US20150050699A1 - RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX - Google Patents

RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX Download PDF

Info

Publication number
US20150050699A1
US20150050699A1 US14/385,857 US201314385857A US2015050699A1 US 20150050699 A1 US20150050699 A1 US 20150050699A1 US 201314385857 A US201314385857 A US 201314385857A US 2015050699 A1 US2015050699 A1 US 2015050699A1
Authority
US
United States
Prior art keywords
cas9
crrna
complex
sequence
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/385,857
Inventor
Virginijus Siksnys
Giedrius Gasiunas
Tautvydad Karvelis
Arvydas Lubys
Lolita Zaliauskiene
Monika Glemzaite
Anja Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vilniaus Universitetas
Original Assignee
Vilniaus Universitetas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48050947&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20150050699(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Vilniaus Universitetas filed Critical Vilniaus Universitetas
Priority to US14/385,857 priority Critical patent/US20150050699A1/en
Assigned to VILNIUS UNIVERSITY reassignment VILNIUS UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GASIUNAS, Giedrius, KARVELIS, Tautvydas, SIKSNYS, Virginijus
Assigned to VILNIUS UNIVERSITY reassignment VILNIUS UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GASIUNAS, Giedrius, KARVELIS, Tautvydas, SIKSNYS, Virginijus, GLEMZAITE, Monika, ZALIAUSKIENE, LOLITA, LUBYS, ARVYDAS, SMITH, ANJA
Publication of US20150050699A1 publication Critical patent/US20150050699A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/34Polynucleotides, e.g. nucleic acids, oligoribonucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6811Selection methods for production or design of target specific oligonucleotides or binding molecules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/12Type of nucleic acid catalytic nucleic acids, e.g. ribozymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3513Protein; Peptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed
    • C12N2310/531Stem-loop; Hairpin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/80Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites

Definitions

  • CRISPR/Cas systems provide adaptive immunity against viruses and plasmids in bacteria and archaea.
  • the silencing of invading nucleic acids is executed by ribonucleoprotein (RNP) complexes pre-loaded with small interfering crRNAs that act as guides for foreign nucleic acid targeting and degradation.
  • RNP ribonucleoprotein
  • crRNAs small interfering crRNAs that act as guides for foreign nucleic acid targeting and degradation.
  • PAM proto-spacer adjacent motif
  • CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
  • cas CRISPR-associated genes comprise an adaptive immune system that provides acquired resistance against invading foreign nucleic acids in bacteria and archaea (Barrangou et al., 2007. Science 315:1709-12).
  • CRISPR consists of arrays of short conserved repeat sequences interspaced by unique variable DNA sequences of similar size called spacers, which often originate from phage or plasmid DNA (Barrangou et al., 2007. Science 315:1709-12; Bolotin et al., 2005. Microbiology 151:2551-61; Mojica et al., 2005. J Mol Evol 60:174-82).
  • the CRISPR-Cas system functions by acquiring short pieces of foreign DNA (spacers) which are inserted into the CRISPR region and provide immunity against subsequent exposures to phages and plasmids that carry matching sequences (Barrangou et al., 2007. Science 315:1709-12; Brouns et al., 2008. Science 321: 960-4)
  • the CRISPR-Cas immunity is generally carried out through three stages, referred to as i) adaptation/immunization/spacer acquisition, ii) CRISPR expression/crRNA biogenesis. iii) interference/immunity. (Horvath & Barrangou, 2010. Science 327:167-70; Deveau et al., 2010. Annu Rev Microbiol.
  • CRISPR-Cas systems are categorized into three major types, which are further subdivided into ten subtypes, based on core element content and sequences (Makarova et al., 2011. Nat Rev Microbiol 9:467-77).
  • the structural organization and function of nucleoprotein complexes involved in crRNA-mediated silencing of foreign nucleic acids differ between distinct CRISPR/Cas types (Wiedenheft et al., 2012. Nature 482:331-338).
  • crRNAs are incorporated into a multisubunit effector complex called Cascade (CRISPR-associated complex for antiviral defence) (Brouns et al., 2008.
  • RNP complexes involved in DNA silencing by Type II CRISPR/Cas systems more specifically in the CRISPR3/Cas system of Streptococcus thermophilus DGCC7710 (Horvath & Barrangou, 2010. Science 327:167-70), consists of four cas genes cas9, cas1, cas2, and csn2, that are located upstream of 12 repeat-spacer units ( FIG. 1A ).
  • Cas9 (formerly named cas5 or csn1) is the signature gene for Type II systems (Makarova et al., 2011. Nat Rev Microbiol 9:467-77). In the closely related S.
  • thermophilus CRISPR1/Cas system disruption of cas9 abolishes crRNA-mediated DNA interference (Barrangou et al., 2007. Science 315:1709-12).
  • S. thermophilus CRISPR3/Cas system can be transferred into Escherichia coli , and that this heterologous system provides protection against plasmid transformation and phage infection, de novo (Sapranauskas et al., 2011. Nucleic Acids Res 39:9275-82).
  • the interference against phage and plasmid DNA provided by S.
  • thermophilus CRISPR3 requires the presence, within the target DNA, of a proto-spacer sequence complementary to the spacer-derived crRNA, and a conserved PAM (Proto-spacer Adjacent Motif) sequence, NGGNG, located immediately downstream the proto-spacer (Deveau et al., 2008. J Bacteriol 190:1390-400; Horvath et al., 2008. J Bacteriol 190:1401-12; Mojica et al., 2009. Microbiology 155:733-40). Single point mutations in the PAM or defined proto-spacer positions allow the phages or plasmids to circumvent CRISPR-mediated immunity (Deveau et al., 2008.
  • cas9 is the sole cas gene necessary for CRISPR-encoded interference (Sapranauskas et al., 2011. Nucleic Acids Res 39:9275-82), suggesting that this protein is involved in crRNA processing and/or crRNA-mediated silencing of invasive DNA.
  • Cas9 of S. thermophilus CRISPR3/Cas system is a large multidomain protein comprised of 1,409 aa residues (Sapranauskas et al., 2011.
  • Nucleic Acids Res 39:9275-82 It contains two nuclease domains, a RuvC-like nuclease domain near the amino terminus, and a HNH-like nuclease domain in the middle of the protein. Mutational analysis has established that interference provided in vivo by Cas9 requires both the RuvC- and HNH-motifs (Sapranauskas et al., 2011. Nucleic Acids Res 39:9275-82).
  • a method for the site-specific modification of a target DNA molecule through contacting under suitable conditions, a target polydeoxynucleotide molecule; and an RNA-guided DNA endonuclease comprising at least one RNA sequences and at least one of an RuvC active site motif and an HNH active site motif; to result in the target polydeoxynucleotide molecule modified in a region that is determined by the complimentary binding of the RNA sequence to the target DNA molecule is provided.
  • the method includes incubating under suitable conditions a composition that includes a target double stranded polydeoxynucleotide or single stranded polydeoxynucleotide; wherein a double stranded polydeoxynucleotide contains a short proto-spacer adjacent motif (PAM), which is non-obligatory for a single stranded polydeoxynucleotide; and where PAM comprises a 5′NGGNG-3′ sequence; a polyribonucleotide (crRNA) comprising a 3′ and 5′ regions wherein the 3′ region comprises at least 22 nt of the repeat present in a microbe containing CRISPR locus and 5′-region comprises of at least 20 nt of the spacer sequence immediately downstream of the repeat in the CRISPR locus, which is substantially complementary, optionally complementary, to a portion of the target polynucleotide, a polypeptide wherein the amino acid sequence of polypeptide and amino acid sequence of SEQ ID NO
  • thermophilus or genetically modified microorganism, including a genetically modified E. coli , or wherein the polypeptide is produced by a method selected from recombinant DNA technology or chemical synthesis; a polyribonucleotide tracrRNA of nucleotide sequence SEQ ID NO: 5 (or have at least 80% identity) comprising a 5′ and 3′ regions wherein the 5′ region is comprised of at least 22 nucleotides is complementary to the 22 nucleotides 3′ region of crRNA, and 3′ region.
  • polyribonucleotides are produced by in vitro transcription or chemical synthesis.
  • suitable conditions means conditions in vitro or in vivo where reaction might occur.
  • a method for the conversion of Cas9 polypeptide into a nickase, cleaving only one strand of double-stranded DNA, by inactivating one of the active sites (RuvC or HNH) in the polypeptide by at least on point mutation, exemplified by D31A (SEQ ID NO: 2), N891A (SEQ ID NO: 3) and H868A (SEQ ID NO: 4) point mutations is provided.
  • RuvC motif mutant cleaves only bottom DNA strand in respect to 5′NGGNG-3′ motif, while HNH motif mutant cleaves top strand.
  • Polypeptide-polyribonucleotides complex might be isolated from a genetically modified microbe (for example Escherichia coli or Streptoccocus thermophilus ), or assembled in vitro from separate components.
  • a genetically modified microbe for example Escherichia coli or Streptoccocus thermophilus
  • components of the complex might be encoded on the one, two or three separate plasmids containing host promoters of the genetically modified microbe or promoters from a native host genome.
  • a method for assembly of active polypeptide-polyribonucleotides complex in vitro comprising incubating the components of the complex under conditions suitable for complex assembly is provided.
  • the complex might be assembled using three or four components.
  • Method for three components assembly comprises incubating the Cas9 polypeptide, 78 nt tracrRNA polyribonucleotide (SEQ ID NO: 5), and 42 nt crRNA polyribonucleotide (5′-NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN GUUUUAGAGCUGUGUUGUUUCG-3′) (SEQ ID NO: 15) under conditions suitable for complex assembly.
  • Method for four components assembly comprises incubating the Cas9 polypeptide; 102 nt tracrRNA polyribonucleotide (SEQ ID NO: 6); polyribonucleotide containing sequence 5′-NNNNNNNNNNNNNNNNNNNNNNNNNNNNGUUUUAGAGCUGUGUUGUUUCG-3′ (SEQ ID NO: 15) and flanking regions and RNase III polypeptide, cleaving double stranded RNA polynucleotide.
  • polyribonucleotide containing sequence 5′-NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGUUUUAGAGCUGUGUUGUUUCG-3′ are SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11 and SEQ ID NO: 12).
  • source for suitable RNaselII include Escherichia coli or Streptococcus thermophilus.
  • a method for re-programming of a Cas9-crRNA complex specificity by mixing separate components or using a cassette containing a single repeat-spacer-repeat unit is provided. Any sequence might be inserted between two repeats in the cassette using suitable restriction endonucleases.
  • Cassette might be used to target sequences in vivo, or to produce RNA ribonucleotide suitable for complex assembly in vitro.
  • FIG. 1 shows Cas9 protein co-purifies with crRNA.
  • A Schematic representation of CRISPR3/Cas system of S. thermophilus .
  • cas genes cas9, cas1, cas2, csn2 are located upstream of the CRISPR repeat-spacer array, consisting of 13 repeat (R) sequences and 12 unique spacers (S1-S12).
  • the tracrRNA required for crRNA maturation in Type II CRISPR systems (Deltcheva et al., 2011. Nature 471:602-7), is located upstream the cas9 gene and encoded on the opposite DNA strand (showed by an arrow) in respect to the other elements of CRISPR3/Cas system.
  • FIG. 1 Schematic representation of heterologous loci in two plasmids used for the co-expression of the Cas9-crRNA complex.
  • E. coli RR1 strain contained pCas9( ⁇ )1 SP (encoding Cas1, Cas2, Csn2, SP1 and tracrRNA) and pASKIBA-Cas9 (encoding Strep-tagged version of Cas9) plasmids.
  • C Northern analysis of Cas9-crRNA complexes using anti-crDNA oligonucleotide as a probe.
  • FIG. 2 shows DNA cleavage by Cas9-crRNA complexes obtained by Cas9 co-expression with full length CRISPR locus.
  • A Schematic representation of CRISPR/Cas locus of recombinant pCas9( ⁇ ) plasmid carrying indigenous 12 spacer-repeat array of SthCRISPR3/Cas system and pASKIBA-Cas9 plasmid carrying cas9 gene with a Strep-tag at the C-terminus.
  • B Oligoduplex cleavage assay. Both pCas9( ⁇ ) and pASKIBA-Cas9 plasmids were co-expressed in E.
  • FIG. 3 shows immunity against plasmid transformation in E. coli cells provided by the SthCRISPR3/Cas system.
  • A Schematic representation of CRISPR/Cas locus of recombinant plasmid pCRISPR3 carrying indigenous 12 spacer-repeat array of SthCRISPR3/Cas system and engineered pCRISPR3-SP1 plasmid carrying 1 spacer-repeat unit.
  • B Interference of plasmid transformation by SthCRISPR3/Cas system in E. coli cells.
  • FIG. 4 shows comparison of Type IIA CRISPR/Cas systems from S. thermophilus DGCC7710, LMD-9 and S. pyogenes SF370 strains.
  • A Schematic organization of the CRISPR/Cas systems. Nucleotide sequences corresponding to the tracrRNA required for the crRNA maturation in of S. pyogenes (2) are present in LMD-9 and DGCC7710. Percentage of identical and similar (in parenthesis) residues between corresponding protein sequences that are connected by dashed lines.
  • B Alignment of the conserved repeat sequences and tracrRNA. Corresponding sequences from DGCC7710 and LMD-9 are identical.
  • FIG. 4(B) discloses SEQ ID NOS 50, 50-52, and 52-53, respectively, in order of appearance.
  • C Comparison of crRNA sequences. The sequence and length of S. pyogenes crRNA was determined by deep sequencing analysis (2). The approximate length of crRNA from S. thermophilus LMD-9 (2) and DGCC7710 (this work) strains were determined by the northern blot analysis.
  • FIG. 4(C) discloses SEQ ID NOS 54-56, respectively, in order of appearance.
  • FIG. 5 shows Cas9-crRNA complex cleaves in vitro double-stranded DNA within a proto-spacer.
  • A Oligoduplex substrate used in the cleavage assay. 55 nt oligoduplex SP1 contains the proto-spacer1 (red letters), PAM (blue letters) and 10 nt flanking sequences on both sides identical to those in pSP1 plasmid. In the SP1 oligoduplex DNA strand complimentary to the 5′-terminal fragment of crRNA (red letters) is named (+)strand, an opposite DNA strand is named ( ⁇ )strand.
  • FIG. 5(A) discloses SEQ ID NOS 31, 7, and 34, respectively, in order of appearance.
  • B Oligoduplex SP1 cleavage.
  • FIG. 5(B) discloses SEQ ID NO: 31.
  • C Schematic representation of pSP1 plasmid (Sapranauskas et al., 2011. Nucleic Acids Res 39:9275-82) used in the plasmid cleavage assay.
  • FIG. 5(C) discloses SEQ ID NO: 57.
  • D pSP1 plasmid cleavage. Agarose gel analysis of pSP1 cleavage products (left panel). SC—super-coiled plasmid DNA, OC—open circular DNA nicked at one of the strands, FLL—full length linear DNA cut at both strands. Final reaction mixtures at 37° C.
  • FIG. 5(D) discloses SEQ ID NOS 57-59, 58, and 60, respectively, in order of appearance.
  • FIG. 6 shows DNA binding and cleavage analysis of Cas9-Chis protein lacking crRNA.
  • Electrophoretic mobility shift analysis (EMSA) of Cas9-Chis protein binding to (A) the double stranded SP1 oligoduplex and (B) the single stranded s(+)SP1 oligonucleotide. Electrophoretic mobility shift experiments were performed in the binding buffer (40 mM Tris-acetate, pH 8.3 at 25 C, 0.1 EDTA, 0.1 mg/ml BSA, 10% v/v glycerol). The reactions contained 0.5 nM of the 33P-labelled oligoduplex, and the protein at concentrations as indicated above each lane. (C). Oligonucleotide cleavage assay.
  • FIG. 7 shows reprogramming of Cas9-crRNA complex.
  • A Schematic representation of heterologous loci in two plasmids used for reprogramming of Cas9-crRNA complex.
  • pCas( ⁇ )SPN were constructed from pCas9( ⁇ ) plasmid (See FIG. 2A ), by inserting new spacer sequence (SN) (5′-CC ACC CAG CAA AAT TCG GTT TTC TGG CTG-3′ (SEQ ID NO: 16)) and inactivating Cas9 gene as described in (1).
  • SN new spacer sequence
  • B Agarose gel analysis of plasmid DNA cleavage products.
  • FIG. 7(D) discloses SEQ ID NO: 39.
  • FIG. 8 shows impact of spacer length on CRISPR-encoded immunity.
  • A Schematic representation of shortened versions of proto-spacers inserted in the transformed plasmids.
  • FIG. 8(A) discloses SEQ ID NOS 7 and 61-66, respectively, in order of appearance.
  • B Effect of proto-spacer length on the plasmid transformation efficiency. Transformation efficiency is expressed as cfu per nanogram of plasmid DNA (mean ⁇ SD).
  • C Schematic representation of oligoduplexes used in the in vitro cleavage and binding experiments.
  • FIG. 8(C) discloses SEQ ID NOS 31 and 38, respectively, in order of appearance.
  • FIG. 9 shows PAM is required for in vitro DNA binding and cleavage by the Cas9-crRNA complex.
  • A Agarose gel analysis of plasmid DNA cleavage products.
  • SC super-coiled plasmid DNA
  • OC open circular DNA nicked at one of DNA strands
  • FLL full length linear DNA cut at both strands.
  • the reactions contained 0.5 nM of the 33P-labelled ssDNA or dsDNA oligonucleotide, and the protein at concentrations as indicated above each lane. After 15 min at room temperature, the samples were subjected to PAGE for 2 h and analysed as described in ‘Materials and Methods’.
  • FIG. 10 shows RNA binding and cleavage analysis of Cas9-crRNA complex.
  • A Electrophoretic mobility shift analysis (EMSA) of Cas9-crRNA complex binding to 84 nt RNA fragment containing proto-spacer-1, PAM and 24 nt flanking sequences on both sides.
  • Left panel RNA ( ⁇ ) strand; center panel: RNA (+) strand; right panel: double stranded RNA.
  • RNA fragments used for analysis were generated by in vitro transcription (TranscriptAidTM T7 High Yield Transcription Kit, Fermentas) from PCR fragments with inserted T7 promoter at the front end of RNA coding sequence.
  • RNA polymerase promoter underlined, transcription start on bold.
  • FIG. 11 shows RuvC and HNH active site motifs of Cas9 contribute to the cleavage of opposite DNA strands.
  • A Localization of the conserved active site motifs within Cas9 protein. Amino acid residues identified as crucial for Cas9 in vivo activity (Sapranauskas et al., 2011. Nucleic Acids Res 39:9275-82) are indicated.
  • B Agarose gel analysis of pSP1 plasmid cleavage by Cas9 and mutant proteins. Reactions were performed as described in and ‘Materials and Methods’
  • C Strand preference of D31A mutant. Reactions were performed as described in FIG. 2A and ‘Materials and Methods’.
  • FIG. 11(C) discloses SEQ ID NOS 31 and 67, respectively, in order of appearance.
  • (D) Strand preference of N891A mutant. N891 mutant cleaves only ( ⁇ )strand of SP1 oligoduplex. Cleavage positions are designated by arrows.
  • FIG. 11(D) discloses SEQ ID NOS 31 and 68, respectively, in order of appearance.
  • FIG. 12 shows properties of Cas9 active site mutant-crRNA complexes.
  • A Direct sequencing of reaction products obtained with Cas9 mutant D31A (RuvC-like active site motif).
  • FIG. 12(A) discloses SEQ ID NOS 58, 59, 58, and 58, respectively, in order of appearance.
  • B Direct sequencing of reaction products obtained with Cas9 N891A mutant (HNH-like active site motif).
  • FIG. 12(B) discloses SEQ ID NOS 58, 58, 58, and 60, respectively, in order of appearance.
  • C SP1 oligoduplex binding by the wt Cas9-crRNA and active site mutant complexes.
  • D Cleavage of (+)SP1 strand by Cas9-crRNA mutant complexes.
  • FIG. 13 shows molecular mass of the wt Cas9-Chis protein.
  • FIG. 14 shows schematic arrangement and mechanism of crRNA-directed DNA cleavage by the Cas9-crRNA complex. Domain architecture of Cas9 is shown schematically on the top. Cas9-crRNA complex binds to the dsDNA containing PAM. crRNA binds to the complementary (+)strand resulting in DNA strand separation and the R-loop formation.
  • RuvC active site of Cas9 is positioned at the scissile phosphate on the unpaired ( ⁇ )strand, while HNH active site is located at the scissile phosphate on the DNA (+)strand bound to crRNA. Coordinated action of both active sites results in the double strand break 4 nt away from the PAM generating blunt end DNA.
  • FIG. 14 discloses SEQ ID NOS. 31 and 69, respectively, in order of appearance.
  • FIG. 15 shows native electrophoresis of Cas9-crRNA and cleavage products.
  • Samples was mixed with loading dye solution (0.01% bromphenol blue and 75 mM EDTA in 50% v/v glycerol) and analysed by non-denaturing PAGE.
  • the cartoons in each side of the gel illustrate protein-DNA complexes and DNA that correspond to each band, while cartoons below the gel illustrate major substrate form after reaction.
  • FIG. 16 shows plasmid DNA cleavage by Cas9-crRNA complex.
  • A pSP1 and pUC18 plasmid DNA cleavage. Cas9-crRNA complex was incubated with pSP1 and pUC18 plasmids in a reaction buffer provided in the Example 1.
  • pSP1 plasmid contained a proto-spacer1 sequence flanked by the 5′-GGNG-3′PAM sequence. Proto-spacer1 sequence was not present in pUC18. Reaction products were analysed in the agarose gel. Under these conditions pSP1 plasmid is converted into a linear form while pUC18 plasmid lacking proto-spacer1 sequence is resistant to cleavage.
  • FIG. 17 shows DNA oligoduplex cleavage by Cas9-crRNA complex.
  • the strand of oligoduplex which is complementary to crRNA is marked as (+) strand, while the other strand—( ⁇ ) strand.
  • (+) or ( ⁇ ) strand of the oligoduplex was P33-labeled at the 5′-terminus.
  • M1 and M2 are synthetic oligonucleotide markers corresponding to the 37 nt of ( ⁇ ) strand and 18 nt of (+) strand which were used to determine the size of the cleavage products and map the cleavage position.
  • Cas9 protein cleaves both strands of oligoduplex inside the proto-spacer, after the 37th nucleotide, 4 nt upstream of the PAM (5′-GGNG-3′) leaving blunt ends. Both strands of non-specific substrate (K1 and K2) are not cleaved when incubated with Cas9-crRNA complex for 30 min.
  • FIG. 17 discloses SEQ ID NO: 31.
  • FIG. 18 shows plasmid DNA cleavage by Cas9-crRNA complex assembled in the absence of RNaselII.
  • Cas9-crRNA complex was incubated with pSP1 plasmid and reaction products analysed in the agarose gels.
  • the pSP1 plasmid is resistant for cleavage in the presence of complex assembled without crRNA (left panel).
  • the pSP1 plasmid is converted into linear form in the presence of complex assembled using synthetic 42 nt crRNA (no RNAselII) (middle panel).
  • the pSP1 plasmid is converted into a mixture of linear and circular DNA forms in the presence of complex assembled using CRISPR RNA transcript (no RNAselII) (right panel).
  • FIG. 19 shows DNA oligoduplex cleavage by Cas9-crRNA complex.
  • the strand of oligoduplex which is complementary to crRNA is marked as (+) strand, while the other strand—( ⁇ )strand.
  • (+) or ( ⁇ ) strand of the oligoduplex was P33-labeled at the 5′-terminus.
  • M1 and M2 are synthetic oligonucleotide markers corresponding to the 37 nt of ( ⁇ ) strand and 18 nt of (+) strand which were used to determine the size of the cleavage products and map the cleavage position.
  • Cas9 protein cleaves both strands of oligoduplex inside the proto-spacer, after the 37th nucleotide form the 5′-end, 4 nt upstream of the PAM (5′-GGNG-3′) leaving blunt ends. Both strands of non-specific substrate (K1 and K2) are not cleaved when incubated with Cas9-crRNA complex for 30 min.
  • FIG. 19 discloses SEQ ID NO: 31.
  • FIG. 20 shows (A) Schematic representation of the CRISPR3/Cas system of S. thermophilus DGCC7710.
  • cas genes cas9, cas1, cas2, csn2
  • cas9, cas1, cas2, csn2 are located upstream of the CRISPR repeat-spacer array, consisting of 13 repeat (R) sequences and 12 unique spacers (S1-S12).
  • the tracrRNA required for crRNA maturation in Type II CRISPR/Cas systems (Deltcheva et al., 2011. Nature 471, 602-7), is located upstream the cas9 gene and encoded on the opposite DNA strand (shown by an arrow) with respect to the other elements of this system.
  • B The pathways for a new spacer insertion in to CRISPR region and CRISPR RNA synthesis.
  • Synthetic oligoduplex encoding desired spacer sequence and containing SapI and Eco31I restriction compatible ends was inserted between two repeats.
  • the CRISPR region was amplified using PCR.
  • the new spacer encoding CRISPR RNA was obtained by In vitro transcription.
  • C In vitro assembly of Cas9-RNA complex.
  • the CRISPR RNA and tracrRNA transcripts were assembled in to duplex.
  • the Cas9 protein was first pre-incubated with RNA duplex, followed by the subsequent incubation with RNAselII to generate a catalytically competent Cas9-RNA complex.
  • FIG. 21 shows A. Schematic representation of pUC18 plasmid. The distance between SapI and AatlI restriction sites is 775 bp, while the distance between two spacers is 612 bp. B. pUC18 plasmid cleavage by re-programmed Cas9-crRNA complexes.
  • FIG. 22 shows genomic DNA cleavage with in vitro assembled Cas9-RNA complex.
  • A Agarose gel analysis of linear ⁇ DNA cleavage products. Phage A DNA was incubated with Cas9-RNA complex in the reaction buffer for various time intervals. The target site for Cas9-RNA complex is located 8 kb away from the cos site.
  • B Probe selection for Southern blot experiments. Genomic DNA was fragmented by treating with PstI enzyme. The proto-spacer is located between two PstI sites. If genomic DNA is cleaved with Cas9-RNA complex, 466 bp fragment should be detected. Otherwise the probe will hybridize with 1499 bp length fragment.
  • C Southern blot analysis of genomic DNA fragments.
  • C line E. coli genomic DNA fragmented with PstI.
  • Cas9-RNA genomic DNA was incubated with Cas9-RNA complex before fragmentation.
  • D Human genomic DNA cleavage by Cas9-crRNA complex. Relative amount of intact DNA DNA fragments were estimated by qPCR.
  • FIG. 23 schematically illustrates targeting sequences contained in the reporter plasmid (pMTC-DSR+eGFP).
  • eGFP coding sequence is separated by an intron from GAPDH gene. The 5′ and 3′ RFP coding sequences are indicated. homol indicates homologous sequences in the RFP gene necessary for homologous recombination to occur.
  • A, B, C, and D indicate four distinct target sites for Cas9-mediated cleavage.
  • Targets A and B are located in the intron.
  • Targets C and D are located in the coding regions of eGFP.
  • Cre indicates a target site for Cre endonuclease and is located in the intronic sequence.
  • FIG. 24 shows reduction of eGFP-positive cells after introduction of Cas9/RNA complexes.
  • CHO-K1 cells were transfected with the reporter plasmid and Cas9/RNA complexes containing crRNA targeting either eGFP sequence A (intronic), eGFP sequence C (coding), or a non-specific sequence K. The percentage of eGFP-positive cells was determined by flow cytometry. As negative controls, cells were untransfected (NC) or transfected with the reporter plasmid alone (DNA) or with reporter plasmid and Cas9 protein alone as well as with reporter plasmid and Cas9-nonspecific crRNA complex (DNA+K).
  • NC untransfected
  • DNA reporter plasmid alone
  • Cas9 protein alone
  • DNA+K reporter plasmid and Cas9-nonspecific crRNA complex
  • FIG. 25 shows cell images where appearance of RFP suggested Cas9/RNA-mediated double-strand break repair by homologous recombination (HR). Forty-eight hours after co-transfection with the reporter plasmid and Cas9/RNA complexes targeting eGFP sequence C, CHO-k1 cells were visualized by fluorescence microscopy for eGFP and RFP.
  • FIG. 26 schematically illustrates targeting sequences contained in the reporter plasmid (pMTC-DSR+eGFP).
  • eGFP coding sequence is separated by GAPDH intron copied from genomic DNA.
  • the RFP N- and C-coding sequences are as indicated.
  • Homologous sequences in the RFP gene are necessary for homologous recombination to occur.
  • Target E located within the intron of eGFP is indicated in bold.
  • FIG. 27 is a gel showing Cas9/RNA complexes using synthetic crRNA and tracRNA function similarly to Cas9/RNA complexes using synthetic crRNA and in vitro transcribed tracrRNA. Plasmids were visualized after agarose gel electrophoresis. Lane C: uncut plasmid. Lanes 1-3: plasmids cut with Cas9+crRNA and either 1: control in vitro-transcribed tracrRNA; 2: unmodified synthetic tracrRNA (89 nt); or 3: unmodified synthetic tracrRNA (74 nt).
  • FIGS. 28A-E schematically show targeting sequences contained in the reporter plasmid (pMTC-DSR+eGFP) and potential processing/gene rearrangement outcomes.
  • FIG. 29 shows reduction of eGFP-positive cells after introduction of Cas9/RNA complexes.
  • CHO-K1 cells were transfected with the reporter plasmid and Cas9/RNA complexes containing crRNA targeting either eGFP sequence A (intronic), eGFP sequence C (coding), or a non-specific sequence K. The percentage of eGFP-positive cells was determined by flow cytometry. As negative controls, cells were untransfected (NC) or transfected with the reporter plasmid alone (DNA) or with reporter plasmid and Cas9 protein alone as well as with reporter plasmid and Cas9-nonspecific crRNA complex (DNA+K).
  • NC untransfected
  • DNA reporter plasmid alone
  • Cas9 protein alone
  • DNA+K reporter plasmid and Cas9-nonspecific crRNA complex
  • FIG. 30 schematically shows targeting sequences contained in the reporter plasmid (pMTC-DSR+eGFP).
  • eGFP coding sequence is indicated in black and is separated by GAPDH intron copied from genomic DNA.
  • the RFP N- and C-coding sequences are indicated in gray.
  • Homologous sequences in the RFP gene are necessary for homologous recombination to occur.
  • Target E located within the intron of eGFP is indicated in bold.
  • Genomic DNA of Streptococcus thermophilus DGCC7710 strain was used as a template in PCR reactions to clone cas9.
  • PCR fragment amplified with following primers: 5′-ACGTCTCAAATGTTGTTTAATAAGTGTATAATAATTTC-3′ (SEQ ID NO: 21) and 5′-ACGTCTCCGCGCTACCCTCTCCTAGTTTG-3′ (SEQ ID NO: 22) was cloned into the pASK-IBA3 expression vector via Esp3I sites.
  • LB broth was supplemented with Ap (100 ⁇ g/ml) and Cm (10 ⁇ g/ml).
  • E. coli cells for the Cas9-crRNA complex isolation were grown in two steps. First, 4 ml of cells culture were grown at 37° C. to OD600 of ⁇ 0.5, and expression induced by adding 0.2 ⁇ g/ml of anhydrotetracycline (AHT) (Sigma). After for 4 h, 1/400 of the pre-induced culture was inoculated into fresh LB medium supplemented with Ap (100 ⁇ g/ml), Cm (12 ⁇ g/ml) and AHT (0.2 ⁇ g/ml) and was grown at 37° C. overnight.
  • Ap 100 ⁇ g/ml
  • Cm 10 ⁇ g/ml
  • AHT anhydrotetracycline
  • Protein concentrations in the Cas9-crRNA complexes were determined by densitometric analysis of SDS-PAGE gels containing samples of Strep-Tactin purified Cas9 proteins along with known amounts of His-tagged Cas9 protein.
  • the concentration of the Cas9-crRNA complexes is expressed as Cas9 protein concentration assuming that Cas9 is a monomer and binds crRNA in a complex with 1:1 stoichiometry.
  • RNA was cross-linked to the membrane with 0.16 M l-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) (Pierce)/0.13 M 1-methylimidazole (Sigma) pH 8 at 60° C. for 1 h.
  • EDC carbodiimide
  • the membrane was pre-hybridized with 2 ⁇ SSC buffer containing 1% SDS and 0.1 mg/ml denatured DNA from fish testes (Ambion) for 1 h at 40° C.
  • Blots were probed for 12 h with a 32 P-5′-labelled 42 nt anti-crRNA DNA oligonucleotide containing 20 nt of spacer1 and 22 nt of the repeat sequence (5′-TCGAAACAACACAGCTCTAAAACTGTCCTCTTCCTCTTTAGC-3′ (SEQ ID NO: 28)). The blots were washed 3 ⁇ for 15 min with 0.2 ⁇ SSC buffer containing 0.2% SDS, and were visualized using phosphorimaging.
  • a 42 nt synthetic oligoribonucleotide (5′-CGCUAAAGAGGAAGAGGACAGUUUUAGAGCUGUGUUGUUUCG-3′ (SEQ ID NO: 7)) and 84 nt DNA oligonucleotide.
  • Oligonucleotide substrates All oligonucleotide substrates used in this study are given in Table 1. Oligodeoxyribonucleotides were purchased from Metabion (Martinsried, Germany). The 5′-ends of oligonucleotides were radiolabelled using PNK (Fermentas) and [ ⁇ -33P]ATP (Hartmann Analytic). Duplexes were made by annealing two oligonucleotides with complementary sequences (SP1, SP1- ⁇ p, SP2). Radioactive label was introduced at the 5′ end of individual DNA strand prior to the annealing with unlabelled strand.
  • PNK Fermentas
  • [ ⁇ -33P]ATP Hard Analytic
  • Reactions with oligonucleotide substrates were typically carried out by adding 2 nM of Cas9-crRNA complex to 1 nM labeled oligonucleotide in 10 mM Tris-HCl (pH 7.5 at 37° C.), 10 mM NaCl, 0.1 mg/ml BSA and 10 mM MgCl2 at 37° C. Aliquots were removed at timed intervals and quenched with loading dye (95% v/v formamide, 0.01% bromphenol blue, 25 mM EDTA, pH 9.0) and subjected to denaturing gel electrophoresis through 20% polyacrylamide followed by a FLA-5100 phosphorimager (Fujilm) detection.
  • loading dye 95% v/v formamide, 0.01% bromphenol blue, 25 mM EDTA, pH 9.0
  • Reactions with plasmid substrates Reactions on pUC18 plasmid and its derivatives (Sapranauskas et al., 2011. Nucleic Acids Res 39:9275-82) were conducted at 37° C. in the buffer used for reactions on oligonucleotide substrates. Reaction mixtures typically contained 2.5 nM supercoiled plasmid and 2 nM of Cas9-crRNA complex. The reactions were initiated by adding protein to the mixture of the other components. Aliquots were removed at timed intervals and quenched with phenol/chloroform. The aqueous phase was mixed with loading dye solution (0.01% bromphenol blue and 75 mM EDTA in 50% v/v glycerol) and analyzed by electrophoresis through agarose.
  • loading dye solution 0.01% bromphenol blue and 75 mM EDTA in 50% v/v glycerol
  • Plasmid cleavage position determination To achieve complete cleavage of plasmid substrate, 8 nM of Cas9-crRNA complex was incubated with 2.5 nM of supercoiled plasmid in the reaction buffer at 37° C. for 10 min. Reaction products were purified and concentrated using GeneJET PCR Purification Kit (Fermentas).
  • Spacer1 surrounding region of Cas9 linearized and nicked plasmids were directly sequenced with the following primers: 5′-ccgcatcaggcgccattcgcc-3′ (SEQ ID NO: 29) (sequencing of (+)strand) and 5′-gcgaggaagcggaagagcgccc-3′ (SEQ ID NO: 30) (sequencing of ( ⁇ )strand).
  • Binding assay Increasing amounts of protein-crRNA complex were mixed with 0.5 nM of 33P-labeled double-stranded and single-stranded DNA substrates (Table 1) in the binding buffer (40 mM Tris-acetate, pH 8.3 at 25 C, 0.1 EDTA, 0.1 mg/ml BSA, 10% v/v glycerol) and incubated for 15 min at room temperature. Free DNA and protein-DNA complexes were separated on the non-denaturing 8% polyacrylamide gel (ratio of acrylamide/N,N′-methylenebisacrylamide 29:1) using 40 mM Tris-acetate (pH 8.3) supplemented with 0.1 mM EDTA as the running buffer. Electrophoresis was run at room temperature for 3 h at 6 V/cm.
  • mutants D31A and N891A were obtained by the site-directed mutagenesis as previously described (Tamulaitis et al., 2007. Nucleic Acids Res 35:4792-9). Sequencing of the entire gene for each mutant confirmed that only the designed mutation had been introduced.
  • Oligonucleotide substrates Oligonucleotide Sequence Specification SP1 5′-GCTCGAATTG AAATTCTAAACGCTAAAGAGGAAGAGGACA T GG T G AATTCGTAAT-3′ 55 bp oligoduplex (SEQ ID NO: 31) 3′-CGAGCTTAAC TTTAAGATTTGCGATTTCCTTCTCCTGT A CC A C TTAAGCATTA-5′ substrate containing proto-spacer1 and PAM SP1-p ⁇ 5′-GCTCGAATTG AAATTCTAAACGCTAAAGAGGAAGAGGACA AATTCGTAAT-3′ 50 bp oligoduplex (SEQ ID NO: 32) 3′-CGAGCTTAAC TTTAAGATTTGCGATTTCTCCTTCCTGT TTAAGCATTA-5′ substrate containing proto-spacer2 SP2 5′-GCTCGAATTG TACTGCTGTATTAGCTTGGTTGTTGGTTTG T GG T G AATTCGTAAT-3′ 55 bp oligoduplex (S
  • the cas9 gene from the CRISR3 system of S. thermophilus DGCC7710 strain was cloned into the pASK-IBA3 vector to produce a construct encoding a Cas9 protein fusion containing a C-terminal Strep(II)-tag ( FIG. 1B ).
  • a construct encoding a Cas9 protein fusion containing a C-terminal Strep(II)-tag FIG. 1B .
  • we have tried to purify Cas9-crRNA complex from E. coli strain RR1 expressing Cas9 protein on the pASK-IBA3 vector and other Cas proteins (except Cas9) on pCas9( ⁇ ) plasmid (Sapranauskas et al, 2011).
  • pCas9( ⁇ ) also contained a complete CRISPR3 array comprised of 12 spacer-repeat units ( FIG. 2A ).
  • cas9 gene expression was performed in two steps. First, we induced Cas9 expression in a small volume of E. coli culture and after 4 h transferred an aliquot of pre-induced culture into a larger volume of fresh LB media already containing inductor and incubated overnight. Cas9 protein complex was purified from the crude cell extract using Strep-Tactin Sepharose. We managed to isolate a small amount of the Cas9-crRNA complex which showed only traces of nucleolytic activity on the oligoduplex SP1 containing a proto-spacer1 and PAM.
  • CRISPR3/Cas system of S. thermophilus belongs to the Type IIA subtype (former Nmeni or CASS4) of CRISPR/Cas systems (Makarova et al., 2011. Nat Rev Microbiol 9:467-77). It has been shown that in the Type IIA CRISPR/Cas system of Streptococcus pyogenes trans-encoded small RNA (tracrRNA) and bacterial RNaselII are involved in the generation of crRNA (Deltcheva et al., 2011. Nature 471:602-7).
  • Streptococcus pyogenes crRNA is only 42 nt in length and has no “5′-handle” which is conserved in crRNA's from Type I and III CRISPR systems (Hale et al., 2009. Cell 139:945-56; Jore et al., 2011. Nat Struct Mol Biol 18:529-36). According to the northern blot analysis crRNA of similar length is generated in the S. thermophilus LMD-9 CRISPR3/Cas system (Makarova et al., 2011. Nat Rev Microbiol 9:467-77), which is almost identical to the CRISPR3/Cas system of DGCC7710 strain ( FIGS. 4A and B).
  • crRNA isolated from the Cas9-crRNA complex expressed in the heterologous E. coli strain may have the same length ( FIG. 4 ). Therefore, to probe nucleic acids extracted from the Strep-Tactin purified Cas9 complex we used 42 nt anti-crRNA DNA oligonucleotide comprised of 22 nt region corresponding to the 3′-end of the repeat sequence and 20 nt at the 5′-end of SP1 fragment. Nucleic acid present in the Cas9 complex hybridized with anti-crRNA oligonucleotide, and was sensitive to RNAse but not DNAse treatment ( FIG. 10 ).
  • the size of extracted crRNA was identical to the 42 nt synthetic oligoribonucleotide corresponding to the putative crRNA of the CRISPR3 system of S. thermophilus DGCC7710 strain ( FIG. 3A , FIG. 4C ). Taken together, these data confirm that Cas9 Strep-tag protein co-purifies with 42 nt crRNA, which is derived from CRISPR3 region.
  • Cas9 protein cleaves double-stranded DNA within a proto-spacer.
  • SP1 oligoduplex Table 1 containing the proto-spacer sequence identical to spacer SP1 in the CRISPR3 array, the PAM sequence 5′-TGGTG-3′ downstream of the proto-spacer, and 10 nt flanking sequences from pSP1 plasmid (Sapranauskas et al., 2011. Nucleic Acids Res 39:9275-82) ( FIG. 5A ).
  • the oligoduplex strand complementary to crRNA is named (+) strand, while the opposite duplex strand is called the ( ⁇ ) strand.
  • Cas9-crRNA cleavage specificity is directed by the crRNA sequence.
  • the cleavage specificity of Cas9-crRNA complex was analysed using plasmids pSP1+SPN and pSP1.
  • the length of the spacer in the CRISPR3 region of S. thermophilus is 30 nt.
  • the mature crRNA copurified with the Cas9 protein is comprised of 42 nt. It means that only 20 nt of crRNA is complementary to the (+)strand of proto-spacer. To assess whether 5′-end of proto-spacer is important for the plasmid interference by the CRISPR3 system of S.
  • thermophilus we engineered plasmids pSP1-27, pSP1-23, pSP1-19, pSP1-15, pSP1-11 with the 5′-truncated proto-spacer1 (the length of proto-spacer 27 bp, 23 bp, 19 bp, 15 bp, 11 bp, respectively), and analyzed transformation efficiency of the recipient strain containing pCRISPR3 ( FIG. 8B ). Plasmids containing 4 or 7 bp truncations at the 5′ end of proto-spacer1, had no effect on the recipient strain ability to interfere with plasmid transformation. Shorter versions of proto-spacer (11, 15, 19 bp) abolished recipient strain ability to prevent plasmid transformation.
  • PAM is required for DNA binding and cleavage by Cas9-crRNA. Plasmids carrying a proto-spacer but not PAM (pSP1-p ⁇ ) or multiple PAM's but no proto-spacer (pUC18) are resistant for Cas9-crRNA cleavage ( FIG. 8A ). Hence, in accordance with in vivo data both PAM and proto-spacer are required for double-stranded DNA cleavage by Cas9-crRNA complex (Sapranauskas et al., 2011. Nucleic Acids Res 39:9275-82).
  • single-stranded oligonucleotides ((+)strand) are bound by Cas9-crRNA with the same affinity independently of the PAM presence ( FIG. 9D ). Again, no binding was observed for single-stranded DNA oligonucleotide without proto-spacer ( FIG. 9D ), or for Cas9 protein lacking crRNA ( FIG. 6C ). Taken together these data indicate that Cas9-crRNA complex discriminates PAM only in the double-stranded but not a single-stranded DNA.
  • RNA binding and cleavage by the Cas9-crRNA complex Since some Type III CRISPR systems provide RNA rather than DNA interference, we have studied RNA binding and cleavage by the Cas9-crRNA complex.
  • the Cas9-crRNA did not cleave specifically either single-stranded RNA, or double-stranded RNA bearing a proto-spacer and PAM ( FIG. 10B ). This finding confirms confirms once more that DNA is a primary target for the CRISPR3/Cas system of S. thermophilus .
  • Cas9-crRNA complex binds a complementary RNA containing a proto-spacer, but this interaction is probably functionally not important, because single stranded RNA is not cleaved specifically by Cas9 within a proto-spacer.
  • both mutants produced nicked DNA form ( FIG. 11B ) indicating that both active sites mutants cleave only one DNA strand of plasmid substrate within a proto-spacer.
  • Cas9 protein is functional as a monomer and uses two active sites for the cleavage of opposite DNA strands. Similar strategy is exploited by some restriction endonucleases (Armalyte et al., 2005. J Biol Chem 280: 41584-94).
  • Cas9-crRNA complex of CRISPR3/Cas system of S. thermophilus is crRNA-guided endonuclease. This work demonstrates that Cas9-crRNA complex of CRISPR3/Cas system of S. thermophilus is crRNA-directed endonuclease which cuts both DNA strands in the presence of Mg2+-ions within a protospacer 4 nt downstream of the PAM sequence to produce blunt end cleavage products. Sequence specificity of the Cas9-crRNA complex is dictated by the 42 nt crRNA which include ⁇ 20 nt fragment complementary to the proto-spacer sequence in the target DNA. In this respect the mature crRNA in the Cas9 complex of CRISPR3/Cas system of S.
  • thermophilus is similar to crRNA of Streptoccocus pyogenes which has a 3′-handle of repeat sequence but lacks part of the spacer sequence and 5′-handle corresponding to the repeat fragment (Deltcheva et al, 2011). Therefore, crRNA present in the Cas9-crRNA complex of CRISPR3/Cas system of S. thermophilus is complementary only to the part of the proto-spacer sequence distal to PAM. Not surprisingly, truncation of the 3′-end of the proto-spacer sequence by 10 nucleotides has no effect on Cas9-crRNA cleavage of synthetic oligoduplexes or plasmid DNA ( FIG. 8 ).
  • the cleavage machinery of Cas9-crRNA complex resides in the Cas9 protein which provides two active sites for the phosphodiester bond cleavage.
  • the RuvC- and HNH-like active sites of Cas9 protein are located on different domains and act independently on individual DNA strands. Alanine replacement of the active site residues in the RuvC- and HNH-motifs transforms Cas9-crRNA complex into a strand-specific nicking endonucleases similar to the nicking enzymes (Chan et al., 2011. Nucleic Acids Res 39:1-18).
  • both PAM and proto-spacer sequences are necessary prerequisite for double-stranded DNA binding and subsequent cleavage.
  • PAM sequence motif has no effect on the single-stranded DNA binding by: a single-stranded oligodeoxynucleotide containing proto-spacer with or without PAM sequence is bound equally well but with lower affinity than double-stranded DNA.
  • Cas9 cuts single-stranded DNA bound to the crRNA using its HNH-active site.
  • the N-terminal domain containing the catalytic D31A residue of the RuvC motif is positioned at the displaced ( ⁇ ) DNA strand, while the central part of Cas9 containing the HNH motif is located in the vicinity of the scissile phosphodiester bond of (+) DNA strand paired to crRNA.
  • Cas9-crRNA remains bound to the reaction products ( FIG. 15 ).
  • RNA interference complexes Comparison to other RNA interference complexes.
  • the mechanism proposed here for the double-stranded DNA cleavage by the Cas9-crRNA complex differs significantly from that for the Type I-E (former E. coli or CASS2) system (Jore et al., 2011. Nat Struct Mol Biol 18:529-36).
  • E. coli system crRNA and Cas proteins assemble into a large ribonucleoprotein complex named Cascade that facilitates target recognition by enhancing sequence-specific hybridization between the CRISPR RNA and complementary target sequences (Jore et al., 2011. Nat Struct Mol Biol 18:529-36).
  • Target recognition is dependent on PAM and governed by the “seed” crRNA sequence located at the 5′-end of the spacer region (Semenova et al., 2011. Proc Natl Acad Sci USA 108:10098-103).
  • Cascade-crRNA complex alone is able to bind double-stranded DNA containing PAM and proto-spacer, it requires an accessory Cas3 protein for DNA cleavage.
  • Cas3 is a single-stranded DNA nuclease and helicase which is able to cleave single-stranded DNA producing multiple cuts (Sinkunas et al., 2011. EMBO J. 30:1335-42).
  • Cas module RAMP (Cmr) proteins and cRNA assemble into the effector complex that targets invading RNA (Hale et al., 2009. Cell 139:945-56; Hale et al., 2012. Mol Cell 45:292-302).
  • Pyroccus furiosus RNA silencing complex comprised of six Cmr1-6 proteins and crRNA binds to the target RNA and cuts it at fixed distance in respect to 3′-end the psiRNA. The cleavage activity depends on Mg2+-ions however individual Cmr protein(-s) responsible for target RNA cleavage has yet to be identified.
  • the effector complex of Sulfolobus solfataricus comprised of seven Cmr1-7 proteins and crRNA cuts invading RNA in an endonucleolytic reaction at UA dinucleotides (Zhang et al., 2012. Mol Cell 45: 303-13).
  • both Cmr-crRNA complexes perform RNA cleavage in a PAM independent manner.
  • Cas9-crRNA complex of CRISPR3 system is so far the most simple DNA interference system comprised of a single Cas9 protein bound to the crRNA molecule.
  • the simple modular organization of the Cas9-crRNA complex where specificity for DNA target is encoded by the crRNA and cleavage machinery is brought by the Cas protein provides a versatile platform for engineering of universal RNA-guided DNA endonucleases.
  • Cas9-crRNA complex can be assembled in vitro by mixing 4 individual components: the C-terminal (His)6-tagged variant of Cas9 protein (“(His)6” disclosed as SEQ ID NO: 23), tracrRNA transcript (SEQ ID NO: 5), CRISPR RNA transcript (SEQ ID NO: 8) and E. coli RNAselII (Abgene).
  • Cas9 protein is first pre-incubated with tracrRNA and CRISPR RNA transcripts, followed by the subsequent incubation with RNAselII to generate a catalytically competent Cas9-crRNA complex which is used for the site-specific DNA cleavage.
  • RNA fragments required for complex assembly were produced by in vitro transcription (TranscriptAidTM T7 High Yield Transcription Kit, Fermentas) of PCR-generated fragment containing a T7 promoter at the proximal end of RNA coding sequence.
  • PCR-generated DNA fragments encoding CRISPR RNA and tracrRNA were produced using pCas9( ⁇ )SP1 plasmid as a template with a following primer pair: 5′-taatacgactcactataGggtagaaagatatcctacgagg-3′ (SEQ ID NO: 40)/5′-CAACAACCAAGCTAATACAGCAG-3′ (SEQ ID NO: 41) and 5′-aaaaacaccgaatcggtgccac-3′ (SEQ ID NO: 42)/5′-taatacgactcactataGggTAATAATAATTGTGGTTTGAAACCATTC-3′ (SEQ ID NO: 43) (T7 RNA polymerase promoter underlined, transcription start shown in bold).
  • the 150 nt CRISPR RNA transcript is comprised of 102 nt Repeat-Spacer1-Repeat sequences flanked by the 23 nt upstream and 25 nt downstream regions required for primer annealing.
  • the 105 nt transcript of tracrRNA is comprised of a 38 nt stretch partially complimentary to the S. thermophilus DCGG7710 CRISPR3 repeat sequence fragment (anti-repeat sequence), flanked by the 16 nt upstream and 51 nt downstream region.
  • RNA fragments produced by in vitro transcription were purified using RNeasy MinElute Cleanup Kit (Qiagen).
  • the (His)6-tagged Cas9 protein (“(His) 6 ” disclosed as SEQ ID NO: 23) was mixed with CRISPR RNA and tracrRNA transcripts at 1:0.5:1 molar ratio and pre-incubated in a buffer containing 10 mM Tris-HCl (pH 7.5 at 37° C.), 100 mM NaCl at 37° C. for 30 min followed by addition of RNAselII (Ambion), MgCl2 and DTT and subsequent incubation for additional 30 min.
  • the final concentrations of the components in the assembly mix were the following: 100 nM of (His) 6 -tagged Cas9 protein (“(His) 6 ” disclosed as SEQ ID NO: 23), 50 nM of CRISPR RNA, 100 nM of tracrRNA, 50 nM RNAselII, 10 mM MgCl2 and 1 mM DTT.
  • Cas9-crRNA complex guided by the crRNA sequence cleaves DNA at the specific site to generate blunt ends.
  • Cas9-crRNA complex can be used an alternative for a restriction endonuclease or meganuclease for the site-specific DNA cleavage in vitro.
  • the sequence specificity of the complex is dictated by the crRNA sequence which can be engineered to address a desirable DNA target.
  • the DNA cleavage activity of the in vitro assembled Cas9-crRNA complex was assayed on the plasmid substrates pSP1 and pUC18.
  • the pSP1 plasmid contained a proto-spacer1 sequence flanked by the 5′-GGNG-3′PAM sequence. Proto-spacer1 sequence was not present in pUC18. Reactions on pUC18 and pSP1 plasmids (Sapranauskas et al., 2011. Nucleic Acids Res 39:9275-82) were conducted at 37° C.
  • reaction mixtures typically contained 3.0 nM of supercoiled plasmid DNA.
  • the reactions were initiated by mixing 50 ⁇ l volumes of Cas9-crRNA complex and plasmid DNA (1:1 v/v ratio) in a reaction buffer. Aliquots were removed at timed intervals and quenched with phenol/chloroform.
  • the aqueous phase was mixed with loading dye solution (0.01% bromphenol blue and 75 mM EDTA in 50% v/v glycerol) and reaction products analyzed by electrophoresis through agarose ( FIG. 16 ).
  • loading dye solution 0.01% bromphenol blue and 75 mM EDTA in 50% v/v glycerol
  • reaction products analyzed by electrophoresis through agarose ( FIG. 16 ).
  • loading dye solution 0.01% bromphenol blue and 75 mM EDTA in 50% v/v glycerol
  • Reaction product analysis revealed that in vitro assembled Cas9-crRNA complex cleaved both strands of the oligoduplex at fixed position, inside the proto-spacer, after the 37th nucleotide from the 5′-terminus, 4 nt upstream of the PAM sequence 5′-GGNG-3′ leaving blunt ends ( FIG. 17 ).
  • Synthetic 42 nt oligoribonucleotide is comprised of 20 nt of identical to the spacer1 of CRISPR3 region at the 5′ terminus and 22 nt of repeat sequence at the 3′ end. More specifically, tracrRNA and CRISPR RNA transcripts were obtained as described in Example 1.
  • (His)6-tagged Cas9 protein (“(His)6” disclosed as SEQ ID NO: 23) was mixed with tracrRNA and CRISPR RNA transcript, or 42 nt synthetic crRNA, at 1:0.5:1 molar ratio and incubated in a buffer containing 10 mM Tris-HCl (pH 7.5 at 37° C.), 100 mM NaCl at 37° C. for 1 h.
  • the final concentrations of the components in the assembly mix were the following: 100 nM of (His)6-tagged Cas9 protein (“(His)6” disclosed as SEQ ID NO: 23), 50 nM of CRISPR RNA or 42 nt synthetic crRNA, 100 nM of tracrRNA.
  • Cas9-crRNA complex guided by the crRNA sequence cleaves DNA at the specific site to generate blunt ends.
  • Cas9-crRNA complex can be used an alternative for a restriction endonuclease or meganuclease for the site-specific DNA cleavage in vitro.
  • the sequence specificity of the complex is dictated by the crRNA sequence which can be engineered to address a desirable DNA target.
  • the DNA cleavage activity of the in vitro assembled Cas9-crRNA complex was assayed on the plasmid substrates pSP1 and pUC18.
  • the pSP1 plasmid contained a proto-spacer1 sequence flanked by the 5′-GGNG-3′PAM sequence. Proto-spacer1 sequence was not present in pUC18. Reactions on plasmid substrates (Sapranauskas et al., 2011. Nucleic Acids Res 39:9275-82) were conducted at 37° C.
  • reaction mixtures typically contained 3.0 nM of supercoiled plasmid DNA.
  • the reactions were initiated by mixing 50 ⁇ l volumes of Cas9-crRNA complex and plasmid DNA (1:1 v/v ratio) in a reaction buffer. Aliquots were removed at timed intervals and quenched with phenol/chloroform. The aqueous phase was mixed with loading dye solution (0.01% bromphenol blue and 75 mM EDTA in 50% v/v glycerol) and reaction products analyzed by electrophoresis through agarose ( FIG. 18 ).
  • Reaction product analysis revealed that in vitro assembled Cas9-crRNA complex cleaved both strands of the oligoduplex at fixed position, inside the proto-spacer, after the 37th nucleotide form the 5′-end, 4 nt upstream of the PAM sequence 5′-GGNG-3′ leaving blunt ends ( FIG. 19 ).
  • FIG. 20B we describe an interchangeable spacer cassette which allows to produce crRNA carrying a nucleotide sequence against any desirable DNA target to be used for assembly of the Cas9-crRNA complex described in Examples 1 and 2 ( FIG. 20B ).
  • the cassette caries a single repeat-spacer-repeat unit which allows insertion of the oligoduplex carrying the new spacer sequence required to generate a desired crRNA.
  • To engineer a cassette first we constructed a cassette containing a leader sequence, a repeat sequence and a unique SapI recognition site in the vicinity of the repeat sequence followed by BamHI site ( FIG. 20C ).
  • the distance between SapI and AatlI restriction sites is 775 bp, while the distance between the putative Cas9-crRNA complex cleavage sites located in the spacers N1 and N2 is 612 bp ( FIG. 21A ).
  • the crRNA1 and crRNA2 PCR fragments containing T7 promoter at the proximal end were obtained from the corresponding interchangeable spacer cassette plasmids and used to produce by in vitro transcription CRISPR RNA transcripts carrying sequences matching spacer N1 or spacer N2 sequences.
  • the catalytically active complexes of Cas9 with crRNA1 and crRNA2 were assembled for DNA cleavage as described in Example 1.
  • Cas9-crRNA complex may be used to prepare a vector for cloning procedure.
  • cleavage products obtained by the Cas9-crRNA complex can be re-ligated by DNA ligase.
  • DNA ligase We purified linear pSP1 cleavage product from agarose gel and re-ligated it using DNA ligase. After transformation of E. coli cells by the ligation mix, five individual clones were selected from resulting transformants, plasmid DNA was purified and subjected to sequencing.
  • FIG. 21A Next we analyzed cleavage of pUC18 plasmid with Cas9 complex loaded with crRNA1 and crRNA2 described in Example 5 ( FIG. 21A ).
  • pUC18 was cleaved with one complex, purified and re-ligated. Sequencing of 10 clones in each case confirmed, that sequence of cleaved and re-ligated plasmid was identical to the sequence of the non-treated plasmid ( FIG. 21C ). This experiment suggests that additional mutations are not introduced after cleavage by Cas9-crRNA complex and ligation, and the Cas9-crRNA complex can be used for cloning experiments.
  • the 2 ⁇ g pUC18 was incubated with the mix of separately assembled Cas9-RNA complexes (250 nM each) containing different crRNAs for 1 hour at 37° C. in 100 ⁇ l reaction volume (10 mM Tris-HCl (pH 7.5 at 37° C.), 100 mM NaCl, 1 mM DTT and 10 mM MgCl 2 ). Obtained vector fragment was purified from agarose gel using GeneJET gel extraction Kit (Thermo Fisher scientific) and divided in to two equal parts. One part of pre-cleaved vector was dephosphorylated with the FastAP alkaline phosphatase while another part was untreated.
  • Cas9-crRNA may be addressed to cleave targets in long DNA molecules, including phage ⁇ , E. coli and human genomic DNAs.
  • Cas9-RNA complex to cleave specific sites in ⁇ bacteriophage (48 kb), E. coli BL-21 strain (4.6 Mb) and human (3.2 Gb) genomic DNAs.
  • Cas9-crRNA complex was assembled as described in Examples 2 and 3.
  • ⁇ DNA cleavage reactions were initiated by mixing ⁇ DNA (Thermo Fisher Scientific) with assembled Cas9-RNA complex (1:1 v/v ratio) and incubating at 37° C. Final reaction mixture contained 2 ⁇ g ⁇ DNA, 50 nM Cas9-RNA complex, 10 mM Tris-HCl (pH 7.5 at 37° C.), 100 mM NaCl, 1 mM DTT and 10 mM MgCl 2 in 100 ⁇ l reaction volume. Aliquots were removed at timed intervals and quenched with phenol/chloroform.
  • the aqueous phase was mixed with 3 ⁇ loading dye solution (0.01% bromphenol blue and 75 mM EDTA in 50% v/v glycerol) and reaction products analyzed by electrophoresis through agarose gels and ethidium bromide staining.
  • 3 ⁇ loading dye solution 0.01% bromphenol blue and 75 mM EDTA in 50% v/v glycerol
  • reaction products analyzed by electrophoresis through agarose gels and ethidium bromide staining.
  • the analysis of linear A phage genomic DNA cleavage products in agarose gel confirmed that ⁇ 40 bp length DNA is efficiently cleaved at a single site ( FIG. 22A ).
  • E. coli BL21 (DE3) strain was isolated using the Genomic DNA purification kit (Thermo Fisher Scientific).
  • E. coli genomic DNA was combined with assembled Cas9-RNA complex (1:1 v/v ratio) and incubated for 3 hours at 37° C.
  • Final reaction mixture contained 30 ⁇ g genomic DNA, 1 ⁇ M Cas9-RNA complex, 10 mM Tris-HCl (pH 7.5 at 37° C.), 100 mM NaCl, 1 mM DTT and 10 mM MgCl 2 in 300 ⁇ l reaction volume.
  • the membrane was prehybridized with 6 ⁇ SSC buffer containing 0.5% SDS and 100 ⁇ g/ml denatured salmon sperm DNA (Amresco) for 1 h at 65° C.
  • the hybridization probe was generated by PCR using the genomic E. coli BL21(DE3) DNA as a template yielding 397 bp product. 5′-ends were dephosphorylated with FastAP phosphatase (Thermo Fisher Scientific) and radiolabelled by incubating with [ ⁇ - 32 P]ATP (Hartmann Analytic) and T4 PNK (Thermo Fisher Scientific).
  • the labeled probe was purified using GeneJET PCR Purification Kit (Thermo Fisher Scientific), denatured by heating to 95° C.
  • the probe was designed to target DNA fragment containing a target (a proto-spacer) for the Cas9-RNA complex ( FIG. 22B ).
  • the distance between two PstI targets is ⁇ 1500 bp, while the distance between proto-spacer and left PstI target is 466 bp.
  • After cleavage with Cas9 complex we detected only 466 bp DNA fragment ( FIG. 22C ), which means that all DNA targets were cleaved by Cas9 protein in the desired position.
  • Cas9-crRNA cleavage products of human genomic DNA we used DNA extracted from human brain. Human genomic DNA was combined with assembled Cas9-crRNA complex (1:1 v/v ratio) and incubated for 30 min at 37° C. Final reaction mixture contained 1 ⁇ g genomic DNA, 100 nM Cas9, 10 mM Tris-HCl (pH 7.5 at 37° C.), 100 mM NaCl, 1 mM DTT and 10 mM MgCl 2 in 100 ⁇ l reaction volume.
  • Cas9-crRNA-HS1 (SeqID#13) and Cas9-crRNA-HS2 (SeqID#14) complexes were assembled to target RASGEF1C or ARL15 loci, respectively.
  • a reporter plasmid was constructed to monitor double-strand break repair either through non-homologous end-joining (NHEJ) or homologous recombination (HR).
  • the plasmid contained GFP with an intron and flanking the eGFP sequences are 5′ and 3′ sequences of RFP as well as sites of homology ( FIG. 23 ).
  • the reduction of eGFP fluorescence using this reporter plasmid was an indication of NHEJ in which a Cas9/RNA-mediated double-strand break at targets C or D was repaired imperfectly by NHEJ, thereby disrupting the eGFP coding sequence.
  • the crRNA targeting used 42 nucleotide RNA molecules, as described above, having 22 nucleotides that are the repeat sequence, and 20 nucleotides (spacer sequence) are for the specific target.
  • the target DNA needs the S. thermophilus motif or PAM which is “NGGNG” downstream of the protospacer in the target.
  • PAM S. thermophilus motif
  • GFP was not “engineered” to contain this PAM motif; several target sequences within eGFP naturally occur with the PAM sequence and crRNAs were designed to target the adjacent spacer sequences.
  • RFP was a marker for homologous recombination after a double strand break in eGFP was created by Cas9/RNA.
  • FIG. 28A shows reporter gene construct for Cas9 protein activity analysis in eukaryotic cells in vivo.
  • Intron sequence contains three cas9 target sites (A, E, B); GFP gene contains two (C, D) cas9 target sites. The RFP gene is split at Y196 position, where RFP fluorescence is abolished.
  • FIG. 28B shows that GFP fluorescence is observed following intron processing in vivo.
  • FIG. 28C shows that the Cas9/crRNA complex facilitated dsDNA breaks in any of aforementioned nuclease target sites may induce HR, result in reassembly of RFP gene and appearance of RFP fluorescence.
  • S. thermophilus Cas9 protein purified from E. coli , was complexed with in vitro-transcribed tracrRNA and synthetic unmodified crRNA targeting either sequence A (intronic) or sequence C (coding) of eGFP.
  • the Cas9/RNA complexes were incubated with the transfection reagent TurboFECT and the reporter plasmid DNA was also incubated with TurboFECT in separate tubes and they were both added to CHO-K1 cells. The percentage of eGFP-positive cells was determined by flow cytometry. As shown in FIGS.
  • transfected cells were also visualized by fluorescent microscopy to monitor the appearance of RFP-positive cells, an indication of repair of Cas9-mediated double strand break by HR rather than NHEJ.
  • RFP is seen in some cells after transfection with the reporter plasmid and Cas9/RNA complexes targeting eGFP sequence C, suggesting double-strand break repair by HR.
  • Cas9/RNA complexes comprised of purified Cas9, synthetic crRNAs, and in vitro-transcribed tracrRNA.
  • Cas9/RNA complexes were functional when made using fully synthetic RNA components (crRNA and tracrRNA).
  • unmodified S. thermophilus tracrRNAs both endogenous 89-mer and a shorter 74-mer version that is expected to maintain functionality
  • the unmodified synthetic crRNAs were generated against target E (see FIGS. 26 and 30 ) located within the intron of eGFP in the reporter plasmid described above and Cas9/RNA (crRNA and tracrRNA) complexes were generated.
  • the reporter plasmid used above was incubated with the complexes in vitro and monitored for restriction by gel electrophoresis.
  • Cas9/RNA complexes comprised of fully synthetic RNAs were equally functional in the in vitro assay as Cas9/RNA complexes comprised of synthetic crRNA and in vitro-transcribed tracrRNA.

Abstract

Isolation or in vitro assembly of the Cas9-crRNA complex of the Streptococcus thermophilus CRISPR3/Cas system and use for cleavage of DNA bearing a nucleotide sequence complementary to the crRNA and a proto-spacer adjacent motif. Methods for site-specific modification of a target DNA molecule in vitro or in vivo using an RNA-guided DNA endonuclease comprising RNA sequences and at least one of an RuvC active site motif and an HNH active site motif; for conversion of Cas9 polypeptide into a nickase cleaving one strand of double-stranded DNA by inactivating one of the active sites (RuvC or HNH) in the polypeptide by at least one point mutation; for assembly of active polypeptide-polyribonucleotides complex in vivo or in vitro; and for re-programming a Cas9-crRNA complex specificity in vitro and using a cassette containing a single repeat-spacer-repeat unit.

Description

  • This applications claims priority to co-pending U.S. application Ser. Nos. 61/613,373 filed Mar. 20, 2012, and 61/625,420 filed Apr. 17, 2012, each of which is expressly incorporated by reference herein in its entirety.
  • CRISPR/Cas systems provide adaptive immunity against viruses and plasmids in bacteria and archaea. The silencing of invading nucleic acids is executed by ribonucleoprotein (RNP) complexes pre-loaded with small interfering crRNAs that act as guides for foreign nucleic acid targeting and degradation. Here we describe an isolation of the Cas9-crRNA complex and demonstrate that it generates in vitro a double strand break at specific sites in target DNA molecules that are complementary to crRNA sequences and bear a short proto-spacer adjacent motif (PAM), in the direct vicinity of the matching sequence. We show that DNA cleavage is executed by two distinct active sites (RuvC and HNH) within Cas9, to generate site-specific nicks on opposite DNA strands. Sequence specificity of the Cas9-crRNA complex is dictated by the 42 nt crRNA which includes a 20 nt fragment complementary to the proto-spacer sequence in the target DNA. The complex can be assembled in vitro or in vivo. Altogether, our data demonstrate that the Cas9-crRNA complex functions as an RNA-guided endonuclease with sequence-specific target site recognition and cleavage through two distinct strand nicks.
  • BACKGROUND
  • Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) together with cas (CRISPR-associated) genes comprise an adaptive immune system that provides acquired resistance against invading foreign nucleic acids in bacteria and archaea (Barrangou et al., 2007. Science 315:1709-12). CRISPR consists of arrays of short conserved repeat sequences interspaced by unique variable DNA sequences of similar size called spacers, which often originate from phage or plasmid DNA (Barrangou et al., 2007. Science 315:1709-12; Bolotin et al., 2005. Microbiology 151:2551-61; Mojica et al., 2005. J Mol Evol 60:174-82). The CRISPR-Cas system functions by acquiring short pieces of foreign DNA (spacers) which are inserted into the CRISPR region and provide immunity against subsequent exposures to phages and plasmids that carry matching sequences (Barrangou et al., 2007. Science 315:1709-12; Brouns et al., 2008. Science 321: 960-4) The CRISPR-Cas immunity is generally carried out through three stages, referred to as i) adaptation/immunization/spacer acquisition, ii) CRISPR expression/crRNA biogenesis. iii) interference/immunity. (Horvath & Barrangou, 2010. Science 327:167-70; Deveau et al., 2010. Annu Rev Microbiol. 64:475-93; Marraffini & Sontheimer, 2010. Nat Rev Genet. 11, 181-90; Bhaya et al., Annu Rev Genet. 45:273-97; Wiedenheft et al., 2012. Nature 482:331-338). Here, we specifically focus on the interference/immunity step which enables crRNA-mediated silencing of foreign nucleic acids.
  • The highly diverse CRISPR-Cas systems are categorized into three major types, which are further subdivided into ten subtypes, based on core element content and sequences (Makarova et al., 2011. Nat Rev Microbiol 9:467-77). The structural organization and function of nucleoprotein complexes involved in crRNA-mediated silencing of foreign nucleic acids differ between distinct CRISPR/Cas types (Wiedenheft et al., 2012. Nature 482:331-338). In the Type I-E system, as exemplified by Escherichia coli, crRNAs are incorporated into a multisubunit effector complex called Cascade (CRISPR-associated complex for antiviral defence) (Brouns et al., 2008. Science 321: 960-4), which binds to the target DNA and triggers degradation by the signature Cas3 protein (Sinkunas et al., 2011. EMBO J. 30:1335-42; Beloglazova et al., 2011. EMBO J. 30:616-27). In Type III CRISPR/Cas systems of Sulfolobus solfataricus and Pyrococcus furiosus, Cas RAMP module (Cmr) and crRNA complex recognize and cleave synthetic RNA in vitro (Hale et al., 2012. Mol Cell 45:292-302; Zhang et al., 2012. Mol Cell, 45:303-13) while the CRISPR/Cas system of Staphylococcus epidermidis targets DNA in vivo (Marraffini & Sontheimer, Science. 322:1843-5).
  • RNP complexes involved in DNA silencing by Type II CRISPR/Cas systems, more specifically in the CRISPR3/Cas system of Streptococcus thermophilus DGCC7710 (Horvath & Barrangou, 2010. Science 327:167-70), consists of four cas genes cas9, cas1, cas2, and csn2, that are located upstream of 12 repeat-spacer units (FIG. 1A). Cas9 (formerly named cas5 or csn1) is the signature gene for Type II systems (Makarova et al., 2011. Nat Rev Microbiol 9:467-77). In the closely related S. thermophilus CRISPR1/Cas system, disruption of cas9 abolishes crRNA-mediated DNA interference (Barrangou et al., 2007. Science 315:1709-12). We have shown recently that the S. thermophilus CRISPR3/Cas system can be transferred into Escherichia coli, and that this heterologous system provides protection against plasmid transformation and phage infection, de novo (Sapranauskas et al., 2011. Nucleic Acids Res 39:9275-82). The interference against phage and plasmid DNA provided by S. thermophilus CRISPR3 requires the presence, within the target DNA, of a proto-spacer sequence complementary to the spacer-derived crRNA, and a conserved PAM (Proto-spacer Adjacent Motif) sequence, NGGNG, located immediately downstream the proto-spacer (Deveau et al., 2008. J Bacteriol 190:1390-400; Horvath et al., 2008. J Bacteriol 190:1401-12; Mojica et al., 2009. Microbiology 155:733-40). Single point mutations in the PAM or defined proto-spacer positions allow the phages or plasmids to circumvent CRISPR-mediated immunity (Deveau et al., 2008. J Bacteriol 190:1390-400; Garneau et al., 2010. Nature 468:67-71; Sapranauskas et al., 2011. Nucleic Acids Res 39:9275-82). We have established that in the heterologous system, cas9 is the sole cas gene necessary for CRISPR-encoded interference (Sapranauskas et al., 2011. Nucleic Acids Res 39:9275-82), suggesting that this protein is involved in crRNA processing and/or crRNA-mediated silencing of invasive DNA. Cas9 of S. thermophilus CRISPR3/Cas system is a large multidomain protein comprised of 1,409 aa residues (Sapranauskas et al., 2011. Nucleic Acids Res 39:9275-82). It contains two nuclease domains, a RuvC-like nuclease domain near the amino terminus, and a HNH-like nuclease domain in the middle of the protein. Mutational analysis has established that interference provided in vivo by Cas9 requires both the RuvC- and HNH-motifs (Sapranauskas et al., 2011. Nucleic Acids Res 39:9275-82).
  • Isolation of the Cas9-crRNA complex of the S. thermophilus CRISPR3/Cas system as well as complex assembly in vitro from separate components and demonstration that it cleaves both synthetic oligodeoxynucleotide and plasmid DNA bearing a nucleotide sequence complementary to the crRNA, in a PAM-dependent manner, is provided. Furthermore, we provide experimental evidence that the PAM is recognized in the context of double-stranded DNA and is critical for in vitro DNA binding and cleavage. Finally, we show that the Cas9 RuvC- and HNH-active sites are responsible for the cleavage of opposite DNA strands. Taken together, our data demonstrate that the Cas9-crRNA complex functions as an RNA-guided endonuclease which uses RNA for the target site recognition and Cas9 for DNA cleavage. The simple modular organization of the Cas9-crRNA complex, where specificity for DNA targets is encoded by a small crRNA and the cleavage machinery consists of a single, multidomain Cas protein, provides a versatile platform for the engineering of universal RNA-guided DNA endonucleases. Indeed, we provide evidence that by altering the RNA sequence within the Cas9-crRNA complex, programmable endonucleases can be designed both for in vitro and in vivo applications, and we provide a proof of concept for this novel application. These findings pave the way for the development of novel molecular tools for RNA-directed DNA surgery.
  • SUMMARY OF THE INVENTION
  • A method for the site-specific modification of a target DNA molecule through contacting under suitable conditions, a target polydeoxynucleotide molecule; and an RNA-guided DNA endonuclease comprising at least one RNA sequences and at least one of an RuvC active site motif and an HNH active site motif; to result in the target polydeoxynucleotide molecule modified in a region that is determined by the complimentary binding of the RNA sequence to the target DNA molecule is provided. The method includes incubating under suitable conditions a composition that includes a target double stranded polydeoxynucleotide or single stranded polydeoxynucleotide; wherein a double stranded polydeoxynucleotide contains a short proto-spacer adjacent motif (PAM), which is non-obligatory for a single stranded polydeoxynucleotide; and where PAM comprises a 5′NGGNG-3′ sequence; a polyribonucleotide (crRNA) comprising a 3′ and 5′ regions wherein the 3′ region comprises at least 22 nt of the repeat present in a microbe containing CRISPR locus and 5′-region comprises of at least 20 nt of the spacer sequence immediately downstream of the repeat in the CRISPR locus, which is substantially complementary, optionally complementary, to a portion of the target polynucleotide, a polypeptide wherein the amino acid sequence of polypeptide and amino acid sequence of SEQ ID NO: 1 have at least 80% identity, isolated from S. thermophilus, or genetically modified microorganism, including a genetically modified E. coli, or wherein the polypeptide is produced by a method selected from recombinant DNA technology or chemical synthesis; a polyribonucleotide tracrRNA of nucleotide sequence SEQ ID NO: 5 (or have at least 80% identity) comprising a 5′ and 3′ regions wherein the 5′ region is comprised of at least 22 nucleotides is complementary to the 22 nucleotides 3′ region of crRNA, and 3′ region. Wherein polyribonucleotides are produced by in vitro transcription or chemical synthesis. Wherein, suitable conditions means conditions in vitro or in vivo where reaction might occur.
  • A method for the conversion of Cas9 polypeptide into a nickase, cleaving only one strand of double-stranded DNA, by inactivating one of the active sites (RuvC or HNH) in the polypeptide by at least on point mutation, exemplified by D31A (SEQ ID NO: 2), N891A (SEQ ID NO: 3) and H868A (SEQ ID NO: 4) point mutations is provided. RuvC motif mutant cleaves only bottom DNA strand in respect to 5′NGGNG-3′ motif, while HNH motif mutant cleaves top strand.
  • Polypeptide-polyribonucleotides complex might be isolated from a genetically modified microbe (for example Escherichia coli or Streptoccocus thermophilus), or assembled in vitro from separate components. In the genetically modified microbe components of the complex might be encoded on the one, two or three separate plasmids containing host promoters of the genetically modified microbe or promoters from a native host genome.
  • A method for assembly of active polypeptide-polyribonucleotides complex in vitro, comprising incubating the components of the complex under conditions suitable for complex assembly is provided. The complex might be assembled using three or four components. Method for three components assembly comprises incubating the Cas9 polypeptide, 78 nt tracrRNA polyribonucleotide (SEQ ID NO: 5), and 42 nt crRNA polyribonucleotide (5′-NNNNNNNNNNNNNNNNNNNN GUUUUAGAGCUGUGUUGUUUCG-3′) (SEQ ID NO: 15) under conditions suitable for complex assembly. Method for four components assembly comprises incubating the Cas9 polypeptide; 102 nt tracrRNA polyribonucleotide (SEQ ID NO: 6); polyribonucleotide containing sequence 5′-NNNNNNNNNNNNNNNNNNNN GUUUUAGAGCUGUGUUGUUUCG-3′ (SEQ ID NO: 15) and flanking regions and RNase III polypeptide, cleaving double stranded RNA polynucleotide. The examples for polyribonucleotide containing sequence 5′-NNNNNNNNNNNNNNNNNNNN GUUUUAGAGCUGUGUUGUUUCG-3′ (SEQ ID NO: 15) are SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11 and SEQ ID NO: 12). Examples of source for suitable RNaselII include Escherichia coli or Streptococcus thermophilus.
  • A method for re-programming of a Cas9-crRNA complex specificity by mixing separate components or using a cassette containing a single repeat-spacer-repeat unit is provided. Any sequence might be inserted between two repeats in the cassette using suitable restriction endonucleases. Cassette might be used to target sequences in vivo, or to produce RNA ribonucleotide suitable for complex assembly in vitro.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 shows Cas9 protein co-purifies with crRNA. (A) Schematic representation of CRISPR3/Cas system of S. thermophilus. Four cas genes (cas9, cas1, cas2, csn2) are located upstream of the CRISPR repeat-spacer array, consisting of 13 repeat (R) sequences and 12 unique spacers (S1-S12). The tracrRNA, required for crRNA maturation in Type II CRISPR systems (Deltcheva et al., 2011. Nature 471:602-7), is located upstream the cas9 gene and encoded on the opposite DNA strand (showed by an arrow) in respect to the other elements of CRISPR3/Cas system. (B) Schematic representation of heterologous loci in two plasmids used for the co-expression of the Cas9-crRNA complex. E. coli RR1 strain contained pCas9(−)1 SP (encoding Cas1, Cas2, Csn2, SP1 and tracrRNA) and pASKIBA-Cas9 (encoding Strep-tagged version of Cas9) plasmids. (C) Northern analysis of Cas9-crRNA complexes using anti-crDNA oligonucleotide as a probe. M1-84 nt oligodeoxynucleotide corresponding to the spacer S1-repeat unit; M2-42 nt synthetic oligoribonucleotide corresponding to the predicted S. thermophilus CRISPR3 crRNA (See FIG. 4); crRNA (wt)—crRNA isolated from the wt Cas9 complex; K1—crRNA (wt) treated with Dnase I for 15 min; K2—crRNA (wt) treated with RNaseI for 15 min, D31A—crRNA purified from the Cas9 D31A mutant complex; N891A—crRNA purified from the Cas9 N891A mutant complex.
  • FIG. 2 shows DNA cleavage by Cas9-crRNA complexes obtained by Cas9 co-expression with full length CRISPR locus. (A) Schematic representation of CRISPR/Cas locus of recombinant pCas9(−) plasmid carrying indigenous 12 spacer-repeat array of SthCRISPR3/Cas system and pASKIBA-Cas9 plasmid carrying cas9 gene with a Strep-tag at the C-terminus. (B) Oligoduplex cleavage assay. Both pCas9(−) and pASKIBA-Cas9 plasmids were co-expressed in E. coli, Cas9-crRNA complexes were purified and subjected to cleavage analysis using SP1 (first proto-spacer) and SP2 (second proto-spacer) oligoduplexes labeled with 33P at the 5′-end of the (+) strand. Reaction products were analysed on PAA gel.
  • FIG. 3 shows immunity against plasmid transformation in E. coli cells provided by the SthCRISPR3/Cas system. (A) Schematic representation of CRISPR/Cas locus of recombinant plasmid pCRISPR3 carrying indigenous 12 spacer-repeat array of SthCRISPR3/Cas system and engineered pCRISPR3-SP1 plasmid carrying 1 spacer-repeat unit. (B) Interference of plasmid transformation by SthCRISPR3/Cas system in E. coli cells. Escherichia coli RR1 recipient strains carrying plasmids pACYC184, pCRISPR3 or pCRISPR3—SP1, were transformed with plasmid pSP1 carrying proto-spacers and PAM or pUC18 (1). Transformation efficiency is expressed as cfu per nanogram of plasmid DNA (mean±SD).
  • FIG. 4 shows comparison of Type IIA CRISPR/Cas systems from S. thermophilus DGCC7710, LMD-9 and S. pyogenes SF370 strains. (A) Schematic organization of the CRISPR/Cas systems. Nucleotide sequences corresponding to the tracrRNA required for the crRNA maturation in of S. pyogenes (2) are present in LMD-9 and DGCC7710. Percentage of identical and similar (in parenthesis) residues between corresponding protein sequences that are connected by dashed lines. (B). Alignment of the conserved repeat sequences and tracrRNA. Corresponding sequences from DGCC7710 and LMD-9 are identical. Nucleotide positions which are identical in all three strains are labeled with an asterisk below aligned sequences. FIG. 4(B) discloses SEQ ID NOS 50, 50-52, and 52-53, respectively, in order of appearance. (C) Comparison of crRNA sequences. The sequence and length of S. pyogenes crRNA was determined by deep sequencing analysis (2). The approximate length of crRNA from S. thermophilus LMD-9 (2) and DGCC7710 (this work) strains were determined by the northern blot analysis. FIG. 4(C) discloses SEQ ID NOS 54-56, respectively, in order of appearance.
  • FIG. 5 shows Cas9-crRNA complex cleaves in vitro double-stranded DNA within a proto-spacer. (A) Oligoduplex substrate used in the cleavage assay. 55 nt oligoduplex SP1 contains the proto-spacer1 (red letters), PAM (blue letters) and 10 nt flanking sequences on both sides identical to those in pSP1 plasmid. In the SP1 oligoduplex DNA strand complimentary to the 5′-terminal fragment of crRNA (red letters) is named (+)strand, an opposite DNA strand is named (−)strand. FIG. 5(A) discloses SEQ ID NOS 31, 7, and 34, respectively, in order of appearance. (B) Oligoduplex SP1 cleavage. 2.5 nM of Cas9-crRNA complex and 1 nM SP1 oligoduplex labeled with 33P at the 5′-end of either (+) or (−) strand were incubated in the reaction buffer (10 mM Tris-HCl pH=7.5, 10 mM NaCl, 10 mM MgCl2, 0.1 mg/ml BSA) at 37° C. for varied time intervals (30 s to 10 min) and reaction products analysed in the 20% PAA gel. Lanes M1 and M2 contain chemically synthesized 5′-end 33P-labeled 37 nt and 18 nt oligodeoxynucleotides corresponding to the cleavage products of (−) and (+) DNA strands, respectively. Cleavage positions are designated by arrows. FIG. 5(B) discloses SEQ ID NO: 31. (C) Schematic representation of pSP1 plasmid (Sapranauskas et al., 2011. Nucleic Acids Res 39:9275-82) used in the plasmid cleavage assay. FIG. 5(C) discloses SEQ ID NO: 57. (D) pSP1 plasmid cleavage. Agarose gel analysis of pSP1 cleavage products (left panel). SC—super-coiled plasmid DNA, OC—open circular DNA nicked at one of the strands, FLL—full length linear DNA cut at both strands. Final reaction mixtures at 37° C. contained 2.5 nM of pSP1 plasmid and 2.5 nM of Cas9-crRNA complex in the reaction buffer (section B). Direct sequencing electropherograms (right panel) of (+) (upper part) and (−) (lower part) strands of pSP1 plasmid cleavage product. The non-templated addition of adenine (T in the reverse complement sequence shown here) at the extremity of sequence is a sequencing artifact caused by the polymerase. FIG. 5(D) discloses SEQ ID NOS 57-59, 58, and 60, respectively, in order of appearance.
  • FIG. 6 shows DNA binding and cleavage analysis of Cas9-Chis protein lacking crRNA. Electrophoretic mobility shift analysis (EMSA) of Cas9-Chis protein binding to (A) the double stranded SP1 oligoduplex and (B) the single stranded s(+)SP1 oligonucleotide. Electrophoretic mobility shift experiments were performed in the binding buffer (40 mM Tris-acetate, pH 8.3 at 25 C, 0.1 EDTA, 0.1 mg/ml BSA, 10% v/v glycerol). The reactions contained 0.5 nM of the 33P-labelled oligoduplex, and the protein at concentrations as indicated above each lane. (C). Oligonucleotide cleavage assay. 5 nM of Cas9-Chis protein was incubated in the reaction buffer (10 mM Tris-HCl, pH=7.5, 10 mM NaCl, 10 mM MgCl2, 0.1 mg/ml BSA) at 37° C. with 1 nM oligonucleotide. SP1 oligoduplex was labeled with 33P at the 5′-end of the (+) or (−) strand. Single stranded oligonucleotide s(+)SP1 was labeled with 33P at the 5′-end.
  • FIG. 7 shows reprogramming of Cas9-crRNA complex. (A) Schematic representation of heterologous loci in two plasmids used for reprogramming of Cas9-crRNA complex. pCas(−)SPN were constructed from pCas9(−) plasmid (See FIG. 2A), by inserting new spacer sequence (SN) (5′-CC ACC CAG CAA AAT TCG GTT TTC TGG CTG-3′ (SEQ ID NO: 16)) and inactivating Cas9 gene as described in (1). (B) Agarose gel analysis of plasmid DNA cleavage products. pSP1 and pSP1+SPN (pSP1 plasmid with inserted new proto-spacer and PAM over AatlI site were incubated at 2.5 nM concentration with 2 nM of Cas9-crRNA complex in the reaction buffer (10 mM Tris-HCl pH=7.5, 10 mM NaCl, 10 mM MgCl2, 0.1 mg/ml BSA) at 37° C. for varied time intervals and reaction products analysed in the agarose gel. SC—super-coiled plasmid DNA, OC—open circular DNA nicked at one of DNA strands, FLL—full length linear DNA cut at both strands. (C) Oligoduplex SP1 cleavage. 2.5 nM of Cas9-crRNA complex and 1 nM SPN oligoduplex (Table S2) labeled with 33P at the 5′-end of either (+) or (−) strand were incubated in the reaction buffer (10 mM Tris-HCl pH=7.5, 10 mM NaCl, 10 mM MgCl2, 0.1 mg/ml BSA) at 37° C. M1-18 nt length marker Lanes M1 and M2 contain chemically synthesized 5′-end 33P-labeled 18 nt and 37 nt oligodeoxynucleotides corresponding to the cleavage products of (+) and (−) DNA strands, respectively. (D) Schematic representation of SPN oligoduplex substrate and cleavage products. SPN oligoduplex contains the new proto-spacer (red letters), PAM (blue letters). Cleavage positions are designated by arrows. FIG. 7(D) discloses SEQ ID NO: 39.
  • FIG. 8 shows impact of spacer length on CRISPR-encoded immunity. (A) Schematic representation of shortened versions of proto-spacers inserted in the transformed plasmids. FIG. 8(A) discloses SEQ ID NOS 7 and 61-66, respectively, in order of appearance. (B) Effect of proto-spacer length on the plasmid transformation efficiency. Transformation efficiency is expressed as cfu per nanogram of plasmid DNA (mean±SD). (C). Schematic representation of oligoduplexes used in the in vitro cleavage and binding experiments. FIG. 8(C) discloses SEQ ID NOS 31 and 38, respectively, in order of appearance. (D) Time courses of the 27 bp oligoduplex (full length protospacer SP1, filled circles) and the 20 bp oligoduplex (truncated protospacer SP1-20, square) cleavage by the Cas9-crRNA complex. (E) Electrophoretic mobility shift assay of SP1 and SP1-20 oligoduplex binding by the Cas9-crRNA complex.
  • FIG. 9 shows PAM is required for in vitro DNA binding and cleavage by the Cas9-crRNA complex. (A) Agarose gel analysis of plasmid DNA cleavage products. Three different plasmids: PAM+Proto-spacer+ (pSP1 plasmid containing both the proto-spacer and PAM), PAM-Protospacer− (pUC18 plasmid containing multiple PAMs but no protospacer) and PAM-Protospacer+ (pSP1-pΔ (Sapranauskas et al., 2011. Nucleic Acids Res 39:9275-82) containing a proto-spacer without PAM) were incubated at 2.5 nM concentration with 2 nM of Cas9-crRNA complex in the reaction buffer (10 mM Tris-HCl pH=7.5, 10 mM NaCl, 10 mM MgCl2, 0.1 mg/ml BSA) at 37° C. for varied time intervals and reaction products analysed in the agarose gel. SC—super-coiled plasmid DNA, OC—open circular DNA nicked at one of DNA strands, FLL—full length linear DNA cut at both strands. (B) Time courses of (+)strand hydrolysis in the single-stranded and double-stranded oligodeoxynucleotides. Reactions containing 2 nM Cas9-crRNA and 1 nM of oligodeoxynucleotide were conducted at 37° C. in the reaction buffer (section A). SP1 (filled circles) and SP1-pΔ (open squares) oligoduplexes were used as dsDNA. s(+)SP1 (open triangles) and s(+) SP1-pΔ (filled squares) were used as ssDNA. (C) and (D) dsDNA and ssDNA (+)strand) binding by Cas9-crRNA complex. The reactions contained 0.5 nM of the 33P-labelled ssDNA or dsDNA oligonucleotide, and the protein at concentrations as indicated above each lane. After 15 min at room temperature, the samples were subjected to PAGE for 2 h and analysed as described in ‘Materials and Methods’.
  • FIG. 10 shows RNA binding and cleavage analysis of Cas9-crRNA complex. (A) Electrophoretic mobility shift analysis (EMSA) of Cas9-crRNA complex binding to 84 nt RNA fragment containing proto-spacer-1, PAM and 24 nt flanking sequences on both sides. Left panel: RNA (−) strand; center panel: RNA (+) strand; right panel: double stranded RNA. RNA fragments used for analysis were generated by in vitro transcription (TranscriptAid™ T7 High Yield Transcription Kit, Fermentas) from PCR fragments with inserted T7 promoter at the front end of RNA coding sequence. PCR fragments coding (+) and (−) RNA strands were obtained from pSP1 plasmid (1) with following primer pairs accordingly: 5′ taatacgactcactataGggtaccgagctcgaattg 3′ (SEQ ID NO: 17)/5′ GGGAAACAGCTATGACCATGATTACGAATTC-3′ (SEQ ID NO: 18) and 5′ gggtaccgagctcgaattgaaattcTAAACG 3′ (SEQ ID NO: 19)/5′ taatacgactcactataGggAAACAGCTATGACCATGATTACG 3′ (SEQ ID NO: 20) (T7 RNA polymerase promoter underlined, transcription start on bold). The reactions contained 1 nM of the 33P-labelled RNA fragment, and the protein at concentrations as indicated above each lane. After 15 min at room temperature, the samples were subjected to PAGE for 2 h and analyzed as described in ‘Materials and Methods’. (B) RNA cleavage assay. 2.5 nM of Cas9-crRNA complex was incubated in the reaction buffer (10 mM Tris-HCl pH=7.5, 10 mM NaCl, 10 mM MgCl2, 0.1 mg/ml BSA), at 37° C. in the presence of 1 nM (+) and (−) RNA strands(left panel) or double stranded RNA labeled on (+) or (−) strand (right panel). Reaction products were analysed on denaturing PAA gel.
  • FIG. 11 shows RuvC and HNH active site motifs of Cas9 contribute to the cleavage of opposite DNA strands. (A) Localization of the conserved active site motifs within Cas9 protein. Amino acid residues identified as crucial for Cas9 in vivo activity (Sapranauskas et al., 2011. Nucleic Acids Res 39:9275-82) are indicated. (B). Agarose gel analysis of pSP1 plasmid cleavage by Cas9 and mutant proteins. Reactions were performed as described in and ‘Materials and Methods’ (C) Strand preference of D31A mutant. Reactions were performed as described in FIG. 2A and ‘Materials and Methods’. D31 mutant cleaves only (+)strand of SP1 oligoduplex. FIG. 11(C) discloses SEQ ID NOS 31 and 67, respectively, in order of appearance. (D) Strand preference of N891A mutant. N891 mutant cleaves only (−)strand of SP1 oligoduplex. Cleavage positions are designated by arrows. FIG. 11(D) discloses SEQ ID NOS 31 and 68, respectively, in order of appearance.
  • FIG. 12 shows properties of Cas9 active site mutant-crRNA complexes. (A) Direct sequencing of reaction products obtained with Cas9 mutant D31A (RuvC-like active site motif). FIG. 12(A) discloses SEQ ID NOS 58, 59, 58, and 58, respectively, in order of appearance. (B) Direct sequencing of reaction products obtained with Cas9 N891A mutant (HNH-like active site motif). FIG. 12(B) discloses SEQ ID NOS 58, 58, 58, and 60, respectively, in order of appearance. (C)SP1 oligoduplex binding by the wt Cas9-crRNA and active site mutant complexes. (D) Cleavage of (+)SP1 strand by Cas9-crRNA mutant complexes.
  • FIG. 13 shows molecular mass of the wt Cas9-Chis protein. Gel filtration experiments were carried out at room temperature using Superdex 200 10/300 GL column (GE healthcare) pre-equilibrated with 10 mM sodium phosphate (pH 7.4) buffer containing 500 mM sodium chloride. The apparent Mw of Cas9 (black triangle) were calculated by interpolation from the standard curve obtained using a set of proteins of known Mw (black circles) (Bio-Rad Gel Filtration Standards).
  • FIG. 14 shows schematic arrangement and mechanism of crRNA-directed DNA cleavage by the Cas9-crRNA complex. Domain architecture of Cas9 is shown schematically on the top. Cas9-crRNA complex binds to the dsDNA containing PAM. crRNA binds to the complementary (+)strand resulting in DNA strand separation and the R-loop formation. In the ternary complex RuvC active site of Cas9 is positioned at the scissile phosphate on the unpaired (−)strand, while HNH active site is located at the scissile phosphate on the DNA (+)strand bound to crRNA. Coordinated action of both active sites results in the double strand break 4 nt away from the PAM generating blunt end DNA. FIG. 14 discloses SEQ ID NOS. 31 and 69, respectively, in order of appearance.
  • FIG. 15 shows native electrophoresis of Cas9-crRNA and cleavage products. The protein at concentrations as indicated above each lane, where incubated in the reaction buffer (10 mM Tris-HCl pH=7.5, 10 mM NaCl, 10 mM MgCl2, 0.1 mg/ml BSA) at 37° C. for 30 min in the presence of 0.5 nM SP1 oligoduplex. Samples was mixed with loading dye solution (0.01% bromphenol blue and 75 mM EDTA in 50% v/v glycerol) and analysed by non-denaturing PAGE. The gel lanes marked M—melted form of cleavage reactions products. The cartoons in each side of the gel illustrate protein-DNA complexes and DNA that correspond to each band, while cartoons below the gel illustrate major substrate form after reaction.
  • FIG. 16 shows plasmid DNA cleavage by Cas9-crRNA complex. (A) pSP1 and pUC18 plasmid DNA cleavage. Cas9-crRNA complex was incubated with pSP1 and pUC18 plasmids in a reaction buffer provided in the Example 1. pSP1 plasmid contained a proto-spacer1 sequence flanked by the 5′-GGNG-3′PAM sequence. Proto-spacer1 sequence was not present in pUC18. Reaction products were analysed in the agarose gel. Under these conditions pSP1 plasmid is converted into a linear form while pUC18 plasmid lacking proto-spacer1 sequence is resistant to cleavage. (B) pSP1 cleavage reactions in the absence of one of the components. In the reaction mixes lacking one of the components (Cas9, crRNA or tracrRNA, respectively) pSP1 plasmid is not cleaved. SC—super-coiled plasmid DNA, OC—open circular DNA nicked at one of DNA strands, FLL—full length linear DNA cut at both strands.
  • FIG. 17 shows DNA oligoduplex cleavage by Cas9-crRNA complex. The strand of oligoduplex which is complementary to crRNA is marked as (+) strand, while the other strand—(−) strand. To monitor cleavage reactions either (+) or (−) strand of the oligoduplex was P33-labeled at the 5′-terminus. M1 and M2 are synthetic oligonucleotide markers corresponding to the 37 nt of (−) strand and 18 nt of (+) strand which were used to determine the size of the cleavage products and map the cleavage position. Cas9 protein cleaves both strands of oligoduplex inside the proto-spacer, after the 37th nucleotide, 4 nt upstream of the PAM (5′-GGNG-3′) leaving blunt ends. Both strands of non-specific substrate (K1 and K2) are not cleaved when incubated with Cas9-crRNA complex for 30 min. FIG. 17 discloses SEQ ID NO: 31.
  • FIG. 18 shows plasmid DNA cleavage by Cas9-crRNA complex assembled in the absence of RNaselII. Cas9-crRNA complex was incubated with pSP1 plasmid and reaction products analysed in the agarose gels. The pSP1 plasmid is resistant for cleavage in the presence of complex assembled without crRNA (left panel). The pSP1 plasmid is converted into linear form in the presence of complex assembled using synthetic 42 nt crRNA (no RNAselII) (middle panel). The pSP1 plasmid is converted into a mixture of linear and circular DNA forms in the presence of complex assembled using CRISPR RNA transcript (no RNAselII) (right panel).
  • FIG. 19 shows DNA oligoduplex cleavage by Cas9-crRNA complex. The strand of oligoduplex which is complementary to crRNA is marked as (+) strand, while the other strand—(−)strand. To monitor cleavage reaction either (+) or (−) strand of the oligoduplex was P33-labeled at the 5′-terminus. M1 and M2 are synthetic oligonucleotide markers corresponding to the 37 nt of (−) strand and 18 nt of (+) strand which were used to determine the size of the cleavage products and map the cleavage position. Cas9 protein cleaves both strands of oligoduplex inside the proto-spacer, after the 37th nucleotide form the 5′-end, 4 nt upstream of the PAM (5′-GGNG-3′) leaving blunt ends. Both strands of non-specific substrate (K1 and K2) are not cleaved when incubated with Cas9-crRNA complex for 30 min. FIG. 19 discloses SEQ ID NO: 31.
  • FIG. 20 shows (A) Schematic representation of the CRISPR3/Cas system of S. thermophilus DGCC7710. Four cas genes (cas9, cas1, cas2, csn2) are located upstream of the CRISPR repeat-spacer array, consisting of 13 repeat (R) sequences and 12 unique spacers (S1-S12). The tracrRNA, required for crRNA maturation in Type II CRISPR/Cas systems (Deltcheva et al., 2011. Nature 471, 602-7), is located upstream the cas9 gene and encoded on the opposite DNA strand (shown by an arrow) with respect to the other elements of this system. (B) The pathways for a new spacer insertion in to CRISPR region and CRISPR RNA synthesis. Synthetic oligoduplex encoding desired spacer sequence and containing SapI and Eco31I restriction compatible ends was inserted between two repeats. The CRISPR region was amplified using PCR. The new spacer encoding CRISPR RNA was obtained by In vitro transcription. (C) In vitro assembly of Cas9-RNA complex. The CRISPR RNA and tracrRNA transcripts were assembled in to duplex. The Cas9 protein was first pre-incubated with RNA duplex, followed by the subsequent incubation with RNAselII to generate a catalytically competent Cas9-RNA complex.
  • FIG. 21 shows A. Schematic representation of pUC18 plasmid. The distance between SapI and AatlI restriction sites is 775 bp, while the distance between two spacers is 612 bp. B. pUC18 plasmid cleavage by re-programmed Cas9-crRNA complexes. “1”—pUC18 plasmid; “2”—pUC18 cleaved with AatlI; “3”—pUC18 cleaved with complex containing crRNA matching proto-spacer1; “4”—pUC18 cleaved with SapI; “5”—pUC18 cleaved with complex containing crRNA matching proto-spacer2; “6”—pUC18 cleaved with AatlI and SapI; “7”—pUC18 cleaved with mix of the complexes used in the line 3 and 5.
  • FIG. 22 shows genomic DNA cleavage with in vitro assembled Cas9-RNA complex. (A) Agarose gel analysis of linear λ DNA cleavage products. Phage A DNA was incubated with Cas9-RNA complex in the reaction buffer for various time intervals. The target site for Cas9-RNA complex is located 8 kb away from the cos site. (B). Probe selection for Southern blot experiments. Genomic DNA was fragmented by treating with PstI enzyme. The proto-spacer is located between two PstI sites. If genomic DNA is cleaved with Cas9-RNA complex, 466 bp fragment should be detected. Otherwise the probe will hybridize with 1499 bp length fragment. (C) Southern blot analysis of genomic DNA fragments. C line—E. coli genomic DNA fragmented with PstI. Cas9-RNA—genomic DNA was incubated with Cas9-RNA complex before fragmentation. (D). Human genomic DNA cleavage by Cas9-crRNA complex. Relative amount of intact DNA DNA fragments were estimated by qPCR.
  • FIG. 23 schematically illustrates targeting sequences contained in the reporter plasmid (pMTC-DSR+eGFP). eGFP coding sequence is separated by an intron from GAPDH gene. The 5′ and 3′ RFP coding sequences are indicated. homol indicates homologous sequences in the RFP gene necessary for homologous recombination to occur. A, B, C, and D indicate four distinct target sites for Cas9-mediated cleavage. Targets A and B are located in the intron. Targets C and D are located in the coding regions of eGFP. Cre indicates a target site for Cre endonuclease and is located in the intronic sequence.
  • FIG. 24 shows reduction of eGFP-positive cells after introduction of Cas9/RNA complexes. CHO-K1 cells were transfected with the reporter plasmid and Cas9/RNA complexes containing crRNA targeting either eGFP sequence A (intronic), eGFP sequence C (coding), or a non-specific sequence K. The percentage of eGFP-positive cells was determined by flow cytometry. As negative controls, cells were untransfected (NC) or transfected with the reporter plasmid alone (DNA) or with reporter plasmid and Cas9 protein alone as well as with reporter plasmid and Cas9-nonspecific crRNA complex (DNA+K).
  • FIG. 25 shows cell images where appearance of RFP suggested Cas9/RNA-mediated double-strand break repair by homologous recombination (HR). Forty-eight hours after co-transfection with the reporter plasmid and Cas9/RNA complexes targeting eGFP sequence C, CHO-k1 cells were visualized by fluorescence microscopy for eGFP and RFP.
  • FIG. 26 schematically illustrates targeting sequences contained in the reporter plasmid (pMTC-DSR+eGFP). eGFP coding sequence is separated by GAPDH intron copied from genomic DNA. The RFP N- and C-coding sequences are as indicated. Homologous sequences in the RFP gene are necessary for homologous recombination to occur. Target E located within the intron of eGFP is indicated in bold.
  • FIG. 27 is a gel showing Cas9/RNA complexes using synthetic crRNA and tracRNA function similarly to Cas9/RNA complexes using synthetic crRNA and in vitro transcribed tracrRNA. Plasmids were visualized after agarose gel electrophoresis. Lane C: uncut plasmid. Lanes 1-3: plasmids cut with Cas9+crRNA and either 1: control in vitro-transcribed tracrRNA; 2: unmodified synthetic tracrRNA (89 nt); or 3: unmodified synthetic tracrRNA (74 nt).
  • FIGS. 28A-E schematically show targeting sequences contained in the reporter plasmid (pMTC-DSR+eGFP) and potential processing/gene rearrangement outcomes.
  • FIG. 29 shows reduction of eGFP-positive cells after introduction of Cas9/RNA complexes. CHO-K1 cells were transfected with the reporter plasmid and Cas9/RNA complexes containing crRNA targeting either eGFP sequence A (intronic), eGFP sequence C (coding), or a non-specific sequence K. The percentage of eGFP-positive cells was determined by flow cytometry. As negative controls, cells were untransfected (NC) or transfected with the reporter plasmid alone (DNA) or with reporter plasmid and Cas9 protein alone as well as with reporter plasmid and Cas9-nonspecific crRNA complex (DNA+K).
  • FIG. 30 schematically shows targeting sequences contained in the reporter plasmid (pMTC-DSR+eGFP). eGFP coding sequence is indicated in black and is separated by GAPDH intron copied from genomic DNA. The RFP N- and C-coding sequences are indicated in gray. Homologous sequences in the RFP gene (light grey) are necessary for homologous recombination to occur. Target E located within the intron of eGFP is indicated in bold.
  • The following non-limiting examples further describe the methods, compositions, uses, and embodiments.
  • DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS Example 1
  • In this example, we have isolated the Cas9-crRNA complex of S. thermophilus CRISPR3/Cas system and demonstrate that it cuts in a PAM dependent manner both synthetic oligodeoxynucleotide and plasmid DNA bearing a nucleotide sequence complementary to the crRNA. Furthermore, we provide experimental evidence that PAM is recognized in the context of double-stranded DNA and is critical for in vitro DNA binding and cleavage. Finally, we show that RuvC and HNH-motifs of Cas9 contribute to the cleavage of opposite DNA strands. Taken together, our data demonstrate that Cas9-crRNA complex functions as RNA-guided endonuclease which uses RNA module for the target site recognition and employs two separate active sites in the protein module for DNA cleavage. These findings pave the way for engineering of programmable Cas9-crRNA complexes as universal RNA-guided endonucleases.
  • Materials and Methods
  • DNA manipulations. Genomic DNA of Streptococcus thermophilus DGCC7710 strain was used as a template in PCR reactions to clone cas9. To generate a pASKIBA3-Cas9 plasmid which was used for the expression of the C-terminal Strep-tagged Cas9 protein variant, PCR fragment amplified with following primers: 5′-ACGTCTCAAATGTTGTTTAATAAGTGTATAATAATTTC-3′ (SEQ ID NO: 21) and 5′-ACGTCTCCGCGCTACCCTCTCCTAGTTTG-3′ (SEQ ID NO: 22) was cloned into the pASK-IBA3 expression vector via Esp3I sites. To generate a pBAD-Cas9 plasmid which was used for the expression of the C-terminal 6×His-tagged Cas9 protein variant (“6×His” disclosed as SEQ ID NO: 23), PCR fragment amplified with the following primer pair: 5′-ACGTCTCACATGACTAAGCCATACTCAATTGGAC-3′ (SEQ ID NO: 24) and 5′-ACTCGAGACCCTCTCCTAGTTTGGCAA-3′ (SEQ ID NO: 25) was cloned into the pBAD24-Chis expression vector via NcoI and XhoI sites. Full sequencing of cas9 gene in pASKIBA3-Cas9 and pBAD-Cas9 plasmids revealed no difference with the original cas9 sequence. To obtain plasmids pCas9(−)SP1 (FIG. 1B) and pCRISPR3—SP1 (FIG. 2A), bearing a single spacer1, PCR fragment amplified from pCRISPR3 plasmid with the following primer pair:5′ GACCACTTATTGAGGTAAATGAG 3′ (SEQ ID NO: 26)/5′ CAAACCAGGATCCAAGCTAATACAGCAG-3′ (SEQ ID NO: 27) ((BamHI(GGATCC) sites is underlined) was cloned into pCas9(−) and pCRISPR3 plasmids (Sapranauskas et al., 2011. Nucleic Acids Res 39:9275-82), respectively.
  • Expression and purification of Cas9 protein and Cas9-crRNA complex. (His)6-tagged (“(His)6” disclosed as SEQ ID NO: 23) version of Cas9 protein was expressed and purified using a scheme described for the Cas3 protein from S. thermophilus CRISPR4/Cas system (Sinkunas et al., 2011. EMBO J. 30:1335-42). For purification of the Cas9-crRNA complex, Strep-tagged version of the Cas9 protein was expressed in E. coli RR1 strain, bearing pCas9(−)SP1 plasmid (FIG. 1B). LB broth was supplemented with Ap (100 μg/ml) and Cm (10 μg/ml). E. coli cells for the Cas9-crRNA complex isolation were grown in two steps. First, 4 ml of cells culture were grown at 37° C. to OD600 of ˜0.5, and expression induced by adding 0.2 μg/ml of anhydrotetracycline (AHT) (Sigma). After for 4 h, 1/400 of the pre-induced culture was inoculated into fresh LB medium supplemented with Ap (100 μg/ml), Cm (12 μg/ml) and AHT (0.2 μg/ml) and was grown at 37° C. overnight. Harvested cells were disrupted by sonication and cell debris removed by centrifugation. The supernatant was loaded onto the 1 ml StrepTrap HP column (GE Healthcare) and eluted with 2.5 mM of desthiobiotin. Approximately 1.5 μg of the Cas9 protein was obtained in a single run from 1 L of E. coli culture. The fractions containing Cas9 were stored at +4° C. for several days. The homogeneity of protein preparations was estimated by SDS-PAGE. Protein concentrations in the Cas9-crRNA complexes were determined by densitometric analysis of SDS-PAGE gels containing samples of Strep-Tactin purified Cas9 proteins along with known amounts of His-tagged Cas9 protein. The concentration of the Cas9-crRNA complexes is expressed as Cas9 protein concentration assuming that Cas9 is a monomer and binds crRNA in a complex with 1:1 stoichiometry.
  • Northern blot analysis. Cas9-bound RNA was isolated from Strep-Tactin purified Cas9, co-expressed with pCas9(−)SP1 plasmid using the miRNeasy Mini kit (Qiagen). Northern blots were performed by running RNA on a 10% polyacrylamide gel with 7 M urea in 20 mM MOPS/NaOH pH 8 buffer. The RNA was transferred to a SensiBlot™ Plus Nylon Membrane (Fermentas) by semi-dry blotting using a Trans-blot SD (Bio-Rad). RNA was cross-linked to the membrane with 0.16 M l-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) (Pierce)/0.13 M 1-methylimidazole (Sigma) pH 8 at 60° C. for 1 h. The membrane was pre-hybridized with 2×SSC buffer containing 1% SDS and 0.1 mg/ml denatured DNA from fish testes (Ambion) for 1 h at 40° C. Blots were probed for 12 h with a 32P-5′-labelled 42 nt anti-crRNA DNA oligonucleotide containing 20 nt of spacer1 and 22 nt of the repeat sequence (5′-TCGAAACAACACAGCTCTAAAACTGTCCTCTTCCTCTTTAGC-3′ (SEQ ID NO: 28)). The blots were washed 3× for 15 min with 0.2×SSC buffer containing 0.2% SDS, and were visualized using phosphorimaging. A 42 nt synthetic oligoribonucleotide (5′-CGCUAAAGAGGAAGAGGACAGUUUUAGAGCUGUGUUGUUUCG-3′ (SEQ ID NO: 7)) and 84 nt DNA oligonucleotide.
  • Oligonucleotide substrates. All oligonucleotide substrates used in this study are given in Table 1. Oligodeoxyribonucleotides were purchased from Metabion (Martinsried, Germany). The 5′-ends of oligonucleotides were radiolabelled using PNK (Fermentas) and [γ-33P]ATP (Hartmann Analytic). Duplexes were made by annealing two oligonucleotides with complementary sequences (SP1, SP1-Δp, SP2). Radioactive label was introduced at the 5′ end of individual DNA strand prior to the annealing with unlabelled strand.
  • Reactions with oligonucleotide substrates. Reactions were typically carried out by adding 2 nM of Cas9-crRNA complex to 1 nM labeled oligonucleotide in 10 mM Tris-HCl (pH 7.5 at 37° C.), 10 mM NaCl, 0.1 mg/ml BSA and 10 mM MgCl2 at 37° C. Aliquots were removed at timed intervals and quenched with loading dye (95% v/v formamide, 0.01% bromphenol blue, 25 mM EDTA, pH 9.0) and subjected to denaturing gel electrophoresis through 20% polyacrylamide followed by a FLA-5100 phosphorimager (Fujilm) detection.
  • Reactions with plasmid substrates. Reactions on pUC18 plasmid and its derivatives (Sapranauskas et al., 2011. Nucleic Acids Res 39:9275-82) were conducted at 37° C. in the buffer used for reactions on oligonucleotide substrates. Reaction mixtures typically contained 2.5 nM supercoiled plasmid and 2 nM of Cas9-crRNA complex. The reactions were initiated by adding protein to the mixture of the other components. Aliquots were removed at timed intervals and quenched with phenol/chloroform. The aqueous phase was mixed with loading dye solution (0.01% bromphenol blue and 75 mM EDTA in 50% v/v glycerol) and analyzed by electrophoresis through agarose.
  • Plasmid cleavage position determination. To achieve complete cleavage of plasmid substrate, 8 nM of Cas9-crRNA complex was incubated with 2.5 nM of supercoiled plasmid in the reaction buffer at 37° C. for 10 min. Reaction products were purified and concentrated using GeneJET PCR Purification Kit (Fermentas). Spacer1 surrounding region of Cas9 linearized and nicked plasmids were directly sequenced with the following primers: 5′-ccgcatcaggcgccattcgcc-3′ (SEQ ID NO: 29) (sequencing of (+)strand) and 5′-gcgaggaagcggaagagcgccc-3′ (SEQ ID NO: 30) (sequencing of (−)strand).
  • Binding assay. Increasing amounts of protein-crRNA complex were mixed with 0.5 nM of 33P-labeled double-stranded and single-stranded DNA substrates (Table 1) in the binding buffer (40 mM Tris-acetate, pH 8.3 at 25 C, 0.1 EDTA, 0.1 mg/ml BSA, 10% v/v glycerol) and incubated for 15 min at room temperature. Free DNA and protein-DNA complexes were separated on the non-denaturing 8% polyacrylamide gel (ratio of acrylamide/N,N′-methylenebisacrylamide 29:1) using 40 mM Tris-acetate (pH 8.3) supplemented with 0.1 mM EDTA as the running buffer. Electrophoresis was run at room temperature for 3 h at 6 V/cm.
  • Mutagenesis. The mutants D31A and N891A were obtained by the site-directed mutagenesis as previously described (Tamulaitis et al., 2007. Nucleic Acids Res 35:4792-9). Sequencing of the entire gene for each mutant confirmed that only the designed mutation had been introduced.
  • TABLE 1 
    Oligonucleotide substrates. 
    Oligonucleotide Sequence Specification
    SP1 5′-GCTCGAATTGAAATTCTAAACGCTAAAGAGGAAGAGGACATGGTGAATTCGTAAT-3′ 55 bp oligoduplex
    (SEQ ID NO: 31) 3′-CGAGCTTAACTTTAAGATTTGCGATTTCTCCTTCTCCTGTACCACTTAAGCATTA-5′ substrate containing
    proto-spacer1 and PAM
    SP1-pΔ 5′-GCTCGAATTGAAATTCTAAACGCTAAAGAGGAAGAGGACAAATTCGTAAT-3′ 50 bp oligoduplex
    (SEQ ID NO: 32) 3′-CGAGCTTAACTTTAAGATTTGCGATTTCTCCTTCTCCTGTTTAAGCATTA-5′ substrate containing
    proto-spacer2
    SP2 5′-GCTCGAATTGTACTGCTGTATTAGCTTGGTTGTTGGTTTGTGGTGAATTCGTAAT-3′ 55 bp oligoduplex
    (SEQ ID NO: 33) 3′-CGAGCTTAACATGACGACATAATCGAACCAACAACCAAACACCACTTAAGCATTA-5′ substrate containing
    proto-spacer2 and PAM
    (oligodublex without
    proto-spacer1)
    s(+) SP1 5′-ATTACGAATTCACCATGTCCTCTTCCTCTTTAGCGTTTAGAATTTCAATTCGAGC-3′ 55 nt ssDNA
    (SEQ ID NO: 34) oligonucleotide
    substrate (+) strand
    of SP1 oligoduplex
    s(+) SP1-pΔ 5′-ATTACGAATTTGTCCTCTTCCTCTTTAGCGTTTAGAATTTCAATTCGAGC-3′ 50 nt ssDNA
    (SEQ ID NO: 35) oligonucleotide
    substrate (+) strand
    of SP1-pΔ oligoduplex
    s(+) SP2 5′-ATTACGAATTCACCACAAACCAACAACCAAGCTAATACAGCAGTACAATTCGAGC-3′ 55 nt ssDNA
    (SEQ ID NO: 36) oligonucleotide
    substrate, (+) strand
    of SP2 oligoduplex
    s(−) SP1 5′-GCTCGAATTGAAATTCTAAACGCTAAAGAGGAAGAGGACATGGTGAATTCGTAAT-3′ 55 nt ssDNA 
    (SEQ ID NO: 37) oligonucleotide
    substrate, (−) strand
    of SP1 oligoduplx
    SP1-20 5′-GCTCGAATTGCGCTAAAGAGGAAGAGGACATGGTGAATTCGTAAT-3′ 45 nt oligoduplex
    (SEQ ID NO: 38) 3′-CGAGCTTAACGCGATTTCTCCTTCTCCTGTACCACTTAAGCATTA-5′ substrate containing
    20 nt of proto-spacer1
    and PAM
    SPN 5′-GCTCGAATTGCCACCCAGCAAAATTCGGTTTTCTGGCTGATGGTGAATTCGTAAT-3′ 55 bp oligoduplex
    (SEQ ID NO: 39) 3′-CGAGCTTAACGGTGGGTCGTTTTAAGCCAAAAGACCGACTACCACTTAAGCATTA-5′ substrate containing
    proto-spacerN and PAM
    Proto-spacer sequence is underlined, PAM is on bold.
  • Results
  • Expression and purification of the Cas9-crRNA complex. The cas9 gene from the CRISR3 system of S. thermophilus DGCC7710 strain was cloned into the pASK-IBA3 vector to produce a construct encoding a Cas9 protein fusion containing a C-terminal Strep(II)-tag (FIG. 1B). Initially, we have tried to purify Cas9-crRNA complex from E. coli strain RR1 expressing Cas9 protein on the pASK-IBA3 vector and other Cas proteins (except Cas9) on pCas9(−) plasmid (Sapranauskas et al, 2011). pCas9(−) also contained a complete CRISPR3 array comprised of 12 spacer-repeat units (FIG. 2A). To achieve simultaneous transcription of all target genes we performed cas9 gene expression in two steps. First, we induced Cas9 expression in a small volume of E. coli culture and after 4 h transferred an aliquot of pre-induced culture into a larger volume of fresh LB media already containing inductor and incubated overnight. Cas9 protein complex was purified from the crude cell extract using Strep-Tactin Sepharose. We managed to isolate a small amount of the Cas9-crRNA complex which showed only traces of nucleolytic activity on the oligoduplex SP1 containing a proto-spacer1 and PAM. We assumed that low cleavage activity could be due to the intrinsic heterogeneity of Cas9-crRNA complexes resulting from the transcription of 12 spacer-repeat units. If all spacer-repeat units are uniformly transcribed into a mature crRNA, the concentration of the Cas9 complex containing crRNA against spacer-1 will make 1/12 fraction of the total Cas9-crRNA concentration. The cleavage activity of the Cas9-crRNA preparation against the SP2 oligoduplex containing a proto-spacer-2 and PAM is consistent with the heterogeneity of Cas9-crRNA complexes (FIG. 2B). To increase the yield of the specific Cas9-crRNA complex we engineered a pCas9(−)SP1 plasmid which contains a single R-spacer1-R unit in the CRISPR array (FIG. 1B). Plasmid transformation interference assay confirmed that the CRISPR3/Cas system carrying a single spacer1 prevents plasmid pSP1 transformation in E. coli with the same efficiency as the CRISPR3/Cas system carrying a complete CRISPR region (FIG. 3B). We have isolated Cas9-crRNA complex following the procedure described above and analysed crRNA bound to Cas9 protein.
  • Cas9 protein co-purifies with crRNA. CRISPR3/Cas system of S. thermophilus belongs to the Type IIA subtype (former Nmeni or CASS4) of CRISPR/Cas systems (Makarova et al., 2011. Nat Rev Microbiol 9:467-77). It has been shown that in the Type IIA CRISPR/Cas system of Streptococcus pyogenes trans-encoded small RNA (tracrRNA) and bacterial RNaselII are involved in the generation of crRNA (Deltcheva et al., 2011. Nature 471:602-7). Streptococcus pyogenes crRNA is only 42 nt in length and has no “5′-handle” which is conserved in crRNA's from Type I and III CRISPR systems (Hale et al., 2009. Cell 139:945-56; Jore et al., 2011. Nat Struct Mol Biol 18:529-36). According to the northern blot analysis crRNA of similar length is generated in the S. thermophilus LMD-9 CRISPR3/Cas system (Makarova et al., 2011. Nat Rev Microbiol 9:467-77), which is almost identical to the CRISPR3/Cas system of DGCC7710 strain (FIGS. 4A and B). We assumed that crRNA isolated from the Cas9-crRNA complex expressed in the heterologous E. coli strain (FIG. 1) may have the same length (FIG. 4). Therefore, to probe nucleic acids extracted from the Strep-Tactin purified Cas9 complex we used 42 nt anti-crRNA DNA oligonucleotide comprised of 22 nt region corresponding to the 3′-end of the repeat sequence and 20 nt at the 5′-end of SP1 fragment. Nucleic acid present in the Cas9 complex hybridized with anti-crRNA oligonucleotide, and was sensitive to RNAse but not DNAse treatment (FIG. 10). The size of extracted crRNA was identical to the 42 nt synthetic oligoribonucleotide corresponding to the putative crRNA of the CRISPR3 system of S. thermophilus DGCC7710 strain (FIG. 3A, FIG. 4C). Taken together, these data confirm that Cas9 Strep-tag protein co-purifies with 42 nt crRNA, which is derived from CRISPR3 region.
  • Cas9 protein cleaves double-stranded DNA within a proto-spacer. To test in vitro activity of purified Cas9-crRNA complex we first used the SP1 oligoduplex (Table 1) containing the proto-spacer sequence identical to spacer SP1 in the CRISPR3 array, the PAM sequence 5′-TGGTG-3′ downstream of the proto-spacer, and 10 nt flanking sequences from pSP1 plasmid (Sapranauskas et al., 2011. Nucleic Acids Res 39:9275-82) (FIG. 5A). The oligoduplex strand complementary to crRNA is named (+) strand, while the opposite duplex strand is called the (−) strand. To monitor cleavage reaction either (+) or (−) strand of the SP1 oligoduplex was P33-labeled at the 5′-terminus. Data shown in FIG. 5B demonstrate that the Cas9-crRNA complex cleaves both strands of oligoduplex at fixed position. Mapping of the cleavage position using synthetic oligonucleotides as size markers revealed that the Cas9-crRNA complex cuts both strands of the SP1 oligoduplex within the proto-spacer 4 nt upstream of the PAM (FIG. 5B) leaving blunt ends. It is worth to note, that no cleavage is observed after the 2 h incubation of the SP1 oligoduplex with the Cas9 protein lacking crRNA (FIG. 6C).
  • To test whether the Cas9-crRNA complex can locate the proto-spacer and cut DNA in vitro in long DNA substrates mimicking in vivo invading foreign DNA we analyzed cleavage of pSP1 plasmid (Sapranauskas et al., 2011. Nucleic Acids Res 39:9275-82) (FIG. 5C) carrying proto-spacer1 and PAM. In the presence of Cas9-crRNA complex supercoiled form of pSP1 plasmid was converted into a linear form (FIG. 5D), while pUC18 plasmid lacking proto-spacer1 was not cleaved. This means that both strands of the pSC1 plasmid were cleaved specifically within the proto-spacer region. We used direct sequencing to determine the ends of linear DNA form formed after the Cas9-crRNA cleavage. Sequencing results confirmed that cleavage of plasmid DNA occurred 4 nt away from PAM sequence similarly to the SP1 oligoduplex cleavage (FIG. 5D). The cleavage positions identified in the in vitro experiments (FIG. 4) for the CRISPR3/Cas system of S. thermophilus are identical to those determined in the in vivo cleavage experiments for the CRISPR1/Cas system in S. thermophilus (Garneau et al., 2010. Nature 468:67-71). To check if Cas9-crRNA induced cleavage occurs at the same position in other proto-spacer sequences, we analysed cleavage of the SP2 oligoduplex carrying a protospacer-2 and PAM sequences by the heterogeneous Cas9-crRNA complex isolated from the host carrying 12 spacer-repeat units. We have found that this heterogeneous Cas9-crRNA complex cuts (+)strand of SP2 oligoduplex exactly at the same position as in the SP1 oligoduplex.
  • Cas9-crRNA cleavage specificity is directed by the crRNA sequence. To demonstrate directly that Cas9-crRNA complex specificity can be re-programmed by changing crRNA in the ribonucleoprotein complex we inserted a new spacer (SN) instead of spacer S1 in the CRISPR region generating pCas(−)SN plasmid containing only a minimal CRISPR region and tracrRNA encoding sequence (FIG. 7), co-expressed this plasmid together with pASKIBA-Cas9 and purified Cas9-crRNA complex. The cleavage specificity of Cas9-crRNA complex was analysed using plasmids pSP1+SPN and pSP1. pSP1+SPN plasmid containing the proto-spacer sequence matching the SN spacer in the CRISPR region, was linearized by the Cas9-crRNA complex, while pSP1 plasmid which lacks complimentary sequence remained intact (FIG. 7B). To determine the cleavage position within the SPN spacer sequence, we performed experiments with SPN oligoduplex, containing proto-spacer complementary to spacer SN and PAM (FIG. 7D). Oligoduplex cleavage assay confirmed (FIGS. 7C and D) that Cas9-crRNA complex with re-engineered specificity cleaves both DNA strands within the SN proto-spacer 4 nt upstream of the PAM identically to other Cas9-crRNA complexes.
  • The length of the spacer in the CRISPR3 region of S. thermophilus is 30 nt. According to the data provided in the FIG. 10, the mature crRNA copurified with the Cas9 protein is comprised of 42 nt. It means that only 20 nt of crRNA is complementary to the (+)strand of proto-spacer. To assess whether 5′-end of proto-spacer is important for the plasmid interference by the CRISPR3 system of S. thermophilus we engineered plasmids pSP1-27, pSP1-23, pSP1-19, pSP1-15, pSP1-11 with the 5′-truncated proto-spacer1 (the length of proto-spacer 27 bp, 23 bp, 19 bp, 15 bp, 11 bp, respectively), and analyzed transformation efficiency of the recipient strain containing pCRISPR3 (FIG. 8B). Plasmids containing 4 or 7 bp truncations at the 5′ end of proto-spacer1, had no effect on the recipient strain ability to interfere with plasmid transformation. Shorter versions of proto-spacer (11, 15, 19 bp) abolished recipient strain ability to prevent plasmid transformation. These data shows that 5′ end of the proto-spacer, which has no complementarity to mature crRNA is not important for CRISPR3/Cas function. In full support to the in vivo experiments, the SP1-20 oligoduplex containing only 20 nt of the protospacer-1 is efficiently cleaved by Cas9-crRNA (FIGS. 8 D and E).
  • PAM is required for DNA binding and cleavage by Cas9-crRNA. Plasmids carrying a proto-spacer but not PAM (pSP1-pΔ) or multiple PAM's but no proto-spacer (pUC18) are resistant for Cas9-crRNA cleavage (FIG. 8A). Hence, in accordance with in vivo data both PAM and proto-spacer are required for double-stranded DNA cleavage by Cas9-crRNA complex (Sapranauskas et al., 2011. Nucleic Acids Res 39:9275-82). To find out, whether PAM is recognized in a context of a double-stranded or a single-stranded DNA, we analyzed Cas9-crRNA binding and cleavage of oligodeoxynucleotides i) SP1 (containing both proto-spacer and PAM), ii) SP1-Δp (contains only proto-spacer), and iii) SP2 (contains only PAM). The (+)strands of these oligodeoxynucleotides were used as single-stranded DNA substrates (s(+)SP1, s(+)SP1-Δp, s(+)SP2, accordingly) (Table 1).
  • Consistent with the plasmid cleavage experiments, oligoduplexes which have only proto-spacer, but not PAM are not cut by Cas9-crRNA (FIG. 9B). On the other hand, (+)strand in the single-stranded form is cut at the similar rate independently whether it has or has not PAM (FIG. 9B). These data clearly show that PAM is required only for a double-stranded but not for a single-stranded DNA cleavage.
  • To test if PAM is important for DNA binding by the Cas9-crRNA complex, electrophoretic mobility shift experiments were performed. To avoid cleavage, binding experiments were performed in the absence of Mg2+ ions which are necessary for cleavage. Cas9-crRNA showed different binding patterns for double-stranded and single-stranded oligonucleotides. In the case of the SP1 oligoduplex a low mobility complex is observed already at 1 nM concentration (FIG. 9C). On the other hand, no binding is observed under the same experimental conditions for oligoduplexes without PAM (SP1-Δp) or without proto-spacer (SP2). Moreover, no low mobility complex is observed in the case of Cas9 protein without crRNA (FIG. 6A), confirming that crRNA is important for complex formation. Thus, taken together binding experiments clearly show that the Cas9 protein complex is unable to bind double-stranded DNA in the absence of PAM, even if it contains crRNA complementary to proto-spacer. To put it into other words, double-stranded DNA substrates lacking PAM are not cleaved because PAM is required for Cas9-crRNA binding.
  • On the other hand, single-stranded oligonucleotides ((+)strand) are bound by Cas9-crRNA with the same affinity independently of the PAM presence (FIG. 9D). Again, no binding was observed for single-stranded DNA oligonucleotide without proto-spacer (FIG. 9D), or for Cas9 protein lacking crRNA (FIG. 6C). Taken together these data indicate that Cas9-crRNA complex discriminates PAM only in the double-stranded but not a single-stranded DNA.
  • Since some Type III CRISPR systems provide RNA rather than DNA interference, we have studied RNA binding and cleavage by the Cas9-crRNA complex. The Cas9-crRNA did not cleave specifically either single-stranded RNA, or double-stranded RNA bearing a proto-spacer and PAM (FIG. 10B). This finding confirms confirms once more that DNA is a primary target for the CRISPR3/Cas system of S. thermophilus. Cas9-crRNA complex binds a complementary RNA containing a proto-spacer, but this interaction is probably functionally not important, because single stranded RNA is not cleaved specifically by Cas9 within a proto-spacer.
  • Mutagenesis of Cas9 protein RuvC and HNH motifs. Plasmid transformation experiments indicate that RuvC and HNH motifs (FIG. 11A) are important for Cas9 function (Sapranauskas et al., 2011. Nucleic Acids Res 39:9275-82). To test if these motifs are involved in the target DNA cleavage, we expressed and purified D31A and N891A mutants following procedure described for wt Cas9. Both mutants co-purified with crRNA identical to crRNA in the wt Cas9 complex (FIG. 11C). To test whether mutant proteins retained cleavage activity, we monitored pSP1 plasmid cleavage by mutant Cas9-crRNA complexes. Surprisingly, instead of linear reaction product observed for the wt Cas9 protein, both mutants produced nicked DNA form (FIG. 11B) indicating that both active sites mutants cleave only one DNA strand of plasmid substrate within a proto-spacer.
  • To determine whether mutant proteins exhibit a strand preference, we analysed D31A and N891A mutant cleavage of the SP1 oligoduplex. RuvC active site mutant (D31A) cut (+) strand of oligoduplex at the same position as wt Cas9-crRNA protein, while the (−)strand stayed intact (FIG. 11C). And vice versa, HNH active site mutant (N891A) cleaved only (−)strand, but not (+) strand of the SP1 oligoduplex (FIG. 11D). Taken together these data indicate that RuvC and HNH active sites act on opposite DNA strands to generate a double strand break. To test, whether the same cleavage pattern is conserved during the plasmid DNA cleavage, we sequenced proto-spacer regions of nicked plasmids. Run-off sequence data confirmed that RuvC active site mutant cut only (+) DNA strand while HNH/McrA mutant—only (−)strand (FIGS. 12A and B). Furthermore, we found that RuvC mutant cleaved (+) strand of a single-stranded DNA but no such cleavage was detected for the HNH mutant (FIG. 12D).
  • To test whether mutations altered DNA-binding affinity of mutant protein-crRNA complexes, DNA binding was studied using the electrophoretic mobility shift assay. Both mutant protein-crRNA complexes bound oligoduplex SP1 with the same affinity as wild type protein (FIG. 12C.). Thus, mutations in the putative active sites of Cas9 have no significant effect on double-stranded DNA-binding properties of the Cas9-crRNA complex. Since 42 nt crRNA was present in the mutant protein complexes (FIG. 12C), we conclude that mutant Cas9-crRNA complexes lost ability to cut one of the target DNA strand due to active site mutation. Since Cas9-HisTag protein is a monomer in solution (FIG. 13), it is likely that Cas9 protein is functional as a monomer and uses two active sites for the cleavage of opposite DNA strands. Similar strategy is exploited by some restriction endonucleases (Armalyte et al., 2005. J Biol Chem 280: 41584-94).
  • Discussion
  • Cas9-crRNA complex of CRISPR3/Cas system of S. thermophilus is crRNA-guided endonuclease. This work demonstrates that Cas9-crRNA complex of CRISPR3/Cas system of S. thermophilus is crRNA-directed endonuclease which cuts both DNA strands in the presence of Mg2+-ions within a protospacer 4 nt downstream of the PAM sequence to produce blunt end cleavage products. Sequence specificity of the Cas9-crRNA complex is dictated by the 42 nt crRNA which include ˜20 nt fragment complementary to the proto-spacer sequence in the target DNA. In this respect the mature crRNA in the Cas9 complex of CRISPR3/Cas system of S. thermophilus is similar to crRNA of Streptoccocus pyogenes which has a 3′-handle of repeat sequence but lacks part of the spacer sequence and 5′-handle corresponding to the repeat fragment (Deltcheva et al, 2011). Therefore, crRNA present in the Cas9-crRNA complex of CRISPR3/Cas system of S. thermophilus is complementary only to the part of the proto-spacer sequence distal to PAM. Not surprisingly, truncation of the 3′-end of the proto-spacer sequence by 10 nucleotides has no effect on Cas9-crRNA cleavage of synthetic oligoduplexes or plasmid DNA (FIG. 8).
  • The cleavage machinery of Cas9-crRNA complex resides in the Cas9 protein which provides two active sites for the phosphodiester bond cleavage. The RuvC- and HNH-like active sites of Cas9 protein are located on different domains and act independently on individual DNA strands. Alanine replacement of the active site residues in the RuvC- and HNH-motifs transforms Cas9-crRNA complex into a strand-specific nicking endonucleases similar to the nicking enzymes (Chan et al., 2011. Nucleic Acids Res 39:1-18). Consistent with in vivo studies, a functional activity of the Cas9-crRNA complex in vitro is absolutely dependent on the presence of the proto-spacer adjacent motif NGGNG upstream of the proto-spacer sequence. Data presented in the FIG. 3 show that PAM is required for Cas9-crRNA binding to the double-stranded DNA. If PAM sequence is missing in double-stranded DNA, the Cas9-crRNA complex does not bind such DNA even if it contains a complementary proto-spacer sequence. On the other hand, Cas9-crRNA does not display DNA binding if PAM (or multiple PAM's) is present but proto-spacer sequence is absent. Thus, in consistence with the in vivo data, both PAM and proto-spacer sequences are necessary prerequisite for double-stranded DNA binding and subsequent cleavage. Contrary to the Cas9-crRNA binding to the double-stranded DNA, PAM sequence motif has no effect on the single-stranded DNA binding by: a single-stranded oligodeoxynucleotide containing proto-spacer with or without PAM sequence is bound equally well but with lower affinity than double-stranded DNA. In the presence of Mg2+ ions Cas9 cuts single-stranded DNA bound to the crRNA using its HNH-active site.
  • Mechanism of DNA interference in the Type II systems. Our results establish a simple model for the mechanism of double-stranded DNA cleavage by Cas9-crRNA complex in the S. thermophilus CRISPR3/Cas system (FIG. 14). Cas9-crRNA complexes using a mechanism that yet has to be defined locates and binds to a proto-spacer sequence within the double-stranded DNA in a PAM-dependent process. It is possible that PAM in the double-stranded DNA serves as an initiation site (signal) for the strand separation and promotes subsequent pairing of crRNA to the complementary (+)strand of DNA. It remains to be established whether a Cas9 protein module or Cas9-bound crRNA (for example, using nucleotides in the conserved the “3′-handle” of the conserved repeat sequence) recognizes the PAM sequence. Despite of the lack of these mechanistic details, our data clearly demonstrate that PAM is recognized by Cas9-crRNA in the context of double-stranded DNA. The Cas9-crRNA binding to the target sequence in the ds DNA presumably results in the R-loop structure where (−)strand is displaced and the complementary (+) DNA strand is paired to the crRNA. In the presence of Mg2+ ions phosphodiester bond cleavage occurs on both strands 4 nt 5′-upstream of the PAM sequence to generate blunt DNA ends. DNA cleavage analysis by the RuvC- or HNH-motif mutants demonstrate that RuvC- and HNH-like active sites of Cas9 protein act on the (−) and (+)strands, respectively. Therefore, in the catalytically competent the Cas9-crRNA complex, the N-terminal domain containing the catalytic D31A residue of the RuvC motif is positioned at the displaced (−) DNA strand, while the central part of Cas9 containing the HNH motif is located in the vicinity of the scissile phosphodiester bond of (+) DNA strand paired to crRNA. After DNA cleavage Cas9-crRNA remains bound to the reaction products (FIG. 15). Taken together data presented here suggest a first molecular mechanism for the DNA interference step by the CRISPR3/Cas system of S. thermophilus. Since cas9 is a signature gene (Makarova et al., 2011. Nat Rev Microbiol 9:467-77) for Type IIA and Type IIB systems the cleavage mechanism proposed here is likely to be conserved in other Type IIA and Type IIB systems. Stand-alone versions of Cas9-like proteins which are not a part of the CRISPR system were identified by bioinformatics (Makarova et al., 2011. Biol Direct 6: 38). In the light of the data provided here we suggest that these proteins can provide interference against foreign DNA similarly to Cas9 if loaded with small crRNA molecules which may be generated through the pathway different from CRISPR.
  • Comparison to other RNA interference complexes. The mechanism proposed here for the double-stranded DNA cleavage by the Cas9-crRNA complex differs significantly from that for the Type I-E (former E. coli or CASS2) system (Jore et al., 2011. Nat Struct Mol Biol 18:529-36). In the E. coli system crRNA and Cas proteins assemble into a large ribonucleoprotein complex named Cascade that facilitates target recognition by enhancing sequence-specific hybridization between the CRISPR RNA and complementary target sequences (Jore et al., 2011. Nat Struct Mol Biol 18:529-36). Target recognition is dependent on PAM and governed by the “seed” crRNA sequence located at the 5′-end of the spacer region (Semenova et al., 2011. Proc Natl Acad Sci USA 108:10098-103). However, while Cascade-crRNA complex alone is able to bind double-stranded DNA containing PAM and proto-spacer, it requires an accessory Cas3 protein for DNA cleavage. Cas3 is a single-stranded DNA nuclease and helicase which is able to cleave single-stranded DNA producing multiple cuts (Sinkunas et al., 2011. EMBO J. 30:1335-42). The mechanistic details of the Cas3 action on a proper biological substrate (e.g., Cascade-crRNA bound to the double-stranded DNA in the R-loop like complex) have yet to be established. However, it has been demonstrated recently that Cas3 of M. jannaschii alone is able to cut both DNA strands in the synthetic substrate mimicking R-loop (Beloglazova et al., 2011. EMBO J. 30:616-27). It is proposed that Cas3 may follow similar mechanism for DNA cleavage in the presence of Cascade-crRNA complex. Thus, current data clearly show that mechanistic details of the interference step for the Type I-E system differs from that of CRISPR3 system both by the catalytic machinery and mechanism and complexity.
  • In the III-B subtype CRISPR systems present in many archea and some bacteria, Cas module RAMP (Cmr) proteins and cRNA assemble into the effector complex that targets invading RNA (Hale et al., 2009. Cell 139:945-56; Hale et al., 2012. Mol Cell 45:292-302). In Pyroccus furiosus RNA silencing complex comprised of six Cmr1-6 proteins and crRNA binds to the target RNA and cuts it at fixed distance in respect to 3′-end the psiRNA. The cleavage activity depends on Mg2+-ions however individual Cmr protein(-s) responsible for target RNA cleavage has yet to be identified. The effector complex of Sulfolobus solfataricus comprised of seven Cmr1-7 proteins and crRNA cuts invading RNA in an endonucleolytic reaction at UA dinucleotides (Zhang et al., 2012. Mol Cell 45: 303-13). Importantly, both Cmr-crRNA complexes perform RNA cleavage in a PAM independent manner.
  • The data provided here show that Cas9-crRNA complex of CRISPR3 system is so far the most simple DNA interference system comprised of a single Cas9 protein bound to the crRNA molecule. The simple modular organization of the Cas9-crRNA complex where specificity for DNA target is encoded by the crRNA and cleavage machinery is brought by the Cas protein provides a versatile platform for engineering of universal RNA-guided DNA endonucleases.
  • Example 2 In Vitro Assembly of Cas9-crRNA Complex from 4 Components
  • In this example we demonstrate that the catalytically active Cas9-crRNA complex can be assembled in vitro by mixing 4 individual components: the C-terminal (His)6-tagged variant of Cas9 protein (“(His)6” disclosed as SEQ ID NO: 23), tracrRNA transcript (SEQ ID NO: 5), CRISPR RNA transcript (SEQ ID NO: 8) and E. coli RNAselII (Abgene). Cas9 protein is first pre-incubated with tracrRNA and CRISPR RNA transcripts, followed by the subsequent incubation with RNAselII to generate a catalytically competent Cas9-crRNA complex which is used for the site-specific DNA cleavage.
  • More specifically, RNA fragments required for complex assembly were produced by in vitro transcription (TranscriptAid™ T7 High Yield Transcription Kit, Fermentas) of PCR-generated fragment containing a T7 promoter at the proximal end of RNA coding sequence. PCR-generated DNA fragments encoding CRISPR RNA and tracrRNA were produced using pCas9(−)SP1 plasmid as a template with a following primer pair: 5′-taatacgactcactataGggtagaaaagatatcctacgagg-3′ (SEQ ID NO: 40)/5′-CAACAACCAAGCTAATACAGCAG-3′ (SEQ ID NO: 41) and 5′-aaaaacaccgaatcggtgccac-3′ (SEQ ID NO: 42)/5′-taatacgactcactataGggTAATAATAATTGTGGTTTGAAACCATTC-3′ (SEQ ID NO: 43) (T7 RNA polymerase promoter underlined, transcription start shown in bold). The 150 nt CRISPR RNA transcript is comprised of 102 nt Repeat-Spacer1-Repeat sequences flanked by the 23 nt upstream and 25 nt downstream regions required for primer annealing. The 105 nt transcript of tracrRNA is comprised of a 38 nt stretch partially complimentary to the S. thermophilus DCGG7710 CRISPR3 repeat sequence fragment (anti-repeat sequence), flanked by the 16 nt upstream and 51 nt downstream region. RNA fragments produced by in vitro transcription were purified using RNeasy MinElute Cleanup Kit (Qiagen).
  • For in vitro assembly of catalytically competent Cas9-crRNA complex, the (His)6-tagged Cas9 protein (“(His)6” disclosed as SEQ ID NO: 23) was mixed with CRISPR RNA and tracrRNA transcripts at 1:0.5:1 molar ratio and pre-incubated in a buffer containing 10 mM Tris-HCl (pH 7.5 at 37° C.), 100 mM NaCl at 37° C. for 30 min followed by addition of RNAselII (Ambion), MgCl2 and DTT and subsequent incubation for additional 30 min. The final concentrations of the components in the assembly mix were the following: 100 nM of (His)6-tagged Cas9 protein (“(His)6” disclosed as SEQ ID NO: 23), 50 nM of CRISPR RNA, 100 nM of tracrRNA, 50 nM RNAselII, 10 mM MgCl2 and 1 mM DTT.
  • Below we provide experimental evidences that in vitro assembled Cas9-crRNA complex guided by the crRNA sequence cleaves DNA at the specific site to generate blunt ends. In this respect Cas9-crRNA complex can be used an alternative for a restriction endonuclease or meganuclease for the site-specific DNA cleavage in vitro. The sequence specificity of the complex is dictated by the crRNA sequence which can be engineered to address a desirable DNA target.
  • First, the DNA cleavage activity of the in vitro assembled Cas9-crRNA complex was assayed on the plasmid substrates pSP1 and pUC18. The pSP1 plasmid contained a proto-spacer1 sequence flanked by the 5′-GGNG-3′PAM sequence. Proto-spacer1 sequence was not present in pUC18. Reactions on pUC18 and pSP1 plasmids (Sapranauskas et al., 2011. Nucleic Acids Res 39:9275-82) were conducted at 37° C. in the 10 mM Tris HCl (pH 7.5 at 37° C.), 50 mM NaCl, 0.05 mg/ml BSA, 0.5 mM DTT and 10 mM MgCl2. Reaction mixtures typically contained 3.0 nM of supercoiled plasmid DNA. The reactions were initiated by mixing 50 μl volumes of Cas9-crRNA complex and plasmid DNA (1:1 v/v ratio) in a reaction buffer. Aliquots were removed at timed intervals and quenched with phenol/chloroform. The aqueous phase was mixed with loading dye solution (0.01% bromphenol blue and 75 mM EDTA in 50% v/v glycerol) and reaction products analyzed by electrophoresis through agarose (FIG. 16). To check whether the pSP1 plasmid pre-cleaved by Cas9-crRNA complex can be re-ligated, we purified linear pSP1 cleavage product from agarose gel using GeneJET gel extraction Kit (Fermentas) and re-ligated using T4 DNA ligase (Fermentas). After transformation of E. coli cells by the ligation mix, five individual clones were selected from resulting transformants, plasmid DNA was purified and subjected to sequencing using the following primers: 5′-ccgcatcaggcgccattcgcc-3′ (SEQ ID NO: 29) (sequencing of (+)strand) and 5′-gcgaggaagcggaagagcgccc-3′ (SEQ ID NO: 30) (sequencing of (−)strand). Sequence analysis revealed that the DNA sequence of the pSP1 plasmid in the locus that was cleaved by Cas9-crRNA complex and re-ligated was identical to the sequence of the non-treated plasmid. E. coli transformation by the ligation mix in the absence of T4 DNA ligase did not produce transformants indicating that no traces of supercoiled plasmid are co-purified with the linear reaction product.
  • Next, the cleavage activity of the in vitro assembled Cas9-crRNA complex was assayed on a synthetic 55 bp oligodeoxynucleotide duplex SP1 containing a proto-spacer sequence matching to the spacer sequence of crRNA (FIG. 17). Reactions conditions were identical to those described above for the plasmid DNA cleavage, except that 1 nM of oligoduplex was used. Reaction product analysis revealed that in vitro assembled Cas9-crRNA complex cleaved both strands of the oligoduplex at fixed position, inside the proto-spacer, after the 37th nucleotide from the 5′-terminus, 4 nt upstream of the PAM sequence 5′-GGNG-3′ leaving blunt ends (FIG. 17).
  • Example 3 In Vitro Assembly of Cas9-crRNA Complex from 3 Components
  • In this example we demonstrate that active Cas9-crRNA complex can be assembled in vitro by mixing 3 individual components: the C-terminal (His)6-tagged variant of Cas9 protein (“(His)6” disclosed as SEQ ID NO: 23), tracrRNA transcript provided in Example 1 (SEQ ID NO: 5 and SEQ ID NO: 6), and CRISPR RNA transcript (SEQ ID NO: 8) provided in Example 1 or synthetic crRNA (SEQ ID NO: 8) which corresponds to the putative crRNA of CRISPR3/Cas system of S. thermophilus DGCC7710 strain. Synthetic 42 nt oligoribonucleotide is comprised of 20 nt of identical to the spacer1 of CRISPR3 region at the 5′ terminus and 22 nt of repeat sequence at the 3′ end. More specifically, tracrRNA and CRISPR RNA transcripts were obtained as described in Example 1. To generate the Cas9-crRNA complex the (His)6-tagged Cas9 protein (“(His)6” disclosed as SEQ ID NO: 23) was mixed with tracrRNA and CRISPR RNA transcript, or 42 nt synthetic crRNA, at 1:0.5:1 molar ratio and incubated in a buffer containing 10 mM Tris-HCl (pH 7.5 at 37° C.), 100 mM NaCl at 37° C. for 1 h. The final concentrations of the components in the assembly mix were the following: 100 nM of (His)6-tagged Cas9 protein (“(His)6” disclosed as SEQ ID NO: 23), 50 nM of CRISPR RNA or 42 nt synthetic crRNA, 100 nM of tracrRNA.
  • Below we provide experimental evidences that in vitro assembled Cas9-crRNA complex guided by the crRNA sequence cleaves DNA at the specific site to generate blunt ends. In this respect Cas9-crRNA complex can be used an alternative for a restriction endonuclease or meganuclease for the site-specific DNA cleavage in vitro. The sequence specificity of the complex is dictated by the crRNA sequence which can be engineered to address a desirable DNA target.
  • First, the DNA cleavage activity of the in vitro assembled Cas9-crRNA complex was assayed on the plasmid substrates pSP1 and pUC18. The pSP1 plasmid contained a proto-spacer1 sequence flanked by the 5′-GGNG-3′PAM sequence. Proto-spacer1 sequence was not present in pUC18. Reactions on plasmid substrates (Sapranauskas et al., 2011. Nucleic Acids Res 39:9275-82) were conducted at 37° C. in the 10 mM Tris-HCl (pH 7.5 at 37° C.), 50 mM NaCl, 0.05 mg/ml BSA, 0.5 mM of DTT and 10 mM MgCl2. Reaction mixtures typically contained 3.0 nM of supercoiled plasmid DNA. The reactions were initiated by mixing 50 μl volumes of Cas9-crRNA complex and plasmid DNA (1:1 v/v ratio) in a reaction buffer. Aliquots were removed at timed intervals and quenched with phenol/chloroform. The aqueous phase was mixed with loading dye solution (0.01% bromphenol blue and 75 mM EDTA in 50% v/v glycerol) and reaction products analyzed by electrophoresis through agarose (FIG. 18).
  • Next, the cleavage activity of the in vitro assembled Cas9-crRNA complex was assayed on a synthetic 55 bp oligodeoxynucleotide duplex SP1 containing a a proto-spacer sequence matching to the spacer sequence of crRNA (FIG. 19). Reactions conditions were identical to those described above for the plasmid DNA cleavage, except that 1 nM of oligoduplex was used. Reaction product analysis revealed that in vitro assembled Cas9-crRNA complex cleaved both strands of the oligoduplex at fixed position, inside the proto-spacer, after the 37th nucleotide form the 5′-end, 4 nt upstream of the PAM sequence 5′-GGNG-3′ leaving blunt ends (FIG. 19).
  • Example 4 Interchangeable Spacer Cassette for the Re-Programming of the Cas9-crRNA Complex Specificity
  • In this example we describe an interchangeable spacer cassette which allows to produce crRNA carrying a nucleotide sequence against any desirable DNA target to be used for assembly of the Cas9-crRNA complex described in Examples 1 and 2 (FIG. 20B). The cassette caries a single repeat-spacer-repeat unit which allows insertion of the oligoduplex carrying the new spacer sequence required to generate a desired crRNA. To engineer a cassette, first we constructed a cassette containing a leader sequence, a repeat sequence and a unique SapI recognition site in the vicinity of the repeat sequence followed by BamHI site (FIG. 20C). To generate CRISPR region containing the unique desired spacer, we inserted a synthetic oligoduplex containing a unique spacer sequence and a repeat unit into the plasmid precleaved with SapI and BamHI restriction enzymes. Using this cassette we produced crRNA transcripts which contained nucleotide sequences complementary to the proto-spacers N1 and N2 present in pUC18 plasmid (see below).
  • As proof of the principle demonstration, we used an interchangeable spacer cassette to generate crRNA1 and crRNA2 which were engineered to target pUC18 plasmid at proto-spacer1 and proto-spacer2, respectively, incorporated crRNA1 and crRNA2 into Cas9 complex as described in the Example 1 and used these complexes for the cleavage of pUC18 plasmid. The proto-spacer N1 is located near the SapI restriction endonuclease site, while the proto-spacer N2 is in the vicinity of AatlI site. The distance between SapI and AatlI restriction sites is 775 bp, while the distance between the putative Cas9-crRNA complex cleavage sites located in the spacers N1 and N2 is 612 bp (FIG. 21A). The crRNA1 and crRNA2 PCR fragments containing T7 promoter at the proximal end were obtained from the corresponding interchangeable spacer cassette plasmids and used to produce by in vitro transcription CRISPR RNA transcripts carrying sequences matching spacer N1 or spacer N2 sequences. The catalytically active complexes of Cas9 with crRNA1 and crRNA2 were assembled for DNA cleavage as described in Example 1. In vitro assembled complexes containing either crRNA1 or crRNA2 linearized pUC18 plasmid (FIG. 21B). When both complexes were incubated with the pUC18plasmid, two DNA fragments (2074 and 612 bp) were obtained (FIG. 21B), indicating that plasmid cleavage occurred at sites targeted by the crRNA molecules present in the complexes.
  • Example 5 Cloning Procedure Using Cas9-crRNA Complex
  • In this example we demonstrate that Cas9-crRNA complex may be used to prepare a vector for cloning procedure. First we demonstrated that cleavage products obtained by the Cas9-crRNA complex can be re-ligated by DNA ligase. We purified linear pSP1 cleavage product from agarose gel and re-ligated it using DNA ligase. After transformation of E. coli cells by the ligation mix, five individual clones were selected from resulting transformants, plasmid DNA was purified and subjected to sequencing. Sequence analysis revealed that the DNA sequence of the pSP1 plasmid in the locus that was cleaved by Cas9-RNA complex and re-ligated was identical to the sequence of the non-treated plasmid. E. coli transformation by the ligation mix in the absence of T4 DNA ligase did not produce transformants indicating that no traces of supercoiled plasmid are co-purified with the linear reaction product. This result illustrates, that the DNA ends generated by the Cas9 cleavage are substrates for T4 DNA ligase, and therefore must contain a phosphate at the 5′ terminus and a free OH group at the 3′ terminus (Lehman, 1974).
  • Next we analyzed cleavage of pUC18 plasmid with Cas9 complex loaded with crRNA1 and crRNA2 described in Example 5 (FIG. 21A). First, pUC18 was cleaved with one complex, purified and re-ligated. Sequencing of 10 clones in each case confirmed, that sequence of cleaved and re-ligated plasmid was identical to the sequence of the non-treated plasmid (FIG. 21C). This experiment suggests that additional mutations are not introduced after cleavage by Cas9-crRNA complex and ligation, and the Cas9-crRNA complex can be used for cloning experiments. When both complexes were incubated with the pUC18 plasmid, two DNA fragments (2074 and 612 bp) were obtained (FIG. 21B), indicating that plasmid cleavage occurred at sites targeted by the crRNA molecules present in the complexes. To demonstrate that the pUC18 plasmid cleaved with Cas9-RNA complexes is suitable for a genetic engineering we cloned PCR fragment containing a promoter and a tetracycline resistance gene from the pACYC184 plasmid to the pUC18 vector pre-cleaved with the Cas9 complex mix containing both crRNA1 or crRNA2. The clones were selected on the media enriched by tetracycline and ampicillin. Sequencing of 4 selected clones confirmed that the intact PCR fragment was inserted into a desired position ((FIG. 21C).
  • More specifically, the 2 μg pUC18 was incubated with the mix of separately assembled Cas9-RNA complexes (250 nM each) containing different crRNAs for 1 hour at 37° C. in 100 μl reaction volume (10 mM Tris-HCl (pH 7.5 at 37° C.), 100 mM NaCl, 1 mM DTT and 10 mM MgCl2). Obtained vector fragment was purified from agarose gel using GeneJET gel extraction Kit (Thermo Fisher scientific) and divided in to two equal parts. One part of pre-cleaved vector was dephosphorylated with the FastAP alkaline phosphatase while another part was untreated. 1282 bp insert containing a promoter and a tetracycline resistance gene was obtained from the pACYC184 plasmid by PCR. After purification using the GeneJET PCR Purification Kit (Thermo Fisher scientific), a solution containing the PCR fragment was divided in to two parts. One part was phosphorylated with T4 polynucleotide kinase (Thermo Fisher scientific) while another part remained untreated. Untreated vector was ligated with the untreated PCR fragment, while a dephosphorylated vector was ligated with a phosphorylated fragment using the T4 DNA ligase (Thermo Fisher scientific). Clones were selected on a media supplemented with 100 μg/ml of Ap and 25 μg/ml Tc.
  • Example 6 Cleavage of Long DNA Substrates by Cas9 crRNA Complex
  • In this example we demonstrate that Cas9-crRNA may be addressed to cleave targets in long DNA molecules, including phage λ, E. coli and human genomic DNAs.
  • More specifically, we addressed Cas9-RNA complex to cleave specific sites in λ bacteriophage (48 kb), E. coli BL-21 strain (4.6 Mb) and human (3.2 Gb) genomic DNAs. Cas9-crRNA complex was assembled as described in Examples 2 and 3. We used 42 nt long synthetic crRNAs, 150 nt pre-crRNAs and tracrRNAs synthesized using in vitro transcription from templates generated as described in Example 4.
  • λ DNA cleavage reactions were initiated by mixing λ DNA (Thermo Fisher Scientific) with assembled Cas9-RNA complex (1:1 v/v ratio) and incubating at 37° C. Final reaction mixture contained 2 μg λ DNA, 50 nM Cas9-RNA complex, 10 mM Tris-HCl (pH 7.5 at 37° C.), 100 mM NaCl, 1 mM DTT and 10 mM MgCl2 in 100 μl reaction volume. Aliquots were removed at timed intervals and quenched with phenol/chloroform. The aqueous phase was mixed with 3× loading dye solution (0.01% bromphenol blue and 75 mM EDTA in 50% v/v glycerol) and reaction products analyzed by electrophoresis through agarose gels and ethidium bromide staining. The analysis of linear A phage genomic DNA cleavage products in agarose gel confirmed that ˜40 bp length DNA is efficiently cleaved at a single site (FIG. 22A).
  • DNA from E. coli BL21 (DE3) strain was isolated using the Genomic DNA purification kit (Thermo Fisher Scientific). For cleavage assay, E. coli genomic DNA was combined with assembled Cas9-RNA complex (1:1 v/v ratio) and incubated for 3 hours at 37° C. Final reaction mixture contained 30 μg genomic DNA, 1 μM Cas9-RNA complex, 10 mM Tris-HCl (pH 7.5 at 37° C.), 100 mM NaCl, 1 mM DTT and 10 mM MgCl2 in 300 μl reaction volume. Following incubation, 30 μl of FastDigest PstI (Thermo Fisher Scientific) was added and the reaction mix was incubated for additional 16 hours at 37° C. The reaction was terminated by heating the reaction mixture for 30 min at 55° C. with Proteinase K (0.5 mg/ml; Thermo Fisher Scientific) and SDS (0.5%, w/v) followed by 30 min incubation at room temperature with RNase A (0.25 mg/ml; Thermo Fisher Scientific). After phenol/chloroform extraction, DNA was precipitated by isopropanol and dissolved in TE buffer (10 mM Tris-HCl, pH 8.0 and 1 mM EDTA). 10 μg of DNA was mixed with 3× loading dye solution (0.01% bromphenol blue and 75 mM EDTA in 50% v/v glycerol) and electrophoresed on 1% agarose gel.
  • To analyse Cas9-crRNA cleavage products of E. coli genomic DNA, we designed a probe against DNA fragment containing a Cas9-RNA complex target (a proto-spacer) (FIG. 22B) and performed Southern blot analysis. Southern blot analysis was performed as described in (Sambrook et al, 1989. Molecular Cloning: A Laboratory Manual) with the following modifications. Fractionated DNA was transferred from agarose gel onto SensiBlot Plus Nylon membrane (Thermo Fisher Scientific) via semi-dry transfer. DNA was denatured and fixed on the membrane by placing it on paper towel saturated with 0.4 M NaOH for 10 min, rinsed with 2×SSC and air dried. The membrane was prehybridized with 6×SSC buffer containing 0.5% SDS and 100 μg/ml denatured salmon sperm DNA (Amresco) for 1 h at 65° C. The hybridization probe was generated by PCR using the genomic E. coli BL21(DE3) DNA as a template yielding 397 bp product. 5′-ends were dephosphorylated with FastAP phosphatase (Thermo Fisher Scientific) and radiolabelled by incubating with [γ-32P]ATP (Hartmann Analytic) and T4 PNK (Thermo Fisher Scientific). The labeled probe was purified using GeneJET PCR Purification Kit (Thermo Fisher Scientific), denatured by heating to 95° C. for 5 min, rapidly cooled on ice and added directly to the prehybridization solution. The membrane was probed for 16 hours at 65° C. and washed twice with 2×SSC, 0.5% SDS and twice with 2×SSC, 0.1% SDS at room temperature, air dried and visualized by phosphorimaging (FLA-5100; Fujifilm).
  • The probe was designed to target DNA fragment containing a target (a proto-spacer) for the Cas9-RNA complex (FIG. 22B). The distance between two PstI targets is ˜1500 bp, while the distance between proto-spacer and left PstI target is 466 bp. After cleavage with Cas9 complex we detected only 466 bp DNA fragment (FIG. 22C), which means that all DNA targets were cleaved by Cas9 protein in the desired position. These data clearly demonstrates that Cas9 protein effectively finds targets in very long and complex molecules such as viral and bacterial DNA.
  • To analyze Cas9-crRNA cleavage products of human genomic DNA we used DNA extracted from human brain. Human genomic DNA was combined with assembled Cas9-crRNA complex (1:1 v/v ratio) and incubated for 30 min at 37° C. Final reaction mixture contained 1 μg genomic DNA, 100 nM Cas9, 10 mM Tris-HCl (pH 7.5 at 37° C.), 100 mM NaCl, 1 mM DTT and 10 mM MgCl2 in 100 μl reaction volume. Cas9-crRNA-HS1 (SeqID#13) and Cas9-crRNA-HS2 (SeqID#14) complexes were assembled to target RASGEF1C or ARL15 loci, respectively. Cleavage products were analyzed using qPCR (FIG. 22D). After treatment with Cas9-crRNA complex, the amount of intact DNA targets decreased more than 25 times. The analysis of the results obtained from qPCR data revealed that Cas9-RNA complexes cleave human genomic DNA efficiently in the desired loci. These data clearly demonstrates that Cas9 protein effectively finds targets in very long and complex molecules such as viral, bacterial and mammal DNA.
  • Example 7 Evidence for Gene Editing of a Reporter Plasmid in Mammalian Cells after Transfection of Cas9/RNA Complexes
  • A reporter plasmid was constructed to monitor double-strand break repair either through non-homologous end-joining (NHEJ) or homologous recombination (HR). The plasmid contained GFP with an intron and flanking the eGFP sequences are 5′ and 3′ sequences of RFP as well as sites of homology (FIG. 23). The reduction of eGFP fluorescence using this reporter plasmid was an indication of NHEJ in which a Cas9/RNA-mediated double-strand break at targets C or D was repaired imperfectly by NHEJ, thereby disrupting the eGFP coding sequence. Targeting of intronic targets A and B and repair by NHEJ would likely not result in a reduction in eGFP fluorescence because the mutations induced by NHEJ usually delete or insert <20 bps and would therefore not affect the eGFP coding regions or splice site junctions. The appearance of RFP fluorescence, on the other hand, was an indication of HR where the Cas9/RNA-mediated double strand break is repaired by HR using the homologous sequences of RFP indicated.
  • The crRNA targeting used 42 nucleotide RNA molecules, as described above, having 22 nucleotides that are the repeat sequence, and 20 nucleotides (spacer sequence) are for the specific target. As described above, the target DNA needs the S. thermophilus motif or PAM which is “NGGNG” downstream of the protospacer in the target. GFP was not “engineered” to contain this PAM motif; several target sequences within eGFP naturally occur with the PAM sequence and crRNAs were designed to target the adjacent spacer sequences. RFP was a marker for homologous recombination after a double strand break in eGFP was created by Cas9/RNA.
  • FIG. 28A shows reporter gene construct for Cas9 protein activity analysis in eukaryotic cells in vivo. Intron sequence contains three cas9 target sites (A, E, B); GFP gene contains two (C, D) cas9 target sites. The RFP gene is split at Y196 position, where RFP fluorescence is abolished. FIG. 28B shows that GFP fluorescence is observed following intron processing in vivo. FIG. 28C shows that the Cas9/crRNA complex facilitated dsDNA breaks in any of aforementioned nuclease target sites may induce HR, result in reassembly of RFP gene and appearance of RFP fluorescence. FIGS. 28D and E show that the Cas9/crRNA complex facilitated dsDNA breaks in any of aforementioned nuclease target sites may induce NHEJ. Mutations in GFP gene sequence would result in lost or diminished GFP fluorescence; mutations in intron may have no affect on GFP fluorescence, however, in distinct cases may yield mature messenger RNA with improperly spliced intron sequences and result in lost or diminished GFP fluorescence.
  • S. thermophilus Cas9 protein, purified from E. coli, was complexed with in vitro-transcribed tracrRNA and synthetic unmodified crRNA targeting either sequence A (intronic) or sequence C (coding) of eGFP. For transfection, the Cas9/RNA complexes (either targeting A or C) were incubated with the transfection reagent TurboFECT and the reporter plasmid DNA was also incubated with TurboFECT in separate tubes and they were both added to CHO-K1 cells. The percentage of eGFP-positive cells was determined by flow cytometry. As shown in FIGS. 24 and 29, when cells were transfected with the reporter plasmid alone or with the reporter plasmid with Cas9 protein alone, the percentage of GFP-positive cells was about 40-50%, indicative of the overall transfection efficiency. However, when Cas9/RNA complexes targeting sequence C of eGFP were added to cells along with the reporter plasmid, the percentage of eGFP-positive cells was reduced to about 15%. This decrease in eGFP-positive cells was seen only with Cas9/RNA complexes targeting sequence C and there was no significant decrease in eGFP-positive cells seen with the Cas9/RNA complexes targeting sequence A or with a non-specific RNA. This result indicated that the Cas9/RNA targeting sequence C of eGFP resulted in gene editing of eGFP by introduction of a double-strand break and imperfect correction by NHEJ, creating a deletion in the coding sequence of eGFP.
  • In addition to analyzing the percentage of eGFP-positive cells, transfected cells were also visualized by fluorescent microscopy to monitor the appearance of RFP-positive cells, an indication of repair of Cas9-mediated double strand break by HR rather than NHEJ. As seen in FIG. 25, RFP is seen in some cells after transfection with the reporter plasmid and Cas9/RNA complexes targeting eGFP sequence C, suggesting double-strand break repair by HR.
  • Example 8 Cas9/RNA Complexes Made Using Synthetic Unmodified tracrRNAs and crRNAs are Functional In Vitro
  • The experiments described in Example 7 above used Cas9/RNA complexes comprised of purified Cas9, synthetic crRNAs, and in vitro-transcribed tracrRNA. To determine whether Cas9/RNA complexes were functional when made using fully synthetic RNA components (crRNA and tracrRNA), unmodified S. thermophilus tracrRNAs (both endogenous 89-mer and a shorter 74-mer version that is expected to maintain functionality) were synthesized. The unmodified synthetic crRNAs were generated against target E (see FIGS. 26 and 30) located within the intron of eGFP in the reporter plasmid described above and Cas9/RNA (crRNA and tracrRNA) complexes were generated. To test these complexes, the reporter plasmid used above was incubated with the complexes in vitro and monitored for restriction by gel electrophoresis.
  • As seen in FIG. 27, Cas9/RNA complexes comprised of fully synthetic RNAs were equally functional in the in vitro assay as Cas9/RNA complexes comprised of synthetic crRNA and in vitro-transcribed tracrRNA.
  • Sequences
    SEQ ID NO: 1
    WT_Cas9_S. thermophilus DGCC7710 CRISPR3-Cas strain
    One letter:
    mlfnkciiisinldfsnkekcmtkpysigldigtnsvgwavitdnykvpskkmkvlgntskkyikknllgvllfdsgitaegrrlkrtarrrytrrr
    nrilylqeifstematlddaffqrlddsflvpddkrdskypifgnlveekvyhdefptiyhlrkyladstkkadlrlvylalahmikyrghfliegef
    nsknndiqknfqdfldtynaifesdlslenskqleeivkdkisklekkdrilklfpgeknsgifseflklivgnqadfrkcfnldekaslhfskesy
    dedletllgyigddysdvflkakklydaillsgfltvtdneteaplssamikrynehkedlallkeyirnislktynevfkddtkngyagyidgktn
    qedfyvylknllaefegadyflekidredflrkqrtfdngsipyqihlqemraildkqakfypflaknkeriekiltfripyyvgplargnsdfaws
    irkrnekitpwnfedvidkessaeafinrmtsfdlylpeekvlpkhsllyetfnvyneltkvrfiaesmrdyqfldskqkkdivrlyfkdkrkvtd
    kdiieylhaiygydgielkgiekqfnsslstyhdllniindkeflddssneaiieeiihtltifedremikqrlskfenifdksvlkklsrrhytgwgkl
    saklingirdeksgntildyliddgisnrnfmqlihddalsfkkkiqkaqiigdedkgnikevvkslpgspaikkgilqsikivdelvkvmggrk
    pesivvemarenqytnqgksnsqqrlkrlekslkelgskilkenipaklskidnnalqndrlylyylqngkdmytgddldidrlsnydidhiip
    qaflkdnsidnkvlvssasnrgksddfpslevvkkrktfwyqllksklisqrkfdnltkaerggllpedkagfiqrqlvetrqitkhvarlldekfn
    nkkdennravrtvkiitlkstivsqfrkdfelykyreindfhhandaylnaviasallkkypklepefvygdypkynsfrerksatekvyfysni
    mnifkksisladgrvierplievneetgesvwnkesdlatvrrvlsypqvnvvkkveeqnhgldrgkpkglfnanlsskpkpnsnenlvgak
    eyldpkkyggyagisnsfavlvkgtiekgakkkitnvlefqgisildrinyrkdklnfllekgykdieliielpkyslfelsdgsrrmlasilstnnkr
    geihkgnqiflsqkfvkllyhakrisntinenhrkyvenhkkefeelfyyilefnenyvgakkngkllnsafqswqnhsidelcssfigptgser
    kglfeltsrgsaadfeflgvkipryrdytpssllkdatlihqsvtglyetridlaklgeg
    Three letters:
    MetLeuPheAsnLysCysIleIleIleSerIleAsnLeuAspPheSerAsnLysGluLys
    CysMetThrLysProTyrSerIleGlyLeuAspIleGlyThrAsnSerValGlyTrpAla
    ValIleThrAspAsnTyrLysValProSerLysLysMetLysValLeuGlyAsnThrSer
    LysLysTyrIleLysLysAsnLeuLeuGlyValLeuLeuPheAspSerGlyIleThrAla
    GluGlyArgArgLeuLysArgThrAlaArgArgArgTyrThrArgArgArgAsnArgIle
    LeuTyrLeuGlnGluIlePheSerThrGluMetAlaThrLeuAspAspAlaPhePheGln
    ArgLeuAspAspSerPheLeuValProAspAspLysArgAspSerLysTyrProIlePhe
    GlyAsnLeuValGluGluLysValTyrHisAspGluPheProThrIleTyrHisLeuArg
    LysTyrLeuAlaAspSerThrLysLysAlaAspLeuArgLeuValTyrLeuAlaLeuAla
    HisMetIleLysTyrArgGlyHisPheLeuIleGluGlyGluPheAsnSerLysAsnAsn
    AspIleGlnLysAsnPheGlnAspPheLeuAspThrTyrAsnAlaIlePheGluSerAsp
    LeuSerLeuGluAsnSerLysGlnLeuGluGluIleValLysAspLysIleSerLysLeu
    GluLysLysAspArgIleLeuLysLeuPheProGlyGluLysAsnSerGlyIlePheSer
    GluPheLeuLysLeuIleValGlyAsnGlnAlaAspPheArgLysCysPheAsnLeuAsp
    GluLysAlaSerLeuHisPheSerLysGluSerTyrAspGluAspLeuGluThrLeuLeu
    GlyTyrIleGlyAspAspTyrSerAspValPheLeuLysAlaLysLysLeuTyrAspAla
    IleLeuLeuSerGlyPheLeuThrValThrAspAsnGluThrGluAlaProLeuSerSer
    AlaMetIleLysArgTyrAsnGluHisLysGluAspLeuAlaLeuLeuLysGluTyrIle
    ArgAsnIleSerLeuLysThrTyrAsnGluValPheLysAspAspThrLysAsnGlyTyr
    AlaGlyTyrIleAspGlyLysThrAsnGlnGluAspPheTyrValTyrLeuLysAsnLeu
    LeuAlaGluPheGluGlyAlaAspTyrPheLeuGluLysIleAspArgGluAspPheLeu
    ArgLysGlnArgThrPheAspAsnGlySerIleProTyrGlnIleHisLeuGlnGluMet
    ArgAlaIleLeuAspLysGlnAlaLysPheTyrProPheLeuAlaLysAsnLysGluArg
    IleGluLysIleLeuThrPheArgIleProTyrTyrValGlyProLeuAlaArgGlyAsn
    SerAspPheAlaTrpSerIleArgLysArgAsnGluLysIleThrProTrpAsnPheGlu
    AspValIleAspLysGluSerSerAlaGluAlaPheIleAsnArgMetThrSerPheAsp
    LeuTyrLeuProGluGluLysValLeuProLysHisSerLeuLeuTyrGluThrPheAsn
    ValTyrAsnGluLeuThrLysValArgPheIleAlaGluSerMetArgAspTyrGlnPhe
    LeuAspSerLysGlnLysLysAspIleValArgLeuTyrPheLysAspLysArgLysVal
    ThrAspLysAspIleIleGluTyrLeuHisAlaIleTyrGlyTyrAspGlyIleGluLeu
    LysGlyIleGluLysGlnPheAsnSerSerLeuSerThrTyrHisAspLeuLeuAsnIle
    IleAsnAspLysGluPheLeuAspAspSerSerAsnGluAlaIleIleGluGluIleIle
    HisThrLeuThrIlePheGluAspArgGluMetIleLysGlnArgLeuSerLysPheGlu
    AsnIlePheAspLysSerValLeuLysLysLeuSerArgArgHisTyrThrGlyTrpGly
    LysLeuSerAlaLysLeuIleAsnGlyIleArgAspGluLysSerGlyAsnThrIleLeu
    AspTyrLeuIleAspAspGlyIleSerAsnArgAsnPheMetGlnLeuIleHisAspAsp
    AlaLeuSerPheLysLysLysIleGlnLysAlaGlnIleIleGlyAspGluAspLysGly
    AsnIleLysGluValValLysSerLeuProGlySerProAlaIleLysLysGlyIleLeu
    GlnSerIleLysIleValAspGluLeuValLysValMetGlyGlyArgLysProGluSer
    IleValValGluMetAlaArgGluAsnGlnTyrThrAsnGlnGlyLysSerAsnSerGln
    GlnArgLeuLysArgLeuGluLysSerLeuLysGluLeuGlySerLysIleLeuLysGlu
    AsnIleProAlaLysLeuSerLysIleAspAsnAsnAlaLeuGlnAsnAspArgLeuTyr
    LeuTyrTyrLeuGlnAsnGlyLysAspMetTyrThrGlyAspAspLeuAspIleAspArg
    LeuSerAsnTyrAspIleAspHisIleIleProGlnAlaPheLeuLysAspAsnSerIle
    AspAsnLysValLeuValSerSerAlaSerAsnArgGlyLysSerAspAspPheProSer
    LeuGluValValLysLysArgLysThrPheTrpTyrGlnLeuLeuLysSerLysLeuIle
    SerGlnArgLysPheAspAsnLeuThrLysAlaGluArgGlyGlyLeuLeuProGluAsp
    LysAlaGlyPheIleGlnArgGlnLeuValGluThrArgGlnIleThrLysHisValAla
    ArgLeuLeuAspGluLysPheAsnAsnLysLysAspGluAsnAsnArgAlaValArgThr
    ValLysIleIleThrLeuLysSerThrLeuValSerGlnPheArgLysAspPheGluLeu
    TyrLysValArgGluIleAsnAspPheHisHisAlaHisAspAlaTyrLeuAsnAlaVal
    IleAlaSerAlaLeuLeuLysLysTyrProLysLeuGluProGluPheValTyrGlyAsp
    TyrProLysTyrAsnSerPheArgGluArgLysSerAlaThrGluLysValTyrPheTyr
    SerAsnIleMetAsnIlePheLysLysSerIleSerLeuAlaAspGlyArgValIleGlu
    ArgProLeuIleGluValAsnGluGluThrGlyGluSerValTrpAsnLysGluSerAsp
    LeuAlaThrValArgArgValLeuSerTyrProGlnValAsnValValLysLysValGlu
    GluGlnAsnHisGlyLeuAspArgGlyLysProLysGlyLeuPheAsnAlaAsnLeuSer
    SerLysProLysProAsnSerAsnGluAsnLeuValGlyAlaLysGluTyrLeuAspPro
    LysLysTyrGlyGlyTyrAlaGlyIleSerAsnSerPheAlaValLeuValLysGlyThr
    IleGluLysGlyAlaLysLysLysIleThrAsnValLeuGluPheGlnGlyIleSerIle
    LeuAspArgIleAsnTyrArgLysAspLysLeuAsnPheLeuLeuGluLysGlyTyrLys
    AspIleGluLeuIleIleGluLeuProLysTyrSerLeuPheGluLeuSerAspGlySer
    ArgArgMetLeuAlaSerIleLeuSerThrAsnAsnLysArgGlyGluIleHisLysGly
    AsnGlnIlePheLeuSerGlnLysPheValLysLeuLeuTyrHisAlaLysArgIleSer
    AsnThrIleAsnGluAsnHisArgLysTyrValGluAsnHisLysLysGluPheGluGlu
    LeuPheTyrTyrIleLeuGluPheAsnGluAsnTyrValGlyAlaLysLysAsnGlyLys
    LeuLeuAsnSerAlaPheGlnSerTrpGlnAsnHisSerIleAspGluLeuCysSerSer
    PheIleGlyProThrGlySerGluArgLysGlyLeuPheGluLeuThrSerArgGlySer
    AlaAlaAspPheGluPheLeuGlyValLysIleProArgTyrArgAspTyrThrProSer
    SerLeuLeuLysAspAlaThrLeuIleHisGlnSerValThrGlyLeuTyrGluThrArg
    IleAspLeuAlaLysLeuGlyGluGly
    SEQ ID NO: 2
    D31A mutant
    One letter:
    mlfnkciiisinldfsnkekcmtkpysiglaigtnsvgwavitdnykvpskkmkvlgntskkyikknllgvllfdsgitaegrrlkrtarrrytrrr
    nrilylqeifstematlddaffqrlddsflvpddkrdskypifgnlveekvyhdefptiyhlrkyladstkkadlrlvylalahmikyrghfliegef
    nsknndiqknfqdfldtynaifesdlslenskqleeivkdkisklekkdrilklfpgeknsgifseflklivgnqadfrkcfnldekaslhfskesy
    dedletllgyigddysdvflkakklydaillsgfltvtdneteaplssamikrynehkedlallkeyirnislktynevfkddtkngyagyidgktn
    qedfyvylknllaefegadyflekidredflrkqrtfdngsipyqihlqemraildkqakfypflaknkeriekiltfripyyvgplargnsdfaws
    irkrnekitpwnfedvidkessaeafinrmtsfdlylpeekvlpkhsllyetfnvyneltkvrfiaesmrdyqfldskqkkdivrlyfkdkrkvtd
    kdiieylhaiygydgielkgiekqfnsslstyhdllniindkeflddssneaiieeiihtltifedremikqrlskfenifdksvlkklsrrhytgwgkl
    saklingirdeksgntildyliddgisnmfmqlihddalsfkkkiqkaqiigdedkgnikevvkslpgspaikkgilqsikivdelvkvmggrk
    pesivvemarenqytnqgksnsqqrlkrlekslkelgskilkenipaklskidnnalqndrlylyylqngkdmytgddldidrlsnydidhiip
    qaflkdnsidnkvlvssasnrgksddfpslevvkkrktfwyqllksklisqrkfdnltkaerggllpedkagfiqrqlvetrqitkhvarlldekfn
    nkkdennravrtvkiitlkstlvsqfrkdfelykvreindfhhandaylnaviasallkkypklepefvygdypkynsfrerksatekvyfysni
    mnifkksisladgrvierplievneetgesvwnkesdlatvrrvlsypqvnyvkkveeqnhgldrgkpkglfnanlsskpkpnsnenlvgak
    eyldpkkyggyagisnsfavlvkgtiekgakkkitnvlefqgisildrinyrkdklnfllekgykdieliielpkyslfelsdgsrrmlasilstnnkr
    geihkgnqiflsqkfvkllyhakrisntinenhrkyvenhkkefeelfyyilefnenyvgakkngkllnsafqswqnhsidelcssfigptgser
    kglfeltsrgsaadfeflgvkipryrdytpssllkdatlihqsvtglyetridlaklgeg
    Three letters:
    MetLeuPheAsnLysCysIleIleIleSerIleAsnLeuAspPheSerAsnLysGluLys
    CysMetThrLysProTyrSerIleGlyLeuAlaIleGlyThrAsnSerValGlyTrpAla
    ValIleThrAspAsnTyrLysValProSerLysLysMetLysValLeuGlyAsnThrSer
    LysLysTyrIleLysLysAsnLeuLeuGlyValLeuLeuPheAspSerGlyIleThrAla
    GluGlyArgArgLeuLysArgThrAlaArgArgArgTyrThrArgArgArgAsnArgIle
    LeuTyrLeuGlnGluIlePheSerThrGluMetAlaThrLeuAspAspAlaPhePheGln
    ArgLeuAspAspSerPheLeuValProAspAspLysArgAspSerLysTyrProIlePhe
    GlyAsnLeuValGluGluLysValTyrHisAspGluPheProThrIleTyrHisLeuArg
    LysTyrLeuAlaAspSerThrLysLysAlaAspLeuArgLeuValTyrLeuAlaLeuAla
    HisMetIleLysTyrArgGlyHisPheLeuIleGluGlyGluPheAsnSerLysAsnAsn
    AspIleGlnLysAsnPheGlnAspPheLeuAspThrTyrAsnAlaIlePheGluSerAsp
    LeuSerLeuGluAsnSerLysGlnLeuGluGluIleValLysAspLysIleSerLysLeu
    GluLysLysAspArgIleLeuLysLeuPheProGlyGluLysAsnSerGlyIlePheSer
    GluPheLeuLysLeuIleValGlyAsnGlnAlaAspPheArgLysCysPheAsnLeuAsp
    GluLysAlaSerLeuHisPheSerLysGluSerTyrAspGluAspLeuGluThrLeuLeu
    GlyTyrIleGlyAspAspTyrSerAspValPheLeuLysAlaLysLysLeuTyrAspAla
    IleLeuLeuSerGlyPheLeuThrValThrAspAsnGluThrGluAlaProLeuSerSer
    AlaMetIleLysArgTyrAsnGluHisLysGluAspLeuAlaLeuLeuLysGluTyrIle
    ArgAsnIleSerLeuLysThrTyrAsnGluValPheLysAspAspThrLysAsnGlyTyr
    AlaGlyTyrIleAspGlyLysThrAsnGlnGluAspPheTyrValTyrLeuLysAsnLeu
    LeuAlaGluPheGluGlyAlaAspTyrPheLeuGluLysIleAspArgGluAspPheLeu
    ArgLysGlnArgThrPheAspAsnGlySerIleProTyrGlnIleHisLeuGlnGluMet
    ArgAlaIleLeuAspLysGlnAlaLysPheTyrProPheLeuAlaLysAsnLysGluArg
    IleGluLysIleLeuThrPheArgIleProTyrTyrValGlyProLeuAlaArgGlyAsn
    SerAspPheAlaTrpSerIleArgLysArgAsnGluLysIleThrProTrpAsnPheGlu
    AspValIleAspLysGluSerSerAlaGluAlaPheIleAsnArgMetThrSerPheAsp
    LeuTyrLeuProGluGluLysValLeuProLysHisSerLeuLeuTyrGluThrPheAsn
    ValTyrAsnGluLeuThrLysValArgPheIleAlaGluSerMetArgAspTyrGlnPhe
    LeuAspSerLysGlnLysLysAspIleValArgLeuTyrPheLysAspLysArgLysVal
    ThrAspLysAspIleIleGluTyrLeuHisAlaIleTyrGlyTyrAspGlyIleGluLeu
    LysGlyIleGluLysGlnPheAsnSerSerLeuSerThrTyrHisAspLeuLeuAsnIle
    IleAsnAspLysGluPheLeuAspAspSerSerAsnGluAlaIleIleGluGluIleIle
    HisThrLeuThrIlePheGluAspArgGluMetIleLysGlnArgLeuSerLysPheGlu
    AsnIlePheAspLysSerValLeuLysLysLeuSerArgArgHisTyrThrGlyTrpGly
    LysLeuSerAlaLysLeuIleAsnGlyIleArgAspGluLysSerGlyAsnThrIleLeu
    AspTyrLeuIleAspAspGlyIleSerAsnArgAsnPheMetGlnLeuIleHisAspAsp
    AlaLeuSerPheLysLysLysIleGlnLysAlaGlnIleIleGlyAspGluAspLysGly
    AsnIleLysGluValValLysSerLeuProGlySerProAlaIleLysLysGlyIleLeu
    GlnSerIleLysIleValAspGluLeuValLysValMetGlyGlyArgLysProGluSer
    IleValValGluMetAlaArgGluAsnGlnTyrThrAsnGlnGlyLysSerAsnSerGln
    GlnArgLeuLysArgLeuGluLysSerLeuLysGluLeuGlySerLysIleLeuLysGlu
    AsnIleProAlaLysLeuSerLysIleAspAsnAsnAlaLeuGlnAsnAspArgLeuTyr
    LeuTyrTyrLeuGlnAsnGlyLysAspMetTyrThrGlyAspAspLeuAspIleAspArg
    LeuSerAsnTyrAspIleAspHisIleIleProGlnAlaPheLeuLysAspAsnSerIle
    AspAsnLysValLeuValSerSerAlaSerAsnArgGlyLysSerAspAspPheProSer
    LeuGluValValLysLysArgLysThrPheTrpTyrGlnLeuLeuLysSerLysLeuIle
    SerGlnArgLysPheAspAsnLeuThrLysAlaGluArgGlyGlyLeuLeuProGluAsp
    LysAlaGlyPheIleGlnArgGlnLeuValGluThrArgGlnIleThrLysHisValAla
    ArgLeuLeuAspGluLysPheAsnAsnLysLysAspGluAsnAsnArgAlaValArgThr
    ValLysIleIleThrLeuLysSerThrLeuValSerGlnPheArgLysAspPheGluLeu
    TyrLysValArgGluIleAsnAspPheHisHisAlaHisAspAlaTyrLeuAsnAlaVal
    IleAlaSerAlaLeuLeuLysLysTyrProLysLeuGluProGluPheValTyrGlyAsp
    TyrProLysTyrAsnSerPheArgGluArgLysSerAlaThrGluLysValTyrPheTyr
    SerAsnIleMetAsnIlePheLysLysSerIleSerLeuAlaAspGlyArgValIleGlu
    ArgProLeuIleGluValAsnGluGluThrGlyGluSerValTrpAsnLysGluSerAsp
    LeuAlaThrValArgArgValLeuSerTyrProGlnValAsnValValLysLysValGlu
    GluGlnAsnHisGlyLeuAspArgGlyLysProLysGlyLeuPheAsnAlaAsnLeuSer
    SerLysProLysProAsnSerAsnGluAsnLeuValGlyAlaLysGluTyrLeuAspPro
    LysLysTyrGlyGlyTyrAlaGlyIleSerAsnSerPheAlaValLeuValLysGlyThr
    IleGluLysGlyAlaLysLysLysIleThrAsnValLeuGluPheGlnGlyIleSerIle
    LeuAspArgIleAsnTyrArgLysAspLysLeuAsnPheLeuLeuGluLysGlyTyrLys
    AspIleGluLeuIleIleGluLeuProLysTyrSerLeuPheGluLeuSerAspGlySer
    ArgArgMetLeuAlaSerIleLeuSerThrAsnAsnLysArgGlyGluIleHisLysGly
    AsnGlnIlePheLeuSerGlnLysPheValLysLeuLeuTyrHisAlaLysArgIleSer
    AsnThrIleAsnGluAsnHisArgLysTyrValGluAsnHisLysLysGluPheGluGlu
    LeuPheTyrTyrIleLeuGluPheAsnGluAsnTyrValGlyAlaLysLysAsnGlyLys
    LeuLeuAsnSerAlaPheGlnSerTrpGlnAsnHisSerIleAspGluLeuCysSerSer
    PheIleGlyProThrGlySerGluArgLysGlyLeuPheGluLeuThrSerArgGlySer
    AlaAlaAspPheGluPheLeuGlyValLysIleProArgTyrArgAspTyrThrProSer
    SerLeuLeuLysAspAlaThrLeuIleHisGlnSerValThrGlyLeuTyrGluThrArg
    IleAspLeuAlaLysLeuGlyGluGly
    SEQ ID NO: 3
    N891A mutant
    One letter:
    mlfnkciiisinldfsnkekcmtkpysigldigtnsvgwavitdnykvpskkmkvlgntskkyiklmllgvllfdsgitaegrrlkrtarrrytrrr
    nrilylqeifstematlddaffqrlddsflvpddkrdskypifgnlveekvyhdefptiyhlrkyladstkkadlrlvylalahmikyrghfliegef
    nsknndiqknfqdfldtynaifesdlslenskqleeivkdkisklekkdrilklfpgeknsgifseflklivgnqadfrkcfnldekaslhfskesy
    dedletllgyigddysdvflkakklydaillsgfltvtdneteaplssamikrynehkedlallkeyirnislktynevfkddtkngyagyidgktn
    qedfyvylknllaefegadyflekidredflrkqrtfdngsipyqihlqemraildkqakfypflaknkeriekiltfripyyvgplargnsdfaws
    irkrnekitpwnfedvidkessaeafinrmtsfdlylpeekvlpkhsllyetfnvyneltkvrfiaesmrdyqfldskqkkdivrlyfkdkrkvtd
    kdiieylhaiygydgielkgiekqfnsslstyhdllniindkeflddssneaiieeiihtltifedremikqrlskfenifdksvlkklsrrhytgwgkl
    saklingirdeksgntildyliddgisnrnfmqlihddalsfkkkiqkaqiigdedkgnikevvkslpgspaikkgilqsikivdelvkvmggrk
    pesivvemarenqytnqgksnsqqrlkrlekslkelgskilkenipaklskidnnalqndrlylyylqngkdmytgddldidrlsnydidhiip
    qaflkdnsidnkvlvssasargksddfpslevvkkrktfwyqllksklisqrkfdnltkaerggllpedkagfiqrqlvetrqitkhvarlldektn
    nkkdennravrtvkiitlkstlvsqfrkdfelykyreindfhhandaylnaviasallkkypklepefvygdypkynsfrerksatekvyfysni
    mnifkksisladgrvierplievneetgesvwnkesdlatvrrvlsypqvnvvkkveeqnhgldrgkpkglfnanlsskpkpnsnenlvgak
    eyldpkkyggyagisnsfavlvkgtiekgakkkitnvlefqgisildrinyrkdklnfllekgykdieliielpkyslfelsdgsrrmlasilstnnkr
    geihkgnqiflsqkfvkllyhakrisntinenhrkyvenhkkefeelfyyilefnenyvgakkngkllnsafqswqnhsidelcssfigptgser
    kglfeltsrgsaadfeflgvkipryrdytpssllkdatlihqsvtglyetridlaklgeg
    Three letters:
    MetLeuPheAsnLysCysIleIleIleSerIleAsnLeuAspPheSerAsnLysGluLys
    CysMetThrLysProTyrSerIleGlyLeuAspIleGlyThrAsnSerValGlyTrpAla
    ValIleThrAspAsnTyrLysValProSerLysLysMetLysValLeuGlyAsnThrSer
    LysLysTyrIleLysLysAsnLeuLeuGlyValLeuLeuPheAspSerGlyIleThrAla
    GluGlyArgArgLeuLysArgThrAlaArgArgArgTyrThrArgArgArgAsnArgIle
    LeuTyrLeuGlnGluIlePheSerThrGluMetAlaThrLeuAspAspAlaPhePheGln
    ArgLeuAspAspSerPheLeuValProAspAspLysArgAspSerLysTyrProIlePhe
    GlyAsnLeuValGluGluLysValTyrHisAspGluPheProThrIleTyrHisLeuArg
    LysTyrLeuAlaAspSerThrLysLysAlaAspLeuArgLeuValTyrLeuAlaLeuAla
    HisMetIleLysTyrArgGlyHisPheLeuIleGluGlyGluPheAsnSerLysAsnAsn
    AspIleGlnLysAsnPheGlnAspPheLeuAspThrTyrAsnAlaIlePheGluSerAsp
    LeuSerLeuGluAsnSerLysGlnLeuGluGluIleValLysAspLysIleSerLysLeu
    GluLysLysAspArgIleLeuLysLeuPheProGlyGluLysAsnSerGlyIlePheSer
    GluPheLeuLysLeuIleValGlyAsnGlnAlaAspPheArgLysCysPheAsnLeuAsp
    GluLysAlaSerLeuHisPheSerLysGluSerTyrAspGluAspLeuGluThrLeuLeu
    GlyTyrIleGlyAspAspTyrSerAspValPheLeuLysAlaLysLysLeuTyrAspAla
    IleLeuLeuSerGlyPheLeuThrValThrAspAsnGluThrGluAlaProLeuSerSer
    AlaMetIleLysArgTyrAsnGluHisLysGluAspLeuAlaLeuLeuLysGluTyrIle
    ArgAsnIleSerLeuLysThrTyrAsnGluValPheLysAspAspThrLysAsnGlyTyr
    AlaGlyTyrIleAspGlyLysThrAsnGlnGluAspPheTyrValTyrLeuLysAsnLeu
    LeuAlaGluPheGluGlyAlaAspTyrPheLeuGluLysIleAspArgGluAspPheLeu
    ArgLysGlnArgThrPheAspAsnGlySerIleProTyrGlnIleHisLeuGlnGluMet
    ArgAlaIleLeuAspLysGlnAlaLysPheTyrProPheLeuAlaLysAsnLysGluArg
    IleGluLysIleLeuThrPheArgIleProTyrTyrValGlyProLeuAlaArgGlyAsn
    SerAspPheAlaTrpSerIleArgLysArgAsnGluLysIleThrProTrpAsnPheGlu
    AspValIleAspLysGluSerSerAlaGluAlaPheIleAsnArgMetThrSerPheAsp
    LeuTyrLeuProGluGluLysValLeuProLysHisSerLeuLeuTyrGluThrPheAsn
    ValTyrAsnGluLeuThrLysValArgPheIleAlaGluSerMetArgAspTyrGlnPhe
    LeuAspSerLysGlnLysLysAspIleValArgLeuTyrPheLysAspLysArgLysVal
    ThrAspLysAspIleIleGluTyrLeuHisAlaIleTyrGlyTyrAspGlyIleGluLeu
    LysGlyIleGluLysGlnPheAsnSerSerLeuSerThrTyrHisAspLeuLeuAsnIle
    IleAsnAspLysGluPheLeuAspAspSerSerAsnGluAlaIleIleGluGluIleIle
    HisThrLeuThrIlePheGluAspArgGluMetIleLysGlnArgLeuSerLysPheGlu
    AsnIlePheAspLysSerValLeuLysLysLeuSerArgArgHisTyrThrGlyTrpGly
    LysLeuSerAlaLysLeuIleAsnGlyIleArgAspGluLysSerGlyAsnThrIleLeu
    AspTyrLeuIleAspAspGlyIleSerAsnArgAsnPheMetGlnLeuIleHisAspAsp
    AlaLeuSerPheLysLysLysIleGlnLysAlaGlnIleIleGlyAspGluAspLysGly
    AsnIleLysGluValValLysSerLeuProGlySerProAlaIleLysLysGlyIleLeu
    GlnSerIleLysIleValAspGluLeuValLysValMetGlyGlyArgLysProGluSer
    IleValValGluMetAlaArgGluAsnGlnTyrThrAsnGlnGlyLysSerAsnSerGln
    GlnArgLeuLysArgLeuGluLysSerLeuLysGluLeuGlySerLysIleLeuLysGlu
    AsnIleProAlaLysLeuSerLysIleAspAsnAsnAlaLeuGlnAsnAspArgLeuTyr
    LeuTyrTyrLeuGlnAsnGlyLysAspMetTyrThrGlyAspAspLeuAspIleAspArg
    LeuSerAsnTyrAspIleAspHisIleIleProGlnAlaPheLeuLysAspAsnSerIle
    AspAsnLysValLeuValSerSerAlaSerAlaArgGlyLysSerAspAspPheProSer
    LeuGluValValLysLysArgLysThrPheTrpTyrGlnLeuLeuLysSerLysLeuIle
    SerGlnArgLysPheAspAsnLeuThrLysAlaGluArgGlyGlyLeuLeuProGluAsp
    LysAlaGlyPheIleGlnArgGlnLeuValGluThrArgGlnIleThrLysHisValAla
    ArgLeuLeuAspGluLysPheAsnAsnLysLysAspGluAsnAsnArgAlaValArgThr
    ValLysIleIleThrLeuLysSerThrLeuValSerGlnPheArgLysAspPheGluLeu
    TyrLysValArgGluIleAsnAspPheHisHisAlaHisAspAlaTyrLeuAsnAlaVal
    IleAlaSerAlaLeuLeuLysLysTyrProLysLeuGluProGluPheValTyrGlyAsp
    TyrProLysTyrAsnSerPheArgGluArgLysSerAlaThrGluLysValTyrPheTyr
    SerAsnIleMetAsnIlePheLysLysSerIleSerLeuAlaAspGlyArgValIleGlu
    ArgProLeuIleGluValAsnGluGluThrGlyGluSerValTrpAsnLysGluSerAsp
    LeuAlaThrValArgArgValLeuSerTyrProGlnValAsnValValLysLysValGlu
    GluGlnAsnHisGlyLeuAspArgGlyLysProLysGlyLeuPheAsnAlaAsnLeuSer
    SerLysProLysProAsnSerAsnGluAsnLeuValGlyAlaLysGluTyrLeuAspPro
    LysLysTyrGlyGlyTyrAlaGlyIleSerAsnSerPheAlaValLeuValLysGlyThr
    IleGluLysGlyAlaLysLysLysIleThrAsnValLeuGluPheGlnGlyIleSerIle
    LeuAspArgIleAsnTyrArgLysAspLysLeuAsnPheLeuLeuGluLysGlyTyrLys
    AspIleGluLeuIleIleGluLeuProLysTyrSerLeuPheGluLeuSerAspGlySer
    ArgArgMetLeuAlaSerIleLeuSerThrAsnAsnLysArgGlyGluIleHisLysGly
    AsnGlnIlePheLeuSerGlnLysPheValLysLeuLeuTyrHisAlaLysArgIleSer
    AsnThrIleAsnGluAsnHisArgLysTyrValGluAsnHisLysLysGluPheGluGlu
    LeuPheTyrTyrIleLeuGluPheAsnGluAsnTyrValGlyAlaLysLysAsnGlyLys
    LeuLeuAsnSerAlaPheGlnSerTrpGlnAsnHisSerIleAspGluLeuCysSerSer
    PheIleGlyProThrGlySerGluArgLysGlyLeuPheGluLeuThrSerArgGlySer
    AlaAlaAspPheGluPheLeuGlyValLysIleProArgTyrArgAspTyrThrProSer
    SerLeuLeuLysAspAlaThrLeuIleHisGlnSerValThrGlyLeuTyrGluThrArg
    IleAspLeuAlaLysLeuGlyGluGly
    SEQ ID NO: 4
    H868A mutant
    One letter
    mlfnkciiisinldfsnkekcmtkpysigldigtnsvgwavitdnykvpskkmkvlgntskkyikknllgvllfdsgitaegrrlkrtarrrytrrr
    nrilylqeifstematlddaffqrlddsflvpddkrdskypifgnlveekvyhdefptiyhlrkyladstkkadlrlvylalahmikyrghfliegef
    nsknndiqknfqdfldtynaifesdlslenskqleeivkdkisklekkdrilklfpgeknsgifseflklivgnqadfrkcfnldekaslhfskesy
    dedletllgyigddysdvflkakklydaillsgfltvtdneteaplssamikrynehkedlallkeyirnislktynevfkddtkngyagyidgktn
    qedfyvylknllaefegadyflekidredflrkqrtfdngsipyqihlqemraildkqakfypflaknkeriekiltfripyyvgplargnsdfaws
    irkrnekitpwnfedvidkessaeafinrmtsfdlylpeekvlpkhsllyetfnvyneltkvrfiaesmrdyqfldskqkkdivrlyfkdkrkvtd
    kdiieylhaiygydgielkgiekqfnsslstyhdllniindkeflddssneaiieeiihtltifedremikqrlskfenifdksvlkklsrrhytgwgkl
    saklingirdeksgntildyliddgisnrnfmglihddalsfkkkiqkaqiigdedkgnikevvkslpgspaikkgilqsikivdelvkvmggrk
    pesivvemarenqytnqgksnsqqrlkrlekslkelgskilkenipaklskidnnalqndrlylyylqngkdmytgddldidrlsnydidaiipq
    aflkdnsidnkvlvssasnrgksddfpslevvkkrktfwyqllksklisqrkfdnltkaerggllpedkagfiqrqlvetrqitkhvarlldekfnn
    kkdennravrtvkiitlkstlvsqfrkdfelykvreindfhhandaylnaviasallkkypklepefvygdypkynsfrerksatekvyfysnim
    nifkksisladgrvierplievneetgesvwnkesdlatvrrvlsypqvnvvkkveeqnhgldrgkpkglfnanlsskpkpnsnenlvgakey
    ldpkkyggyagisnsfavlvkgtiekgakkkitnvlefqgisildrinyrkdklnfllekgykdieliielpkyslfelsdgsrrmlasilstnnkrge
    ihkgnqiflsqkfvkllyhakrisntinenhrkyvenhkkefeelfyyilefnenyvgakkngkllnsafqswqnhsidelcssfigptgserkgl
    feltsrgsaadfeflgvkipryrdytpssllkdatlihqsvtglyetridlaklgeg
    Three letters:
    MetLeuPheAsnLysCysIleIleIleSerIleAsnLeuAspPheSerAsnLysGluLys
    CysMetThrLysProTyrSerIleGlyLeuAspIleGlyThrAsnSerValGlyTrpAla
    ValIleThrAspAsnTyrLysValProSerLysLysMetLysValLeuGlyAsnThrSer
    LysLysTyrIleLysLysAsnLeuLeuGlyValLeuLeuPheAspSerGlyIleThrAla
    GluGlyArgArgLeuLysArgThrAlaArgArgArgTyrThrArgArgArgAsnArgIle
    LeuTyrLeuGlnGluIlePheSerThrGluMetAlaThrLeuAspAspAlaPhePheGln
    ArgLeuAspAspSerPheLeuValProAspAspLysArgAspSerLysTyrProIlePhe
    GlyAsnLeuValGluGlutysValTyrHisAspGluPheProThrIleTyrHisLeuArg
    LysTyrLeuAlaAspSerThrLysLysAlaAspLeuArgLeuValTyrLeuAlaLeuAla
    HisMetIleLysTyrArgGlyHisPheLeuIleGluGlyGluPheAsnSerLysAsnAsn
    AspIleGlnLysAsnPheGlnAspPheLeuAspThrTyrAsnAlaIlePheGluSerAsp
    LeuSerLeuGluAsnSerLysGlnLeuGluGluIleValLysAspLysIleSerLysLeu
    GluLysLysAspArgIleLeuLysLeuPheProGlyGluLysAsnSerGlyIlePheSer
    GluPheLeuLysLeuIleValGlyAsnGlnAlaAspPheArgLysCysPheAsnLeuAsp
    GluLysAlaSerLeuHisPheSerLysGluSerTyrAspGluAspLeuGluThrLeuLeu
    GlyTyrIleGlyAspAspTyrSerAspValPheLeuLysAlaLysLysLeuTyrAspAla
    IleLeuLeuSerGlyPheLeuThrValThrAspAsnGluThrGluAlaProLeuSerSer
    AlaMetIleLysArgTyrAsnGluHisLysGluAspLeuAlaLeuLeuLysGluTyrIle
    ArgAsnIleSerLeuLysThrTyrAsnGluValPheLysAspAspThrLysAsnGlyTyr
    AlaGlyTyrIleAspGlyLysThrAsnGlnGluAspPheTyrValTyrLeuLysAsnLeu
    LeuAlaGluPheGluGlyAlaAspTyrPheLeuGluLysIleAspArgGluAspPheLeu
    ArgLysGlnArgThrPheAspAsnGlySerIleProTyrGlnIleHisLeuGlnGluMet
    ArgAlaIleLeuAspLysGlnAlaLysPheTyrProPheLeuAlaLysAsnLysGluArg
    IleGluLysIleLeuThrPheArgIleProTyrTyrValGlyProLeuAlaArgGlyAsn
    SerAspPheAlaTrpSerIleArgLysArgAsnGluLysIleThrProTrpAsnPheGlu
    AspValIleAspLysGluSerSerAlaGluAlaPheIleAsnArgMetThrSerPheAsp
    LeuTyrLeuProGluGluLysValLeuProLysHisSerLeuLeuTyrGluThrPheAsn
    ValTyrAsnGluLeuThrLysValArgPheIleAlaGluSerMetArgAspTyrGlnPhe
    LeuAspSerLysGlnLysLysAspIleValArgLeuTyrPheLysAspLysArgLysVal
    ThrAspLysAspIleIleGluTyrLeuHisAlaIleTyrGlyTyrAspGlyIleGluLeu
    LysGlyIleGluLysGlnPheAsnSerSerLeuSerThrTyrHisAspLeuLeuAsnIle
    IleAsnAspLysGluPheLeuAspAspSerSerAsnGluAlaIleIleGluGluIleIle
    HisThrLeuThrIlePheGluAspArgGluMetIleLysGlnArgLeuSerLysPheGlu
    AsnIlePheAspLysSerValLeuLysLysLeuSerArgArgHisTyrThrGlyTrpGly
    LysLeuSerAlaLysLeuIleAsnGlyIleArgAspGluLysSerGlyAsnThrIleLeu
    AspTyrLeuIleAspAspGlyIleSerAsnArgAsnPheMetGlnLeuIleHisAspAsp
    AlaLeuSerPheLysLysLysIleGlnLysAlaGlnIleIleGlyAspGluAspLysGly
    AsnIleLysGluValValLysSerLeuProGlySerProAlaIleLysLysGlyIleLeu
    GlnSerIleLysIleValAspGluLeuValLysValMetGlyGlyArgLysProGluSer
    IleValValGluMetAlaArgGluAsnGlnTyrThrAsnGlnGlyLysSerAsnSerGln
    GlnArgLeuLysArgLeuGluLysSerLeuLysGluLeuGlySerLysIleLeuLysGlu
    AsnIleProAlaLysLeuSerLysIleAspAsnAsnAlaLeuGlnAsnAspArgLeuTyr
    LeuTyrTyrLeuGlnAsnGlyLysAspMetTyrThrGlyAspAspLeuAspIleAspArg
    LeuSerAsnTyrAspIleAspAlaIleIleProGlnAlaPheLeuLysAspAsnSerIle
    AspAsnLysValLeuValSerSerAlaSerAsnArgGlyLysSerAspAspPheProSer
    LeuGluValValLysLysArgLysThrPheTrpTyrGlnLeuLeuLysSerLysLeuIle
    SerGlnArgLysPheAspAsnLeuThrLysAlaGluArgGlyGlyLeuLeuProGluAsp
    LysAlaGlyPheIleGlnArgGlnLeuValGluThrArgGlnIleThrLysHisValAla
    ArgLeuLeuAspGluLysPheAsnAsnLysLysAspGluAsnAsnArgAlaValArgThr
    ValLysIleIleThrLeuLysSerThrLeuValSerGlnPheArgLysAspPheGluLeu
    TyrLysValArgGluIleAsnAspPheHisHisAlaHisAspAlaTyrLeuAsnAlaVal
    IleAlaSerAlaLeuLeuLysLysTyrProLysLeuGluProGluPheValTyrGlyAsp
    TyrProLysTyrAsnSerPheArgGluArgLysSerAlaThrGluLysValTyrPheTyr
    SerAsnIleMetAsnIlePheLysLysSerIleSerLeuAlaAspGlyArgValIleGlu
    ArgProLeuIleGluValAsnGluGluThrGlyGluSerValTrpAsnLysGluSerAsp
    LeuAlaThrValArgArgValLeuSerTyrProGlnValAsnValValLysLysValGlu
    GluGlnAsnHisGlyLeuAspArgGlyLysProLysGlyLeuPheAsnAlaAsnLeuSer
    SerLysProLysProAsnSerAsnGluAsnLeuValGlyAlaLysGluTyrLeuAspPro
    LysLysTyrGlyGlyTyrAlaGlyIleSerAsnSerPheAlaValLeuValLysGlyThr
    IleGluLysGlyAlaLysLysLysIleThrAsnValLeuGluPheGlnGlyIleSerIle
    LeuAspArgIleAsnTyrArgLysAspLysLeuAsnPheLeuLeuGluLysGlyTyrLys
    AspIleGluLeuIleIleGluLeuProLysTyrSerLeuPheGluLeuSerAspGlySer
    ArgArgMetLeuAlaSerIleLeuSerThrAsnAsnLysArgGlyGluIleHisLysGly
    AsnGlnIlePheLeuSerGlnLysPheValLysLeuLeuTyrHisAlaLysArgIleSer
    AsnThrIleAsnGluAsnHisArgLysTyrValGluAsnHisLysLysGluPheGluGlu
    LeuPheTyrTyrIleLeuGluPheAsnGluAsnTyrValGlyAlaLysLysAsnGlyLys
    LeuLeuAsnSerAlaPheGlnSerTrpGlnAsnHisSerIleAspGluLeuCysSerSer
    PheIleGlyProThrGlySerGluArgLysGlyLeuPheGluLeuThrSerArgGlySer
    AlaAlaAspPheGluPheLeuGlyValLysIleProArgTyrArgAspTyrThrProSer
    SerLeuLeuLysAspAlaThrLeuIleHisGlnSerValThrGlyLeuTyrGluThrArg
    IleAspLeuAlaLysLeuGlyGluGly
    SEQ ID NO: 5
    Tra-crRNA, Unmature (102 nt):
    uaauaauaauugugguuugaaaccauucgaaacaacacagcgaguuaaaauaaggcuuaguccguacucaacuugaaaagguggcac
    cgauucgguguuuuu
    SEQ ID NO: 6
    Mature 78 nt tracrRNA:
    gggcgaaacaacacagcgaguuaaaauaaggcuuaguccguacucaacuugaaaagguggcaccgauucgguguuuuu
    Shorter variants:
    gggcgaaacaacacagcgaguuaaaauaaggcuuaguccguacucaacuugaaaagguggcaccgauucggug (SEQ ID NO: 44)
    gggcgaaacaacacagcgaguuaaaauaaggcuuaguccguacucaacuugaaaagguggcaccgauu (SEQ ID NO: 45)
    gggcgaaacaacacagcgaguuaaaauaaggcuuaguccguacucaacuugaaaagguggcac (SEQ ID NO: 46)
    gggcgaaacaacacagcgaguuaaaauaaggcuuaguccguacucaacuugaaaaggu (SEQ ID NO: 47)
    gggcgaaacaacacagcgaguuaaaauaaggcuuaguccguacucaacuugaa (SEQ ID NO: 48)
    gggcgaaacaacacagcgaguuaaaauaaggcuuaguccguacucaac (SEQ ID NO: 49)
    SEQ ID NO: 7
    42 nt crRNA from spacer 1:
    5′-CGCUAAAGAGGAAGAGGACAGUUUUAGAGCUGUGUUGUUUCG-3′
    SEQ ID NO: 8
    150 nt pre-crRNA
    5′ ggguagaaaagauauccuacgagguuuuagagcuguguuguuucgaaugguuccaaaac aaauucuaa
    acgcuaaagaggaagaggaca guuuuagagcuguguuguuucgaaugguuccaaaacuacugcuguau
    uagcuugguuguug-3′
    SEQ ID NO: 9
    crRNA1
    5′ ggguagaaaagauauccuacgagguuuuagagcuguguuguuucgaaugguuccaaaacTGTCATGA
    TAATAATGGTTTCTTAGACGTCguuuuagagcuguguuguuucgaaugguuccaaaacuacugcug 
    uauuagcuugguuguug-3′
    SEQ ID NO: 10
    crRNA2
    5′-ggguagaaaagauauccuacgagguuuuagagcuguguuguuucgaaugguuccaaaacacgagccg
    gaagcataaagtgtaaagcctgguuuuagagcuguguuguuucgaaugguuccaaaacuacugcug
    uauuagcuugguuguug-3′
    SEQ ID NO: 11
    Anti-λ phage CRISPR RNA
    5′-ggguagaaaagauauccuacgagguuuuagagcuguguuguuucgaaugguuccaaaactcaaggga
    gaatagaggctctcgttgcattguuuuagagcuguguuguuucgaaugguuccaaaacuacugcug
    uauuagcuugguuguug-3′
    SEQ ID NO: 12
    Anti E. coli CRISPR RNA
    5′-ggguagaaaagauauccuacgagguuuuagagcuguguuguuucgaaugguuccaaaaccgggaggg
    aagctgcatgatgcgatgttatguuuuagagcuguguuguuucgaaugguuccaaaacuacugcug
    uauuagcuugguuguug-3′
    SEQ ID NO: 13
    crRNA-HS1
    5′-GCUCCCGGGGCUCGAUGAAGGUUUUAGAGCUGUGUUGUUUCG-3′
    SEQ ID NO: 14
    crRNA-HS2
    UGAAUCGUGAAAUCUGCUCAGUUUUAGAGCUGUGUUGUUUCG
  • The application contains a Sequence Listing which has been submitted in ASCII format and is hereby incorporated by reference in its entirety. The ASCII copy, created on Mar. 20, 2013, is named 0789816_SL.txt and is 64.4 kilobytes in size.
  • The embodiments shown and described in the specification are only specific embodiments of inventors who are skilled in the art and are not limiting in any way. Therefore, various changes, modifications, or alterations to those embodiments may be made without departing from the spirit of the invention in the scope of the following claims. The references cited are expressly incorporated by reference herein in their entirety.

Claims (39)

What is claimed is:
1.-68. (canceled)
69. A method for site-specific modification of a target DNA molecule, the method comprising,
contacting the target DNA molecule with an engineered Cas9-crRNA complex comprising a Cas9 protein, a crRNA, and a tracrRNA,
wherein the crRNA is engineered to guide the Cas9-CRISPR complex to a region comprising the site in the target DNA molecule.
70. The method of claim 69, wherein the modification occurs either in vivo or in vitro.
71. The method of claim 70, wherein the in vivo modification occurs in a mammalian cell.
72. The method of claim 69, wherein a fragment of the crRNA is substantially complementary to the target DNA molecule.
73. The method of claim 72, wherein the fragment of the crRNA that is substantially complementary to the target DNA molecule comprises about 20 nucleotides.
74. The method of claim 69, wherein the Cas9 protein comprises at least one of an RuvC active site motif and an HNH active site motif.
75. The method of claim 69, wherein the Cas9 protein has at least 80% identity with SEQ ID NO: 1.
76. The method of claim 69, wherein crRNA comprises a 3′ and a 5′ region, wherein the 3′ region comprises at least 22 nucleotides of a CRISPR repeat and the 5′ region comprises at least 20 nucleotides of a spacer sequence engineered to be substantially complementary to a portion of the target DNA.
77. The method of claim 69, wherein tracrRNA comprising a 5′ and 3′ region wherein at least a portion of the 5′ region is complementary to the 3′ region of crRNA.
78. The method of claim 69, wherein the target DNA molecule comprises a proto-spacer adjacent motif (PAM) sequence upstream of a proto-spacer sequence.
79. The method of claim 78, wherein the PAM sequence comprises a nucleic acid molecule having the nucleic acid sequence 5′-NGGNG.
80. The method of claim 69, wherein the site-specific modification of the target DNA molecule is cleavage of the target DNA molecule.
81. The method of claim 74, wherein the Cas9 protein contains a point mutation in the RuvC motif or the HNH motif, and wherein the modification of the target DNA molecule is site-specific nicking of the target DNA molecule.
82. The method of claim 81, wherein the point mutation in the RuvC motif is D31A and the point mutation in the HNH motif is N891A.
83. The method of claim 69, wherein the target DNA is double stranded or single stranded.
84. The method of claim 69, wherein the Cas9 and/or crRNA is generated by recombinant DNA technology, in vitro translation or is chemically synthesized.
85. The method of claim 69, wherein crRNA has a sequence comprising 5′-NNNNNNNNNNNNNNNNNNNNGUUUUAGAGCUGUGUUGUUUCG-3′ (SEQ ID NO: 15) with any desirable spacer sequence.
86. The method of claim 69, further comprising addition of RNase III polypeptide to the complex.
87. A method for directing a Cas9-RNA-mediated double stranded cleavage of a target DNA molecule in a cell, the method comprising,
contacting a target DNA molecule in a cell with a recombinant Cas9-crRNA complex comprising a Cas9 protein, an engineered crRNA, and a tracrRNA,
wherein the engineered crRNA is engineered to guide the Cas9-CRISPR complex to the target DNA molecule.
88. The method of claim 87, wherein the engineered crRNA contains a 20 nucleotide fragment having substantial complementarity to the target DNA.
89. The method of claim 87, wherein the cell is a mammalian cell.
90. A method for directing a Cas9-RNA-mediated homologous recombination (HR) at a target DNA site in a cell, the method comprising,
contacting a target DNA molecule in a cell with an engineered Cas9-crRNA complex comprising a Cas9 protein, a crRNA, and a tracrRNA, wherein the crRNA is engineered to guide the engineered Cas9-CRISPR complex to the target DNA molecule; and
a recombinant nucleic acid construct comprising a first and a second site of homology flanking the target site.
91. The method of claim 90, wherein the crRNA is engineered to contain about 20 nucleotides having substantial complementarity to the target DNA.
92. The method of claim 90, wherein the cell is a mammalian cell.
93. The method of claim 90, wherein the target DNA contains a protospacer sequence that is least 80% complimentary to a spacer sequence in the crRNA in the complex, and a protospacer adjacent motif (PAM) sequence NGGNG downstream from the proto-spacer sequence, and wherein the Cas9 protein cleaves both target DNA strands at a cleavage site located 4 nucleotides upstream of the PAM sequence to create blunt ends.
94. The method of claim 90, further comprising addition of RNase III polypeptide to the complex.
95. A programmable Cas9-crRNA system comprising:
a complex comprising a Cas9 protein,
a crRNA polynucleotide comprising a 3′ region and a 5′ region wherein the 3′ region comprises a repeat sequence present in a CRISPR locus and the 5′ region comprises at least 20 nucleotides of an engineered spacer sequence immediately downstream of the repeat in the CRISPR locus, and
a tracrRNA polynucleotide comprising a 5′ region and a 3′ region wherein at least a portion of the 5′ region is complementary to the 3′ region of the crRNA,
wherein the spacer sequence is engineered to direct the Cas9-CRISPR system to a target DNA molecule having a protospacer adjacent motif sequence.
96. The programmable Cas9-crRNA system of claim 95, wherein the Cas9 protein comprises at least one of an RuvC active site motif and an HNH active site motif.
97. The programmable Cas9-crRNA system of claim 96, wherein the Cas9 protein contains a point mutation in the RuvC motif and/or a point mutation in the HNH motif.
98. The programmable Cas9-crRNA system of claim 97, wherein the point mutation in the RuvC motif is D31A and the point mutation in the HNH motif is N891A.
99. The programmable Cas9-crRNA system of claim 95, wherein the 3′ region of the crRNA comprises at least 22 nucleotides of a repeat sequence present in a CRISPR locus.
100. The programmable Cas9-crRNA system of claim 95, wherein the system is formed in vivo by introducing at least one plasmid encoding the Cas9 protein, the crRNA polynucleotide, and the tracrRNA polynucleotide into a microorganism, to result in a genetically modified microorganism, and isolating the complex from the genetically modified microorganism.
101. The programmable Cas9-crRNA system of claim 100, further comprising incubating the isolated Cas9 protein, crRNA polynucleotide, and tracrRNA polynucleotide under conditions suitable for complex assembly.
102. The programmable CAs9-crRNA system of claim 100, wherein the Cas9 protein, the crRNA polynucleotide, and the tracrRNA polynucleotide are encoded in two or three separate plasmids.
103. The programmable Cas9-crRNA system of claim 95, wherein the system is formed in vitro by incubating the components of the system under conditions suitable for complex assembly.
104. The programmable Cas9-crRNA system of claim 103, wherein the crRNA polynucleotide is obtained by in vitro transcription from a DNA fragment containing a single repeat-spacer-repeat unit, where the spacer has any desirable sequence, or is chemically synthesized.
105. The programmable Cas9-crRNA system of claim 95, wherein the components comprise Cas9 polypeptide (SEQ ID NO: 1), tracrRNA polynucleotide (SEQ ID NO: 5), and crRNA polynucleotide (5′-NNNNNNNNNNNNNNNNNNNNGUUUUAGAGCUGUGUUGUUUCG-3′) (SEQ ID NO: 15) with any desirable spacer sequence.
106. The programmable Cas9-crRNA system of claim 95, further comprising addition of RNase III polypeptide to the complex of the system.
US14/385,857 2012-03-20 2013-03-20 RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX Abandoned US20150050699A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/385,857 US20150050699A1 (en) 2012-03-20 2013-03-20 RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261613373P 2012-03-20 2012-03-20
US201261625420P 2012-04-17 2012-04-17
PCT/US2013/033106 WO2013142578A1 (en) 2012-03-20 2013-03-20 RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX
US14/385,857 US20150050699A1 (en) 2012-03-20 2013-03-20 RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/033106 A-371-Of-International WO2013142578A1 (en) 2012-03-20 2013-03-20 RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/834,578 Continuation US11555187B2 (en) 2012-03-20 2017-12-07 RNA-directed DNA cleavage by the Cas9-crRNA complex

Publications (1)

Publication Number Publication Date
US20150050699A1 true US20150050699A1 (en) 2015-02-19

Family

ID=48050947

Family Applications (8)

Application Number Title Priority Date Filing Date
US14/385,241 Active US9637739B2 (en) 2012-03-20 2013-03-15 RNA-directed DNA cleavage by the Cas9-crRNA complex
US14/385,857 Abandoned US20150050699A1 (en) 2012-03-20 2013-03-20 RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX
US14/683,443 Abandoned US20150240261A1 (en) 2012-03-20 2015-04-10 RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX
US14/743,764 Abandoned US20150291961A1 (en) 2012-03-20 2015-06-18 RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX
US15/834,578 Active US11555187B2 (en) 2012-03-20 2017-12-07 RNA-directed DNA cleavage by the Cas9-crRNA complex
US16/148,783 Active US10844378B2 (en) 2012-03-20 2018-10-01 RNA-directed DNA cleavage by the Cas9-crRNA complex
US17/857,480 Pending US20230123754A1 (en) 2012-03-20 2022-07-05 RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX
US18/065,006 Pending US20230272394A1 (en) 2012-03-20 2022-12-13 RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/385,241 Active US9637739B2 (en) 2012-03-20 2013-03-15 RNA-directed DNA cleavage by the Cas9-crRNA complex

Family Applications After (6)

Application Number Title Priority Date Filing Date
US14/683,443 Abandoned US20150240261A1 (en) 2012-03-20 2015-04-10 RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX
US14/743,764 Abandoned US20150291961A1 (en) 2012-03-20 2015-06-18 RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX
US15/834,578 Active US11555187B2 (en) 2012-03-20 2017-12-07 RNA-directed DNA cleavage by the Cas9-crRNA complex
US16/148,783 Active US10844378B2 (en) 2012-03-20 2018-10-01 RNA-directed DNA cleavage by the Cas9-crRNA complex
US17/857,480 Pending US20230123754A1 (en) 2012-03-20 2022-07-05 RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX
US18/065,006 Pending US20230272394A1 (en) 2012-03-20 2022-12-13 RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX

Country Status (16)

Country Link
US (8) US9637739B2 (en)
EP (2) EP3594341A1 (en)
JP (3) JP6423338B2 (en)
CN (2) CN104520429B (en)
BR (1) BR112014023353A2 (en)
CA (2) CA2867849C (en)
DK (1) DK2828386T3 (en)
EA (1) EA029544B1 (en)
ES (1) ES2749108T3 (en)
HK (1) HK1206392A1 (en)
HU (1) HUE046295T2 (en)
IN (1) IN2014DN07846A (en)
MX (2) MX370435B (en)
PL (1) PL2828386T3 (en)
PT (1) PT2828386T (en)
WO (1) WO2013142578A1 (en)

Cited By (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140315985A1 (en) * 2013-03-14 2014-10-23 Caribou Biosciences, Inc. Compositions and methods of nucleic acid-targeting nucleic acids
WO2015184259A1 (en) 2014-05-30 2015-12-03 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods to treat latent viral infections
US9228207B2 (en) 2013-09-06 2016-01-05 President And Fellows Of Harvard College Switchable gRNAs comprising aptamers
US9322006B2 (en) 2011-07-22 2016-04-26 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9388430B2 (en) 2013-09-06 2016-07-12 President And Fellows Of Harvard College Cas9-recombinase fusion proteins and uses thereof
WO2016141224A1 (en) 2015-03-03 2016-09-09 The General Hospital Corporation Engineered crispr-cas9 nucleases with altered pam specificity
US20160289700A1 (en) * 2013-10-30 2016-10-06 North Carolina State University Compositions and methods related to a type-ii crispr-cas system in lactobacillus buchneri
WO2016186745A1 (en) * 2015-05-15 2016-11-24 Ge Healthcare Dharmacon, Inc. Synthetic single guide rna for cas9-mediated gene editing
US9512446B1 (en) 2015-08-28 2016-12-06 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
WO2016196282A1 (en) 2015-05-29 2016-12-08 Agenovir Corporation Compositions and methods for cell targeted hpv treatment
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
US9567604B2 (en) 2013-03-15 2017-02-14 The General Hospital Corporation Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing
US9580727B1 (en) 2015-08-07 2017-02-28 Caribou Biosciences, Inc. Compositions and methods of engineered CRISPR-Cas9 systems using split-nexus Cas9-associated polynucleotides
WO2017040348A1 (en) 2015-08-28 2017-03-09 The General Hospital Corporation Engineered crispr-cas9 nucleases
US9677090B2 (en) 2015-10-23 2017-06-13 Caribou Biosciences, Inc. Engineered nucleic-acid targeting nucleic acids
US9816093B1 (en) 2016-12-06 2017-11-14 Caribou Biosciences, Inc. Engineered nucleic acid-targeting nucleic acids
US9816080B2 (en) 2014-10-31 2017-11-14 President And Fellows Of Harvard College Delivery of CAS9 via ARRDC1-mediated microvesicles (ARMMs)
US9834791B2 (en) 2013-11-07 2017-12-05 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAS
US9840699B2 (en) 2013-12-12 2017-12-12 President And Fellows Of Harvard College Methods for nucleic acid editing
WO2018005445A1 (en) 2016-06-27 2018-01-04 The Broad Institute, Inc. Compositions and methods for detecting and treating diabetes
US9888673B2 (en) 2014-12-10 2018-02-13 Regents Of The University Of Minnesota Genetically modified cells, tissues, and organs for treating disease
US9926546B2 (en) 2015-08-28 2018-03-27 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
WO2018071892A1 (en) 2016-10-14 2018-04-19 Joung J Keith Epigenetically regulated site-specific nucleases
US10000772B2 (en) 2012-05-25 2018-06-19 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10011850B2 (en) 2013-06-21 2018-07-03 The General Hospital Corporation Using RNA-guided FokI Nucleases (RFNs) to increase specificity for RNA-Guided Genome Editing
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
WO2018195545A2 (en) 2017-04-21 2018-10-25 The General Hospital Corporation Variants of cpf1 (cas12a) with altered pam specificity
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10117911B2 (en) 2015-05-29 2018-11-06 Agenovir Corporation Compositions and methods to treat herpes simplex virus infections
WO2018218206A1 (en) 2017-05-25 2018-11-29 The General Hospital Corporation Bipartite base editor (bbe) architectures and type-ii-c-cas9 zinc finger editing
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10166255B2 (en) 2015-07-31 2019-01-01 Regents Of The University Of Minnesota Intracellular genomic transplant and methods of therapy
US10195273B2 (en) 2016-06-05 2019-02-05 Snipr Technologies Limited Selectively altering microbiota for immune modulation
US10428319B2 (en) 2017-06-09 2019-10-01 Editas Medicine, Inc. Engineered Cas9 nucleases
WO2019195738A1 (en) 2018-04-06 2019-10-10 Children's Medical Center Corporation Compositions and methods for somatic cell reprogramming and modulating imprinting
US10450584B2 (en) 2014-08-28 2019-10-22 North Carolina State University Cas9 proteins and guiding features for DNA targeting and genome editing
US10463049B2 (en) 2015-05-06 2019-11-05 Snipr Technologies Limited Altering microbial populations and modifying microbiota
US10501794B2 (en) 2014-06-23 2019-12-10 The General Hospital Corporation Genomewide unbiased identification of DSBs evaluated by sequencing (GUIDE-seq)
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10526589B2 (en) 2013-03-15 2020-01-07 The General Hospital Corporation Multiplex guide RNAs
US10544405B2 (en) 2013-01-16 2020-01-28 Emory University Cas9-nucleic acid complexes and uses related thereto
US10711267B2 (en) 2018-10-01 2020-07-14 North Carolina State University Recombinant type I CRISPR-Cas system
US10731181B2 (en) 2012-12-06 2020-08-04 Sigma, Aldrich Co. LLC CRISPR-based genome modification and regulation
US10738303B2 (en) 2015-09-30 2020-08-11 The General Hospital Corporation Comprehensive in vitro reporting of cleavage events by sequencing (CIRCLE-seq)
WO2020163396A1 (en) 2019-02-04 2020-08-13 The General Hospital Corporation Adenine dna base editor variants with reduced off-target rna editing
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10760075B2 (en) 2018-04-30 2020-09-01 Snipr Biome Aps Treating and preventing microbial infections
US10787654B2 (en) 2014-01-24 2020-09-29 North Carolina State University Methods and compositions for sequence guiding Cas9 targeting
US10829787B2 (en) 2015-10-14 2020-11-10 Life Technologies Corporation Ribonucleoprotein transfection agents
US10851380B2 (en) 2012-10-23 2020-12-01 Toolgen Incorporated Methods for cleaving a target DNA using a guide RNA specific for the target DNA and Cas protein-encoding nucleic acid or Cas protein
US10912797B2 (en) 2016-10-18 2021-02-09 Intima Bioscience, Inc. Tumor infiltrating lymphocytes and methods of therapy
US11028429B2 (en) 2015-09-11 2021-06-08 The General Hospital Corporation Full interrogation of nuclease DSBs and sequencing (FIND-seq)
US11098325B2 (en) 2017-06-30 2021-08-24 Intima Bioscience, Inc. Adeno-associated viral vectors for gene therapy
US11155823B2 (en) 2015-06-15 2021-10-26 North Carolina State University Methods and compositions for efficient delivery of nucleic acids and RNA-based antimicrobials
WO2021224633A1 (en) 2020-05-06 2021-11-11 Orchard Therapeutics (Europe) Limited Treatment for neurodegenerative diseases
US11236313B2 (en) 2016-04-13 2022-02-01 Editas Medicine, Inc. Cas9 fusion molecules, gene editing systems, and methods of use thereof
US11261451B2 (en) 2015-05-29 2022-03-01 North Carolina State University Methods for screening bacteria, archaea, algae, and yeast using CRISPR nucleic acids
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11286468B2 (en) 2017-08-23 2022-03-29 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US11286480B2 (en) 2015-09-28 2022-03-29 North Carolina State University Methods and compositions for sequence specific antimicrobials
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11371030B2 (en) 2017-05-31 2022-06-28 The University Of Tokyo Modified Cas9 protein and use thereof
US11390884B2 (en) 2015-05-11 2022-07-19 Editas Medicine, Inc. Optimized CRISPR/cas9 systems and methods for gene editing in stem cells
US11414657B2 (en) 2015-06-29 2022-08-16 Ionis Pharmaceuticals, Inc. Modified CRISPR RNA and modified single CRISPR RNA and uses thereof
US11439712B2 (en) 2014-04-08 2022-09-13 North Carolina State University Methods and compositions for RNA-directed repression of transcription using CRISPR-associated genes
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11499151B2 (en) 2017-04-28 2022-11-15 Editas Medicine, Inc. Methods and systems for analyzing guide RNA molecules
US11530396B2 (en) 2017-09-05 2022-12-20 The University Of Tokyo Modified CAS9 protein, and use thereof
US11542466B2 (en) 2015-12-22 2023-01-03 North Carolina State University Methods and compositions for delivery of CRISPR based antimicrobials
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11578333B2 (en) 2018-10-14 2023-02-14 Snipr Biome Aps Single-vector type I vectors
US11597924B2 (en) 2016-03-25 2023-03-07 Editas Medicine, Inc. Genome editing systems comprising repair-modulating enzyme molecules and methods of their use
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11667911B2 (en) 2015-09-24 2023-06-06 Editas Medicine, Inc. Use of exonucleases to improve CRISPR/CAS-mediated genome editing
US11680268B2 (en) 2014-11-07 2023-06-20 Editas Medicine, Inc. Methods for improving CRISPR/Cas-mediated genome-editing
EP4198124A1 (en) 2021-12-15 2023-06-21 Versitech Limited Engineered cas9-nucleases and method of use thereof
US11725228B2 (en) 2017-10-11 2023-08-15 The General Hospital Corporation Methods for detecting site-specific and spurious genomic deamination induced by base editing technologies
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11730823B2 (en) 2016-10-03 2023-08-22 President And Fellows Of Harvard College Delivery of therapeutic RNAs via ARRDC1-mediated microvesicles
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11845987B2 (en) 2018-04-17 2023-12-19 The General Hospital Corporation Highly sensitive in vitro assays to define substrate preferences and sites of nucleic acid cleaving agents
US11866726B2 (en) 2017-07-14 2024-01-09 Editas Medicine, Inc. Systems and methods for targeted integration and genome editing and detection thereof using integrated priming sites
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11911415B2 (en) 2015-06-09 2024-02-27 Editas Medicine, Inc. CRISPR/Cas-related methods and compositions for improving transplantation
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US11926817B2 (en) 2019-08-09 2024-03-12 Nutcracker Therapeutics, Inc. Microfluidic apparatus and methods of use thereof

Families Citing this family (267)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2569425B1 (en) 2010-05-10 2016-07-06 The Regents of The University of California Endoribonuclease compositions and methods of use thereof
US11523934B2 (en) 2011-02-04 2022-12-13 Seed Health, Inc. Method and system to facilitate the growth of desired bacteria in a human's mouth
US11844720B2 (en) 2011-02-04 2023-12-19 Seed Health, Inc. Method and system to reduce the likelihood of dental caries and halitosis
US11951139B2 (en) 2015-11-30 2024-04-09 Seed Health, Inc. Method and system for reducing the likelihood of osteoporosis
US11951140B2 (en) 2011-02-04 2024-04-09 Seed Health, Inc. Modulation of an individual's gut microbiome to address osteoporosis and bone disease
US11191665B2 (en) 2011-02-04 2021-12-07 Joseph E. Kovarik Method and system for reducing the likelihood of a porphyromonas gingivalis infection in a human being
US10687975B2 (en) 2011-02-04 2020-06-23 Joseph E. Kovarik Method and system to facilitate the growth of desired bacteria in a human's mouth
US10583033B2 (en) 2011-02-04 2020-03-10 Katherine Rose Kovarik Method and system for reducing the likelihood of a porphyromonas gingivalis infection in a human being
US11021737B2 (en) 2011-12-22 2021-06-01 President And Fellows Of Harvard College Compositions and methods for analyte detection
GB201122458D0 (en) 2011-12-30 2012-02-08 Univ Wageningen Modified cascade ribonucleoproteins and uses thereof
US9637739B2 (en) 2012-03-20 2017-05-02 Vilnius University RNA-directed DNA cleavage by the Cas9-crRNA complex
CA2869016C (en) 2012-04-25 2020-05-05 Regeneron Pharmaceuticals, Inc. Nuclease-mediated targeting with large targeting vectors
EP2877213B1 (en) * 2012-07-25 2020-12-02 The Broad Institute, Inc. Inducible dna binding proteins and genome perturbation tools and applications thereof
PL2931898T3 (en) * 2012-12-12 2016-09-30 Le Cong Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains
PT2784162E (en) 2012-12-12 2015-08-27 Broad Inst Inc Engineering of systems, methods and optimized guide compositions for sequence manipulation
IL239317B (en) 2012-12-12 2022-07-01 Broad Inst Inc Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications
EP3825401A1 (en) 2012-12-12 2021-05-26 The Broad Institute, Inc. Crispr-cas component systems, methods and compositions for sequence manipulation
WO2014093694A1 (en) * 2012-12-12 2014-06-19 The Broad Institute, Inc. Crispr-cas nickase systems, methods and compositions for sequence manipulation in eukaryotes
US8697359B1 (en) * 2012-12-12 2014-04-15 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products
WO2014093709A1 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Methods, models, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof
KR20150105634A (en) 2012-12-12 2015-09-17 더 브로드 인스티튜트, 인코퍼레이티드 Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation
MX2015007743A (en) 2012-12-17 2015-12-07 Harvard College Rna-guided human genome engineering.
US10138509B2 (en) 2013-03-12 2018-11-27 President And Fellows Of Harvard College Method for generating a three-dimensional nucleic acid containing matrix
US9902973B2 (en) 2013-04-11 2018-02-27 Caribou Biosciences, Inc. Methods of modifying a target nucleic acid with an argonaute
BR112015026197B1 (en) 2013-04-16 2022-12-06 Regeneron Pharmaceuticals, Inc METHOD FOR MARKED MODIFICATION OF A GENOMIC LOCUS OF INTEREST IN A PLURIPOTENT RAT CELL
US9873907B2 (en) 2013-05-29 2018-01-23 Agilent Technologies, Inc. Method for fragmenting genomic DNA using CAS9
ES2670531T3 (en) * 2013-05-29 2018-05-30 Cellectis S.A. A method to produce an accurate DNA cleavage using the nickase activity of Cas9
US9267135B2 (en) 2013-06-04 2016-02-23 President And Fellows Of Harvard College RNA-guided transcriptional regulation
CN113425857A (en) 2013-06-17 2021-09-24 布罗德研究所有限公司 Delivery and use of CRISPR-CAS systems, vectors and compositions for liver targeting and therapy
KR20160044457A (en) * 2013-06-17 2016-04-25 더 브로드 인스티튜트, 인코퍼레이티드 Delivery, engineering and optimization of tandem guide systems, methods and compositions for sequence manipulation
CN105492611A (en) 2013-06-17 2016-04-13 布罗德研究所有限公司 Optimized CRISPR-CAS double nickase systems, methods and compositions for sequence manipulation
EP3597755A1 (en) 2013-06-17 2020-01-22 The Broad Institute, Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using viral components
WO2014204727A1 (en) 2013-06-17 2014-12-24 The Broad Institute Inc. Functional genomics using crispr-cas systems, compositions methods, screens and applications thereof
US10329587B2 (en) 2013-07-10 2019-06-25 President And Fellows Of Harvard College Orthogonal Cas9 proteins for RNA-guided gene regulation and editing
US11306328B2 (en) 2013-07-26 2022-04-19 President And Fellows Of Harvard College Genome engineering
US10421957B2 (en) 2013-07-29 2019-09-24 Agilent Technologies, Inc. DNA assembly using an RNA-programmable nickase
CN105829536A (en) 2013-08-22 2016-08-03 纳幕尔杜邦公司 Methods for producing genetic modifications in a plant genome without incorporating a selectable transgene marker, and compositions thereof
TW201542816A (en) 2013-09-18 2015-11-16 Kymab Ltd Methods, cells & organisms
WO2015065964A1 (en) 2013-10-28 2015-05-07 The Broad Institute Inc. Functional genomics using crispr-cas systems, compositions, methods, screens and applications thereof
WO2015070193A1 (en) * 2013-11-11 2015-05-14 Liu Oliver Compositions and methods for targeted gene disruption in prokaryotes
US9074199B1 (en) 2013-11-19 2015-07-07 President And Fellows Of Harvard College Mutant Cas9 proteins
US10787684B2 (en) * 2013-11-19 2020-09-29 President And Fellows Of Harvard College Large gene excision and insertion
WO2015075056A1 (en) * 2013-11-19 2015-05-28 Thermo Fisher Scientific Baltics Uab Programmable enzymes for isolation of specific dna fragments
US10557151B2 (en) 2013-11-28 2020-02-11 Horizon Discovery Limited Somatic human cell line mutations
RU2725520C2 (en) 2013-12-11 2020-07-02 Регенерон Фармасьютикалс, Инк. Methods and compositions for genome targeted modification
EP3460063B1 (en) 2013-12-11 2024-03-13 Regeneron Pharmaceuticals, Inc. Methods and compositions for the targeted modification of a genome
BR112016013547A2 (en) 2013-12-12 2017-10-03 Broad Inst Inc COMPOSITIONS AND METHODS OF USE OF CRISPR-CAS SYSTEMS IN NUCLEOTIDE REPEAT DISORDERS
WO2015089364A1 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Crystal structure of a crispr-cas system, and uses thereof
WO2015089486A2 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Systems, methods and compositions for sequence manipulation with optimized functional crispr-cas systems
CA2932478A1 (en) 2013-12-12 2015-06-18 Massachusetts Institute Of Technology Delivery, use and therapeutic applications of the crispr-cas systems and compositions for genome editing
WO2015089427A1 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Crispr-cas systems and methods for altering expression of gene products, structural information and inducible modular cas enzymes
PT3083958T (en) 2013-12-19 2019-06-27 Amyris Inc Methods for genomic integration
US11826388B2 (en) 2013-12-20 2023-11-28 Seed Health, Inc. Topical application of Lactobacillus crispatus to ameliorate barrier damage and inflammation
US11969445B2 (en) 2013-12-20 2024-04-30 Seed Health, Inc. Probiotic composition and method for controlling excess weight, obesity, NAFLD and NASH
US11529379B2 (en) 2013-12-20 2022-12-20 Seed Health, Inc. Method and system for reducing the likelihood of developing colorectal cancer in an individual human being
US11833177B2 (en) 2013-12-20 2023-12-05 Seed Health, Inc. Probiotic to enhance an individual's skin microbiome
US11642382B2 (en) 2013-12-20 2023-05-09 Seed Health, Inc. Method for treating an individual suffering from bladder cancer
US11839632B2 (en) 2013-12-20 2023-12-12 Seed Health, Inc. Topical application of CRISPR-modified bacteria to treat acne vulgaris
US11672835B2 (en) 2013-12-20 2023-06-13 Seed Health, Inc. Method for treating individuals having cancer and who are receiving cancer immunotherapy
US9963689B2 (en) 2013-12-31 2018-05-08 The Regents Of The University Of California Cas9 crystals and methods of use thereof
EP3094729A1 (en) * 2014-01-14 2016-11-23 Lam Therapeutics, Inc. Mutagenesis methods
CN111705365A (en) 2014-02-11 2020-09-25 科罗拉多州立大学董事会(法人团体) CRISPR-supported multiplexed genome engineering
CN113215219A (en) 2014-02-13 2021-08-06 宝生物工程(美国) 有限公司 Methods of depleting target molecules from an initial collection of nucleic acids, and compositions and kits for practicing same
AU2015219167A1 (en) 2014-02-18 2016-09-08 Duke University Compositions for the inactivation of virus replication and methods of making and using the same
EP3114227B1 (en) 2014-03-05 2021-07-21 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating usher syndrome and retinitis pigmentosa
DK3116997T3 (en) 2014-03-10 2019-08-19 Editas Medicine Inc CRISPR / CAS-RELATED PROCEDURES AND COMPOSITIONS TO TREAT LEVER'S CONGENITAL AMAUROSIS 10 (LCA10)
US11339437B2 (en) 2014-03-10 2022-05-24 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
US11141493B2 (en) 2014-03-10 2021-10-12 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
WO2015148863A2 (en) 2014-03-26 2015-10-01 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating sickle cell disease
GB201406968D0 (en) * 2014-04-17 2014-06-04 Green Biologics Ltd Deletion mutants
GB201406970D0 (en) 2014-04-17 2014-06-04 Green Biologics Ltd Targeted mutations
US20170191123A1 (en) * 2014-05-28 2017-07-06 Toolgen Incorporated Method for Sensitive Detection of Target DNA Using Target-Specific Nuclease
CN106795521B (en) 2014-06-06 2021-06-04 瑞泽恩制药公司 Methods and compositions for modifying targeted loci
DK3155099T3 (en) * 2014-06-23 2018-05-07 Regeneron Pharma NUCLEASE MEDIATED DNA COLLECTION
CA3172866A1 (en) 2014-06-26 2015-12-30 Regeneron Pharamaceuticals, Inc. Methods and compositions for targeted genetic modifications and methods of use
AU2015288157A1 (en) 2014-07-11 2017-01-19 E. I. Du Pont De Nemours And Company Compositions and methods for producing plants resistant to glyphosate herbicide
EP3178935B1 (en) * 2014-08-06 2022-12-21 Toolgen Incorporated Genome editing using campylobacter jejuni crispr/cas system-derived rgen
WO2016025759A1 (en) 2014-08-14 2016-02-18 Shen Yuelei Dna knock-in system
EP3183358B1 (en) * 2014-08-19 2020-10-07 President and Fellows of Harvard College Rna-guided systems for probing and mapping of nucleic acids
US9970030B2 (en) 2014-08-27 2018-05-15 Caribou Biosciences, Inc. Methods for increasing CAS9-mediated engineering efficiency
WO2016036754A1 (en) 2014-09-02 2016-03-10 The Regents Of The University Of California Methods and compositions for rna-directed target dna modification
EP3191595B1 (en) 2014-09-12 2019-12-25 E. I. du Pont de Nemours and Company Generation of site-specific-integration sites for complex trait loci in corn and soybean, and methods of use
CN107205353B (en) 2014-09-26 2021-03-19 谱赛科美国股份有限公司 Single Nucleotide Polymorphism (SNP) markers for stevia
ES2741387T3 (en) 2014-10-15 2020-02-10 Regeneron Pharma Methods and compositions for generating or maintaining pluripotent cells
WO2016065341A1 (en) 2014-10-24 2016-04-28 Avectas Limited Delivery across cell plasma membranes
EP3222728B1 (en) 2014-11-19 2021-07-14 Institute for Basic Science Method for regulating gene expression using cas9 protein expressed from two vectors
KR20230070319A (en) 2014-11-21 2023-05-22 리제너론 파마슈티칼스 인코포레이티드 METHODS AND COMPOSITIONS FOR TARGETED GENETIC MODIFICATION USING PAIRED GUIDE RNAs
KR20240013283A (en) 2014-12-03 2024-01-30 애질런트 테크놀로지스, 인크. Guide rna with chemical modifications
EP3230451B1 (en) 2014-12-12 2021-04-07 The Broad Institute, Inc. Protected guide rnas (pgrnas)
CA2968336C (en) * 2014-12-17 2021-11-23 Proqr Therapeutics Ii B.V. Construct for site directed editing of an adenosine nucleotide in target rna
US10196613B2 (en) 2014-12-19 2019-02-05 Regeneron Pharmaceuticals, Inc. Stem cells for modeling type 2 diabetes
US11326184B2 (en) 2014-12-19 2022-05-10 Regeneron Pharmaceuticals, Inc. Methods and compositions for targeted genetic modification through single-step multiple targeting
EP3234200B1 (en) 2014-12-20 2021-07-07 Arc Bio, LLC Method for targeted depletion of nucleic acids using crispr/cas system proteins
WO2016109840A2 (en) 2014-12-31 2016-07-07 Synthetic Genomics, Inc. Compositions and methods for high efficiency in vivo genome editing
CN107406842B (en) 2015-01-09 2021-05-11 生物辐射实验室股份有限公司 Detecting genome editing
BR112017015988B1 (en) 2015-01-27 2024-02-27 Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences METHODS FOR SITE-TARGETED MODIFICATION OF A TARGET FRAGMENT OF A TARGET GENE IN A WHOLE PLANT AND FOR OBTAINING A TRANSGENE-FREE MUTANT PLANT
KR20170126875A (en) 2015-01-28 2017-11-20 파이어니어 하이 부렛드 인터내쇼날 인코포레이팃드 CRISPR hybrid DNA / RNA polynucleotides and methods of use
BR112017017260A2 (en) 2015-03-27 2018-04-17 Du Pont dna constructs, vector, cell, plants, seed, rna expression method, and target site modification method
KR20240038141A (en) 2015-04-06 2024-03-22 더 보드 어브 트러스티스 어브 더 리랜드 스탠포드 주니어 유니버시티 Chemically modified guide rnas for crispr/cas-mediated gene regulation
US11180793B2 (en) 2015-04-24 2021-11-23 Editas Medicine, Inc. Evaluation of Cas9 molecule/guide RNA molecule complexes
WO2016178207A1 (en) 2015-05-04 2016-11-10 Ramot At Tel-Aviv University Ltd. Methods and kits for fragmenting dna
BR112017024534A2 (en) * 2015-05-15 2018-07-24 Pioneer Hi Bred Int innovative cas9 rna guide / endonuclease systems
EP3095870A1 (en) 2015-05-19 2016-11-23 Kws Saat Se Methods for the in planta transformation of plants and manufacturing processes and products based and obtainable therefrom
CN107750125A (en) 2015-06-02 2018-03-02 孟山都技术有限公司 For by the composition and method in delivery of polynucleotides to plant
US10392607B2 (en) 2015-06-03 2019-08-27 The Regents Of The University Of California Cas9 variants and methods of use thereof
WO2016196887A1 (en) 2015-06-03 2016-12-08 Board Of Regents Of The University Of Nebraska Dna editing using single-stranded dna
JP2018521642A (en) 2015-06-12 2018-08-09 ロンザ ウォカーズビル インコーポレーティッド A method for nuclear reprogramming using synthetic transcription factors
EP3929287A3 (en) * 2015-06-18 2022-04-13 The Broad Institute, Inc. Crispr enzyme mutations reducing off-target effects
WO2016205759A1 (en) 2015-06-18 2016-12-22 The Broad Institute Inc. Engineering and optimization of systems, methods, enzymes and guide scaffolds of cas9 orthologs and variants for sequence manipulation
KR20200078685A (en) 2015-08-14 2020-07-01 인스티튜트 오브 제네틱스 앤드 디벨롭멘털 바이오롤지, 차이니즈 아카데미 오브 사이언시스 Method for obtaining glyphosate-resistant rice by site-directed nucleotide substitution
CA2995983A1 (en) 2015-08-19 2017-02-23 Arc Bio, Llc Capture of nucleic acids using a nucleic acid-guided nuclease-based system
EP3347464B1 (en) 2015-09-08 2024-01-24 University of Massachusetts Dnase h activity of neisseria meningitidis cas9
AU2016349288A1 (en) 2015-11-03 2018-05-31 President And Fellows Of Harvard College Method and apparatus for volumetric imaging of a three-dimensional nucleic acid containing matrix
WO2017079428A1 (en) 2015-11-04 2017-05-11 President And Fellows Of Harvard College Site specific germline modification
US11566052B2 (en) 2015-11-11 2023-01-31 Lonza Ltd. CRISPR-associated (Cas) proteins with reduced immunogenicity
KR101906491B1 (en) * 2015-11-30 2018-12-05 기초과학연구원 Composition for Genome Editing comprising Cas9 derived from F. novicida
SG11201803593QA (en) 2015-12-04 2018-06-28 Caribou Biosciences Inc Engineered nucleic-acid targeting nucleic acids
US9988624B2 (en) 2015-12-07 2018-06-05 Zymergen Inc. Microbial strain improvement by a HTP genomic engineering platform
US11208649B2 (en) 2015-12-07 2021-12-28 Zymergen Inc. HTP genomic engineering platform
WO2017100376A2 (en) 2015-12-07 2017-06-15 Zymergen, Inc. Promoters from corynebacterium glutamicum
AU2016380836A1 (en) * 2015-12-30 2018-07-12 Avectas Limited Vector-free delivery of gene editing proteins and compositions to cells and tissues
IL304088A (en) 2016-01-11 2023-08-01 Univ Leland Stanford Junior Chimeric Proteins- Containing Systems and Uses Thereof in Regulating Gene Expression
MY194127A (en) 2016-01-11 2022-11-14 Univ Leland Stanford Junior Chimeric proteins and methods of immunotherapy
RU2021114137A (en) 2016-01-27 2021-05-25 Онкорус, Инк. ONCOLYTIC VIRAL VECTORS AND THEIR APPLICATION
US11326161B2 (en) 2016-02-18 2022-05-10 President And Fellows Of Harvard College Methods and systems of molecular recording by CRISPR-Cas system
WO2017147278A1 (en) 2016-02-25 2017-08-31 The Children's Medical Center Corporation Customized class switch of immunoglobulin genes in lymphoma and hybridoma by crispr/cas9 technology
EP3423083A4 (en) * 2016-03-04 2019-10-02 Indoor Biotechnologies Inc. Fel d 1 knockouts and associated compositions and methods based on crispr-cas9 genomic editing
EP3433364A1 (en) 2016-03-25 2019-01-30 Editas Medicine, Inc. Systems and methods for treating alpha 1-antitrypsin (a1at) deficiency
AU2017257624B2 (en) 2016-04-25 2023-05-25 President And Fellows Of Harvard College Hybridization chain reaction methods for in situ molecular detection
CN105907785B (en) * 2016-05-05 2020-02-07 苏州吉玛基因股份有限公司 Application of chemically synthesized crRNA in CRISPR/Cpf1 system in gene editing
WO2017201311A2 (en) 2016-05-18 2017-11-23 Amyris, Inc. Compositions and methods for genomic integration of nucleic acids into exogenous landing pads
KR20240016444A (en) 2016-05-20 2024-02-06 리제너론 파마슈티칼스 인코포레이티드 Methods for breaking immunological tolerance using multiple guide rnas
CN109983124B (en) 2016-06-02 2022-09-16 西格马-奥尔德里奇有限责任公司 Enhancing targeted genomic modifications using programmable DNA binding proteins
US10767175B2 (en) 2016-06-08 2020-09-08 Agilent Technologies, Inc. High specificity genome editing using chemically modified guide RNAs
US11293021B1 (en) 2016-06-23 2022-04-05 Inscripta, Inc. Automated cell processing methods, modules, instruments, and systems
LT3474669T (en) 2016-06-24 2022-06-10 The Regents Of The University Of Colorado, A Body Corporate Methods for generating barcoded combinatorial libraries
JP2019519241A (en) 2016-06-30 2019-07-11 ザイマージェン インコーポレイテッド Method for producing a glucose permease library and its use
KR102345899B1 (en) 2016-06-30 2021-12-31 지머젠 인코포레이티드 Methods for generating bacterial hemoglobin libraries and uses thereof
BR112019001783A2 (en) 2016-07-29 2019-05-07 Regeneron Pharmaceuticals, Inc. nonhuman mammal, and methods for producing the nonhuman mammal and screening a compound.
US11566263B2 (en) 2016-08-02 2023-01-31 Editas Medicine, Inc. Compositions and methods for treating CEP290 associated disease
US11078481B1 (en) 2016-08-03 2021-08-03 KSQ Therapeutics, Inc. Methods for screening for cancer targets
US11078483B1 (en) 2016-09-02 2021-08-03 KSQ Therapeutics, Inc. Methods for measuring and improving CRISPR reagent function
US20190225974A1 (en) 2016-09-23 2019-07-25 BASF Agricultural Solutions Seed US LLC Targeted genome optimization in plants
GB201617559D0 (en) 2016-10-17 2016-11-30 University Court Of The University Of Edinburgh The Swine comprising modified cd163 and associated methods
WO2018144097A1 (en) 2016-11-04 2018-08-09 Akeagen Llc Genetically modified non-human animals and methods for producing heavy chain-only antibodies
WO2018131551A1 (en) 2017-01-13 2018-07-19 学校法人自治医科大学 Aav vector for disrupting clotting-related factor gene on liver genome
CN108314736B (en) * 2017-01-18 2021-08-31 李燕强 Method for promoting RNA degradation
KR102619197B1 (en) 2017-01-23 2024-01-03 리제너론 파마슈티칼스 인코포레이티드 HSD17B13 variant and its uses
WO2018170184A1 (en) 2017-03-14 2018-09-20 Editas Medicine, Inc. Systems and methods for the treatment of hemoglobinopathies
WO2018195129A1 (en) 2017-04-17 2018-10-25 University Of Maryland, College Park Embryonic cell cultures and methods of using the same
WO2018197520A1 (en) 2017-04-24 2018-11-01 Dupont Nutrition Biosciences Aps Methods and compositions of anti-crispr proteins for use in plants
WO2018209158A2 (en) 2017-05-10 2018-11-15 Editas Medicine, Inc. Crispr/rna-guided nuclease systems and methods
EP3625338A4 (en) * 2017-05-19 2021-01-20 Tsinghua University Engineering of a minimal sacas9 crispr/cas system for gene editing and transcriptional regulation optimized by enhanced guide rna
ES2875579T3 (en) 2017-06-06 2021-11-10 Zymergen Inc HTP genomic engineering platform to improve Escherichia coli
JP7227162B2 (en) 2017-06-06 2023-02-21 ザイマージェン インコーポレイテッド HTP Genome Engineering Platform for Improving Fungal Strains
JP2020528738A (en) 2017-06-20 2020-10-01 ジエンス ヘンルイ メデイシンカンパニー リミテッドJiangsu Hengrui Medicine Co.,Ltd. A method for knocking out a target gene in T cells in vitro and the crRNA used in the above method.
US10011849B1 (en) 2017-06-23 2018-07-03 Inscripta, Inc. Nucleic acid-guided nucleases
US9982279B1 (en) 2017-06-23 2018-05-29 Inscripta, Inc. Nucleic acid-guided nucleases
RU2021123421A (en) 2017-06-30 2021-09-10 Инскрипта, Инк. AUTOMATED CELL PROCESSING METHODS, MODULES, TOOLS AND SYSTEMS
CA3070299A1 (en) 2017-07-26 2019-01-31 Oncorus, Inc. Oncolytic viral vectors and uses thereof
EP3585161A1 (en) 2017-07-31 2020-01-01 Regeneron Pharmaceuticals, Inc. Assessment of crispr/cas-induced recombination with an exogenous donor nucleic acid in vivo
BR112020001364A2 (en) 2017-07-31 2020-08-11 Regeneron Pharmaceuticals, Inc. methods to test and modify the capacity of a crispr / cas nuclease.
WO2019028023A2 (en) 2017-07-31 2019-02-07 Regeneron Pharmaceuticals, Inc. Methods and compositions for assessing crispr/cas-mediated disruption or excision and crispr/cas-induced recombination with an exogenous donor nucleic acid in vivo
US10738327B2 (en) 2017-08-28 2020-08-11 Inscripta, Inc. Electroporation cuvettes for automation
JP7139419B2 (en) 2017-09-29 2022-09-20 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Non-Human Animals Containing Humanized TTR Loci and Methods of Use
US10443074B2 (en) 2017-09-30 2019-10-15 Inscripta, Inc. Modification of cells by introduction of exogenous material
EP3710583A1 (en) 2017-11-16 2020-09-23 Astrazeneca AB Compositions and methods for improving the efficacy of cas9-based knock-in strategies
CN111566121A (en) 2018-01-12 2020-08-21 巴斯夫欧洲公司 Gene for determining number of spikelets per ear QTL on wheat 7a chromosome
KR102647714B1 (en) 2018-03-19 2024-03-18 리제너론 파마슈티칼스 인코포레이티드 Transcriptional regulation in animals using the CRISPR/Cas system
US10435662B1 (en) 2018-03-29 2019-10-08 Inscripta, Inc. Automated control of cell growth rates for induction and transformation
US10376889B1 (en) 2018-04-13 2019-08-13 Inscripta, Inc. Automated cell processing instruments comprising reagent cartridges
US10557216B2 (en) 2018-04-24 2020-02-11 Inscripta, Inc. Automated instrumentation for production of T-cell receptor peptide libraries
US10508273B2 (en) 2018-04-24 2019-12-17 Inscripta, Inc. Methods for identifying selective binding pairs
US10858761B2 (en) 2018-04-24 2020-12-08 Inscripta, Inc. Nucleic acid-guided editing of exogenous polynucleotides in heterologous cells
JP2021523745A (en) 2018-05-16 2021-09-09 シンテゴ コーポレイション Methods and systems for guide RNA design and use
EP3813974A4 (en) 2018-06-30 2022-08-03 Inscripta, Inc. Instruments, modules, and methods for improved detection of edited sequences in live cells
US11142740B2 (en) 2018-08-14 2021-10-12 Inscripta, Inc. Detection of nuclease edited sequences in automated modules and instruments
US10532324B1 (en) 2018-08-14 2020-01-14 Inscripta, Inc. Instruments, modules, and methods for improved detection of edited sequences in live cells
US10752874B2 (en) 2018-08-14 2020-08-25 Inscripta, Inc. Instruments, modules, and methods for improved detection of edited sequences in live cells
US20210189376A1 (en) 2018-08-29 2021-06-24 Amyris, Inc. Cells and methods for selection based assay
AU2019363487A1 (en) 2018-08-30 2021-04-15 Inscripta, Inc. Improved detection of nuclease edited sequences in automated modules and instruments
CN112654702A (en) 2018-09-07 2021-04-13 阿斯利康(瑞典)有限公司 Compositions and methods for improved nucleases
US11214781B2 (en) 2018-10-22 2022-01-04 Inscripta, Inc. Engineered enzyme
CN113227368B (en) 2018-10-22 2023-07-07 因思科瑞普特公司 Engineered enzymes
CA3117805A1 (en) 2018-10-31 2020-05-07 Zymergen Inc. Multiplexed deterministic assembly of dna libraries
US20220010321A1 (en) 2018-11-01 2022-01-13 Keygene N.V. Dual guide rna for crispr/cas genome editing in plants cells
AU2019390691A1 (en) 2018-11-28 2021-05-13 Keygene N.V. Targeted enrichment by endonuclease protection
KR20200071198A (en) 2018-12-10 2020-06-19 네오이뮨텍, 인코퍼레이티드 Development of new adoptive T cell immunotherapy by modification of Nrf2 expression
CN113166744A (en) 2018-12-14 2021-07-23 先锋国际良种公司 Novel CRISPR-CAS system for genome editing
EP3732291A1 (en) 2018-12-20 2020-11-04 Regeneron Pharmaceuticals, Inc. Nuclease-mediated repeat expansion
CN113728097A (en) * 2019-02-14 2021-11-30 宏基因组学知识产权技术有限责任公司 Enzymes with RUVC domains
CA3129871A1 (en) 2019-03-08 2020-09-17 Zymergen Inc. Iterative genome editing in microbes
US11053515B2 (en) 2019-03-08 2021-07-06 Zymergen Inc. Pooled genome editing in microbes
EP3769090B1 (en) 2019-03-18 2023-11-15 Regeneron Pharmaceuticals, Inc. Crispr/cas dropout screening platform to reveal genetic vulnerabilities associated with tau aggregation
WO2020190932A1 (en) 2019-03-18 2020-09-24 Regeneron Pharmaceuticals, Inc. Crispr/cas screening platform to identify genetic modifiers of tau seeding or aggregation
US10815467B2 (en) 2019-03-25 2020-10-27 Inscripta, Inc. Simultaneous multiplex genome editing in yeast
US11001831B2 (en) 2019-03-25 2021-05-11 Inscripta, Inc. Simultaneous multiplex genome editing in yeast
JP2022527766A (en) 2019-03-27 2022-06-06 パイオニア ハイ-ブレッド インターナショナル, インコーポレイテッド Transformation of extraplant fragments
CA3133361A1 (en) 2019-04-03 2020-10-08 Regeneron Pharmaceuticals, Inc. Methods and compositions for insertion of antibody coding sequences into a safe harbor locus
SG11202108524SA (en) 2019-04-04 2021-09-29 Regeneron Pharma Methods for scarless introduction of targeted modifications into targeting vectors
ES2966625T3 (en) 2019-04-04 2024-04-23 Regeneron Pharma Rodents comprising a humanized coagulation factor 12 locus
JP7426120B2 (en) 2019-04-05 2024-02-01 国立大学法人大阪大学 Method for producing knock-in cells
US20220162648A1 (en) 2019-04-12 2022-05-26 Astrazeneca Ab Compositions and methods for improved gene editing
JP2022534867A (en) 2019-06-04 2022-08-04 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Non-human animals containing humanized TTR loci with beta slip mutations and methods of use
EP3953477A4 (en) 2019-06-06 2022-06-22 Inscripta, Inc. Curing for recursive nucleic acid-guided cell editing
EP3796776A1 (en) 2019-06-07 2021-03-31 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized albumin locus
US11845957B2 (en) 2019-06-14 2023-12-19 Regeneron Pharmaceuticals, Inc. Models of tauopathy
US10907125B2 (en) 2019-06-20 2021-02-02 Inscripta, Inc. Flow through electroporation modules and instrumentation
CA3139124C (en) 2019-06-21 2023-01-31 Inscripta, Inc. Genome-wide rationally-designed mutations leading to enhanced lysine production in e. coli
US10927385B2 (en) 2019-06-25 2021-02-23 Inscripta, Inc. Increased nucleic-acid guided cell editing in yeast
WO2021050940A1 (en) 2019-09-13 2021-03-18 Regeneron Pharmaceuticals, Inc. Transcription modulation in animals using crispr/cas systems delivered by lipid nanoparticles
CN114746125A (en) 2019-11-08 2022-07-12 瑞泽恩制药公司 CRISPR and AAV strategies for X-linked juvenile retinoschisis therapy
WO2021102059A1 (en) 2019-11-19 2021-05-27 Inscripta, Inc. Methods for increasing observed editing in bacteria
WO2021108363A1 (en) 2019-11-25 2021-06-03 Regeneron Pharmaceuticals, Inc. Crispr/cas-mediated upregulation of humanized ttr allele
CN114787347A (en) 2019-12-10 2022-07-22 因思科瑞普特公司 Novel MAD nucleases
US10704033B1 (en) 2019-12-13 2020-07-07 Inscripta, Inc. Nucleic acid-guided nucleases
CA3157127A1 (en) 2019-12-18 2021-06-24 Aamir MIR Cascade/dcas3 complementation assays for in vivo detection of nucleic acid-guided nuclease edited cells
US10689669B1 (en) 2020-01-11 2020-06-23 Inscripta, Inc. Automated multi-module cell processing methods, instruments, and systems
WO2021154706A1 (en) 2020-01-27 2021-08-05 Inscripta, Inc. Electroporation modules and instrumentation
JP2023515671A (en) 2020-03-04 2023-04-13 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Methods and compositions for sensitizing tumor cells to immunotherapy
WO2021182917A1 (en) 2020-03-12 2021-09-16 기초과학연구원 Composition for inducing apoptosis of cells having genomic sequence variation and method for inducing apoptosis of cells by using composition
WO2021195079A1 (en) 2020-03-23 2021-09-30 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized ttr locus comprising a v30m mutation and methods of use
CN116096877A (en) * 2020-03-31 2023-05-09 宏基因组学公司 Class II type II CRISPR system
WO2021202938A1 (en) 2020-04-03 2021-10-07 Creyon Bio, Inc. Oligonucleotide-based machine learning
US20210332388A1 (en) 2020-04-24 2021-10-28 Inscripta, Inc. Compositions, methods, modules and instruments for automated nucleic acid-guided nuclease editing in mammalian cells
US11787841B2 (en) 2020-05-19 2023-10-17 Inscripta, Inc. Rationally-designed mutations to the thrA gene for enhanced lysine production in E. coli
EP4214314A1 (en) 2020-09-15 2023-07-26 Inscripta, Inc. Crispr editing to embed nucleic acid landing pads into genomes of live cells
JP2023543602A (en) 2020-10-06 2023-10-17 キージーン ナムローゼ フェンノートシャップ Targeted sequence addition
US20230416709A1 (en) 2020-11-06 2023-12-28 Editforce, Inc. Foki nuclease domain mutant
US11512297B2 (en) 2020-11-09 2022-11-29 Inscripta, Inc. Affinity tag for recombination protein recruitment
JP2023548979A (en) 2020-11-10 2023-11-21 インダストリアル マイクロブス, インコーポレイテッド Microorganisms capable of producing poly(HIBA) from feedstock
WO2022112316A1 (en) 2020-11-24 2022-06-02 Keygene N.V. Targeted enrichment using nanopore selective sequencing
US20240002839A1 (en) 2020-12-02 2024-01-04 Decibel Therapeutics, Inc. Crispr sam biosensor cell lines and methods of use thereof
CA3204158A1 (en) 2021-01-04 2022-07-07 Juhan Kim Mad nucleases
US11332742B1 (en) 2021-01-07 2022-05-17 Inscripta, Inc. Mad nucleases
US11884924B2 (en) 2021-02-16 2024-01-30 Inscripta, Inc. Dual strand nucleic acid-guided nickase editing
BR112023021051A2 (en) 2021-04-15 2023-12-26 Keygene Nv RECALCITRANT COREGENERATION PLANTS
WO2022219175A1 (en) 2021-04-15 2022-10-20 Keygene N.V. Mobile endonucleases for heritable mutations
WO2022240846A1 (en) 2021-05-10 2022-11-17 Sqz Biotechnologies Company Methods for delivering genome editing molecules to the nucleus or cytosol of a cell and uses thereof
WO2022248645A1 (en) 2021-05-27 2022-12-01 Astrazeneca Ab Cas9 effector proteins with enhanced stability
WO2022251644A1 (en) 2021-05-28 2022-12-01 Lyell Immunopharma, Inc. Nr4a3-deficient immune cells and uses thereof
US20230052243A1 (en) 2021-06-02 2023-02-16 Lyell Immunopharma, Inc. Nr4a-deficient cells expressing c-jun and uses thereof
US11814689B2 (en) 2021-07-21 2023-11-14 Montana State University Nucleic acid detection using type III CRISPR complex
KR20240055811A (en) 2021-09-10 2024-04-29 애질런트 테크놀로지스, 인크. Guide RNA with chemical modifications for prime editing
WO2023052508A2 (en) 2021-09-30 2023-04-06 Astrazeneca Ab Use of inhibitors to increase efficiency of crispr/cas insertions
WO2023064924A1 (en) 2021-10-14 2023-04-20 Codiak Biosciences, Inc. Modified producer cells for extracellular vesicle production
WO2023077053A2 (en) 2021-10-28 2023-05-04 Regeneron Pharmaceuticals, Inc. Crispr/cas-related methods and compositions for knocking out c5
WO2023097262A1 (en) * 2021-11-24 2023-06-01 Metagenomi, Inc. Endonuclease systems
WO2023108047A1 (en) 2021-12-08 2023-06-15 Regeneron Pharmaceuticals, Inc. Mutant myocilin disease model and uses thereof
GB202118058D0 (en) 2021-12-14 2022-01-26 Univ Warwick Methods to increase yields in crops
WO2023111225A1 (en) 2021-12-17 2023-06-22 Keygene N.V. Double decapitation of plants
WO2023129974A1 (en) 2021-12-29 2023-07-06 Bristol-Myers Squibb Company Generation of landing pad cell lines
WO2023150181A1 (en) 2022-02-01 2023-08-10 President And Fellows Of Harvard College Methods and compositions for treating cancer
WO2023150620A1 (en) 2022-02-02 2023-08-10 Regeneron Pharmaceuticals, Inc. Crispr-mediated transgene insertion in neonatal cells
WO2023212677A2 (en) 2022-04-29 2023-11-02 Regeneron Pharmaceuticals, Inc. Identification of tissue-specific extragenic safe harbors for gene therapy approaches
WO2023220603A1 (en) 2022-05-09 2023-11-16 Regeneron Pharmaceuticals, Inc. Vectors and methods for in vivo antibody production
WO2023225665A1 (en) 2022-05-19 2023-11-23 Lyell Immunopharma, Inc. Polynucleotides targeting nr4a3 and uses thereof
WO2023235726A2 (en) 2022-05-31 2023-12-07 Regeneron Pharmaceuticals, Inc. Crispr interference therapeutics for c9orf72 repeat expansion disease
WO2023235725A2 (en) 2022-05-31 2023-12-07 Regeneron Pharmaceuticals, Inc. Crispr-based therapeutics for c9orf72 repeat expansion disease
GB2621813A (en) 2022-06-30 2024-02-28 Univ Newcastle Preventing disease recurrence in Mitochondrial replacement therapy
WO2024026474A1 (en) 2022-07-29 2024-02-01 Regeneron Pharmaceuticals, Inc. Compositions and methods for transferrin receptor (tfr)-mediated delivery to the brain and muscle
WO2024031053A1 (en) 2022-08-05 2024-02-08 Regeneron Pharmaceuticals, Inc. Aggregation-resistant variants of tdp-43
WO2024064958A1 (en) 2022-09-23 2024-03-28 Lyell Immunopharma, Inc. Methods for culturing nr4a-deficient cells
WO2024064952A1 (en) 2022-09-23 2024-03-28 Lyell Immunopharma, Inc. Methods for culturing nr4a-deficient cells overexpressing c-jun
WO2024073606A1 (en) 2022-09-28 2024-04-04 Regeneron Pharmaceuticals, Inc. Antibody resistant modified receptors to enhance cell-based therapies
WO2024077174A1 (en) 2022-10-05 2024-04-11 Lyell Immunopharma, Inc. Methods for culturing nr4a-deficient cells
CN116617414B (en) * 2023-03-31 2024-04-05 中国农业大学 Liposome and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140242664A1 (en) * 2012-12-12 2014-08-28 The Broad Institute, Inc. Engineering of systems, methods and optimized guide compositions for sequence manipulation
US20140342456A1 (en) * 2012-12-17 2014-11-20 President And Fellows Of Harvard College RNA-Guided Human Genome Engineering
US20150275231A1 (en) * 2014-03-31 2015-10-01 Mice With Horns, Llc Method of Preventing or Reducing Virus Transmission in Animals
US20150284727A1 (en) * 2012-10-23 2015-10-08 Toolgen Incorporated Composition for cleaving a target dna comprising a guide rna specific for the target dna and cas protein-encoding nucleic acid or cas protein, and use thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862002A (en) * 1962-05-08 1975-01-21 Sanfar Lab Inc Production of physiologically active placental substances
AU2006282983B2 (en) 2005-08-26 2012-08-02 Dupont Nutrition Biosciences Aps Use
JP5932207B2 (en) 2007-03-02 2016-06-08 デュポン ニュートリション バイオサイエンシス エーピーエス Cultures with improved phage resistance
US20100076057A1 (en) 2008-09-23 2010-03-25 Northwestern University TARGET DNA INTERFERENCE WITH crRNA
AU2011256838B2 (en) * 2010-05-17 2014-10-09 Sangamo Therapeutics, Inc. Novel DNA-binding proteins and uses thereof
US20110201118A1 (en) * 2010-06-14 2011-08-18 Iowa State University Research Foundation, Inc. Nuclease activity of tal effector and foki fusion protein
CA2993567C (en) * 2010-07-21 2022-06-28 Sangamo Biosciences, Inc. Methods and compositions for modification of a t-cell receptor gene
US9637739B2 (en) 2012-03-20 2017-05-02 Vilnius University RNA-directed DNA cleavage by the Cas9-crRNA complex
WO2013141680A1 (en) 2012-03-20 2013-09-26 Vilnius University RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX
LT2800811T (en) 2012-05-25 2017-09-11 The Regents Of The University Of California Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription
PL3138910T3 (en) 2012-12-06 2018-01-31 Sigma Aldrich Co Llc Crispr-based genome modification and regulation
IL239317B (en) 2012-12-12 2022-07-01 Broad Inst Inc Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications
WO2014093701A1 (en) * 2012-12-12 2014-06-19 The Broad Institute, Inc. Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof
US8697359B1 (en) 2012-12-12 2014-04-15 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products
EP3825401A1 (en) 2012-12-12 2021-05-26 The Broad Institute, Inc. Crispr-cas component systems, methods and compositions for sequence manipulation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150284727A1 (en) * 2012-10-23 2015-10-08 Toolgen Incorporated Composition for cleaving a target dna comprising a guide rna specific for the target dna and cas protein-encoding nucleic acid or cas protein, and use thereof
US20140242664A1 (en) * 2012-12-12 2014-08-28 The Broad Institute, Inc. Engineering of systems, methods and optimized guide compositions for sequence manipulation
US20140342456A1 (en) * 2012-12-17 2014-11-20 President And Fellows Of Harvard College RNA-Guided Human Genome Engineering
US20150275231A1 (en) * 2014-03-31 2015-10-01 Mice With Horns, Llc Method of Preventing or Reducing Virus Transmission in Animals

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Deltcheva et al., CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III, Supplementary Figures, 2011, Nature, volume 471. Total 35 pages. *
Deltcheva et al., CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III, Supplementary Tables, 2011, Nature, volume 471. Total 22 pages. *
Deveau et al., CRISPR/Cas system and its role in phage-bacteria interactions, 2010, The Annual Review of Microbiology, volume 64, pages 475-493. *
Makarova et al., Evolution and classification of the CRISPR-Cas system, 2011, Nature Reviews Microbiology, volume 9, pages 467-477. *

Cited By (279)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9322006B2 (en) 2011-07-22 2016-04-26 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US11008589B2 (en) 2012-05-25 2021-05-18 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11549127B2 (en) 2012-05-25 2023-01-10 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10752920B2 (en) 2012-05-25 2020-08-25 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10900054B2 (en) 2012-05-25 2021-01-26 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11028412B2 (en) 2012-05-25 2021-06-08 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10669560B2 (en) 2012-05-25 2020-06-02 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11970711B2 (en) 2012-05-25 2024-04-30 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10640791B2 (en) 2012-05-25 2020-05-05 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10626419B2 (en) 2012-05-25 2020-04-21 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10982231B2 (en) 2012-05-25 2021-04-20 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10612045B2 (en) 2012-05-25 2020-04-07 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10982230B2 (en) 2012-05-25 2021-04-20 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10988780B2 (en) 2012-05-25 2021-04-27 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10597680B2 (en) 2012-05-25 2020-03-24 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11814645B2 (en) 2012-05-25 2023-11-14 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10988782B2 (en) 2012-05-25 2021-04-27 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10577631B2 (en) 2012-05-25 2020-03-03 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10570419B2 (en) 2012-05-25 2020-02-25 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11001863B2 (en) 2012-05-25 2021-05-11 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11674159B2 (en) 2012-05-25 2023-06-13 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10563227B2 (en) 2012-05-25 2020-02-18 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11634730B2 (en) 2012-05-25 2023-04-25 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10550407B2 (en) 2012-05-25 2020-02-04 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10533190B2 (en) 2012-05-25 2020-01-14 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10526619B2 (en) 2012-05-25 2020-01-07 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11008590B2 (en) 2012-05-25 2021-05-18 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10519467B2 (en) 2012-05-25 2019-12-31 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10513712B2 (en) 2012-05-25 2019-12-24 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10774344B1 (en) 2012-05-25 2020-09-15 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10676759B2 (en) 2012-05-25 2020-06-09 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10793878B1 (en) 2012-05-25 2020-10-06 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10487341B2 (en) 2012-05-25 2019-11-26 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11479794B2 (en) 2012-05-25 2022-10-25 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11473108B2 (en) 2012-05-25 2022-10-18 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10000772B2 (en) 2012-05-25 2018-06-19 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10443076B2 (en) 2012-05-25 2019-10-15 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10428352B2 (en) 2012-05-25 2019-10-01 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10421980B2 (en) 2012-05-25 2019-09-24 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10415061B2 (en) 2012-05-25 2019-09-17 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10407697B2 (en) 2012-05-25 2019-09-10 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11401532B2 (en) 2012-05-25 2022-08-02 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10400253B2 (en) 2012-05-25 2019-09-03 The Regents Of The University Of California Methods and compositions or RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10113167B2 (en) 2012-05-25 2018-10-30 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10385360B2 (en) 2012-05-25 2019-08-20 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11332761B2 (en) 2012-05-25 2022-05-17 The Regenis of Wie University of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10358659B2 (en) 2012-05-25 2019-07-23 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10358658B2 (en) 2012-05-25 2019-07-23 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10351878B2 (en) 2012-05-25 2019-07-16 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10337029B2 (en) 2012-05-25 2019-07-02 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10227611B2 (en) 2012-05-25 2019-03-12 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11293034B2 (en) 2012-05-25 2022-04-05 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11274318B2 (en) 2012-05-25 2022-03-15 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11242543B2 (en) 2012-05-25 2022-02-08 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10308961B2 (en) 2012-05-25 2019-06-04 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10301651B2 (en) 2012-05-25 2019-05-28 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11186849B2 (en) 2012-05-25 2021-11-30 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10266850B2 (en) 2012-05-25 2019-04-23 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10851380B2 (en) 2012-10-23 2020-12-01 Toolgen Incorporated Methods for cleaving a target DNA using a guide RNA specific for the target DNA and Cas protein-encoding nucleic acid or Cas protein
US10745716B2 (en) 2012-12-06 2020-08-18 Sigma-Aldrich Co. Llc CRISPR-based genome modification and regulation
US10731181B2 (en) 2012-12-06 2020-08-04 Sigma, Aldrich Co. LLC CRISPR-based genome modification and regulation
US10544405B2 (en) 2013-01-16 2020-01-28 Emory University Cas9-nucleic acid complexes and uses related thereto
US11312945B2 (en) 2013-01-16 2022-04-26 Emory University CAS9-nucleic acid complexes and uses related thereto
US11312953B2 (en) 2013-03-14 2022-04-26 Caribou Biosciences, Inc. Compositions and methods of nucleic acid-targeting nucleic acids
US20140315985A1 (en) * 2013-03-14 2014-10-23 Caribou Biosciences, Inc. Compositions and methods of nucleic acid-targeting nucleic acids
US11634731B2 (en) 2013-03-15 2023-04-25 The General Hospital Corporation Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing
US10378027B2 (en) 2013-03-15 2019-08-13 The General Hospital Corporation RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
US10415059B2 (en) 2013-03-15 2019-09-17 The General Hospital Corporation Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing
US11168338B2 (en) 2013-03-15 2021-11-09 The General Hospital Corporation RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
US9567603B2 (en) 2013-03-15 2017-02-14 The General Hospital Corporation Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing
US9567604B2 (en) 2013-03-15 2017-02-14 The General Hospital Corporation Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing
US10526589B2 (en) 2013-03-15 2020-01-07 The General Hospital Corporation Multiplex guide RNAs
US10138476B2 (en) 2013-03-15 2018-11-27 The General Hospital Corporation Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing
US10760064B2 (en) 2013-03-15 2020-09-01 The General Hospital Corporation RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
US10119133B2 (en) 2013-03-15 2018-11-06 The General Hospital Corporation Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing
US10544433B2 (en) 2013-03-15 2020-01-28 The General Hospital Corporation Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing
US9885033B2 (en) 2013-03-15 2018-02-06 The General Hospital Corporation Increasing specificity for RNA-guided genome editing
US11920152B2 (en) 2013-03-15 2024-03-05 The General Hospital Corporation Increasing specificity for RNA-guided genome editing
US11098326B2 (en) 2013-03-15 2021-08-24 The General Hospital Corporation Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing
US10844403B2 (en) 2013-03-15 2020-11-24 The General Hospital Corporation Increasing specificity for RNA-guided genome editing
US10011850B2 (en) 2013-06-21 2018-07-03 The General Hospital Corporation Using RNA-guided FokI Nucleases (RFNs) to increase specificity for RNA-Guided Genome Editing
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10227581B2 (en) 2013-08-22 2019-03-12 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9388430B2 (en) 2013-09-06 2016-07-12 President And Fellows Of Harvard College Cas9-recombinase fusion proteins and uses thereof
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US9228207B2 (en) 2013-09-06 2016-01-05 President And Fellows Of Harvard College Switchable gRNAs comprising aptamers
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
US9737604B2 (en) 2013-09-06 2017-08-22 President And Fellows Of Harvard College Use of cationic lipids to deliver CAS9
US9340800B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College Extended DNA-sensing GRNAS
US9340799B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College MRNA-sensing switchable gRNAs
US10584358B2 (en) * 2013-10-30 2020-03-10 North Carolina State University Compositions and methods related to a type-II CRISPR-Cas system in Lactobacillus buchneri
US20160289700A1 (en) * 2013-10-30 2016-10-06 North Carolina State University Compositions and methods related to a type-ii crispr-cas system in lactobacillus buchneri
US11499169B2 (en) 2013-10-30 2022-11-15 North Carolina State University Compositions and methods related to a type-II CRISPR-Cas system in Lactobacillus buchneri
US10640788B2 (en) 2013-11-07 2020-05-05 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAs
US11390887B2 (en) 2013-11-07 2022-07-19 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAS
US9834791B2 (en) 2013-11-07 2017-12-05 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAS
US10190137B2 (en) 2013-11-07 2019-01-29 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAS
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US9840699B2 (en) 2013-12-12 2017-12-12 President And Fellows Of Harvard College Methods for nucleic acid editing
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10787654B2 (en) 2014-01-24 2020-09-29 North Carolina State University Methods and compositions for sequence guiding Cas9 targeting
US11439712B2 (en) 2014-04-08 2022-09-13 North Carolina State University Methods and compositions for RNA-directed repression of transcription using CRISPR-associated genes
US9487802B2 (en) 2014-05-30 2016-11-08 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods to treat latent viral infections
WO2015184259A1 (en) 2014-05-30 2015-12-03 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods to treat latent viral infections
US10066241B2 (en) 2014-05-30 2018-09-04 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods of delivering treatments for latent viral infections
US10501794B2 (en) 2014-06-23 2019-12-10 The General Hospital Corporation Genomewide unbiased identification of DSBs evaluated by sequencing (GUIDE-seq)
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11753651B2 (en) 2014-08-28 2023-09-12 North Carolina State University Cas9 proteins and guiding features for DNA targeting and genome editing
US10450584B2 (en) 2014-08-28 2019-10-22 North Carolina State University Cas9 proteins and guiding features for DNA targeting and genome editing
US10260055B2 (en) 2014-10-31 2019-04-16 President And Fellows Of Harvard College Delivery of cargo proteins via ARRDC1-mediated microvesicles (ARMMs)
US11827910B2 (en) 2014-10-31 2023-11-28 President And Fellows Of Harvard College Delivery of CAS9 via ARRDC1-mediated microvesicles (ARMMs)
US9816080B2 (en) 2014-10-31 2017-11-14 President And Fellows Of Harvard College Delivery of CAS9 via ARRDC1-mediated microvesicles (ARMMs)
US11001817B2 (en) 2014-10-31 2021-05-11 President And Fellows Of Harvard College Delivery of cargo proteins via ARRDC1-mediated microvesicles (ARMMs)
US11680268B2 (en) 2014-11-07 2023-06-20 Editas Medicine, Inc. Methods for improving CRISPR/Cas-mediated genome-editing
US10993419B2 (en) 2014-12-10 2021-05-04 Regents Of The University Of Minnesota Genetically modified cells, tissues, and organs for treating disease
US11234418B2 (en) 2014-12-10 2022-02-01 Regents Of The University Of Minnesota Genetically modified cells, tissues, and organs for treating disease
US9888673B2 (en) 2014-12-10 2018-02-13 Regents Of The University Of Minnesota Genetically modified cells, tissues, and organs for treating disease
US10278372B2 (en) 2014-12-10 2019-05-07 Regents Of The University Of Minnesota Genetically modified cells, tissues, and organs for treating disease
WO2016141224A1 (en) 2015-03-03 2016-09-09 The General Hospital Corporation Engineered crispr-cas9 nucleases with altered pam specificity
EP3858990A1 (en) 2015-03-03 2021-08-04 The General Hospital Corporation Engineered crispr-cas9 nucleases with altered pam specificity
US11220678B2 (en) 2015-03-03 2022-01-11 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US10479982B2 (en) 2015-03-03 2019-11-19 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US9944912B2 (en) 2015-03-03 2018-04-17 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US9926545B2 (en) 2015-03-03 2018-03-27 The General Hospital Corporation Engineered CRISPR-CAS9 nucleases with altered PAM specificity
US10202589B2 (en) 2015-03-03 2019-02-12 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US10808233B2 (en) 2015-03-03 2020-10-20 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US9752132B2 (en) 2015-03-03 2017-09-05 The General Hospital Corporation Engineered CRISPR-CAS9 nucleases with altered PAM specificity
US10767168B2 (en) 2015-03-03 2020-09-08 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US11859220B2 (en) 2015-03-03 2024-01-02 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US11400110B2 (en) 2015-05-06 2022-08-02 Snipr Technologies Limited Altering microbial populations and modifying microbiota
US11612617B2 (en) 2015-05-06 2023-03-28 Snipr Technologies Limited Altering microbial populations and modifying microbiota
US10561148B2 (en) 2015-05-06 2020-02-18 Snipr Technologies Limited Altering microbial populations and modifying microbiota
US10624349B2 (en) 2015-05-06 2020-04-21 Snipr Technologies Limited Altering microbial populations and modifying microbiota
US11147830B2 (en) 2015-05-06 2021-10-19 Snipr Technologies Limited Altering microbial populations and modifying microbiota
US10463049B2 (en) 2015-05-06 2019-11-05 Snipr Technologies Limited Altering microbial populations and modifying microbiota
US11547716B2 (en) 2015-05-06 2023-01-10 Snipr Technologies Limited Altering microbial populations and modifying microbiota
US11844760B2 (en) 2015-05-06 2023-12-19 Snipr Technologies Limited Altering microbial populations and modifying microbiota
US10506812B2 (en) 2015-05-06 2019-12-17 Snipr Technologies Limited Altering microbial populations and modifying microbiota
US10582712B2 (en) 2015-05-06 2020-03-10 Snipr Technologies Limited Altering microbial populations and modifying microbiota
US10524477B2 (en) 2015-05-06 2020-01-07 Snipr Technologies Limited Altering microbial populations and modifying microbiota
US11642363B2 (en) 2015-05-06 2023-05-09 Snipr Technologies Limited Altering microbial populations and modifying microbiota
US11517582B2 (en) 2015-05-06 2022-12-06 Snipr Technologies Limited Altering microbial populations and modifying microbiota
US11390884B2 (en) 2015-05-11 2022-07-19 Editas Medicine, Inc. Optimized CRISPR/cas9 systems and methods for gene editing in stem cells
WO2016186745A1 (en) * 2015-05-15 2016-11-24 Ge Healthcare Dharmacon, Inc. Synthetic single guide rna for cas9-mediated gene editing
WO2016196282A1 (en) 2015-05-29 2016-12-08 Agenovir Corporation Compositions and methods for cell targeted hpv treatment
US10117911B2 (en) 2015-05-29 2018-11-06 Agenovir Corporation Compositions and methods to treat herpes simplex virus infections
US11261451B2 (en) 2015-05-29 2022-03-01 North Carolina State University Methods for screening bacteria, archaea, algae, and yeast using CRISPR nucleic acids
US11911415B2 (en) 2015-06-09 2024-02-27 Editas Medicine, Inc. CRISPR/Cas-related methods and compositions for improving transplantation
US11155823B2 (en) 2015-06-15 2021-10-26 North Carolina State University Methods and compositions for efficient delivery of nucleic acids and RNA-based antimicrobials
US11414657B2 (en) 2015-06-29 2022-08-16 Ionis Pharmaceuticals, Inc. Modified CRISPR RNA and modified single CRISPR RNA and uses thereof
US11642374B2 (en) 2015-07-31 2023-05-09 Intima Bioscience, Inc. Intracellular genomic transplant and methods of therapy
US11266692B2 (en) 2015-07-31 2022-03-08 Regents Of The University Of Minnesota Intracellular genomic transplant and methods of therapy
US11903966B2 (en) 2015-07-31 2024-02-20 Regents Of The University Of Minnesota Intracellular genomic transplant and methods of therapy
US10166255B2 (en) 2015-07-31 2019-01-01 Regents Of The University Of Minnesota Intracellular genomic transplant and methods of therapy
US10406177B2 (en) 2015-07-31 2019-09-10 Regents Of The University Of Minnesota Modified cells and methods of therapy
US11147837B2 (en) 2015-07-31 2021-10-19 Regents Of The University Of Minnesota Modified cells and methods of therapy
US11583556B2 (en) 2015-07-31 2023-02-21 Regents Of The University Of Minnesota Modified cells and methods of therapy
US11925664B2 (en) 2015-07-31 2024-03-12 Intima Bioscience, Inc. Intracellular genomic transplant and methods of therapy
US11642375B2 (en) 2015-07-31 2023-05-09 Intima Bioscience, Inc. Intracellular genomic transplant and methods of therapy
US9970027B2 (en) 2015-08-07 2018-05-15 Caribou Biosciences, Inc. Compositions and methods of engineered CRISPR-CAS9 systems using split-nexus CAS9-associated polynucleotides
US9745600B2 (en) 2015-08-07 2017-08-29 Caribou Biosciences, Inc. Compositions and methods of engineered CRISPR-Cas9 systems using split-nexus Cas9-associated polynucleotides
US9580727B1 (en) 2015-08-07 2017-02-28 Caribou Biosciences, Inc. Compositions and methods of engineered CRISPR-Cas9 systems using split-nexus Cas9-associated polynucleotides
US11111506B2 (en) 2015-08-07 2021-09-07 Caribou Biosciences, Inc. Compositions and methods of engineered CRISPR-Cas9 systems using split-nexus Cas9-associated polynucleotides
US9970026B2 (en) 2015-08-07 2018-05-15 Caribou Biosciences, Inc. Compositions and methods of engineered CRISPR-Cas9 systems using split-nexus Cas9-associated polynucleotides
WO2017040348A1 (en) 2015-08-28 2017-03-09 The General Hospital Corporation Engineered crispr-cas9 nucleases
US10633642B2 (en) 2015-08-28 2020-04-28 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US11060078B2 (en) 2015-08-28 2021-07-13 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US10093910B2 (en) 2015-08-28 2018-10-09 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US9926546B2 (en) 2015-08-28 2018-03-27 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
EP4036236A1 (en) 2015-08-28 2022-08-03 The General Hospital Corporation Engineered crispr-cas9 nucleases
US9512446B1 (en) 2015-08-28 2016-12-06 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US10526591B2 (en) 2015-08-28 2020-01-07 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US11028429B2 (en) 2015-09-11 2021-06-08 The General Hospital Corporation Full interrogation of nuclease DSBs and sequencing (FIND-seq)
US11667911B2 (en) 2015-09-24 2023-06-06 Editas Medicine, Inc. Use of exonucleases to improve CRISPR/CAS-mediated genome editing
US11286480B2 (en) 2015-09-28 2022-03-29 North Carolina State University Methods and compositions for sequence specific antimicrobials
US10738303B2 (en) 2015-09-30 2020-08-11 The General Hospital Corporation Comprehensive in vitro reporting of cleavage events by sequencing (CIRCLE-seq)
US10829787B2 (en) 2015-10-14 2020-11-10 Life Technologies Corporation Ribonucleoprotein transfection agents
US9745562B2 (en) 2015-10-23 2017-08-29 Caribou Biosciences, Inc. Methods of using engineered nucleic-acid targeting nucleic acids
US10196619B1 (en) 2015-10-23 2019-02-05 Caribou Biosciences, Inc. Engineered nucleic-acid targeting nucleic acids
US9816081B1 (en) 2015-10-23 2017-11-14 Caribou Biosciences, Inc. Engineered nucleic-acid targeting nucleic acids
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US9957490B1 (en) 2015-10-23 2018-05-01 Caribou Biosciences, Inc. Cells comprising engineered nucleic-acid targeting nucleic acids
US10501728B2 (en) 2015-10-23 2019-12-10 Caribou Biosciences, Inc. Engineered nucleic-acid targeting nucleic acids
US10711258B2 (en) 2015-10-23 2020-07-14 Caribou Biosciences, Inc. Engineered nucleic-acid targeting nucleic acids
US9677090B2 (en) 2015-10-23 2017-06-13 Caribou Biosciences, Inc. Engineered nucleic-acid targeting nucleic acids
US10023853B1 (en) 2015-10-23 2018-07-17 Caribou Biosciences, Inc. Engineered nucleic-acid targeting nucleic acids
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10138472B2 (en) 2015-10-23 2018-11-27 Caribou Biosciences, Inc. Engineered nucleic-acid targeting nucleic acids
US10125354B1 (en) 2015-10-23 2018-11-13 Caribou Biosciences, Inc. Engineered nucleic-acid targeting nucleic acids
US11542466B2 (en) 2015-12-22 2023-01-03 North Carolina State University Methods and compositions for delivery of CRISPR based antimicrobials
US11597924B2 (en) 2016-03-25 2023-03-07 Editas Medicine, Inc. Genome editing systems comprising repair-modulating enzyme molecules and methods of their use
US11236313B2 (en) 2016-04-13 2022-02-01 Editas Medicine, Inc. Cas9 fusion molecules, gene editing systems, and methods of use thereof
US10363308B2 (en) 2016-06-05 2019-07-30 Snipr Technologies Limited Selectively altering microbiota for immune modulation
US10300138B2 (en) 2016-06-05 2019-05-28 Snipr Technologies Limited Selectively altering microbiota for immune modulation
US11141481B2 (en) 2016-06-05 2021-10-12 Snipr Technologies Limited Selectively altering microbiota for immune modulation
US10300139B2 (en) 2016-06-05 2019-05-28 Snipr Technologies Limited Selectively altering microbiota for immune modulation
US11351252B2 (en) 2016-06-05 2022-06-07 Snipr Technologies Limited Selectively altering microbiota for immune modulation
US10765740B2 (en) 2016-06-05 2020-09-08 Snipr Technologies Limited Selectively altering microbiota for immune modulation
US10195273B2 (en) 2016-06-05 2019-02-05 Snipr Technologies Limited Selectively altering microbiota for immune modulation
US10596255B2 (en) 2016-06-05 2020-03-24 Snipr Technologies Limited Selectively altering microbiota for immune modulation
US10953090B2 (en) 2016-06-05 2021-03-23 Snipr Technologies Limited Selectively altering microbiota for immune modulation
US10603379B2 (en) 2016-06-05 2020-03-31 Snipr Technologies Limited Selectively altering microbiota for immune modulation
US11291723B2 (en) 2016-06-05 2022-04-05 Snipr Technologies Limited Selectively altering microbiota for immune modulation
US11471531B2 (en) 2016-06-05 2022-10-18 Snipr Technologies Limited Selectively altering microbiota for immune modulation
US11471530B2 (en) 2016-06-05 2022-10-18 Snipr Technologies Limited Selectively altering microbiota for immune modulation
WO2018005445A1 (en) 2016-06-27 2018-01-04 The Broad Institute, Inc. Compositions and methods for detecting and treating diabetes
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11730823B2 (en) 2016-10-03 2023-08-22 President And Fellows Of Harvard College Delivery of therapeutic RNAs via ARRDC1-mediated microvesicles
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
WO2018071892A1 (en) 2016-10-14 2018-04-19 Joung J Keith Epigenetically regulated site-specific nucleases
US10912797B2 (en) 2016-10-18 2021-02-09 Intima Bioscience, Inc. Tumor infiltrating lymphocytes and methods of therapy
US11154574B2 (en) 2016-10-18 2021-10-26 Regents Of The University Of Minnesota Tumor infiltrating lymphocytes and methods of therapy
US11001843B2 (en) 2016-12-06 2021-05-11 Caribou Biosciences, Inc. Engineered nucleic acid-targeting nucleic acids
US10590415B2 (en) 2016-12-06 2020-03-17 Ceribou Biosciences, Inc. Engineered nucleic acid-targeting nucleic acids
US9816093B1 (en) 2016-12-06 2017-11-14 Caribou Biosciences, Inc. Engineered nucleic acid-targeting nucleic acids
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
WO2018195545A2 (en) 2017-04-21 2018-10-25 The General Hospital Corporation Variants of cpf1 (cas12a) with altered pam specificity
US11499151B2 (en) 2017-04-28 2022-11-15 Editas Medicine, Inc. Methods and systems for analyzing guide RNA molecules
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
WO2018218206A1 (en) 2017-05-25 2018-11-29 The General Hospital Corporation Bipartite base editor (bbe) architectures and type-ii-c-cas9 zinc finger editing
WO2018218166A1 (en) 2017-05-25 2018-11-29 The General Hospital Corporation Using split deaminases to limit unwanted off-target base editor deamination
US11371030B2 (en) 2017-05-31 2022-06-28 The University Of Tokyo Modified Cas9 protein and use thereof
US11702645B2 (en) 2017-05-31 2023-07-18 The University Of Tokyo Polynucleotide encoding modified CAS9 protein
US11098297B2 (en) 2017-06-09 2021-08-24 Editas Medicine, Inc. Engineered Cas9 nucleases
US10428319B2 (en) 2017-06-09 2019-10-01 Editas Medicine, Inc. Engineered Cas9 nucleases
US11098325B2 (en) 2017-06-30 2021-08-24 Intima Bioscience, Inc. Adeno-associated viral vectors for gene therapy
US11866726B2 (en) 2017-07-14 2024-01-09 Editas Medicine, Inc. Systems and methods for targeted integration and genome editing and detection thereof using integrated priming sites
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11286468B2 (en) 2017-08-23 2022-03-29 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US11624058B2 (en) 2017-08-23 2023-04-11 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11530396B2 (en) 2017-09-05 2022-12-20 The University Of Tokyo Modified CAS9 protein, and use thereof
US11725228B2 (en) 2017-10-11 2023-08-15 The General Hospital Corporation Methods for detecting site-specific and spurious genomic deamination induced by base editing technologies
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
WO2019195738A1 (en) 2018-04-06 2019-10-10 Children's Medical Center Corporation Compositions and methods for somatic cell reprogramming and modulating imprinting
US11845987B2 (en) 2018-04-17 2023-12-19 The General Hospital Corporation Highly sensitive in vitro assays to define substrate preferences and sites of nucleic acid cleaving agents
US11976324B2 (en) 2018-04-17 2024-05-07 The General Hospital Corporation Highly sensitive in vitro assays to define substrate preferences and sites of nucleic-acid binding, modifying, and cleaving agents
US11898203B2 (en) 2018-04-17 2024-02-13 The General Hospital Corporation Highly sensitive in vitro assays to define substrate preferences and sites of nucleic-acid binding, modifying, and cleaving agents
US11643653B2 (en) 2018-04-30 2023-05-09 Snipr Biome Aps Treating and preventing microbial infections
US10920222B2 (en) 2018-04-30 2021-02-16 Snipr Biome Aps Treating and preventing microbial infections
US10760075B2 (en) 2018-04-30 2020-09-01 Snipr Biome Aps Treating and preventing microbial infections
US11788085B2 (en) 2018-04-30 2023-10-17 Snipr Biome Aps Treating and preventing microbial infections
US11485973B2 (en) 2018-04-30 2022-11-01 Snipr Biome Aps Treating and preventing microbial infections
US11421227B2 (en) 2018-04-30 2022-08-23 Snipr Biome Aps Treating and preventing microbial infections
US10711267B2 (en) 2018-10-01 2020-07-14 North Carolina State University Recombinant type I CRISPR-Cas system
US11680259B2 (en) 2018-10-01 2023-06-20 North Carolina State University Recombinant type I CRISPR-CAS system
US11851663B2 (en) 2018-10-14 2023-12-26 Snipr Biome Aps Single-vector type I vectors
US11629350B2 (en) 2018-10-14 2023-04-18 Snipr Biome Aps Single-vector type I vectors
US11578333B2 (en) 2018-10-14 2023-02-14 Snipr Biome Aps Single-vector type I vectors
WO2020163396A1 (en) 2019-02-04 2020-08-13 The General Hospital Corporation Adenine dna base editor variants with reduced off-target rna editing
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11926817B2 (en) 2019-08-09 2024-03-12 Nutcracker Therapeutics, Inc. Microfluidic apparatus and methods of use thereof
WO2021224633A1 (en) 2020-05-06 2021-11-11 Orchard Therapeutics (Europe) Limited Treatment for neurodegenerative diseases
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
EP4198124A1 (en) 2021-12-15 2023-06-21 Versitech Limited Engineered cas9-nucleases and method of use thereof

Also Published As

Publication number Publication date
US20150240261A1 (en) 2015-08-27
US10844378B2 (en) 2020-11-24
BR112014023353A2 (en) 2017-07-11
CA3124374C (en) 2024-02-13
JP2015510778A (en) 2015-04-13
ES2749108T3 (en) 2020-03-19
CA2867849C (en) 2021-09-07
EP3594341A1 (en) 2020-01-15
US20150045546A1 (en) 2015-02-12
US20190085329A1 (en) 2019-03-21
JP2021019617A (en) 2021-02-18
CN104520429A (en) 2015-04-15
IN2014DN07846A (en) 2015-04-24
JP2019030321A (en) 2019-02-28
DK2828386T3 (en) 2019-10-14
MX2019009736A (en) 2019-12-11
PT2828386T (en) 2019-10-25
EA029544B1 (en) 2018-04-30
EA201491728A1 (en) 2015-05-29
US11555187B2 (en) 2023-01-17
EP2828386B1 (en) 2019-07-10
US20230123754A1 (en) 2023-04-20
EP2828386A1 (en) 2015-01-28
CN114410625A (en) 2022-04-29
WO2013142578A1 (en) 2013-09-26
CN104520429B (en) 2021-12-14
US9637739B2 (en) 2017-05-02
MX2014011279A (en) 2015-05-11
JP6423338B2 (en) 2018-11-14
CA3124374A1 (en) 2013-09-26
MX370435B (en) 2019-12-11
US20230272394A1 (en) 2023-08-31
JP7113877B2 (en) 2022-08-05
CA2867849A1 (en) 2013-09-26
US20150291961A1 (en) 2015-10-15
US20180187195A1 (en) 2018-07-05
HK1206392A1 (en) 2016-01-08
PL2828386T3 (en) 2020-06-15
JP7186574B2 (en) 2022-12-09
HUE046295T2 (en) 2020-02-28

Similar Documents

Publication Publication Date Title
US20230272394A1 (en) RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX
WO2013141680A1 (en) RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX
KR102623312B1 (en) Enzyme with RUVC domain
US20200362346A1 (en) Genome editing using crispr in corynebacterium
US10913941B2 (en) Enzymes with RuvC domains
US20230227857A1 (en) Class ii, type v crispr systems
US11098305B2 (en) Modular universal plasmid design strategy for the assembly and editing of multiple DNA constructs for multiple hosts
CN111684069A (en) Chimeric genome engineering molecules and methods
KR20230054457A (en) Systems and methods for translocating cargo nucleotide sequences
GB2617659A (en) Enzymes with RUVC domains

Legal Events

Date Code Title Description
AS Assignment

Owner name: VILNIUS UNIVERSITY, LITHUANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SIKSNYS, VIRGINIJUS;GASIUNAS, GIEDRIUS;KARVELIS, TAUTVYDAS;REEL/FRAME:034592/0986

Effective date: 20141219

AS Assignment

Owner name: VILNIUS UNIVERSITY, LITHUANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SMITH, ANJA;LUBYS, ARVYDAS;ZALIAUSKIENE, LOLITA;AND OTHERS;SIGNING DATES FROM 20130328 TO 20141219;REEL/FRAME:034725/0683

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION