C)=NC(=O)C2=CC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)S1 IVTVGDXNLFLDRM-HNNXBMFYSA-N 0.000 description 2
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 2
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 2
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 2
- 208000036142 Viral infection Diseases 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 2
- 230000006786 activation induced cell death Effects 0.000 description 2
- 230000033289 adaptive immune response Effects 0.000 description 2
- 229940009456 adriamycin Drugs 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- JAZBEHYOTPTENJ-JLNKQSITSA-N all-cis-5,8,11,14,17-icosapentaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O JAZBEHYOTPTENJ-JLNKQSITSA-N 0.000 description 2
- XCPGHVQEEXUHNC-UHFFFAOYSA-N amsacrine Chemical compound COC1=CC(NS(C)(=O)=O)=CC=C1NC1=C(C=CC=C2)C2=NC2=CC=CC=C12 XCPGHVQEEXUHNC-UHFFFAOYSA-N 0.000 description 2
- 229960001220 amsacrine Drugs 0.000 description 2
- 229960002932 anastrozole Drugs 0.000 description 2
- YBBLVLTVTVSKRW-UHFFFAOYSA-N anastrozole Chemical compound N#CC(C)(C)C1=CC(C(C)(C#N)C)=CC(CN2N=CN=C2)=C1 YBBLVLTVTVSKRW-UHFFFAOYSA-N 0.000 description 2
- 238000004873 anchoring Methods 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 229960000997 bicalutamide Drugs 0.000 description 2
- 229920000249 biocompatible polymer Polymers 0.000 description 2
- 229960001561 bleomycin Drugs 0.000 description 2
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 2
- GXJABQQUPOEUTA-RDJZCZTQSA-N bortezomib Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)B(O)O)NC(=O)C=1N=CC=NC=1)C1=CC=CC=C1 GXJABQQUPOEUTA-RDJZCZTQSA-N 0.000 description 2
- 229960001467 bortezomib Drugs 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- CUWODFFVMXJOKD-UVLQAERKSA-N buserelin Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](COC(C)(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 CUWODFFVMXJOKD-UVLQAERKSA-N 0.000 description 2
- 229960002719 buserelin Drugs 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- VSJKWCGYPAHWDS-FQEVSTJZSA-N camptothecin Chemical compound C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-FQEVSTJZSA-N 0.000 description 2
- 229940127093 camptothecin Drugs 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 2
- 229960004316 cisplatin Drugs 0.000 description 2
- LGZKGOGODCLQHG-UHFFFAOYSA-N combretastatin Natural products C1=C(O)C(OC)=CC=C1CC(O)C1=CC(OC)=C(OC)C(OC)=C1 LGZKGOGODCLQHG-UHFFFAOYSA-N 0.000 description 2
- 229960003843 cyproterone Drugs 0.000 description 2
- DUSHUSLJJMDGTE-ZJPMUUANSA-N cyproterone Chemical compound C1=C(Cl)C2=CC(=O)[C@@H]3C[C@@H]3[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)C)(O)[C@@]1(C)CC2 DUSHUSLJJMDGTE-ZJPMUUANSA-N 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- 229960000640 dactinomycin Drugs 0.000 description 2
- 229960002448 dasatinib Drugs 0.000 description 2
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 2
- CFCUWKMKBJTWLW-UHFFFAOYSA-N deoliosyl-3C-alpha-L-digitoxosyl-MTM Natural products CC=1C(O)=C2C(O)=C3C(=O)C(OC4OC(C)C(O)C(OC5OC(C)C(O)C(OC6OC(C)C(O)C(C)(O)C6)C5)C4)C(C(OC)C(=O)C(O)C(C)O)CC3=CC2=CC=1OC(OC(C)C1O)CC1OC1CC(O)C(O)C(C)O1 CFCUWKMKBJTWLW-UHFFFAOYSA-N 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- VSJKWCGYPAHWDS-UHFFFAOYSA-N dl-camptothecin Natural products C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)C5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-UHFFFAOYSA-N 0.000 description 2
- 229960004679 doxorubicin Drugs 0.000 description 2
- 229950004203 droloxifene Drugs 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 235000020673 eicosapentaenoic acid Nutrition 0.000 description 2
- 229960005135 eicosapentaenoic acid Drugs 0.000 description 2
- JAZBEHYOTPTENJ-UHFFFAOYSA-N eicosapentaenoic acid Natural products CCC=CCC=CCC=CCC=CCC=CCCCC(O)=O JAZBEHYOTPTENJ-UHFFFAOYSA-N 0.000 description 2
- 229960001904 epirubicin Drugs 0.000 description 2
- AAKJLRGGTJKAMG-UHFFFAOYSA-N erlotinib Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 AAKJLRGGTJKAMG-UHFFFAOYSA-N 0.000 description 2
- 229960001433 erlotinib Drugs 0.000 description 2
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 2
- 229960005420 etoposide Drugs 0.000 description 2
- 229960000255 exemestane Drugs 0.000 description 2
- 229960002949 fluorouracil Drugs 0.000 description 2
- MKXKFYHWDHIYRV-UHFFFAOYSA-N flutamide Chemical compound CC(C)C(=O)NC1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 MKXKFYHWDHIYRV-UHFFFAOYSA-N 0.000 description 2
- 229960002074 flutamide Drugs 0.000 description 2
- 229960002258 fulvestrant Drugs 0.000 description 2
- XGALLCVXEZPNRQ-UHFFFAOYSA-N gefitinib Chemical compound C=12C=C(OCCCN3CCOCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 XGALLCVXEZPNRQ-UHFFFAOYSA-N 0.000 description 2
- 229960002584 gefitinib Drugs 0.000 description 2
- 208000005017 glioblastoma Diseases 0.000 description 2
- 229960002913 goserelin Drugs 0.000 description 2
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 2
- 102000051957 human ERBB2 Human genes 0.000 description 2
- 210000004754 hybrid cell Anatomy 0.000 description 2
- 229960000908 idarubicin Drugs 0.000 description 2
- 229960002411 imatinib Drugs 0.000 description 2
- KTUFNOKKBVMGRW-UHFFFAOYSA-N imatinib Chemical compound C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 KTUFNOKKBVMGRW-UHFFFAOYSA-N 0.000 description 2
- 230000008629 immune suppression Effects 0.000 description 2
- 230000036039 immunity Effects 0.000 description 2
- 230000003053 immunization Effects 0.000 description 2
- 238000002649 immunization Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 230000015788 innate immune response Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 229960004942 lenalidomide Drugs 0.000 description 2
- GOTYRUGSSMKFNF-UHFFFAOYSA-N lenalidomide Chemical compound C1C=2C(N)=CC=CC=2C(=O)N1C1CCC(=O)NC1=O GOTYRUGSSMKFNF-UHFFFAOYSA-N 0.000 description 2
- 229960003881 letrozole Drugs 0.000 description 2
- HPJKCIUCZWXJDR-UHFFFAOYSA-N letrozole Chemical compound C1=CC(C#N)=CC=C1C(N1N=CN=C1)C1=CC=C(C#N)C=C1 HPJKCIUCZWXJDR-UHFFFAOYSA-N 0.000 description 2
- GFIJNRVAKGFPGQ-LIJARHBVSA-N leuprolide Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 GFIJNRVAKGFPGQ-LIJARHBVSA-N 0.000 description 2
- 229960004338 leuprorelin Drugs 0.000 description 2
- 201000007270 liver cancer Diseases 0.000 description 2
- 208000014018 liver neoplasm Diseases 0.000 description 2
- 210000004698 lymphocyte Anatomy 0.000 description 2
- 229950008959 marimastat Drugs 0.000 description 2
- OCSMOTCMPXTDND-OUAUKWLOSA-N marimastat Chemical compound CNC(=O)[C@H](C(C)(C)C)NC(=O)[C@H](CC(C)C)[C@H](O)C(=O)NO OCSMOTCMPXTDND-OUAUKWLOSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229960001786 megestrol Drugs 0.000 description 2
- JBVNBBXAMBZTMQ-CEGNMAFCSA-N megestrol Chemical compound C1=CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)C)(O)[C@@]1(C)CC2 JBVNBBXAMBZTMQ-CEGNMAFCSA-N 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- CFCUWKMKBJTWLW-BKHRDMLASA-N mithramycin Chemical compound O([C@@H]1C[C@@H](O[C@H](C)[C@H]1O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1C)O[C@@H]1O[C@H](C)[C@@H](O)[C@H](O[C@@H]2O[C@H](C)[C@H](O)[C@H](O[C@@H]3O[C@H](C)[C@@H](O)[C@@](C)(O)C3)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@H]1C[C@@H](O)[C@H](O)[C@@H](C)O1 CFCUWKMKBJTWLW-BKHRDMLASA-N 0.000 description 2
- 229960004857 mitomycin Drugs 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000001565 modulated differential scanning calorimetry Methods 0.000 description 2
- 210000004985 myeloid-derived suppressor cell Anatomy 0.000 description 2
- 210000000822 natural killer cell Anatomy 0.000 description 2
- XWXYUMMDTVBTOU-UHFFFAOYSA-N nilutamide Chemical compound O=C1C(C)(C)NC(=O)N1C1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 XWXYUMMDTVBTOU-UHFFFAOYSA-N 0.000 description 2
- 229960002653 nilutamide Drugs 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 229960001592 paclitaxel Drugs 0.000 description 2
- 208000008443 pancreatic carcinoma Diseases 0.000 description 2
- 150000003905 phosphatidylinositols Chemical class 0.000 description 2
- 229960003171 plicamycin Drugs 0.000 description 2
- 230000004481 post-translational protein modification Effects 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 210000002307 prostate Anatomy 0.000 description 2
- 201000005825 prostate adenocarcinoma Diseases 0.000 description 2
- 229940034080 provenge Drugs 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 229960004622 raloxifene Drugs 0.000 description 2
- GZUITABIAKMVPG-UHFFFAOYSA-N raloxifene Chemical compound C1=CC(O)=CC=C1C1=C(C(=O)C=2C=CC(OCCN3CCCCC3)=CC=2)C2=CC=C(O)C=C2S1 GZUITABIAKMVPG-UHFFFAOYSA-N 0.000 description 2
- 229960004432 raltitrexed Drugs 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 125000005629 sialic acid group Chemical group 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 201000011549 stomach cancer Diseases 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 238000007910 systemic administration Methods 0.000 description 2
- 231100000057 systemic toxicity Toxicity 0.000 description 2
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 2
- 229940063683 taxotere Drugs 0.000 description 2
- WFWLQNSHRPWKFK-ZCFIWIBFSA-N tegafur Chemical compound O=C1NC(=O)C(F)=CN1[C@@H]1OCCC1 WFWLQNSHRPWKFK-ZCFIWIBFSA-N 0.000 description 2
- 229960001674 tegafur Drugs 0.000 description 2
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 2
- 229960001278 teniposide Drugs 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 2
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 description 2
- 229960000303 topotecan Drugs 0.000 description 2
- XFCLJVABOIYOMF-QPLCGJKRSA-N toremifene Chemical compound C1=CC(OCCN(C)C)=CC=C1C(\C=1C=CC=CC=1)=C(\CCCl)C1=CC=CC=C1 XFCLJVABOIYOMF-QPLCGJKRSA-N 0.000 description 2
- 229960005026 toremifene Drugs 0.000 description 2
- 241000701447 unidentified baculovirus Species 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 229960003048 vinblastine Drugs 0.000 description 2
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 2
- 229960004528 vincristine Drugs 0.000 description 2
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 2
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 2
- 229960004355 vindesine Drugs 0.000 description 2
- UGGWPQSBPIFKDZ-KOTLKJBCSA-N vindesine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1N=C1[C]2C=CC=C1 UGGWPQSBPIFKDZ-KOTLKJBCSA-N 0.000 description 2
- GBABOYUKABKIAF-GHYRFKGUSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-GHYRFKGUSA-N 0.000 description 2
- 229960002066 vinorelbine Drugs 0.000 description 2
- 230000009385 viral infection Effects 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- GEWDNTWNSAZUDX-WQMVXFAESA-N (-)-methyl jasmonate Chemical compound CC\C=C/C[C@@H]1[C@@H](CC(=O)OC)CCC1=O GEWDNTWNSAZUDX-WQMVXFAESA-N 0.000 description 1
- RWRDJVNMSZYMDV-SIUYXFDKSA-L (223)RaCl2 Chemical compound Cl[223Ra]Cl RWRDJVNMSZYMDV-SIUYXFDKSA-L 0.000 description 1
- DVSZKTAMJJTWFG-SKCDLICFSA-N (2e,4e,6e,8e,10e,12e)-docosa-2,4,6,8,10,12-hexaenoic acid Chemical compound CCCCCCCCC\C=C\C=C\C=C\C=C\C=C\C=C\C(O)=O DVSZKTAMJJTWFG-SKCDLICFSA-N 0.000 description 1
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical group OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 1
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 1
- ZIIUUSVHCHPIQD-UHFFFAOYSA-N 2,4,6-trimethyl-N-[3-(trifluoromethyl)phenyl]benzenesulfonamide Chemical compound CC1=CC(C)=CC(C)=C1S(=O)(=O)NC1=CC=CC(C(F)(F)F)=C1 ZIIUUSVHCHPIQD-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- GZJLLYHBALOKEX-UHFFFAOYSA-N 6-Ketone, O18-Me-Ussuriedine Natural products CC=CCC=CCC=CCC=CCC=CCC=CCCCC(O)=O GZJLLYHBALOKEX-UHFFFAOYSA-N 0.000 description 1
- 208000016557 Acute basophilic leukemia Diseases 0.000 description 1
- 208000036762 Acute promyelocytic leukaemia Diseases 0.000 description 1
- 208000010507 Adenocarcinoma of Lung Diseases 0.000 description 1
- 208000036832 Adenocarcinoma of ovary Diseases 0.000 description 1
- 206010001197 Adenocarcinoma of the cervix Diseases 0.000 description 1
- 208000034246 Adenocarcinoma of the cervix uteri Diseases 0.000 description 1
- 206010003571 Astrocytoma Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 101150017888 Bcl2 gene Proteins 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 206010005949 Bone cancer Diseases 0.000 description 1
- 208000018084 Bone neoplasm Diseases 0.000 description 1
- 101000678198 Bos taurus Alpha-1-acid glycoprotein Proteins 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 208000011691 Burkitt lymphomas Diseases 0.000 description 1
- 102100024217 CAMPATH-1 antigen Human genes 0.000 description 1
- 108010065524 CD52 Antigen Proteins 0.000 description 1
- 229940045513 CTLA4 antagonist Drugs 0.000 description 1
- 108090000565 Capsid Proteins Proteins 0.000 description 1
- 208000017897 Carcinoma of esophagus Diseases 0.000 description 1
- 108010067225 Cell Adhesion Molecules Proteins 0.000 description 1
- 102000016289 Cell Adhesion Molecules Human genes 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 102100023321 Ceruloplasmin Human genes 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 102100027723 Endogenous retrovirus group K member 6 Rec protein Human genes 0.000 description 1
- 101710091045 Envelope protein Proteins 0.000 description 1
- 102000030914 Fatty Acid-Binding Human genes 0.000 description 1
- 201000008808 Fibrosarcoma Diseases 0.000 description 1
- 102100027581 Forkhead box protein P3 Human genes 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 201000010915 Glioblastoma multiforme Diseases 0.000 description 1
- 108090000369 Glutamate Carboxypeptidase II Proteins 0.000 description 1
- 101000861452 Homo sapiens Forkhead box protein P3 Proteins 0.000 description 1
- 101001057504 Homo sapiens Interferon-stimulated gene 20 kDa protein Proteins 0.000 description 1
- 101001055144 Homo sapiens Interleukin-2 receptor subunit alpha Proteins 0.000 description 1
- 101100020155 Homo sapiens MKI67 gene Proteins 0.000 description 1
- 101000934338 Homo sapiens Myeloid cell surface antigen CD33 Proteins 0.000 description 1
- 101001117317 Homo sapiens Programmed cell death 1 ligand 1 Proteins 0.000 description 1
- 102000006992 Interferon-alpha Human genes 0.000 description 1
- 108010047761 Interferon-alpha Proteins 0.000 description 1
- 102100026878 Interleukin-2 receptor subunit alpha Human genes 0.000 description 1
- 101150003872 KLK3 gene Proteins 0.000 description 1
- 208000031671 Large B-Cell Diffuse Lymphoma Diseases 0.000 description 1
- 208000006552 Lewis Lung Carcinoma Diseases 0.000 description 1
- 208000028018 Lymphocytic leukaemia Diseases 0.000 description 1
- 101150028629 MKI67 gene Proteins 0.000 description 1
- 101710085938 Matrix protein Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 101710127721 Membrane protein Proteins 0.000 description 1
- 206010027480 Metastatic malignant melanoma Diseases 0.000 description 1
- 206010050513 Metastatic renal cell carcinoma Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 102100035971 Molybdopterin molybdenumtransferase Human genes 0.000 description 1
- 101710119577 Molybdopterin molybdenumtransferase Proteins 0.000 description 1
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 1
- 102100025243 Myeloid cell surface antigen CD33 Human genes 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 1
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061328 Ovarian epithelial cancer Diseases 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 102000015439 Phospholipases Human genes 0.000 description 1
- 108010064785 Phospholipases Proteins 0.000 description 1
- 102000007982 Phosphoproteins Human genes 0.000 description 1
- 108010089430 Phosphoproteins Proteins 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 208000009052 Precursor T-Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 1
- 102100024216 Programmed cell death 1 ligand 1 Human genes 0.000 description 1
- 101710188315 Protein X Proteins 0.000 description 1
- 108010026552 Proteome Proteins 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 208000016624 Retinal neoplasm Diseases 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 1
- 102000040739 Secretory proteins Human genes 0.000 description 1
- 108091058545 Secretory proteins Proteins 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- 241000256251 Spodoptera frugiperda Species 0.000 description 1
- 208000029052 T-cell acute lymphoblastic leukemia Diseases 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- 206010057644 Testis cancer Diseases 0.000 description 1
- 206010052779 Transplant rejections Diseases 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 208000002495 Uterine Neoplasms Diseases 0.000 description 1
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 1
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 1
- 108010093857 Viral Hemagglutinins Proteins 0.000 description 1
- 108010067390 Viral Proteins Proteins 0.000 description 1
- 229920002494 Zein Polymers 0.000 description 1
- 108010055615 Zein Proteins 0.000 description 1
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 1
- 229960003697 abatacept Drugs 0.000 description 1
- GZOSMCIZMLWJML-VJLLXTKPSA-N abiraterone Chemical compound C([C@H]1[C@H]2[C@@H]([C@]3(CC[C@H](O)CC3=CC2)C)CC[C@@]11C)C=C1C1=CC=CN=C1 GZOSMCIZMLWJML-VJLLXTKPSA-N 0.000 description 1
- 229960000853 abiraterone Drugs 0.000 description 1
- UVIQSJCZCSLXRZ-UBUQANBQSA-N abiraterone acetate Chemical compound C([C@@H]1[C@]2(C)CC[C@@H]3[C@@]4(C)CC[C@@H](CC4=CC[C@H]31)OC(=O)C)C=C2C1=CC=CN=C1 UVIQSJCZCSLXRZ-UBUQANBQSA-N 0.000 description 1
- 229960004103 abiraterone acetate Drugs 0.000 description 1
- 201000011186 acute T cell leukemia Diseases 0.000 description 1
- 208000009956 adenocarcinoma Diseases 0.000 description 1
- 229960000548 alemtuzumab Drugs 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 238000009175 antibody therapy Methods 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 230000005975 antitumor immune response Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- 229960005347 belatacept Drugs 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 201000001531 bladder carcinoma Diseases 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000004271 bone marrow stromal cell Anatomy 0.000 description 1
- 201000008873 bone osteosarcoma Diseases 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 201000008274 breast adenocarcinoma Diseases 0.000 description 1
- 201000008275 breast carcinoma Diseases 0.000 description 1
- BMQGVNUXMIRLCK-OAGWZNDDSA-N cabazitaxel Chemical compound O([C@H]1[C@@H]2[C@]3(OC(C)=O)CO[C@@H]3C[C@@H]([C@]2(C(=O)[C@H](OC)C2=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=3C=CC=CC=3)C[C@]1(O)C2(C)C)C)OC)C(=O)C1=CC=CC=C1 BMQGVNUXMIRLCK-OAGWZNDDSA-N 0.000 description 1
- 229960001573 cabazitaxel Drugs 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 230000034303 cell budding Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 201000006662 cervical adenocarcinoma Diseases 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 201000010897 colon adenocarcinoma Diseases 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 230000024203 complement activation Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000004940 costimulation Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 235000020669 docosahexaenoic acid Nutrition 0.000 description 1
- KAUVQQXNCKESLC-UHFFFAOYSA-N docosahexaenoic acid (DHA) Natural products COC(=O)C(C)NOCC1=CC=CC=C1 KAUVQQXNCKESLC-UHFFFAOYSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- JWJOTENAMICLJG-QWBYCMEYSA-N dutasteride Chemical compound O=C([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)N[C@@H]4CC3)C)CC[C@@]21C)NC1=CC(C(F)(F)F)=CC=C1C(F)(F)F JWJOTENAMICLJG-QWBYCMEYSA-N 0.000 description 1
- 229960004199 dutasteride Drugs 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229960004671 enzalutamide Drugs 0.000 description 1
- WXCXUHSOUPDCQV-UHFFFAOYSA-N enzalutamide Chemical compound C1=C(F)C(C(=O)NC)=CC=C1N1C(C)(C)C(=O)N(C=2C=C(C(C#N)=CC=2)C(F)(F)F)C1=S WXCXUHSOUPDCQV-UHFFFAOYSA-N 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 201000005619 esophageal carcinoma Diseases 0.000 description 1
- 229960005309 estradiol Drugs 0.000 description 1
- 229930182833 estradiol Natural products 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 208000021045 exocrine pancreatic carcinoma Diseases 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 208000024519 eye neoplasm Diseases 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 108091022862 fatty acid binding Proteins 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 201000006585 gastric adenocarcinoma Diseases 0.000 description 1
- 208000010749 gastric carcinoma Diseases 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 229960003297 gemtuzumab ozogamicin Drugs 0.000 description 1
- 238000012637 gene transfection Methods 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000024348 heart neoplasm Diseases 0.000 description 1
- 210000002443 helper t lymphocyte Anatomy 0.000 description 1
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- 210000004408 hybridoma Anatomy 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 230000006028 immune-suppresssive effect Effects 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 108700010900 influenza virus proteins Proteins 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000002601 intratumoral effect Effects 0.000 description 1
- 229960005386 ipilimumab Drugs 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 201000005249 lung adenocarcinoma Diseases 0.000 description 1
- 201000005296 lung carcinoma Diseases 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 230000001926 lymphatic effect Effects 0.000 description 1
- 210000003563 lymphoid tissue Anatomy 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 208000026037 malignant tumor of neck Diseases 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 108010082117 matrigel Proteins 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 208000021039 metastatic melanoma Diseases 0.000 description 1
- GEWDNTWNSAZUDX-UHFFFAOYSA-N methyl 7-epi-jasmonate Natural products CCC=CCC1C(CC(=O)OC)CCC1=O GEWDNTWNSAZUDX-UHFFFAOYSA-N 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 210000003098 myoblast Anatomy 0.000 description 1
- OHDXDNUPVVYWOV-UHFFFAOYSA-N n-methyl-1-(2-naphthalen-1-ylsulfanylphenyl)methanamine Chemical compound CNCC1=CC=CC=C1SC1=CC=CC2=CC=CC=C12 OHDXDNUPVVYWOV-UHFFFAOYSA-N 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 229960003301 nivolumab Drugs 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- HEGSGKPQLMEBJL-RKQHYHRCSA-N octyl beta-D-glucopyranoside Chemical compound CCCCCCCCO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HEGSGKPQLMEBJL-RKQHYHRCSA-N 0.000 description 1
- 201000008106 ocular cancer Diseases 0.000 description 1
- 229960002450 ofatumumab Drugs 0.000 description 1
- 235000020660 omega-3 fatty acid Nutrition 0.000 description 1
- 229940012843 omega-3 fatty acid Drugs 0.000 description 1
- 239000006014 omega-3 oil Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229950004023 orteronel Drugs 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 208000013371 ovarian adenocarcinoma Diseases 0.000 description 1
- 201000006588 ovary adenocarcinoma Diseases 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 102000007863 pattern recognition receptors Human genes 0.000 description 1
- 108010089193 pattern recognition receptors Proteins 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 229960002087 pertuzumab Drugs 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 208000028591 pheochromocytoma Diseases 0.000 description 1
- 210000001778 pluripotent stem cell Anatomy 0.000 description 1
- 229920000111 poly(butyric acid) Polymers 0.000 description 1
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 1
- 229920001481 poly(stearyl methacrylate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229920001290 polyvinyl ester Polymers 0.000 description 1
- 229920001289 polyvinyl ether Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229940092814 radium (223ra) dichloride Drugs 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 210000003289 regulatory T cell Anatomy 0.000 description 1
- 201000010174 renal carcinoma Diseases 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 201000006845 reticulosarcoma Diseases 0.000 description 1
- 208000029922 reticulum cell sarcoma Diseases 0.000 description 1
- 201000008933 retinal cancer Diseases 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 1
- 229960004641 rituximab Drugs 0.000 description 1
- 102200082402 rs751610198 Human genes 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 230000003393 splenic effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 201000000498 stomach carcinoma Diseases 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000002626 targeted therapy Methods 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- 229960005267 tositumomab Drugs 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 229950007217 tremelimumab Drugs 0.000 description 1
- 230000005747 tumor angiogenesis Effects 0.000 description 1
- 230000005748 tumor development Effects 0.000 description 1
- 208000010570 urinary bladder carcinoma Diseases 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 229940093612 zein Drugs 0.000 description 1
- 239000005019 zein Substances 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/385—Haptens or antigens, bound to carriers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
- A61K39/001102—Receptors, cell surface antigens or cell surface determinants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
- A61K39/001102—Receptors, cell surface antigens or cell surface determinants
- A61K39/001103—Receptors for growth factors
- A61K39/001106—Her-2/neu/ErbB2, Her-3/ErbB3 or Her 4/ErbB4
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
- A61K39/001102—Receptors, cell surface antigens or cell surface determinants
- A61K39/001124—CD20
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
- A61K39/001102—Receptors, cell surface antigens or cell surface determinants
- A61K39/001129—Molecules with a "CD" designation not provided for elsewhere
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
- A61K39/001169—Tumor associated carbohydrates
- A61K39/00117—Mucins, e.g. MUC-1
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
- A61K39/001169—Tumor associated carbohydrates
- A61K39/001172—Sialyl-Thomson-nouvelle antigen [sTn]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
- A61K39/001169—Tumor associated carbohydrates
- A61K39/001173—Globo-H
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
- A61K39/00118—Cancer antigens from embryonic or fetal origin
- A61K39/001182—Carcinoembryonic antigen [CEA]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
- A61K39/00119—Melanoma antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
- A61K39/00119—Melanoma antigens
- A61K39/001191—Melan-A/MART
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
- A61K39/001193—Prostate associated antigens e.g. Prostate stem cell antigen [PSCA]; Prostate carcinoma tumor antigen [PCTA]; PAP or PSGR
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
- A61K39/001193—Prostate associated antigens e.g. Prostate stem cell antigen [PSCA]; Prostate carcinoma tumor antigen [PCTA]; PAP or PSGR
- A61K39/001194—Prostate specific antigen [PSA]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
- A61K39/001193—Prostate associated antigens e.g. Prostate stem cell antigen [PSCA]; Prostate carcinoma tumor antigen [PCTA]; PAP or PSGR
- A61K39/001195—Prostate specific membrane antigen [PSMA]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/39—Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/515—Animal cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/515—Animal cells
- A61K2039/5152—Tumor cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/525—Virus
- A61K2039/5258—Virus-like particles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55516—Proteins; Peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55522—Cytokines; Lymphokines; Interferons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55522—Cytokines; Lymphokines; Interferons
- A61K2039/55527—Interleukins
- A61K2039/55533—IL-2
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55522—Cytokines; Lymphokines; Interferons
- A61K2039/55527—Interleukins
- A61K2039/55538—IL-12
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55561—CpG containing adjuvants; Oligonucleotide containing adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55572—Lipopolysaccharides; Lipid A; Monophosphoryl lipid A
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/60—Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
- A61K2039/6018—Lipids, e.g. in lipopeptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/62—Medicinal preparations containing antigens or antibodies characterised by the link between antigen and carrier
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/62—Medicinal preparations containing antigens or antibodies characterised by the link between antigen and carrier
- A61K2039/627—Medicinal preparations containing antigens or antibodies characterised by the link between antigen and carrier characterised by the linker
Definitions
- ProvengeTM is a recently FDA-approved autologous cellular immunotherapy treatment.
- Peripheral blood leukocytes of a subject are harvested via leukapheresis. These enriched monocytes are incubated with prostatic acid phosphatase (PAP) conjugated to cytokine granulocyte macrophage colony stimulating factor (GM-CSF).
- PAP prostatic acid phosphatase
- GM-CSF cytokine granulocyte macrophage colony stimulating factor
- GM-CSF cytokine granulocyte macrophage colony stimulating factor
- GM-CSF cytokine granulocyte macrophage colony stimulating factor
- GM-CSF cytokine granulocyte macrophage colony stimulating factor
- GM-CSF cytokine granulocyte macrophage colony stimulating factor
- GM-CSF cytokine granulocyte macrophage colony stimulating factor
- GM-CSF cytokine granulocyte macrophag
- B7-1 (also known as CD80) is a T cell costimulatory molecule that can be anchored in to autologous cancer cells to stimulate immune responses. McHugh et al., report the construction, purification and functional reconstitution of a glycolipid anchored form of B7-1 (CD80) on tumor cell membranes. Proc. Natl. Acad. Sci. USA 1995; 92:8059-8063. See also U.S. Pat. No. 6,491,925. Glycosyl phosphatidylinositol anchored B7-1 (GPI-B7-1) molecules have been incorporated onto tumor cells and isolated tumor cell membranes to provide costimulation for allogenic T cell proliferation.
- Glycosyl phosphatidylinositol anchored B7-1 (GPI-B7-1) molecules have been incorporated onto tumor cells and isolated tumor cell membranes to provide costimulation for allogenic T cell proliferation.
- VLP virus-like particle
- a method of tumor treatment or tumor vaccination generally comprises applying to a human being in need thereof a tumor therapeutic composition or tumor vaccine defined herein.
- the tumor therapeutic composition or tumor vaccine can be produced by protein transfer of glycosyl-phosphatidylinositol (GPI)-anchored immunostimulatory or costimulatory molecules.
- GPI glycosyl-phosphatidylinositol
- the tumor therapeutic composition or tumor vaccine comprises a live tumor cell or tumor cell membranes that is or are modified by protein transfer to express one or more GPI-anchored immunostimulatory or costimulatory molecules.
- the tumor therapeutic composition or tumor vaccine can be prepared by a method that comprises obtaining one or more GPI-anchored immunostimulatory or costimulatory molecules, and transferring the GPI-anchored immunostimulatory or costimulatory molecules onto a tumor cell or isolated tumor cell membranes by protein transfer.
- the disclosure relates to non-naturally occurring particle comprising, a lipid membrane; a B7-1 and/or B7-2 molecule anchored to the lipid membrane on the exterior of the particle; and an antigen molecule such as a tumor specific antigen or cancer marker anchored to the lipid membrane on the exterior of the particle.
- the particle further comprises an adjuvant molecule anchored to the lipid membrane on the exterior of the particle wherein the adjuvant molecule and antigen molecule are not the same molecule.
- the adjuvant molecule is selected from IL-2, IL-12, ICAM1 GM-CSF, flagellin, unmethylated, CpG oligonucleotide, lipopolysaccharides, lipid A, and heat stable antigen (HSA).
- the lipid membrane may be a phospholipid monolayer or phospholipid bilayer.
- the particle is selected from a cell, allogeneic or autologous cancer cell or its membrane fragments or vesicles, liposome, virosome, micelle, polymer, and virus like particle.
- the B7-1 molecule is anchored to the lipid membrane on the exterior of the particle through a conjugated glycosyl-phosphatidylinositol, phospholipid, glycolipid, triglyceride, saturated or unsaturated fatty acid, or other lipophilic molecule.
- the antigen molecule such as a tumor associated antigen or cancer marker is anchored to the lipid membrane on the exterior of the particle through a conjugated glycosyl-phosphatidylinositol, phospholipid, glycolipid, triglyceride, saturated or unsaturated fatty acid, or other lipophilic molecule.
- the adjuvant molecule is anchored to the lipid membrane on the exterior of the particle through a conjugated glycosyl-phosphatidylinositol, phospholipid, glycolipid, triglyceride, saturated or unsaturated fatty acid, or other lipophilic molecule.
- Particles comprising membranes such as tumor membranes carrying tumor antigens and immunostimulatory stimulatory molecules can be modified by incubating with lipophilic adjuvants such as lipopolysaccharides or an immunostimulatory unmethylated CpG oligonucleotides lipid conjugate.
- lipophilic adjuvants such as lipopolysaccharides or an immunostimulatory unmethylated CpG oligonucleotides lipid conjugate.
- antigen is a cancer marker molecule selected from HER-2, MUC-1, mucin antigens TF, Tn, STn, glycolipid globo H antigen, prostate-specific antigen, prostate-specific membrane antigen, early prostate cancer antigen-2 (EPCA-2), BCL-2, MAGE antigens such as CT7, MAGE-A3 and MAGE-A4, G-protein coupled estrogen receptor 1, CA15-3, CA19-9, CA 72-4, CA-125, carcinoembryonic antigen, CD20, CD31, CD34, PTPRC (CD45), CD99, CD117, melanoma-associated antigen (TA-90), peripheral myelin protein 22 (PMP22), epithelial membrane proteins (EMP-1, -2, and -3), HMB-45 antigen, MART-1 (Melan-A), S100A1, S100B and gp100:209-217(210M).
- MAGE antigens such as CT7, MAGE-A3 and MAGE-A4, G-protein
- the disclosure relates to virus like particles comprising B7-1 and/or B7-2 molecule anchored to a lipid membrane on the exterior of the particle and an antigen molecule anchored to the lipid membrane on the exterior of the particle.
- the antigen molecule is a cancer marker or tumor associated antigen or tumor-specific antigen selected from HER-2, MKI67, prostatic acid phosphatase (PAP), prostate-specific antigen (PSA), prostate-specific membrane antigen, early prostate cancer antigen-2 (EPCA-2), BCL-2, MAGE antigens, antigens comprising a Mage Homology Domain (MHD), MAGE-1, CT7, MAGE-A3 and MAGE-A4, ERK5, G-protein coupled estrogen receptor 1, CA15-3, CA19-9, CA 72-4, CA-125, carcinoembryonic antigen, CD20, CD31, CD34, PTPRC (CD45), CD99, CD117, melanoma-associated antigen (TA-90), peripheral myelin
- the virus like particle further comprising an adjuvant molecule anchored to a lipid membrane on the exterior of the particle wherein the adjuvant molecule and the antigen molecule are not the same molecule.
- the adjuvant molecule is selected from is IL-2, IL-12, ICAM1 GM-CSF, flagellin, unmethylated, CpG oligonucleotide, lipopolysaccharides, lipid A, and heat stable antigen (HSA).
- the disclosure relates to methods of treating cancer comprising administering an effective amount of a particle or a virus like particle as disclosed herein to a subject at risk of or diagnosed with cancer or a tumor optionally in combination with anti-CTLA-4 antibodies such as abatacept, belatacept, ipilimumab, tremelimumab, anti-PD-1 and PDL1 antibodies such as nivolumab, unmethylated CpG oligonucleotide, methyl jasmonate, cyclophosphamide, gemcitabine or other immunosuppression blocker or other anticancer agent.
- the subject is a human subject and the virus like particle comprises a B7-1 and/or B7-2 molecule anchored to a lipid membrane on the exterior of the particle and an antigen molecule wherein the antigen molecule is a viral protein.
- anticancer agents contemplated include gefitinib, erlotinib, docetaxel, cis-platin, 5-fluorouracil, gemcitabine, tegafur, raltitrexed, methotrexate, cytosine arabinoside, hydroxyurea, adriamycin, bleomycin, doxorubicin, daunomycin, epirubicin, idarubicin, mitomycin-C, dactinomycin and mithramycin, vincristine, vinblastine, vindesine, vinorelbine taxol, taxotere, etoposide, teniposide, amsacrine, topotecan, camptothecin bortezomib anegrilide, tamoxifen, toremifene, raloxifene, droloxifene, iodoxyfene fulvestrant, bicalutamide, flutamide
- the viral like particle has an hemagglutinin selected from influenza H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, and H16 optionally in combination with or individually influenza N1, N2, N3, N4, N5, N6, N7, and N8.
- influenza H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, and H16 optionally in combination with or individually influenza N1, N2, N3, N4, N5, N6, N7, and N8.
- the virus protein is an HIV envelope protein selected from gp 41, gp 120, and gp 160.
- the disclosure relates to methods of treating or preventing a viral infection comprising administering an effective amount of a virus like particle disclosed herein to a subject at risk of, exhibiting symptoms of, or diagnosed with a viral infection.
- the disclosure relates to particles comprising a cancer marker made by the process of mixing a cancer marker conjugated to a lipophilic moiety and a particle comprising a lipid membrane.
- the cancer marker is HER-2 or PSA or PAP.
- the disclosure relates to particles comprising a cancer marker and B7-1 and/or B7-2 made by the process of mixing a B7-1 and/or B7-2 conjugated to a lipophilic moiety and a particle comprising a lipid membrane and a cancer marker.
- the disclosure relates to methods of treating or preventing breast cancer comprising administering an effective amount of a particle comprising B7-1 and/or B7-2, GM-CSF, and HER-2 to a subject in need thereof.
- the method further comprises analyzing the subject for overexpression of HER-2, by measuring, detecting, sequencing, hybridizing with a probe, HER-2 polypeptide or a nucleic acid indicative of HER-2 expression, or sequencing a nucleic acid associated with HER-2, on a cancer cell or tumor cell isolated from the subject.
- the disclosure relates to methods of treating or preventing prostate cancer comprising administering an effective amount of a particle comprising B7-1 and/or B7-2, GM-CSF, and PSA or PAP to a subject in need thereof.
- the disclosure relates to methods of treating or preventing prostate cancer comprising administering an effective amount of a particle comprising B7-1 and/or B7-2, GM-CSF, IL-12, and PSA or PAP to a subject in need thereof.
- compositions and method further comprises administering an immunostimulatory amount of particles disclosed herein in combination with an anticancer agent, individually as single agents and/or in a single pharmaceutical composition.
- the anticancer agent may be estradiol, tamoxifen, cetuximab and a HER-2 antibody, humanized antibody, or human chimera such as trastuzumab, pertuzumab.
- the HER-2 antibodies may be administered before or after immune stimulation with particle.
- the anticancer agent may be docetaxel, cabazitaxel, bevacizumab, alpharadin thalidomide, prednisone, abiraterone, finasteride and dutasteride, MDV3100, orteronel (TAK-700), omega-3 fatty acids such as ethyl esters of eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA) or combinations thereof such as bevacizumab, docetaxel, thalidomide, and prednisone or abiraterone acetate in combination with prednisone.
- omega-3 fatty acids such as ethyl esters of eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA) or combinations thereof
- bevacizumab docetaxel
- thalidomide thalidomide
- the tumor therapeutic composition or tumor vaccine comprises a microparticle with a lipid membrane encapsulating tumor antigens or peptides and one or more anchored immunostimulatory or costimulatory molecules expressed on the surface of the particle.
- the tumor therapeutic composition or tumor vaccine can be prepared by a method that comprises obtaining one or more anchored immunostimulatory or costimulatory molecules, and transferring the anchored immunostimulatory or costimulatory molecules onto a particle encapsulating at least one tumor antigen or peptide, tumor lysate, tumor membranes, or combinations thereof by protein transfer.
- the microparticles can be formed of any biocompatible polymer capable of incorporating GPI-anchored immunostimulatory or costimulatory molecules.
- biocompatible polymers include, but are not limited to, polyvinyl alcohols, polyvinyl ethers, polyamides, polyvinyl esters, polyvinylpyrrolidone, polyglycolides, polyurethanes, allyl celluloses, cellulose esters, hydroxypropyl derivatives of celluloses and cellulose esters, preformed polymers of poly alkyl acrylates, polyethylene, polystyrene, polyactic acid, polyglycolic acid, poly(lactide-co-glycolide), polycaprolactones, polybutyric acids, polyvaleric acid and copolymers thereof, alginates, chitosans, gelatin, albumin, zein and combinations thereof.
- Anchored immunostimulatory or costimulatory molecules can be obtained by expressing the GPI-anchored immunostimulatory or costimulatory molecules in a cell, and isolating the GPI-anchored immunostimulatory or costimulatory molecules.
- the anchored immunostimulatory or costimulatory molecules can be any substance that stimulates or costimulates immune reaction against a tumor cell that is capable of being expressed in a cell.
- the immunostimulatory or costimulatory molecules useful here can be a cytokine molecule.
- a useful cytokine can be, for example, one or more of cytokines IL-2, IL-4, IL-6, IL-12, IL-15, IL-18, IL-19, granulocyte-macrophage colony stimulating factor (GM-CSF), and combinations thereof.
- the immunostimulatory or costimulatory molecules can be, for example, the immunostimulatory or costimulatory molecules useful here can be a cytokine molecule.
- the immunostimulatory or costimulatory molecules useful here can be, for example, B7-1, B7-2 and an intercellular adhesion molecule such as CD40L, ICAM-1, ICAM-2, and ICAM-3.
- particle may be a wild type cell, cancer cell or immortalized cell.
- the immunostimulatory or costimulatory molecules can be used alone or together and can be used in conjunction with antibody fusion proteins.
- the tumor therapeutic composition or tumor vaccine described herein can be used therapeutically or prophylactically for the treatment or prevention of a tumor.
- Representative tumors can be treated or prevented include, but are not limited to, breast cancer, prostate cancer, lung cancer, melanoma, liver cancer, leukemia, lymphoma, myeloma, colorectal cancer, gastric cancer, bladder carcinoma, esophageal carcinoma, head & neck squamous-cell carcinoma, sarcomas, kidney cancers, ovarian and uterus cancers, adenocarcinoma, glioma, and plasmacytoma, and combinations thereof.
- the vaccine or therapeutic composition described herein can be GPI-anchored cytokine such as GPI-IL-2 and GPI-IL-12 alone or in combination with GPI-anchored costimulatory molecules such as GPI-B7-1, GPI-B7-2, GPI-ICAM-1, GPI-ICAM-2 and GPI-ICAM-3.
- GPI-anchored cytokine such as GPI-IL-2 and GPI-IL-12 alone or in combination with GPI-anchored costimulatory molecules such as GPI-B7-1, GPI-B7-2, GPI-ICAM-1, GPI-ICAM-2 and GPI-ICAM-3.
- GPI-anchored costimulatory molecules such as GPI-B7-1, GPI-B7-2, GPI-ICAM-1, GPI-ICAM-2 and GPI-ICAM-3.
- the vaccine and therapeutic composition can be biocompatible microparticles such as biodegradable microparticles modified with GPI-anchored immunostimulatory molecules such as IL-2, IL-4, IL-6, IL-12, ICAM-1, ICAM-2, ICAM-3, B7-1, B7-2, CD40L, IL-15, IL-18, IL-19, granulocyte-macrophage colony stimulating factor (GM-CSF), and combinations thereof.
- GPI-anchored immunostimulatory molecules such as IL-2, IL-4, IL-6, IL-12, ICAM-1, ICAM-2, ICAM-3, B7-1, B7-2, CD40L, IL-15, IL-18, IL-19, granulocyte-macrophage colony stimulating factor (GM-CSF), and combinations thereof.
- GPI-anchored immunostimulatory molecules such as IL-2, IL-4, IL-6, IL-12, ICAM-1, ICAM-2, ICAM-3, B7-1, B7-2, CD40L,
- the vaccine or therapeutic compositions described herein can be tumor cells or membranes modified by protein transfer with GPI-anchored cytokines alone or/and in combination with other cytokines or/and other costimulatory molecules.
- One such embodiment can be, for example, tumor membranes modified with purified GPI-IL-12.
- particles like inactivated or partially attenuated virus, bacteria and virus-like particles can be modified to express immunostimulatory molecules by protein transfer with GPI-anchored cytokines and immunostimulatory molecules.
- Vaccines and therapeutic compositions prepared in this manner can be used for preventing or treating viral, bacterial, or parasitic diseases or disorders.
- the vaccine and therapeutic compositions described herein can be used for treating autoimmune disorders.
- membrane anchored cytokines such as IL-10 and TGF-beta can also be used to induce tolerance or to suppress immunity which can be used in treating autoimmune diseases and transplant rejection.
- FIG. 1 illustrates the expression tumor associated antigens and immunostimulatory molecules onto particles containing a lipid membrane, e.g., CHO cells and envelope VLPs, using GPI anchoring for protein transfer.
- a lipid membrane e.g., CHO cells and envelope VLPs
- FIG. 2 shows data on protein transfer of (A) GPI-ICAM1 or (B) GPI-IL-12 onto sheep RBCs. Red: Background control; Black: Protein transfer of GPI-ISMs.
- FIG. 3 shows data on Concentration dependent protein transfer of (A) GPI-ICAM-1 or (B) GPI-IL-12 onto H5-VLPs.
- FIG. 4 shows data on the kinetics of protein transfer of GPI-ICAM-1 onto H5 influenza VLPs.
- FIG. 5 shows data on the specificity of protein transfer of GPI-ICAM1 onto VLPs.
- FIG. 6 shows data on the inhibition of protein transfer of GPI-ICAM 1 via fatty acid binding proteins.
- FIG. 7 shows data on the incorporation of two GPI-ISMs onto VLPs simultaneously.
- FIG. 8 shows a EM of VLPs (A) before and (B) after protein transfer with GPI-ICAM1.
- FIG. 9 shows data on the direct challenge with wild-type or GPI cytokine transfected 4T07 cells.
- FIG. 10 shows tumor size in individual mice post direct challenge with wild-type or
- FIG. 11 illustrates the production of extracellular portion of hHER-2 (hHER-2ECD).
- FIG. 12 shows flow cytometry analysis of CHO cells expressing GPI-human HER-2 (hHER-2-CD59) using TA1 mAb.
- Embodiments of the present disclosure will employ, unless otherwise indicated, techniques of medicine, organic chemistry, biochemistry, molecular biology, pharmacology, and the like, which are within the skill of the art. Such techniques are explained fully in the literature.
- the term “combination with” when used to describe administration with an additional treatment means that the agent may be administered prior to, together with, or after the additional treatment, or a combination thereof.
- the terms “prevent” and “preventing” include the prevention of the recurrence, spread or onset. It is not intended that the present disclosure be limited to complete prevention. In some embodiments, the onset is delayed, or the severity is reduced.
- the terms “treat” and “treating” are not limited to the case where the subject (e.g. patient) is cured and the disease is eradicated. Rather, embodiments of the present disclosure also contemplate treatment that merely reduces symptoms, and/or delays disease progression.
- Subject refers any animal, preferably a human patient, livestock, rodent, monkey or domestic pet.
- protein and “polypeptide” refer to compounds comprising amino acids joined via peptide bonds and are used interchangeably.
- amino acid sequence refers to an amino acid sequence of a protein molecule.
- polypeptide or “protein” are not meant to limit the amino acid sequence to the deduced amino acid sequence, but such as amino acid deletions, additions, and modifications such as glycolsylations and addition of lipid moieties or other post-translational modifications.
- the protein generally refers to the most frequent human isoform, variant, mutated form, or protein with substantially identity to the full-length or portion thereof. Typically, an appropriate fragment is of the extracellular domain.
- portion when used in reference to a protein (as in “a portion of a given protein”) refers to fragments of that protein.
- the fragments may range in size from four amino acid residues or more than twenty or thirty or the entire amino sequence minus one amino acid.
- reference sequence is a defined sequence used as a basis for a sequence comparison; a reference sequence may be a subset of a larger sequence, for example, as a segment of a full-length amino acid sequence of a protein. Generally, a reference sequence is at least 20 amino acids in length, frequently at least 25 amino acids in length, and often at least 50 amino acids in length.
- two proteins may each (1) comprise a sequence (i.e., a portion of the complete amino acid sequence) that is similar between the two protein, and (2) may further comprise a sequence that is divergent between the two proteins, sequence comparisons between two (or more) proteins are typically performed by comparing sequences of the two proteins over a “comparison window” to identify and compare local regions of sequence similarity.
- a “comparison window”, as used herein, refers to a conceptual segment of at least 20 contiguous nucleotide positions wherein a sequence may be compared to a reference sequence of at least 20 contiguous amino acids and wherein the portion of the sequence in the comparison window may comprise additions or deletions (i.e., gaps) of 20 percent or less as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences.
- Optimal alignment of sequences for aligning a comparison window may be conducted by the local homology algorithm of Smith and Waterman (Smith and Waterman, Adv. Appl. Math. 2: 482 (1981)) by the homology alignment algorithm of Needleman and Wunsch (Needleman and Wunsch, J. Mol. Biol.
- sequence identity means that two sequences are identical (i.e., on a nucleotide-by-nucleotide basis) over the window of comparison.
- percentage of sequence identity is calculated by comparing two optimally aligned sequences over the window of comparison, determining the number of positions at which the identical amino acids occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity.
- substantially identical denotes a characteristic of a sequence, wherein the protein comprises a sequence that has at least 85 percent sequence identity, preferably at least 90 to 95 percent sequence identity, more usually at least 99 percent sequence identity as compared to a reference sequence over a comparison window of at least 20 amino acid positions, frequently over a window of at least 25-50 nucleotides, wherein the percentage of sequence identity is calculated by comparing the reference sequence to the sequence which may include deletions or additions which total 20 percent or less of the reference sequence over the window of comparison.
- the disclosure relates to non-naturally occurring particle comprising, a B7-1 and/or B7-2 molecule anchored on the exterior of the particle; and an antigen molecule such as a tumor specific antigen or cancer marker anchored to the lipid membrane on the exterior of the particle.
- the B7-1 and or B7-2 or antigen, or protein may be anchored onto the membrane of the particle through a variety of linkages, such as lipid palmatic acid, biotin-avidin interaction, or a GPI-anchor.
- a contemplated sequence of B7-1 is MGHTRRQGTS PSKCPYLNFF QLLVLAGLSH FCSGVIHVTK EVKEVATLSC GHNVSVEELAQTRIYWQKEK KMVLTMMSGD MNIWPEYKNR TIFDITNNLS IVILALRPSD EGTYECVVLK YEKDAFKREH LAEVTLSVKA DFPTPSISDF EIPTSNIRRI ICSTSGGFPE PHLSWLENGE ELNAINTTVS QDPETELYAV SSKLDFNMTT NHSFMCLIKY GHLRVNQTFN WNTTKQEHFP DNLLPSWAIT LISVNGIFVI CCLTYCFAPR CRERRRNERL RRESVRPV (SEQ ID NO: 1) or fragment thereof.
- a contemplated sequence is VIHVTKEVKE VATLSCGHNV SVEELAQTRI YWQKEKKMVL TMMSGDMNIW PEYKNRTIFD ITNNLSIVIL ALRPSDEGTY ECVVLKYEKD AFKREHLAEV TLSVKADFPT PSISDFEIPT SNIRRIICST SGGFPEPHLS WLENGEELNA INTTVSQDPE TELYAVSSKL DFNMTTNHSF MCLIKYGHLR VNQTFNWNTT KQEHFPDN (SEQ ID NO:2) or fragment thereof. See Stamper et al., Crystal structure of the b7-1/ctla-4 complex that inhibits human immune responses. Nature (2001) 410:608.
- a contemplated fragment is KAMHVAQPAV VLASSRGIAS FVCEYASPGK ATEVRVTVLR QADSQVTEVC AATYMMGNELTFLDDSICTG TSSGNQVNLT IQGLRAMDTG LYICKVELMY PPPYYLGIGN GAQIYVIDPE PCPDSD (SEQ ID NO: 3) or fragment thereof.
- the disclosure relates to non-naturally occurring particle comprising, a B7-1 and/or B7-2 molecule anchored on a lipid membrane; a B7-1 and/or B7-2 molecule anchored to the lipid membrane on the exterior of the particle; and an antigen molecule such as a tumor specific antigen or cancer marker anchored to the lipid membrane on the exterior of the particle.
- GPI-anchor A number of proteins commonly expressed by cells are attached to the cell membrane via a GPI-anchor. These proteins are post-translationally modified at their carboxy terminus to express this glycosylated moiety which is synthesized in the endoplasmic reticulum. These naturally expressing GPI-anchored molecules are widely distributed in mammalian cells and serve a host of different cellular functions, such as cell adhesion, enzymatic activity, and complement cascade regulation. Naturally occurring GPI-anchored proteins lack a transmembrane and cytoplasmic domain that otherwise anchor membrane proteins.
- the GPI-anchor consists of a glycosylated moiety attached to phosphatidylinositol containing two fatty acids. The phosphatidylinositol portion, as well as an ethanolamine which is attached to the C-terminal of the extracellular domain of the membrane proteins, anchor the molecule to the cell membrane lipid bilayer.
- transmembrane and cytoplasmic domains of a transmembrane surface protein need only be replaced by the signal sequence for GPI-anchor attachment that is found at the hydrophobic C-terminus of GPI-anchored protein precursors.
- This method may be used to generate GPI-anchored proteins is not limited to membrane proteins; attaching a GPI-anchor signal sequence to secretory proteins would also convert them to a GPI-anchored form.
- the method of incorporating the GPI-anchored proteins onto isolated cell surfaces or lipid particles is referred to here as protein transfer.
- GPI-anchored molecules can be incorporated onto lipid membranes spontaneously. These GPI-anchored proteins can be purified from one cell type and incorporated onto different cell membranes. GPI-anchored proteins are used to customize of the lipid membranes disclosed herein for uses as a cancer vaccine. One may incorporate multiple molecules simultaneously onto the same cell membrane. One can control the level of protein expression by simply varying the concentration of the GPI-anchored molecules to be incorporated. The most significant outcome of this technology will be the reduction of time in preparing cancer vaccines from months to hours. These features make the protein transfer approach a more viable choice for the development of cancer vaccines for clinical settings. The molecules incorporated by means of protein transfer retain their functions associated with the extracellular domain. Cells and isolated membranes can be modified to express immunostimulatory molecules.
- the disclosure contemplates that the GPI-anchored molecules are incorporated onto the surface of albumin microparticles by this protein transfer method.
- GPI-anchored proteins attached to the surface of microparticles are used to target and/or enhance the adjuvant activity of microparticles, thereby enhancing the capacity to function as a targeted antigen or drug delivery device for cancer treatment.
- the GPI-B7-1 expression (by protein transfer) was stable up to 7 days on isolated membranes at 37° C. and frozen membranes can be used up to 3 years of storage at ⁇ 80° C. which makes the stability and storage a nonissue.
- This approach for introducing proteins onto membranes provides advantages over other immunotherapies for cancer vaccine development.
- This approach allows a protein to be added either singularly or in a combinatory manner to the tumor membrane surface.
- This approach navigates around the necessity to establish tumor cells as is the case for gene transfer.
- This GPI-mediated approach by protein transfer may be used for the co-stimulatory molecules, B7-1 and B7-2, GM-CSF, IL-2, and IL-12.
- these cytokines being attached to the tumor membrane via a GPI-anchor, it enables them to exert their effector functions locally at the vaccination site without the risk of systemic toxicity.
- the disclosure relates to virus like particles comprising B7-1 and/or B7-2 molecule anchored to a lipid membrane on the exterior of the particle and an antigen molecule anchored to the lipid membrane on the exterior of the particle for uses disclosed herein.
- Influenza virus-like particles are particulate in nature and have shown to elicit robust immunity against antigens. Influenza VLPs have an outer lipid bilayer with properties similar to the cell membranes. Modification of influenza VLPs with a protein transfer method to incorporates tumor-associated antigens (TAAs) on the surface along with immunostimulatory molecules (ISMs) elicits enhanced immune responses directed against the TAAs.
- TAAs tumor-associated antigens
- ISMs immunostimulatory molecules
- One contemplated protein transfer approach utilizes glycosyl phosphatidylinositol (GPI)- to anchor the TAA, which can spontaneously incorporate onto the surface of the VLPs that contain a lipid bilayer upon incubation at 37° C. (See FIG. 1 ).
- Incorporation of GPI-anchored forms of TAAs onto the surface of VLPs is used to direct the immune response against cancerous cells whereas the incorporation of immunostimulatory molecules (ISMs), such as GPI-anchored cytokines, costimulatory molecules, and adhesion molecules, onto the surface of VLPs is used to enhance the interaction between VLPs and antigen presenting cells (APCs) as well as lead to activation of these APCs and other immune effector cells.
- ISMs immunostimulatory molecules
- APCs antigen presenting cells
- VLPs consist of a virus' capsid protein shell that presents viral antigens in an authentic conformation without the viral genome that is required for replication. Thus, they provide a safe approach for human use. VLPs contain a multivalent repetitive structure that is particulate in nature, allowing for recognition by many pattern recognition receptors and the induction of an enhanced innate and adaptive immune response. The particulate nature of VLPs allows for them to be readily taken up and presented by APCs, and thus could provide a means for breaking the immunosuppressive barrier initiated by the tumor microenvironment.
- influenza virus-like particles may be produced using a variety of platform systems, including recombinant baculovirus vectors, transient plasmid expression systems, stable cell-line transformants, and plant expression systems.
- VLPs are non-replicating particles that spontaneously self-assemble from expressed influenza virus proteins.
- the viral hemagglutinin (HA) protein is sufficient for particle assembly and release from the cell.
- the VLP comprises neuraminidase (NA). HA may present with a different type of glycosylation depending on whether they are obtained from.
- VLPs containing HA For the production of VLPs containing HA in mammalian cells, co-expression of NA or exogenously added NA was required for the effective release of influenza VLPs into culture media, implying an important role of the NA activity in cleaving sialic acids bound to HA of budding particles.
- VLPs containing HA can be produced in insect cells in the absence of NA expression. Insect cells do not add sialic acids to the N-glycans during the posttranslational modification, which explains how VLPs containing HA but not NA are effectively released from insect cell surfaces. See Kang et al., Virus Res. 2009c, 143 (2), 140-6.
- VLPs used herein are recombinant influenza VLPs that have been generated in insect cells infected with rBVs expressing influenza genes HA, NA, M1, and M2.
- VLPs used herein are recombinant influenza VLPs that have been generated in insect cells infected with rBVs expressing influenza genes HA, NA, and M1.
- VLPs used herein are recombinant influenza VLPs that have been generated in insect cells infected with rBVs expressing influenza genes of HA and M1.
- the VLP is obtained from influenza VLPs expressed from recombinant baculovirus (rBV) produced by replication in an insect cell system, e.g., Spodoptera frugiperda SF9 cells.
- rBV recombinant baculovirus
- the VLP is obtained from a modified vaccinia virus Ankara (MVA) system expressing expressing influenza H5N1 HA, NA, and M proteins to generate influenza VLPs produced by replication in mammalian cells.
- MAA modified vaccinia virus Ankara
- the disclosure relates to particles such as cells or virus like particles comprising B7-1 and/or B7-2 molecule anchored to a lipid membrane on the exterior of the particle and an antigen molecule anchored to the lipid membrane on the exterior of the particle.
- the antigen molecule is a cancer marker selected from HER-2, MKI67, prostatic acid phosphatase (PAP), prostate-specific antigen (PSA), prostate-specific membrane antigen, early prostate cancer antigen, early prostate cancer antigen-2 (EPCA-2), BCL-2, MAGE antigens such as CT7, MAGE-A3 and MAGE-A4, ERK5, G-protein coupled estrogen receptor 1, CA15-3, CA19-9, CA 72-4, CA-125, carcinoembryonic antigen, CD20, CD31, CD34, PTPRC (CD45), CD99, CD117, melanoma-associated antigen (TA-90), peripheral myelin protein 22 (PMP22), epithelial membrane proteins (EMP-1, -2, and -3), HMB-45 antigen, MART-1 (Melan-A), S100A1, S100B and gp100:209-217(210M), MUC-1, mucin antigens TF, Tn, STn, glycolipid
- HER-2 refers to the human protein encoded by the ERBB2 gene that has been referred to as Neu, ErbB-2, CD340 (cluster of differentiation 340) or p185. See Coussens et al., 1985, Science 230 (4730): 1132-9.
- HER-2 is the extracellular domain or fragment thereof.
- the protein comprises or consists essentially of the following sequence: TQVCTGTDMK LRLPASPETH LDMLRHLYQG CQVVQGNLEL TYLPTNASLS FLQDIQEVQG YVLIAHNQVR QVPLQRLRIV RGTQLFEDNY ALAVLDNGDP LNNTTPVTGA SPGGLRELQL RSLTEILKGG VLIQRNPQLC YQDTILWKDI FHKNNQLALT LIDTNRSRAC HPCSPMCKGS RCWGESSEDC QSLTRTVCAG GCARCKGPLP TDCCHEQCAA GCTGPKHSDC LACLHFNHSG ICELHCPALV TYNTDTFESM PNPEGRYTFG ASCVTACPYN YLSTDVGSCT LVCPLHN QEVTAEDGTQRCE KCSKPCARVC YGLGMEHLRE VRAVTSANIQ EFAGCKKIFG
- the protein comprises or consists essentially of the following sequence: DIQMTQSPSS LSASVGDRVT ITCRASQDVN TAVAWYQQKP GKAPKLLIYS ASFLYSGVPS RFSGSRSGTD FTLTISSLQP EDFATYYCQQ HYTTPPTFGQ GTKVEIKRTV AAPSVFIFPP SDEQLKSGTA SVVCLLNNFY PREAKVQWKV DNALQSGNSQ ESVTEQDSKD STYSLSSTLT LSKADYEKHK VYACEVTHQG LSSPVTKSFN RGEC (SEQ ID NO: 5) or fragment thereof.
- the protein comprises or consists essentially of the following sequence: GTSHLVKCAE KEKTFCVNGG ECFMVKDLSN PSRYLCKCPN EFTGDRCQNY VMASF (SEQ ID NO: 6) or fragment thereof.
- MKI67 or antigen identified by monoclonal antibody Ki-67, refers to the human protein that is encoded by the MKI67 gene. See Bullwinkel et al., 2006, J. Cell. Physiol. 206 (3): 624-35.
- PAP Prostatic acid phosphatase or prostatic specific acid phosphatase (PSAP) refers to the human enzyme produced by the prostate in males. See Ostrowski & Kuciel, 1994, Clin. Chim. Acta 226 (2): 121-9.
- PSA Prostate-specific antigen or gamma-seminoprotein or kallikrein-3 (KLK3), refers to the human protein encoded by the KLK3 gene. See Menez et al., J Mol Biol. 2008, 376(4):1021-33.
- PSMA Prostate-specific membrane antigen or Glutamate carboxypeptidase II
- PSMA Prostate-specific membrane antigen or Glutamate carboxypeptidase II
- Bcl-2 or B-cell lymphoma 2 refers to an protein encoded by the BCL2 gene.
- Bcl-2 has two isoforms that differ by two amino acids. Isoform 1 is known as 1G5M, and Isoform 2 is known as 1G50/1GJH. See Petros et al., 2001, PNAS, 98: 3012-3017. Both isoforms are contemplated antigens.
- the antigen is the entire protein, polypeptide, or a substantial fragment, or a fragment with conserved substitutions.
- the fragment may contain 5, 10, 20, 50, 100, or halve of the amino acids in the full length antigen.
- the fragment may be sufficient to mimic or replicate the folding of the full length antigen.
- the conserved substitutions may be amino acids that are in the interior of the folded polypeptide.
- a fragment is sufficient produce antibody production to the polypeptide.
- the antigen may be a chimera containing the fragment.
- the antigen may contain 1, 2, or 3, or 5 to 10, or 10 to 20 or more conserved substitutions within the full length or polypeptide fragment which are typically outside of functional domains.
- the antigen may have 80%, 90%, 95% or greater sequence identity to the full length or polypeptide fragment.
- An antigen protein may or may not be glycosylated.
- the virus like particles disclosed herein comprise an adjuvant molecule anchored to a lipid membrane on the exterior of the particle wherein the adjuvant molecule and the antigen molecule are not the same molecule.
- the adjuvant molecule is selected from is IL-2, IL-12, ICAM1, GM-CSF, flagellin, unmethylated, CpG oligonucleotide, lipopolysaccharides, lipid A, and heat stable antigen (HSA).
- co-stimulatory molecules, antigens, and adjuvant molecules may the individually conjugated to the lipophilic molecules or two or more or all of them may be conjugated together in a chimera and conjugated to a lipophilic molecule.
- B7-1 may be conjugated to the adjuvant, HSA, in a chimera and the chimera is conjugated to a GPI.
- HSA heat stable antigen
- a hybrid B7-1-HSA molecule on the cell surface membrane can function as a co-stimulatory molecule to induce T cell proliferation.
- CHO cells and CHO transfectants expressing HSA, B7-1, and B7-1-HSA were used as stimulator cells in a T cell proliferation assay. See Wang et al., Immunology Letters, 2006, 105(2):185-192.
- Contemplated TLR 9 ligands as adjuvants are contemplated such as immunostimmulatory unmethylated CpG oligonucleotides, the cytosine of the oligonucleotide sequence 5′-CG-3′ is unmethylated and the oligonucleotide is greater than about 6 base pairs in length and is less than about 100 base pairs in length such as 5′-TGACTGTGAACGTTC GAGATGA-3′ (SEQ ID NO:8). It is contemplated that lipophilic molecules may be conjugated to the oligonucleotide for incorporation to the exterior of particles disclosed herein.
- the antigen is also contained in the interior of the particle.
- the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
- HSA heat stable antigen
- the antigen is HER-2 and the adjuvant is flagellin and/or GM-CSF.
- the antigen is HER-2 and the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
- HSA heat stable antigen
- the antigen is HER-2
- the adjuvant is flagellin and/or GM-CSF
- the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
- the antigen is HER-2 and the adjuvant is IL-12.
- the antigen is HER-2
- the adjuvant is IL-12
- the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
- the antigen is PSA or PAP and the adjuvant is flagellin and/or or GM-CSF.
- the antigen is PSA or PAP and the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
- HSA heat stable antigen
- the antigen is PSA or PAP
- the adjuvant is flagellin
- the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
- the antigen is PSA or PAP and the adjuvant is IL-12.
- the antigen is PSA or PAP
- the adjuvant is IL-12
- the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
- the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
- HSA heat stable antigen
- the antigen is HER-2 and the adjuvant is flagellin and/or GM-CSF.
- the antigen is HER-2 and the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
- HSA heat stable antigen
- the antigen is HER-2
- the adjuvant is flagellin and/or GM-CSF
- the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
- the antigen is HER-2 and the adjuvant is IL-12.
- the antigen is HER-2
- the adjuvant is IL-12
- the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
- the antigen is PSA or PAP and the adjuvant is flagellin and/or GM-CSF.
- the antigen is PSA or PAP and the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
- HSA heat stable antigen
- the antigen is PSA or PAP
- the adjuvant is flagellin or GM-CSF
- the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
- particle may be a wild type cell, cancer cell or immortalized cell.
- the particle is a cell such as ZR-75-1, ZR-75-30, 184A1, UACC-812, UACC-893, HCC38, HCC70, HCC202, HCC1187, HCC1395, HCC 1428, HCC1500, HCC1569, HCC1599, HCC1806, HCC1937, HCC1954, HCC2157, HCC1419, HCC2218, AU-565, 184B5, MCF 10A, MCF 10F, MCF-12A, BT-20, MDA-kb2, BT-474, CAMA-1, MCF7, MDA-MB-134-VI, MDA-MB-157, MDA-MB-175-VII, MDA-MB-231, MDA-MB-361, SK-BR-3, BT-483, BT-549, DU4475, Hs 578T, MDA-MB-415, MDA-MB-436, MDA-MB-453, MDA-MB-468, T-47D
- the particle is a cell such as Jurkat, Clone E6-1 (ATCC Number: TIB-152), RBL-2H3 (CRL-2256), MOLT-4 (CRL-1582), K-562 (CCL-243), CCRF-CEM (CCL-119), HL-60 (CCL-240), or KG-1 (CCL-246) for use in the treatment of cancer, leukemia, leukemia (AML), leukemia (CML), promyelocytic leukemia, basophilic leukemia, or acute T cell leukemia.
- AML leukemia
- CML promyelocytic leukemia
- basophilic leukemia or acute T cell leukemia.
- the particle is a cell such as NCI-H358 (CRL-5807), LL/2 (CRL-1642), Calu-3 (HTB-55), NCI-H441 (HTB-174), NCI-H1975 (CRL-5908), NCI-H23 (CRL-5800), NCI-H1299 (CRL-5803), NCI-H460 (HTB-177), NCI-H292 (CRL-1848), A-549 (CCL-185), A-549 (CCL-185), A-549 (CCL-185), IMR-90 (CCL-186), MRC-5 (CCL-171), or WI-38 (CCL-75) for use in the treatment of cancer, lung cancer, lung adenocarcinoma, lung carcinoma, lewis lung carcinoma, or bronchioalveolar lung cancer.
- the particle is a cell such as Ramos (CRL-1596), Daudi (CCL-213), Raji (CCL-86), EL4 (TIB-39), or U-937 (CRL-1593.2) for use in the treatment of cancer, lymphoma, B-cell lymphomas, histiocytic lymphoma, or Burkitt's lymphoma.
- Ramos CRL-1596
- Daudi CCL-213
- Raji CL-86
- EL4 TIB-39
- U-937 CTL-1593.2
- the particle is a cell such as HeLa (CCL-2) or HeLa S3 (CCL-2.2) for use in the treatment of cancer, cervical cancer or cervical adenocarcinoma.
- a cell such as HeLa (CCL-2) or HeLa S3 (CCL-2.2) for use in the treatment of cancer, cervical cancer or cervical adenocarcinoma.
- the particle is a cell such as COLO 205 (CCL-222), SW620 (CCL-227), SW480 (CCL-228), LoVo (CCL-229), LS 174T (CL-188), Caco-2 (HTB-37), HT-29 (HTB-38), DLD-1 (CCL-221), HCT 116 (CCL-247), T84 (CCL-248), CT26.WT (CRL-2638) for use in the treatment of cancer, colon cancer, colon carcinoma, or a colon adenocarcinoma.
- COLO 205 CL-222
- SW620 CL-227)
- SW480 CL-228)
- LoVo CL-229
- LS 174T CL-188
- Caco-2 HCT 116
- T84 CTL-248
- CT26.WT CT26.WT
- the particle is a cell such as HCN-1A (CRL-10442), U-87 MG (HTB-14), C6 (CCL-107), bEnd.3 (CRL-2299), or T98G (CRL-1690) for use in the treatment of cancer, brain cancer, glioma, glioblastoma multiforme, glioblastoma-astrocytoma, or brain endothelioma cancer.
- the particle is a cell such as 3197-3 (CRL-1568), 3T3-Swiss albino (CCL-92), BALB/3T3 clone A31 (CCL-163), NTERA-2 cl.D1 (CRL-1973), 3T3-L1 (CL-173), NIH/3T3 (CRL-1658), SK-OV-3 (HTB-77), CHO-Kl (CCL-61), or F-12K (30-2004) for use in the treatment of cancer, ovarian cancer, ovarian adenocarcinoma, or testicular cancer.
- the particle is a cell such as 293T/17 (CRL-11268), 293 (CRL-1573), VERO C1008 (CRL-1568), Vero (CCL-81), MDCK (CCL-34), BHK-21 (CCL-10), Caki-1 (HTB-46), 786-0 (CRL-1932), or COS-7 (CRL-1651) for use in the treatment of cancer, renal cancer, or renal carcinoma.
- a cell such as 293T/17 (CRL-11268), 293 (CRL-1573), VERO C1008 (CRL-1568), Vero (CCL-81), MDCK (CCL-34), BHK-21 (CCL-10), Caki-1 (HTB-46), 786-0 (CRL-1932), or COS-7 (CRL-1651) for use in the treatment of cancer, renal cancer, or renal carcinoma.
- the particle is a cell such as H9c2 (CRL-1446) for use in the treatment of cancer or cardiac tumors.
- the particle is a cell such as A-431 (CRL-1555), Detroit 551 (CCL-110), BJ (CRL-2522), B16-F10 (CRL-6475), SK-MEL-28 (HTB-72), A375 (CRL-1619), NCTC clone 929 (CCL-1), IRR-MRC-5 (55-X), or IRR-STO (56-X) for use in the treatment of cancer, skin cancer, squamous-cell carcinoma, melanoma, areolar lesions, or epidermoid carcinoma.
- A-431 CL-1555
- Detroit 551 CL-110
- BJ CL-2522
- B16-F10 CL-6475
- SK-MEL-28 HTB-72
- A375 CTL-1619
- NCTC clone 929 CCL-1
- IRR-MRC-5 55-X
- IRR-STO 56-X
- the particle is a cell such as HT-1080 (CCL-121) for use in the treatment of cancer or fibrosarcoma.
- the particle is a cell such as AGS (CRL-1739) or NCI-N87 (CRL-5822) for use in the treatment of cancer, stomach cancer, gastric carcinoma or gastric adenocarcinoma.
- the particle is a cell such as HepG2/C3A (CRL-10741), Hep 3B2.1-7 (HB-8064), Hep G2 (HB-8065), or Hepa 1-6 (CRL-1830) for use in the treatment of cancer, liver cancer, heptoma, or hepatocellular carcinoma.
- HepG2/C3A CRL-10741
- Hep 3B2.1-7 HB-8064
- Hep G2 HB-8065
- Hepa 1-6 CRL-1830
- the particle is a cell such as U266B1 (TIB-196) for use in the treatment of cancer or multiple myeloma.
- the particle is a cell such as IMR-32 (CCL-127), Neuro-2a (CCL-131), or SK-N-SH (HTB-11) for use in the treatment of cancer or neuroblastoma.
- IMR-32 CCL-127
- Neuro-2a CCL-131
- SK-N-SH HTB-11
- the particle is a cell such as Saos-2 (HTB-85), U-2 OS (HTB-96), or MG-63 (CRL-1427) for use in the treatment of cancer, bone cancer, or osteosarcoma.
- Saos-2 HMB-85
- U-2 OS HMB-96
- MG-63 CTL-1427
- the particle is a cell such as Beta-TC-6 (CRL-11506), AsPC-1 (CRL-1682), BxPC-3 (CRL-1687), MIA PaCa-2 (CRL-1420), PANC-1 (CRL-1469), Capan-1 (HTB-79), or AR42J (CRL-1492) for use in the treatment of cancer, pancreatic cancer, or pancreatic carcinoma.
- Beta-TC-6 CTL-11506
- AsPC-1 CL-1682
- BxPC-3 CL-1687
- MIA PaCa-2 CL-1420
- PANC-1 CL-1469
- Capan-1 Capan-1
- AR42J AR42J
- the particle is a cell such as PC-12 (CRL-1721) for use in the treatment of cancer or pheochromocytoma.
- the particle is a cell such as RPMI 8226 (CCL-155) for use in the treatment of cancer or plasmacytoma.
- the particle is a cell such as PC-3 (CRL-1435), VCaP (CRL-2876), DU 145 (HTB-81), LNCaP clone FGC (CRL-1740), or 22Rv1 (CRL-2505) for use in the treatment of cancer, prostate cancer, prostate adenocarcinoma.
- the particle is a cell such as ARPE-19 (CRL-2302) for use in the treatment of cancer, eye cancer, or retinal cancer.
- CTL-2302 ARPE-19
- the particle is a cell such as RD (CCL-136) for use in the treatment of cancer, sarcoma, or rhabdomyosarcoma.
- the particle is a cell such as a stem cells, mesenchymal stromal/stem, pluripotent stem cell, embryo, myoblast, hybridoma or macrophage, examples include RAW 264.7 (TIB-71), J774A.1 (TIB-67), C2C12 (CRL-1772), L6 (CRL-1458), Sp2/0-Ag14 (CRL-1581) for use in the treatment of cancer.
- a cell such as a stem cells, mesenchymal stromal/stem, pluripotent stem cell, embryo, myoblast, hybridoma or macrophage
- examples include RAW 264.7 (TIB-71), J774A.1 (TIB-67), C2C12 (CRL-1772), L6 (CRL-1458), Sp2/0-Ag14 (CRL-1581) for use in the treatment of cancer.
- DC dendritic cell
- the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with the administration of dendritic cell (DC)-based cancer vaccines.
- DCs have the unique ability to take up and process antigens, move into secondary lymphoid tissues, and activate both helper and cytotoxic T cells.
- Preparation of DC-based cancer vaccines involves loading DCs with known tumor-specific antigens, antigenic peptides, cDNA, or RNA isolated from tumor cells.
- an object of this disclosure is to develop more effective methods to deliver tumor antigens to DCs.
- One strategy is making hybrid cells by fusing tumor cells, tumor antigens, or conjugates with DCs and using the hybrid cells as vaccines.
- Combination therapies with DC-based cancer vaccines may be used to treat melanoma, breast cancer, multiple myeloma, NHL, lymphatic leukemia, prostatic adenocarcinoma, lung cancer, and hepatocarcinoma
- the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with antigen activated DCs for cancer treatments.
- the compositions are used in combination with DCs fused with granulocyte macrophage colony-stimulating factor (GM-CSF) and prostatic acid phosphatase (PAP) conjugate for cancer treatments.
- GM-CSF granulocyte macrophage colony-stimulating factor
- PAP prostatic acid phosphatase
- Provenge an autologous DC-based vaccine, was approved by the FDA for the treatment of men with advanced prostate cancer.
- Provenge consists of patient-derived DCs pulsed ex vivo with a recombinant fusion protein (PA 2024) containing granulocyte macrophage colony-stimulating factor (GM-CSF) and prostatic acid phosphatase (PAP), an antigen found in 90-95% of prostate cancers.
- PA 2024 recombinant fusion protein
- GM-CSF granulocyte macrophage colony-stimulating factor
- PAP prostatic acid phosphatase
- compositions disclosed herein and using any of the compositions in combination with irradiated tumor cells for cancer treatments.
- immunosuppressive cytokines in the tumor microenvironment is an important factor in the establishment of tumors.
- immunosuppressive cytokines such as TGF- ⁇ and IL-10
- TGF- ⁇ and IL-10 the innate and adaptive immune responses are inhibited during tumor development.
- the systemic administration of certain immunostimulatory cytokines such as IL-2, IL-12, and IFN- ⁇ , has been used to alter the tumor microenvironment to mediate tumor recognition by immune cells.
- the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with cytokines such as IL-2, IL-12, and INF- ⁇ for cancer treatments.
- Cytokines activate immune cells, such as NK and CD8+ T cells, and can also inhibit tumor angiogenesis.
- the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with IL-2, IL-12, and INF- ⁇ for the treatment of metastatic melanoma and renal cell carcinoma (RCC).
- T-cell growth cytokine IL-15
- AICD activation-induced cell death
- the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with IL-15 as a potential cancer immunotherapeutic agent.
- the disclosure contemplates compositions disclosed herein and using any of the compositions in combination intra-tumoral administration of cytokines, modification of tumor cells to secrete cytokines, and fusion of cytokines with antibodies for cancer treatments.
- the cytokine is TNF- ⁇ .
- the cancer is melanoma.
- compositions disclosed herein and using any of the compositions in combination with administration of soluble GM-CSF and optionally a cytokine for cancer treatments.
- the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with an antibody therapy for cancer treatment.
- the contemplated anti-bodies are directed to epidermal growth factor receptor (EGFR), human EGFR-2 (HER-2), CD20 (an unglycosylated transmembrane phosphoprotein expressed on B and T cells), CD33 (a transmembrane protein expressed on cells of myeloid lineage and also on some lymphoid cells), CD52 (a highly glycosylated 12 amino acid membrane-anchored glycosylphosphatidylinositol (GPI) protein which is expressed on all circulating lymphocytes), and VEGF.
- the antibody may be humanized, chimeric, a radiolabeled mouse antibody for targeted radiation.
- compositions disclosed herein and using any of the compositions in combination with rituximab for the treatment of B-cell non-Hodgkin's lymphoma or chronic lymphocytic leukemia.
- the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with ofatumumab for the treatment of B-cell non-Hodgkin's lymphoma or chronic lymphocytic leukemia.
- compositions disclosed herein and using any of the compositions in combination with ibritumomab (tiuxetan) for the treatment of B-cell non-Hodgkin's lymphoma.
- compositions disclosed herein and using any of the compositions in combination with tositumomab for the treatment of B-cell non-Hodgkin's lymphoma.
- compositions disclosed herein and using any of the compositions in combination with gemtuzumab ozogamicin for the treatment of acute myeloid leukemia.
- the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with alemtuzumab for the treatment of B-cell non-Hodgkin's lymphoma or chronic lymphocytic leukemia.
- the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with trastuzumab for the treatment of breast cancer.
- the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with bevacizumab for the treatment of breast, lung, or colon cancer.
- compositions disclosed herein and using any of the compositions in combination with cetuximab for the treatment of brain and neck, or colon cancer.
- the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with panitumomab for the treatment of colon cancer.
- the disclosure relates to methods of treating cancer comprising administering an effective amount of a particle as disclosed herein to a subject at risk of or diagnosed with cancer or a tumor optionally in combination with another anticancer agent.
- anticancer agents contemplated include gefitinib, erlotinib, docetaxel, cis-platin, 5-fluorouracil, gemcitabine, tegafur, raltitrexed, methotrexate, cytosine arabinoside, hydroxyurea, adriamycin, bleomycin, doxorubicin, daunomycin, epirubicin, idarubicin, mitomycin-C, dactinomycin and mithramycin, vincristine, vinblastine, vindesine, vinorelbine taxol, taxotere, etoposide, teniposide, amsacrine, topotecan, camptothecin bortezomib anegri
- HER-2/neu a surface glycoprotein
- HER-2/neu a surface glycoprotein
- CHOK1 cells were transfected to express GPI-ICAM1 or GPI-IL-12.
- Expression of the GPI-ISMs was assessed by flow cytometry and verification of the GPI-anchor was confirmed by a phospholipase (PIPLC) treatment.
- the transfectants were grown in large quantities, lysed, and the GPI-ISMs were purified by affinity chromatography. To determine if the purified GPI-ISMs still retained the GPI-anchor and could incorporate onto lipid bilayers by protein transfer, sheep red blood cells (RBCs) were used.
- the GPI-ISMs were individually incubated with the RBCs at 37° C. for 2 hours, washed and then analyzed by flow cytometry.
- FIG. 2 demonstrates that the purified GPI-ISMs were able to incorporate onto sheep RBCs.
- VLPs are constructed by the rBV system through the expression of the hemagluttinin and matrix 1 protein in Sf9 insect cells. See Song et al., J Proteome Res. 2011, 10(8):3450-9.
- PI-PLC treatment to cleave the GPI-anchor of GPI-ICAM1 either before incorporation ( FIG. 5A ) or after ( FIG. 5B ) incorporation was carried out.
- GPI-ICAM1 incorporated with GPI-ICAM1 both led to decreased expression of ICAM1 on VLPs as detected by Western blotting to ICAM1, whereas when the PI-PLC inhibitors, ZnCl 2 , or 1,10-phenanthroline, were included, expression was retained.
- GPI-ICAM1 was incubated with 1% fatty-acid-free bovine serum albumin (BSA) or 1% orosomucoid that bind to the GPI-anchor before protein transfer in order to competitively inhibit incorporation of GPI-ICAM1 onto VLP membranes.
- BSA bovine serum albumin
- FIG. 7 shows that influenza VLPs can incorporate both GPI-ISMs on their surface and the expression of the first GPI-protein is not affected by the expression of the second GPI-protein.
- FIG. 8 shows that even after incorporation, the VLP membranes remain intact suggesting that the protein transfer method is not detrimental to the VLP structural integrity.
- This data show that purified GPI-proteins are able to incorporate onto influenza VLPs within 2 h at 37° C. via the GPI-anchor without disturbing the structural integrity of the VLPs.
- Protein transferred-VLPs that express the GPI-HER-2 in combination with GPIISMs leads to tumor regression in mice with established tumors that express HER-2.
- GPIISMs such as GPI-IL-2, GPI-IL-12, GPI-B7-1, and GPI-ICAM-1
- the incorporation of cytokines onto the surface of VLPs allows for a slow release depot of the cytokines into the administered microenvironment, leading to increased activation of immune effector cells at the vaccination site while decreasing chances of systemic toxicity.
- the receptors of the ISMs, IL-2, IL-12, and ICAM-1 are found on APCs allowing for enhanced adhesion and activation of the APCs by the VLPs, thus leading to enhanced uptake and presentation.
- the receptors for IL-12 and B7-1 are also found on other immune cells such as NK cells and mast cells, allowing for the activation of a wide variety of immune effector cells to be elicited by the association of these ISMs onto the surface of VLPs. Since the immune response is directed against the antigens found on the VLPs, incorporating TAAs along with ISMs onto the surface of VLPs will direct the immune response towards the TAAs that are overexpressed on tumor cells as well.
- Group Vaccination groups 1 PBS 2 VLP 3 VLP-GPI-HER-2 4 VLP-GPI-HER-2 + GPI-IL-12 + GPI-IL-2 5 VLP-GPI-HER-2 + GPI-IL-12 + GPI-IL-2 + GPI-B7-1 6 VLP-GPI-HER-2 + GPI-IL-12 + GPI-IL-2 + GPI-B7-1 + GPI-ICAM-1 7 VLP-GPI-IL-12 + GPI-IL-2 + GPI-B7-1 + GPI-ICAM-1
- GPI-anchored immune stimulatory molecules namely cytokines (IL-2, IL-12) and the costimulatory protein B7-1
- IL-2, IL-12 cytokines
- B7-1 costimulatory protein B7-1
- mice were challenged (s.c.) with the following cells mixed in a 1:1 ratio with BD MatrigelTM (a solubilized basement membrane preparation derived from a mouse sarcoma): 4T07-WT, 4T07-B7/IL-12 or PBS (control).
- BD MatrigelTM a solubilized basement membrane preparation derived from a mouse sarcoma
- the Matrigel/tumor, spleen and dLNs were harvested from the mice, digested and analyzed for cellular infiltrates by flow cytometry.
- the expression of GPI-ISMs on the surface of tumor cells led to reduced angiogenesis as evidenced by a reduced level of blood vessels and decreased presence of CD4+CD25+FOXP3+ regulatory T cells and CD11b+Gr1+MDSCs locally at the tumor site and dLNs as well as systemically in the spleen. Additionally, there was a decrease in CD8+PD1+ exhausted T cells at the tumor site.
- the GPI-ISMs increased the presence of CD4+ and CD8+ T cells as well as dendritic cells and B cells. These observations suggest that components of the active immune suppression evident in this model can be inhibited by expressing GPI-ISMs on the surface of the 4T07 tumor cells and could be effective in a therapeutic setting.
- mice (five per group) were challenged subcutaneously (s.c.) with wild-type 4T07 or transfected 4T07-B7, GPI-IL-2, GPI-IL-12, B7/GPI-IL-2 or B7/GPI-IL-12 cells (all 2 ⁇ 10 5 cells in 100 ⁇ l PBS). Mice were injected s.c. in the rear flank and were monitored daily. Tumor size was measured using Vernier calipers every 2nd-3 rd day by taking 2 ⁇ 2 perpendicular measurements, and tumor size (mm 2 ) was calculated by multiplying the two diameters. Mice were euthanized when the tumor size reached close to 2 cm 2 .
- mice in the experimental groups were rechallenged on the opposite hind flank with wild-type 4T07 cells (2 ⁇ 105 in 100 ⁇ l PBS). Mice in each group were marked individually by ear punch and tumor growth was measured and recorded for each mouse separately.
- the wild-type and transfected tumor cell lines all began to grow tumors in vivo, but while the wild-type tumors continued to increase in size, the tumors from the modified cell lines all regressed (See FIGS. 9 and 10 ).
- HER-2ECD is the extracellular portion of hHER-2.
- the hHER-2 extracellular domain with CD59 GPI signal sequence were join and introduced by a EcoRI site, i.e., joining region: g/aattc introduced EcoRV site (gat/atc) before sequence and Apal (gggcc/c) site after sequence at the joining region as illustrated in FIG. 11 .
- g/aattc introduced EcoRV site (gat/atc) before sequence and Apal (gggcc/c) site after sequence at the joining region as illustrated in FIG. 11 .
- an optimized IL-2 Kozak sequence along with the restriction enzyme sites HindIII and KpnI were added. Following the hHER2ECD sequence an EcoRI site is added.
- FIG. 12 shows flow cytometry analysis of CHO cells expressing GPI-human HER-2 (hHER-2-CD59) using TA1 mAb. Testing shows that HER-2 expressed in CHO cells is GPI-anchored.
- PIPLC is an enzyme which cleaves GPI anchor, reduces the level of expression.
- PI-PLC treated CHOK1-hHER-2ECD-CD59 cells reduced hHER-2 cell surface expression by 98.4%. PIPLC will not have any effect on normal HER-2.
- Nucleic acid encoding the hHER-2 extracellular domain E (Amino Acids 22-652) and GPI-anchor signal sequence (SEQ ID NO: 7) AAGGGGAGGT AACCCTGGCC CCTTTGGTCG GGGCCCCGGG CAGCCGCGCGCGCG CCCCTTCCCA CGGGGCCCTT TACTGCCG CGCGCCCGGC CCCCACCCCT CGCAGCACCC CGCGCCCCGC GCCCTCCCAG CCGGGTCCAG CCGGAGCCAT GGGGCCGGAG GATATC CCGCAGTGAG CACCATGGAG CTGGCGGCCT TGTGCCGCTG GGGGCTCCTC CTCGCCCTCTCT TGCCCCCCGG AGCCGCGAGC ACCCAAGTGT GCACCGGCAC AGACATGAAG CTGCGGCTCC CTGCCAGTCC CGAGACCCACCTGGACATGC TCCGCCACCT CTACCAGGGC TGCCAGGTGG TGCAGGGAAA CCTGGAACTC ACCTACCTGC
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Oncology (AREA)
- Cell Biology (AREA)
- Developmental Biology & Embryology (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Gynecology & Obstetrics (AREA)
- Pregnancy & Childbirth (AREA)
- Reproductive Health (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Virology (AREA)
- Communicable Diseases (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
Abstract
In some embodiments, described herein is a method of tumor treatment or tumor vaccination. The method generally comprises applying to a human being in need thereof a tumor therapeutic composition or tumor vaccine defined herein. The tumor therapeutic composition or tumor vaccine can be produced by protein transfer of glycosyl-phosphatidylinositol (GPI)-anchored immunostimulatory or costimulatory molecules.
Description
- This application claims priority to U.S. Provisional Application No. 61/594,754 filed Feb. 3, 2012 hereby incorporated by reference in its entirety.
- This invention was made with government support under Grant RO1CA138993 awarded by the National Institutes of Health. The government has certain rights in the invention.
- Provenge™ is a recently FDA-approved autologous cellular immunotherapy treatment. Peripheral blood leukocytes of a subject are harvested via leukapheresis. These enriched monocytes are incubated with prostatic acid phosphatase (PAP) conjugated to cytokine granulocyte macrophage colony stimulating factor (GM-CSF). GM-CSF is thought to direct the target antigen to receptors on DC precursors, which then present PAP on their cell surface in a context sufficient to activate T cells for the cells that express PAP. Activated, PAP presenting DCs are administered to the subject to elicit an immune response retarding cancer growth. This strategy requires isolation and expansion of cells of the subject, and typically treatment does not entirely clear the subject of cancer or tumors. Thus, there is a need to identify improved methods.
- B7-1 (also known as CD80) is a T cell costimulatory molecule that can be anchored in to autologous cancer cells to stimulate immune responses. McHugh et al., report the construction, purification and functional reconstitution of a glycolipid anchored form of B7-1 (CD80) on tumor cell membranes. Proc. Natl. Acad. Sci. USA 1995; 92:8059-8063. See also U.S. Pat. No. 6,491,925. Glycosyl phosphatidylinositol anchored B7-1 (GPI-B7-1) molecules have been incorporated onto tumor cells and isolated tumor cell membranes to provide costimulation for allogenic T cell proliferation. See Nagarajan & Selvaraj, Vaccine, 2006, 24(13):2264-74, U.S. Published Patent Application No. US 2007/0243159, Bozeman et al., Front Biosci. 2010; 15:309-320. Bumgarner et al., report surface engineering of microparticles by novel protein transfer for targeted antigen/drug delivery. J Control Release. 2009; 137:90-97.
- Cubas et al., report virus-like particle (VLP) lymphatic trafficking and immune response generation after immunization by different routes. J Immunotherapy, 2009, 32(2):118-128. Kueng et al., report a general strategy for decoration of envelope viruses with functionally active lipid-modified cytokines, J Virology, 2007, 81, 8666-8676.
- In some embodiments, described herein is a method of tumor treatment or tumor vaccination. The method generally comprises applying to a human being in need thereof a tumor therapeutic composition or tumor vaccine defined herein. The tumor therapeutic composition or tumor vaccine can be produced by protein transfer of glycosyl-phosphatidylinositol (GPI)-anchored immunostimulatory or costimulatory molecules.
- In one embodiment, the tumor therapeutic composition or tumor vaccine comprises a live tumor cell or tumor cell membranes that is or are modified by protein transfer to express one or more GPI-anchored immunostimulatory or costimulatory molecules. The tumor therapeutic composition or tumor vaccine can be prepared by a method that comprises obtaining one or more GPI-anchored immunostimulatory or costimulatory molecules, and transferring the GPI-anchored immunostimulatory or costimulatory molecules onto a tumor cell or isolated tumor cell membranes by protein transfer.
- In certain embodiments, the disclosure relates to non-naturally occurring particle comprising, a lipid membrane; a B7-1 and/or B7-2 molecule anchored to the lipid membrane on the exterior of the particle; and an antigen molecule such as a tumor specific antigen or cancer marker anchored to the lipid membrane on the exterior of the particle. Typically, the particle further comprises an adjuvant molecule anchored to the lipid membrane on the exterior of the particle wherein the adjuvant molecule and antigen molecule are not the same molecule. In certain embodiments, the adjuvant molecule is selected from IL-2, IL-12, ICAM1 GM-CSF, flagellin, unmethylated, CpG oligonucleotide, lipopolysaccharides, lipid A, and heat stable antigen (HSA). The lipid membrane may be a phospholipid monolayer or phospholipid bilayer. Typically, the particle is selected from a cell, allogeneic or autologous cancer cell or its membrane fragments or vesicles, liposome, virosome, micelle, polymer, and virus like particle.
- In certain embodiments, the B7-1 molecule is anchored to the lipid membrane on the exterior of the particle through a conjugated glycosyl-phosphatidylinositol, phospholipid, glycolipid, triglyceride, saturated or unsaturated fatty acid, or other lipophilic molecule.
- In certain embodiments, the antigen molecule such as a tumor associated antigen or cancer marker is anchored to the lipid membrane on the exterior of the particle through a conjugated glycosyl-phosphatidylinositol, phospholipid, glycolipid, triglyceride, saturated or unsaturated fatty acid, or other lipophilic molecule.
- In certain embodiments, the adjuvant molecule is anchored to the lipid membrane on the exterior of the particle through a conjugated glycosyl-phosphatidylinositol, phospholipid, glycolipid, triglyceride, saturated or unsaturated fatty acid, or other lipophilic molecule.
- Particles comprising membranes such as tumor membranes carrying tumor antigens and immunostimulatory stimulatory molecules can be modified by incubating with lipophilic adjuvants such as lipopolysaccharides or an immunostimulatory unmethylated CpG oligonucleotides lipid conjugate.
- In certain embodiments, antigen is a cancer marker molecule selected from HER-2, MUC-1, mucin antigens TF, Tn, STn, glycolipid globo H antigen, prostate-specific antigen, prostate-specific membrane antigen, early prostate cancer antigen-2 (EPCA-2), BCL-2, MAGE antigens such as CT7, MAGE-A3 and MAGE-A4, G-protein coupled
estrogen receptor 1, CA15-3, CA19-9, CA 72-4, CA-125, carcinoembryonic antigen, CD20, CD31, CD34, PTPRC (CD45), CD99, CD117, melanoma-associated antigen (TA-90), peripheral myelin protein 22 (PMP22), epithelial membrane proteins (EMP-1, -2, and -3), HMB-45 antigen, MART-1 (Melan-A), S100A1, S100B and gp100:209-217(210M). - In certain embodiments, the disclosure relates to virus like particles comprising B7-1 and/or B7-2 molecule anchored to a lipid membrane on the exterior of the particle and an antigen molecule anchored to the lipid membrane on the exterior of the particle. Typically, the antigen molecule is a cancer marker or tumor associated antigen or tumor-specific antigen selected from HER-2, MKI67, prostatic acid phosphatase (PAP), prostate-specific antigen (PSA), prostate-specific membrane antigen, early prostate cancer antigen-2 (EPCA-2), BCL-2, MAGE antigens, antigens comprising a Mage Homology Domain (MHD), MAGE-1, CT7, MAGE-A3 and MAGE-A4, ERK5, G-protein coupled
estrogen receptor 1, CA15-3, CA19-9, CA 72-4, CA-125, carcinoembryonic antigen, CD20, CD31, CD34, PTPRC (CD45), CD99, CD117, melanoma-associated antigen (TA-90), peripheral myelin protein 22 (PMP22), epithelial membrane proteins (EMP-1, -2, and -3), HMB-45 antigen, MART-1 (Melan-A), S100A1, S100B and gp100:209-217(210M). Typically, the virus like particle further comprising an adjuvant molecule anchored to a lipid membrane on the exterior of the particle wherein the adjuvant molecule and the antigen molecule are not the same molecule. In certain embodiments, the adjuvant molecule is selected from is IL-2, IL-12, ICAM1 GM-CSF, flagellin, unmethylated, CpG oligonucleotide, lipopolysaccharides, lipid A, and heat stable antigen (HSA). - In certain embodiments, the disclosure relates to methods of treating cancer comprising administering an effective amount of a particle or a virus like particle as disclosed herein to a subject at risk of or diagnosed with cancer or a tumor optionally in combination with anti-CTLA-4 antibodies such as abatacept, belatacept, ipilimumab, tremelimumab, anti-PD-1 and PDL1 antibodies such as nivolumab, unmethylated CpG oligonucleotide, methyl jasmonate, cyclophosphamide, gemcitabine or other immunosuppression blocker or other anticancer agent. Typically, the subject is a human subject and the virus like particle comprises a B7-1 and/or B7-2 molecule anchored to a lipid membrane on the exterior of the particle and an antigen molecule wherein the antigen molecule is a viral protein.
- Other anticancer agents contemplated include gefitinib, erlotinib, docetaxel, cis-platin, 5-fluorouracil, gemcitabine, tegafur, raltitrexed, methotrexate, cytosine arabinoside, hydroxyurea, adriamycin, bleomycin, doxorubicin, daunomycin, epirubicin, idarubicin, mitomycin-C, dactinomycin and mithramycin, vincristine, vinblastine, vindesine, vinorelbine taxol, taxotere, etoposide, teniposide, amsacrine, topotecan, camptothecin bortezomib anegrilide, tamoxifen, toremifene, raloxifene, droloxifene, iodoxyfene fulvestrant, bicalutamide, flutamide, nilutamide, cyproterone, goserelin, leuprorelin, buserelin, megestrol anastrozole, letrozole, vorazole, exemestane, finasteride, marimastat, trastuzumab, cetuximab, dasatinib, imatinib, bevacizumab, combretastatin, thalidomide, and/or lenalidomide or combinations thereof.
- In certain embodiments, the viral like particle has an hemagglutinin selected from influenza H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, and H16 optionally in combination with or individually influenza N1, N2, N3, N4, N5, N6, N7, and N8.
- In certain embodiments, the virus protein is an HIV envelope protein selected from gp 41,
gp 120, and gp 160. - In certain embodiments, the disclosure relates to methods of treating or preventing a viral infection comprising administering an effective amount of a virus like particle disclosed herein to a subject at risk of, exhibiting symptoms of, or diagnosed with a viral infection.
- In certain embodiments, the disclosure relates to particles comprising a cancer marker made by the process of mixing a cancer marker conjugated to a lipophilic moiety and a particle comprising a lipid membrane. Typically, the cancer marker is HER-2 or PSA or PAP.
- In certain embodiments, the disclosure relates to particles comprising a cancer marker and B7-1 and/or B7-2 made by the process of mixing a B7-1 and/or B7-2 conjugated to a lipophilic moiety and a particle comprising a lipid membrane and a cancer marker.
- In certain embodiments, the disclosure relates to methods of treating or preventing breast cancer comprising administering an effective amount of a particle comprising B7-1 and/or B7-2, GM-CSF, and HER-2 to a subject in need thereof.
- In certain embodiments, the method further comprises analyzing the subject for overexpression of HER-2, by measuring, detecting, sequencing, hybridizing with a probe, HER-2 polypeptide or a nucleic acid indicative of HER-2 expression, or sequencing a nucleic acid associated with HER-2, on a cancer cell or tumor cell isolated from the subject.
- In certain embodiments, the disclosure relates to methods of treating or preventing prostate cancer comprising administering an effective amount of a particle comprising B7-1 and/or B7-2, GM-CSF, and PSA or PAP to a subject in need thereof.
- In certain embodiments, the disclosure relates to methods of treating or preventing prostate cancer comprising administering an effective amount of a particle comprising B7-1 and/or B7-2, GM-CSF, IL-12, and PSA or PAP to a subject in need thereof.
- In certain embodiments, the compositions and method further comprises administering an immunostimulatory amount of particles disclosed herein in combination with an anticancer agent, individually as single agents and/or in a single pharmaceutical composition.
- In the case of breast cancer the anticancer agent may be estradiol, tamoxifen, cetuximab and a HER-2 antibody, humanized antibody, or human chimera such as trastuzumab, pertuzumab. The HER-2 antibodies may be administered before or after immune stimulation with particle.
- In the case of prostate cancer, the anticancer agent may be docetaxel, cabazitaxel, bevacizumab, alpharadin thalidomide, prednisone, abiraterone, finasteride and dutasteride, MDV3100, orteronel (TAK-700), omega-3 fatty acids such as ethyl esters of eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA) or combinations thereof such as bevacizumab, docetaxel, thalidomide, and prednisone or abiraterone acetate in combination with prednisone.
- In another embodiment, the tumor therapeutic composition or tumor vaccine comprises a microparticle with a lipid membrane encapsulating tumor antigens or peptides and one or more anchored immunostimulatory or costimulatory molecules expressed on the surface of the particle. The tumor therapeutic composition or tumor vaccine can be prepared by a method that comprises obtaining one or more anchored immunostimulatory or costimulatory molecules, and transferring the anchored immunostimulatory or costimulatory molecules onto a particle encapsulating at least one tumor antigen or peptide, tumor lysate, tumor membranes, or combinations thereof by protein transfer.
- The microparticles can be formed of any biocompatible polymer capable of incorporating GPI-anchored immunostimulatory or costimulatory molecules. For example, representative useful biocompatible polymers include, but are not limited to, polyvinyl alcohols, polyvinyl ethers, polyamides, polyvinyl esters, polyvinylpyrrolidone, polyglycolides, polyurethanes, allyl celluloses, cellulose esters, hydroxypropyl derivatives of celluloses and cellulose esters, preformed polymers of poly alkyl acrylates, polyethylene, polystyrene, polyactic acid, polyglycolic acid, poly(lactide-co-glycolide), polycaprolactones, polybutyric acids, polyvaleric acid and copolymers thereof, alginates, chitosans, gelatin, albumin, zein and combinations thereof.
- Anchored immunostimulatory or costimulatory molecules can be obtained by expressing the GPI-anchored immunostimulatory or costimulatory molecules in a cell, and isolating the GPI-anchored immunostimulatory or costimulatory molecules. The anchored immunostimulatory or costimulatory molecules can be any substance that stimulates or costimulates immune reaction against a tumor cell that is capable of being expressed in a cell. For example, the immunostimulatory or costimulatory molecules useful here can be a cytokine molecule. In one embodiment, a useful cytokine can be, for example, one or more of cytokines IL-2, IL-4, IL-6, IL-12, IL-15, IL-18, IL-19, granulocyte-macrophage colony stimulating factor (GM-CSF), and combinations thereof. In another embodiment, the immunostimulatory or costimulatory molecules can be, for example, the immunostimulatory or costimulatory molecules useful here can be a cytokine molecule. In another embodiment, the immunostimulatory or costimulatory molecules useful here can be, for example, B7-1, B7-2 and an intercellular adhesion molecule such as CD40L, ICAM-1, ICAM-2, and ICAM-3.
- In any of the embodiments, particle may be a wild type cell, cancer cell or immortalized cell.
- The immunostimulatory or costimulatory molecules can be used alone or together and can be used in conjunction with antibody fusion proteins.
- The tumor therapeutic composition or tumor vaccine described herein can be used therapeutically or prophylactically for the treatment or prevention of a tumor. Representative tumors can be treated or prevented include, but are not limited to, breast cancer, prostate cancer, lung cancer, melanoma, liver cancer, leukemia, lymphoma, myeloma, colorectal cancer, gastric cancer, bladder carcinoma, esophageal carcinoma, head & neck squamous-cell carcinoma, sarcomas, kidney cancers, ovarian and uterus cancers, adenocarcinoma, glioma, and plasmacytoma, and combinations thereof.
- In one embodiment, the vaccine or therapeutic composition described herein can be GPI-anchored cytokine such as GPI-IL-2 and GPI-IL-12 alone or in combination with GPI-anchored costimulatory molecules such as GPI-B7-1, GPI-B7-2, GPI-ICAM-1, GPI-ICAM-2 and GPI-ICAM-3. Such a vaccine or therapeutic composition can be used for the treatment of tumor and other diseases such as viral, bacterial and parasitic diseases.
- In another embodiment, the vaccine and therapeutic composition can be biocompatible microparticles such as biodegradable microparticles modified with GPI-anchored immunostimulatory molecules such as IL-2, IL-4, IL-6, IL-12, ICAM-1, ICAM-2, ICAM-3, B7-1, B7-2, CD40L, IL-15, IL-18, IL-19, granulocyte-macrophage colony stimulating factor (GM-CSF), and combinations thereof.
- In yet another embodiment, the vaccine or therapeutic compositions described herein can be tumor cells or membranes modified by protein transfer with GPI-anchored cytokines alone or/and in combination with other cytokines or/and other costimulatory molecules. One such embodiment can be, for example, tumor membranes modified with purified GPI-IL-12.
- In a further embodiment, particles like inactivated or partially attenuated virus, bacteria and virus-like particles can be modified to express immunostimulatory molecules by protein transfer with GPI-anchored cytokines and immunostimulatory molecules. Vaccines and therapeutic compositions prepared in this manner can be used for preventing or treating viral, bacterial, or parasitic diseases or disorders.
- In some other embodiments, the vaccine and therapeutic compositions described herein can be used for treating autoimmune disorders. For example, membrane anchored cytokines such as IL-10 and TGF-beta can also be used to induce tolerance or to suppress immunity which can be used in treating autoimmune diseases and transplant rejection.
-
FIG. 1 illustrates the expression tumor associated antigens and immunostimulatory molecules onto particles containing a lipid membrane, e.g., CHO cells and envelope VLPs, using GPI anchoring for protein transfer. -
FIG. 2 shows data on protein transfer of (A) GPI-ICAM1 or (B) GPI-IL-12 onto sheep RBCs. Red: Background control; Black: Protein transfer of GPI-ISMs. -
FIG. 3 shows data on Concentration dependent protein transfer of (A) GPI-ICAM-1 or (B) GPI-IL-12 onto H5-VLPs. -
FIG. 4 shows data on the kinetics of protein transfer of GPI-ICAM-1 onto H5 influenza VLPs. -
FIG. 5 shows data on the specificity of protein transfer of GPI-ICAM1 onto VLPs. -
FIG. 6 shows data on the inhibition of protein transfer of GPI-ICAM 1 via fatty acid binding proteins. -
FIG. 7 shows data on the incorporation of two GPI-ISMs onto VLPs simultaneously. -
FIG. 8 shows a EM of VLPs (A) before and (B) after protein transfer with GPI-ICAM1. -
FIG. 9 shows data on the direct challenge with wild-type or GPI cytokine transfected 4T07 cells. BALB/C mice (n=5/group) were challenged s.c. in the hind flank with 2×105 cells in 100 μl PBS and were monitored every 2-3 days for tumor growth. Mean was calculated as the average of the tumor measurements from five mice per group. For the purpose of clarity, standard deviation was not included in the graph instead the values from individual mice in each group is given inFIG. 10 . -
FIG. 10 shows tumor size in individual mice post direct challenge with wild-type or - transfected 4T07 murine mammary tumor cells. BALB/C mice (n=5/group) were challenged s.c. in the hind flank with 2×105 cells in 100 μl PBS and were monitored every 2-3 days for tumor growth. Each data line represents an individual mouse per group.
-
FIG. 11 illustrates the production of extracellular portion of hHER-2 (hHER-2ECD). - Before the sequence, an optimized IL-2 Kozak sequence along with the restriction enzyme sites HindIII and KpnI have been added. Following the hHER2ECD sequence an EcoRI site is added. At base pair position 1365 of hHER2, a change in base pair from T was made to C in order to remove an EcoRI restriction enzyme site at this position, however, the final amino acid still remains as an isoleucine.
-
FIG. 12 shows flow cytometry analysis of CHO cells expressing GPI-human HER-2 (hHER-2-CD59) using TA1 mAb. - Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present disclosure, the preferred methods and materials are now described.
- All publications and patents cited in this specification are herein incorporated by reference as if each individual publication or patent were specifically and individually indicated to be incorporated by reference and are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present disclosure is not entitled to antedate such publication by virtue of prior disclosure. Further, the dates of publication provided could be different from the actual publication dates that may need to be independently confirmed.
- As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present disclosure. Any recited method can be carried out in the order of events recited or in any other order that is logically possible.
- Embodiments of the present disclosure will employ, unless otherwise indicated, techniques of medicine, organic chemistry, biochemistry, molecular biology, pharmacology, and the like, which are within the skill of the art. Such techniques are explained fully in the literature.
- It must be noted that, as used in the specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a support” includes a plurality of supports. In this specification and in the claims that follow, reference will be made to a number of terms that shall be defined to have the following meanings unless a contrary intention is apparent.
- Prior to describing the various embodiments, the following definitions are provided and should be used unless otherwise indicated.
- As used herein, the term “combination with” when used to describe administration with an additional treatment means that the agent may be administered prior to, together with, or after the additional treatment, or a combination thereof.
- As used herein, the terms “prevent” and “preventing” include the prevention of the recurrence, spread or onset. It is not intended that the present disclosure be limited to complete prevention. In some embodiments, the onset is delayed, or the severity is reduced.
- As used herein, the terms “treat” and “treating” are not limited to the case where the subject (e.g. patient) is cured and the disease is eradicated. Rather, embodiments of the present disclosure also contemplate treatment that merely reduces symptoms, and/or delays disease progression.
- “Subject” refers any animal, preferably a human patient, livestock, rodent, monkey or domestic pet.
- The terms “protein” and “polypeptide” refer to compounds comprising amino acids joined via peptide bonds and are used interchangeably.
- As used herein, an “amino acid sequence” refers to an amino acid sequence of a protein molecule. The terms such as “polypeptide” or “protein” are not meant to limit the amino acid sequence to the deduced amino acid sequence, but such as amino acid deletions, additions, and modifications such as glycolsylations and addition of lipid moieties or other post-translational modifications.
- With regard to any of the antigens or adjuvants disclosed herein, the protein generally refers to the most frequent human isoform, variant, mutated form, or protein with substantially identity to the full-length or portion thereof. Typically, an appropriate fragment is of the extracellular domain.
- The term “portion” when used in reference to a protein (as in “a portion of a given protein”) refers to fragments of that protein. The fragments may range in size from four amino acid residues or more than twenty or thirty or the entire amino sequence minus one amino acid.
- The following terms are used to describe the sequence relationships between two or more proteins: “reference sequence”, “sequence identity”, “percentage of sequence identity”, and “substantial identity”. A “reference sequence” is a defined sequence used as a basis for a sequence comparison; a reference sequence may be a subset of a larger sequence, for example, as a segment of a full-length amino acid sequence of a protein. Generally, a reference sequence is at least 20 amino acids in length, frequently at least 25 amino acids in length, and often at least 50 amino acids in length. Since two proteins may each (1) comprise a sequence (i.e., a portion of the complete amino acid sequence) that is similar between the two protein, and (2) may further comprise a sequence that is divergent between the two proteins, sequence comparisons between two (or more) proteins are typically performed by comparing sequences of the two proteins over a “comparison window” to identify and compare local regions of sequence similarity. A “comparison window”, as used herein, refers to a conceptual segment of at least 20 contiguous nucleotide positions wherein a sequence may be compared to a reference sequence of at least 20 contiguous amino acids and wherein the portion of the sequence in the comparison window may comprise additions or deletions (i.e., gaps) of 20 percent or less as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. Optimal alignment of sequences for aligning a comparison window may be conducted by the local homology algorithm of Smith and Waterman (Smith and Waterman, Adv. Appl. Math. 2: 482 (1981)) by the homology alignment algorithm of Needleman and Wunsch (Needleman and Wunsch, J. Mol. Biol. 48:443 (1970)), by the search for similarity method of Pearson and Lipman (Pearson and Lipman, Proc. Natl. Acad. Sci. (U.S.) 85:2444 (1988)), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package Release 7.0, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by inspection, and the best alignment (i.e., resulting in the highest percentage of homology over the comparison window) generated by the various methods is selected.
- The term “sequence identity” means that two sequences are identical (i.e., on a nucleotide-by-nucleotide basis) over the window of comparison. The term “percentage of sequence identity” is calculated by comparing two optimally aligned sequences over the window of comparison, determining the number of positions at which the identical amino acids occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity. The terms “substantial identity” as used herein denotes a characteristic of a sequence, wherein the protein comprises a sequence that has at least 85 percent sequence identity, preferably at least 90 to 95 percent sequence identity, more usually at least 99 percent sequence identity as compared to a reference sequence over a comparison window of at least 20 amino acid positions, frequently over a window of at least 25-50 nucleotides, wherein the percentage of sequence identity is calculated by comparing the reference sequence to the sequence which may include deletions or additions which total 20 percent or less of the reference sequence over the window of comparison.
- In certain embodiments, the disclosure relates to non-naturally occurring particle comprising, a B7-1 and/or B7-2 molecule anchored on the exterior of the particle; and an antigen molecule such as a tumor specific antigen or cancer marker anchored to the lipid membrane on the exterior of the particle. In certain embodiments, the B7-1 and or B7-2 or antigen, or protein may be anchored onto the membrane of the particle through a variety of linkages, such as lipid palmatic acid, biotin-avidin interaction, or a GPI-anchor.
- In one example, a contemplated sequence of B7-1 is MGHTRRQGTS PSKCPYLNFF QLLVLAGLSH FCSGVIHVTK EVKEVATLSC GHNVSVEELAQTRIYWQKEK KMVLTMMSGD MNIWPEYKNR TIFDITNNLS IVILALRPSD EGTYECVVLK YEKDAFKREH LAEVTLSVKA DFPTPSISDF EIPTSNIRRI ICSTSGGFPE PHLSWLENGE ELNAINTTVS QDPETELYAV SSKLDFNMTT NHSFMCLIKY GHLRVNQTFN WNTTKQEHFP DNLLPSWAIT LISVNGIFVI CCLTYCFAPR CRERRRNERL RRESVRPV (SEQ ID NO: 1) or fragment thereof.
- In another example, a contemplated sequence is VIHVTKEVKE VATLSCGHNV SVEELAQTRI YWQKEKKMVL TMMSGDMNIW PEYKNRTIFD ITNNLSIVIL ALRPSDEGTY ECVVLKYEKD AFKREHLAEV TLSVKADFPT PSISDFEIPT SNIRRIICST SGGFPEPHLS WLENGEELNA INTTVSQDPE TELYAVSSKL DFNMTTNHSF MCLIKYGHLR VNQTFNWNTT KQEHFPDN (SEQ ID NO:2) or fragment thereof. See Stamper et al., Crystal structure of the b7-1/ctla-4 complex that inhibits human immune responses. Nature (2001) 410:608.
- In another example, a contemplated fragment is KAMHVAQPAV VLASSRGIAS FVCEYASPGK ATEVRVTVLR QADSQVTEVC AATYMMGNELTFLDDSICTG TSSGNQVNLT IQGLRAMDTG LYICKVELMY PPPYYLGIGN GAQIYVIDPE PCPDSD (SEQ ID NO: 3) or fragment thereof.
- In certain embodiments, the disclosure relates to non-naturally occurring particle comprising, a B7-1 and/or B7-2 molecule anchored on a lipid membrane; a B7-1 and/or B7-2 molecule anchored to the lipid membrane on the exterior of the particle; and an antigen molecule such as a tumor specific antigen or cancer marker anchored to the lipid membrane on the exterior of the particle.
- A number of proteins commonly expressed by cells are attached to the cell membrane via a GPI-anchor. These proteins are post-translationally modified at their carboxy terminus to express this glycosylated moiety which is synthesized in the endoplasmic reticulum. These naturally expressing GPI-anchored molecules are widely distributed in mammalian cells and serve a host of different cellular functions, such as cell adhesion, enzymatic activity, and complement cascade regulation. Naturally occurring GPI-anchored proteins lack a transmembrane and cytoplasmic domain that otherwise anchor membrane proteins. The GPI-anchor consists of a glycosylated moiety attached to phosphatidylinositol containing two fatty acids. The phosphatidylinositol portion, as well as an ethanolamine which is attached to the C-terminal of the extracellular domain of the membrane proteins, anchor the molecule to the cell membrane lipid bilayer.
- In order to exploit this natural linkage using recombinant DNA techniques, the transmembrane and cytoplasmic domains of a transmembrane surface protein need only be replaced by the signal sequence for GPI-anchor attachment that is found at the hydrophobic C-terminus of GPI-anchored protein precursors. This method may be used to generate GPI-anchored proteins is not limited to membrane proteins; attaching a GPI-anchor signal sequence to secretory proteins would also convert them to a GPI-anchored form. The method of incorporating the GPI-anchored proteins onto isolated cell surfaces or lipid particles is referred to here as protein transfer.
- GPI-anchored molecules can be incorporated onto lipid membranes spontaneously. These GPI-anchored proteins can be purified from one cell type and incorporated onto different cell membranes. GPI-anchored proteins are used to customize of the lipid membranes disclosed herein for uses as a cancer vaccine. One may incorporate multiple molecules simultaneously onto the same cell membrane. One can control the level of protein expression by simply varying the concentration of the GPI-anchored molecules to be incorporated. The most significant outcome of this technology will be the reduction of time in preparing cancer vaccines from months to hours. These features make the protein transfer approach a more viable choice for the development of cancer vaccines for clinical settings. The molecules incorporated by means of protein transfer retain their functions associated with the extracellular domain. Cells and isolated membranes can be modified to express immunostimulatory molecules. In certain embodiments, the disclosure contemplates that the GPI-anchored molecules are incorporated onto the surface of albumin microparticles by this protein transfer method. GPI-anchored proteins attached to the surface of microparticles are used to target and/or enhance the adjuvant activity of microparticles, thereby enhancing the capacity to function as a targeted antigen or drug delivery device for cancer treatment.
- The GPI-B7-1 expression (by protein transfer) was stable up to 7 days on isolated membranes at 37° C. and frozen membranes can be used up to 3 years of storage at −80° C. which makes the stability and storage a nonissue. These studies suggest that the membrane vaccines are more suitable to stably express the GPI-anchored molecules than on intact cells, which lose the expression within 24 hr.
- This approach for introducing proteins onto membranes provides advantages over other immunotherapies for cancer vaccine development. This approach allows a protein to be added either singularly or in a combinatory manner to the tumor membrane surface. This approach navigates around the necessity to establish tumor cells as is the case for gene transfer. This GPI-mediated approach by protein transfer may be used for the co-stimulatory molecules, B7-1 and B7-2, GM-CSF, IL-2, and IL-12. With these cytokines being attached to the tumor membrane via a GPI-anchor, it enables them to exert their effector functions locally at the vaccination site without the risk of systemic toxicity.
- In certain embodiments, the disclosure relates to virus like particles comprising B7-1 and/or B7-2 molecule anchored to a lipid membrane on the exterior of the particle and an antigen molecule anchored to the lipid membrane on the exterior of the particle for uses disclosed herein.
- Influenza virus-like particles (VLPs) are particulate in nature and have shown to elicit robust immunity against antigens. Influenza VLPs have an outer lipid bilayer with properties similar to the cell membranes. Modification of influenza VLPs with a protein transfer method to incorporates tumor-associated antigens (TAAs) on the surface along with immunostimulatory molecules (ISMs) elicits enhanced immune responses directed against the TAAs. One contemplated protein transfer approach utilizes glycosyl phosphatidylinositol (GPI)- to anchor the TAA, which can spontaneously incorporate onto the surface of the VLPs that contain a lipid bilayer upon incubation at 37° C. (See
FIG. 1 ). - Incorporation of GPI-anchored forms of TAAs onto the surface of VLPs is used to direct the immune response against cancerous cells whereas the incorporation of immunostimulatory molecules (ISMs), such as GPI-anchored cytokines, costimulatory molecules, and adhesion molecules, onto the surface of VLPs is used to enhance the interaction between VLPs and antigen presenting cells (APCs) as well as lead to activation of these APCs and other immune effector cells. The incorporation of GPI-TAAs and GPI-ISMs onto VLPs by protein transfer leads to an antitumor immune response and tumor regression.
- VLPs consist of a virus' capsid protein shell that presents viral antigens in an authentic conformation without the viral genome that is required for replication. Thus, they provide a safe approach for human use. VLPs contain a multivalent repetitive structure that is particulate in nature, allowing for recognition by many pattern recognition receptors and the induction of an enhanced innate and adaptive immune response. The particulate nature of VLPs allows for them to be readily taken up and presented by APCs, and thus could provide a means for breaking the immunosuppressive barrier initiated by the tumor microenvironment.
- In certain embodiments, influenza virus-like particles (VLPs) may be produced using a variety of platform systems, including recombinant baculovirus vectors, transient plasmid expression systems, stable cell-line transformants, and plant expression systems. Typically VLPs are non-replicating particles that spontaneously self-assemble from expressed influenza virus proteins. In some expression systems, the viral hemagglutinin (HA) protein is sufficient for particle assembly and release from the cell. Typically the VLP comprises neuraminidase (NA). HA may present with a different type of glycosylation depending on whether they are obtained from. For the production of VLPs containing HA in mammalian cells, co-expression of NA or exogenously added NA was required for the effective release of influenza VLPs into culture media, implying an important role of the NA activity in cleaving sialic acids bound to HA of budding particles. In contrast, VLPs containing HA can be produced in insect cells in the absence of NA expression. Insect cells do not add sialic acids to the N-glycans during the posttranslational modification, which explains how VLPs containing HA but not NA are effectively released from insect cell surfaces. See Kang et al., Virus Res. 2009c, 143 (2), 140-6.
- In certain embodiments, VLPs used herein are recombinant influenza VLPs that have been generated in insect cells infected with rBVs expressing influenza genes HA, NA, M1, and M2.
- In certain embodiments, VLPs used herein are recombinant influenza VLPs that have been generated in insect cells infected with rBVs expressing influenza genes HA, NA, and M1.
- In certain embodiments, VLPs used herein are recombinant influenza VLPs that have been generated in insect cells infected with rBVs expressing influenza genes of HA and M1.
- In some instances, the VLP is obtained from influenza VLPs expressed from recombinant baculovirus (rBV) produced by replication in an insect cell system, e.g., Spodoptera frugiperda SF9 cells.
- In some instances, the VLP is obtained from a modified vaccinia virus Ankara (MVA) system expressing expressing influenza H5N1 HA, NA, and M proteins to generate influenza VLPs produced by replication in mammalian cells. See Schmeisser et al., Vaccine, 2012, 30(23):3413-3422.
- In certain embodiments, the disclosure relates to particles such as cells or virus like particles comprising B7-1 and/or B7-2 molecule anchored to a lipid membrane on the exterior of the particle and an antigen molecule anchored to the lipid membrane on the exterior of the particle. Typically, the antigen molecule is a cancer marker selected from HER-2, MKI67, prostatic acid phosphatase (PAP), prostate-specific antigen (PSA), prostate-specific membrane antigen, early prostate cancer antigen, early prostate cancer antigen-2 (EPCA-2), BCL-2, MAGE antigens such as CT7, MAGE-A3 and MAGE-A4, ERK5, G-protein coupled
estrogen receptor 1, CA15-3, CA19-9, CA 72-4, CA-125, carcinoembryonic antigen, CD20, CD31, CD34, PTPRC (CD45), CD99, CD117, melanoma-associated antigen (TA-90), peripheral myelin protein 22 (PMP22), epithelial membrane proteins (EMP-1, -2, and -3), HMB-45 antigen, MART-1 (Melan-A), S100A1, S100B and gp100:209-217(210M), MUC-1, mucin antigens TF, Tn, STn, glycolipid globo H antigen. Typically, the antigen is the human form. - HER-2, or Human Epidermal
Growth Factor Receptor 2, refers to the human protein encoded by the ERBB2 gene that has been referred to as Neu, ErbB-2, CD340 (cluster of differentiation 340) or p185. See Coussens et al., 1985, Science 230 (4730): 1132-9. - In certain embodiments, HER-2 is the extracellular domain or fragment thereof. In one contemplated example the protein comprises or consists essentially of the following sequence: TQVCTGTDMK LRLPASPETH LDMLRHLYQG CQVVQGNLEL TYLPTNASLS FLQDIQEVQG YVLIAHNQVR QVPLQRLRIV RGTQLFEDNY ALAVLDNGDP LNNTTPVTGA SPGGLRELQL RSLTEILKGG VLIQRNPQLC YQDTILWKDI FHKNNQLALT LIDTNRSRAC HPCSPMCKGS RCWGESSEDC QSLTRTVCAG GCARCKGPLP TDCCHEQCAA GCTGPKHSDC LACLHFNHSG ICELHCPALV TYNTDTFESM PNPEGRYTFG ASCVTACPYN YLSTDVGSCT LVCPLHN QEVTAEDGTQRCE KCSKPCARVC YGLGMEHLRE VRAVTSANIQ EFAGCKKIFG SLAFLPESFD GDPASNTAPL QPEQLQVFET LEEITGYLYI SAWPDSLPDL SVFQNLQVIR GRILHNGAYS LTLQGLGISW LGLRSLRELG SGLALIHHNT HLCFVHTVPW DQLFRNPHQA LLHTANRPED ECVGEGLACH QLCARGHCWG PGPTQCVNCS QFLRGQECVE ECRVLQGLPR EYVNARHCLP CHPECQPQNG SVTCFGPEAD QCVACAHYKD PPFCVARCPS GVKPDLSYMP IWKFPDEEGA CQPCPIN (SEQ ID NO: 4) or fragment thereof.
- In one contemplated example, the protein comprises or consists essentially of the following sequence: DIQMTQSPSS LSASVGDRVT ITCRASQDVN TAVAWYQQKP GKAPKLLIYS ASFLYSGVPS RFSGSRSGTD FTLTISSLQP EDFATYYCQQ HYTTPPTFGQ GTKVEIKRTV AAPSVFIFPP SDEQLKSGTA SVVCLLNNFY PREAKVQWKV DNALQSGNSQ ESVTEQDSKD STYSLSSTLT LSKADYEKHK VYACEVTHQG LSSPVTKSFN RGEC (SEQ ID NO: 5) or fragment thereof.
- In one contemplated example, the protein comprises or consists essentially of the following sequence: GTSHLVKCAE KEKTFCVNGG ECFMVKDLSN PSRYLCKCPN EFTGDRCQNY VMASF (SEQ ID NO: 6) or fragment thereof.
- MKI67, or antigen identified by monoclonal antibody Ki-67, refers to the human protein that is encoded by the MKI67 gene. See Bullwinkel et al., 2006, J. Cell. Physiol. 206 (3): 624-35.
- PAP, or Prostatic acid phosphatase or prostatic specific acid phosphatase (PSAP), refers to the human enzyme produced by the prostate in males. See Ostrowski & Kuciel, 1994, Clin. Chim. Acta 226 (2): 121-9.
- PSA, or Prostate-specific antigen or gamma-seminoprotein or kallikrein-3 (KLK3), refers to the human protein encoded by the KLK3 gene. See Menez et al., J Mol Biol. 2008, 376(4):1021-33.
- PSMA, or Prostate-specific membrane antigen or Glutamate carboxypeptidase II, refers to a
human type 2 integral membrane glycoprotein found in prostate tissues. See William et al., Reviews on Recent Clinical Trials, 2007, 2, 182-190. - Bcl-2, or B-
cell lymphoma 2 refers to an protein encoded by the BCL2 gene. Bcl-2 has two isoforms that differ by two amino acids.Isoform 1 is known as 1G5M, andIsoform 2 is known as 1G50/1GJH. See Petros et al., 2001, PNAS, 98: 3012-3017. Both isoforms are contemplated antigens. - In certain embodiments, the antigen is the entire protein, polypeptide, or a substantial fragment, or a fragment with conserved substitutions. The fragment may contain 5, 10, 20, 50, 100, or halve of the amino acids in the full length antigen. The fragment may be sufficient to mimic or replicate the folding of the full length antigen. The conserved substitutions may be amino acids that are in the interior of the folded polypeptide. A fragment is sufficient produce antibody production to the polypeptide. The antigen may be a chimera containing the fragment. The antigen may contain 1, 2, or 3, or 5 to 10, or 10 to 20 or more conserved substitutions within the full length or polypeptide fragment which are typically outside of functional domains. In certain embodiments, the antigen may have 80%, 90%, 95% or greater sequence identity to the full length or polypeptide fragment. An antigen protein may or may not be glycosylated.
- In certain embodiments, the virus like particles disclosed herein comprise an adjuvant molecule anchored to a lipid membrane on the exterior of the particle wherein the adjuvant molecule and the antigen molecule are not the same molecule. In certain embodiments, the adjuvant molecule is selected from is IL-2, IL-12, ICAM1, GM-CSF, flagellin, unmethylated, CpG oligonucleotide, lipopolysaccharides, lipid A, and heat stable antigen (HSA).
- It is contemplated that the co-stimulatory molecules, antigens, and adjuvant molecules may the individually conjugated to the lipophilic molecules or two or more or all of them may be conjugated together in a chimera and conjugated to a lipophilic molecule. For example, B7-1 may be conjugated to the adjuvant, HSA, in a chimera and the chimera is conjugated to a GPI.
- One contemplated antigen is heat stable antigen (HSA). A hybrid B7-1-HSA molecule on the cell surface membrane can function as a co-stimulatory molecule to induce T cell proliferation. CHO cells and CHO transfectants expressing HSA, B7-1, and B7-1-HSA were used as stimulator cells in a T cell proliferation assay. See Wang et al., Immunology Letters, 2006, 105(2):185-192.
-
Contemplated TLR 9 ligands as adjuvants are contemplated such as immunostimmulatory unmethylated CpG oligonucleotides, the cytosine of theoligonucleotide sequence 5′-CG-3′ is unmethylated and the oligonucleotide is greater than about 6 base pairs in length and is less than about 100 base pairs in length such as 5′-TGACTGTGAACGTTC GAGATGA-3′ (SEQ ID NO:8). It is contemplated that lipophilic molecules may be conjugated to the oligonucleotide for incorporation to the exterior of particles disclosed herein. - In certain embodiments, the antigen is also contained in the interior of the particle.
- In certain embodiments, the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
- In certain embodiments, the antigen is HER-2 and the adjuvant is flagellin and/or GM-CSF.
- In certain embodiments, the antigen is HER-2 and the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
- In certain embodiments, the antigen is HER-2, the adjuvant is flagellin and/or GM-CSF, the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
- In certain embodiments, the antigen is HER-2 and the adjuvant is IL-12.
- In certain embodiments, the antigen is HER-2, the adjuvant is IL-12, the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
- In certain embodiments, the antigen is PSA or PAP and the adjuvant is flagellin and/or or GM-CSF.
- In certain embodiments, the antigen is PSA or PAP and the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
- In certain embodiments, the antigen is PSA or PAP, the adjuvant is flagellin, the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
- In certain embodiments, the antigen is PSA or PAP and the adjuvant is IL-12.
- In certain embodiments, the antigen is PSA or PAP, the adjuvant is IL-12, the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
- In certain embodiments, the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
- In certain embodiments, the antigen is HER-2 and the adjuvant is flagellin and/or GM-CSF.
- In certain embodiments, the antigen is HER-2 and the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
- In certain embodiments, the antigen is HER-2, the adjuvant is flagellin and/or GM-CSF, the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
- In certain embodiments, the antigen is HER-2 and the adjuvant is IL-12.
- In certain embodiments, the antigen is HER-2, the adjuvant is IL-12, the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
- In certain embodiments, the antigen is PSA or PAP and the adjuvant is flagellin and/or GM-CSF.
- In certain embodiments, the antigen is PSA or PAP and the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
- In certain embodiments, the antigen is PSA or PAP, the adjuvant is flagellin or GM-CSF, the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
- In any of the embodiments, particle may be a wild type cell, cancer cell or immortalized cell.
- In certain embodiments, the particle is a cell such as ZR-75-1, ZR-75-30, 184A1, UACC-812, UACC-893, HCC38, HCC70, HCC202, HCC1187, HCC1395, HCC 1428, HCC1500, HCC1569, HCC1599, HCC1806, HCC1937, HCC1954, HCC2157, HCC1419, HCC2218, AU-565, 184B5, MCF 10A, MCF 10F, MCF-12A, BT-20, MDA-kb2, BT-474, CAMA-1, MCF7, MDA-MB-134-VI, MDA-MB-157, MDA-MB-175-VII, MDA-MB-231, MDA-MB-361, SK-BR-3, BT-483, BT-549, DU4475, Hs 578T, MDA-MB-415, MDA-MB-436, MDA-MB-453, MDA-MB-468, T-47D, EFM19, EFM192A, Hs 578Bst, SUM44PE, SUM52PE, SUM102PT, SUM149PT, SUM190PT, 4T1 (CRL-2539), or CAL51 for use in the treatment of cancer, breast cancer, breast adenocarcinoma, or breast carcinoma.
- In certain embodiments, the particle is a cell such as Jurkat, Clone E6-1 (ATCC Number: TIB-152), RBL-2H3 (CRL-2256), MOLT-4 (CRL-1582), K-562 (CCL-243), CCRF-CEM (CCL-119), HL-60 (CCL-240), or KG-1 (CCL-246) for use in the treatment of cancer, leukemia, leukemia (AML), leukemia (CML), promyelocytic leukemia, basophilic leukemia, or acute T cell leukemia.
- In certain embodiments, the particle is a cell such as NCI-H358 (CRL-5807), LL/2 (CRL-1642), Calu-3 (HTB-55), NCI-H441 (HTB-174), NCI-H1975 (CRL-5908), NCI-H23 (CRL-5800), NCI-H1299 (CRL-5803), NCI-H460 (HTB-177), NCI-H292 (CRL-1848), A-549 (CCL-185), A-549 (CCL-185), A-549 (CCL-185), IMR-90 (CCL-186), MRC-5 (CCL-171), or WI-38 (CCL-75) for use in the treatment of cancer, lung cancer, lung adenocarcinoma, lung carcinoma, lewis lung carcinoma, or bronchioalveolar lung cancer.
- In certain embodiments, the particle is a cell such as Ramos (CRL-1596), Daudi (CCL-213), Raji (CCL-86), EL4 (TIB-39), or U-937 (CRL-1593.2) for use in the treatment of cancer, lymphoma, B-cell lymphomas, histiocytic lymphoma, or Burkitt's lymphoma.
- In certain embodiments, the particle is a cell such as HeLa (CCL-2) or HeLa S3 (CCL-2.2) for use in the treatment of cancer, cervical cancer or cervical adenocarcinoma.
- In certain embodiments, the particle is a cell such as COLO 205 (CCL-222), SW620 (CCL-227), SW480 (CCL-228), LoVo (CCL-229), LS 174T (CL-188), Caco-2 (HTB-37), HT-29 (HTB-38), DLD-1 (CCL-221), HCT 116 (CCL-247), T84 (CCL-248), CT26.WT (CRL-2638) for use in the treatment of cancer, colon cancer, colon carcinoma, or a colon adenocarcinoma.
- In certain embodiments, the particle is a cell such as HCN-1A (CRL-10442), U-87 MG (HTB-14), C6 (CCL-107), bEnd.3 (CRL-2299), or T98G (CRL-1690) for use in the treatment of cancer, brain cancer, glioma, glioblastoma multiforme, glioblastoma-astrocytoma, or brain endothelioma cancer.
- In certain embodiments, the particle is a cell such as 3197-3 (CRL-1568), 3T3-Swiss albino (CCL-92), BALB/3T3 clone A31 (CCL-163), NTERA-2 cl.D1 (CRL-1973), 3T3-L1 (CL-173), NIH/3T3 (CRL-1658), SK-OV-3 (HTB-77), CHO-Kl (CCL-61), or F-12K (30-2004) for use in the treatment of cancer, ovarian cancer, ovarian adenocarcinoma, or testicular cancer.
- In certain embodiments, the particle is a cell such as 293T/17 (CRL-11268), 293 (CRL-1573), VERO C1008 (CRL-1568), Vero (CCL-81), MDCK (CCL-34), BHK-21 (CCL-10), Caki-1 (HTB-46), 786-0 (CRL-1932), or COS-7 (CRL-1651) for use in the treatment of cancer, renal cancer, or renal carcinoma.
- In certain embodiments, the particle is a cell such as H9c2 (CRL-1446) for use in the treatment of cancer or cardiac tumors.
- In certain embodiments, the particle is a cell such as A-431 (CRL-1555), Detroit 551 (CCL-110), BJ (CRL-2522), B16-F10 (CRL-6475), SK-MEL-28 (HTB-72), A375 (CRL-1619), NCTC clone 929 (CCL-1), IRR-MRC-5 (55-X), or IRR-STO (56-X) for use in the treatment of cancer, skin cancer, squamous-cell carcinoma, melanoma, areolar lesions, or epidermoid carcinoma.
- In certain embodiments, the particle is a cell such as HT-1080 (CCL-121) for use in the treatment of cancer or fibrosarcoma.
- In certain embodiments, the particle is a cell such as AGS (CRL-1739) or NCI-N87 (CRL-5822) for use in the treatment of cancer, stomach cancer, gastric carcinoma or gastric adenocarcinoma.
- In certain embodiments, the particle is a cell such as HepG2/C3A (CRL-10741), Hep 3B2.1-7 (HB-8064), Hep G2 (HB-8065), or Hepa 1-6 (CRL-1830) for use in the treatment of cancer, liver cancer, heptoma, or hepatocellular carcinoma.
- In certain embodiments, the particle is a cell such as U266B1 (TIB-196) for use in the treatment of cancer or multiple myeloma.
- In certain embodiments, the particle is a cell such as IMR-32 (CCL-127), Neuro-2a (CCL-131), or SK-N-SH (HTB-11) for use in the treatment of cancer or neuroblastoma.
- In certain embodiments, the particle is a cell such as Saos-2 (HTB-85), U-2 OS (HTB-96), or MG-63 (CRL-1427) for use in the treatment of cancer, bone cancer, or osteosarcoma.
- In certain embodiments, the particle is a cell such as Beta-TC-6 (CRL-11506), AsPC-1 (CRL-1682), BxPC-3 (CRL-1687), MIA PaCa-2 (CRL-1420), PANC-1 (CRL-1469), Capan-1 (HTB-79), or AR42J (CRL-1492) for use in the treatment of cancer, pancreatic cancer, or pancreatic carcinoma.
- In certain embodiments, the particle is a cell such as PC-12 (CRL-1721) for use in the treatment of cancer or pheochromocytoma.
- In certain embodiments, the particle is a cell such as RPMI 8226 (CCL-155) for use in the treatment of cancer or plasmacytoma.
- In certain embodiments, the particle is a cell such as PC-3 (CRL-1435), VCaP (CRL-2876), DU 145 (HTB-81), LNCaP clone FGC (CRL-1740), or 22Rv1 (CRL-2505) for use in the treatment of cancer, prostate cancer, prostate adenocarcinoma.
- In certain embodiments, the particle is a cell such as ARPE-19 (CRL-2302) for use in the treatment of cancer, eye cancer, or retinal cancer.
- In certain embodiments, the particle is a cell such as RD (CCL-136) for use in the treatment of cancer, sarcoma, or rhabdomyosarcoma.
- In certain embodiments, the particle is a cell such as a stem cells, mesenchymal stromal/stem, pluripotent stem cell, embryo, myoblast, hybridoma or macrophage, examples include RAW 264.7 (TIB-71), J774A.1 (TIB-67), C2C12 (CRL-1772), L6 (CRL-1458), Sp2/0-Ag14 (CRL-1581) for use in the treatment of cancer.
- In some embodiments, In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with the administration of dendritic cell (DC)-based cancer vaccines, systemic administration of cytokines, targeted therapy using Abs or other anti-cancer agents.
- In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with the administration of dendritic cell (DC)-based cancer vaccines. DCs have the unique ability to take up and process antigens, move into secondary lymphoid tissues, and activate both helper and cytotoxic T cells. Preparation of DC-based cancer vaccines involves loading DCs with known tumor-specific antigens, antigenic peptides, cDNA, or RNA isolated from tumor cells. In certain embodiments, an object of this disclosure is to develop more effective methods to deliver tumor antigens to DCs. One strategy is making hybrid cells by fusing tumor cells, tumor antigens, or conjugates with DCs and using the hybrid cells as vaccines. Combination therapies with DC-based cancer vaccines may be used to treat melanoma, breast cancer, multiple myeloma, NHL, lymphatic leukemia, prostatic adenocarcinoma, lung cancer, and hepatocarcinoma
- In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with antigen activated DCs for cancer treatments. In one example, the compositions are used in combination with DCs fused with granulocyte macrophage colony-stimulating factor (GM-CSF) and prostatic acid phosphatase (PAP) conjugate for cancer treatments.
- Provenge, an autologous DC-based vaccine, was approved by the FDA for the treatment of men with advanced prostate cancer. Provenge consists of patient-derived DCs pulsed ex vivo with a recombinant fusion protein (PA 2024) containing granulocyte macrophage colony-stimulating factor (GM-CSF) and prostatic acid phosphatase (PAP), an antigen found in 90-95% of prostate cancers.
- Another cell-based approach involves using irradiated whole tumor cells as potential cancer vaccines. This strategy allows the induction of a more polyclonal immune response through the presentation of a wide array of tumor antigens. In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with irradiated tumor cells for cancer treatments.
- The presence of immunosuppressive cytokines in the tumor microenvironment is an important factor in the establishment of tumors. Through the secretion of immunosuppressive cytokines, such as TGF-β and IL-10, the innate and adaptive immune responses are inhibited during tumor development. In order to overcome this immunosuppression, the systemic administration of certain immunostimulatory cytokines, such as IL-2, IL-12, and IFN-α, has been used to alter the tumor microenvironment to mediate tumor recognition by immune cells. In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with cytokines such as IL-2, IL-12, and INF-α for cancer treatments.
- Cytokines activate immune cells, such as NK and CD8+ T cells, and can also inhibit tumor angiogenesis. In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with IL-2, IL-12, and INF-α for the treatment of metastatic melanoma and renal cell carcinoma (RCC).
- T-cell growth cytokine, IL-15, promotes the activation of a variety of immune cells, namely NK, NKT, and memory CD8+ T cells, and can overcome activation-induced cell death (AICD) caused by IL-2. In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with IL-15 as a potential cancer immunotherapeutic agent.
- In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination intra-tumoral administration of cytokines, modification of tumor cells to secrete cytokines, and fusion of cytokines with antibodies for cancer treatments. In one embodiment, the cytokine is TNF-α. In one embodiment the cancer is melanoma.
- In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with administration of soluble GM-CSF and optionally a cytokine for cancer treatments.
- In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with an antibody therapy for cancer treatment. In certain embodiments, the contemplated anti-bodies are directed to epidermal growth factor receptor (EGFR), human EGFR-2 (HER-2), CD20 (an unglycosylated transmembrane phosphoprotein expressed on B and T cells), CD33 (a transmembrane protein expressed on cells of myeloid lineage and also on some lymphoid cells), CD52 (a highly glycosylated 12 amino acid membrane-anchored glycosylphosphatidylinositol (GPI) protein which is expressed on all circulating lymphocytes), and VEGF. In certain embodiments the antibody may be humanized, chimeric, a radiolabeled mouse antibody for targeted radiation.
- In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with rituximab for the treatment of B-cell non-Hodgkin's lymphoma or chronic lymphocytic leukemia.
- In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with ofatumumab for the treatment of B-cell non-Hodgkin's lymphoma or chronic lymphocytic leukemia.
- In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with ibritumomab (tiuxetan) for the treatment of B-cell non-Hodgkin's lymphoma.
- In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with tositumomab for the treatment of B-cell non-Hodgkin's lymphoma.
- In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with gemtuzumab ozogamicin for the treatment of acute myeloid leukemia.
- In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with alemtuzumab for the treatment of B-cell non-Hodgkin's lymphoma or chronic lymphocytic leukemia.
- In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with trastuzumab for the treatment of breast cancer.
- In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with bevacizumab for the treatment of breast, lung, or colon cancer.
- In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with cetuximab for the treatment of brain and neck, or colon cancer.
- In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with panitumomab for the treatment of colon cancer.
- In certain embodiments, the disclosure relates to methods of treating cancer comprising administering an effective amount of a particle as disclosed herein to a subject at risk of or diagnosed with cancer or a tumor optionally in combination with another anticancer agent. Other anticancer agents contemplated include gefitinib, erlotinib, docetaxel, cis-platin, 5-fluorouracil, gemcitabine, tegafur, raltitrexed, methotrexate, cytosine arabinoside, hydroxyurea, adriamycin, bleomycin, doxorubicin, daunomycin, epirubicin, idarubicin, mitomycin-C, dactinomycin and mithramycin, vincristine, vinblastine, vindesine, vinorelbine taxol, taxotere, etoposide, teniposide, amsacrine, topotecan, camptothecin bortezomib anegrilide, tamoxifen, toremifene, raloxifene, droloxifene, iodoxyfene fulvestrant, bicalutamide, flutamide, nilutamide, cyproterone, goserelin, leuprorelin, buserelin, megestrol, anastrozole, letrozole, vorazole, exemestane, finasteride, marimastat, trastuzumab, cetuximab, dasatinib, imatinib, bevacizumab, combretastatin, thalidomide, and/or lenalidomide or combinations thereof
- HER-2/neu, a surface glycoprotein, is overexpressed on many aggressive forms of breast cancer. One constructs a GPI-HER-2 by attaching extracellular domain of human HER-2 with a GPI-signal sequence and expresses it on CHOK1 cells by gene transfection. One grows CHO cells, lyses, and purifies GPI-HER-2 by affinity chromatography.
- One constructs a pCDNA3.1 plasmid expression vector containing the DNA encoding the GPI-anchored form of human HER-2 attached with the GPI-anchor signal sequence from CD59 to the extracellular domain of HER-2 using PCR and ligation into the vector as described for making GPI-GM-CSF. See Poloso et al., Mol Immunol 38:803-816. One transfects CHOK1 cells with the plasmids encoding GPI-HER-2 and confirms the GPI-anchoring by PI-PLC treatment. One grows cells using roller bottles and lyses the collected cell pellets using the detergent octyl glucoside.
- Purification and Incorporation of GPI-ICAM1, -IL-12, and -GM-CSF from CHOKI Transfectants
- CHOK1 cells were transfected to express GPI-ICAM1 or GPI-IL-12. Expression of the GPI-ISMs was assessed by flow cytometry and verification of the GPI-anchor was confirmed by a phospholipase (PIPLC) treatment. The transfectants were grown in large quantities, lysed, and the GPI-ISMs were purified by affinity chromatography. To determine if the purified GPI-ISMs still retained the GPI-anchor and could incorporate onto lipid bilayers by protein transfer, sheep red blood cells (RBCs) were used. The GPI-ISMs were individually incubated with the RBCs at 37° C. for 2 hours, washed and then analyzed by flow cytometry.
FIG. 2 demonstrates that the purified GPI-ISMs were able to incorporate onto sheep RBCs. - Optimization of Incorporation of GPI-ISMs onto Influenza H5 VLPs Using Protein Transfer
- These VLPs are constructed by the rBV system through the expression of the hemagluttinin and
matrix 1 protein in Sf9 insect cells. See Song et al., J Proteome Res. 2011, 10(8):3450-9. - To determine the optimal conditions for incorporation of GPI-ISMs onto influenza H5 VLPs, protein transfer was conducted at different concentrations of GPI-ISMs and at different temperatures. As the concentration of GPI-ISMs was increased, the amount of incorporation, as detected by western blot, also increased (
FIG. 3 ). Optimal incorporation occurred at 37° C. Blotting against the H5 VLPs by using serum from mice injected with H5 VLPs showed that the VLP protein expression was not altered by incorporation of the ISMs. The kinetics of GPI ICAM1 incorporation was also determined to show that maximum incorporation occurs after only 2 hrs of incubation (FIG. 4 ). - Incorporation of GPI-ISMs onto H5 VLPs by Protein Transfer is GPI-Anchor Dependent.
- To determine if incorporation of GPI-ISMs onto VLPs occurred via the GPI-anchor or via non-specific binding, PI-PLC treatment to cleave the GPI-anchor of GPI-ICAM1 either before incorporation (
FIG. 5A ) or after (FIG. 5B ) incorporation was carried out. PI-PLC treatment of GPI-ICAM1 before incorporation and PI-PLC treatment of VLPs that have been - incorporated with GPI-ICAM1 both led to decreased expression of ICAM1 on VLPs as detected by Western blotting to ICAM1, whereas when the PI-PLC inhibitors, ZnCl2, or 1,10-phenanthroline, were included, expression was retained. To further confirm that incorporation occurs via the GPI-anchor, GPI-ICAM1 was incubated with 1% fatty-acid-free bovine serum albumin (BSA) or 1% orosomucoid that bind to the GPI-anchor before protein transfer in order to competitively inhibit incorporation of GPI-ICAM1 onto VLP membranes.
FIG. 6 shows that GPI-ICAM1 incubated first with 1% BSA or 1% orosomucoid showed decreased incorporation onto VLPs compared to those incorporated without prior incubation with BSA or orosomucoid.
Incorporation of More than One GPI-Protein Simultaneously on the Same VLPs by Protein Transfer - To determine if more than one GPI-protein could incorporate simultaneously onto the surface of VLPs by protein transfer, VLPs were incubated with GPI-ICAM1 and GPI-IL-12 simultaneously at 37° C. for 2 h.
FIG. 7 shows that influenza VLPs can incorporate both GPI-ISMs on their surface and the expression of the first GPI-protein is not affected by the expression of the second GPI-protein. - Structural Integrity of VLPs Remains Intact after Protein Transfer.
- To determine if the structural integrity of the VLPs remains intact after incorporation, electron microscopy of VLPs before and after incorporation was conducted.
FIG. 8 shows that even after incorporation, the VLP membranes remain intact suggesting that the protein transfer method is not detrimental to the VLP structural integrity. This data show that purified GPI-proteins are able to incorporate onto influenza VLPs within 2 h at 37° C. via the GPI-anchor without disturbing the structural integrity of the VLPs. - Study Tumor Regression and Immune Responses Induced by Vaccination with VLPs Modified with GPI-HER-2 and GPI-ISMs by Protein Transfer in Mice with Established Tumors
- Protein transferred-VLPs that express the GPI-HER-2 in combination with GPIISMs, such as GPI-IL-2, GPI-IL-12, GPI-B7-1, and GPI-ICAM-1, leads to tumor regression in mice with established tumors that express HER-2. Although it is not intended that the disclosure be limited by any particular mechanism, the incorporation of cytokines onto the surface of VLPs allows for a slow release depot of the cytokines into the administered microenvironment, leading to increased activation of immune effector cells at the vaccination site while decreasing chances of systemic toxicity. Furthermore, the receptors of the ISMs, IL-2, IL-12, and ICAM-1 are found on APCs allowing for enhanced adhesion and activation of the APCs by the VLPs, thus leading to enhanced uptake and presentation. The receptors for IL-12 and B7-1 are also found on other immune cells such as NK cells and mast cells, allowing for the activation of a wide variety of immune effector cells to be elicited by the association of these ISMs onto the surface of VLPs. Since the immune response is directed against the antigens found on the VLPs, incorporating TAAs along with ISMs onto the surface of VLPs will direct the immune response towards the TAAs that are overexpressed on tumor cells as well.
- To determine the efficacy of VLPs incorporated with GPI-TAAs and GPI-ISMs in regressing established tumors in vivo, one inoculates BALB/c mice with 4T07 tumor cells that expressing HER-2 and then start treatment a few days later (Table 1).
-
TABLE 1 Vaccination groups (n = 9) Group Vaccination groups 1 PBS 2 VLP 3 VLP-GPI-HER-2 4 VLP-GPI-HER-2 + GPI-IL-12 + GPI-IL-2 5 VLP-GPI-HER-2 + GPI-IL-12 + GPI-IL-2 + GPI-B7-1 6 VLP-GPI-HER-2 + GPI-IL-12 + GPI-IL-2 + GPI-B7-1 + GPI-ICAM-1 7 VLP-GPI-IL-12 + GPI-IL-2 + GPI-B7-1 + GPI-ICAM-1 - One injects live 4T07 tumor cells s.c. into the left flank of the mice and injects VLP in the right flank starting on
days - Using the 4T07 murine breast cancer model the effects of expressing GPI-anchored immune stimulatory molecules (GPI-ISMs), namely cytokines (IL-2, IL-12) and the costimulatory protein B7-1, were investigated on the surface of the tumor cells. BALB/c mice were challenged subcutaneously (s.c.) with either wild-type 4T07 cells (4T07-WT) or 4T07 cells expressing GPI-ISMs. Significant splenomegaly was observed in the mice challenged with 4T07-WT cells relative to the mice challenged with 4T07 cells expressing GPI-ISMs. This observed splenomegaly correlated with tumor size and a 4-5 fold increase in the percentage of splenic CD11b+Gr1+MDSCs indicating the role of active immune suppression in the tumorigenicity of 4T07 breast cancer cells. Studies were conducted to analyze the effect of GPI-ISMs on infiltrating cells into the tumor microenvironment as well as in the spleen and draining lymph nodes (dLNs). Three groups of mice were challenged (s.c.) with the following cells mixed in a 1:1 ratio with BD Matrigel™ (a solubilized basement membrane preparation derived from a mouse sarcoma): 4T07-WT, 4T07-B7/IL-12 or PBS (control). Seven days post challenge, the Matrigel/tumor, spleen and dLNs were harvested from the mice, digested and analyzed for cellular infiltrates by flow cytometry. The expression of GPI-ISMs on the surface of tumor cells led to reduced angiogenesis as evidenced by a reduced level of blood vessels and decreased presence of CD4+CD25+FOXP3+ regulatory T cells and CD11b+Gr1+MDSCs locally at the tumor site and dLNs as well as systemically in the spleen. Additionally, there was a decrease in CD8+PD1+ exhausted T cells at the tumor site. Along with the inhibition of immune suppressive cell populations, the GPI-ISMs increased the presence of CD4+ and CD8+ T cells as well as dendritic cells and B cells. These observations suggest that components of the active immune suppression evident in this model can be inhibited by expressing GPI-ISMs on the surface of the 4T07 tumor cells and could be effective in a therapeutic setting.
- BALB/C female mice (five per group) were challenged subcutaneously (s.c.) with wild-type 4T07 or transfected 4T07-B7, GPI-IL-2, GPI-IL-12, B7/GPI-IL-2 or B7/GPI-IL-12 cells (all 2×105 cells in 100 μl PBS). Mice were injected s.c. in the rear flank and were monitored daily. Tumor size was measured using Vernier calipers every 2nd-3rd day by taking 2×2 perpendicular measurements, and tumor size (mm2) was calculated by multiplying the two diameters. Mice were euthanized when the tumor size reached close to 2 cm2. After 33 days of the initial challenge, tumor-free mice in the experimental groups were rechallenged on the opposite hind flank with wild-type 4T07 cells (2×105 in 100 μl PBS). Mice in each group were marked individually by ear punch and tumor growth was measured and recorded for each mouse separately. The wild-type and transfected tumor cell lines all began to grow tumors in vivo, but while the wild-type tumors continued to increase in size, the tumors from the modified cell lines all regressed (See
FIGS. 9 and 10 ). - Preparation and Evaluation of hHER-2(ECD)-CD59 GPI
- HER-2ECD is the extracellular portion of hHER-2. The hHER-2 extracellular domain with CD59 GPI signal sequence were join and introduced by a EcoRI site, i.e., joining region: g/aattc introduced EcoRV site (gat/atc) before sequence and Apal (gggcc/c) site after sequence at the joining region as illustrated in
FIG. 11 . Before the sequence, an optimized IL-2 Kozak sequence along with the restriction enzyme sites HindIII and KpnI were added. Following the hHER2ECD sequence an EcoRI site is added. At base pair position 1365 of hHER2, a change in base pair from T was made to C in order to remove an EcoRI restriction enzyme site at this position, however, the final amino acid still remains as an isoleucine. (2015 bp).FIG. 12 shows flow cytometry analysis of CHO cells expressing GPI-human HER-2 (hHER-2-CD59) using TA1 mAb. Testing shows that HER-2 expressed in CHO cells is GPI-anchored. PIPLC is an enzyme which cleaves GPI anchor, reduces the level of expression. PI-PLC treated CHOK1-hHER-2ECD-CD59 cells reduced hHER-2 cell surface expression by 98.4%. PIPLC will not have any effect on normal HER-2. - Nucleic acid encoding the hHER-2 extracellular domain E (Amino Acids 22-652) and GPI-anchor signal sequence (SEQ ID NO: 7) AAGGGGAGGT AACCCTGGCC CCTTTGGTCG GGGCCCCGGG CAGCCGCGCG CCCCTTCCCA CGGGGCCCTT TACTGCGCCG CGCGCCCGGC CCCCACCCCT CGCAGCACCC CGCGCCCCGC GCCCTCCCAG CCGGGTCCAG CCGGAGCCAT GGGGCCGGAGGATATC CCGCAGTGAG CACCATGGAG CTGGCGGCCT TGTGCCGCTG GGGGCTCCTC CTCGCCCTCT TGCCCCCCGG AGCCGCGAGC ACCCAAGTGT GCACCGGCAC AGACATGAAG CTGCGGCTCC CTGCCAGTCC CGAGACCCACCTGGACATGC TCCGCCACCT CTACCAGGGC TGCCAGGTGG TGCAGGGAAA CCTGGAACTC ACCTACCTGC CCACCAATGC CAGCCTGTCC TTCCTGCAGG ATATCCAGGA GGTGCAGGGC TACGTGCTCA TCGCTCACAA CCAAGTGAGG CAGGTCCCAC TGCAGAGGCT GCGGATTGTG CGAGGCACCC AGCTCTTTGA GGACAACTAT GCCCTGGCCG TGCTAGACAA TGGAGACCCG CTGAACAATA CCACCCCTGT CACAGGGGCC TCCCCAGGAG GCCTGCGGGA GCTGCAGCTT CGAAGCCTCA CAGAGATCTT GAAAGGAGGG GTCTTGATCC AGCGGAACCC CCAGCTCTGC TACCAGGACA CGATTTTGTG GAAGGACATC TTCCACAAGA ACAACCAGCT GGCTCTCACACTGATAGACA CCAACCGCTC TCGGGCCTGC CACCCCTGTT CTCCGATGTG TAAGGGCTCC CGCTGCTGGG GAGAGAGTTC TGAGGATTGT CAGAGCCTGA CGCGCACTGT CTGTGCCGGT GGCTGTGCCC GCTGCAAGGG GCCACTGCCC ACTGACTGCT GCCATGAGCA GTGTGCTGCC GGCTGCACGG GCCCCAAGCA CTCTGACTGC CTGGCCTGCC TCCACTTCAA CCACAGTGGC ATCTGTGAGC TGCACTGCCC AGCCCTGGTC ACCTACAACA CAGACACGTT TGAGTCCATG CCCAATCCCG AGGGCCGGTA TACATTCGGC GCCAGCTGTG TGACTGCCTG TCCCTACAAC TACCTTTCTA CGGACGTGGG ATCCTGCACC CTCGTCTGCC CCCTGCACAA CCAAGAGGTG ACAGCAGAGG ATGGAACACA GCGGTGTGAG AAGTGCAGCA AGCCCTGTGC CCGAGTGTGC TATGGTCTGG GCATGGAGCA CTTGCGAGAG GTGAGGGCAG TTACCAGTGC CAATATCCAG GAGTTTGCTG GCTGCAAGAA GATCTTTGGG AGCCTGGCAT TTCTGCCGGA GAGCTTTGAT GGGGACCCAG CCTCCAACAC TGCCCCGCTC CAGCCAGAGC AGCTCCAAGT GTTTGAGACT CTGGAAGAGA TCACAGGTTA CCTATACATC TCAGCATGGC CGGACAGCCT GCCTGACCTC AGCGTCTTCC AGAACCTGCA AGTAATCCGG GGACGAATTC TGCACAATGG CGCCTACTCG CTGACCCTGC AAGGGCTGGG CATCAGCTGG CTGGGGCTGC GCTCACTGAG GGAACTGGGC AGTGGACTGG CCCTCATCCA CCATAACACC CACCTCTGCT TCGTGCACAC GGTGCCCTGG GACCAGCTCT TTCGGAACCC GCACCAAGCT CTGCTCCACA CTGCCAACCG GCCAGAGGAC GAGTGTGTGG GCGAGGGCCT GGCCTGCCAC CAGCTGTGCG CCCGAGGGCA CTGCTGGGGT CCAGGGCCCA CCCAGTGTGT CAACTGCAGC CAGTTCCTTC GGGGCCAGGA GTGCGTGGAGGAATGCCGAG TACTGCAGGG GCTCCCCAGG GAGTATGTGA ATGCCAGGCA CTGTTTGCCGTGCCACCCTG AGTGTCAGCC CCAGAATGGC TCAGTGACCT GTTTTGGACC GGAGGCTGACCAGTGTGTGG CCTGTGCCCA CTATAAGGAC CCTCCCTTCT GCGTGGCCCG CTGCCCCAGC GGTGTGAAAC CTGACCTCTC CTACATGCCC ATCTGGAAGT TTCCAGATGA GGAGGGCGCA TGCCAGCCTT GCCCCATCAA CTGCACCCAC TCCTGTGTGG ACCTGGATGA CAAGGGCTGC CCCGCCGAGC AGAGAGCCAG CCCTCTGACGGAATTC CTTGAAAATGGTGGGACATCCTTATCAGAGAAAACAGTTCTTCTGCTGGT GACTCCATTTCTGGCAGCAGCCTGGAGCCTTCATCCCTAACAGAAG GCCAAGGGGCCCTCCG
Claims (21)
1. A non-naturally occurring particle comprising,
a lipid membrane;
a B7-1 or B7-2 molecule anchored to the lipid membrane on the exterior of the particle;
and
an antigen molecule anchored to the lipid membrane on the exterior of the particle.
2. The particle of claim 1 further comprising an adjuvant molecule anchored to the lipid membrane on the exterior of the particle wherein the adjuvant molecule and antigen molecule are not the same molecule.
3. The particle of claim 2 , wherein the adjuvant molecule is selected from molecules comprising IL-2, IL-12, ICAM1 GM-CSF, flagellin, unmethylated, CpG oligonucleotide, lipopolysaccharides, lipid A, and heat stable antigen (HSA).
4. The particle of claim 1 , wherein the lipid membrane is a phospholipid monolayer or phospholipid bilayer.
5. The particle of claim 1 , wherein the particle is a cell, allogeneic or autologous cancer cell or its membrane fragments or vesicles, liposome, virosome, micelle, polymer, or virus like particle.
6. The particle of claim 1 , wherein the B7-1 molecule is anchored to the lipid membrane on the exterior of the particle through a conjugated glycosyl-phosphatidylinositol, phospholipid, glycolipid, triglyceride, saturated or unsaturated fatty acid, or other lipophilic molecule.
7. The particle of claim 1 , wherein the antigen molecule is anchored to the lipid membrane on the exterior of the particle through a conjugated glycosyl-phosphatidylinositol, phospholipid, glycolipid, triglyceride, saturated or unsaturated fatty acid, or other lipophilic molecule.
8. The particle of claim 1 , wherein the adjuvant molecule is anchored to the lipid membrane on the exterior of the particle through a conjugated glycosyl-phosphatidylinositol, phospholipid, glycolipid, triglyceride, saturated or unsaturated fatty acid, or other lipophilic molecule.
9. The particle of claim 1 , wherein antigen is a cancer marker molecule selected from HER-2, MUC-1, mucin antigens TF, Tn, STn, glycolipid globo H antigen, prostatic acid phosphatase (PAP), prostate-specific antigen, prostate-specific membrane antigen, early prostate cancer antigen-2 (EPCA-2), bcl-2, G-protein coupled estrogen receptor 1, CA15-3, CA19-9, CA 72-4, CA-125, carcinoembryonic antigen, CD20, CD31, CD34, PTPRC (CD45), CD99, CD117, melanoma-associated antigen (TA-90), peripheral myelin protein 22 (PMP22), epithelial membrane proteins (EMP-1, -2, and -3), HMB-45 antigen, MART-1 (Melan-A), S100A1, and S100B.
10. The particle of claim 1 , wherein the antigen is contained in the interior of the particle.
11. The particle of claim 1 , wherein the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
12. The particle of claim 1 , wherein the antigen is HER-2 and the adjuvant is flagellin or GM-CSF.
13. The particle of claim 1 , wherein the antigen is HER-2 and the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
14. The particle of claim 1 , wherein the antigen is HER-2, the adjuvant is flagellin or GM-CSF, the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
15. The particle of claim 1 , wherein the antigen is HER-2 and the adjuvant is IL-12.
16. The particle of claim 1 , wherein the antigen is HER-2, the adjuvant is IL-12, the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
17. The particle of claim 1 , wherein the antigen is PSA or PAP and the adjuvant is flagellin or GM-CSF.
18. The particle of claim 1 , wherein the antigen is PSA or PAP and the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
19. The particle of claim 1 , wherein the antigen is PSA or PAP, the adjuvant is flagellin, the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.
20. The particle of claim 1 , wherein the antigen is PSA or PAP and the adjuvant is IL-12.
21-50. (canceled)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/374,729 US20150071987A1 (en) | 2012-02-03 | 2013-02-01 | Immunostimulatory compositions, particles, and uses related thereto |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261594754P | 2012-02-03 | 2012-02-03 | |
US14/374,729 US20150071987A1 (en) | 2012-02-03 | 2013-02-01 | Immunostimulatory compositions, particles, and uses related thereto |
PCT/US2013/024355 WO2013116656A1 (en) | 2012-02-03 | 2013-02-01 | Immunostimulatory compositions, particles, and uses related thereto |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/024355 A-371-Of-International WO2013116656A1 (en) | 2012-02-03 | 2013-02-01 | Immunostimulatory compositions, particles, and uses related thereto |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/833,769 Continuation US10987419B2 (en) | 2012-02-03 | 2017-12-06 | Immunostimulatory compositions, particles, and uses related thereto |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150071987A1 true US20150071987A1 (en) | 2015-03-12 |
Family
ID=48905876
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/374,729 Abandoned US20150071987A1 (en) | 2012-02-03 | 2013-02-01 | Immunostimulatory compositions, particles, and uses related thereto |
US15/833,769 Active 2033-12-31 US10987419B2 (en) | 2012-02-03 | 2017-12-06 | Immunostimulatory compositions, particles, and uses related thereto |
US17/132,320 Active 2034-08-15 US12023379B2 (en) | 2012-02-03 | 2020-12-23 | Immunostimulatory compositions, particles, and uses related thereto |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/833,769 Active 2033-12-31 US10987419B2 (en) | 2012-02-03 | 2017-12-06 | Immunostimulatory compositions, particles, and uses related thereto |
US17/132,320 Active 2034-08-15 US12023379B2 (en) | 2012-02-03 | 2020-12-23 | Immunostimulatory compositions, particles, and uses related thereto |
Country Status (4)
Country | Link |
---|---|
US (3) | US20150071987A1 (en) |
EP (2) | EP2809345A4 (en) |
CA (1) | CA2863658C (en) |
WO (1) | WO2013116656A1 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017201210A1 (en) * | 2016-05-18 | 2017-11-23 | Cue Biopharma, Inc. | T-cell modulatory multimeric polypeptides and methods of use thereof |
US20180128833A1 (en) * | 2016-11-08 | 2018-05-10 | Metaclipse Therapeutics Corporation | Methods of treating with tumor membrane vesicle-based immunotherapy and predicting therapeutic response thereto |
WO2018213828A1 (en) * | 2017-05-19 | 2018-11-22 | Case Western Reserve University | Compositions and methods for expanding ex vivo natural killer cells and therapeutic uses thereof |
US10927158B2 (en) | 2016-12-22 | 2021-02-23 | Cue Biopharma, Inc. | T-cell modulatory multimeric polypeptides and methods of use thereof |
US10927161B2 (en) | 2017-03-15 | 2021-02-23 | Cue Biopharma, Inc. | Methods for modulating an immune response |
WO2021014165A3 (en) * | 2019-07-25 | 2021-03-04 | Autolus Limited | Virus-like particle |
CN113521274A (en) * | 2020-04-17 | 2021-10-22 | 北京科兴中维生物技术有限公司 | COVID-19 inactivated vaccine composition and application |
WO2021231923A1 (en) * | 2020-05-14 | 2021-11-18 | Metaclipse Therapeutics Corporation | Compositions and methods for detecting and treating a sars-cov-2 infection |
US11226339B2 (en) | 2012-12-11 | 2022-01-18 | Albert Einstein College Of Medicine | Methods for high throughput receptor:ligand identification |
US11339201B2 (en) | 2016-05-18 | 2022-05-24 | Albert Einstein College Of Medicine | Variant PD-L1 polypeptides, T-cell modulatory multimeric polypeptides, and methods of use thereof |
US20230033099A1 (en) * | 2021-07-28 | 2023-02-02 | Emory University | Dendritic Cells Pulsed With Tumor Membrane Vesicles And Uses In Treating Cancer |
US11702461B2 (en) | 2018-01-09 | 2023-07-18 | Cue Biopharma, Inc. | T-cell modulatory multimeric polypeptides comprising reduced-affinity immunomodulatory polypeptides |
US11851471B2 (en) | 2017-01-09 | 2023-12-26 | Cue Biopharma, Inc. | T-cell modulatory multimeric polypeptides and methods of use thereof |
US11878062B2 (en) | 2020-05-12 | 2024-01-23 | Cue Biopharma, Inc. | Multimeric T-cell modulatory polypeptides and methods of use thereof |
US12029782B2 (en) | 2020-09-09 | 2024-07-09 | Cue Biopharma, Inc. | MHC class II T-cell modulatory multimeric polypeptides for treating type 1 diabetes mellitus (T1D) and methods of use thereof |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013116656A1 (en) * | 2012-02-03 | 2013-08-08 | Emory University | Immunostimulatory compositions, particles, and uses related thereto |
CA2936092A1 (en) | 2013-01-23 | 2014-07-31 | The Board Of Trustees Of The Leland Stanford Junior University | Stabilized hepatitis b core polypeptide |
EP2971010B1 (en) | 2013-03-14 | 2020-06-10 | ModernaTX, Inc. | Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions |
EP3041934A1 (en) | 2013-09-03 | 2016-07-13 | Moderna Therapeutics, Inc. | Chimeric polynucleotides |
WO2015034925A1 (en) | 2013-09-03 | 2015-03-12 | Moderna Therapeutics, Inc. | Circular polynucleotides |
EP3052521A1 (en) | 2013-10-03 | 2016-08-10 | Moderna Therapeutics, Inc. | Polynucleotides encoding low density lipoprotein receptor |
JP2017500313A (en) * | 2013-12-09 | 2017-01-05 | ブレット バイオテクノロジー, インコーポレーテッドBullet Biotechnology, Inc. | Specific virus-like particle-CpG oligonucleotide vaccine and uses thereof |
EP3171895A1 (en) | 2014-07-23 | 2017-05-31 | Modernatx, Inc. | Modified polynucleotides for the production of intrabodies |
KR20170136535A (en) * | 2015-03-18 | 2017-12-11 | 메모리얼 슬로안-케터링 캔서 센터 | Compositions and methods for targeting CD99 in hematopoietic and lymphoid malignancies |
TW201722985A (en) | 2015-11-02 | 2017-07-01 | 戊瑞治療有限公司 | CD80 extracellular domain polypeptides and their use in cancer treatment |
JP2019512536A (en) * | 2016-03-28 | 2019-05-16 | ヴィダック ファーマ リミテッド | Stable pharmaceutical composition for topical administration and use thereof |
MX2019012849A (en) | 2017-04-28 | 2019-11-28 | Five Prime Therapeutics Inc | Methods of treatment with cd80 extracellular domain polypeptides. |
EP3625246A1 (en) | 2017-05-18 | 2020-03-25 | ModernaTX, Inc. | Polynucleotides encoding tethered interleukin-12 (il12) polypeptides and uses thereof |
EP3664839A4 (en) * | 2017-10-04 | 2021-10-20 | Georgia State University Research Foundation, Inc. | Headless hemagglutin influenza vaccine |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020009468A1 (en) * | 1996-08-15 | 2002-01-24 | Periasamy Selvaraj | Compositions and methods for cancer prophylaxis and/or treatment |
US20030105054A1 (en) * | 2001-08-27 | 2003-06-05 | Greenville Hospital System | GPI-anchored cytokines |
US20050232897A1 (en) * | 1997-09-11 | 2005-10-20 | Health And Human Services, The Government Of The United States Of America, As Represented By | Mucosal cytotoxic T lymphocyte responses |
US20070098691A1 (en) * | 1996-03-20 | 2007-05-03 | The Govt. Of The U.S.A., As Represented By The Secretary, Dept. Of Health & Human Services | Prostate specific antigen oligo-epitope peptide |
US20070243159A1 (en) * | 2003-04-30 | 2007-10-18 | Periasamy Selvaraj | Therapeutic Compositions and Vaccines By Glycosyl-Phosphatidylinositol (Gpi)-Anchored Cytokines and Immunostimulatory Molecules |
US20090269364A1 (en) * | 2006-04-13 | 2009-10-29 | Bio Life Science Forschungs-Und Entwicklungsges M.B H | Her-2/neu multi-peptide vaccine |
US20090305324A1 (en) * | 2005-10-28 | 2009-12-10 | Medical And Biological Laboratories Co., Ltd | Cytotoxic t-cell epitope peptides that specifically attack epstein-barr virus-infected cells and uses thereof |
US20090304745A1 (en) * | 2001-05-31 | 2009-12-10 | Polo John M | Chimeric alphavirus replicon particles |
US20100178299A1 (en) * | 2007-02-13 | 2010-07-15 | Northeastern University | Methods and compositions for improving immune responses |
US20100261269A1 (en) * | 2002-01-03 | 2010-10-14 | The Trustees Of The University Of Pennsylvania | Activation and Expansion of T-Cells Using An Engineered Multivalent Signaling Platform as a Research Tool |
US20110262467A1 (en) * | 2004-05-27 | 2011-10-27 | The Trustees Of The University Of Pennsylvania | Novel Artificial Antigen Presenting Cells and Uses Therefor |
US20120040458A1 (en) * | 2008-11-14 | 2012-02-16 | Yasuji Ueda | Method for producing dendritic cells |
US20120039932A1 (en) * | 2009-07-24 | 2012-02-16 | Immune Design Corp. | Lentiviral Vectors Pseudotyped with a Sindbis Virus Envelope Glycoprotein |
US20120093853A1 (en) * | 2001-06-22 | 2012-04-19 | The Trustees Of The University Of Pennsylvania | Simian Adenovirus Vectors and Methods of Use |
US20120114700A1 (en) * | 2009-05-07 | 2012-05-10 | Government of the United States of America, as Rep by the Secretary, Department of Health and | Lat adapter molecule for enhanced t-cell signaling and method of use |
US20120230939A1 (en) * | 2010-07-09 | 2012-09-13 | The Board Of Trustees Of The University Of Illinois | Methods for treating cancer using prostate specific antigen and tumor endothelial marker peptides |
US20130022640A1 (en) * | 2010-01-07 | 2013-01-24 | Secretary, Department Of Health And Human Services | Immune modulators relating to foxo3a |
US20130064818A1 (en) * | 2004-10-21 | 2013-03-14 | Ono Pharmaceutical Co., Ltd. | Use of immunesuppressant receptor |
US20130071409A1 (en) * | 2010-02-04 | 2013-03-21 | The Trustees Of The University Of Pennsylvania | ICOS Critically Regulates the Expansion and Function of Inflammatory Human Th17 Cells |
US20130243722A1 (en) * | 2012-01-18 | 2013-09-19 | Neumedicines Inc. | Il-12 for radiation protection and radiation-induced toxicity mitigation |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6730512B2 (en) * | 1997-04-09 | 2004-05-04 | Amdl, Inc. | Combination immunogene therapy |
US6054312A (en) * | 1997-08-29 | 2000-04-25 | Selective Genetics, Inc. | Receptor-mediated gene delivery using bacteriophage vectors |
US20070269455A1 (en) * | 1998-05-26 | 2007-11-22 | Genitrix, Llc | Cytokine-coated cells and methods of modulating an immune response to an antigen |
US20020039573A1 (en) * | 2000-01-21 | 2002-04-04 | Cheever Martin A. | Compounds and methods for prevention and treatment of HER-2/neu associated malignancies |
WO2001054716A2 (en) * | 2000-01-27 | 2001-08-02 | Sidney Kimmel Cancer Center | Genetically engineered tumor cell vaccines |
KR20020010206A (en) * | 2000-07-27 | 2002-02-04 | 이시우 | DNA vector comprising a single chain IL-12 and B7.1, and Anti-cancer cell vaccine transformed with the above vector |
US20040009146A1 (en) * | 2002-02-26 | 2004-01-15 | Osvaldo Podhajcer | Anti-tumor vaccine and method |
TWI259206B (en) * | 2002-09-24 | 2006-08-01 | Univ Nat Cheng Kung | A DNA vaccine containing a tumor associated gene and a cytokine gene and the method producing thereof |
US7429472B2 (en) * | 2003-01-31 | 2008-09-30 | Promega Corporation | Method of immobilizing a protein or molecule via a mutant dehalogenase that is bound to an immobilized dehalogenase substrate and linked directly or indirectly to the protein or molecule |
CN117534755A (en) * | 2005-05-09 | 2024-02-09 | 小野药品工业株式会社 | Human monoclonal antibodies to programmed death-1 (PD-1) and methods of treating cancer using anti-PD-1 antibodies |
WO2007039458A2 (en) * | 2005-09-21 | 2007-04-12 | Cytos Biotechnology Ag | Hiv peptide conjugates and uses thereof |
HUE026136T2 (en) * | 2005-10-18 | 2016-05-30 | Novavax Inc | Functional influenza virus like particles (vlps) |
US7498142B2 (en) * | 2006-01-31 | 2009-03-03 | Yeda Research And Development Co., Ltd. | Methods of identifying combinations of antibodies with an improved anti-tumor activity and compositions and methods using the antibodies |
NZ600758A (en) * | 2007-06-18 | 2013-09-27 | Merck Sharp & Dohme | Antibodies to human programmed death receptor pd-1 |
US8313896B2 (en) * | 2008-04-04 | 2012-11-20 | The General Hospital Corporation | Oncolytic herpes simplex virus immunotherapy in the treatment of brain cancer |
JP5797190B2 (en) * | 2009-05-15 | 2015-10-21 | アイ アール エックス セーラピューティクス, インコーポレイテッド | Vaccine immunotherapy |
WO2013116656A1 (en) * | 2012-02-03 | 2013-08-08 | Emory University | Immunostimulatory compositions, particles, and uses related thereto |
CN105457021A (en) * | 2012-05-04 | 2016-04-06 | 辉瑞公司 | Prostate-associated antigens and vaccine-based immunotherapy regimens |
BR112014029883B1 (en) * | 2012-05-31 | 2023-10-24 | Sorrento Therapeutics Inc. | ANTI-PD-L1 RECOMBINANT ANTIBODY AND USE OF AN ANTI-PD-L1 RECOMBINANT ANTIBODY |
US20180128833A1 (en) * | 2016-11-08 | 2018-05-10 | Metaclipse Therapeutics Corporation | Methods of treating with tumor membrane vesicle-based immunotherapy and predicting therapeutic response thereto |
-
2013
- 2013-02-01 WO PCT/US2013/024355 patent/WO2013116656A1/en active Application Filing
- 2013-02-01 EP EP13743997.2A patent/EP2809345A4/en not_active Ceased
- 2013-02-01 CA CA2863658A patent/CA2863658C/en active Active
- 2013-02-01 US US14/374,729 patent/US20150071987A1/en not_active Abandoned
- 2013-02-01 EP EP18196067.5A patent/EP3520809A1/en active Pending
-
2017
- 2017-12-06 US US15/833,769 patent/US10987419B2/en active Active
-
2020
- 2020-12-23 US US17/132,320 patent/US12023379B2/en active Active
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070098691A1 (en) * | 1996-03-20 | 2007-05-03 | The Govt. Of The U.S.A., As Represented By The Secretary, Dept. Of Health & Human Services | Prostate specific antigen oligo-epitope peptide |
US6491925B2 (en) * | 1996-08-15 | 2002-12-10 | Emory University | Compositions and methods for cancer prophylaxis and/or treatment |
US20020009468A1 (en) * | 1996-08-15 | 2002-01-24 | Periasamy Selvaraj | Compositions and methods for cancer prophylaxis and/or treatment |
US20050232897A1 (en) * | 1997-09-11 | 2005-10-20 | Health And Human Services, The Government Of The United States Of America, As Represented By | Mucosal cytotoxic T lymphocyte responses |
US20090304745A1 (en) * | 2001-05-31 | 2009-12-10 | Polo John M | Chimeric alphavirus replicon particles |
US20120093853A1 (en) * | 2001-06-22 | 2012-04-19 | The Trustees Of The University Of Pennsylvania | Simian Adenovirus Vectors and Methods of Use |
US20030105054A1 (en) * | 2001-08-27 | 2003-06-05 | Greenville Hospital System | GPI-anchored cytokines |
US20100261269A1 (en) * | 2002-01-03 | 2010-10-14 | The Trustees Of The University Of Pennsylvania | Activation and Expansion of T-Cells Using An Engineered Multivalent Signaling Platform as a Research Tool |
US20070243159A1 (en) * | 2003-04-30 | 2007-10-18 | Periasamy Selvaraj | Therapeutic Compositions and Vaccines By Glycosyl-Phosphatidylinositol (Gpi)-Anchored Cytokines and Immunostimulatory Molecules |
US20110262467A1 (en) * | 2004-05-27 | 2011-10-27 | The Trustees Of The University Of Pennsylvania | Novel Artificial Antigen Presenting Cells and Uses Therefor |
US20130064818A1 (en) * | 2004-10-21 | 2013-03-14 | Ono Pharmaceutical Co., Ltd. | Use of immunesuppressant receptor |
US20090305324A1 (en) * | 2005-10-28 | 2009-12-10 | Medical And Biological Laboratories Co., Ltd | Cytotoxic t-cell epitope peptides that specifically attack epstein-barr virus-infected cells and uses thereof |
US20090269364A1 (en) * | 2006-04-13 | 2009-10-29 | Bio Life Science Forschungs-Und Entwicklungsges M.B H | Her-2/neu multi-peptide vaccine |
US20100178299A1 (en) * | 2007-02-13 | 2010-07-15 | Northeastern University | Methods and compositions for improving immune responses |
US20120040458A1 (en) * | 2008-11-14 | 2012-02-16 | Yasuji Ueda | Method for producing dendritic cells |
US20120114700A1 (en) * | 2009-05-07 | 2012-05-10 | Government of the United States of America, as Rep by the Secretary, Department of Health and | Lat adapter molecule for enhanced t-cell signaling and method of use |
US20120039932A1 (en) * | 2009-07-24 | 2012-02-16 | Immune Design Corp. | Lentiviral Vectors Pseudotyped with a Sindbis Virus Envelope Glycoprotein |
US20130022640A1 (en) * | 2010-01-07 | 2013-01-24 | Secretary, Department Of Health And Human Services | Immune modulators relating to foxo3a |
US20130071409A1 (en) * | 2010-02-04 | 2013-03-21 | The Trustees Of The University Of Pennsylvania | ICOS Critically Regulates the Expansion and Function of Inflammatory Human Th17 Cells |
US20120230939A1 (en) * | 2010-07-09 | 2012-09-13 | The Board Of Trustees Of The University Of Illinois | Methods for treating cancer using prostate specific antigen and tumor endothelial marker peptides |
US20130243722A1 (en) * | 2012-01-18 | 2013-09-19 | Neumedicines Inc. | Il-12 for radiation protection and radiation-induced toxicity mitigation |
Non-Patent Citations (21)
Title |
---|
Chen et al. Ann. NY Acad. Sci. (1996) 795: 325-327. * |
Cimino et al. Immunologic Research (2004) 29: 231–240. * |
Coughlin et al. Cancer Res. (1995) 55: 4980-4987. * |
De Giovanni et al. [CANCER RESEARCH 64, 4001–4009, June 1, 2004]. * |
Gajewski et al. (1995) J. Immunol. 154, 5637-5648. * |
Galian et al. THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 287, NO. 20, pp. 16399–16409, 2012. * |
Gravekamp C., Experimental Gerontology 42 (2007) 441–450. * |
Harrop et al. Advanced Drug Delivery Reviews 58 (2006) 931–947. * |
Kim et al., Clinical Cancer Research, Vol. 7, 882s-889s, 2001 (Suppl.). * |
Komata et al. (1997) J. Immunother. 20: 256-264 (Abstract only;1 page). * |
Kubin et al. (1994) J. Exp. Med. 180: 211-222. * |
Murphy et al. (1994) J. Exp. Med. 180: 112-231. * |
Nagarajan et al. (2002) Cancer Research 62: 2869–2874. * |
Nagarajan et al. (2006) Vaccine 24: 2264–2274. * |
Pan et al. Molecular Therapy (2012) 20: 927–937. * |
Putzer et al. (1997) Proc. Natl. Acad. Sci. USA 94: 10889-10894. * |
Rosenberg et al., NATURE MEDICINE, VOLUME 10, NUMBER 9, 2004: 909-915. * |
Shimizu et al., Biochemical and Biophysical Research Communications 367 (2008) 330–335. * |
Thomas et al. (2000) Int. J. Cancer, 86: 368–374. * |
Wang et al., Immunology Letters 105 (2006) 185–192. * |
Zhao et al., THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 287, NO. 30, pp. 25230–25240, 2012. * |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11226339B2 (en) | 2012-12-11 | 2022-01-18 | Albert Einstein College Of Medicine | Methods for high throughput receptor:ligand identification |
WO2017201210A1 (en) * | 2016-05-18 | 2017-11-23 | Cue Biopharma, Inc. | T-cell modulatory multimeric polypeptides and methods of use thereof |
US11505591B2 (en) | 2016-05-18 | 2022-11-22 | Cue Biopharma, Inc. | T-cell modulatory multimeric polypeptides and methods of use thereof |
US11339201B2 (en) | 2016-05-18 | 2022-05-24 | Albert Einstein College Of Medicine | Variant PD-L1 polypeptides, T-cell modulatory multimeric polypeptides, and methods of use thereof |
US20180128833A1 (en) * | 2016-11-08 | 2018-05-10 | Metaclipse Therapeutics Corporation | Methods of treating with tumor membrane vesicle-based immunotherapy and predicting therapeutic response thereto |
US11851467B2 (en) | 2016-12-22 | 2023-12-26 | Cue Biopharma, Inc. | T-cell modulatory multimeric polypeptides and methods of use thereof |
US11530248B2 (en) | 2016-12-22 | 2022-12-20 | Cue Biopharma, Inc. | T-cell modulatory multimeric polypeptides and methods of use thereof |
US11117945B2 (en) | 2016-12-22 | 2021-09-14 | Cue Biopharma, Inc. | T-cell modulatory multimeric polypeptides and methods of use thereof |
US11987610B2 (en) | 2016-12-22 | 2024-05-21 | Cue Biopharma, Inc. | T-cell modulatory multimeric polypeptides and methods of use thereof |
US11905320B2 (en) | 2016-12-22 | 2024-02-20 | Cue Biopharma, Inc. | T-cell modulatory multimeric polypeptides and methods of use thereof |
US11739133B2 (en) | 2016-12-22 | 2023-08-29 | Cue Biopharma, Inc. | T-cell modulatory multimeric polypeptides and methods of use thereof |
US11708400B2 (en) | 2016-12-22 | 2023-07-25 | Cue Biopharma, Inc. | T-cell modulatory multimeric polypeptides and methods of use thereof |
US11370821B2 (en) | 2016-12-22 | 2022-06-28 | Cue Biopharma, Inc. | T-cell modulatory multimeric polypeptides and methods of use thereof |
US11377478B2 (en) | 2016-12-22 | 2022-07-05 | Cue Biopharma, Inc. | T-cell modulatory multimeric polypeptides and methods of use thereof |
US11401314B2 (en) | 2016-12-22 | 2022-08-02 | Cue Biopharma, Inc. | T-cell modulatory multimeric polypeptides and methods of use thereof |
US10927158B2 (en) | 2016-12-22 | 2021-02-23 | Cue Biopharma, Inc. | T-cell modulatory multimeric polypeptides and methods of use thereof |
US11505588B2 (en) | 2016-12-22 | 2022-11-22 | Cue Biopharma, Inc. | T-cell modulatory multimeric polypeptides and methods of use thereof |
US11851471B2 (en) | 2017-01-09 | 2023-12-26 | Cue Biopharma, Inc. | T-cell modulatory multimeric polypeptides and methods of use thereof |
US10927161B2 (en) | 2017-03-15 | 2021-02-23 | Cue Biopharma, Inc. | Methods for modulating an immune response |
US11958893B2 (en) | 2017-03-15 | 2024-04-16 | Cue Biopharma, Inc. | Methods for modulating an immune response |
US11479595B2 (en) | 2017-03-15 | 2022-10-25 | Cue Biopharma, Inc. | Methods for modulating an immune response |
US11104712B2 (en) | 2017-03-15 | 2021-08-31 | Cue Biopharma, Inc. | Methods for modulating an immune response |
US11767355B2 (en) | 2017-03-15 | 2023-09-26 | Cue Biopharma, Inc. | Methods for modulating an immune response |
US11993641B2 (en) | 2017-03-15 | 2024-05-28 | Cue Biopharma, Inc. | Methods for modulating an immune response |
US12060577B2 (en) | 2017-05-19 | 2024-08-13 | Case Western Reserve University | Compositions for expanding natural killer cells |
WO2018213828A1 (en) * | 2017-05-19 | 2018-11-22 | Case Western Reserve University | Compositions and methods for expanding ex vivo natural killer cells and therapeutic uses thereof |
US11702461B2 (en) | 2018-01-09 | 2023-07-18 | Cue Biopharma, Inc. | T-cell modulatory multimeric polypeptides comprising reduced-affinity immunomodulatory polypeptides |
WO2021014165A3 (en) * | 2019-07-25 | 2021-03-04 | Autolus Limited | Virus-like particle |
CN113521274A (en) * | 2020-04-17 | 2021-10-22 | 北京科兴中维生物技术有限公司 | COVID-19 inactivated vaccine composition and application |
US11878062B2 (en) | 2020-05-12 | 2024-01-23 | Cue Biopharma, Inc. | Multimeric T-cell modulatory polypeptides and methods of use thereof |
WO2021231923A1 (en) * | 2020-05-14 | 2021-11-18 | Metaclipse Therapeutics Corporation | Compositions and methods for detecting and treating a sars-cov-2 infection |
US12029782B2 (en) | 2020-09-09 | 2024-07-09 | Cue Biopharma, Inc. | MHC class II T-cell modulatory multimeric polypeptides for treating type 1 diabetes mellitus (T1D) and methods of use thereof |
US20230033099A1 (en) * | 2021-07-28 | 2023-02-02 | Emory University | Dendritic Cells Pulsed With Tumor Membrane Vesicles And Uses In Treating Cancer |
Also Published As
Publication number | Publication date |
---|---|
EP3520809A1 (en) | 2019-08-07 |
US20210154291A1 (en) | 2021-05-27 |
EP2809345A4 (en) | 2015-11-25 |
US12023379B2 (en) | 2024-07-02 |
CA2863658C (en) | 2023-03-14 |
US10987419B2 (en) | 2021-04-27 |
EP2809345A1 (en) | 2014-12-10 |
WO2013116656A1 (en) | 2013-08-08 |
US20180117145A1 (en) | 2018-05-03 |
CA2863658A1 (en) | 2013-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12023379B2 (en) | Immunostimulatory compositions, particles, and uses related thereto | |
WO2010030002A1 (en) | Cell capable of expressing exogenous gitr ligand | |
CN115551537A (en) | Tumor cell vaccine | |
JP2023506381A (en) | Recombinant Polypeptides for Programming Extracellular Vesicles | |
EP4357356A2 (en) | Antigenic peptides for prevention and treatment of b-cell malignancy | |
Yu et al. | Current status and perspective of tumor immunotherapy for head and neck squamous cell carcinoma | |
US20230074462A1 (en) | Methods and compositions for stimulating immune response | |
JP2023523619A (en) | Cancer treatment and prevention by virus-specific immune cells expressing chimeric antigen receptors | |
AU2022200872B2 (en) | Immunogenic compounds for cancer therapy | |
WO2019101062A1 (en) | Recombinant vaccine and application thereof | |
US20190388532A1 (en) | Immunogenic Compounds For Cancer Therapy | |
Ostrand‐Rosenberg et al. | Expression of MHC class II and B7–1 and B7–2 costimulatory molecules accompanies tumor rejection and reduces the metastatic potential of tumor cells | |
Fournier et al. | Targeting of IL-2 and GM-CSF immunocytokines to a tumor vaccine leads to increased anti-tumor activity | |
Danishmalik et al. | Tumor regression is mediated via the induction of HER263-71-specific CD8+ CTL activity in a 4T1. 2/HER2 tumor model: no involvement of CD80 in tumor control | |
JP2023542297A (en) | Heterogeneous prime-boost vaccine | |
CN111334521B (en) | Method for improving expression of non-integrated attenuated Listeria exogenous antigen protein | |
CN115135335A (en) | In vitro and in vivo gene delivery to immune effector cells using nanoparticles functionalized with Designed Ankyrin Repeat Proteins (DARPIN) | |
JP2023554154A (en) | Cytokine protein treatment schedule | |
JP2009108017A (en) | Antitumor vaccine | |
CN117715655A (en) | Substances and methods for activating and targeting immune effector cells | |
Danishmalik et al. | Tumor regression is mediated via the induction of HER2 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EMORY UNIVERSITY, GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SELVARAJ, PERIASAMY;REEL/FRAME:033398/0343 Effective date: 20140725 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |