US20150063049A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
US20150063049A1
US20150063049A1 US14/106,823 US201314106823A US2015063049A1 US 20150063049 A1 US20150063049 A1 US 20150063049A1 US 201314106823 A US201314106823 A US 201314106823A US 2015063049 A1 US2015063049 A1 US 2015063049A1
Authority
US
United States
Prior art keywords
redundancy
refresh
normal
memory cell
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/106,823
Other versions
US9455016B2 (en
Inventor
Jong-Yeol Yang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
SK Hynix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SK Hynix Inc filed Critical SK Hynix Inc
Assigned to SK Hynix Inc. reassignment SK Hynix Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YANG, JONG-YEOL
Publication of US20150063049A1 publication Critical patent/US20150063049A1/en
Application granted granted Critical
Publication of US9455016B2 publication Critical patent/US9455016B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • G11C29/78Masking faults in memories by using spares or by reconfiguring using programmable devices
    • G11C29/783Masking faults in memories by using spares or by reconfiguring using programmable devices with refresh of replacement cells, e.g. in DRAMs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • G11C11/40618Refresh operations over multiple banks or interleaving

Definitions

  • Exemplary embodiments of the present invention relate to a semiconductor design technology, and more particularly, to a semiconductor device for performing a refresh operation.
  • a semiconductor device includes a memory cell having one transistor and one capacitor. Data is stored by charging a charge on the capacitor. Since a leakage current occurs in the capacitor, the charge stored on the capacitor is subject to loss without recharging. The semiconductor device should perform a refresh operation to maintain the charge stored on the capacitor.
  • a high electric potential is applied to the memory cell when data of ‘1’ is to be stored therein and a low electric potential is applied to the memory cell when data of ‘0’ is to be stored therein.
  • the capacitor constituting the memory cell is designed in such manner that an electric charge therein should be always maintained in an ideal memory cell when there is no electrical change. In fact, however, the capacitor loses the electric charge stored therein in the form of a leakage current as time goes by, which means the electric charge stored therein may not be maintained and makes it impossible to identify whether the stored data is ‘1’ or ‘0’. Therefore, it is necessary to perform a series of processes that periodically senses data stored in each memory cell and again restores it therein in order to maintain data in the memory cell. This series of processes is called the refresh operation.
  • FIG. 1 is a circuit diagram illustrating a conventional refresh signal generator.
  • a refresh signal AFACT for generating a refresh command RE is generated by logically combining a chip select signal CS, a row address strobe signal RAS, a column address strobe signal CAS and a write enable signal WE, which are external signals inputted from outside.
  • the refresh signal generator generate the refresh signal AFACT of a logic high in response to the chip select signal CS of the logic high, the row address strobe signal RAS of the logic high, the column address strobe signal CAS of the logic high and the write enable signal WE of a logic low.
  • a semiconductor device during a refresh operation mode, sequentially changes an internal address and may enable word lines according the internal address in response to an external command, e.g., the refresh signal AFACT as shown in FIG. 1 .
  • an external command e.g., the refresh signal AFACT as shown in FIG. 1 .
  • a row address is sequentially increased at a predetermined period and a corresponding word line of the memory cell is selected.
  • a charge stored in the memory cell of the enabled word line is sensed, amplified, and re-stored. Through the refresh operation, the data stored in the memory cell maintains without loss.
  • a target row refresh (TRR) operation is to prevent data loss of adjacent memory cells, which may be caused by excessive activation of a word line.
  • TRR target row refresh
  • an active and precharge operation for adjacent word lines as well as a target word line is performed. Through the TRR operation, the adjacent memory cell may be secured even though the excessive activation of the target word line.
  • a circuit for the TRR operation to the redundancy word line needs to be complicated and more space for the circuit may be required, which makes it hard to reduce size of the semiconductor device and fabricating cost of the semiconductor device.
  • Exemplary embodiments of the present invention are directed to a semiconductor device for controlling a refresh cycle for a redundancy memory cell.
  • a semiconductor device may include a memory cell array including a normal memory cell array and a redundancy memory cell array, a normal refresh counter suitable for generating a normal address for performing a refresh operation to the normal memory cell array with a first period during a refresh mode and a redundancy refresh counter suitable for generating a redundancy address for performing a refresh operation to the redundancy memory cell with a second period shorter than the first period.
  • the semiconductor device may further include a redundancy period control unit suitable for controlling the second period.
  • the semiconductor device may further include a normal row decoder suitable for selecting the normal memory cell array in response to the normal address, and a redundancy row decoder suitable for selecting the redundancy memory cell array in response to the redundancy address.
  • the normal refresh counter and the redundancy refresh counter may do not operate at the same time.
  • the refresh mode may be activated in response to a self refresh signal or an auto refresh signal generated by decoding an external command signal.
  • a semiconductor device may include a memory cell array including a normal memory cell array and a redundancy memory cell array, a normal refresh counter suitable for generating a normal address for performing a refresh operation with a predetermined normal period to the normal memory cell array during a refresh mode and a redundancy refresh counter suitable for generating a redundancy address for performing a refresh operation to the redundancy memory cell twice or more within the predetermined normal period.
  • a semiconductor device may include a normal refresh unit suitable for refreshing a plurality of normal word lines, to each of which a plurality of normal memory cells are coupled, a redundancy refresh unit suitable for refreshing a plurality of redundancy word lines, to each of which a plurality of redundancy memory cells are coupled and a control unit suitable for controlling the normal refresh unit and the redundancy refresh unit so that the refreshing of the normal refresh unit alternates with the refreshing of the redundancy refresh unit, wherein a period of the refreshing of the normal refresh unit is greater than a period of the refreshing of the redundancy refresh unit.
  • FIG. 1 is a circuit diagram illustrating a conventional refresh signal generator.
  • FIG. 2 is a timing diagram illustrating refresh periods of a normal memory cell and a redundancy memory cell of a semiconductor device in accordance with an exemplary embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating a semiconductor device in accordance with an exemplary embodiment of the present invention.
  • ‘and/or’ represents that one or more of components arranged before and after ‘and/or’ is included.
  • “connected/coupled” refers to one component not only directly coupling another component but also indirectly coupling another component through an intermediate component.
  • a singular form may include a plural form as long as it is not specifically mentioned in a sentence.
  • ‘include/comprise’ or ‘including/comprising’ used in the specification represents that one or more components, steps, operations, and elements exists or are added.
  • FIG. 2 is a timing diagram illustrating refresh periods of a normal memory cell and a redundancy memory cell of a semiconductor device in accordance with an exemplary embodiment of the present invention.
  • the semiconductor device may perform a refresh operation to both of a normal memory cell and a redundancy memory cell with respective refresh periods.
  • a normal word line may be refreshed for a first period PER1, e.g., 67 ms, and a redundancy word line may be refreshed for a second period PER2, e.g., 8 ms.
  • a refresh operation to the normal word lines NWL 0 to NWL 255 is performed once for the first period PER1, e.g., 67 ms
  • the refresh operation to the redundancy word lines RWL 0 to RWL 7 may be performed eight times.
  • net time for completion of the refresh operation to the normal word lines NWL 0 to NWL 255 may be 64 ms.
  • the period PER1 of the refresh operation to the normal word lines NWL 0 to NWL 255 is 67 ms as shown in FIG. 2 because of alternative refresh operations to the normal word lines NWL 0 to NWL 255 and the redundancy word lines RWL 0 to RWL 7 . Since the refresh operation is performed on the redundancy word line in the middle of the refresh operation of the normal memory cell, the period of the normal word line becomes longer than the net time due to the alternative refresh operations.
  • the semiconductor device may prevent the noise due to the short period of the refresh operations by extending the refresh period of the normal word line to 67 ms.
  • the semiconductor device in accordance with the embodiment of the present invention may have the same effect to the redundancy word line as the TRR operation.
  • FIG. 3 is a block diagram illustrating a semiconductor device in accordance with an exemplary embodiment of the present invention.
  • the semiconductor device may include a normal refresh counter 310 , a redundancy period control unit 320 , a redundancy refresh counter 330 , a normal row decoder 340 , a redundancy row decoder 350 and a memory cell array 360 .
  • the memory cell array 360 may include a normal memory cell array 361 having the normal word lines NWL 0 to NWL 255 and a redundancy memory cell array 362 having the redundancy word lines RWL 0 to RWL 7 .
  • a normal memory cell of the normal memory cell array 361 may be coupled to the normal word lines NWL 0 to NWL 255 .
  • a redundancy memory cell of the redundancy memory cell array 362 may be couple to the redundancy word lines RWL 0 to RWL 7 .
  • the memory cells are refreshed through refresh operation to the corresponding word lines.
  • the normal refresh counter 310 may perform a counting operation in response to a refresh signal REFAD during the refresh operation and generate a normal address ATROW[0:7] for performing the refresh operation to the normal word lines NWL 0 to NWL 255 of the normal memory cell array 361 .
  • the refresh signal REFAD may be one of an auto refresh signal, a self refresh signal, which is generated by decoding an external command signal such as a chip select signal, a row address strobe signal, a column strobe address signal, and a write enable signal.
  • the redundancy period control unit 320 may generate a redundancy period signal RED_PER for controlling an activation of the redundancy refresh counter 330 and the normal refresh counter 310 .
  • the redundancy period signal RED_PER When the redundancy period signal RED_PER is activated, the normal refresh counter 310 may stop the counting operation and the redundancy refresh counter 330 may start a counting operation.
  • the redundancy period signal RED_PER When the redundancy period signal RED_PER is deactivated, the normal refresh counter 310 may resume the counting operation and the redundancy refresh counter 330 may stop the counting operation.
  • the operations of the normal refresh counter 310 and the redundancy refresh counter 330 may not overlap in time, which represents that the refresh operations to the normal word lines NWL 0 to NWL 255 and the redundancy word lines RWL 0 to RWL 7 may not overlap in time and that the refresh operation to the normal word lines NWL 0 to NWL 255 alternates with the refresh operation to the redundancy word lines RWL 0 to RWL 7 such as shown in FIG. 2 .
  • the redundancy period signal RE_PER may control the activation period of the redundancy refresh counter 330 .
  • the activation period of the redundancy period signal RED_PER may be adjusted by an external control signal or an internal control signal.
  • the refresh counter 330 may generate a redundancy address ATROW[0:2] for the refresh operation to the redundancy word lines RWL 0 to RWL 7 .
  • the normal row decoder 340 may generate a normal word line signal NWL[0:255] in response to the normal address ATROW[0:7] outputted from the normal refresh counter 310 .
  • the normal word line signal NWL[0:255] may enable corresponding one of the normal word lines NWL 0 to NWL 255 .
  • the redundancy row decoder 350 may generate a redundancy word line signal RWL[0:7] in response to the redundancy address ATROW[0:2] outputted from the redundancy refresh counter 330 .
  • the redundancy word line signal RWL[0:7] may enable corresponding one of the redundancy word lines.
  • the normal refresh counter 310 may generate the normal address ATROW[0:7] for performing a refresh operation to the normal word lines NWL 0 to NWL 255 during a first period PER1, e.g., 67 ms as shown in FIG. 2 .
  • the normal row decoder 340 may generate the normal word line signal NWL[0:25], which may enable the corresponding normal word line of the normal word lines NWL 0 to NWL 255 , in response to the normal address TROW[0:7].
  • NWL[0:25] may enable the corresponding normal word line of the normal word lines NWL 0 to NWL 255 , in response to the normal address TROW[0:7].
  • the normal refresh counter 310 may stop performing the refresh operation to the normal word lines NWL 0 to NWL 255
  • the redundancy refresh counter 330 may start the counting operation and generate the redundancy address ATROW[0:2] for performing the refresh operation to the redundancy word lines RWL 0 to RWL 7 .
  • the second period PER2 may be shorter than the first period PER1 and activated twice or more within the first period PER such as described with respect to FIG. 2 .
  • the redundancy row decoder 350 may generate the redundancy word line signal RWL[0:7], which may enable the corresponding redundancy word line of the redundancy word lines RWL 0 to RWL 7 , in response to the redundancy address ATROW[0:2].
  • the data stored on the redundancy memory cell of the memory cell array 360 which is enabled in response to the redundancy word line signal RWL[0:7], may be refreshed.
  • the normal refresh counter 310 in response to the deactivation of the redundancy period signal RED_PER may resume the counting operation, which start from the value lastly stopped before resuming, and generate the normal address ATROW[0:7] for performing the refresh operation to the normal word lines NWL 0 to NWL 255 of the normal memory cell array 361 . That is, the operations of the normal refresh counter 310 and the redundancy refresh counter 330 may not overlap in time.
  • the refresh operations to the normal word lines NWL 0 to NWL 255 and the redundancy word lines RWL 0 to RWL 7 may not overlap in time and the refresh operation to the normal word lines NWL 0 to NWL 255 alternates with the refresh operation to the redundancy word lines RWL 0 to RWL 7 such as shown in FIG. 2 .
  • the semiconductor device in accordance with an embodiment of the present invention may perform the refresh operation to the redundancy word lines twice or more whenever the redundancy period RED_PER are activated while the refresh operation to the normal word lines is performed once. That is, as shown in FIG. 2 , the refresh operation to the redundancy word lines may be performed more often due to the shortened refresh period of the redundancy word lines compared to the refresh period of the normal word lines.
  • the semiconductor device in accordance with the embodiment of the present invention may have the same effect to the redundancy word line as the TRR operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)

Abstract

A semiconductor device includes a memory cell array including a normal memory cell array and a redundancy memory cell array, a normal refresh counter suitable for generating a normal address for performing a refresh operation to the normal memory cell array with a first period during a refresh mode and a redundancy refresh counter suitable for generating a redundancy address for performing a refresh operation to the redundancy memory cell with a second period shorter than the first period.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application claims priority of Korean Patent Application No. 10-2013-0104766, filed on Sep. 2, 2013, which is incorporated herein by reference in its entirety.
  • BACKGROUND
  • 1. Field
  • Exemplary embodiments of the present invention relate to a semiconductor design technology, and more particularly, to a semiconductor device for performing a refresh operation.
  • 2. Description of the Related Art
  • As well-known in the art, a semiconductor device includes a memory cell having one transistor and one capacitor. Data is stored by charging a charge on the capacitor. Since a leakage current occurs in the capacitor, the charge stored on the capacitor is subject to loss without recharging. The semiconductor device should perform a refresh operation to maintain the charge stored on the capacitor.
  • More specifically, in the semiconductor device, a high electric potential is applied to the memory cell when data of ‘1’ is to be stored therein and a low electric potential is applied to the memory cell when data of ‘0’ is to be stored therein. The capacitor constituting the memory cell is designed in such manner that an electric charge therein should be always maintained in an ideal memory cell when there is no electrical change. In fact, however, the capacitor loses the electric charge stored therein in the form of a leakage current as time goes by, which means the electric charge stored therein may not be maintained and makes it impossible to identify whether the stored data is ‘1’ or ‘0’. Therefore, it is necessary to perform a series of processes that periodically senses data stored in each memory cell and again restores it therein in order to maintain data in the memory cell. This series of processes is called the refresh operation.
  • FIG. 1 is a circuit diagram illustrating a conventional refresh signal generator.
  • Referring to FIG. 1, a refresh signal AFACT for generating a refresh command RE is generated by logically combining a chip select signal CS, a row address strobe signal RAS, a column address strobe signal CAS and a write enable signal WE, which are external signals inputted from outside.
  • The refresh signal generator generate the refresh signal AFACT of a logic high in response to the chip select signal CS of the logic high, the row address strobe signal RAS of the logic high, the column address strobe signal CAS of the logic high and the write enable signal WE of a logic low.
  • A semiconductor device, during a refresh operation mode, sequentially changes an internal address and may enable word lines according the internal address in response to an external command, e.g., the refresh signal AFACT as shown in FIG. 1. During the refresh operation mode according to the external command, a row address is sequentially increased at a predetermined period and a corresponding word line of the memory cell is selected. A charge stored in the memory cell of the enabled word line is sensed, amplified, and re-stored. Through the refresh operation, the data stored in the memory cell maintains without loss.
  • A target row refresh (TRR) operation is to prevent data loss of adjacent memory cells, which may be caused by excessive activation of a word line. During the TRR operation, an active and precharge operation for adjacent word lines as well as a target word line is performed. Through the TRR operation, the adjacent memory cell may be secured even though the excessive activation of the target word line.
  • However, in order for a redundancy word line to be activated and precharged as the target word line during the TRR operation, a circuit for the TRR operation to the redundancy word line needs to be complicated and more space for the circuit may be required, which makes it hard to reduce size of the semiconductor device and fabricating cost of the semiconductor device.
  • SUMMARY
  • Exemplary embodiments of the present invention are directed to a semiconductor device for controlling a refresh cycle for a redundancy memory cell.
  • In accordance with an embodiment of the present invention a semiconductor device may include a memory cell array including a normal memory cell array and a redundancy memory cell array, a normal refresh counter suitable for generating a normal address for performing a refresh operation to the normal memory cell array with a first period during a refresh mode and a redundancy refresh counter suitable for generating a redundancy address for performing a refresh operation to the redundancy memory cell with a second period shorter than the first period.
  • The semiconductor device may further include a redundancy period control unit suitable for controlling the second period.
  • The semiconductor device may further include a normal row decoder suitable for selecting the normal memory cell array in response to the normal address, and a redundancy row decoder suitable for selecting the redundancy memory cell array in response to the redundancy address.
  • The normal refresh counter and the redundancy refresh counter may do not operate at the same time.
  • The refresh mode may be activated in response to a self refresh signal or an auto refresh signal generated by decoding an external command signal.
  • In accordance with another embodiment of the present invention, a semiconductor device may include a memory cell array including a normal memory cell array and a redundancy memory cell array, a normal refresh counter suitable for generating a normal address for performing a refresh operation with a predetermined normal period to the normal memory cell array during a refresh mode and a redundancy refresh counter suitable for generating a redundancy address for performing a refresh operation to the redundancy memory cell twice or more within the predetermined normal period.
  • In accordance with another embodiment of the present invention, a semiconductor device may include a normal refresh unit suitable for refreshing a plurality of normal word lines, to each of which a plurality of normal memory cells are coupled, a redundancy refresh unit suitable for refreshing a plurality of redundancy word lines, to each of which a plurality of redundancy memory cells are coupled and a control unit suitable for controlling the normal refresh unit and the redundancy refresh unit so that the refreshing of the normal refresh unit alternates with the refreshing of the redundancy refresh unit, wherein a period of the refreshing of the normal refresh unit is greater than a period of the refreshing of the redundancy refresh unit.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a circuit diagram illustrating a conventional refresh signal generator.
  • FIG. 2 is a timing diagram illustrating refresh periods of a normal memory cell and a redundancy memory cell of a semiconductor device in accordance with an exemplary embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating a semiconductor device in accordance with an exemplary embodiment of the present invention.
  • DETAILED DESCRIPTION
  • Exemplary embodiments of the present invention will be described below in more detail with reference to the accompanying drawings. The present invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the present invention to those skilled in the art. Throughout the disclosure, reference numerals correspond directly to the like parts in the various figures and embodiments of the present invention.
  • The drawings are not necessarily to scale and in some instances, proportions may have been exaggerated in order to clearly illustrate features of the embodiments. In this specification, specific terms have been used. The terms are used to describe the present invention, and are not used to qualify the sense or limit the scope of the present invention.
  • It is also noted that in this specification, ‘and/or’ represents that one or more of components arranged before and after ‘and/or’ is included. Furthermore, “connected/coupled” refers to one component not only directly coupling another component but also indirectly coupling another component through an intermediate component. In addition, a singular form may include a plural form as long as it is not specifically mentioned in a sentence. Furthermore, ‘include/comprise’ or ‘including/comprising’ used in the specification represents that one or more components, steps, operations, and elements exists or are added.
  • FIG. 2 is a timing diagram illustrating refresh periods of a normal memory cell and a redundancy memory cell of a semiconductor device in accordance with an exemplary embodiment of the present invention.
  • Referring to FIG. 2, the semiconductor device may perform a refresh operation to both of a normal memory cell and a redundancy memory cell with respective refresh periods.
  • In the description, 256 normal word lines NWL0 to NWL255 and 8 redundancy word lines RWL0 to RWL7 are taken as an example for clear understanding.
  • A normal word line may be refreshed for a first period PER1, e.g., 67 ms, and a redundancy word line may be refreshed for a second period PER2, e.g., 8 ms. During the refresh operation to the normal word lines NWL0 to NWL255 is performed once for the first period PER1, e.g., 67 ms, the refresh operation to the redundancy word lines RWL0 to RWL7 may be performed eight times.
  • For example, net time for completion of the refresh operation to the normal word lines NWL0 to NWL255 may be 64 ms. However, the period PER1 of the refresh operation to the normal word lines NWL0 to NWL255 is 67 ms as shown in FIG. 2 because of alternative refresh operations to the normal word lines NWL0 to NWL255 and the redundancy word lines RWL0 to RWL7. Since the refresh operation is performed on the redundancy word line in the middle of the refresh operation of the normal memory cell, the period of the normal word line becomes longer than the net time due to the alternative refresh operations.
  • When the period PER1 of the refresh operation to the normal word lines NWL0 to NWL255 is set to be lesser than 67 ms in spite of the alternative refresh operations to the normal word lines NWL0 to NWL255 and the redundancy word lines RWL0 to RWL7, a noise may occur in the refresh operation. In accordance with the embodiment of the present invention, the semiconductor device may prevent the noise due to the short period of the refresh operations by extending the refresh period of the normal word line to 67 ms.
  • In accordance with the embodiment of the present invention, even though there may be excessive activation of the redundancy word line, a deterioration of an adjacent memory cell may be prevented by performing the refresh operation to the redundancy word lines more frequently than the refresh operation to the normal word lines. Thus, the semiconductor device in accordance with the embodiment of the present invention may have the same effect to the redundancy word line as the TRR operation.
  • FIG. 3 is a block diagram illustrating a semiconductor device in accordance with an exemplary embodiment of the present invention.
  • Referring to FIG. 3, the semiconductor device may include a normal refresh counter 310, a redundancy period control unit 320, a redundancy refresh counter 330, a normal row decoder 340, a redundancy row decoder 350 and a memory cell array 360. The memory cell array 360 may include a normal memory cell array 361 having the normal word lines NWL0 to NWL255 and a redundancy memory cell array 362 having the redundancy word lines RWL0 to RWL7. A normal memory cell of the normal memory cell array 361 may be coupled to the normal word lines NWL0 to NWL255. A redundancy memory cell of the redundancy memory cell array 362 may be couple to the redundancy word lines RWL0 to RWL7. The memory cells are refreshed through refresh operation to the corresponding word lines.
  • The normal refresh counter 310 may perform a counting operation in response to a refresh signal REFAD during the refresh operation and generate a normal address ATROW[0:7] for performing the refresh operation to the normal word lines NWL0 to NWL255 of the normal memory cell array 361. The refresh signal REFAD may be one of an auto refresh signal, a self refresh signal, which is generated by decoding an external command signal such as a chip select signal, a row address strobe signal, a column strobe address signal, and a write enable signal.
  • The redundancy period control unit 320 may generate a redundancy period signal RED_PER for controlling an activation of the redundancy refresh counter 330 and the normal refresh counter 310. When the redundancy period signal RED_PER is activated, the normal refresh counter 310 may stop the counting operation and the redundancy refresh counter 330 may start a counting operation. When the redundancy period signal RED_PER is deactivated, the normal refresh counter 310 may resume the counting operation and the redundancy refresh counter 330 may stop the counting operation. That is, the operations of the normal refresh counter 310 and the redundancy refresh counter 330 may not overlap in time, which represents that the refresh operations to the normal word lines NWL0 to NWL255 and the redundancy word lines RWL0 to RWL7 may not overlap in time and that the refresh operation to the normal word lines NWL0 to NWL255 alternates with the refresh operation to the redundancy word lines RWL0 to RWL7 such as shown in FIG. 2. The redundancy period signal RE_PER may control the activation period of the redundancy refresh counter 330. The activation period of the redundancy period signal RED_PER may be adjusted by an external control signal or an internal control signal.
  • The refresh counter 330 may generate a redundancy address ATROW[0:2] for the refresh operation to the redundancy word lines RWL0 to RWL7.
  • The normal row decoder 340 may generate a normal word line signal NWL[0:255] in response to the normal address ATROW[0:7] outputted from the normal refresh counter 310. The normal word line signal NWL[0:255] may enable corresponding one of the normal word lines NWL0 to NWL255.
  • The redundancy row decoder 350 may generate a redundancy word line signal RWL[0:7] in response to the redundancy address ATROW[0:2] outputted from the redundancy refresh counter 330. The redundancy word line signal RWL[0:7] may enable corresponding one of the redundancy word lines.
  • Hereinafter, a refresh operation of the semiconductor device in accordance with an embodiment of the present invention will be described.
  • The normal refresh counter 310 may generate the normal address ATROW[0:7] for performing a refresh operation to the normal word lines NWL0 to NWL255 during a first period PER1, e.g., 67 ms as shown in FIG. 2. The normal row decoder 340 may generate the normal word line signal NWL[0:25], which may enable the corresponding normal word line of the normal word lines NWL0 to NWL255, in response to the normal address TROW[0:7]. Thus, data stored on the normal memory cell of the memory cell array 360, which is enabled in response to the normal word line signal NWL [0:255], may be refreshed.
  • when the redundancy period signal RED_PER is activated according to the second period PER2, which may be preset in the redundancy period control unit 320, the normal refresh counter 310 may stop performing the refresh operation to the normal word lines NWL0 to NWL255, and the redundancy refresh counter 330 may start the counting operation and generate the redundancy address ATROW[0:2] for performing the refresh operation to the redundancy word lines RWL0 to RWL7. The second period PER2 may be shorter than the first period PER1 and activated twice or more within the first period PER such as described with respect to FIG. 2. The redundancy row decoder 350 may generate the redundancy word line signal RWL[0:7], which may enable the corresponding redundancy word line of the redundancy word lines RWL0 to RWL7, in response to the redundancy address ATROW[0:2]. Thus, the data stored on the redundancy memory cell of the memory cell array 360, which is enabled in response to the redundancy word line signal RWL[0:7], may be refreshed.
  • When the redundancy period signal RED_PER is deactivated, which may mean that the refresh operation to all of the redundancy word lines RWL0 to RWL7 is completed, the normal refresh counter 310 in response to the deactivation of the redundancy period signal RED_PER may resume the counting operation, which start from the value lastly stopped before resuming, and generate the normal address ATROW[0:7] for performing the refresh operation to the normal word lines NWL0 to NWL255 of the normal memory cell array 361. That is, the operations of the normal refresh counter 310 and the redundancy refresh counter 330 may not overlap in time. The refresh operations to the normal word lines NWL0 to NWL255 and the redundancy word lines RWL0 to RWL7 may not overlap in time and the refresh operation to the normal word lines NWL0 to NWL255 alternates with the refresh operation to the redundancy word lines RWL0 to RWL7 such as shown in FIG. 2.
  • The semiconductor device in accordance with an embodiment of the present invention may perform the refresh operation to the redundancy word lines twice or more whenever the redundancy period RED_PER are activated while the refresh operation to the normal word lines is performed once. That is, as shown in FIG. 2, the refresh operation to the redundancy word lines may be performed more often due to the shortened refresh period of the redundancy word lines compared to the refresh period of the normal word lines.
  • Therefore, in accordance with the embodiment of the present invention, even though there may be excessive activation of the redundancy word line, a deterioration or error of an adjacent cell memory may be prevented. Thus, the semiconductor device in accordance with the embodiment of the present invention may have the same effect to the redundancy word line as the TRR operation.
  • While the present invention has been described with respect to the specific embodiments, it will be apparent to those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined in the following claims.

Claims (17)

What is claimed is:
1. A semiconductor device, comprising:
a memory cell array including a normal memory cell array and a redundancy memory cell array;
a normal refresh counter suitable for generating a normal address for performing a refresh operation to the normal memory cell array with a first period during a refresh mode; and
a redundancy refresh counter suitable for generating a redundancy address for performing a refresh operation to the redundancy memory cell with a second period shorter than the first period.
2. The semiconductor device of claim 1, further comprising:
a redundancy period control unit suitable for controlling the second period.
3. The semiconductor device of claim 1, further comprising:
a normal row decoder suitable for selecting the normal memory cell array in response to the normal address; and
a redundancy row decoder suitable for selecting the redundancy memory cell array in response to the redundancy address.
4. The semiconductor device of claim 1, wherein the normal refresh counter and the redundancy refresh counter do not operate at the same time.
5. The semiconductor device of claim 1, wherein the refresh mode is activated in response to a self refresh signal or an auto refresh signal generated by decoding an external command signal.
6. A semiconductor device, comprising:
a memory cell array including a normal memory cell array and a redundancy memory cell array;
a normal refresh counter suitable for generating a normal address for performing a refresh operation with a predetermined normal period to the normal memory cell array during a refresh mode; and
a redundancy refresh counter suitable for generating a redundancy address for performing a refresh operation to the redundancy memory cell twice or more within the predetermined normal period.
7. The semiconductor device of claim 6, further comprising:
a redundancy period control unit suitable for controlling a number of operations of the redundancy refresh counter.
8. The semiconductor device of claim 6, further comprising:
a normal row decoder suitable for selecting the normal memory cell array in response to the normal address; and
a redundancy row decoder suitable for selecting the redundancy memory cell array in response to the redundancy address.
9. The semiconductor device of claim 6, wherein the normal refresh counter and the redundancy refresh counter do not operate at the same time.
10. The semiconductor device of claim 6, wherein the refresh mode is activated in response to a self refresh signal or an auto refresh signal generated by decoding an external command signal.
11. A semiconductor device comprising:
a normal refresh unit suitable for refreshing a plurality of normal word lines, to each of which a plurality of normal memory cells are coupled;
a redundancy refresh unit suitable for refreshing a plurality of redundancy word lines, to each of which a plurality of redundancy memory cells are coupled; and
a control unit suitable for controlling the normal refresh unit and the redundancy refresh unit so that the refreshing of the normal refresh unit alternates with the refreshing of the redundancy refresh unit,
wherein a period of the refreshing of the normal refresh unit is greater than a period of the refreshing of the redundancy refresh unit.
12. The semiconductor device of claim 11, wherein the control unit controls the normal refresh unit and the redundancy refresh unit so that the redundancy refresh unit refreshes the plurality of redundancy word lines twice or more while the normal refresh unit suitable refreshes the plurality of normal word lines once.
13. The semiconductor device of claim 12, wherein the control unit controls the redundancy refresh unit so that the redundancy refresh unit refreshes the plurality of redundancy word lines once at each turn of the alternation.
14. The semiconductor device of claim 13, wherein the control unit controls the normal refresh unit so that the redundancy refresh unit refreshes part of the plurality of redundancy word lines at each turn of the alternation.
15. The semiconductor device of claim 14, wherein the normal refresh unit comprises a normal refresh counter suitable for generating, a normal address for the a plurality of normal word lines.
16. The semiconductor device of claim 14, wherein the redundancy refresh unit comprises a redundancy refresh counter suitable for generating a redundancy address for the plurality of redundancy word lines.
17. The semiconductor device of claim 11, wherein the control unit controls the normal refresh unit and the redundancy refresh unit so that the refreshing of the normal refresh unit alternates with the refreshing of the redundancy refresh unit without overlap in time.
US14/106,823 2013-09-02 2013-12-15 Semiconductor device Active 2034-02-21 US9455016B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0104766 2013-09-02
KR20130104766A KR20150026227A (en) 2013-09-02 2013-09-02 Semiconductor memory device

Publications (2)

Publication Number Publication Date
US20150063049A1 true US20150063049A1 (en) 2015-03-05
US9455016B2 US9455016B2 (en) 2016-09-27

Family

ID=52583083

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/106,823 Active 2034-02-21 US9455016B2 (en) 2013-09-02 2013-12-15 Semiconductor device

Country Status (3)

Country Link
US (1) US9455016B2 (en)
KR (1) KR20150026227A (en)
CN (1) CN104425003B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140281207A1 (en) * 2013-03-12 2014-09-18 Sreenivas Mandava Techniques for Determining Victim Row Addresses in a Volatile Memory
US20140281206A1 (en) * 2013-03-15 2014-09-18 John H. Crawford Techniques for Probabilistic Dynamic Random Access Memory Row Repair
US20150206572A1 (en) * 2014-01-21 2015-07-23 SK Hynix Inc. Memory and memory system including the same
US20160005452A1 (en) * 2014-07-02 2016-01-07 Whi-Young Bae Semiconductor memory device for controlling having different refresh operation periods for different sets of memory cells
US20170117030A1 (en) * 2015-10-21 2017-04-27 Invensas Corporation DRAM Adjacent Row Disturb Mitigation
WO2017176425A1 (en) 2016-04-05 2017-10-12 Micron Technology, Inc. Refresh circuitry
US9858142B2 (en) 2015-11-09 2018-01-02 SK Hynix Inc. Semiconductor device
US9892779B2 (en) 2016-01-25 2018-02-13 Samsung Electronics Co., Ltd. Memory device performing hammer refresh operation and memory system including the same
US10468076B1 (en) 2018-08-17 2019-11-05 Micron Technology, Inc. Redundancy area refresh rate increase

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102427893B1 (en) 2016-02-22 2022-08-02 에스케이하이닉스 주식회사 Refresh method and semiconductor device using the same
CN116230048A (en) * 2021-12-06 2023-06-06 长鑫存储技术有限公司 Address refreshing circuit, method, memory and electronic equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4829484A (en) * 1987-04-01 1989-05-09 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device having self-refresh function
US20010008496A1 (en) * 1999-01-20 2001-07-19 Wingyu Leung Method and apparatus for forcing idle cycles to enable refresh operations in a semiconductor memory
US20020080657A1 (en) * 2000-10-13 2002-06-27 Koji Mine Semiconductor memory device and method for its test
US20030043672A1 (en) * 2001-08-30 2003-03-06 Hitachi, Ltd. Semiconductor memory
US20050052928A1 (en) * 2003-09-10 2005-03-10 Yasuji Koshikawa Semiconductor memory device and method for manufacturing same
US20060056256A1 (en) * 2004-09-10 2006-03-16 Elpida Memory, Inc. Semiconductor memory device and test method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100819649B1 (en) 2001-12-27 2008-04-04 주식회사 하이닉스반도체 Row address counter for semiconductor memory device
JP5018292B2 (en) * 2007-07-10 2012-09-05 富士通セミコンダクター株式会社 Memory device
KR101879442B1 (en) 2011-05-25 2018-07-18 삼성전자주식회사 Method of refreshing a volatile memory device, refresh address generator and volatile memory device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4829484A (en) * 1987-04-01 1989-05-09 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device having self-refresh function
US20010008496A1 (en) * 1999-01-20 2001-07-19 Wingyu Leung Method and apparatus for forcing idle cycles to enable refresh operations in a semiconductor memory
US20020080657A1 (en) * 2000-10-13 2002-06-27 Koji Mine Semiconductor memory device and method for its test
US20030043672A1 (en) * 2001-08-30 2003-03-06 Hitachi, Ltd. Semiconductor memory
US20050052928A1 (en) * 2003-09-10 2005-03-10 Yasuji Koshikawa Semiconductor memory device and method for manufacturing same
US20060056256A1 (en) * 2004-09-10 2006-03-16 Elpida Memory, Inc. Semiconductor memory device and test method therefor

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140281207A1 (en) * 2013-03-12 2014-09-18 Sreenivas Mandava Techniques for Determining Victim Row Addresses in a Volatile Memory
US9824754B2 (en) 2013-03-12 2017-11-21 Intel Corporation Techniques for determining victim row addresses in a volatile memory
US9269436B2 (en) * 2013-03-12 2016-02-23 Intel Corporation Techniques for determining victim row addresses in a volatile memory
US20140281206A1 (en) * 2013-03-15 2014-09-18 John H. Crawford Techniques for Probabilistic Dynamic Random Access Memory Row Repair
US9449671B2 (en) * 2013-03-15 2016-09-20 Intel Corporation Techniques for probabilistic dynamic random access memory row repair
US9336852B2 (en) * 2014-01-21 2016-05-10 SK Hynix Inc. Memory and memory system including the same
US20150206572A1 (en) * 2014-01-21 2015-07-23 SK Hynix Inc. Memory and memory system including the same
US10062427B2 (en) * 2014-07-02 2018-08-28 Samsung Electronics Co., Ltd. Semiconductor memory device for controlling having different refresh operation periods for different sets of memory cells
US20160005452A1 (en) * 2014-07-02 2016-01-07 Whi-Young Bae Semiconductor memory device for controlling having different refresh operation periods for different sets of memory cells
US9812185B2 (en) * 2015-10-21 2017-11-07 Invensas Corporation DRAM adjacent row disturb mitigation
US20170117030A1 (en) * 2015-10-21 2017-04-27 Invensas Corporation DRAM Adjacent Row Disturb Mitigation
US10262717B2 (en) * 2015-10-21 2019-04-16 Invensas Corporation DRAM adjacent row disturb mitigation
US9858142B2 (en) 2015-11-09 2018-01-02 SK Hynix Inc. Semiconductor device
US9892779B2 (en) 2016-01-25 2018-02-13 Samsung Electronics Co., Ltd. Memory device performing hammer refresh operation and memory system including the same
EP3437099A4 (en) * 2016-04-05 2019-04-03 Micron Technology, INC. Refresh circuitry
TWI630609B (en) * 2016-04-05 2018-07-21 美光科技公司 Refresh circuitry
WO2017176425A1 (en) 2016-04-05 2017-10-12 Micron Technology, Inc. Refresh circuitry
US10304515B2 (en) 2016-04-05 2019-05-28 Micron Technology, Inc. Refresh circuitry
US11276450B2 (en) 2016-04-05 2022-03-15 Micron Technology, Inc. Refresh circuitry
US10468076B1 (en) 2018-08-17 2019-11-05 Micron Technology, Inc. Redundancy area refresh rate increase
WO2020036640A1 (en) * 2018-08-17 2020-02-20 Micron Technology, Inc Redundancy area refresh rate increase
US10839868B2 (en) 2018-08-17 2020-11-17 Micron Technology, Inc. Redundancy area refresh rate increase

Also Published As

Publication number Publication date
CN104425003A (en) 2015-03-18
US9455016B2 (en) 2016-09-27
KR20150026227A (en) 2015-03-11
CN104425003B (en) 2019-04-02

Similar Documents

Publication Publication Date Title
US9455016B2 (en) Semiconductor device
US10297305B1 (en) Memory device having twin cell mode and refresh method thereof
US9484079B2 (en) Memory device and memory system including the same
US8923084B1 (en) Memory and memory system including the same
US9437275B2 (en) Memory system and method for operating the same
US9418724B2 (en) Memory and memory system including the same
US9336852B2 (en) Memory and memory system including the same
US9165634B2 (en) Semiconductor memory device and refresh control system
US9123447B2 (en) Memory, memory system including the same and method for operating memory
US8854910B2 (en) Semiconductor memory device and refresh method thereof
US9275716B2 (en) Cell array and memory with stored value update
US8379471B2 (en) Refresh operation control circuit, semiconductor memory device including the same, and refresh operation control method
US8284615B2 (en) Refresh control circuit and method for semiconductor memory device
US6850454B2 (en) Semiconductor memory device with reduced current consumption during standby state
US9672892B2 (en) Memory device and memory system including the same
US9030904B2 (en) Memory device and memory system having programmable refresh methods
KR100992470B1 (en) Semiconductor memory and system
US10157685B2 (en) Memory device and operating method thereof
KR20150132366A (en) Semiconductor storage device and system provided with same
KR20170112786A (en) Refresh control device and semiconductor device including the same
US20150155025A1 (en) Semiconductor memory device, refresh control system, and refresh control method
US20140068171A1 (en) Refresh control circuit and semiconductor memory device including the same
JP2016212934A (en) Semiconductor device and its control method
US11107517B2 (en) Semiconductor memory device and method for refreshing memory with refresh counter
US9564207B2 (en) Semiconductor memory device, semiconductor memory system and method for controlling self refresh cycle thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: SK HYNIX INC., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:YANG, JONG-YEOL;REEL/FRAME:031784/0217

Effective date: 20131213

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8