US20150047983A1 - Carbon composition with hierarchical porosity, and methods of preparation - Google Patents
Carbon composition with hierarchical porosity, and methods of preparation Download PDFInfo
- Publication number
- US20150047983A1 US20150047983A1 US14/496,227 US201414496227A US2015047983A1 US 20150047983 A1 US20150047983 A1 US 20150047983A1 US 201414496227 A US201414496227 A US 201414496227A US 2015047983 A1 US2015047983 A1 US 2015047983A1
- Authority
- US
- United States
- Prior art keywords
- carbon material
- porous carbon
- electrodes
- capacitive deionization
- hierarchical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 55
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims description 69
- 239000000203 mixture Substances 0.000 title abstract description 41
- 229910052799 carbon Inorganic materials 0.000 title description 45
- 238000002360 preparation method Methods 0.000 title description 3
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 97
- 238000002242 deionisation method Methods 0.000 claims abstract description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910002804 graphite Inorganic materials 0.000 claims description 18
- 239000010439 graphite Substances 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 17
- 239000000758 substrate Substances 0.000 claims description 11
- 239000011810 insulating material Substances 0.000 claims description 7
- 238000010612 desalination reaction Methods 0.000 claims description 5
- 239000002243 precursor Substances 0.000 abstract description 50
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 abstract description 40
- 229920001400 block copolymer Polymers 0.000 abstract description 37
- 238000003763 carbonization Methods 0.000 abstract description 33
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 abstract description 17
- 230000002378 acidificating effect Effects 0.000 abstract description 7
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 238000010000 carbonizing Methods 0.000 abstract description 2
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 57
- -1 A-B) Polymers 0.000 description 48
- 229920001983 poloxamer Polymers 0.000 description 47
- 239000011148 porous material Substances 0.000 description 40
- 229960000502 poloxamer Drugs 0.000 description 37
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 35
- 150000001875 compounds Chemical class 0.000 description 25
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 22
- 235000013824 polyphenols Nutrition 0.000 description 22
- 229920000642 polymer Polymers 0.000 description 20
- 238000001723 curing Methods 0.000 description 19
- 229940015043 glyoxal Drugs 0.000 description 18
- QCDYQQDYXPDABM-UHFFFAOYSA-N phloroglucinol Chemical compound OC1=CC(O)=CC(O)=C1 QCDYQQDYXPDABM-UHFFFAOYSA-N 0.000 description 17
- 229920001451 polypropylene glycol Polymers 0.000 description 17
- JPYHHZQJCSQRJY-UHFFFAOYSA-N Phloroglucinol Natural products CCC=CCC=CCC=CCC=CCCCCC(=O)C1=C(O)C=C(O)C=C1O JPYHHZQJCSQRJY-UHFFFAOYSA-N 0.000 description 16
- 150000002989 phenols Chemical class 0.000 description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 15
- 238000002474 experimental method Methods 0.000 description 15
- 229960001553 phloroglucinol Drugs 0.000 description 15
- 150000002430 hydrocarbons Chemical class 0.000 description 14
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 12
- 239000002253 acid Substances 0.000 description 12
- 125000004432 carbon atom Chemical group C* 0.000 description 12
- 150000002500 ions Chemical class 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- 125000004122 cyclic group Chemical group 0.000 description 11
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 238000001350 scanning transmission electron microscopy Methods 0.000 description 7
- AIJULSRZWUXGPQ-UHFFFAOYSA-N Methylglyoxal Chemical compound CC(=O)C=O AIJULSRZWUXGPQ-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 239000007772 electrode material Substances 0.000 description 6
- 238000003682 fluorination reaction Methods 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 125000002950 monocyclic group Chemical group 0.000 description 6
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical class CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 6
- 238000005191 phase separation Methods 0.000 description 6
- 229920001992 poloxamer 407 Polymers 0.000 description 6
- 230000009257 reactivity Effects 0.000 description 6
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- DGXAGETVRDOQFP-UHFFFAOYSA-N 2,6-dihydroxybenzaldehyde Chemical compound OC1=CC=CC(O)=C1C=O DGXAGETVRDOQFP-UHFFFAOYSA-N 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 5
- BXGJXQJWUCUHJQ-UHFFFAOYSA-N [C].C1(O)=C(C(O)=CC=C1)C=O Chemical compound [C].C1(O)=C(C(O)=CC=C1)C=O BXGJXQJWUCUHJQ-UHFFFAOYSA-N 0.000 description 5
- 125000002619 bicyclic group Chemical group 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 5
- 229920002239 polyacrylonitrile Polymers 0.000 description 5
- 239000003361 porogen Substances 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 5
- RWHQMRRVZJSKGX-UHFFFAOYSA-N 2-oxobutanal Chemical compound CCC(=O)C=O RWHQMRRVZJSKGX-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- UMKGTJBZBMJHFP-UHFFFAOYSA-N [C].C(=O)C=O.C1(O)=CC(O)=CC(O)=C1 Chemical compound [C].C(=O)C=O.C1(O)=CC(O)=CC(O)=C1 UMKGTJBZBMJHFP-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 4
- 238000005087 graphitization Methods 0.000 description 4
- LHGVFZTZFXWLCP-UHFFFAOYSA-N guaiacol Chemical class COC1=CC=CC=C1O LHGVFZTZFXWLCP-UHFFFAOYSA-N 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- XYZAPOXYXNIBEU-UHFFFAOYSA-N octane-4,5-dione Chemical compound CCCC(=O)C(=O)CCC XYZAPOXYXNIBEU-UHFFFAOYSA-N 0.000 description 4
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229920000428 triblock copolymer Polymers 0.000 description 4
- 125000006168 tricyclic group Chemical group 0.000 description 4
- IXQGCWUGDFDQMF-UHFFFAOYSA-N 2-Ethylphenol Chemical class CCC1=CC=CC=C1O IXQGCWUGDFDQMF-UHFFFAOYSA-N 0.000 description 3
- CDAWCLOXVUBKRW-UHFFFAOYSA-N 2-aminophenol Chemical class NC1=CC=CC=C1O CDAWCLOXVUBKRW-UHFFFAOYSA-N 0.000 description 3
- GDTHVMAIBQVUMV-UHFFFAOYSA-N 2-oxopentanal Chemical compound CCCC(=O)C=O GDTHVMAIBQVUMV-UHFFFAOYSA-N 0.000 description 3
- KVFQMAZOBTXCAZ-UHFFFAOYSA-N 3,4-Hexanedione Chemical compound CCC(=O)C(=O)CC KVFQMAZOBTXCAZ-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- QSJXEFYPDANLFS-UHFFFAOYSA-N Diacetyl Chemical compound CC(=O)C(C)=O QSJXEFYPDANLFS-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 150000001299 aldehydes Chemical class 0.000 description 3
- 229910003481 amorphous carbon Inorganic materials 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- KZSWACVIXMBBCK-UHFFFAOYSA-N benzene-1,3,5-triol;oxaldehyde Chemical compound O=CC=O.OC1=CC(O)=CC(O)=C1 KZSWACVIXMBBCK-UHFFFAOYSA-N 0.000 description 3
- 230000002902 bimodal effect Effects 0.000 description 3
- LLEMOWNGBBNAJR-UHFFFAOYSA-N biphenyl-2-ol Chemical class OC1=CC=CC=C1C1=CC=CC=C1 LLEMOWNGBBNAJR-UHFFFAOYSA-N 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 3
- 229910021397 glassy carbon Inorganic materials 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- MWVFCEVNXHTDNF-UHFFFAOYSA-N hexane-2,3-dione Chemical compound CCCC(=O)C(C)=O MWVFCEVNXHTDNF-UHFFFAOYSA-N 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 238000002429 nitrogen sorption measurement Methods 0.000 description 3
- 229920003986 novolac Polymers 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- TZMFJUDUGYTVRY-UHFFFAOYSA-N pentane-2,3-dione Chemical compound CCC(=O)C(C)=O TZMFJUDUGYTVRY-UHFFFAOYSA-N 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 229920001568 phenolic resin Polymers 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 229920003228 poly(4-vinyl pyridine) Polymers 0.000 description 3
- 229920000075 poly(4-vinylpyridine) Polymers 0.000 description 3
- 229920001084 poly(chloroprene) Polymers 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 239000003586 protic polar solvent Substances 0.000 description 3
- 229920003987 resole Polymers 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 230000009834 selective interaction Effects 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- FJPGAMCQJNLTJC-UHFFFAOYSA-N 2,3-Heptanedione Chemical compound CCCCC(=O)C(C)=O FJPGAMCQJNLTJC-UHFFFAOYSA-N 0.000 description 2
- XCBBNTFYSLADTO-UHFFFAOYSA-N 2,3-Octanedione Chemical compound CCCCCC(=O)C(C)=O XCBBNTFYSLADTO-UHFFFAOYSA-N 0.000 description 2
- IBHWREHFNDMRPR-UHFFFAOYSA-N 2,4,6-Trihydroxybenzoic acid Chemical compound OC(=O)C1=C(O)C=C(O)C=C1O IBHWREHFNDMRPR-UHFFFAOYSA-N 0.000 description 2
- BPHYZRNTQNPLFI-UHFFFAOYSA-N 2,4,6-trihydroxytoluene Chemical compound CC1=C(O)C=C(O)C=C1O BPHYZRNTQNPLFI-UHFFFAOYSA-N 0.000 description 2
- AKEUNCKRJATALU-UHFFFAOYSA-N 2,6-dihydroxybenzoic acid Chemical compound OC(=O)C1=C(O)C=CC=C1O AKEUNCKRJATALU-UHFFFAOYSA-N 0.000 description 2
- QFYYAIBEHOEZKC-UHFFFAOYSA-N 2-Methoxyresorcinol Chemical compound COC1=C(O)C=CC=C1O QFYYAIBEHOEZKC-UHFFFAOYSA-N 0.000 description 2
- VADKRMSMGWJZCF-UHFFFAOYSA-N 2-bromophenol Chemical class OC1=CC=CC=C1Br VADKRMSMGWJZCF-UHFFFAOYSA-N 0.000 description 2
- KQDJTBPASNJQFQ-UHFFFAOYSA-N 2-iodophenol Chemical class OC1=CC=CC=C1I KQDJTBPASNJQFQ-UHFFFAOYSA-N 0.000 description 2
- ZTMADXFOCUXMJE-UHFFFAOYSA-N 2-methylbenzene-1,3-diol Chemical compound CC1=C(O)C=CC=C1O ZTMADXFOCUXMJE-UHFFFAOYSA-N 0.000 description 2
- JWAZRIHNYRIHIV-UHFFFAOYSA-N 2-naphthol Chemical compound C1=CC=CC2=CC(O)=CC=C21 JWAZRIHNYRIHIV-UHFFFAOYSA-N 0.000 description 2
- IQUPABOKLQSFBK-UHFFFAOYSA-N 2-nitrophenol Chemical compound OC1=CC=CC=C1[N+]([O-])=O IQUPABOKLQSFBK-UHFFFAOYSA-N 0.000 description 2
- LBCCPKFTHIBIKU-UHFFFAOYSA-N 3,4-Heptanedione Chemical compound CCCC(=O)C(=O)CC LBCCPKFTHIBIKU-UHFFFAOYSA-N 0.000 description 2
- YCOXTKKNXUZSKD-UHFFFAOYSA-N 3,4-xylenol Chemical compound CC1=CC=C(O)C=C1C YCOXTKKNXUZSKD-UHFFFAOYSA-N 0.000 description 2
- MIDXCONKKJTLDX-UHFFFAOYSA-N 3,5-dimethylcyclopentane-1,2-dione Chemical compound CC1CC(C)C(=O)C1=O MIDXCONKKJTLDX-UHFFFAOYSA-N 0.000 description 2
- IJFXRHURBJZNAO-UHFFFAOYSA-N 3-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=CC(O)=C1 IJFXRHURBJZNAO-UHFFFAOYSA-N 0.000 description 2
- ASHGTJPOSUFTGB-UHFFFAOYSA-N 3-methoxyphenol Chemical compound COC1=CC=CC(O)=C1 ASHGTJPOSUFTGB-UHFFFAOYSA-N 0.000 description 2
- FTDZDHIBENIBKZ-UHFFFAOYSA-N 3-methyl-2-oxobutanal Chemical compound CC(C)C(=O)C=O FTDZDHIBENIBKZ-UHFFFAOYSA-N 0.000 description 2
- RTZZCYNQPHTPPL-UHFFFAOYSA-N 3-nitrophenol Chemical compound OC1=CC=CC([N+]([O-])=O)=C1 RTZZCYNQPHTPPL-UHFFFAOYSA-N 0.000 description 2
- PLIKAWJENQZMHA-UHFFFAOYSA-N 4-aminophenol Chemical compound NC1=CC=C(O)C=C1 PLIKAWJENQZMHA-UHFFFAOYSA-N 0.000 description 2
- OSDLLIBGSJNGJE-UHFFFAOYSA-N 4-chloro-3,5-dimethylphenol Chemical compound CC1=CC(O)=CC(C)=C1Cl OSDLLIBGSJNGJE-UHFFFAOYSA-N 0.000 description 2
- HXDOZKJGKXYMEW-UHFFFAOYSA-N 4-ethylphenol Chemical compound CCC1=CC=C(O)C=C1 HXDOZKJGKXYMEW-UHFFFAOYSA-N 0.000 description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 2
- YQUQWHNMBPIWGK-UHFFFAOYSA-N 4-isopropylphenol Chemical compound CC(C)C1=CC=C(O)C=C1 YQUQWHNMBPIWGK-UHFFFAOYSA-N 0.000 description 2
- OPIPDUFGXKXYLW-UHFFFAOYSA-N 4-methyl-2-oxopentanal Chemical compound CC(C)CC(=O)C=O OPIPDUFGXKXYLW-UHFFFAOYSA-N 0.000 description 2
- RSJCPOVKDYSWAP-UHFFFAOYSA-N 5-chlorobenzene-1,2,4-triol Chemical compound OC1=CC(O)=C(Cl)C=C1O RSJCPOVKDYSWAP-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 229930194542 Keto Natural products 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229920002517 Poloxamer 338 Polymers 0.000 description 2
- REFJWTPEDVJJIY-UHFFFAOYSA-N Quercetin Chemical compound C=1C(O)=CC(O)=C(C(C=2O)=O)C=1OC=2C1=CC=C(O)C(O)=C1 REFJWTPEDVJJIY-UHFFFAOYSA-N 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- 238000001237 Raman spectrum Methods 0.000 description 2
- QNVSXXGDAPORNA-UHFFFAOYSA-N Resveratrol Natural products OC1=CC=CC(C=CC=2C=C(O)C(O)=CC=2)=C1 QNVSXXGDAPORNA-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229920002359 Tetronic® Polymers 0.000 description 2
- LUKBXSAWLPMMSZ-OWOJBTEDSA-N Trans-resveratrol Chemical compound C1=CC(O)=CC=C1\C=C\C1=CC(O)=CC(O)=C1 LUKBXSAWLPMMSZ-OWOJBTEDSA-N 0.000 description 2
- 125000003172 aldehyde group Chemical group 0.000 description 2
- KJCVRFUGPWSIIH-UHFFFAOYSA-N alpha-naphthol Natural products C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- GGNQRNBDZQJCCN-UHFFFAOYSA-N benzene-1,2,4-triol Chemical compound OC1=CC=C(O)C(O)=C1 GGNQRNBDZQJCCN-UHFFFAOYSA-N 0.000 description 2
- YXVFYQXJAXKLAK-UHFFFAOYSA-N biphenyl-4-ol Chemical compound C1=CC(O)=CC=C1C1=CC=CC=C1 YXVFYQXJAXKLAK-UHFFFAOYSA-N 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000007833 carbon precursor Substances 0.000 description 2
- 239000005539 carbonized material Substances 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 238000005341 cation exchange Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 2
- 229920000359 diblock copolymer Polymers 0.000 description 2
- 125000005594 diketone group Chemical group 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- NUVBSKCKDOMJSU-UHFFFAOYSA-N ethylparaben Chemical compound CCOC(=O)C1=CC=C(O)C=C1 NUVBSKCKDOMJSU-UHFFFAOYSA-N 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 description 2
- 229920001477 hydrophilic polymer Polymers 0.000 description 2
- 229920001600 hydrophobic polymer Polymers 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 150000005165 hydroxybenzoic acids Chemical class 0.000 description 2
- 125000000468 ketone group Chemical group 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 2
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 2
- 239000002114 nanocomposite Substances 0.000 description 2
- RBXVOQPAMPBADW-UHFFFAOYSA-N nitrous acid;phenol Chemical class ON=O.OC1=CC=CC=C1 RBXVOQPAMPBADW-UHFFFAOYSA-N 0.000 description 2
- OIPPWFOQEKKFEE-UHFFFAOYSA-N orcinol Chemical compound CC1=CC(O)=CC(O)=C1 OIPPWFOQEKKFEE-UHFFFAOYSA-N 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 2
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- ZWLUXSQADUDCSB-UHFFFAOYSA-N phthalaldehyde Chemical compound O=CC1=CC=CC=C1C=O ZWLUXSQADUDCSB-UHFFFAOYSA-N 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000000851 scanning transmission electron micrograph Methods 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 238000001330 spinodal decomposition reaction Methods 0.000 description 2
- 229920001864 tannin Polymers 0.000 description 2
- 235000018553 tannin Nutrition 0.000 description 2
- 239000001648 tannin Substances 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- QAIPRVGONGVQAS-DUXPYHPUSA-N trans-caffeic acid Chemical compound OC(=O)\C=C\C1=CC=C(O)C(O)=C1 QAIPRVGONGVQAS-DUXPYHPUSA-N 0.000 description 2
- AAWZDTNXLSGCEK-LNVDRNJUSA-N (3r,5r)-1,3,4,5-tetrahydroxycyclohexane-1-carboxylic acid Chemical compound O[C@@H]1CC(O)(C(O)=O)C[C@@H](O)C1O AAWZDTNXLSGCEK-LNVDRNJUSA-N 0.000 description 1
- ACEAELOMUCBPJP-UHFFFAOYSA-N (E)-3,4,5-trihydroxycinnamic acid Natural products OC(=O)C=CC1=CC(O)=C(O)C(O)=C1 ACEAELOMUCBPJP-UHFFFAOYSA-N 0.000 description 1
- XLAIWHIOIFKLEO-UHFFFAOYSA-N (E)-4-<2-(4-hydroxyphenyl)ethenyl>phenol Natural products C1=CC(O)=CC=C1C=CC1=CC=C(O)C=C1 XLAIWHIOIFKLEO-UHFFFAOYSA-N 0.000 description 1
- KSEBMYQBYZTDHS-HWKANZROSA-M (E)-Ferulic acid Natural products COC1=CC(\C=C\C([O-])=O)=CC=C1O KSEBMYQBYZTDHS-HWKANZROSA-M 0.000 description 1
- 0 *C(=O)C([1*])=O Chemical compound *C(=O)C([1*])=O 0.000 description 1
- NDQXKKFRNOPRDW-UHFFFAOYSA-N 1,1,1-triethoxyethane Chemical compound CCOC(C)(OCC)OCC NDQXKKFRNOPRDW-UHFFFAOYSA-N 0.000 description 1
- WOAHJDHKFWSLKE-UHFFFAOYSA-N 1,2-benzoquinone Chemical compound O=C1C=CC=CC1=O WOAHJDHKFWSLKE-UHFFFAOYSA-N 0.000 description 1
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 description 1
- MYGRPGMUMHJDGG-UHFFFAOYSA-N 1-aminocyclohexa-3,5-diene-1,3-diol Chemical compound NC1(O)CC(O)=CC=C1 MYGRPGMUMHJDGG-UHFFFAOYSA-N 0.000 description 1
- MQCPOLNSJCWPGT-UHFFFAOYSA-N 2,2'-Bisphenol F Chemical compound OC1=CC=CC=C1CC1=CC=CC=C1O MQCPOLNSJCWPGT-UHFFFAOYSA-N 0.000 description 1
- VGVRPFIJEJYOFN-UHFFFAOYSA-N 2,3,4,6-tetrachlorophenol Chemical class OC1=C(Cl)C=C(Cl)C(Cl)=C1Cl VGVRPFIJEJYOFN-UHFFFAOYSA-N 0.000 description 1
- SKDJCHZVXDLVIE-UHFFFAOYSA-N 2,3,5-tribromophenol Chemical compound OC1=CC(Br)=CC(Br)=C1Br SKDJCHZVXDLVIE-UHFFFAOYSA-N 0.000 description 1
- WWGQHTJIFOQAOC-UHFFFAOYSA-N 2,3,5-trichlorophenol Chemical compound OC1=CC(Cl)=CC(Cl)=C1Cl WWGQHTJIFOQAOC-UHFFFAOYSA-N 0.000 description 1
- CYEZXDVLBGFROE-UHFFFAOYSA-N 2,4-Dihydroxy-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C(O)=C1 CYEZXDVLBGFROE-UHFFFAOYSA-N 0.000 description 1
- KDBZVULQVCUNNA-UHFFFAOYSA-N 2,5-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=C(C(C)(C)C)C(O)=C1 KDBZVULQVCUNNA-UHFFFAOYSA-N 0.000 description 1
- XQRUEDXXCQDNOT-UHFFFAOYSA-N 2,5-diaminophenol Chemical compound NC1=CC=C(N)C(O)=C1 XQRUEDXXCQDNOT-UHFFFAOYSA-N 0.000 description 1
- AQFCDVGUEQOTAC-UHFFFAOYSA-N 2,5-diethylphenol Chemical compound CCC1=CC=C(CC)C(O)=C1 AQFCDVGUEQOTAC-UHFFFAOYSA-N 0.000 description 1
- PXJJKVNIMAZHCB-UHFFFAOYSA-N 2,5-diformylfuran Chemical compound O=CC1=CC=C(C=O)O1 PXJJKVNIMAZHCB-UHFFFAOYSA-N 0.000 description 1
- DIZBQMTZXOUFTD-UHFFFAOYSA-N 2-(furan-2-yl)-3h-benzimidazole-5-carboxylic acid Chemical compound N1C2=CC(C(=O)O)=CC=C2N=C1C1=CC=CO1 DIZBQMTZXOUFTD-UHFFFAOYSA-N 0.000 description 1
- JEPCLNGRAIMPQV-UHFFFAOYSA-N 2-aminobenzene-1,3-diol Chemical compound NC1=C(O)C=CC=C1O JEPCLNGRAIMPQV-UHFFFAOYSA-N 0.000 description 1
- GJYCVCVHRSWLNY-UHFFFAOYSA-N 2-butylphenol Chemical class CCCCC1=CC=CC=C1O GJYCVCVHRSWLNY-UHFFFAOYSA-N 0.000 description 1
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 1
- PHGZFKPNFFEOIR-UHFFFAOYSA-N 2-cyclopropyl-2-oxoacetaldehyde Chemical compound O=CC(=O)C1CC1 PHGZFKPNFFEOIR-UHFFFAOYSA-N 0.000 description 1
- DWVXFVWWARTDCQ-UHFFFAOYSA-N 2-ethylbenzene-1,3-diol Chemical compound CCC1=C(O)C=CC=C1O DWVXFVWWARTDCQ-UHFFFAOYSA-N 0.000 description 1
- HFHFGHLXUCOHLN-UHFFFAOYSA-N 2-fluorophenol Chemical compound OC1=CC=CC=C1F HFHFGHLXUCOHLN-UHFFFAOYSA-N 0.000 description 1
- ABMULKFGWTYIIK-UHFFFAOYSA-N 2-hexylphenol Chemical class CCCCCCC1=CC=CC=C1O ABMULKFGWTYIIK-UHFFFAOYSA-N 0.000 description 1
- JQPFYXFVUKHERX-UHFFFAOYSA-N 2-hydroxy-2-cyclohexen-1-one Natural products OC1=CCCCC1=O JQPFYXFVUKHERX-UHFFFAOYSA-N 0.000 description 1
- VHBSECWYEFJRNV-UHFFFAOYSA-N 2-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=CC=C1O.OC(=O)C1=CC=CC=C1O VHBSECWYEFJRNV-UHFFFAOYSA-N 0.000 description 1
- CRBJBYGJVIBWIY-UHFFFAOYSA-N 2-isopropylphenol Chemical class CC(C)C1=CC=CC=C1O CRBJBYGJVIBWIY-UHFFFAOYSA-N 0.000 description 1
- QSVQZFVXAUGEMT-UHFFFAOYSA-N 2-nitrobenzene-1,3,5-triol Chemical compound OC1=CC(O)=C([N+]([O-])=O)C(O)=C1 QSVQZFVXAUGEMT-UHFFFAOYSA-N 0.000 description 1
- ZLCPKMIJYMHZMJ-UHFFFAOYSA-N 2-nitrobenzene-1,3-diol Chemical compound OC1=CC=CC(O)=C1[N+]([O-])=O ZLCPKMIJYMHZMJ-UHFFFAOYSA-N 0.000 description 1
- DUIOKRXOKLLURE-UHFFFAOYSA-N 2-octylphenol Chemical class CCCCCCCCC1=CC=CC=C1O DUIOKRXOKLLURE-UHFFFAOYSA-N 0.000 description 1
- SDQVYUNYDAWYIK-UHFFFAOYSA-N 2-oxobut-3-enal Chemical compound C=CC(=O)C=O SDQVYUNYDAWYIK-UHFFFAOYSA-N 0.000 description 1
- QHOSFZIXOKVGHK-UHFFFAOYSA-N 2-oxohexanal Chemical compound CCCCC(=O)C=O QHOSFZIXOKVGHK-UHFFFAOYSA-N 0.000 description 1
- 229940061334 2-phenylphenol Drugs 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- LCHYEKKJCUJAKN-UHFFFAOYSA-N 2-propylphenol Chemical class CCCC1=CC=CC=C1O LCHYEKKJCUJAKN-UHFFFAOYSA-N 0.000 description 1
- YHJBEOWTWJHMFC-UHFFFAOYSA-N 3,4,4-trimethylcyclopentane-1,2-dione Chemical compound CC1C(=O)C(=O)CC1(C)C YHJBEOWTWJHMFC-UHFFFAOYSA-N 0.000 description 1
- KAVNMOZXRFSVPM-UHFFFAOYSA-N 3,4,5-tribromophenol Chemical compound OC1=CC(Br)=C(Br)C(Br)=C1 KAVNMOZXRFSVPM-UHFFFAOYSA-N 0.000 description 1
- GBNHEBQXJVDXSW-UHFFFAOYSA-N 3,4,5-trichlorophenol Chemical compound OC1=CC(Cl)=C(Cl)C(Cl)=C1 GBNHEBQXJVDXSW-UHFFFAOYSA-N 0.000 description 1
- ZRTWIJKGTUGZJY-UHFFFAOYSA-N 3,4,5-trifluorophenol Chemical compound OC1=CC(F)=C(F)C(F)=C1 ZRTWIJKGTUGZJY-UHFFFAOYSA-N 0.000 description 1
- PZFMWYNHJFZBPO-UHFFFAOYSA-N 3,5-dibromophenol Chemical compound OC1=CC(Br)=CC(Br)=C1 PZFMWYNHJFZBPO-UHFFFAOYSA-N 0.000 description 1
- VPOMSPZBQMDLTM-UHFFFAOYSA-N 3,5-dichlorophenol Chemical compound OC1=CC(Cl)=CC(Cl)=C1 VPOMSPZBQMDLTM-UHFFFAOYSA-N 0.000 description 1
- UEMBNLWZFIWQFL-UHFFFAOYSA-N 3,5-dinitrophenol Chemical compound OC1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1 UEMBNLWZFIWQFL-UHFFFAOYSA-N 0.000 description 1
- ZDWSNKPLZUXBPE-UHFFFAOYSA-N 3,5-ditert-butylphenol Chemical compound CC(C)(C)C1=CC(O)=CC(C(C)(C)C)=C1 ZDWSNKPLZUXBPE-UHFFFAOYSA-N 0.000 description 1
- CWVRJTMFETXNAD-FWCWNIRPSA-N 3-O-Caffeoylquinic acid Natural products O[C@H]1[C@@H](O)C[C@@](O)(C(O)=O)C[C@H]1OC(=O)\C=C\C1=CC=C(O)C(O)=C1 CWVRJTMFETXNAD-FWCWNIRPSA-N 0.000 description 1
- DCBCSMXGLXAXDM-UHFFFAOYSA-N 3-aminophenol;hydrochloride Chemical compound [Cl-].[NH3+]C1=CC=CC(O)=C1 DCBCSMXGLXAXDM-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- MNOJRWOWILAHAV-UHFFFAOYSA-N 3-bromophenol Chemical compound OC1=CC=CC(Br)=C1 MNOJRWOWILAHAV-UHFFFAOYSA-N 0.000 description 1
- HORNXRXVQWOLPJ-UHFFFAOYSA-N 3-chlorophenol Chemical compound OC1=CC=CC(Cl)=C1 HORNXRXVQWOLPJ-UHFFFAOYSA-N 0.000 description 1
- DORQBGHGOPXMTH-UHFFFAOYSA-N 3-ethylphenol Chemical compound C(C)C=1C=C(C=CC1)O.C(C)C=1C=C(C=CC1)O DORQBGHGOPXMTH-UHFFFAOYSA-N 0.000 description 1
- SJTBRFHBXDZMPS-UHFFFAOYSA-N 3-fluorophenol Chemical compound OC1=CC=CC(F)=C1 SJTBRFHBXDZMPS-UHFFFAOYSA-N 0.000 description 1
- FXTKWBZFNQHAAO-UHFFFAOYSA-N 3-iodophenol Chemical compound OC1=CC=CC(I)=C1 FXTKWBZFNQHAAO-UHFFFAOYSA-N 0.000 description 1
- LPYUENQFPVNPHY-UHFFFAOYSA-N 3-methoxycatechol Chemical class COC1=CC=CC(O)=C1O LPYUENQFPVNPHY-UHFFFAOYSA-N 0.000 description 1
- BJDVEYLUFYKDIQ-UHFFFAOYSA-N 3-methyl-2-oxopentanal Chemical compound CCC(C)C(=O)C=O BJDVEYLUFYKDIQ-UHFFFAOYSA-N 0.000 description 1
- MRBKEAMVRSLQPH-UHFFFAOYSA-N 3-tert-butyl-4-hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1 MRBKEAMVRSLQPH-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- GDEHXPCZWFXRKC-UHFFFAOYSA-N 4-(2-methylpropyl)phenol Chemical compound CC(C)CC1=CC=C(O)C=C1 GDEHXPCZWFXRKC-UHFFFAOYSA-N 0.000 description 1
- KLSLBUSXWBJMEC-UHFFFAOYSA-N 4-Propylphenol Chemical compound CCCC1=CC=C(O)C=C1 KLSLBUSXWBJMEC-UHFFFAOYSA-N 0.000 description 1
- HDPBBNNDDQOWPJ-UHFFFAOYSA-N 4-[1,2,2-tris(4-hydroxyphenyl)ethyl]phenol Chemical compound C1=CC(O)=CC=C1C(C=1C=CC(O)=CC=1)C(C=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HDPBBNNDDQOWPJ-UHFFFAOYSA-N 0.000 description 1
- ROCVGJLXIARCAC-UHFFFAOYSA-N 4-aminobenzene-1,3-diol Chemical compound NC1=CC=C(O)C=C1O ROCVGJLXIARCAC-UHFFFAOYSA-N 0.000 description 1
- GZFGOTFRPZRKDS-UHFFFAOYSA-N 4-bromophenol Chemical compound OC1=CC=C(Br)C=C1 GZFGOTFRPZRKDS-UHFFFAOYSA-N 0.000 description 1
- WXNZTHHGJRFXKQ-UHFFFAOYSA-N 4-chlorophenol Chemical compound OC1=CC=C(Cl)C=C1 WXNZTHHGJRFXKQ-UHFFFAOYSA-N 0.000 description 1
- RHMPLDJJXGPMEX-UHFFFAOYSA-N 4-fluorophenol Chemical compound OC1=CC=C(F)C=C1 RHMPLDJJXGPMEX-UHFFFAOYSA-N 0.000 description 1
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 description 1
- VSMDINRNYYEDRN-UHFFFAOYSA-N 4-iodophenol Chemical compound OC1=CC=C(I)C=C1 VSMDINRNYYEDRN-UHFFFAOYSA-N 0.000 description 1
- CYYZDBDROVLTJU-UHFFFAOYSA-N 4-n-Butylphenol Chemical compound CCCCC1=CC=C(O)C=C1 CYYZDBDROVLTJU-UHFFFAOYSA-N 0.000 description 1
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 description 1
- IGFHQQFPSIBGKE-UHFFFAOYSA-N 4-nonylphenol Chemical compound CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 1
- NTDQQZYCCIDJRK-UHFFFAOYSA-N 4-octylphenol Chemical compound CCCCCCCCC1=CC=C(O)C=C1 NTDQQZYCCIDJRK-UHFFFAOYSA-N 0.000 description 1
- QHPQWRBYOIRBIT-UHFFFAOYSA-N 4-tert-butylphenol Chemical compound CC(C)(C)C1=CC=C(O)C=C1 QHPQWRBYOIRBIT-UHFFFAOYSA-N 0.000 description 1
- NYUABOGYMWADSF-UHFFFAOYSA-N 5-methylbenzene-1,2,3-triol Chemical compound CC1=CC(O)=C(O)C(O)=C1 NYUABOGYMWADSF-UHFFFAOYSA-N 0.000 description 1
- UMHJEEQLYBKSAN-UHFFFAOYSA-N Adipaldehyde Chemical compound O=CCCCCC=O UMHJEEQLYBKSAN-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical class OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- QUMSUJWRUHPEEJ-UHFFFAOYSA-N C=CCCC=O Chemical compound C=CCCC=O QUMSUJWRUHPEEJ-UHFFFAOYSA-N 0.000 description 1
- PZIRUHCJZBGLDY-UHFFFAOYSA-N Caffeoylquinic acid Natural products CC(CCC(=O)C(C)C1C(=O)CC2C3CC(O)C4CC(O)CCC4(C)C3CCC12C)C(=O)O PZIRUHCJZBGLDY-UHFFFAOYSA-N 0.000 description 1
- 239000004966 Carbon aerogel Substances 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- AAWZDTNXLSGCEK-UHFFFAOYSA-N Cordycepinsaeure Natural products OC1CC(O)(C(O)=O)CC(O)C1O AAWZDTNXLSGCEK-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- AFSDNFLWKVMVRB-UHFFFAOYSA-N Ellagic acid Chemical compound OC1=C(O)C(OC2=O)=C3C4=C2C=C(O)C(O)=C4OC(=O)C3=C1 AFSDNFLWKVMVRB-UHFFFAOYSA-N 0.000 description 1
- 229920002079 Ellagic acid Polymers 0.000 description 1
- ATJXMQHAMYVHRX-CPCISQLKSA-N Ellagic acid Natural products OC1=C(O)[C@H]2OC(=O)c3cc(O)c(O)c4OC(=O)C(=C1)[C@H]2c34 ATJXMQHAMYVHRX-CPCISQLKSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000001263 FEMA 3042 Substances 0.000 description 1
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical class [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- WSMYVTOQOOLQHP-UHFFFAOYSA-N Malondialdehyde Chemical compound O=CCC=O WSMYVTOQOOLQHP-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- CWVRJTMFETXNAD-KLZCAUPSSA-N Neochlorogenin-saeure Natural products O[C@H]1C[C@@](O)(C[C@@H](OC(=O)C=Cc2ccc(O)c(O)c2)[C@@H]1O)C(=O)O CWVRJTMFETXNAD-KLZCAUPSSA-N 0.000 description 1
- PVSRDYHSSBAJNJ-ZIKNSQGESA-N OC(=O)\C=C\C1=CC=C(O)C=C1.OC(=O)C(O)=CC1=CC=CC=C1 Chemical compound OC(=O)\C=C\C1=CC=C(O)C=C1.OC(=O)C(O)=CC1=CC=CC=C1 PVSRDYHSSBAJNJ-ZIKNSQGESA-N 0.000 description 1
- VSGULIUEIPDHRL-UHFFFAOYSA-N Oc1cc(O)c(C2ON[O]=C2)c(O)c1 Chemical compound Oc1cc(O)c(C2ON[O]=C2)c(O)c1 VSGULIUEIPDHRL-UHFFFAOYSA-N 0.000 description 1
- XCOPNPJSZIEORU-UHFFFAOYSA-N Oc1cc(O)cc(O)c1.[H]C(=O)C([H])=O.[H]C1=O[H]OC1c1c(C)cc(O)cc1O Chemical compound Oc1cc(O)cc(O)c1.[H]C(=O)C([H])=O.[H]C1=O[H]OC1c1c(C)cc(O)cc1O XCOPNPJSZIEORU-UHFFFAOYSA-N 0.000 description 1
- 229910020486 P2VP Inorganic materials 0.000 description 1
- 229920005687 PMMA-PEG Polymers 0.000 description 1
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 description 1
- 229920002415 Pluronic P-123 Polymers 0.000 description 1
- 229920002012 Pluronic® F 38 Polymers 0.000 description 1
- 229920002021 Pluronic® F 77 Polymers 0.000 description 1
- 229920002023 Pluronic® F 87 Polymers 0.000 description 1
- 229920002025 Pluronic® F 88 Polymers 0.000 description 1
- 229920002043 Pluronic® L 35 Polymers 0.000 description 1
- 229920002048 Pluronic® L 92 Polymers 0.000 description 1
- 229920002057 Pluronic® P 103 Polymers 0.000 description 1
- 229920002059 Pluronic® P 104 Polymers 0.000 description 1
- 229920002065 Pluronic® P 105 Polymers 0.000 description 1
- 229920002066 Pluronic® P 65 Polymers 0.000 description 1
- 229920002070 Pluronic® P 84 Polymers 0.000 description 1
- 229920001244 Poly(D,L-lactide) Polymers 0.000 description 1
- 229920000420 Poly(styrene)-block-poly(acrylic acid) Polymers 0.000 description 1
- 229920000390 Poly(styrene-block-methyl methacrylate) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- ZVOLCUVKHLEPEV-UHFFFAOYSA-N Quercetagetin Natural products C1=C(O)C(O)=CC=C1C1=C(O)C(=O)C2=C(O)C(O)=C(O)C=C2O1 ZVOLCUVKHLEPEV-UHFFFAOYSA-N 0.000 description 1
- AAWZDTNXLSGCEK-ZHQZDSKASA-N Quinic acid Natural products O[C@H]1CC(O)(C(O)=O)C[C@H](O)C1O AAWZDTNXLSGCEK-ZHQZDSKASA-N 0.000 description 1
- 238000003841 Raman measurement Methods 0.000 description 1
- HWTZYBCRDDUBJY-UHFFFAOYSA-N Rhynchosin Natural products C1=C(O)C(O)=CC=C1C1=C(O)C(=O)C2=CC(O)=C(O)C=C2O1 HWTZYBCRDDUBJY-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- PCSMJKASWLYICJ-UHFFFAOYSA-N Succinic aldehyde Chemical compound O=CCCC=O PCSMJKASWLYICJ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- OOJYPCDXFPWXFL-UHFFFAOYSA-N [C].OC1=CC=CC=C1 Chemical compound [C].OC1=CC=CC=C1 OOJYPCDXFPWXFL-UHFFFAOYSA-N 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 239000003011 anion exchange membrane Substances 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- HTKKRNQMBYGFMV-UHFFFAOYSA-N anthracene-2,3-dialdehyde Chemical compound C1=CC=C2C=C(C=C(C(C=O)=C3)C=O)C3=CC2=C1 HTKKRNQMBYGFMV-UHFFFAOYSA-N 0.000 description 1
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- UIFJOXOHICDFDO-UHFFFAOYSA-N benzene-1,3,5-triol Chemical compound OC1=CC(O)=CC(O)=C1.OC1=CC(O)=CC(O)=C1 UIFJOXOHICDFDO-UHFFFAOYSA-N 0.000 description 1
- 229950011260 betanaphthol Drugs 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- UBXYXCRCOKCZIT-UHFFFAOYSA-N biphenyl-3-ol Chemical compound OC1=CC=CC(C=2C=CC=CC=2)=C1 UBXYXCRCOKCZIT-UHFFFAOYSA-N 0.000 description 1
- VCCBEIPGXKNHFW-UHFFFAOYSA-N biphenyl-4,4'-diol Chemical compound C1=CC(O)=CC=C1C1=CC=C(O)C=C1 VCCBEIPGXKNHFW-UHFFFAOYSA-N 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 235000004883 caffeic acid Nutrition 0.000 description 1
- 229940074360 caffeic acid Drugs 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 125000005518 carboxamido group Chemical group 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 231100000357 carcinogen Toxicity 0.000 description 1
- 239000003183 carcinogenic agent Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- BEYOBVMPDRKTNR-UHFFFAOYSA-N chembl79759 Chemical compound C1=CC(O)=CC=C1N=NC1=CC=CC=C1 BEYOBVMPDRKTNR-UHFFFAOYSA-N 0.000 description 1
- 239000007806 chemical reaction intermediate Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- CWVRJTMFETXNAD-JUHZACGLSA-N chlorogenic acid Chemical compound O[C@@H]1[C@H](O)C[C@@](O)(C(O)=O)C[C@H]1OC(=O)\C=C\C1=CC=C(O)C(O)=C1 CWVRJTMFETXNAD-JUHZACGLSA-N 0.000 description 1
- 235000001368 chlorogenic acid Nutrition 0.000 description 1
- 229940074393 chlorogenic acid Drugs 0.000 description 1
- FFQSDFBBSXGVKF-KHSQJDLVSA-N chlorogenic acid Natural products O[C@@H]1C[C@](O)(C[C@@H](CC(=O)C=Cc2ccc(O)c(O)c2)[C@@H]1O)C(=O)O FFQSDFBBSXGVKF-KHSQJDLVSA-N 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000012501 chromatography medium Substances 0.000 description 1
- BMRSEYFENKXDIS-KLZCAUPSSA-N cis-3-O-p-coumaroylquinic acid Natural products O[C@H]1C[C@@](O)(C[C@@H](OC(=O)C=Cc2ccc(O)cc2)[C@@H]1O)C(=O)O BMRSEYFENKXDIS-KLZCAUPSSA-N 0.000 description 1
- QAIPRVGONGVQAS-UHFFFAOYSA-N cis-caffeic acid Natural products OC(=O)C=CC1=CC=C(O)C(O)=C1 QAIPRVGONGVQAS-UHFFFAOYSA-N 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 150000001896 cresols Chemical class 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- SLOCIJOTBVAMAJ-UHFFFAOYSA-N cycloheptane-1,2-dione Chemical compound O=C1CCCCCC1=O SLOCIJOTBVAMAJ-UHFFFAOYSA-N 0.000 description 1
- YMHCXEBSOZDYPA-UHFFFAOYSA-N cyclohex-4-ene-1,2-dione Chemical compound O=C1CC=CCC1=O YMHCXEBSOZDYPA-UHFFFAOYSA-N 0.000 description 1
- AOVGTXWIQWMZGB-UHFFFAOYSA-N cyclohexane-1,2-dicarbaldehyde Chemical compound O=CC1CCCCC1C=O AOVGTXWIQWMZGB-UHFFFAOYSA-N 0.000 description 1
- OILAIQUEIWYQPH-UHFFFAOYSA-N cyclohexane-1,2-dione Chemical compound O=C1CCCCC1=O OILAIQUEIWYQPH-UHFFFAOYSA-N 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000004956 cyclohexylene group Chemical group 0.000 description 1
- FNXCGQDTXUIGGA-UHFFFAOYSA-N cyclopenta-2,5-diene-1,2-dicarbaldehyde Chemical compound O=CC1=CCC=C1C=O FNXCGQDTXUIGGA-UHFFFAOYSA-N 0.000 description 1
- PYPZYWHXVRYDGD-UHFFFAOYSA-N cyclopentane-1,2-dicarbaldehyde Chemical compound O=CC1CCCC1C=O PYPZYWHXVRYDGD-UHFFFAOYSA-N 0.000 description 1
- CIISBNCSMVCNIP-UHFFFAOYSA-N cyclopentane-1,2-dione Chemical compound O=C1CCCC1=O CIISBNCSMVCNIP-UHFFFAOYSA-N 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000004979 cyclopentylene group Chemical group 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- ZNWNWEHQFXOPGK-UHFFFAOYSA-N decanedial Chemical compound O=CCCCCCCCCC=O ZNWNWEHQFXOPGK-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 125000004427 diamine group Chemical group 0.000 description 1
- VILAVOFMIJHSJA-UHFFFAOYSA-N dicarbon monoxide Chemical group [C]=C=O VILAVOFMIJHSJA-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 229960004132 diethyl ether Drugs 0.000 description 1
- 150000005169 dihydroxybenzoic acids Chemical class 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 235000004132 ellagic acid Nutrition 0.000 description 1
- 229960002852 ellagic acid Drugs 0.000 description 1
- 229920001968 ellagitannin Polymers 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 150000002085 enols Chemical class 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 235000010228 ethyl p-hydroxybenzoate Nutrition 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- KSEBMYQBYZTDHS-HWKANZROSA-N ferulic acid Chemical compound COC1=CC(\C=C\C(O)=O)=CC=C1O KSEBMYQBYZTDHS-HWKANZROSA-N 0.000 description 1
- 235000001785 ferulic acid Nutrition 0.000 description 1
- 229940114124 ferulic acid Drugs 0.000 description 1
- KSEBMYQBYZTDHS-UHFFFAOYSA-N ferulic acid Natural products COC1=CC(C=CC(O)=O)=CC=C1O KSEBMYQBYZTDHS-UHFFFAOYSA-N 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 125000001543 furan-2,5-diyl group Chemical group O1C(=CC=C1*)* 0.000 description 1
- 229940074391 gallic acid Drugs 0.000 description 1
- 235000004515 gallic acid Nutrition 0.000 description 1
- 229920002824 gallotannin Polymers 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 229960001867 guaiacol Drugs 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- MMPZYDUOPLQDHR-UHFFFAOYSA-N hexa-1,5-diene-3,4-dione Chemical compound C=CC(=O)C(=O)C=C MMPZYDUOPLQDHR-UHFFFAOYSA-N 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 229940071870 hydroiodic acid Drugs 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- WOPKYMRPOKFYNI-UHFFFAOYSA-N hydroxycyclopentenone Natural products OC1=CCCC1=O WOPKYMRPOKFYNI-UHFFFAOYSA-N 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229920000592 inorganic polymer Polymers 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 125000003010 ionic group Chemical group 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- MWDZOUNAPSSOEL-UHFFFAOYSA-N kaempferol Natural products OC1=C(C(=O)c2cc(O)cc(O)c2O1)c3ccc(O)cc3 MWDZOUNAPSSOEL-UHFFFAOYSA-N 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 229940118019 malondialdehyde Drugs 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- HMNKTRSOROOSPP-UHFFFAOYSA-N meta-ethylphenol Natural products CCC1=CC=CC(O)=C1 HMNKTRSOROOSPP-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 125000005394 methallyl group Chemical group 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229960001047 methyl salicylate Drugs 0.000 description 1
- FAARLWTXUUQFSN-UHFFFAOYSA-N methylellagic acid Natural products O1C(=O)C2=CC(O)=C(O)C3=C2C2=C1C(OC)=C(O)C=C2C(=O)O3 FAARLWTXUUQFSN-UHFFFAOYSA-N 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- ZIPLKLQPLOWLTM-UHFFFAOYSA-N naphthalene-2,3-dicarbaldehyde Chemical compound C1=CC=C2C=C(C=O)C(C=O)=CC2=C1 ZIPLKLQPLOWLTM-UHFFFAOYSA-N 0.000 description 1
- 150000004780 naphthols Chemical class 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 238000006902 nitrogenation reaction Methods 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical class CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- REBAXRATBNTKPT-UHFFFAOYSA-N octane-3,4-dione Chemical compound CCCCC(=O)C(=O)CC REBAXRATBNTKPT-UHFFFAOYSA-N 0.000 description 1
- OADYBSJSJUFUBR-UHFFFAOYSA-N octanedial Chemical compound O=CCCCCCCC=O OADYBSJSJUFUBR-UHFFFAOYSA-N 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 235000010292 orthophenyl phenol Nutrition 0.000 description 1
- 150000002924 oxiranes Chemical class 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- FUGYGGDSWSUORM-UHFFFAOYSA-N para-hydroxystyrene Natural products OC1=CC=C(C=C)C=C1 FUGYGGDSWSUORM-UHFFFAOYSA-N 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- DIZBESKOLJEDAW-UHFFFAOYSA-N pent-4-ene-2,3-dione Chemical compound CC(=O)C(=O)C=C DIZBESKOLJEDAW-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 229920001993 poloxamer 188 Polymers 0.000 description 1
- 229920000885 poly(2-vinylpyridine) Polymers 0.000 description 1
- 229920002939 poly(N,N-dimethylacrylamides) Polymers 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- YQUVCSBJEUQKSH-UHFFFAOYSA-N protochatechuic acid Natural products OC(=O)C1=CC=C(O)C(O)=C1 YQUVCSBJEUQKSH-UHFFFAOYSA-N 0.000 description 1
- 229940079877 pyrogallol Drugs 0.000 description 1
- 229940120731 pyruvaldehyde Drugs 0.000 description 1
- 235000005875 quercetin Nutrition 0.000 description 1
- 229960001285 quercetin Drugs 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 235000021283 resveratrol Nutrition 0.000 description 1
- 229940016667 resveratrol Drugs 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000011593 sulfur Chemical group 0.000 description 1
- 229910052717 sulfur Chemical group 0.000 description 1
- 239000003930 superacid Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- LRBQNJMCXXYXIU-NRMVVENXSA-N tannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-NRMVVENXSA-N 0.000 description 1
- 235000015523 tannic acid Nutrition 0.000 description 1
- 229920002258 tannic acid Polymers 0.000 description 1
- 229940033123 tannic acid Drugs 0.000 description 1
- 238000003419 tautomerization reaction Methods 0.000 description 1
- KUCOHFSKRZZVRO-UHFFFAOYSA-N terephthalaldehyde Chemical compound O=CC1=CC=C(C=O)C=C1 KUCOHFSKRZZVRO-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920003046 tetrablock copolymer Polymers 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- QURCVMIEKCOAJU-UHFFFAOYSA-N trans-isoferulic acid Natural products COC1=CC=C(C=CC(O)=O)C=C1O QURCVMIEKCOAJU-UHFFFAOYSA-N 0.000 description 1
- XLAIWHIOIFKLEO-OWOJBTEDSA-N trans-stilbene-4,4'-diol Chemical compound C1=CC(O)=CC=C1\C=C\C1=CC=C(O)C=C1 XLAIWHIOIFKLEO-OWOJBTEDSA-N 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 1
- ZSDSQXJSNMTJDA-UHFFFAOYSA-N trifluralin Chemical compound CCCN(CCC)C1=C([N+]([O-])=O)C=C(C(F)(F)F)C=C1[N+]([O-])=O ZSDSQXJSNMTJDA-UHFFFAOYSA-N 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- WKOLLVMJNQIZCI-UHFFFAOYSA-N vanillic acid Chemical compound COC1=CC(C(O)=O)=CC=C1O WKOLLVMJNQIZCI-UHFFFAOYSA-N 0.000 description 1
- TUUBOHWZSQXCSW-UHFFFAOYSA-N vanillic acid Natural products COC1=CC(O)=CC(C(O)=O)=C1 TUUBOHWZSQXCSW-UHFFFAOYSA-N 0.000 description 1
- MWOOGOJBHIARFG-UHFFFAOYSA-N vanillin Chemical compound COC1=CC(C=O)=CC=C1O MWOOGOJBHIARFG-UHFFFAOYSA-N 0.000 description 1
- 235000012141 vanillin Nutrition 0.000 description 1
- FGQOOHJZONJGDT-UHFFFAOYSA-N vanillin Natural products COC1=CC(O)=CC(C=O)=C1 FGQOOHJZONJGDT-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 150000003739 xylenols Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/469—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
- C02F1/4691—Capacitive deionisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/20—Graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/16—Pore diameter
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/4604—Treatment of water, waste water, or sewage by electrochemical methods for desalination of seawater or brackish water
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
- C02F2001/46133—Electrodes characterised by the material
- C02F2001/46138—Electrodes comprising a substrate and a coating
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/002—Construction details of the apparatus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/24—Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/42—Powders or particles, e.g. composition thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249967—Inorganic matrix in void-containing component
Definitions
- the present invention relates to the field of porous carbon materials, and more particularly, to such carbon materials containing a bimodal or hierarchical porosity.
- Porous carbon materials have long been used in capacitive deionization (CDI) technology. Capacitive deionization is increasingly being considered for large-scale desalination operations because of its lower operating costs.
- CDI capacitive deionization
- salt water is made to flow between two porous electrodes, typically made of carbon. When an electric field is applied to render the electrodes opposite in polarity, positive ions become incorporated in the negatively-charged electrode while negative ions become incorporated in the positively-charged electrode. The stored ions can be subsequently released into a waste stream by reversing the electrode polarities.
- CDI technology is currently significantly hampered by the difficulty in producing porous carbon films on a commercial scale in a batch-to-batch repeatable and uniform manner.
- the porous carbons produced until now e.g., via resorcinol-formaldehyde reaction
- the porous carbon films currently in use in CDI technology e.g., as prepared by standard resorcinol-formaldehyde template methodology
- CDI technology generally provide a significantly lower than optimal kinetic adsorption characteristic.
- the invention is directed to carbon materials possessing a hierarchical porosity, which can be, for example, a bimodal, trimodal, or higher multimodal porosity.
- a hierarchical porous carbon material i.e., “the porous carbon material”
- CDI capacitive deionization
- Other possible applications include, for example, gas separation, chromatography, catalysis (e.g., as a support or active material), electrode materials (e.g., in batteries), and supercapacitors.
- the hierarchical porous carbon material considered herein is in the form of a film (i.e., layer).
- the hierarchical porous carbon materials described herein provide at least the significant benefit of significantly alleviating the mass-transport limitations encountered in porous carbon materials of the art.
- the inclusion of smaller pores (i.e., mesopores) in these porous carbon materials maintains the effective removal of salt from water.
- the instant porous carbon materials can advantageously desalinate an equivalent volume of water in less time without compromising salt removal efficiency.
- the hierarchical porous carbon material contains mesopores having a size in the range of 2-50 nm and macropores having a size of at least 75 nm. In further embodiments, the hierarchical porous carbon material contains mesopores having a size in the range of 2-20 nm and macropores having a size in the range of 100-500 nm. In further embodiments, the mesopores and/or macropores are substantially uniform in size. For example, in some embodiments, the mesopores have a size characterized by an error margin of up to or less than ⁇ 2.5 nm. In other particular embodiments, at least a portion of the porous carbon material is amorphous (i.e., as opposed to graphitic).
- the invention is directed to a more cost-effective and facile method for fabricating hierarchical porous carbon materials.
- Methods are known in the art for producing hierarchical porous carbon materials.
- current methods are generally complex and employ a multiplicity of steps.
- Several of the known processes include, for example, the incorporation of sacrificial particles that are subsequently etched after curing and carbonization steps to form pores in the carbon material, as well as inclusion of secondary porogen species (for example, a glycol solvent).
- secondary porogen species for example, a glycol solvent
- the methodology known in the art is generally not amenable to achieving batch-to-batch repeatable, precise, and ordered sets of pore sizes in the carbon material.
- the method described herein is particularly advantageous in that an organic precursor composition is applied to any of a variety of substrates by simple means (e.g., spin-coating) and then carbonized to provide a hierarchical porous carbon without requiring a subsequent etching step and without requiring a secondary porogen, such as a glycol, as commonly used in methods of the art.
- simple means e.g., spin-coating
- secondary porogen such as a glycol
- the method involves subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition including: (i) a templating component that includes a block copolymer, (ii) a phenolic component, (iii) a dione component in which carbonyl groups are adjacent, and (iv) an acidic component, wherein the carbonization step includes heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a carbon material possessing a hierarchical porosity.
- the hierarchical porosity considered herein includes mesopores and macropores.
- the method described herein for producing hierarchical porous carbon materials has overcome many of the problems encountered in the art.
- the method described herein can produce a hierarchical porous carbon material in fewer steps and without the use of sacrificial particles or a secondary porogen, and without the use of toxic formaldehyde.
- the method described herein can achieve this simplified process without separate carbonization and pore-forming (e.g., etch) steps, i.e., the method described herein can achieve a hierarchical porous carbon material from the carbonization process step.
- the invention is directed to a capacitive deionization (CDI) device, as well as methods of using the CDI device in the desalination of water.
- the CDI device includes at least first and second electrodes separated by a space, wherein at least one (or both, or all) of the electrodes includes the hierarchical porous carbon material described above.
- the instant hierarchical porous carbon materials when used in a CDI device, have been found to provide superior ion uptake kinetics.
- FIG. 1 Nitrogen sorption isotherms and BJH pore size distribution of hierarchical porous carbon produced from reaction of phloroglucinol and glyoxal.
- FIG. 2 Raman spectrum of hierarchical porous carbon produced from reaction of phloroglucinol and glyoxal.
- FIG. 3 STEM images of hierarchical porous carbon produced from reaction of phloroglucinol and glyoxal.
- FIGS. 4A , 4 B Capacitive deionization results for (a) a representative resorcinol-formaldehyde mesoporous carbon of the art, and (b) the phloroglucinol-glyoxal hierarchical porous carbon produced herein.
- the invention is directed to porous carbon materials possessing a hierarchical porosity that includes both mesopores and macropores.
- hierarchical porosity refers to the presence of at least two different pore sizes in the porous carbon material, i.e., at least one set of pores being mesoporous and at least one set of pores being macroporous.
- the mesopores and macropores may be arranged, with respect to each other, in any of several different ways.
- the mesopores and macropores may be intermingled in an apparently disordered manner, i.e., without any apparent organization.
- at least one (or both) of the mesopores and macropores are arranged in an ordered (i.e., patterned) manner, such as in a cubic or hexagonal arrangement.
- pores and “mesoporous” refer to pores having a size (i.e., pore diameter or pore size) of at least 2 nm and up to 50 nm, i.e., “between 2 and 50 nm”, or “in the range of 2-50 nm”.
- the mesopores have a size of precisely or about 2 nm, 2.5 nm, 3 nm, 3.5 nm, 4 nm, 4.5 nm, 5 nm, 5.5 nm, 6 nm, 6.5 nm, 7 nm, 7.5 nm, 8 nm, 8.5 nm, 9 nm, 9.5 nm, 10 nm, 11 nm, 12 nm, 15 nm, 20 nm, 25 nm, 30 nm, 35 nm, 40 nm, 45 nm, or 50 nm, or a particular size, or a variation of sizes, within a range bounded by any two of these values.
- the terms “macropores” and “macroporous” refer to pores having a size of at least 75 nm.
- the macropores considered herein have a size up to or less than 1 micron (1 ⁇ m).
- the macropores have a size of precisely, about, at least, or greater than 75 nm, 80 nm, 85 nm, 90 nm, 95 nm, 100 nm, 110 nm, 120 nm, 130 nm, 140 nm, 150 nm, 160 nm, 170 nm, 180 nm, 190 nm, 200 nm, 225 nm, 250 nm, 275 nm, 300 nm, 325 nm, 350 nm, 375 nm, 400 nm, 425 nm, 450 nm, 475 nm, 500 nm, 550 nm, 600 nm, 650 nm, 700 nm
- the term “about” generally indicates within ⁇ 0.5%, 1%, 2%, 5%, or up to ⁇ 10% of the indicated value.
- a pore size of about 10 nm generally indicates in its broadest sense 10 nm ⁇ 10%, which indicates 9.0-11.0 nm.
- the term “about” can indicate either a measurement error (i.e., by limitations in the measurement method), or alternatively, a variation or average in a physical characteristic of a group (e.g., a population of pores).
- the porous carbon material possesses a microporous component.
- the micropores can be beneficial in providing a significantly increased surface area.
- the microporous component can be included in an amount of, for example, about or at least 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, or 20%, or in an amount within a range bounded by any two of these values.
- the terms “micropores” and “microporous” refer to pores having a diameter of less than 2 nm.
- the micropores have a size of precisely, about, up to, or less than 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, or 1.9 nm, or a particular size, or a variation of sizes, within a range bounded by any two of these values.
- the porous carbon material possesses a substantial absence of micropores.
- a “substantial absence” of micropores is generally meant that no more than 1%, 0.5%, or 0.1% of the total pore volume, or none of the pore volume, can be attributed to the presence of micropores.
- the pores of the carbon material can also possess a level of uniformity, i.e., in pore size and/or pore shape.
- the pores of the carbon material may possess an average pore diameter corresponding to any of the diameters exemplified above, subject to a degree of variation of no more than, for example, ⁇ 10 nm, ⁇ 8 nm, ⁇ 6, nm, ⁇ 5 nm, ⁇ 4 nm, ⁇ 3 nm, ⁇ 2.5 nm, ⁇ 2 nm, ⁇ 1.5 nm, ⁇ 1 nm, ⁇ 0.5, ⁇ 0.4, ⁇ 0.3, ⁇ 0.2, or ⁇ 0.1 nm.
- the pore size uniformity may be indicated by being within a percentage from a target pore size, e.g., within 25%, 20%, 15%, 10%, 5%, 2% 1%, or 0.5% of a target pore size.
- all of the pores are substantially uniform in size, while in other embodiments, a portion of the pores (e.g., the mesopores or the macropores) are substantially uniform in size.
- the pores can have any suitable wall thickness.
- the wall thickness can be precisely, about, at least, or less than, for example, 1 nm, 2 nm, 3 nm, 4 nm, 5 nm, 6 nm, 7 nm, 8 nm, 9 nm, 10 nm, 11 nm, 12 nm, 15 nm, 18 nm, 20 nm, 25 nm, 30 nm, 40 nm, 50 nm, 60 nm, 70 nm, 80 nm, 90 nm, 100 nm, 125 nm, 150 nm, 175 nm, 200 nm, 250 nm, 300 nm, 350 nm, 400 nm, 450 nm, or 500 nm, or a wall thickness within a range bounded by any two of these values.
- the foregoing exemplary wall thicknesses can be for all pores, or for a portion of the pores,
- the porous carbon material typically possesses a BET surface area of about or at least 50, 100, 200, 300, 400, 450, 500, 550, 600, 650, 700, 750, 800, 900, 1000, or 1500 m 2 /g, or a surface area within a range bounded by any two of these values.
- the porous carbon material may possess a total pore volume of precisely, about, or at least, for example, 0.2 cm 3 /g, 0.25 cm 3 /g, 0.3 cm 3 /g, 0.35 cm 3 /g, 0.4 cm 3 /g, 0.45 cm 3 /g, 0.5 cm 3 /g, 0.55 cm 3 /g, 0.6 cm 3 /g, 0.65 cm 3 /g, 0.7 cm 3 /g, 0.75 cm 3 /g, 0.8 cm 3 /g, 0.9 cm 3 /g, 1 cm 3 /g, 1.1 cm 3 /g, 1.2 cm 3 /g, 1.3 cm 3 /g, 1.4 cm 3 /g, 1.5 cm 3 /g, 1.6 cm 3 /g, 1.7 cm 3 /g, 1.8 cm 3 /g, 1.9 cm 3 /g, 2 cm 3 /g, 2.1 cm 3 /g, 2.2 cm 3 /g, 2.3 cm 3 /g, 2.4 cm 3 /g,
- the porous carbon material is amorphous rather than graphitic.
- an amorphous portion of the carbon material includes micropores, whereas micropores are generally absent from graphitic portions.
- the presence of micropores can provide certain advantages.
- precisely, about, or at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, or 90% of the porous carbon material is amorphous, wherein it is understood that the remaining portion of the carbon material is graphitic or another phase of carbon (e.g., glassy or vitreous carbon).
- the porous carbon material is no more than, or less than, 25%, 20%, 15%, 10%, 5%, 2%, or 1% graphitic. In some embodiments, all (e.g., about or precisely 100%) or substantially all (for example, greater than 90%, 95%, 98%, or 99%) of the porous carbon material is non-graphitic, and may be instead, for example, amorphous or glassy carbon.
- the porous carbon material can be in any suitable form, e.g., as rods, cubes, or sheets, depending on the application.
- the porous carbon material is in the form of a film.
- the film can have any suitable thickness, typically no more than 5 millimeters (5 mm).
- the film may preferably have a thickness of precisely, about, up to, at least, or less than, for example, 5 nm, 10 nm, 20 nm, 30 nm, 40 nm, 50 nm, 100 nm, 200 nm, 300 nm, 400 nm, 500 nm, 600 nm, 700 nm, 800 nm, 900 nm, 1.0 ⁇ m, 1.2 ⁇ m, 1.5 ⁇ n, 2.0 ⁇ m, 2.5 ⁇ n, 3.0 ⁇ m, 4.0 ⁇ m, 5.0 ⁇ m, 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m, 100 ⁇ m, 150 ⁇ m, 200 ⁇ m, 250 ⁇ m, 300 ⁇ m, 350 ⁇ m, 400 ⁇ m, 450 ⁇ m, 500 ⁇ m, 600 ⁇ m, 700 ⁇ m, 800 ⁇ m,
- the porous carbon film may also function as part of a composite material, wherein the porous carbon film either overlays, underlies, or is sandwiched between one or more layers of another material.
- the other material may be porous or non-porous, and can be composed of, for example, a metal, metal alloy, ceramic (e.g., silica, alumina, or a metal oxide), organic or inorganic polymer, or composite or hybrid thereof, depending on the application.
- the porous carbon film functions as a coating on an electrically-conducting substrate suitable as an electrode.
- the electrically-conducting substrate is, or includes, a carbon material, such as graphite.
- the porous carbon film is monolithic (i.e., not disposed on a substrate).
- the porous carbon material is in the form of particles.
- the particles have a size precisely, about, up to, or less than, for example, 5 nm, 10 nm, 20 nm, 30 nm, 40 nm, 50 nm, 100 nm, 200 nm, 500 nm, 1 ⁇ m, 2 ⁇ m, 5 ⁇ m, 10 ⁇ m, 50 ⁇ m, 100 ⁇ m, 500 ⁇ m, or 1000 ⁇ m, or a size within a range bounded by any two of these values.
- the invention is directed to methods for fabricating a hierarchical porous carbon material, such as any of the hierarchical porous carbon materials described above.
- the method first involves providing (i.e., preparing or otherwise obtaining in prepared form) a precursor composition to be subjected to a curing step followed by a carbonization step in order to produce a porous carbon material of the invention.
- the precursor composition includes at least the following components: (i) a templating component that contains (or includes) a block copolymer, (ii) a phenolic component (i.e., one or more phenolic compounds), (iii) a dione component (i.e., one or more dione compounds) in which carbonyl groups are adjacent, and (iv) an acidic component.
- a templating component that contains (or includes) a block copolymer
- a phenolic component i.e., one or more phenolic compounds
- a dione component i.e., one or more dione compounds in which carbonyl groups are adjacent
- an acidic component i.e., any other compound or material not within the scope of the foregoing components is excluded.
- the combination of phenolic component and dione component is herein referred to as the “polymer precursor” or “polymer precursor components”. These two components, when properly reacted and cured (as further discussed below), produce a polymer that is subsequently carbonized during a carbonization step. Hence, the polymer functions as a carbon precursor.
- the templating component i.e., block copolymer
- the block copolymer functions to organize the polymer precursor materials in an ordered (i.e., patterned) arrangement before the carbonization step.
- the block copolymer is typically completely volatized into gaseous byproducts, and thereby, generally does not contribute to the carbon content.
- the volatile gases serve the important role of creating at least the mesopores in the carbon structure during the carbonization step.
- the mechanism by which the hierarchical porous structure, including macropores, is produced, is not currently understood in much detail. It is believed that, while the block copolymer is largely responsible for producing mesopores, the phenolic compound, dione compound, or combination thereof (or combination of any of these compounds with the block copolymer) is responsible for the hierarchical porosity.
- the templating component includes one or more block copolymers.
- the block copolymer preferably has the ability to establish selective interactions with the polymer precursor components in such a manner that an organized network of interactions between the block copolymer and polymer precursor components results. Typically, such selective interactions occur when at least two different segments of the block copolymer differ in hydrophobicity (or hydrophilicity).
- a block copolymer that can self-organize based on hydrophobic or other variations will be suitable as a templating component herein.
- Such block copolymers typically form periodic structures by virtue of selective interactions between like domains, i.e., between hydrophobic domains and between hydrophilic domains.
- the templating component includes only one or more block copolymers, i.e., excludes other compounds and materials that are not block copolymers.
- the block copolymer includes one or more ionic groups. In other embodiments, the block copolymer is non-ionic.
- a “block copolymer” is a polymer containing two or more chemically distinct polymeric blocks (i.e., sections or segments).
- the copolymer can be, for example, a diblock copolymer (e.g., A-B), triblock copolymer (e.g., A-B-C), tetrablock copolymer (e.g., A-B-C-D), or higher block copolymer, wherein A, B, C, and D represent chemically distinct polymeric segments.
- the block copolymer is preferably not completely inorganic, and more preferably, completely organic (i.e., carbon-based) in order that the block copolymer is at least partially capable of volatilizing during the carbonization step.
- the block copolymer is typically linear; however, branched (e.g., glycerol branching units) and grafted block copolymer variations are also contemplated herein.
- the block copolymer contains polar groups capable of interacting (e.g., by hydrogen or ionic bonding) with the phenolic component and/or dione component.
- the groups preferably located in the block copolymer that can provide a favorable interactive bond with phenolic and/or carbonyl groups include, for example, ether, hydroxy, amino, imino, and carbonyl groups.
- the block copolymer is preferably not a complete hydrocarbon such as styrene-butadiene, although it may be desirable in some situations to include a generally hydrophobic polymer or block copolymer with a polar interactive block copolymer to suitably modify or enhance the organizing or patterning characteristics and ability of the polar block copolymer.
- a generally hydrophilic polymer e.g., a polyalkylene oxide, such as polyethylene oxide or polypropylene oxide
- generally hydrophilic block copolymer may be included with the polar interactive block copolymer.
- such generally hydrophobic or hydrophilic polymers or copolymers are excluded.
- classes of block copolymers suitable as templating agents include those containing segments of polyacrylate or polymethacrylate (and esters thereof), polystyrene, polyethyleneoxide, polypropyleneoxide, polyethylene, polyacrylonitrile, polylactide, and polycaprolactone.
- templating block copolymers include polystyrene-b-poly(methylmethacrylate) (i.e., PS-PMMA), polystyrene-b-poly(acrylic acid) (i.e., PS-PAA), polystyrene-b-poly(4-vinylpyridine) (i.e., PS-P4VP), polystyrene-b-poly(2-vinylpyridine) (i.e., PS-P2VP), polyethylene-b-poly(4-vinylpyridine) (i.e., PE-P4VP), polystyrene-b-polyethyleneoxide (i.e., PS-PEO), polystyrene-b-poly(4-hydroxystyrene), polyethyleneoxide-b-polypropyleneoxide (i.e., PEO-PPO), polyethyleneoxide-b-poly(4-vinylpyridine) (i.e.
- the block copolymer is a diblock or triblock copolymer containing two or three segments, respectively, which have alkyleneoxide compositions, particularly wherein the alkyleneoxide is selected from polyethyleneoxide (PEO) and polypropyleneoxide (PPO) segments.
- the block copolymer is an alkyleneoxide triblock copolymer, such as a poloxamer (i.e.
- Pluronic® or Lutrol® polymer according to the general formula (PEO) a -(PPO) b -(PEO) c , wherein PEO is a polyethylene oxide block and PPO is a polypropylene block (i.e., —CH 2 CH(CH 3 )O— or —CH(CH 3 )CH 2 O—), and the subscripts a, b, and c represent the number of monomer units of PEO and PPO, as indicated.
- a, b, and c are each at least 2, and more typically, at least 5, and typically up to a value of 100, 120, or 130. Subscripts a and c are often of equal value in these types of polymers.
- a, b, and c can independently have a value of about, or at least, or up to 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 130, 140, 150, 160, 180, 200, 220, 240, or any particular range established by any two of these exemplary values.
- a and c subscripts are each less than b, i.e., the hydrophilic PEO block is shorter on each end than the hydrophobic PPO block.
- a, b, and c can each independently have a value of 2, 5, 7, 10, 12, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, or 160, or any range delimited by any two of these values, provided that a and c values are each less than b.
- the a and c values can be less than b by a certain number of units, e.g., by 2, 5, 7, 10, 12, 15, 20, 25, 30, 35, 40, 45, or 50 units, or any range therein.
- a and c subscripts are each greater than b, i.e., the hydrophilic PEO block is longer on each end than the hydrophobic PPO block.
- a, b, and c can each independently have a value of 2, 5, 7, 10, 12, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, or 160, or any range delimited by any two of these values, provided that a and c values are each greater than b.
- the a and c values can be greater than b by a certain number of units, e.g., by 2, 5, 7, 10, 12, 15, 20, 25, 30, 35, 40, 45, or 50 units, or any range therein.
- the b value can be a certain fraction or percentage of a and c values (or less than or greater than this fraction or percentage), e.g., about 10%, 20%, 25%, 30, 33%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, or any range delimited by any two of these values.
- the poloxamer preferably has a minimum average molecular weight of at least 500, 800, 1000, 1200, 1500, 2000, 2500, 3000, 3500, 4000, or 4500 g/mole, and a maximum average molecular weight of 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 10,000, 12,000, 15,000, or 20,000 g/mole, wherein a particular range can be established between any two of the foregoing values, and particularly, between any two the minimum and maximum values.
- the viscosity of the polymers is generally at least 200, 250, 300, 350, 400, 450, 500, 550, 600, or 650 centipoise (cps), and generally up to 700, 800, 900, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, or 7500 cps, or any particular range established between any two of the foregoing values.
- the names of the poloxamers and Pluronics contain numbers that provide information on the chemical composition.
- the generic poloxamer name contains three digits, wherein the first two digits ⁇ 100 indicates the approximate molecular weight of the PPO portion and the last digit ⁇ 10 indicates the weight percent of the PEO portion.
- poloxamer 338 possesses a PPO portion of about 3300 g/mole molecular weight, and 80 wt % PEO.
- the first digit, or two digits for a three-digit number, multiplied by 300, indicates the approximate molecular weight of the PPO portion, while the last digit ⁇ 10 indicates the weight percent of the PEO portion.
- Pluronic® F-108 (which corresponds to poloxamer 338) indicates a solid form composed of about 3,000 g/mol of the PPO portion and 80 wt % PEO.
- the block copolymer can also be a reverse poloxamer of general formula (PPO) a -(PEO) b -(PPO) c , wherein all of the details considered above with respect to the regular poloxamers (e.g., description of a, b, and c subscripts, and all of the other exemplary structural possibilities) are applicable by reference herein for the reverse poloxamers.
- PPO general formula
- the block copolymer contains a linking diamine group (e.g., ethylenediamine, i.e., EDA) or triamine group (e.g., melamine).
- a linking diamine group e.g., ethylenediamine, i.e., EDA
- triamine group e.g., melamine
- Tetronics® e.g., PEO-PPO-EDA-PPO-PEO
- reverse Tetronics® e.g., PPO-PEO-EDA-PEO-PPO
- the phenolic component is or includes any phenolic compound that can react by a condensation reaction with a carbonyl-containing compound (and more particularly, a dione compound, as described herein) under acidic conditions.
- a carbonyl-containing compound and more particularly, a dione compound, as described herein
- any compound that includes at least one hydroxy group bound to an aromatic ring is suitable for the present invention as a phenolic compound.
- the phenolic component includes only one or more phenolic compounds, i.e., excludes other compounds and materials that are not phenolic.
- the phenolic compound contains one phenolic hydroxy group (i.e., one hydroxy group bound to a six-membered aromatic ring).
- Some examples of such compounds include phenol, the halophenols, the aminophenols, the hydrocarbyl-substituted phenols (wherein “hydrocarbyl” includes, e.g., straight-chained, branched, or cyclic alkyl, alkenyl, or alkynyl groups typically containing from 1 to 6 carbon atoms, optionally substituted with one or more oxygen or nitrogen atoms), hydrocarbyl-unsubstituted phenols, naphthols (e.g., 1- or 2-naphthol), nitrophenols, hydroxyanisoles, hydroxybenzoic acids, fatty acid ester-substituted or polyalkyleneoxy-substituted phenols (e.g., on the 2 or 4 positions with respect to the hydroxy group), phenols containing
- halophenols include the fluorophenols, chlorophenols, bromophenols, and iodophenols, and their further sub-classification as, for example, p-halophenols (e.g., 4-fluorophenol, 4-chlorophenol, 4-bromophenol, and 4-iodophenol), m-halophenols (e.g., 3-fluorophenol, 3-chlorophenol, 3-bromophenol, and 3-iodophenol), o-halophenols (e.g., 2-fluorophenol, 2-chlorophenol, 2-bromophenol, and 2-iodophenol), dihalophenols (e.g., 3,5-dichlorophenol and 3,5-dibromophenol), and trihalophenols (e.g., 3,4,5-trichlorophenol, 3,4,5-tribromophenol, 3,4,5-trifluorophenol, 3,5,6-trichlorophenol, and 2,3,5-tribromo
- aminophenols include 2-, 3-, and 4-aminophenol, and 3,5- and 2,5-diaminophenol.
- nitrophenols include 2-, 3-, and 4-nitrophenol, and 2,5- and 3,5-dinitrophenol.
- hydrocarbyl-substituted phenols include the cresols, i.e., methylphenols or hydroxytoluenes (e.g., o-cresol, m-cresol, p-cresol), the xylenols (e.g., 3,5-, 2,5-, 2,3-, and 3,4-dimethylphenol), the ethylphenols (e.g., 2-, 3-, and 4-ethylphenol, and 3,5- and 2,5-diethylphenol), n-propylphenols (e.g., 4-n-propylphenol), isopropylphenols (e.g., 4-isopropylphenol), butylphenols (e.g., 4-
- hydroxyanisoles include 2-methoxyphenol, 3-methoxyphenol, 4-methoxyphenol, 3-t-butyl-4-hydroxyanisole (e.g., BHA), and ferulic acid.
- hydroxybenzoic acids include 2-hydroxybenzoic acid (salicylic acid), 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, and their organic acid esters (e.g., methyl salicylate and ethyl-4-hydroxybenzoate).
- the phenolic compound contains two phenolic hydroxy groups.
- Some examples of such compounds include catechol, resorcinol, hydroquinone, the hydrocarbyl-linked bis-phenols (e.g., bis-phenol A, methylenebisphenol, and 4,4′-dihydroxystilbene), 4,4′-biphenol, the halo-substituted diphenols (e.g., 2-haloresorcinols, 3-haloresorcinols, and 4-haloresorcinols, wherein the halo group can be fluoro, chloro, bromo, or iodo), the amino-substituted diphenols (e.g., 2-aminoresorcinol, 3-aminoresorcinol, and 4-aminoresorcinol), the hydrocarbyl-substituted diphenols (e.g., 2,6-dihydroxytoluene, i.e., 2-methylresorcinol; 2,3-, 2,4-, 2,5
- the phenolic compound contains three phenolic hydroxy groups.
- Some examples of such compounds include phloroglucinol (1,3,5-trihydroxybenzene), pyrogallol (1,2,3-trihydroxybenzene), 1,2,4-trihydroxybenzene, 5-chloro-1,2,4-trihydroxybenzene, resveratrol (trans-3,5,4′-trihydroxystilbene), the hydrocarbyl-substituted triphenols (e.g., 2,4,6-trihydroxytoluene, i.e., methylphloroglucinol, and 3,4,5-trihydroxytoluene), the halogen-substituted triphenols (e.g., 5-chloro-1,2,4-trihydroxybenzene), the carboxy-substituted triphenols (e.g., 3,4,5-trihydroxybenzoic acid, i.e., gallic acid or quinic acid, and 2,4,6-trihydroxybenzoic acid), the nitro
- the phenolic compound or material contains multiple (i.e., greater than three) phenolic hydroxy groups.
- Some examples of such compounds include tannin (e.g., tannic acid), tannin derivatives (e.g., ellagotannins and gallotannins), phenol-containing polymers (e.g., poly-(4-hydroxystyrene)), phenol-formaldehyde resoles or novolak resins containing at least four phenol groups (e.g., at least 4, 5, or 6 phenol groups), quercetin, ellagic acid, and tetraphenol ethane.
- tannin e.g., tannic acid
- tannin derivatives e.g., ellagotannins and gallotannins
- phenol-containing polymers e.g., poly-(4-hydroxystyrene)
- phenol-formaldehyde resoles or novolak resins containing at least four phenol groups (e.
- the phenolic component is monocyclic (i.e., contains a phenyl ring not fused or connected to another ring) and contains two or three phenolic hydroxy groups.
- the phenolic component is, or includes, resorcinol and/or phloroglucinol (i.e., 1,3,5-trihydroxybenzene).
- the dione component includes one or more compounds containing carbonyl groups that are adjacent.
- the carbonyl groups can be, for example, keto and/or aldehydic groups.
- adjacent is meant that the two carbonyl groups are in close enough proximity to be jointly engaged in a single hydrogen bonding interaction (e.g., a hydrogen atom engaging both carbonyl group oxygens), or similarly, close enough to be involved in a tautomeric interaction, as understood in the art and as described in further detail below.
- carbonyl groups are considered adjacent if they are vicinal (i.e., are connected by a bond between carbonyl carbon atoms) or if they are attached to the same or adjacent (i.e., 1,2 or ortho) ring carbon atoms in a cyclic structure, particularly an aromatic cyclic, bicyclic, or higher polycyclic structure.
- the dione component includes one or more vicinal dione compounds.
- the vicinal dione compound has the following chemical structure:
- R 1 and R 2 are independently selected from hydrogen atom and hydrocarbon groups.
- the hydrocarbon groups considered herein contain precisely, at least, or up to one, two, three, four, five, or six carbon atoms. In some embodiments, the hydrocarbon groups contain only carbon and hydrogen atoms.
- the hydrocarbon groups may further include one or more oxygen atoms inserted between carbon atoms, or can have one or more hydrogen atoms substituted with one or more heteroatom-containing groups, such as hydroxy, halogen atom (e.g., F, Cl, or Br), ether (e.g., methoxy, ethoxy, epoxide, and/or glycidyl), carboxylic acid, carboxylic ester, and/or amido groups.
- one or both hydrocarbon groups are saturated.
- the saturated hydrocarbon groups can be straight-chained (e.g., methyl, ethyl, n-propyl, n-butyl, n-pentyl, and n-hexyl), or branched (e.g., isopropyl, isobutyl, sec-butyl, t-butyl, isopentyl, and neopentyl), or cyclic (e.g., cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl). In other embodiments, one or both hydrocarbon groups are unsaturated.
- the unsaturated hydrocarbon groups can be straight-chained (e.g., vinyl or allyl), or branched (e.g., 2-methylallyl), or cyclic (e.g., cyclopentenyl, cyclopentadienyl, cyclohexenyl, and phenyl).
- R 1 and R 2 are hydrogen atoms, thus corresponding to glyoxal, i.e., HC(O)C(O)H (i.e., 1,2-ethandial).
- one of R 1 and R 2 is a hydrogen atom while another of R 1 and R 2 is a hydrocarbon group, thus corresponding to vicinal aldehyde-ketone compounds.
- vicinal aldehyde-ketone compounds include 2-oxopropanal (i.e., methylglyoxal, also known as pyruvaldehyde), 2-oxobutanal (i.e., ethylglyoxal), 2-oxopentanal (i.e., n-propylglyoxal), 2-oxohexanal, 3-methyl-2-oxobutanal (i.e., isopropylglyoxal), 3-methyl-2-oxopentanal, 4-methyl-2-oxopentanal (i.e., isobutylglyoxal), 2-oxobut-3-enal, and 2-cyclopropyl-2-oxoacetaldehyde.
- 2-oxopropanal i.e., methylglyoxal, also known as pyruvaldehyde
- 2-oxobutanal i.e., ethylgly
- R 1 and R 2 are both hydrocarbon groups, thus corresponding to vicinal diketone compounds.
- R 1 and R 2 can be independently selected from any of the types of hydrocarbon groups described above.
- vicinal ketone compounds include 2,3-butadione (i.e., diacetyl), 2,3-pentanedione (i.e., ethylmethylglyoxal), 2,3-hexanedione (i.e., methylpropylglyoxal), 3,4-hexanedione (i.e., diethylglyoxal), 2,3-heptanedione, 3,4-heptanedione, 2,3-octanedione, 3,4-octanedione, 4,5-octanedione (dipropylglyoxal), pent-4-ene-2,3-dione, and hexa-1,5-diene-3,4-dione.
- 2,3-butadione i.e., diacetyl
- 2,3-pentanedione i.e., ethy
- R 1 and R 2 in Formula (1) are not interconnected. In other embodiments, R 1 and R 2 are interconnected as a cyclic structure. Typically, the R 1 -R 2 interconnection contains precisely or at least three or four ring carbon atoms. The ring carbon atoms in the R 1 -R 2 interconnection may or may not also have one or more hydrogen atoms therein substituted by one or more hydrocarbon groups, typically alky groups containing one, two, or three carbon atoms.
- dione compounds wherein R 1 and R 2 in Formula (1) are interconnected include cyclopentane-1,2-dione, 3,5-dimethylcyclopentane-1,2-dione, 3,4,4-trimethylcyclopentane-1,2-dione, cyclohexane-1,2-dione, cycloheptane-1,2-dione, cyclohex-4-ene-1,2-dione, and cyclohexa-3,5-diene-1,2-dione.
- the dione component has two carbonyl groups attached to adjacent (i.e., 1,2 or ortho) ring carbon atoms in a cyclic structure.
- such a dione compound has the following chemical structure:
- the cyclic group represents a saturated or unsaturated monocyclic, bicyclic, or tricyclic group.
- the cyclic group can be saturated or unsaturated.
- the cyclic group may alternatively be aliphatic or aromatic.
- a monocyclic group includes a single ring not fused or bonded to another ring.
- a bicyclic group contains two rings either fused or connected by a bond.
- a tricyclic group contains three rings either fused or connected by bonds.
- the monocyclic group contains precisely or at least four, five, or six ring carbon atoms.
- Bicyclic groups may contain precisely or at least, for example, eight, nine, or ten ring carbon atoms.
- Tricyclic groups may contain precisely or at least, for example, thirteen or fourteen ring carbon atoms.
- the cyclic group contains only carbon and hydrogen atoms (i.e., is carbocyclic).
- the cyclic group includes one or more ring heteroatoms selected from oxygen, nitrogen, and sulfur (i.e., is heterocyclic).
- the cyclic group may or may not also have one or more hydrogen atoms substituted with one or more hydrocarbon groups (e.g., alkyl groups of one to three carbon atoms) and/or one or more heteroatom-containing groups (e.g., selected from hydroxy, methoxy, ethoxy, amino, carboxamido, keto, and aldehyde groups).
- saturated monocyclic groups in Formula (2) include cyclopentylene and cyclohexylene groups, thereby resulting in cyclopentane-1,2-dicarboxaldehyde and cyclohexane-1,2-dicarboxaldehyde, respectively, for the structure in Formula (2).
- unsaturated monocyclic groups include phenylene, cyclopentadienyl (e.g., 2,3-diyl), and furan-2,5-diyl, thereby resulting in 1,2-benzenedialdehyde (i.e., phthalaldehyde), cyclopenta-1,3-diene-2,3-dicarboxaldehyde, and furan-2,5-dicarboxaldehyde, respectively, for the structure in Formula (2).
- 1,2-benzenedialdehyde i.e., phthalaldehyde
- cyclopenta-1,3-diene-2,3-dicarboxaldehyde cyclopenta-1,3-diene-2,3-dicarboxaldehyde
- furan-2,5-dicarboxaldehyde furan-2,5-dicarboxaldehyde
- bicyclic and tricyclic groups include naphthalenyl (e.g., 2,3-diyl) and anthracenyl (e.g., 2,3-diyl), thereby resulting in, for example, naphthalene-2,3-dicarboxaldehyde and anthracene-2,3-dicarboxaldehyde, respectively, for the structure in Formula (2).
- naphthalenyl e.g., 2,3-diyl
- anthracenyl e.g., 2,3-diyl
- the close proximity of the carbonyl groups permits the carbonyl groups to engage in a simultaneous hydrogen bonding interaction with protic species (in particular, phenol groups) present in the precursor composition. More particularly, the close proximity of the carbonyl groups is believed to form a hydrogen-bonded enolic intermediate after one of the carbonyl groups is electrophilically attacked by an active phenol carbon.
- protic species in particular, phenol groups
- the close proximity of the carbonyl groups is believed to form a hydrogen-bonded enolic intermediate after one of the carbonyl groups is electrophilically attacked by an active phenol carbon.
- this hydrogen bond causes a moderation in reactivity of the remaining carbonyl group.
- This moderating effect is believed to be at least partly responsible for the hierarchical porous feature of the carbon materials produced herein.
- the reactivity of at least the second aldehyde group i.e., the one not connected to the phenol group
- This effect could result in, or promote, a hierarchical structure by affecting how the phenolic groups interlink.
- the muted reactivity could, for example, inhibit or prohibit the formation of a bond to the second aldehyde or provide a reactive site after the first round of reactions, i.e., result in a delayed reaction.
- the delayed reaction could constrain the carbon polymer such that during annealing the constrained bridges are broken, and the unbound or broken groups liberated as a volatile gas.
- both sides react, although delayed, to produce a constrained structure, which, upon carbonization, liberates gaseous products that result in a hierarchical structure.
- a dione compound that is not encompassed by Formula (1) is excluded from the dione component, or from the precursor composition altogether.
- a dione compound that is not encompassed by Formula (2) is excluded from the dione component, or from the precursor composition altogether.
- a dione compound that is not encompassed by Formula (1) or (2) is excluded from the dione component, or from the precursor composition altogether.
- dione compounds that may be excluded (and which are not encompassed by Formulas (1) and (2)) include, for example, malondialdehyde, succinaldehyde, glutaraldehyde, adipaldehyde, pimelaldehyde, suberaldehyde, sebacaldehyde, and terephthaldehyde.
- one or more subclasses or specific types of dione compounds, either from Formula (1) or (2) may be excluded from the dione component, or from the precursor composition altogether.
- a mono-aldehyde or mono-ketone such as formaldehyde, acetaldehyde, acetone, or furfural, is excluded from the precursor composition.
- the acidic component in the precursor composition can be any acid strong enough to accelerate the reaction between phenolic and dione compounds.
- the acid is a weak acid, such as an organic acid, such as acetic acid, propionic acid, or phosphoric acid.
- the acid is a strong acid, such as a mineral acid, such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, or a superacid, such as triflic acid.
- the molar concentration of acid can be, for example, at least 0.5 molar (i.e., 0.5 M), 0.6 M, 0.7 M, 0.8 M, 1.0 M, 1.2 M, 1.5 M, 1.8 M, 2.0 M, 2.5 M, 3.0 M, 3.5 M, 4.0 M, 4.5 M, 5.0M, or an acid concentration within a range bounded by any two of the foregoing values.
- the molar amount of dione component is higher than the molar amount of phenolic component (i.e., molar ratio of dione to phenolic components is greater than 1).
- the molar ratio of dione to phenolic components may be precisely, about, or at least, for example, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, or 3.0, or within a range bounded by any two of these values.
- the molar amount of dione component is less than the molar amount of phenolic component (i.e., molar ratio of dione to phenolic components is less than 1).
- the molar ratio of dione to phenolic components may be precisely, about, or less than, for example, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, or 0.2, or within a range bounded by any two of these values.
- the molar amount of dione component is about the same as the molar amount of phenolic component.
- the solvent can be, for example, an organic polar protic or non-protic solvent.
- organic polar protic solvents include alcohols, e.g., methanol, ethanol, n-propanol, isopropanol, ethylene glycol, and the like.
- organic polar non-protic solvents include acetonitrile, dimethylformamide, dimethylsulfoxide, methylene chloride, organoethers (e.g., tetrahydrofuran or diethylether), and the like.
- any solvent, or any of the classes or particular types of solvents described above may be excluded from the precursor composition.
- an orthoacetate e.g., triethyl orthoacetate
- a weak acid i.e., having a pKa above ⁇ 2
- the weak organic acids e.g., p-toluenesulfonic acid or hypophosphorous acid
- a phenol-formaldehyde resole or novolak resin e.g., those of 500-5000 M.W. is excluded from the precursor composition.
- all of the precursor components, described above, are combined and mixed to form the precursor composition.
- the precursor composition can then be deposited by any suitable means known in the art to produce a film (i.e., coating) of the precursor composition on a substrate.
- Some examples of solution deposition processes include spin-coating, brush coating (painting), spraying, and dipping. After being deposited, the precursor film is subsequently cured and then carbonized.
- a multi-step process is employed in which a portion of the precursor components is first deposited to produce an initial film, and the initial film subsequently reacted by the remaining component(s) of the precursor composition. After all components have reacted to produce a precursor film, the precursor film is cured and then carbonized. Additional steps may also be included.
- a multi-step process may be employed wherein the templating component in combination with the phenolic component is first deposited by, for example, applying (i.e., coating) said components onto a surface. If desired, the initially produced film can be converted to a solid film by removing solvent therefrom (e.g., by annealing).
- the produced film may then be reacted with the dione component (e.g., by a liquid or vapor phase reaction) under acidic conditions to produce the polymerized (and optionally, crosslinked) carbon precursor material.
- the resulting cured film can then be carbonized to produce the mesoporous carbon material.
- the curing step includes any of the conditions, as known in the art, which promote polymerization, and preferably, crosslinking, of polymer precursors, and in particular, crosslinking between phenolic and aldehydic or dione components.
- the curing conditions generally include application of an elevated temperature for a specified period of time.
- other curing conditions and methods are contemplated herein, including radiative (e.g., UV curing) or purely chemical (i.e., without use of an elevated temperature).
- the curing step involves subjecting the polymer precursors or the entire precursor composition to a temperature of precisely, at least, or about, for example, 50, 60, 70, 80, 90, 100, 110, 120, 130, or 140° C. for a time period of, typically, at least 0.5, 1, 2, 5, 10, or 12 hours, and up to 15, 20, 24, 36, 48, or 72 hours, wherein it is understood that higher temperatures generally require shorter time periods.
- each curing step can employ any of the exemplary time periods provided above.
- the gradual increase in temperature can be practiced by employing a temperature increase rate of, or at least, or no more than 1° C./min, 2° C./min, 3° C./min, 5° C./min, 7° C./min, 10° C./min, 12° C./min, 15° C./min, 20° C./min, or 30° C./min, or any suitable range between any of these values.
- the gradual temperature increase can also include one or more periods of residency at a particular temperature, and/or a change in the rate of temperature increase.
- the carbonization step includes any of the conditions, as known in the art, which cause carbonization of the precursor composition.
- a carbonization temperature of precisely, about, or at least, for example, 300° C., 350° C., 400° C., 450° C., 500° C., 550° C., 600° C., 650° C., 700° C., 750° C., 800° C., 850° C., 900° C., 950° C., 1000° C., 1050° C., 1100° C., 1150° C., 1200° C., 1250° C., 1300° C., 1350° C., 1400° C., 1450° C., 1500° C., 1600° C., 1700° C., or 1800° C.
- the precursor composition, or alternatively, the carbonized material can be subjected to a temperature high enough to produce a graphitized carbon material.
- the temperature capable of causing graphitization is a temperature of or greater than about 2000° C., 2100° C., 2200° C., 2300° C., 2400° C., 2500° C., 2600° C., 2700° C., 2800° C., 2900° C., 3000° C., 3100° C., or 3200° C., or a range between any two of these temperatures.
- the carbonization or graphitization step is conducted in an atmosphere substantially removed of oxygen, e.g., typically under an inert atmosphere.
- inert atmospheres include nitrogen and the noble gases (e.g., helium or argon).
- a graphitization step is omitted. Therefore, other conditions that generally favor graphitization (e.g., inclusion of catalytic species, such as iron (III) complexes) are preferably excluded.
- each carbonization step may employ any of the exemplary time periods given above.
- the gradual increase in temperature can be practiced by employing a temperature increase rate of, or at least, or no more than 1° C./min, 2° C./min, 3° C./min, 5° C./min, 7° C./min, 10° C./min, 12° C./min, 15° C./min, 20° C./min, 30° C./min, 40° C./min, or 50° C./min, or any suitable range between any of these values.
- the gradual temperature increase can also include one or more periods of residency at a particular temperature, and/or a change in the rate of temperature increase.
- the solution is stirred for a sufficient period of time (e.g., at least or about 1, 2, 5, 10, 20, 30, 40, 50, 60, 90, or 120 minutes, or a range between any these values) until a gel-like phase is formed, which is typically evidenced by an increased turbidity in the solution.
- the turbidity generally indicates formation of an ordered nanocomposite gel or solid that has undergone a degree of phase separation from the liquid portion of the solution.
- stirring can be continued after the onset of turbidity, such that the total amount of stirring time before curing, carbonization, or a phase-separation process is any of the exemplary time periods given above, or a longer period of time, such as several hours (e.g., at least or about 4, 5, 6, 7, 8, 10, or 12 hours) or days (e.g., at least or about 1, 2, 3, 4, 5, 10, 15, or 20 days), or a range between of the foregoing exemplary periods of time.
- phase-separated mixture can be subjected to conditions that cause the ordered nanocomposite gel or solid to be substantially removed or isolated from the liquid portion. Any separation method can be applied herein.
- the phases can be separated by centrifugation.
- the centrifugation can be conducted at an angular speed of precisely, at least, about, or up to, for example, 2000 rpm, 2500 rpm, 3000 rpm, 4000 rpm, 5000 rpm, 6000 rpm, 7000 rpm, 8000 rpm, 9000 rpm, 9500 rpm, 10000 rpm, 11000 rpm, 12000 rpm, or 15000 rpm, or a range between any of these values, for a period of time of, for example, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, or 6 minutes, wherein it is understood that higher angular speeds generally require less amounts of time to effect an equivalent degree of separation.
- Superspeed centrifugation e.g., up to 20,000 or 30,000 rpm
- ultracentrifugation e.g., up to 40,000, 50,000, 60,000, or 70,000 rpm
- the gel or solid phase once separated from the liquid phase, is then cured and carbonized in the substantial absence of the liquid phase according to any of the conditions described above for these processes.
- Particles of the porous carbon material can be produced instead of a film.
- the particles can be produced by any suitable method, such as, for example, the spray atomization techniques known in the art which also include a capability of heating at carbonization temperatures.
- the precursor composition described above typically, in a carrier solvent, such as THF or DMF
- THF or DMF can be sprayed through the nozzle of an atomizer, and the particulates directed into one or more heated chambers for curing and carbonization steps.
- a portion of the precursor composition e.g., templating agent and one of the polymer precursors, such as the phenolic component
- the precursor composition may first be atomized and the resulting particles annealed (i.e., dried) by suitable conditions; the resulting particles may then be exposed to the other polymer precursor (e.g., dione component) and subjected to acidic conditions, followed by curing and carbonization steps.
- the other polymer precursor e.g., dione component
- the hierarchical porous carbon material may also be functionalized, as desired, by methods known in the art for functionalizing carbon or graphite materials.
- the porous carbon material may be nitrogenated, fluorinated, or oxygenated by methods known in the art.
- the porous carbon material may be nitrogenated, fluorinated, or oxygenated, by, for example, exposure of the porous carbon film, either during or after the carbonization process, to, respectively, ammonia gas, fluorine gas, or oxygen gas under suitably reactive conditions.
- fluorination the carbon material is typically placed in contact with fluorine gas for a period of several minutes (e.g., 10 minutes) up to several days at a temperature within 20° C.
- a reaction time of about 5 hours at ambient temperature typically results in fluorination of about 10% of the total carbon; in comparison, fluorination conducted at about 500° C. for two days results in about 100% fluorination of the total carbon.
- the degree of nitrogenation, fluorination, or oxygenation can be about or at least 1%, 2%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 100%, or a range between any two of these values.
- the invention is directed to a capacitive deionization (CDI) device that includes the porous carbon material (described above) in one or two electrodes of the CDI device.
- the invention is also directed to a method for desalinating water by electrically operating the CDI device.
- the invention is also directed to a method of energy storage by using the porous carbon material described herein in a capacitive device, such as a battery, supercapacitor, or electric double layer capacitor (EDLC).
- a capacitive device such as a battery, supercapacitor, or electric double layer capacitor (EDLC).
- the hierarchical porous carbon material described herein is included in at least one electrode of the CDI or related device (e.g., EDLC device).
- at least one (or both, a portion, or all) of the electrodes is constructed of the hierarchical porous carbon material, except perhaps for the current collector.
- the hierarchical porous carbon material is in the form of a coating on a suitable base electrode material (or current collector).
- the base electrode material or current collector is often a conductive carbon material, such as graphite or carbon paper.
- the hierarchical porous carbon material is in the form of a layer covered by a layer of another porous material, such as a mesoporous carbon material, carbon foam, or porous graphite.
- a titanium sheet current collector is used.
- a composite material e.g., activated carbon powder and a thermoplastic material, such as PTFE is used as the base electrode or current collector.
- the hierarchical porous carbon material described herein without admixture with another carbon material, is used as the electrode or coated on a base electrode or current collector.
- the hierarchical porous carbon material described herein is admixed with one or more other carbon materials (e.g., activated carbon, a mesoporous carbon, a carbon foam, or a carbon aerogel).
- the porous carbon material is typically in a particulate form, such as a powder.
- a CDI device generally includes at least the feature of two porous electrodes of opposite polarity spaced in such a manner that flowing liquid (typically water, or an aqueous solution containing water) makes contact with the electrodes.
- the electrodes are separated by an insulating material that permits the flow therethrough of water to be deionized by inclusion of flow channels in the insulating material.
- the insulating material includes means (e.g., spaces, channels, or pores) that permit the liquid to make efficient contact with the porous electrodes.
- the CDI device When operated (i.e., by applying a suitable voltage bias across the electrodes), the CDI device removes salt species from the water by absorbing cationic species into the negatively charged electrode and anionic species into the positively charged electrode, similar to a capacitor, such as a supercapacitor or EDLC, both of which are additional applications for the hierarchical porous carbon materials described herein.
- the base electrode material can be any suitable electrically conductive material, including any of the substrate materials described above, provided the substrate material permits the CDI device to desalinate water.
- the base electrode material is porous.
- the CDI device can have any of the features and designs known in the art. See, for example, U.S. Pat. No. 5,636,437, U.S. Pat. No. 5,776,633, U.S. Pat. No. 5,932,185, U.S. Pat. No. 5,954,937, U.S. Pat. No. 6,214,204, U.S. Pat. No. 6,309,532, U.S. Pat. No. 6,778,378, U.S. Pat. No. 7,766,981, U.S. Pat. No. 7,835,137, U.S. Application Pub. No. 2008/0274407, U.S. Application Pub. No. 2009/0141422, U.S. Application Pub. No. 2009/0305138, U.S.
- CDI devices as well as methods of manufacture, and methods of their use, described in the foregoing references, are herein incorporated by reference in their entirety.
- one or more features described in said references are excluded from the instant CDI device.
- two electrodes are employed, while in other embodiments, more than two, or a multiplicity of electrodes (for example, miniaturized electrodes) are employed.
- the electrodes are in a stacked arrangement, such as an alternating left-right arrangement to maximize flow rate.
- the CDI device is a membrane capacitive deionization (MCDI) device by employing an anion-exchange membrane coated on the anode and/or a cation-exchange membrane coated on the cathode, wherein the anion- or cation-exchange membrane is generally positioned between the flowing water and respective electrode.
- MCDI membrane capacitive deionization
- the hierarchical porous carbon materials described herein are used as chromatography media, particularly for use in HPLC, and more particularly, for use in electrochemically modulated liquid chromatography (EMLC), as described, for example, in U.S. Pat. No. 7,449,165, the contents of which are incorporated herein by reference in their entirety.
- EMLC electrochemically modulated liquid chromatography
- Phloroglucinol, tetrahydrofuran (THF), and Pluronic F-127 were obtained from Sigma-Aldrich. Ethanol (200 proof) was obtained from VWR Scientific, and glyoxal was obtained from Alfa Aesar.
- the solvent was then decanted off the gel layer and 0.5 g THF and 2.0 g ethanol (200 proof) was added. After mixing, the gel was cast onto glass Petri dishes and allowed to dry in a fume hood overnight. The gel was then cured at 353 K for 24 hours followed by carbonization at 1123 K for 2 hours (2 K/min ramp rate) in a nitrogen atmosphere.
- Phloroglucinol is reported to react faster than resorcinol or phenol with formaldehyde (see, for example, P. Xu, et al., Water Res., 2008, 42, 2605-2617, and X. Q. Wang, et al., Langmuir, 2008, 24, 7500-7505).
- phloroglucinol is attractive for its potential in producing ordered porous carbon materials, the increased reaction rate can lead to a disordered and non-hierarchical porous carbon, among other detrimental effects for the purposes of the instant invention.
- the fast reactivity of phloroglucinol has been compensated by a slower reacting aldehyde than formaldehyde.
- Glyoxal is a slow reacting aldehyde, potentially due to the possible enol tautomerization, described above, that can stabilize a reaction intermediate structure and hinder further crosslinking. Therefore, based solely on condensation reactivity, the fast reacting phloroglucinol and slow reacting glyoxal were found herein to be a beneficial pairing.
- Nitrogen sorption analysis was performed on a Micromeritics Tristar 3000 at 77 K. Prior to measurement, the samples were degassed at 423 K under flowing nitrogen. The specific surface area was calculated using the Brunauer-Emmett-Teller (BET) equation utilizing the adsorption branch. The pore size distribution plot was derived from the adsorption branch of the isotherms using the Barret-Joyner-Halenda (BJH) method.
- BET Brunauer-Emmett-Teller
- Graphite plates were used as dual current collector and electrode supports for the carbon.
- the active area for the CDI electrode was 103.2 cm 2 and was roughened to facilitate adhesion of the gel to the graphite.
- Phloroglucinol (8.00 g, 63.4 mmol) and Pluronic F-127 (8.00 g) were dissolved in 34 mL ethanol (200 proof) and 34 mL of 3M hydrochloric acid.
- Glyoxal (9.8 mL, 85.4 mmol) was added and the solution allowed to stir for 50 minutes. Phase separation was observed at 20 minutes after glyoxal addition. After 50 minutes, the gel mixture was allowed to set for 1-2 minutes to allow further phase separation from the solvent.
- the solvent was decanted and the gel spread onto the active area of the graphite electrodes.
- the porous carbon-coated graphite electrodes were allowed to dry overnight at room temperature, and then cured at 353 K for 24 hours.
- the plates were then carbonized at 1123 K under argon. Each graphite plate consisted of approximately 5.0 g of porous carbon in the active area.
- Capacitive deionization experiments were conducted using an electrosorption cell that consisted of a pair of graphite electrodes coated with a hierarchical porous carbon, as described in Example 3. A separation distance between the two electrodes was maintained by using a polycarbonate sheet spacer (hollow at the center) of 6.4-mm thickness at the center of the cell.
- the assembly of one-half of the electrochemical cell followed this sequence: polycarbonate sheet endplate (9.5 mm thick), neoprene sheet gasket (1.6 mm thick), graphite electrode (3.2 mm thick) with the porous carbon coating, and neoprene sheet gasket (1.6 mm thick; hollow at the center).
- the distance between the current collectors was 9.6 mm, which is the same as the thickness of the polycarbonate spacing (6.4 mm) plus the thickness of two neoprene gasket sheets (1.6-mm each).
- the distance between the material on the graphite electrodes depended on their thickness.
- the graphite plates were connected to a power supply (HP E3632A).
- the thickness of the porous carbon film was approximately 2 mm.
- FIGS. 4A and 4B Representative capacitive deionization results are shown in FIGS. 4A and 4B .
- FIG. 4A shows CDI results for resorcinol-formaldehyde mesoporous carbon-coated graphite of the art, as synthesized according to X. Q. Wang et al., 2008, Ibid.
- FIG. 4B shows CDI results for phloroglucinol-glyoxal hierarchical carbon-coated graphite, as produced and analyzed herein in accordance with Examples 3 and 4.
- the initial concentration of Instant Ocean® was 3,967 ppm for the experiment presented in FIG. 4A and 4,464 ppm for the experiment presented in FIG. 4B .
- the final concentration was 2,569 ppm for the experiment presented in FIG.
- the similarity in the ion capacity is related to the similar pore sizes found in the resorcinol-formaldehyde carbon material of the art and phloroglucinol-glyoxal carbon material produced herein.
- the similar pore sizes results predominantly from use of the same structure template, i.e., Pluronic F127.
- XPS analysis of the carbon materials has indicated similar surface functionalities between the carbon samples, suggesting the difference in ion uptake and kinetics is not due to different surface functionalities.
- the three-times (3 ⁇ ) increase in ion uptake kinetics is most likely due to the hierarchical structure of the instant phloroglucinol-glyoxal carbon. Therefore, it has been shown that the hierarchical porous carbon produced herein is advantageous over resorcinol-formaldehyde carbon materials of the art for capacitive deionization.
- these Examples demonstrate that phloroglucinol reacts with glyoxal in the presence of the triblock copolymer Pluronic F127 to form a hierarchical porouscarbon material with an ordered, well-defined mesoporous component.
- This is the first known reported synthesis of a “hard carbon” based on glyoxal, as well as the templating of a phenolic-glyoxal resin.
- the hierarchical porosity in the porous carbon materials produced in the above Examples has been found to contain mesopores up to 200 nm, as well as mesopores of 7.5 nm. Moreover, the 7.5 nm mesopores are highly uniform in size.
- the hierarchical structure has been provided by the crosslinking reagent (i.e., dione) and not by the use of a secondary porogen undergoing spinodal decomposition, as commonly relied upon in the art.
- the crosslinking reagent i.e., dione
- a new and superior methodology for synthesizing hierarchical carbon materials has herein been described wherein the crosslinking reagent, as opposed to the templating agent, exerts a dominant effect on the porous structure.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
A method for fabricating a porous carbon material possessing a hierarchical porosity, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic component, (iii) a dione component in which carbonyl groups are adjacent, and (iv) an acidic component, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a carbon material possessing a hierarchical porosity comprised of mesopores and macropores. Also described are the resulting hierarchical porous carbon material, a capacitive deionization device in which the porous carbon material is incorporated, as well as methods for desalinating water by use of said capacitive deionization device.
Description
- This application is a divisional of U.S. application Ser. No. 13/046,836 filed on Mar. 14, 2011, the contents of which are incorporated herein by reference in their entirety.
- This invention was made with government support under Prime Contract No. DE-AC05-00OR22725 awarded by the U.S. Department of Energy. The government has certain rights in the invention.
- The present invention relates to the field of porous carbon materials, and more particularly, to such carbon materials containing a bimodal or hierarchical porosity.
- Porous carbon materials have long been used in capacitive deionization (CDI) technology. Capacitive deionization is increasingly being considered for large-scale desalination operations because of its lower operating costs. In CDI, salt water is made to flow between two porous electrodes, typically made of carbon. When an electric field is applied to render the electrodes opposite in polarity, positive ions become incorporated in the negatively-charged electrode while negative ions become incorporated in the positively-charged electrode. The stored ions can be subsequently released into a waste stream by reversing the electrode polarities.
- However, CDI technology is currently significantly hampered by the difficulty in producing porous carbon films on a commercial scale in a batch-to-batch repeatable and uniform manner. The porous carbons produced until now (e.g., via resorcinol-formaldehyde reaction) leave little room for optimization and are generally hampered by the presence of microporosity and/or broad mesopore size distributions. Moreover, the porous carbon films currently in use in CDI technology (e.g., as prepared by standard resorcinol-formaldehyde template methodology) generally provide a significantly lower than optimal kinetic adsorption characteristic. Accordingly, there would be a particular benefit in a porous carbon material having improved adsorption and processing kinetics as applied to CDI technology, as well as a cost-effective and reliable method for its manufacture. There would be a further benefit if such a method did not use formaldehyde, a known toxin and carcinogen.
- In one aspect, the invention is directed to carbon materials possessing a hierarchical porosity, which can be, for example, a bimodal, trimodal, or higher multimodal porosity. These hierarchical porous carbon materials (i.e., “the porous carbon material”) are useful for a variety of applications, particularly as capacitive deionization (CDI) electrode materials. Other possible applications include, for example, gas separation, chromatography, catalysis (e.g., as a support or active material), electrode materials (e.g., in batteries), and supercapacitors. In particular embodiments, the hierarchical porous carbon material considered herein is in the form of a film (i.e., layer).
- By virtue of the presence of larger pore sizes (i.e., macropores), the hierarchical porous carbon materials described herein provide at least the significant benefit of significantly alleviating the mass-transport limitations encountered in porous carbon materials of the art. At the same time, the inclusion of smaller pores (i.e., mesopores) in these porous carbon materials maintains the effective removal of salt from water. Thus, the instant porous carbon materials can advantageously desalinate an equivalent volume of water in less time without compromising salt removal efficiency.
- In particular embodiments, the hierarchical porous carbon material contains mesopores having a size in the range of 2-50 nm and macropores having a size of at least 75 nm. In further embodiments, the hierarchical porous carbon material contains mesopores having a size in the range of 2-20 nm and macropores having a size in the range of 100-500 nm. In further embodiments, the mesopores and/or macropores are substantially uniform in size. For example, in some embodiments, the mesopores have a size characterized by an error margin of up to or less than ±2.5 nm. In other particular embodiments, at least a portion of the porous carbon material is amorphous (i.e., as opposed to graphitic).
- In other aspects, the invention is directed to a more cost-effective and facile method for fabricating hierarchical porous carbon materials. Methods are known in the art for producing hierarchical porous carbon materials. However, current methods are generally complex and employ a multiplicity of steps. Several of the known processes include, for example, the incorporation of sacrificial particles that are subsequently etched after curing and carbonization steps to form pores in the carbon material, as well as inclusion of secondary porogen species (for example, a glycol solvent). Furthermore, the methodology known in the art is generally not amenable to achieving batch-to-batch repeatable, precise, and ordered sets of pore sizes in the carbon material.
- The method described herein is particularly advantageous in that an organic precursor composition is applied to any of a variety of substrates by simple means (e.g., spin-coating) and then carbonized to provide a hierarchical porous carbon without requiring a subsequent etching step and without requiring a secondary porogen, such as a glycol, as commonly used in methods of the art. In a preferred embodiment, the method involves subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition including: (i) a templating component that includes a block copolymer, (ii) a phenolic component, (iii) a dione component in which carbonyl groups are adjacent, and (iv) an acidic component, wherein the carbonization step includes heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a carbon material possessing a hierarchical porosity. The hierarchical porosity considered herein includes mesopores and macropores.
- The method described herein for producing hierarchical porous carbon materials has overcome many of the problems encountered in the art. In particular, the method described herein can produce a hierarchical porous carbon material in fewer steps and without the use of sacrificial particles or a secondary porogen, and without the use of toxic formaldehyde. Moreover, the method described herein can achieve this simplified process without separate carbonization and pore-forming (e.g., etch) steps, i.e., the method described herein can achieve a hierarchical porous carbon material from the carbonization process step.
- In yet other aspects, the invention is directed to a capacitive deionization (CDI) device, as well as methods of using the CDI device in the desalination of water. The CDI device includes at least first and second electrodes separated by a space, wherein at least one (or both, or all) of the electrodes includes the hierarchical porous carbon material described above. As further discussed below, the instant hierarchical porous carbon materials, when used in a CDI device, have been found to provide superior ion uptake kinetics.
-
FIG. 1 . Nitrogen sorption isotherms and BJH pore size distribution of hierarchical porous carbon produced from reaction of phloroglucinol and glyoxal. -
FIG. 2 . Raman spectrum of hierarchical porous carbon produced from reaction of phloroglucinol and glyoxal. -
FIG. 3 . STEM images of hierarchical porous carbon produced from reaction of phloroglucinol and glyoxal. -
FIGS. 4A , 4B. Capacitive deionization results for (a) a representative resorcinol-formaldehyde mesoporous carbon of the art, and (b) the phloroglucinol-glyoxal hierarchical porous carbon produced herein. - In one aspect, the invention is directed to porous carbon materials possessing a hierarchical porosity that includes both mesopores and macropores. As used herein, the term “hierarchical porosity” refers to the presence of at least two different pore sizes in the porous carbon material, i.e., at least one set of pores being mesoporous and at least one set of pores being macroporous. The mesopores and macropores may be arranged, with respect to each other, in any of several different ways. For example, in some embodiments, the mesopores and macropores may be intermingled in an apparently disordered manner, i.e., without any apparent organization. In other embodiments, at least one (or both) of the mesopores and macropores are arranged in an ordered (i.e., patterned) manner, such as in a cubic or hexagonal arrangement.
- As used herein and as understood in the art, the terms “mesopores” and “mesoporous” refer to pores having a size (i.e., pore diameter or pore size) of at least 2 nm and up to 50 nm, i.e., “between 2 and 50 nm”, or “in the range of 2-50 nm”. In different embodiments, the mesopores have a size of precisely or about 2 nm, 2.5 nm, 3 nm, 3.5 nm, 4 nm, 4.5 nm, 5 nm, 5.5 nm, 6 nm, 6.5 nm, 7 nm, 7.5 nm, 8 nm, 8.5 nm, 9 nm, 9.5 nm, 10 nm, 11 nm, 12 nm, 15 nm, 20 nm, 25 nm, 30 nm, 35 nm, 40 nm, 45 nm, or 50 nm, or a particular size, or a variation of sizes, within a range bounded by any two of these values.
- As used herein, the terms “macropores” and “macroporous” refer to pores having a size of at least 75 nm. Generally, the macropores considered herein have a size up to or less than 1 micron (1 μm). In different embodiments, the macropores have a size of precisely, about, at least, or greater than 75 nm, 80 nm, 85 nm, 90 nm, 95 nm, 100 nm, 110 nm, 120 nm, 130 nm, 140 nm, 150 nm, 160 nm, 170 nm, 180 nm, 190 nm, 200 nm, 225 nm, 250 nm, 275 nm, 300 nm, 325 nm, 350 nm, 375 nm, 400 nm, 425 nm, 450 nm, 475 nm, 500 nm, 550 nm, 600 nm, 650 nm, 700 nm, 750 nm, 800 nm, 850 nm, 900 nm, 950 nm, or 1000 nm, or a particular size, or a variation of sizes, within a range bounded by any two of these values.
- As used herein, the term “about” generally indicates within ±0.5%, 1%, 2%, 5%, or up to ±10% of the indicated value. For example, a pore size of about 10 nm generally indicates in its
broadest sense 10 nm±10%, which indicates 9.0-11.0 nm. In addition, the term “about” can indicate either a measurement error (i.e., by limitations in the measurement method), or alternatively, a variation or average in a physical characteristic of a group (e.g., a population of pores). - In some embodiments, the porous carbon material possesses a microporous component. The micropores can be beneficial in providing a significantly increased surface area. The microporous component can be included in an amount of, for example, about or at least 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, or 20%, or in an amount within a range bounded by any two of these values. As used herein, the terms “micropores” and “microporous” refer to pores having a diameter of less than 2 nm. In particular embodiments, the micropores have a size of precisely, about, up to, or less than 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, or 1.9 nm, or a particular size, or a variation of sizes, within a range bounded by any two of these values.
- In other embodiments, the porous carbon material possesses a substantial absence of micropores. By a “substantial absence” of micropores is generally meant that no more than 1%, 0.5%, or 0.1% of the total pore volume, or none of the pore volume, can be attributed to the presence of micropores.
- The pores of the carbon material can also possess a level of uniformity, i.e., in pore size and/or pore shape. For example, in different embodiments, the pores of the carbon material may possess an average pore diameter corresponding to any of the diameters exemplified above, subject to a degree of variation of no more than, for example, ±10 nm, ±8 nm, ±6, nm, ±5 nm, ±4 nm, ±3 nm, ±2.5 nm, ±2 nm, ±1.5 nm, ±1 nm, ±0.5, ±0.4, ±0.3, ±0.2, or ±0.1 nm. Alternatively, the pore size uniformity may be indicated by being within a percentage from a target pore size, e.g., within 25%, 20%, 15%, 10%, 5%, 2% 1%, or 0.5% of a target pore size. In some embodiments, all of the pores are substantially uniform in size, while in other embodiments, a portion of the pores (e.g., the mesopores or the macropores) are substantially uniform in size.
- The pores can have any suitable wall thickness. For example, in different embodiments, the wall thickness can be precisely, about, at least, or less than, for example, 1 nm, 2 nm, 3 nm, 4 nm, 5 nm, 6 nm, 7 nm, 8 nm, 9 nm, 10 nm, 11 nm, 12 nm, 15 nm, 18 nm, 20 nm, 25 nm, 30 nm, 40 nm, 50 nm, 60 nm, 70 nm, 80 nm, 90 nm, 100 nm, 125 nm, 150 nm, 175 nm, 200 nm, 250 nm, 300 nm, 350 nm, 400 nm, 450 nm, or 500 nm, or a wall thickness within a range bounded by any two of these values. The foregoing exemplary wall thicknesses can be for all pores, or for a portion of the pores, e.g., only for mesopores, macropores, or micropores.
- The porous carbon material typically possesses a BET surface area of about or at least 50, 100, 200, 300, 400, 450, 500, 550, 600, 650, 700, 750, 800, 900, 1000, or 1500 m2/g, or a surface area within a range bounded by any two of these values. The porous carbon material may possess a total pore volume of precisely, about, or at least, for example, 0.2 cm3/g, 0.25 cm3/g, 0.3 cm3/g, 0.35 cm3/g, 0.4 cm3/g, 0.45 cm3/g, 0.5 cm3/g, 0.55 cm3/g, 0.6 cm3/g, 0.65 cm3/g, 0.7 cm3/g, 0.75 cm3/g, 0.8 cm3/g, 0.9 cm3/g, 1 cm3/g, 1.1 cm3/g, 1.2 cm3/g, 1.3 cm3/g, 1.4 cm3/g, 1.5 cm3/g, 1.6 cm3/g, 1.7 cm3/g, 1.8 cm3/g, 1.9 cm3/g, 2 cm3/g, 2.1 cm3/g, 2.2 cm3/g, 2.3 cm3/g, 2.4 cm3/g, 2.5 cm3/g, 2.6 cm3/g, 2.7 cm3/g, 2.8 cm3/g, 2.9 cm3/g, or 3.0 cm3/g, or a pore volume within a range bounded by any two of these values.
- Preferably, at least a portion of the porous carbon material is amorphous rather than graphitic. Generally, an amorphous portion of the carbon material includes micropores, whereas micropores are generally absent from graphitic portions. As discussed above, the presence of micropores can provide certain advantages. In different embodiments, precisely, about, or at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, or 90% of the porous carbon material is amorphous, wherein it is understood that the remaining portion of the carbon material is graphitic or another phase of carbon (e.g., glassy or vitreous carbon). In particular embodiments, the porous carbon material is no more than, or less than, 25%, 20%, 15%, 10%, 5%, 2%, or 1% graphitic. In some embodiments, all (e.g., about or precisely 100%) or substantially all (for example, greater than 90%, 95%, 98%, or 99%) of the porous carbon material is non-graphitic, and may be instead, for example, amorphous or glassy carbon.
- The porous carbon material can be in any suitable form, e.g., as rods, cubes, or sheets, depending on the application. In particular embodiments, the porous carbon material is in the form of a film. The film can have any suitable thickness, typically no more than 5 millimeters (5 mm). In different embodiments, the film may preferably have a thickness of precisely, about, up to, at least, or less than, for example, 5 nm, 10 nm, 20 nm, 30 nm, 40 nm, 50 nm, 100 nm, 200 nm, 300 nm, 400 nm, 500 nm, 600 nm, 700 nm, 800 nm, 900 nm, 1.0 μm, 1.2 μm, 1.5 μn, 2.0 μm, 2.5 μn, 3.0 μm, 4.0 μm, 5.0 μm, 10 μm, 20 μm, 30 μm, 40 μm, 60 μm, 70 μm, 80 μm, 90 μm, 100 μm, 150 μm, 200 μm, 250 μm, 300 μm, 350 μm, 400 μm, 450 μm, 500 μm, 600 μm, 700 μm, 800 μm, 900 μm, or 1000 μm, or a thickness within a range bounded by any two of these values.
- The porous carbon film may also function as part of a composite material, wherein the porous carbon film either overlays, underlies, or is sandwiched between one or more layers of another material. The other material may be porous or non-porous, and can be composed of, for example, a metal, metal alloy, ceramic (e.g., silica, alumina, or a metal oxide), organic or inorganic polymer, or composite or hybrid thereof, depending on the application. In particular embodiments, the porous carbon film functions as a coating on an electrically-conducting substrate suitable as an electrode. In further particular embodiments, the electrically-conducting substrate is, or includes, a carbon material, such as graphite. In other embodiments, the porous carbon film is monolithic (i.e., not disposed on a substrate).
- In another embodiment, the porous carbon material is in the form of particles. In different embodiments, the particles have a size precisely, about, up to, or less than, for example, 5 nm, 10 nm, 20 nm, 30 nm, 40 nm, 50 nm, 100 nm, 200 nm, 500 nm, 1 μm, 2 μm, 5 μm, 10 μm, 50 μm, 100 μm, 500 μm, or 1000 μm, or a size within a range bounded by any two of these values.
- In another aspect, the invention is directed to methods for fabricating a hierarchical porous carbon material, such as any of the hierarchical porous carbon materials described above. The method first involves providing (i.e., preparing or otherwise obtaining in prepared form) a precursor composition to be subjected to a curing step followed by a carbonization step in order to produce a porous carbon material of the invention. The precursor composition includes at least the following components: (i) a templating component that contains (or includes) a block copolymer, (ii) a phenolic component (i.e., one or more phenolic compounds), (iii) a dione component (i.e., one or more dione compounds) in which carbonyl groups are adjacent, and (iv) an acidic component. In some embodiments, the precursor composition contains only the foregoing four components (i.e., any other compound or material not within the scope of the foregoing components is excluded).
- The combination of phenolic component and dione component is herein referred to as the “polymer precursor” or “polymer precursor components”. These two components, when properly reacted and cured (as further discussed below), produce a polymer that is subsequently carbonized during a carbonization step. Hence, the polymer functions as a carbon precursor. In contrast, the templating component (i.e., block copolymer) functions to organize the polymer precursor materials in an ordered (i.e., patterned) arrangement before the carbonization step. During carbonization, the block copolymer is typically completely volatized into gaseous byproducts, and thereby, generally does not contribute to the carbon content. However, the volatile gases serve the important role of creating at least the mesopores in the carbon structure during the carbonization step. The mechanism by which the hierarchical porous structure, including macropores, is produced, is not currently understood in much detail. It is believed that, while the block copolymer is largely responsible for producing mesopores, the phenolic compound, dione compound, or combination thereof (or combination of any of these compounds with the block copolymer) is responsible for the hierarchical porosity.
- The templating component includes one or more block copolymers. The block copolymer preferably has the ability to establish selective interactions with the polymer precursor components in such a manner that an organized network of interactions between the block copolymer and polymer precursor components results. Typically, such selective interactions occur when at least two different segments of the block copolymer differ in hydrophobicity (or hydrophilicity). Generally, a block copolymer that can self-organize based on hydrophobic or other variations will be suitable as a templating component herein. Such block copolymers typically form periodic structures by virtue of selective interactions between like domains, i.e., between hydrophobic domains and between hydrophilic domains. In some embodiments, the templating component includes only one or more block copolymers, i.e., excludes other compounds and materials that are not block copolymers. In some embodiments, the block copolymer includes one or more ionic groups. In other embodiments, the block copolymer is non-ionic.
- As used herein, a “block copolymer” is a polymer containing two or more chemically distinct polymeric blocks (i.e., sections or segments). The copolymer can be, for example, a diblock copolymer (e.g., A-B), triblock copolymer (e.g., A-B-C), tetrablock copolymer (e.g., A-B-C-D), or higher block copolymer, wherein A, B, C, and D represent chemically distinct polymeric segments. The block copolymer is preferably not completely inorganic, and more preferably, completely organic (i.e., carbon-based) in order that the block copolymer is at least partially capable of volatilizing during the carbonization step. The block copolymer is typically linear; however, branched (e.g., glycerol branching units) and grafted block copolymer variations are also contemplated herein. Preferably, the block copolymer contains polar groups capable of interacting (e.g., by hydrogen or ionic bonding) with the phenolic component and/or dione component. Some of the groups preferably located in the block copolymer that can provide a favorable interactive bond with phenolic and/or carbonyl groups include, for example, ether, hydroxy, amino, imino, and carbonyl groups. For this reason, the block copolymer is preferably not a complete hydrocarbon such as styrene-butadiene, although it may be desirable in some situations to include a generally hydrophobic polymer or block copolymer with a polar interactive block copolymer to suitably modify or enhance the organizing or patterning characteristics and ability of the polar block copolymer. For analogous reasons, a generally hydrophilic polymer (e.g., a polyalkylene oxide, such as polyethylene oxide or polypropylene oxide) or generally hydrophilic block copolymer may be included with the polar interactive block copolymer. In other embodiments, such generally hydrophobic or hydrophilic polymers or copolymers are excluded.
- Some examples of classes of block copolymers suitable as templating agents include those containing segments of polyacrylate or polymethacrylate (and esters thereof), polystyrene, polyethyleneoxide, polypropyleneoxide, polyethylene, polyacrylonitrile, polylactide, and polycaprolactone. Some specific examples of templating block copolymers include polystyrene-b-poly(methylmethacrylate) (i.e., PS-PMMA), polystyrene-b-poly(acrylic acid) (i.e., PS-PAA), polystyrene-b-poly(4-vinylpyridine) (i.e., PS-P4VP), polystyrene-b-poly(2-vinylpyridine) (i.e., PS-P2VP), polyethylene-b-poly(4-vinylpyridine) (i.e., PE-P4VP), polystyrene-b-polyethyleneoxide (i.e., PS-PEO), polystyrene-b-poly(4-hydroxystyrene), polyethyleneoxide-b-polypropyleneoxide (i.e., PEO-PPO), polyethyleneoxide-b-poly(4-vinylpyridine) (i.e., PEO-P4VP), polyethylene-b-polyethyleneoxide (i.e., PE-PEO), polystyrene-b-poly(D,L-lactide), polystyrene-b-poly(methylmethacrylate)-b-polyethyleneoxide (i.e., PS-PMMA-PEO), polystyrene-b-polyacrylamide, polystyrene-b-polydimethylacrylamide (i.e., PS-PDMA), polystyrene-b-polyacrylonitrile (i.e., PS-PAN), and polyethyleneoxide-b-polyacrylonitrile (i.e., PEO-PAN). In some embodiments, one or more of any of the foregoing classes or specific types of copolymers are excluded.
- In particular embodiments, the block copolymer is a diblock or triblock copolymer containing two or three segments, respectively, which have alkyleneoxide compositions, particularly wherein the alkyleneoxide is selected from polyethyleneoxide (PEO) and polypropyleneoxide (PPO) segments. In more particular embodiments, the block copolymer is an alkyleneoxide triblock copolymer, such as a poloxamer (i.e. Pluronic® or Lutrol® polymer) according to the general formula (PEO)a-(PPO)b-(PEO)c, wherein PEO is a polyethylene oxide block and PPO is a polypropylene block (i.e., —CH2CH(CH3)O— or —CH(CH3)CH2O—), and the subscripts a, b, and c represent the number of monomer units of PEO and PPO, as indicated. Typically, a, b, and c are each at least 2, and more typically, at least 5, and typically up to a value of 100, 120, or 130. Subscripts a and c are often of equal value in these types of polymers. In different embodiments, a, b, and c can independently have a value of about, or at least, or up to 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 130, 140, 150, 160, 180, 200, 220, 240, or any particular range established by any two of these exemplary values.
- In one embodiment, a and c subscripts are each less than b, i.e., the hydrophilic PEO block is shorter on each end than the hydrophobic PPO block. For example, in different embodiments, a, b, and c can each independently have a value of 2, 5, 7, 10, 12, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, or 160, or any range delimited by any two of these values, provided that a and c values are each less than b. Furthermore, in different embodiments, it can be preferred for the a and c values to be less than b by a certain number of units, e.g., by 2, 5, 7, 10, 12, 15, 20, 25, 30, 35, 40, 45, or 50 units, or any range therein. Alternatively, it can be preferred for the a and c values to be a certain fraction or percentage of b (or less than or greater than this fraction or percentage), e.g., about 10%, 20%, 25%, 30, 33%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, or any range delimited by any two of these values.
- In another embodiment, a and c subscripts are each greater than b, i.e., the hydrophilic PEO block is longer on each end than the hydrophobic PPO block. For example, in different embodiments, a, b, and c can each independently have a value of 2, 5, 7, 10, 12, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, or 160, or any range delimited by any two of these values, provided that a and c values are each greater than b. Furthermore, in different embodiments, it can be preferred for the a and c values to be greater than b by a certain number of units, e.g., by 2, 5, 7, 10, 12, 15, 20, 25, 30, 35, 40, 45, or 50 units, or any range therein. Alternatively, it can be preferred for the b value to be a certain fraction or percentage of a and c values (or less than or greater than this fraction or percentage), e.g., about 10%, 20%, 25%, 30, 33%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, or any range delimited by any two of these values.
- In different embodiments, the poloxamer preferably has a minimum average molecular weight of at least 500, 800, 1000, 1200, 1500, 2000, 2500, 3000, 3500, 4000, or 4500 g/mole, and a maximum average molecular weight of 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 10,000, 12,000, 15,000, or 20,000 g/mole, wherein a particular range can be established between any two of the foregoing values, and particularly, between any two the minimum and maximum values. The viscosity of the polymers is generally at least 200, 250, 300, 350, 400, 450, 500, 550, 600, or 650 centipoise (cps), and generally up to 700, 800, 900, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, or 7500 cps, or any particular range established between any two of the foregoing values.
- The following table lists several exemplary poloxamer polymers applicable to the present invention.
-
TABLE 1 Some exemplary poloxamer polymers Generic Pluronic ® Approximate Approximate Approximate Name Name value of a value of b value of c Poloxamer Pluronic L-31 2 16 2 101 Poloxamer Pluronic L-35 11 16 11 105 Poloxamer Pluronic F-38 46 16 46 108 Poloxamer — 5 21 5 122 Poloxamer Pluronic L-43 7 21 7 123 Poloxamer Pluronic L-44 11 21 11 124 Poloxamer Pluronic L-61 3 30 3 181 Poloxamer Pluronic L-62 8 30 8 182 Poloxamer — 10 30 10 183 Poloxamer Pluronic L-64 13 30 13 184 Poloxamer Pluronic P-65 19 30 19 185 Poloxamer Pluronic F-68 75 30 75 188 Poloxamer — 8 35 8 212 Poloxamer — 24 35 24 215 Poloxamer Pluronic F-77 52 35 52 217 Poloxamer Pluronic L-81 6 39 6 231 Poloxamer Pluronic P-84 22 39 22 234 Poloxamer Pluronic P-85 27 39 27 235 Poloxamer Pluronic F-87 62 39 62 237 Poloxamer Pluronic F-88 97 39 97 238 Poloxamer Pluronic L-92 10 47 10 282 Poloxamer — 21 47 21 284 Poloxamer Pluronic F-98 122 47 122 288 Poloxamer Pluronic L-101 7 54 7 331 Poloxamer Pluronic P-103 20 54 20 333 Poloxamer Pluronic P-104 31 54 31 334 Poloxamer Pluronic P-105 38 54 38 335 Poloxamer Pluronic F-108 128 54 128 338 Poloxamer Pluronic L-121 6 67 6 401 Poloxamer Pluronic P-123 21 67 21 403 Poloxamer Pluronic F-127 98 67 98 407 - As known in the art, the names of the poloxamers and Pluronics (as given above) contain numbers that provide information on the chemical composition. For example, the generic poloxamer name contains three digits, wherein the first two digits×100 indicates the approximate molecular weight of the PPO portion and the last digit×10 indicates the weight percent of the PEO portion. Accordingly, poloxamer 338 possesses a PPO portion of about 3300 g/mole molecular weight, and 80 wt % PEO. In the Pluronic name, the letter indicates the physical form of the product, i.e., L=liquid, P=paste, and F=solid, i.e., flake. The first digit, or two digits for a three-digit number, multiplied by 300, indicates the approximate molecular weight of the PPO portion, while the last digit×10 indicates the weight percent of the PEO portion. For example, Pluronic® F-108 (which corresponds to poloxamer 338) indicates a solid form composed of about 3,000 g/mol of the PPO portion and 80 wt % PEO.
- Numerous other types of copolymers containing PEO and PPO blocks are possible, all of which are applicable herein. For example, the block copolymer can also be a reverse poloxamer of general formula (PPO)a-(PEO)b-(PPO)c, wherein all of the details considered above with respect to the regular poloxamers (e.g., description of a, b, and c subscripts, and all of the other exemplary structural possibilities) are applicable by reference herein for the reverse poloxamers.
- In another variation, the block copolymer contains a linking diamine group (e.g., ethylenediamine, i.e., EDA) or triamine group (e.g., melamine). Some examples of such copolymers include the Tetronics® (e.g., PEO-PPO-EDA-PPO-PEO) and reverse Tetronics® (e.g., PPO-PEO-EDA-PEO-PPO).
- The phenolic component is or includes any phenolic compound that can react by a condensation reaction with a carbonyl-containing compound (and more particularly, a dione compound, as described herein) under acidic conditions. Typically, any compound that includes at least one hydroxy group bound to an aromatic ring (typically, a phenyl ring) is suitable for the present invention as a phenolic compound. In some embodiments, the phenolic component includes only one or more phenolic compounds, i.e., excludes other compounds and materials that are not phenolic.
- In one embodiment, the phenolic compound contains one phenolic hydroxy group (i.e., one hydroxy group bound to a six-membered aromatic ring). Some examples of such compounds include phenol, the halophenols, the aminophenols, the hydrocarbyl-substituted phenols (wherein “hydrocarbyl” includes, e.g., straight-chained, branched, or cyclic alkyl, alkenyl, or alkynyl groups typically containing from 1 to 6 carbon atoms, optionally substituted with one or more oxygen or nitrogen atoms), hydrocarbyl-unsubstituted phenols, naphthols (e.g., 1- or 2-naphthol), nitrophenols, hydroxyanisoles, hydroxybenzoic acids, fatty acid ester-substituted or polyalkyleneoxy-substituted phenols (e.g., on the 2 or 4 positions with respect to the hydroxy group), phenols containing an azo linkage (e.g., p-hydroxyazobenzene), and phenolsulfonic acids (e.g., p-phenolsulfonic acid). Some general subclasses of halophenols include the fluorophenols, chlorophenols, bromophenols, and iodophenols, and their further sub-classification as, for example, p-halophenols (e.g., 4-fluorophenol, 4-chlorophenol, 4-bromophenol, and 4-iodophenol), m-halophenols (e.g., 3-fluorophenol, 3-chlorophenol, 3-bromophenol, and 3-iodophenol), o-halophenols (e.g., 2-fluorophenol, 2-chlorophenol, 2-bromophenol, and 2-iodophenol), dihalophenols (e.g., 3,5-dichlorophenol and 3,5-dibromophenol), and trihalophenols (e.g., 3,4,5-trichlorophenol, 3,4,5-tribromophenol, 3,4,5-trifluorophenol, 3,5,6-trichlorophenol, and 2,3,5-tribromophenol). Some examples of aminophenols include 2-, 3-, and 4-aminophenol, and 3,5- and 2,5-diaminophenol. Some examples of nitrophenols include 2-, 3-, and 4-nitrophenol, and 2,5- and 3,5-dinitrophenol. Some examples of hydrocarbyl-substituted phenols include the cresols, i.e., methylphenols or hydroxytoluenes (e.g., o-cresol, m-cresol, p-cresol), the xylenols (e.g., 3,5-, 2,5-, 2,3-, and 3,4-dimethylphenol), the ethylphenols (e.g., 2-, 3-, and 4-ethylphenol, and 3,5- and 2,5-diethylphenol), n-propylphenols (e.g., 4-n-propylphenol), isopropylphenols (e.g., 4-isopropylphenol), butylphenols (e.g., 4-n-butylphenol, 4-isobutylphenol, 4-t-butylphenol, 3,5-di-t-butylphenol, 2,5-di-t-butylphenol), hexylphenols, octyl phenols (e.g., 4-n-octylphenol), nonylphenols (e.g., 4-n-nonylphenol), phenylphenols (e.g., 2-phenylphenol, 3-phenylphenol, and 4-phenylphenol), and hydroxycinnamic acid (p-coumaric acid). Some examples of hydroxyanisoles include 2-methoxyphenol, 3-methoxyphenol, 4-methoxyphenol, 3-t-butyl-4-hydroxyanisole (e.g., BHA), and ferulic acid. Some examples of hydroxybenzoic acids include 2-hydroxybenzoic acid (salicylic acid), 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, and their organic acid esters (e.g., methyl salicylate and ethyl-4-hydroxybenzoate).
- In another embodiment, the phenolic compound contains two phenolic hydroxy groups. Some examples of such compounds include catechol, resorcinol, hydroquinone, the hydrocarbyl-linked bis-phenols (e.g., bis-phenol A, methylenebisphenol, and 4,4′-dihydroxystilbene), 4,4′-biphenol, the halo-substituted diphenols (e.g., 2-haloresorcinols, 3-haloresorcinols, and 4-haloresorcinols, wherein the halo group can be fluoro, chloro, bromo, or iodo), the amino-substituted diphenols (e.g., 2-aminoresorcinol, 3-aminoresorcinol, and 4-aminoresorcinol), the hydrocarbyl-substituted diphenols (e.g., 2,6-dihydroxytoluene, i.e., 2-methylresorcinol; 2,3-, 2,4-, 2,5-, and 3,5-dihydroxytoluene, 1-ethyl-2,6-dihydroxybenzene, caffeic acid, and chlorogenic acid), the nitro-substituted diphenols (e.g., 2- and 4-nitroresorcinol), dihydroxyanisoles (e.g., 3,5-, 2,3-, 2,5-, and 2,6-dihydroxyanisole, and vanillin), dihydroxybenzoic acids (e.g., 3,5-, 2,3-, 2,5-, and 2,6-dihydroxybenzoic acid, and their alkyl esters, and vanillic acid), and phenolphthalein.
- In another embodiment, the phenolic compound contains three phenolic hydroxy groups. Some examples of such compounds include phloroglucinol (1,3,5-trihydroxybenzene), pyrogallol (1,2,3-trihydroxybenzene), 1,2,4-trihydroxybenzene, 5-chloro-1,2,4-trihydroxybenzene, resveratrol (trans-3,5,4′-trihydroxystilbene), the hydrocarbyl-substituted triphenols (e.g., 2,4,6-trihydroxytoluene, i.e., methylphloroglucinol, and 3,4,5-trihydroxytoluene), the halogen-substituted triphenols (e.g., 5-chloro-1,2,4-trihydroxybenzene), the carboxy-substituted triphenols (e.g., 3,4,5-trihydroxybenzoic acid, i.e., gallic acid or quinic acid, and 2,4,6-trihydroxybenzoic acid), the nitro-substituted triphenols (e.g., 2,4,6-trihydroxynitrobenzene), and phenol-formaldehyde resoles or novolak resins containing three phenol hydroxy groups.
- In yet another embodiment, the phenolic compound or material contains multiple (i.e., greater than three) phenolic hydroxy groups. Some examples of such compounds include tannin (e.g., tannic acid), tannin derivatives (e.g., ellagotannins and gallotannins), phenol-containing polymers (e.g., poly-(4-hydroxystyrene)), phenol-formaldehyde resoles or novolak resins containing at least four phenol groups (e.g., at least 4, 5, or 6 phenol groups), quercetin, ellagic acid, and tetraphenol ethane.
- In some embodiments, one, two, or more of any of the classes or specific types of phenolic compounds described above are excluded from the phenolic component. In particular embodiments, the phenolic compound is monocyclic (i.e., contains a phenyl ring not fused or connected to another ring) and contains two or three phenolic hydroxy groups. For example, in some embodiments, the phenolic component is, or includes, resorcinol and/or phloroglucinol (i.e., 1,3,5-trihydroxybenzene).
- The dione component includes one or more compounds containing carbonyl groups that are adjacent. The carbonyl groups can be, for example, keto and/or aldehydic groups. By being “adjacent” is meant that the two carbonyl groups are in close enough proximity to be jointly engaged in a single hydrogen bonding interaction (e.g., a hydrogen atom engaging both carbonyl group oxygens), or similarly, close enough to be involved in a tautomeric interaction, as understood in the art and as described in further detail below. Generally, for purposes of the invention, carbonyl groups are considered adjacent if they are vicinal (i.e., are connected by a bond between carbonyl carbon atoms) or if they are attached to the same or adjacent (i.e., 1,2 or ortho) ring carbon atoms in a cyclic structure, particularly an aromatic cyclic, bicyclic, or higher polycyclic structure.
- In a first set of embodiments, the dione component includes one or more vicinal dione compounds. In particular embodiments, the vicinal dione compound has the following chemical structure:
- In formula (1), R1 and R2 are independently selected from hydrogen atom and hydrocarbon groups. In particular embodiments, the hydrocarbon groups considered herein contain precisely, at least, or up to one, two, three, four, five, or six carbon atoms. In some embodiments, the hydrocarbon groups contain only carbon and hydrogen atoms. In other embodiments, the hydrocarbon groups may further include one or more oxygen atoms inserted between carbon atoms, or can have one or more hydrogen atoms substituted with one or more heteroatom-containing groups, such as hydroxy, halogen atom (e.g., F, Cl, or Br), ether (e.g., methoxy, ethoxy, epoxide, and/or glycidyl), carboxylic acid, carboxylic ester, and/or amido groups. In some embodiments, one or both hydrocarbon groups are saturated. The saturated hydrocarbon groups can be straight-chained (e.g., methyl, ethyl, n-propyl, n-butyl, n-pentyl, and n-hexyl), or branched (e.g., isopropyl, isobutyl, sec-butyl, t-butyl, isopentyl, and neopentyl), or cyclic (e.g., cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl). In other embodiments, one or both hydrocarbon groups are unsaturated. The unsaturated hydrocarbon groups can be straight-chained (e.g., vinyl or allyl), or branched (e.g., 2-methylallyl), or cyclic (e.g., cyclopentenyl, cyclopentadienyl, cyclohexenyl, and phenyl).
- In some embodiments of Formula (1), R1 and R2 are hydrogen atoms, thus corresponding to glyoxal, i.e., HC(O)C(O)H (i.e., 1,2-ethandial). In other embodiments of Formula (1), one of R1 and R2 is a hydrogen atom while another of R1 and R2 is a hydrocarbon group, thus corresponding to vicinal aldehyde-ketone compounds. Some examples of vicinal aldehyde-ketone compounds include 2-oxopropanal (i.e., methylglyoxal, also known as pyruvaldehyde), 2-oxobutanal (i.e., ethylglyoxal), 2-oxopentanal (i.e., n-propylglyoxal), 2-oxohexanal, 3-methyl-2-oxobutanal (i.e., isopropylglyoxal), 3-methyl-2-oxopentanal, 4-methyl-2-oxopentanal (i.e., isobutylglyoxal), 2-oxobut-3-enal, and 2-cyclopropyl-2-oxoacetaldehyde. In yet other embodiments of Formula (1), R1 and R2 are both hydrocarbon groups, thus corresponding to vicinal diketone compounds. In the vicinal diketone compounds, R1 and R2 can be independently selected from any of the types of hydrocarbon groups described above. Some examples of vicinal ketone compounds include 2,3-butadione (i.e., diacetyl), 2,3-pentanedione (i.e., ethylmethylglyoxal), 2,3-hexanedione (i.e., methylpropylglyoxal), 3,4-hexanedione (i.e., diethylglyoxal), 2,3-heptanedione, 3,4-heptanedione, 2,3-octanedione, 3,4-octanedione, 4,5-octanedione (dipropylglyoxal), pent-4-ene-2,3-dione, and hexa-1,5-diene-3,4-dione.
- In some embodiments, R1 and R2 in Formula (1) are not interconnected. In other embodiments, R1 and R2 are interconnected as a cyclic structure. Typically, the R1-R2 interconnection contains precisely or at least three or four ring carbon atoms. The ring carbon atoms in the R1-R2 interconnection may or may not also have one or more hydrogen atoms therein substituted by one or more hydrocarbon groups, typically alky groups containing one, two, or three carbon atoms. Some examples of dione compounds wherein R1 and R2 in Formula (1) are interconnected include cyclopentane-1,2-dione, 3,5-dimethylcyclopentane-1,2-dione, 3,4,4-trimethylcyclopentane-1,2-dione, cyclohexane-1,2-dione, cycloheptane-1,2-dione, cyclohex-4-ene-1,2-dione, and cyclohexa-3,5-diene-1,2-dione.
- In a second set of embodiments, the dione component has two carbonyl groups attached to adjacent (i.e., 1,2 or ortho) ring carbon atoms in a cyclic structure. In particular embodiments, such a dione compound has the following chemical structure:
- In Formula (2), the cyclic group represents a saturated or unsaturated monocyclic, bicyclic, or tricyclic group. The cyclic group can be saturated or unsaturated. The cyclic group may alternatively be aliphatic or aromatic. As defined herein, a monocyclic group includes a single ring not fused or bonded to another ring. A bicyclic group contains two rings either fused or connected by a bond. A tricyclic group contains three rings either fused or connected by bonds. Typically, the monocyclic group contains precisely or at least four, five, or six ring carbon atoms. Bicyclic groups may contain precisely or at least, for example, eight, nine, or ten ring carbon atoms. Tricyclic groups may contain precisely or at least, for example, thirteen or fourteen ring carbon atoms. In some embodiments, the cyclic group contains only carbon and hydrogen atoms (i.e., is carbocyclic). In other embodiments, the cyclic group includes one or more ring heteroatoms selected from oxygen, nitrogen, and sulfur (i.e., is heterocyclic). The cyclic group may or may not also have one or more hydrogen atoms substituted with one or more hydrocarbon groups (e.g., alkyl groups of one to three carbon atoms) and/or one or more heteroatom-containing groups (e.g., selected from hydroxy, methoxy, ethoxy, amino, carboxamido, keto, and aldehyde groups).
- Some examples of saturated monocyclic groups in Formula (2) include cyclopentylene and cyclohexylene groups, thereby resulting in cyclopentane-1,2-dicarboxaldehyde and cyclohexane-1,2-dicarboxaldehyde, respectively, for the structure in Formula (2). Some examples of unsaturated monocyclic groups include phenylene, cyclopentadienyl (e.g., 2,3-diyl), and furan-2,5-diyl, thereby resulting in 1,2-benzenedialdehyde (i.e., phthalaldehyde), cyclopenta-1,3-diene-2,3-dicarboxaldehyde, and furan-2,5-dicarboxaldehyde, respectively, for the structure in Formula (2). Some examples of bicyclic and tricyclic groups include naphthalenyl (e.g., 2,3-diyl) and anthracenyl (e.g., 2,3-diyl), thereby resulting in, for example, naphthalene-2,3-dicarboxaldehyde and anthracene-2,3-dicarboxaldehyde, respectively, for the structure in Formula (2).
- In Formulas (1) and (2), the close proximity of the carbonyl groups permits the carbonyl groups to engage in a simultaneous hydrogen bonding interaction with protic species (in particular, phenol groups) present in the precursor composition. More particularly, the close proximity of the carbonyl groups is believed to form a hydrogen-bonded enolic intermediate after one of the carbonyl groups is electrophilically attacked by an active phenol carbon. The foregoing concept is depicted as follows, with phloroglucinol and glyoxal as exemplary phenolic and dione compounds (wherein the hydrogen bond is indicated by a dashed bond):
- Without being bound by any theory, it is believed that formation of this hydrogen bond causes a moderation in reactivity of the remaining carbonyl group. This moderating effect is believed to be at least partly responsible for the hierarchical porous feature of the carbon materials produced herein. In particular, by forming the hydrogen bond, it is believed that the reactivity of at least the second aldehyde group (i.e., the one not connected to the phenol group) is muted, thus affecting its reactivity. This effect could result in, or promote, a hierarchical structure by affecting how the phenolic groups interlink. The muted reactivity could, for example, inhibit or prohibit the formation of a bond to the second aldehyde or provide a reactive site after the first round of reactions, i.e., result in a delayed reaction. The delayed reaction could constrain the carbon polymer such that during annealing the constrained bridges are broken, and the unbound or broken groups liberated as a volatile gas. By an alternative theory, both sides react, although delayed, to produce a constrained structure, which, upon carbonization, liberates gaseous products that result in a hierarchical structure.
- In some embodiments, a dione compound that is not encompassed by Formula (1) is excluded from the dione component, or from the precursor composition altogether. In other embodiments, a dione compound that is not encompassed by Formula (2) is excluded from the dione component, or from the precursor composition altogether. In yet other embodiments, a dione compound that is not encompassed by Formula (1) or (2) is excluded from the dione component, or from the precursor composition altogether. Some examples of dione compounds that may be excluded (and which are not encompassed by Formulas (1) and (2)) include, for example, malondialdehyde, succinaldehyde, glutaraldehyde, adipaldehyde, pimelaldehyde, suberaldehyde, sebacaldehyde, and terephthaldehyde. In still other embodiments, one or more subclasses or specific types of dione compounds, either from Formula (1) or (2) may be excluded from the dione component, or from the precursor composition altogether. In yet other embodiments, a mono-aldehyde or mono-ketone, such as formaldehyde, acetaldehyde, acetone, or furfural, is excluded from the precursor composition.
- The acidic component in the precursor composition can be any acid strong enough to accelerate the reaction between phenolic and dione compounds. In some embodiments, the acid is a weak acid, such as an organic acid, such as acetic acid, propionic acid, or phosphoric acid. In other embodiments, the acid is a strong acid, such as a mineral acid, such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, or a superacid, such as triflic acid. Depending on the type of acid and other conditions, the molar concentration of acid (per total precursor composition) can be, for example, at least 0.5 molar (i.e., 0.5 M), 0.6 M, 0.7 M, 0.8 M, 1.0 M, 1.2 M, 1.5 M, 1.8 M, 2.0 M, 2.5 M, 3.0 M, 3.5 M, 4.0 M, 4.5 M, 5.0M, or an acid concentration within a range bounded by any two of the foregoing values. The molar concentration values given may also be referred to in terms of molar equivalents of H+, or pH, wherein the pH for a strong acid generally abides by the formula pH=−log [H+], wherein [H+] represents the concentration of H+ ions.
- In some embodiments, the molar amount of dione component is higher than the molar amount of phenolic component (i.e., molar ratio of dione to phenolic components is greater than 1). In such embodiments, the molar ratio of dione to phenolic components may be precisely, about, or at least, for example, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, or 3.0, or within a range bounded by any two of these values. In other embodiments, the molar amount of dione component is less than the molar amount of phenolic component (i.e., molar ratio of dione to phenolic components is less than 1). In such embodiments, the molar ratio of dione to phenolic components may be precisely, about, or less than, for example, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, or 0.2, or within a range bounded by any two of these values. In other embodiments, the molar amount of dione component is about the same as the molar amount of phenolic component.
- Any one or more of the above components may or may not be dissolved in a suitable solvent. The solvent can be, for example, an organic polar protic or non-protic solvent. Some examples of organic polar protic solvents include alcohols, e.g., methanol, ethanol, n-propanol, isopropanol, ethylene glycol, and the like. Some examples of organic polar non-protic solvents include acetonitrile, dimethylformamide, dimethylsulfoxide, methylene chloride, organoethers (e.g., tetrahydrofuran or diethylether), and the like. In some embodiments, any solvent, or any of the classes or particular types of solvents described above (except for water), may be excluded from the precursor composition.
- In some embodiments, an orthoacetate, e.g., triethyl orthoacetate, is excluded from the precursor composition. In other embodiments, a weak acid (i.e., having a pKa above −2), and particularly, the weak organic acids (e.g., p-toluenesulfonic acid or hypophosphorous acid), are excluded from the precursor composition. In yet other embodiments, a phenol-formaldehyde resole or novolak resin (e.g., those of 500-5000 M.W.) is excluded from the precursor composition.
- In some embodiments, all of the precursor components, described above, are combined and mixed to form the precursor composition. The precursor composition can then be deposited by any suitable means known in the art to produce a film (i.e., coating) of the precursor composition on a substrate. Some examples of solution deposition processes include spin-coating, brush coating (painting), spraying, and dipping. After being deposited, the precursor film is subsequently cured and then carbonized.
- In other embodiments, a multi-step process is employed in which a portion of the precursor components is first deposited to produce an initial film, and the initial film subsequently reacted by the remaining component(s) of the precursor composition. After all components have reacted to produce a precursor film, the precursor film is cured and then carbonized. Additional steps may also be included. For example, a multi-step process may be employed wherein the templating component in combination with the phenolic component is first deposited by, for example, applying (i.e., coating) said components onto a surface. If desired, the initially produced film can be converted to a solid film by removing solvent therefrom (e.g., by annealing). The produced film may then be reacted with the dione component (e.g., by a liquid or vapor phase reaction) under acidic conditions to produce the polymerized (and optionally, crosslinked) carbon precursor material. The resulting cured film can then be carbonized to produce the mesoporous carbon material.
- The curing step includes any of the conditions, as known in the art, which promote polymerization, and preferably, crosslinking, of polymer precursors, and in particular, crosslinking between phenolic and aldehydic or dione components. The curing conditions generally include application of an elevated temperature for a specified period of time. However, other curing conditions and methods are contemplated herein, including radiative (e.g., UV curing) or purely chemical (i.e., without use of an elevated temperature). In particular embodiments, the curing step involves subjecting the polymer precursors or the entire precursor composition to a temperature of precisely, at least, or about, for example, 50, 60, 70, 80, 90, 100, 110, 120, 130, or 140° C. for a time period of, typically, at least 0.5, 1, 2, 5, 10, or 12 hours, and up to 15, 20, 24, 36, 48, or 72 hours, wherein it is understood that higher temperatures generally require shorter time periods.
- In particular embodiments, it may be preferred to subject the precursors to an initial lower temperature curing step followed by a higher temperature curing step. The initial curing step may employ a temperature of about, for example, 50, 60, 70, 80, 90, or 100° C. (or a range between any of these), while the subsequent curing step may employ a temperature of about, for example, 90, 100, 110, 120, 130, or 140° C. (or a range between any of these), provided that the temperature of the initial curing step is less than the temperature of the subsequent curing step. In addition, each curing step can employ any of the exemplary time periods provided above.
- Alternatively, it may be preferred to gradually increase the temperature during the curing step between any of the temperatures given above, or between room temperature (e.g., 15, 20, 25, 30, or 35° C.) and any of the temperatures given above. In different embodiments, the gradual increase in temperature can be practiced by employing a temperature increase rate of, or at least, or no more than 1° C./min, 2° C./min, 3° C./min, 5° C./min, 7° C./min, 10° C./min, 12° C./min, 15° C./min, 20° C./min, or 30° C./min, or any suitable range between any of these values. The gradual temperature increase can also include one or more periods of residency at a particular temperature, and/or a change in the rate of temperature increase.
- The carbonization step includes any of the conditions, as known in the art, which cause carbonization of the precursor composition. Generally, in different embodiments, a carbonization temperature of precisely, about, or at least, for example, 300° C., 350° C., 400° C., 450° C., 500° C., 550° C., 600° C., 650° C., 700° C., 750° C., 800° C., 850° C., 900° C., 950° C., 1000° C., 1050° C., 1100° C., 1150° C., 1200° C., 1250° C., 1300° C., 1350° C., 1400° C., 1450° C., 1500° C., 1600° C., 1700° C., or 1800° C. (or a range therein) is employed for a time period of, typically, at least 1, 2, 3, 4, 5, or 6 hours and up to 7, 8, 9, 10, 11, or 12 hours, wherein it is understood that higher temperatures generally require shorter time periods to achieve the same result. If desired, the precursor composition, or alternatively, the carbonized material, can be subjected to a temperature high enough to produce a graphitized carbon material. Typically, the temperature capable of causing graphitization is a temperature of or greater than about 2000° C., 2100° C., 2200° C., 2300° C., 2400° C., 2500° C., 2600° C., 2700° C., 2800° C., 2900° C., 3000° C., 3100° C., or 3200° C., or a range between any two of these temperatures. Preferably, the carbonization or graphitization step is conducted in an atmosphere substantially removed of oxygen, e.g., typically under an inert atmosphere. Some examples of inert atmospheres include nitrogen and the noble gases (e.g., helium or argon). Generally, for most purposes of the instant invention, a graphitization step is omitted. Therefore, other conditions that generally favor graphitization (e.g., inclusion of catalytic species, such as iron (III) complexes) are preferably excluded.
- In particular embodiments, it may be preferred to subject the precursors to an initial lower temperature carbonization step followed by a higher temperature carbonization step. The initial carbonization step may employ a temperature of about, for example, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, or 900° C. (or a range between any of these), while the subsequent carbonization step may employ a temperature of about, for example, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1200, 1250, 1300, 1400, 1450, 1500, 1600, 1700, or 1800° C. (or a range between any of these), provided that the temperature of the initial carbonization step is less than the temperature of the subsequent carbonization step. In addition, each carbonization step can employ any of the exemplary time periods given above.
- Alternatively, it may be preferred to gradually increase the temperature during the carbonization step between any of the temperatures given above, or between room temperature (e.g., 15, 20, 25, 30, or 35° C.) and any of the temperatures given above. In different embodiments, the gradual increase in temperature can be practiced by employing a temperature increase rate of, or at least, or no more than 1° C./min, 2° C./min, 3° C./min, 5° C./min, 7° C./min, 10° C./min, 12° C./min, 15° C./min, 20° C./min, 30° C./min, 40° C./min, or 50° C./min, or any suitable range between any of these values. The gradual temperature increase can also include one or more periods of residency at a particular temperature, and/or a change in the rate of temperature increase.
- In particular embodiments, after combining the components of the precursor composition, and before curing or carbonization, the solution is stirred for a sufficient period of time (e.g., at least or about 1, 2, 5, 10, 20, 30, 40, 50, 60, 90, or 120 minutes, or a range between any these values) until a gel-like phase is formed, which is typically evidenced by an increased turbidity in the solution. The turbidity generally indicates formation of an ordered nanocomposite gel or solid that has undergone a degree of phase separation from the liquid portion of the solution. If desired, stirring can be continued after the onset of turbidity, such that the total amount of stirring time before curing, carbonization, or a phase-separation process is any of the exemplary time periods given above, or a longer period of time, such as several hours (e.g., at least or about 4, 5, 6, 7, 8, 10, or 12 hours) or days (e.g., at least or about 1, 2, 3, 4, 5, 10, 15, or 20 days), or a range between of the foregoing exemplary periods of time.
- After turbidity becomes evident, the phase-separated mixture can be subjected to conditions that cause the ordered nanocomposite gel or solid to be substantially removed or isolated from the liquid portion. Any separation method can be applied herein. For example, the phases can be separated by centrifugation. In different embodiments, the centrifugation can be conducted at an angular speed of precisely, at least, about, or up to, for example, 2000 rpm, 2500 rpm, 3000 rpm, 4000 rpm, 5000 rpm, 6000 rpm, 7000 rpm, 8000 rpm, 9000 rpm, 9500 rpm, 10000 rpm, 11000 rpm, 12000 rpm, or 15000 rpm, or a range between any of these values, for a period of time of, for example, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, or 6 minutes, wherein it is understood that higher angular speeds generally require less amounts of time to effect an equivalent degree of separation. Superspeed centrifugation (e.g., up to 20,000 or 30,000 rpm) or ultracentrifugation (e.g., up to 40,000, 50,000, 60,000, or 70,000 rpm) can also be used. The gel or solid phase, once separated from the liquid phase, is then cured and carbonized in the substantial absence of the liquid phase according to any of the conditions described above for these processes.
- Particles of the porous carbon material can be produced instead of a film. The particles can be produced by any suitable method, such as, for example, the spray atomization techniques known in the art which also include a capability of heating at carbonization temperatures. For example, the precursor composition described above (typically, in a carrier solvent, such as THF or DMF) can be sprayed through the nozzle of an atomizer, and the particulates directed into one or more heated chambers for curing and carbonization steps. Alternatively, a portion of the precursor composition (e.g., templating agent and one of the polymer precursors, such as the phenolic component) may first be atomized and the resulting particles annealed (i.e., dried) by suitable conditions; the resulting particles may then be exposed to the other polymer precursor (e.g., dione component) and subjected to acidic conditions, followed by curing and carbonization steps.
- The hierarchical porous carbon material may also be functionalized, as desired, by methods known in the art for functionalizing carbon or graphite materials. For example, the porous carbon material may be nitrogenated, fluorinated, or oxygenated by methods known in the art. The porous carbon material may be nitrogenated, fluorinated, or oxygenated, by, for example, exposure of the porous carbon film, either during or after the carbonization process, to, respectively, ammonia gas, fluorine gas, or oxygen gas under suitably reactive conditions. In the particular case of fluorination, the carbon material is typically placed in contact with fluorine gas for a period of several minutes (e.g., 10 minutes) up to several days at a temperature within 20° C. to 500° C., wherein the time and temperature, among other factors, are selected based on the degree of fluorination desired. For example, a reaction time of about 5 hours at ambient temperature (e.g., 15-30° C.) typically results in fluorination of about 10% of the total carbon; in comparison, fluorination conducted at about 500° C. for two days results in about 100% fluorination of the total carbon. In particular embodiments, the degree of nitrogenation, fluorination, or oxygenation can be about or at least 1%, 2%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 100%, or a range between any two of these values.
- In another aspect, the invention is directed to a capacitive deionization (CDI) device that includes the porous carbon material (described above) in one or two electrodes of the CDI device. The invention is also directed to a method for desalinating water by electrically operating the CDI device. The invention is also directed to a method of energy storage by using the porous carbon material described herein in a capacitive device, such as a battery, supercapacitor, or electric double layer capacitor (EDLC).
- The hierarchical porous carbon material described herein is included in at least one electrode of the CDI or related device (e.g., EDLC device). In one embodiment, at least one (or both, a portion, or all) of the electrodes is constructed of the hierarchical porous carbon material, except perhaps for the current collector. In another embodiment, the hierarchical porous carbon material is in the form of a coating on a suitable base electrode material (or current collector). The base electrode material or current collector is often a conductive carbon material, such as graphite or carbon paper. In yet another embodiment, the hierarchical porous carbon material is in the form of a layer covered by a layer of another porous material, such as a mesoporous carbon material, carbon foam, or porous graphite. In some embodiments, a titanium sheet current collector is used. In other embodiments, a composite material (e.g., activated carbon powder and a thermoplastic material, such as PTFE) is used as the base electrode or current collector.
- In some embodiments, the hierarchical porous carbon material described herein, without admixture with another carbon material, is used as the electrode or coated on a base electrode or current collector. In other embodiments, the hierarchical porous carbon material described herein is admixed with one or more other carbon materials (e.g., activated carbon, a mesoporous carbon, a carbon foam, or a carbon aerogel). When admixing is desired, the porous carbon material is typically in a particulate form, such as a powder.
- A CDI device generally includes at least the feature of two porous electrodes of opposite polarity spaced in such a manner that flowing liquid (typically water, or an aqueous solution containing water) makes contact with the electrodes. In some embodiments, the electrodes are separated by an insulating material that permits the flow therethrough of water to be deionized by inclusion of flow channels in the insulating material. The insulating material includes means (e.g., spaces, channels, or pores) that permit the liquid to make efficient contact with the porous electrodes. When operated (i.e., by applying a suitable voltage bias across the electrodes), the CDI device removes salt species from the water by absorbing cationic species into the negatively charged electrode and anionic species into the positively charged electrode, similar to a capacitor, such as a supercapacitor or EDLC, both of which are additional applications for the hierarchical porous carbon materials described herein. The base electrode material can be any suitable electrically conductive material, including any of the substrate materials described above, provided the substrate material permits the CDI device to desalinate water. In particular embodiments, the base electrode material is porous.
- The CDI device can have any of the features and designs known in the art. See, for example, U.S. Pat. No. 5,636,437, U.S. Pat. No. 5,776,633, U.S. Pat. No. 5,932,185, U.S. Pat. No. 5,954,937, U.S. Pat. No. 6,214,204, U.S. Pat. No. 6,309,532, U.S. Pat. No. 6,778,378, U.S. Pat. No. 7,766,981, U.S. Pat. No. 7,835,137, U.S. Application Pub. No. 2008/0274407, U.S. Application Pub. No. 2009/0141422, U.S. Application Pub. No. 2009/0305138, U.S. Application Pub. No. 2009/0320253, Jung, et al., Desalination, 216, pp. 377-385 (2007), R. W. Pekala, et al., Journal of Non-Crystalline Solids, 225, pp. 74-80 (1998), and D. Carriazo, et al., J. Mater. Chem., 20, pp. 773-780 (2010), all of which describe numerous features and designs in CDI, EDLC, and related devices, as well as numerous methods for fabricating electrodes in such devices, as well as methods of operating CDI, EDLC and related devices. The variations and designs of CDI devices, as well as methods of manufacture, and methods of their use, described in the foregoing references, are herein incorporated by reference in their entirety. In some embodiments, one or more features described in said references are excluded from the instant CDI device. Furthermore, in some embodiments, two electrodes are employed, while in other embodiments, more than two, or a multiplicity of electrodes (for example, miniaturized electrodes) are employed. In some embodiments, the electrodes are in a stacked arrangement, such as an alternating left-right arrangement to maximize flow rate. In particular embodiments, the CDI device is a membrane capacitive deionization (MCDI) device by employing an anion-exchange membrane coated on the anode and/or a cation-exchange membrane coated on the cathode, wherein the anion- or cation-exchange membrane is generally positioned between the flowing water and respective electrode. In other embodiments, such exchange membranes are excluded from the device.
- In other aspects, the hierarchical porous carbon materials described herein are used as chromatography media, particularly for use in HPLC, and more particularly, for use in electrochemically modulated liquid chromatography (EMLC), as described, for example, in U.S. Pat. No. 7,449,165, the contents of which are incorporated herein by reference in their entirety.
- Examples have been set forth below for the purpose of illustration and to describe certain specific embodiments of the invention. However, the scope of this invention is not to be in any way limited by the examples set forth herein.
- Phloroglucinol, tetrahydrofuran (THF), and Pluronic F-127 were obtained from Sigma-Aldrich. Ethanol (200 proof) was obtained from VWR Scientific, and glyoxal was obtained from Alfa Aesar.
- In a typical experiment, 1.15 g phloroglucinol (9.12 mmol) and 1.15 g Pluronic F-127 were dissolved in 4.5 mL ethanol (200 proof) and 4.5 mL of 3M HCl. Once dissolved, 1.3 mL of 40 wt. % aq. glyoxal solution (11.33 mmol) was added and the mixture stirred. Phase separation was observed 20 minutes after glyoxal addition. The mixture was stirred for an additional 30 minutes after phase separation, and then the gel and solvent were transferred to a centrifuge tube. The gel was separated from the solvent by centrifugation at 9600 RPM for six minutes. The solvent was then decanted off the gel layer and 0.5 g THF and 2.0 g ethanol (200 proof) was added. After mixing, the gel was cast onto glass Petri dishes and allowed to dry in a fume hood overnight. The gel was then cured at 353 K for 24 hours followed by carbonization at 1123 K for 2 hours (2 K/min ramp rate) in a nitrogen atmosphere.
- Phloroglucinol is reported to react faster than resorcinol or phenol with formaldehyde (see, for example, P. Xu, et al., Water Res., 2008, 42, 2605-2617, and X. Q. Wang, et al., Langmuir, 2008, 24, 7500-7505). Although phloroglucinol is attractive for its potential in producing ordered porous carbon materials, the increased reaction rate can lead to a disordered and non-hierarchical porous carbon, among other detrimental effects for the purposes of the instant invention. To obtain an ordered porous carbon, the fast reactivity of phloroglucinol has been compensated by a slower reacting aldehyde than formaldehyde. Glyoxal is a slow reacting aldehyde, potentially due to the possible enol tautomerization, described above, that can stabilize a reaction intermediate structure and hinder further crosslinking. Therefore, based solely on condensation reactivity, the fast reacting phloroglucinol and slow reacting glyoxal were found herein to be a beneficial pairing.
- Nitrogen sorption analysis was performed on a
Micromeritics Tristar 3000 at 77 K. Prior to measurement, the samples were degassed at 423 K under flowing nitrogen. The specific surface area was calculated using the Brunauer-Emmett-Teller (BET) equation utilizing the adsorption branch. The pore size distribution plot was derived from the adsorption branch of the isotherms using the Barret-Joyner-Halenda (BJH) method. - As shown in
FIG. 1 , nitrogen sorption isotherms with a hysteresis loop indicating the presence of mesopores were obtained from the carbonized phloroglucinol-glyoxal polymer produced in Example 1. The surface area was comparable to that of resorcinol-formaldehyde carbons synthesized by a similar method at 410 m2/g (see X. Q. Wang et al., 2008, Ibid.). The narrow (BJH) pore size distribution centered on 7.5 nm is indicative of the well-ordered templated structure (inset ofFIG. 1 ). - Raman measurements on the porous carbon produced in Example 1 were collected with a
Renishaw System 1000 microscope using a 632 nm He—Ne laser (25 mW power) and a 50× objective. Raman spectroscopy is widely used to probe the amount of graphitic vs. amorphous carbon via two bands that have become the “fingerprint” regions for carbon materials. The I(G) band identified as the graphitic carbon, is centered around 1600 cm−1 and is attributed to sp2 carbon. The I(D) band identified with amorphous carbon is attributed to spa carbon. The Raman spectrum (FIG. 2 ) of the carbonized material displayed two features, a sharp band centered on 1600 cm−1 and the second feature centered on 1330 cm−1. These two features correspond to the graphitic (IG=1600 cm−1) and disordered carbon (ID=1330 cm−1) structures associated with carbon materials. A shoulder on the I(D) band located near 1170 cm−1 is also attributed to the disordered carbon structures. - Scanning transmission electron microscope (STEM) images were collected on a Hitachi HD2000 STEM. Scanning transmission electron microscopy (STEM) was used to gain further insight into the porous structure of the carbon produced in Example 1. As shown by the STEM images in
FIG. 3 , the carbon possesses a hierarchical porosity. In particular, in addition to the 7.5 nm mesopores, as also revealed by nitrogen adsorption analysis, larger pores with diameters up to 200 nm were present. While glyoxal was not expected to produce a hierarchical structure, the presence of the pores larger than 50 nm, observed by STEM microscopy, are suggestive of a bimodal porous network. Previous work on hierarchical carbon often involves the decomposition of a secondary porogen, as occurs with spinodal decomposition, to create the secondary porous structure or the use of hydrothermal techniques (see, for example, C. D. Liang, et al., Chem. Mater., 2009, 21, 2115-2124; P. Adelhelm, et al., Adv. Mater., 2007, 19, 4012; D. Carriazo, et al., J. Mater. Chem., 2010, 20, 773-780; and Y. Huang, et al., Chem. Commun., 2008, 2641-2643). The benefits and advantages of producing a hierarchical porous carbon material by a facile method at room temperature and without toxic formaldehyde are significant. - Graphite plates were used as dual current collector and electrode supports for the carbon. The active area for the CDI electrode was 103.2 cm2 and was roughened to facilitate adhesion of the gel to the graphite. Phloroglucinol (8.00 g, 63.4 mmol) and Pluronic F-127 (8.00 g) were dissolved in 34 mL ethanol (200 proof) and 34 mL of 3M hydrochloric acid. Glyoxal (9.8 mL, 85.4 mmol) was added and the solution allowed to stir for 50 minutes. Phase separation was observed at 20 minutes after glyoxal addition. After 50 minutes, the gel mixture was allowed to set for 1-2 minutes to allow further phase separation from the solvent. The solvent was decanted and the gel spread onto the active area of the graphite electrodes. The porous carbon-coated graphite electrodes were allowed to dry overnight at room temperature, and then cured at 353 K for 24 hours. The plates were then carbonized at 1123 K under argon. Each graphite plate consisted of approximately 5.0 g of porous carbon in the active area.
- Capacitive deionization experiments were conducted using an electrosorption cell that consisted of a pair of graphite electrodes coated with a hierarchical porous carbon, as described in Example 3. A separation distance between the two electrodes was maintained by using a polycarbonate sheet spacer (hollow at the center) of 6.4-mm thickness at the center of the cell. The assembly of one-half of the electrochemical cell followed this sequence: polycarbonate sheet endplate (9.5 mm thick), neoprene sheet gasket (1.6 mm thick), graphite electrode (3.2 mm thick) with the porous carbon coating, and neoprene sheet gasket (1.6 mm thick; hollow at the center). The distance between the current collectors was 9.6 mm, which is the same as the thickness of the polycarbonate spacing (6.4 mm) plus the thickness of two neoprene gasket sheets (1.6-mm each). The distance between the material on the graphite electrodes depended on their thickness. The graphite plates were connected to a power supply (HP E3632A). The thickness of the porous carbon film was approximately 2 mm.
- The potential difference applied to the two electrodes was 1.2 V. This potential was applied 600 seconds after the data acquisition started, and led to an effective removal of ions without causing electrochemical reactions and high current. Instant Ocean® (Aquarium Systems) solutions of various concentrations in deionized water were used in capacitive deionization experiments. In each experiment, the solution was continuously pumped through the electrosorption cell by a pump at a flow rate of 30 mL/min. The solution conductivity was monitored at the outlet of the cell by using an electrical conductivity probe connected to a meter (Amber Science 3082). After the conductivity meter, the solution was collected by a beaker and then recycled through the cell by the pump. A volume of 100 mL was used in each experiment. The conductivity meter and power supply were connected to a data acquisition system (National Instruments USB-6008) and data were stored in the hard-drive of a laptop computer.
- Representative capacitive deionization results are shown in
FIGS. 4A and 4B .FIG. 4A shows CDI results for resorcinol-formaldehyde mesoporous carbon-coated graphite of the art, as synthesized according to X. Q. Wang et al., 2008, Ibid.FIG. 4B shows CDI results for phloroglucinol-glyoxal hierarchical carbon-coated graphite, as produced and analyzed herein in accordance with Examples 3 and 4. The initial concentration of Instant Ocean® was 3,967 ppm for the experiment presented inFIG. 4A and 4,464 ppm for the experiment presented inFIG. 4B . The final concentration was 2,569 ppm for the experiment presented inFIG. 4A and 3,069 ppm for the experiment presented inFIG. 4B . A material balance revealed that the mesoporous resorcinol-formaldehyde carbon-coated graphite in the experiment ofFIG. 4A removed 146.8 mg of salt, while the phloroglucinol-glyoxal carbon-coated graphite in the experiment ofFIG. 4B removed 139.5 mg of salt. The results of these experiments were similar, except for the kinetics of ion uptake by the electrodes. In the first experiment (FIG. 4A ), within 1000 seconds, the solution conductivity dropped by 0.19 mS; whereas in the second experiment (FIG. 4B ), for the same period of time, the solution conductivity dropped 0.67 mS. Hence, the initial slope of ion uptake by the phloroglucinol-glyoxal carbon of the instant invention was more than three times the slope of the resorcinol-formaldehyde carbon of the art. - The similarity in the ion capacity is related to the similar pore sizes found in the resorcinol-formaldehyde carbon material of the art and phloroglucinol-glyoxal carbon material produced herein. In turn, the similar pore sizes results predominantly from use of the same structure template, i.e., Pluronic F127. XPS analysis of the carbon materials has indicated similar surface functionalities between the carbon samples, suggesting the difference in ion uptake and kinetics is not due to different surface functionalities. However, the three-times (3×) increase in ion uptake kinetics is most likely due to the hierarchical structure of the instant phloroglucinol-glyoxal carbon. Therefore, it has been shown that the hierarchical porous carbon produced herein is advantageous over resorcinol-formaldehyde carbon materials of the art for capacitive deionization.
- In conclusion, these Examples demonstrate that phloroglucinol reacts with glyoxal in the presence of the triblock copolymer Pluronic F127 to form a hierarchical porouscarbon material with an ordered, well-defined mesoporous component. This is the first known reported synthesis of a “hard carbon” based on glyoxal, as well as the templating of a phenolic-glyoxal resin. The hierarchical porosity in the porous carbon materials produced in the above Examples has been found to contain mesopores up to 200 nm, as well as mesopores of 7.5 nm. Moreover, the 7.5 nm mesopores are highly uniform in size. Significantly, the hierarchical structure has been provided by the crosslinking reagent (i.e., dione) and not by the use of a secondary porogen undergoing spinodal decomposition, as commonly relied upon in the art. Thus, a new and superior methodology for synthesizing hierarchical carbon materials has herein been described wherein the crosslinking reagent, as opposed to the templating agent, exerts a dominant effect on the porous structure. Moreover, as demonstrated above, capacitive deionization tests indicate that the hierarchical porous carbon material produced herein is a better CDI electrode than that of mesoporous resorcinol-formaldehyde carbon materials of the art for removal of salts from brackish water due to faster ion uptake kinetics.
- While there have been shown and described what are at present considered the preferred embodiments of the invention, those skilled in the art may make various changes and modifications which remain within the scope of the invention defined by the appended claims.
Claims (18)
1. A capacitive deionization device comprised of first and second electrodes and a space between said electrodes for the flow of water, wherein at least one of said first and second electrodes is comprised of a porous carbon material possessing a hierarchical porosity comprised of mesopores and macropores, wherein said mesopores have a size in the range of 2-50 nm and said macropores have a size of at least 75 nm.
2. The capacitive deionization device of claim 1 , wherein said mesopores have a size in the range of 2-20 nm and said macropores have a size in the range of 100-500 nm.
3. The capacitive deionization device of claim 1 , wherein said electrodes are separated by an insulating material, wherein said insulating material permits the flow therethrough of water to be deionized while permitting contact of the water with each of said first and second electrodes
4. The capacitive deionization device of claim 1 , wherein at least a portion of said porous carbon material is amorphous.
5. The capacitive deionization device of claim 1 , wherein at least one of said electrodes is comprised of said porous carbon material possessing a hierarchical porosity disposed as a film on a base electrode substrate material.
6. The capacitive deionization device of claim 5 , wherein said film has a thickness of up to 5 millimeters.
7. The capacitive deionization device of claim 5 , wherein said film has a thickness of up to 100 microns.
8. The capacitive deionization device of claim 5 , wherein said base electrode substrate material is comprised of an electrically conductive carbon material.
9. The capacitive deionization device of claim 8 , wherein said electrically conductive carbon material is graphite.
10. A method for the desalination of water, the method comprising flowing water in need of desalination through a capacitive deionization device when the electrodes of said capacitive deionization device are in electrical operation configured as anode and cathode, said capacitive deionization device comprised of first and second electrodes and a space between said electrodes for the flow of water, wherein at least one of said first and second electrodes is comprised of a porous carbon material possessing a hierarchical porosity comprised of mesopores and macropores, wherein said mesopores have a size in the range of 2-50 nm and said macropores have a size of at least 75 nm.
11. The method of claim 10 , wherein said mesopores have a size in the range of 2-20 nm and said macropores have a size in the range of 100-500 nm.
12. The method of claim 10 , wherein said electrodes are separated by an insulating material, wherein said insulating material permits the flow therethrough of water to be deionized while permitting contact of the water with each of said first and second electrodes
13. The method of claim 10 , wherein at least a portion of said porous carbon material is amorphous.
14. The method of claim 10 , wherein at least one of said electrodes is comprised of said porous carbon material possessing a hierarchical porosity disposed as a film on a base electrode substrate material.
15. The method of claim 14 , wherein said film has a thickness of up to 5 millimeters.
16. The method of claim 14 , wherein said film has a thickness of up to 100 microns.
17. The method of claim 14 , wherein said base electrode substrate material is comprised of an electrically conductive carbon material.
18. The method of claim 17 , wherein said electrically conductive carbon material is graphite.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/496,227 US10023480B2 (en) | 2011-03-14 | 2014-09-25 | Carbon composition with hierarchical porosity, and methods of preparation |
US16/012,244 US10626028B2 (en) | 2011-03-14 | 2018-06-19 | Carbon composition with hierarchical porosity, and methods of preparation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/046,836 US8865351B2 (en) | 2011-03-14 | 2011-03-14 | Carbon composition with hierarchical porosity, and methods of preparation |
US14/496,227 US10023480B2 (en) | 2011-03-14 | 2014-09-25 | Carbon composition with hierarchical porosity, and methods of preparation |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/046,836 Division US8865351B2 (en) | 2011-03-14 | 2011-03-14 | Carbon composition with hierarchical porosity, and methods of preparation |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/012,244 Continuation US10626028B2 (en) | 2011-03-14 | 2018-06-19 | Carbon composition with hierarchical porosity, and methods of preparation |
Publications (2)
Publication Number | Publication Date |
---|---|
US20150047983A1 true US20150047983A1 (en) | 2015-02-19 |
US10023480B2 US10023480B2 (en) | 2018-07-17 |
Family
ID=46827592
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/046,836 Active 2032-07-19 US8865351B2 (en) | 2011-03-14 | 2011-03-14 | Carbon composition with hierarchical porosity, and methods of preparation |
US14/496,227 Active 2031-11-15 US10023480B2 (en) | 2011-03-14 | 2014-09-25 | Carbon composition with hierarchical porosity, and methods of preparation |
US16/012,244 Active 2031-07-15 US10626028B2 (en) | 2011-03-14 | 2018-06-19 | Carbon composition with hierarchical porosity, and methods of preparation |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/046,836 Active 2032-07-19 US8865351B2 (en) | 2011-03-14 | 2011-03-14 | Carbon composition with hierarchical porosity, and methods of preparation |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/012,244 Active 2031-07-15 US10626028B2 (en) | 2011-03-14 | 2018-06-19 | Carbon composition with hierarchical porosity, and methods of preparation |
Country Status (1)
Country | Link |
---|---|
US (3) | US8865351B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019147790A1 (en) * | 2018-01-24 | 2019-08-01 | Ut-Battelle, Llc | Carbon electrodes based capacitive deionization for the desalination of water |
CN110343536A (en) * | 2019-08-19 | 2019-10-18 | 七台河宝泰隆新能源有限公司 | A kind of equipment of hydrogenation of high temperature coal tar coproduction mesocarbon microspheres |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8865351B2 (en) | 2011-03-14 | 2014-10-21 | Ut-Battelle, Llc | Carbon composition with hierarchical porosity, and methods of preparation |
US20120273359A1 (en) * | 2011-04-29 | 2012-11-01 | Suss Matthew E | Flow-through electrode capacitive desalination |
US9284190B2 (en) * | 2012-07-13 | 2016-03-15 | Corning Incorporated | Electrochemical high rate storage materials, process and electrodes |
KR101427818B1 (en) | 2012-10-29 | 2014-08-08 | 한국과학기술연구원 | Carbon materials based on organic nano film using thermal evaporation and method for preparing the same |
KR101425376B1 (en) * | 2013-02-12 | 2014-08-01 | 한국과학기술연구원 | Large-area carbon nanomesh from polymer and method of preparing the same |
US9249241B2 (en) | 2013-03-27 | 2016-02-02 | Ut-Battelle, Llc | Surface-functionalized mesoporous carbon materials |
CN103253745B (en) * | 2013-04-28 | 2014-09-03 | 南京工业大学 | High-voltage capacitor adsorption desalting device and technology |
US9859066B2 (en) * | 2013-05-24 | 2018-01-02 | Atlantis Technologies | Atomic capacitor |
DE102013106114B4 (en) * | 2013-06-12 | 2019-05-09 | Heraeus Quarzglas Gmbh & Co. Kg | Lithium-ion cell for a secondary battery |
KR101675184B1 (en) * | 2013-08-19 | 2016-11-10 | 주식회사 엘지화학 | 3d-structured lithium secondary |
WO2015038612A1 (en) * | 2013-09-11 | 2015-03-19 | University Of Kentucky Research Foundation | Potential of zero charge modified carbon based electrode for desalination |
CN105706277A (en) * | 2013-09-11 | 2016-06-22 | 肯塔基大学研究基金会 | Potential of zero charge modified carbon based electrode for desalination |
CN103578788B (en) * | 2013-11-15 | 2017-05-03 | 东华大学 | Porous carbon combined electrode containing charge conductive nano-particles, preparation of porous carbon combined electrode and application of porous carbon combined electrode |
IN2014DE01015A (en) | 2014-04-10 | 2015-10-16 | Indian Inst Technology Kanpur | |
WO2016018192A1 (en) | 2014-07-29 | 2016-02-04 | Agency For Science, Technology And Research | Method of preparing a porous carbon material |
CN104528720B (en) * | 2014-12-19 | 2016-08-24 | 浙江大学 | The preparation method of a kind of multi-stage porous Carbon Materials and product |
WO2016132903A1 (en) * | 2015-02-19 | 2016-08-25 | 株式会社リコー | Nonaqueous electrolyte electricity storage element |
US10392272B2 (en) | 2015-02-27 | 2019-08-27 | Ut-Battelle, Llc | Modulation of ion transport in a liquid by application of an electric potential on a mesoporous carbon membrane |
KR20160149103A (en) * | 2015-06-17 | 2016-12-27 | 삼성전자주식회사 | Cathode, Metal-air battery, and cathode preparation method |
CN107924763B (en) * | 2015-08-12 | 2020-04-17 | 株式会社村田制作所 | Capacitor, method for manufacturing the same, substrate, and capacitor assembly substrate |
US11724232B2 (en) * | 2015-11-30 | 2023-08-15 | Cornell University | Porous resin structures |
US11717018B2 (en) | 2016-02-24 | 2023-08-08 | R.J. Reynolds Tobacco Company | Smoking article comprising aerogel |
US10526203B2 (en) * | 2016-03-16 | 2020-01-07 | The Regents Of The University Of California | Three-dimensional hierarchical porous carbon foams for supercapacitors |
CN108136364B (en) * | 2016-07-22 | 2021-08-27 | 中国石油化工股份有限公司 | Carbon-based porous material and preparation method and application thereof |
US10693139B2 (en) * | 2016-08-12 | 2020-06-23 | Korea Advanced Institute Of Science And Technology | Carbonaceous structure and method for preparing the same, electrode material and catalyst including the carbonaceous structure, and energy storage device including the electrode material |
EP3293745B1 (en) * | 2016-09-12 | 2019-08-14 | Heraeus Battery Technology GmbH | Additive material for an electrode of an electrochemical cell, double layer capacitor and a method for manufacturing an electrode of the same |
WO2018183556A1 (en) * | 2017-03-28 | 2018-10-04 | The Regents Of The University Of California | Lithium-sulfur electrode and method |
EP3476817A1 (en) | 2017-10-27 | 2019-05-01 | Heraeus Battery Technology GmbH | A process for the preparation of a porous carbon material using an improved amphiphilic species |
EP3476818A1 (en) | 2017-10-27 | 2019-05-01 | Heraeus Battery Technology GmbH | A process for the preparation of a porous carbon material using an improved carbon source |
CN108246338B (en) * | 2018-02-13 | 2021-03-30 | 福州大学 | Nitrogen-doped ordered mesoporous carbon catalytic material and preparation method and application thereof |
US10787378B2 (en) | 2018-05-30 | 2020-09-29 | Atlantis Technologies | Spirally wound electric double layer capacitor device and associated methods |
CN112543671B (en) * | 2018-07-23 | 2023-03-28 | 动力科技水务公司 | Faraday porous battery |
US11739010B2 (en) * | 2018-08-06 | 2023-08-29 | William Marsh Rice University | Electrodes for selective removal of multivalent ions through capacitive deionization |
CN109553098B (en) * | 2018-09-04 | 2023-03-14 | 四川大学 | Method for preparing macroporous-mesoporous carbon with high specific surface area by using salt template and application |
CN109437152B (en) * | 2018-12-12 | 2021-05-07 | 西北大学 | Preparation method of cobalt-nitrogen co-doped mesoporous carbon material |
CN109888284B (en) * | 2018-12-29 | 2020-05-01 | 湖南晋烨高科股份有限公司 | Lithium ion battery cathode material, lithium ion battery cathode, lithium ion battery, battery pack and battery power vehicle |
CN109850866B (en) * | 2019-01-30 | 2021-03-09 | 青岛大学 | Hierarchical porous carbon material for flexible supercapacitor and preparation method thereof |
US11358883B2 (en) * | 2019-02-05 | 2022-06-14 | Lawrence Livermore National Security, Llc | System and method for using ultramicroporous carbon for the selective removal of nitrate with capacitive deionization |
CN110937588B (en) * | 2019-12-10 | 2021-06-15 | 沈阳农业大学 | Hierarchical porous carbon microsphere carrier for immobilized enzyme and preparation method and application thereof |
CN111498828A (en) * | 2020-04-15 | 2020-08-07 | 贵州梅岭电源有限公司 | Method for preparing carbon aerogel by utilizing normal-pressure drying |
WO2023275130A1 (en) * | 2021-06-29 | 2023-01-05 | Avsalt Ab | Supported carbon electrode |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5538611A (en) * | 1993-05-17 | 1996-07-23 | Marc D. Andelman | Planar, flow-through, electric, double-layer capacitor and a method of treating liquids with the capacitor |
US6350520B1 (en) * | 1998-08-26 | 2002-02-26 | Reticle, Inc. | Consolidated amorphous carbon materials, their manufacture and use |
US20050169829A1 (en) * | 2004-02-03 | 2005-08-04 | Sheng Dai | Robust carbon monolith having hierarchical porosity |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1981003167A1 (en) | 1980-04-28 | 1981-11-12 | Johnson Matthey Co Ltd | Mesoporous carbons |
US5932185A (en) | 1993-08-23 | 1999-08-03 | The Regents Of The University Of California | Method for making thin carbon foam electrodes |
US5965483A (en) * | 1993-10-25 | 1999-10-12 | Westvaco Corporation | Highly microporous carbons and process of manufacture |
US5425858A (en) | 1994-05-20 | 1995-06-20 | The Regents Of The University Of California | Method and apparatus for capacitive deionization, electrochemical purification, and regeneration of electrodes |
US6309532B1 (en) | 1994-05-20 | 2001-10-30 | Regents Of The University Of California | Method and apparatus for capacitive deionization and electrochemical purification and regeneration of electrodes |
US5636437A (en) | 1995-05-12 | 1997-06-10 | Regents Of The University Of California | Fabricating solid carbon porous electrodes from powders |
US5776633A (en) | 1995-06-22 | 1998-07-07 | Johnson Controls Technology Company | Carbon/carbon composite materials and use thereof in electrochemical cells |
US6778378B1 (en) | 1999-07-30 | 2004-08-17 | Biosource, Inc. | Flow-through capacitor and method |
US6214204B1 (en) | 1999-08-27 | 2001-04-10 | Corning Incorporated | Ion-removal from water using activated carbon electrodes |
US20060057051A1 (en) | 2004-09-10 | 2006-03-16 | Sheng Dai | Highly ordered porous carbon materials having well defined nanostructures and method of synthesis |
US8648009B2 (en) | 2006-04-27 | 2014-02-11 | The Penn State Research Foundation | Method for the synthesis of porous carbon materials |
US20080152577A1 (en) | 2006-12-21 | 2008-06-26 | Addiego William P | Ordered mesoporous carbons and method for manufacturing same |
US20080274407A1 (en) | 2007-05-03 | 2008-11-06 | Roy Joseph Bourcier | Layered carbon electrodes for capacitive deionization and methods of making the same |
KR101384663B1 (en) | 2007-06-05 | 2014-04-14 | 삼성전자주식회사 | Supercapacitor and electrochemical apparatus for water purification using the same |
US7933114B2 (en) | 2007-08-31 | 2011-04-26 | Corning Incorporated | Composite carbon electrodes useful in electric double layer capacitors and capacitive deionization and methods of making the same |
US7706128B2 (en) | 2007-11-29 | 2010-04-27 | Corning Incorporated | Capacitive device |
US7766981B2 (en) | 2007-11-30 | 2010-08-03 | Corning Incorporated | Electrode stack for capacitive device |
US9017837B2 (en) | 2008-02-19 | 2015-04-28 | Cabot Corporation | High surface area graphitized carbon and processes for making same |
US8137957B2 (en) * | 2008-10-22 | 2012-03-20 | Milliken & Company | Non-woven cover for containing and abating odiferous organic emanations |
US20100190639A1 (en) * | 2009-01-28 | 2010-07-29 | Worsley Marcus A | High surface area, electrically conductive nanocarbon-supported metal oxide |
US8865351B2 (en) | 2011-03-14 | 2014-10-21 | Ut-Battelle, Llc | Carbon composition with hierarchical porosity, and methods of preparation |
-
2011
- 2011-03-14 US US13/046,836 patent/US8865351B2/en active Active
-
2014
- 2014-09-25 US US14/496,227 patent/US10023480B2/en active Active
-
2018
- 2018-06-19 US US16/012,244 patent/US10626028B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5538611A (en) * | 1993-05-17 | 1996-07-23 | Marc D. Andelman | Planar, flow-through, electric, double-layer capacitor and a method of treating liquids with the capacitor |
US6350520B1 (en) * | 1998-08-26 | 2002-02-26 | Reticle, Inc. | Consolidated amorphous carbon materials, their manufacture and use |
US20050169829A1 (en) * | 2004-02-03 | 2005-08-04 | Sheng Dai | Robust carbon monolith having hierarchical porosity |
Non-Patent Citations (5)
Title |
---|
P. Simon and A. Burke. "Nanostructured Carbons: Double-Layer Capacitance and More" Interface (The Electrochemical Society). Volume 17, Issue 1. March 2008. pp. 38-43 * |
R.T. Mayes, C. Tsouris, J.O. Kiggans Jr., S.M. Mahurin, D.W. DePaoli, S. Dai. "Hierarchical ordered mesoporous carbon from phloroglucinol-glyoxal and its application in capacitive deionization of brackish water." Journal of Materials Chemistry 7 Sep 2010. Volume 20, Issue 39. pp. 8674-8678 * |
S. Alvarez, J. Esquena, C. Solans, A.B. Fuertes. "Meso/Macroporous Carbon Monoliths from Polymeric Foams" Advanced Engineering Materials. Nov 2004. Volume 6, Issue 11. pp. 897-899 * |
S. Costacurta, L. Biasetto. "Hierarchical Porosity Components by Infiltration of a Ceramic Foam" Journal of The American Ceramic Society. July 2007. Volume 90, Issue 7. pp. 2172-2177 * |
Z.-G. Shi, Y.-Q. Feng, L. Xu, S.-L. Da, M. Zhang. "Synthesis of a carbon monolith with trimodal pores" Carbon. Volume 41, Issue 13. 2003 (no month). pp. 2653-2689 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019147790A1 (en) * | 2018-01-24 | 2019-08-01 | Ut-Battelle, Llc | Carbon electrodes based capacitive deionization for the desalination of water |
US10807888B2 (en) | 2018-01-24 | 2020-10-20 | Ut-Battelle, Llc | Carbon electrodes based capacitive deionization for the desalination of water |
CN110343536A (en) * | 2019-08-19 | 2019-10-18 | 七台河宝泰隆新能源有限公司 | A kind of equipment of hydrogenation of high temperature coal tar coproduction mesocarbon microspheres |
Also Published As
Publication number | Publication date |
---|---|
US10023480B2 (en) | 2018-07-17 |
US8865351B2 (en) | 2014-10-21 |
US10626028B2 (en) | 2020-04-21 |
US20120234695A1 (en) | 2012-09-20 |
US20180370824A1 (en) | 2018-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10626028B2 (en) | Carbon composition with hierarchical porosity, and methods of preparation | |
US8828533B2 (en) | Mesoporous carbon materials | |
US8513319B2 (en) | Mesoporous carbon materials | |
US20150306570A1 (en) | Metal-carbon composites and methods for their production | |
US20140227325A1 (en) | Lignin-derived porous carbon composition, methods of preparation, and use thereof | |
Ma et al. | Direct synthesis of ordered mesoporous carbons | |
US10287412B2 (en) | Process for the preparation of hierarchically meso and macroporous structured materials | |
KR102663138B1 (en) | Novel methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same | |
JP5795309B2 (en) | Ultra high purity synthetic carbon material | |
Lukens et al. | Synthesis of mesoporous carbon foams templated by organic colloids | |
JP4754813B2 (en) | Method for producing carbon material and tablet-like dried gel | |
US20110262993A1 (en) | Method for preparing a cellular carbon monolith comprising a hierarchised porous network | |
US10081548B2 (en) | Production of ordered mesoporous carbon materials | |
US10017391B2 (en) | Direct polymer templating synthesis of mesoporous carbon | |
Azhar et al. | An adsorption–catalysis pathway toward sustainable application of mesoporous carbon nanospheres for efficient environmental remediation | |
Dai et al. | Crosslinked PVA-based hybrid membranes containing di-sulfonic acid groups for alkali recovery | |
JP4830574B2 (en) | Carbon material for electric double layer capacitor, method for producing the same, and electric double layer capacitor containing the same | |
US10392272B2 (en) | Modulation of ion transport in a liquid by application of an electric potential on a mesoporous carbon membrane | |
Li et al. | Vacuum-Dried and Intrinsic Photothermal Phenolic Carbon Aerogel from Coal Tar Rich in Polycyclic Aromatics for Efficient Solar Steam Generation | |
CN111085114A (en) | Seawater desalination membrane and preparation method and application thereof | |
KR102444704B1 (en) | Separator, Fuel Cell and Water Electrolysis Device Comprising The Same | |
CN116675896B (en) | Phenolic resin sponge material with asymmetric structure and preparation method thereof | |
JP2019044049A (en) | Resin porous body and carbonized product of the same, adsorbent, and method for producing resin porous body | |
JP2020007473A (en) | Resin porous body, carbide, method for producing resin porous body and method for producing carbide | |
CN114031066B (en) | Novel solvent-free sol-gel polymerization process for producing adjustable carbon structure therefrom |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: U.S. DEPARTMENT OF ENERGY, DISTRICT OF COLUMBIA Free format text: CONFIRMATORY LICENSE;ASSIGNOR:UT-BATTELLE, LLC;REEL/FRAME:037161/0464 Effective date: 20150304 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |