US20150037835A1 - System and method for automated diagnosis - Google Patents
System and method for automated diagnosis Download PDFInfo
- Publication number
- US20150037835A1 US20150037835A1 US14/239,383 US201314239383A US2015037835A1 US 20150037835 A1 US20150037835 A1 US 20150037835A1 US 201314239383 A US201314239383 A US 201314239383A US 2015037835 A1 US2015037835 A1 US 2015037835A1
- Authority
- US
- United States
- Prior art keywords
- sample
- cartridge
- chamber
- chambers
- nanometers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5094—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for blood cell populations
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/0016—Technical microscopes, e.g. for inspection or measuring in industrial production processes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/24—Base structure
- G02B21/26—Stages; Adjusting means therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/20—Cooling means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/36—Gynecology or obstetrics
- G01N2800/365—Breast disorders, e.g. mastalgia, mastitits, Paget's disease
Definitions
- the present invention concerns diagnostic methods and apparatus, particularly methods and apparatus useful for detecting white blood cells or analytes in bodily fluids of production animals (for example, bovine mastitis in cattle from milk).
- Mastitis is the inflammation of the mammary gland caused by microorganisms that invade one or more quadrants of the bovine udder, multiply, and produce toxins that are harmful to the mammary gland. Economic loss to mastitis in the United States is estimated to be over 2 billion dollars. This is approximately 10% of the total value of farm milk sales, and about two-thirds of this loss is due to reduced milk production in subclinically infected cows.
- SCC somatic cell count
- the SCC is the number of leukocytes or white blood cells per volume of milk and is also used as an index of milk quality. It has also been recognized that there are multiple types of leukocytes, each with its own significance. In milk from a healthy animal, the predominant cell types are lymphocytes, followed by much lesser numbers of neutrophils and macrophages. The percentages of each kind of cell rise and fall as part of the immune response to infection. Those percentages, “the differential milk leukocyte count”, represent the unique immune status of an individual quarter udder, at a specific point in time for better diagnosis of subclinical mastitis.
- U.S. Patent Application Publication No. 2009/0233329 to Rodriguez discloses a wedge microfluidic slide chamber for detecting mastitis or other diseases from a body fluid of a mammal, such as from cow's milk. While manual and automated procedures for carrying out disease detection with the aid of such a sample cartridge are described, again there is not described a system and apparatus useful for implementing such procedures in a field or barn environment.
- a first aspect of the invention is an automated microscope apparatus, comprising: an outer housing having an external wall; optionally but preferably an internal wall in said housing, and configured to form a first compartment and a separate second compartment in said outer housing; a microscope assembly in said housing, preferably in said first compartment; and a microprocessor in said housing, preferably in said second compartment; and optionally but preferably a heat sink mounted on said housing external wall, preferably adjacent said second compartment, with said microprocessor thermally coupled to said heat sink and operatively associated with said microscope assembly.
- the microscope assembly comprises: a support frame; a subframe; a plurality of vibration isolators connecting said support frame to said subframe; an XYZ stage connected to said subframe; and an optical stage connected to said subframe.
- An XYZ drive assembly interconnecting said XYZ stage to said subframe is preferably included.
- the microprocessor is included as a passively cooled microprocessor assembly, comprising: a heat sink having a front surface and back surface; a circuit board having a front surface and back surface, with said microprocessor mounted on said circuit board front surface; a thermal coupler positioned between said microprocessor and said heat sink back surface, said thermal coupler fixed to and in thermal contact with said heat sink back surface; a clamp connected to said thermal coupler and configured to clamp said microprocessor to said thermal coupler, thereby placing said microprocessor, said thermal coupler, and said heat sink in thermal contact with one another.
- the XYZ stage is for securing a sample cartridge in the automated microscope having X, Y, and Z planes of movement, the sample cartridge having an end portion, a pair of generally parallel opposing side edge portions, and a locking edge portion formed thereon.
- the XYZ stage comprises a base member having a planar stage surface portion; a pair of generally parallel oppositely facing guide members on said planar stage surface and configured for slideably receiving said cartridge therebetween; and a locking member on said planar stage surface portion and positioned to press against the sample cartridge locking edge portion when said sample cartridge is inserted between said guide members, so that pressure is exerted by said lock member through said sample cartridge against at least one of said guide members, whereby the cartridge is removably locked in place on the XYZ stage in the Z plane.
- a further aspect of the invention is an automated system for detecting a disorder in a subject, comprising: an XYZ stage configured to secure a sample cartridge; said sample cartridge comprising at least one chamber, said at least one chamber containing a biological sample collected from a subject; an imaging system operatively associated with said XYZ stage and configured to image selected cells in said sample, said selected cells including at least neutrophils; an autofocusing system operatively associated with said imaging system and said XYZ stage and configured to focus said imaging system on said at least one chamber; a processor running a software program or other suitable means for generating a count of at least neutrophils in said sample as an aid to detecting a disorder in said subject.
- the system may include a controller configured to optionally repeat at least said imaging for at least one additional chamber on said cartridge, as discussed further below.
- a further aspect of the invention is a method of automatically focusing a microscope on a specimen by capturing an image from each of a plurality of focal planes in or on said specimen, calculating a focus score for each of said images, selecting the focal plane corresponding to the image having the best focus score, and then repositioning said specimen relative to said microscope so that said microscope is focused on said selected focal plane, characterized by including a plurality of exogenous targets in or on said specimen.
- a further aspect of the invention is an automated microscope comprising a specimen support stage, an objective lens, a camera, at least one drive assembly operatively associated with said support stage and/or said objective lens, all of which may be as described herein, and further characterized by a controller operatively associated with said at least one drive assembly for carrying out an autofocus method as described herein.
- FIG. 1 is a partial schematic diagram of an apparatus of the present invention.
- FIG. 2 is a perspective view of an apparatus of the present invention, with a sample cartridge to be inserted and touch screen user interface for input of information and display of results.
- FIG. 3 is a schematic diagram of an apparatus of the present invention, showing vibration damping components and chamber separation.
- FIG. 4 is a cut-away perspective view of the apparatus of FIG. 2 .
- FIG. 5 is a side sectional view of an optical stage of the apparatus of FIG. 2 , showing the light source, objective lens, filters, dichroic mirror and camera.
- FIG. 6 is a perspective view of a microscope assembly and passively cooled microprocessor assembly of the apparatus of FIG. 2 with the cover removed and support frames removed.
- FIG. 7 is a perspective view of a microscope assembly of the apparatus of FIG. 2 , with the support frame removed, showing the XYZ drive.
- FIG. 8 is a perspective view of the mount, vibration dampers, and support frame of a microscope assembly of FIG. 2 , upon which the optical stage of FIG. 5 is to be mounted.
- FIG. 9 is a perspective view of a passively cooled microprocessor assembly of the apparatus of FIG. 2 .
- FIG. 10 is an exploded view of the microprocessor assembly of FIG. 9 .
- FIG. 11 is a perspective view of an XYZ stage of the apparatus of FIG. 2 , as configured for retaining a pair of sample cartridges.
- FIG. 12 is a top plan view of the XYZ stage of FIG. 11 .
- FIG. 13 is a side view of the XYZ stage of FIG. 11 .
- FIG. 14 is a perspective view of the XYZ stage of FIG. 11 , showing a first sample cartridge seated in place, and a second sample cartridge to be inserted.
- FIG. 15 is a perspective view of an alternate XYZ stage for an apparatus of FIG. 2 , in which a single sample cartridge is to be inserted.
- FIG. 16 is a perspective view of the XYZ stage of FIG. 15 , with a sample cartridge inserted.
- FIG. 17 is a schematic flow chart of a first mode of operation of an apparatus of FIG. 2 for detecting mastitis in cattle.
- FIG. 18 illustrates the display of a user interface of an apparatus of FIG. 2 during homing of the optical stage
- FIG. 19 illustrates the display of a user interface of an apparatus of FIG. 2 for input of animal data or information, particularly the identity of the animal from which the sample(s) are collected;
- FIG. 20 illustrates the display of a user interface of an apparatus of FIG. 2 for input of animal data or information, particularly the type of sample collected, and the number of chambers in the sample cartridge for which sample imaging and analysis is to be carried out;
- FIG. 21 illustrates the display of a user interface of an apparatus of FIG. 2 after homing and/or information entry is completed and when the apparatus is ready to receive the sample cartridge.
- FIG. 22 illustrates the display of a user interface of an apparatus of FIG. 2 during image acquisition and analysis of one of the four separate chambers of a sample cartridge.
- FIG. 23 illustrates the display of a user interface of an apparatus of FIG. 2 after image acquisition and differential leukocyte analysis has been completed. Note that one of the four quarters is indicated as “positive” for mastitis.
- spatially relative terms such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
- Subject as used herein includes both human and animal subjects for veterinary purposes, as well as plants for agricultural purposes.
- animal subjects include, but are not limited to, mammalian subjects such as dog, cat, cow, sheep, goat, llama, alpaca, camel, horse, pig, chicken, and turkey subjects.
- Dairy animals such as cows, goats, sheep, buffalo, and camel, for the production of milk are particularly preferred for some embodiments of the invention.
- milk as used herein generally refers to mammalian milk of any species (e.g., cow, goat, human, etc.).
- the milk is typically raw milk, and is typically raw milk produced by dairy cattle.
- milk includes colostrum; in other embodiments “milk” refers to milk intended for human consumption after the production of colostrum has ceased.
- the milk may optionally be diluted (typically with an aqueous diluent such as distilled water, saline solution, or buffer solution).
- Colostrum as used herein is a form of milk produced by mammals in the first few days after birth, that may be higher in antibodies (for imparting passive immunity to offspring).
- secretions as used herein is a form of milk produced by mammals just prior to giving birth. Such secretions are sometimes also referred to as “colostrum” but in the present application “secretions” refers to the type of milk produced prior to the subject giving birth, while colostrum refers to the type of milk produced just after the subject giving birth.
- sample cartridge or “diagnostic cartridge” as used herein may be any suitable cartridge for containing a cell sample, including but are not limited to cartridges suitable for differential leukocyte analysis as described In R. Rodriguez and C. Galanaugh, US Patent Application Publication No. 2009/0233329 (published Sep. 17, 2009), the disclosure of which is incorporated herein by reference in its entirety, and optionally incorporating the modifications or features discussed further below.
- such as cartridge includes at least one (e.g., two, four) sample chambers (e.g., a microfluidic chamber), which chamber or chambers may contain suitable cell or leukocyte observation colorants, stains, or reagents (e.g., reagents suitable for visualizing the cells under epifluorescent microscopy).
- sample chambers are preferably aligned with one another on the cartridge (that is, on substantially the same Z plane as one another on the cartridge).
- each chamber contains reagents for separately and distinctly imaging or detecting neutrophils (or “polymorphonuclear leukocytes” (PMN)), lymphocytes, and macrophages, for differential leukocyte count diagnosis of infections such as bovine mastitis, in accordance with procedures known in the art, or which will be apparent to those skilled in the art based upon the instant disclosure, as discussed further below.
- neutrophils or “polymorphonuclear leukocytes” (PMN)
- lymphocytes or macrophages
- FIG. 1 A partial schematic diagram of an apparatus of the present invention is given as an overview in FIG. 1 .
- the apparatus comprises an XYZ stage ( 10 ) mounted on an XYZ drive assembly ( 30 ).
- a sample cartridge ( 40 ) is removably inserted into or engaged by the XYZ stage.
- the optical components for carrying out epifluorescent microscopy include a light or light source ( 51 ), a beam splitter ( 52 ), a camera ( 54 ), and an objective lens ( 56 ), all configured so that light from the source is directed onto the sample cartridge, and light emitted or fluoresced from the sample cartridge is directed to the camera.
- Filters are provided between the camera and beam splitter, and between the light source and beam splitter, so that the appropriate wavelengths of light are directed onto the sample cartridge, and the appropriate wavelengths of light are directed onto the camera. All components including the camera, light, and XYZ drive assembly, are controlled by any suitable controller ( 80 ), which may comprise a computer or microprocessor with associated memory units, power, and additional control boards (not always shown) such as an XYZ controller board.
- controller 80 may comprise a computer or microprocessor with associated memory units, power, and additional control boards (not always shown) such as an XYZ controller board.
- FIG. 2 is a perspective view of an apparatus ( 100 ) of the present invention, as constructed for portability and use in a dusty or otherwise harsh environment such as a barn or farm, or out-of-doors where animals to be diagnosed are found. All components of FIG. 1 above (and FIG. 3 below) are contained within the housing, except for the sample cartridge, which is removably inserted through a suitable opening ( 112 ) in the housing.
- a touch screen display ( 114 ) on the front of the device e.g., an ESTECOM 6.5 inch intelligent panel LCD display/monitor
- the apparatus e.g., an ESTECOM 6.5 inch intelligent panel LCD display/monitor
- FIG. 3 is a schematic diagram of an apparatus of the present invention similar to FIG. 1 above.
- the optical components ( 50 ) are shown as mounted on a subframe ( 90 ), which subframe is in turn mounted on a support frame ( 92 ) through vibration isolators ( 94 ).
- the microscopy components are shown as being contained within a separate, relatively cool, compartment ( 96 ) from the controller, which is in a relatively hot or warm compartment ( 98 ) (as compared to the microscopy compartment).
- the apparatus of FIG. 2 above incorporates these additional features, as discussed further below.
- a baseplate ( 90 ) serves a subframe for both the optical stage ( 50 ) and the XYZ drive assembly ( 30 ), which baseplate is in turn mounted through vibration dampening mounts ( 94 ) to the support frame ( 92 ).
- Any suitable active or passive vibration mount may be used, such as polymeric vibration mounts (e.g., those available from Stock Drive Products/Sterling Instruments, or any other suitable source).
- An XYZ controller board ( 122 ) and a power distribution board ( 123 ) are conveniently located on a support bracket ( 124 ), which support bracket is mounted on the support frame ( 92 ), to facilitate assembly and testing of the microscopy compartment elements before they are placed into the housing, though numerous other configurations will be apparent to those skilled in the art.
- a suitable power supply ( 131 ) e.g., a fanless power supply such as MEAN WELL USP-350-12 350 W power supply
- a shield or cable tray ( 132 ) (cables not shown for clarity) to prevent tangling of cables associated with the XYZ drive assembly, image sensor, and/or light, though numerous other configurations will be apparent, including location of the power supply external to the main housing.
- a heat sink ( 210 ) is mounted on the back of the apparatus to cool the electronics compartment, as discussed further below.
- FIG. 5 is a side sectional view of an optical stage of the apparatus of FIG. 2 , showing the light source, objective lens, filters including emission filters and excitation filters, dichroic mirror and image sensor (sometimes also referred to as “camera” herein), all contained within or connected to a common housing.
- Any suitable image sensor may be used, including CMOS image sensors, CCD image sensors, and hybrids thereof, typically 1 or 2 megapixel up to 10 or 20 megapixel, or more in resolution (e.g., a 5.0 megapixel OPTIC ANGLE image sensor).
- Any suitable light source may be used, including LED light (e.g. a CREE LED).
- any suitable objective lens may be used, such as a 5 ⁇ to 50 ⁇ or 100 ⁇ magnification objective lens (e.g., a NIKON MRL 00102 10 ⁇ objective lens).
- the light source is a 480 nm light source or LED;
- the emission filter is a dual pass filter with the center wavelength of 530 nm and 700 nm;
- the excitation filter has a center wave length of 470 nm, the dichroic mirror reflects 470 nm light and transmits light greater than 490 nm).
- FIG. 6 is a perspective view of a microscope assembly and passively cooled microprocessor assembly of the apparatus of FIG. 2 with the cover removed and support frame removed, showing the housing ( 201 ) surrounding the microprocessor board contained within the passively cooled electronics compartment.
- a solid state hard drive (not shown) may be conveniently mounted on the external surface of the electronics compartment housing to provide memory and storage, if desired, though again numerous other configurations will be readily apparent.
- FIG. 7 is a lower perspective view of a microscope assembly of the apparatus of FIG. 2 , showing the XYZ drive assembly mounted to the base plate (subframe), the optical stage mounted to the subframe, and the vibration isolation bushings, but with the support frame removed.
- FIG. 8 is an upper perspective view of the base plate (subfame), XYZ drive assembly mounted on the base plate, mount, support frame upon which the base plate (subframe) is mounted through the vibration isolation bushings, but now with the optical stage removed.
- FIG. 9 is a perspective view of a passively cooled electronics compartment of the apparatus of FIG. 2 , showing the electronics compartment housing (in which the microprocessor assembly is contained) mounted on the heat sink. An exploded view of this electronics compartment and microprocessor assembly is shown in FIG. 10 .
- a mother board e.g., a ZOTAC H67ITX-CE motherboard
- Suitable microprocessors will generally be those having a thermal design power (or “TDP”, sometimes also called “thermal design point”) of at least 40, 50, or 60 Watts, up to 120, 140, or 160 Watts, or more.
- TDP thermal design power
- Suitable examples include, but are not limited to, Intel i7, Intel i5, and Intel i3 microprocessors.
- a passively cooled microprocessor assembly includes a heat sink ( 210 ) having a front surface and back surface ( 212 ), the heat sink having cooling posts, fins or other suitable projections ( 213 ) formed on the front surface.
- a circuit board ( 215 ) or “mother board” having a front surface and back surface is included, with a microprocessor mounted on the circuit board front surface.
- a thermal coupler ( 221 ) e.g., a copper slug or member; a heat pipe; etc.
- a plurality of legs ( 222 ) are mounted on the heat sink back surface, with the circuit board mounted on the legs, and with the circuit board front surface spaced from and facing said heat sink back surface.
- An anchor plate ( 225 ) is positioned around the microprocessor between the heat sink back surface and the circuit board front surface, with the anchor plate connected to the thermal coupler.
- a plurality of posts ( 226 ) are connected to the anchor plate and project through the circuit board, with a primary plate ( 231 ) connected to the posts opposite the anchor plate with the circuit board therebetween.
- a secondary plate ( 233 ) is slideably received on the plurality of posts and contacts said circuit board back surface.
- a screw ( 235 ) is threaded through the primary plate and contacts the secondary plate, so that tightening of the screw pushes the secondary plate against the circuit board back surface and clamps said microprocessor to said heat sink (optionally but preferably with a thermal grease sandwiched in between), thereby fixing the microprocessor, the thermal coupler, and the heat sink in thermal contact with one another.
- a housing ( 201 ) e.g., a metal or aluminum
- an associated bezel ( 203 ) is provided around the assembly to form an electronics compartment ( 98 ) in the device separate from the microscopy compartment, as noted above.
- At least one thermal isolator ( 241 ) formed from a relatively thermally nonconductive material (e.g., an organic polymer), with the thermal coupler and the anchor plate are connected to one another through the at least one thermal isolator.
- a relatively thermally nonconductive material e.g., an organic polymer
- a ventilation opening ( 243 ) such as an elongated slot may optionally be formed in the heat sink to further facilitate cooling of the electronics chamber.
- Such an opening or port is preferably configured to inhibit or slow the progression of liquid or solid particles from outside the apparatus entering into the electronics chamber, such as by configuring the slot at a downward angle.
- FIGS. 11 to 14 illustrate a first embodiment of an XYZ stage ( 10 ) of the apparatus of FIG. 2 , as configured for retaining a pair of sample cartridges ( 40 ).
- each sample cartridge contains a pair of separate chambers ( 41 ), and the sample cartridges are reversibly insertable into the XYZ stage.
- One or both of the chambers may optionally contain exogenous targets to facilitate autofocus, as described below.
- such a stage is configured to receive a sample cartridge having an end portion ( 43 ), a pair of generally parallel opposing side edge portions ( 44 ), and a locking edge portion formed ( 45 ) thereon, with each of said side edge portions having an upper corner portion, and with said locking edge portion positioned at an angle in relation to both said side portions and said front portion.
- the XYZ stage itself comprises a base member ( 311 ) having a planar stage surface portion ( 313 ), and a pair of generally parallel oppositely facing guide members ( 315 ) on said planar stage surface, each of said guide members having an inwardly angled edge portion ( 317 ) configured for contacting one of the cartridge side edge upper corner portions when the sample cartridge is inserted therebetween.
- a terminal block member ( 319 ) is provided on the planar stage surface portion and positioned to contact the sample cartridge end portion when the sample cartridge is inserted between said guide members.
- a locking member ( 323 ) e.g., a spring-loaded ball detent
- FIGS. 15 to 16 illustrate a second embodiment of an XYZ stage ( 10 ) of an apparatus of FIG. 2 , as configured for retaining a single sample cartridge ( 40 ).
- the sample cartridge contains four separate chambers ( 41 ) (sometimes also referred to as “quadrants” or “quads”), each of which may (for example) be used to contain a milk, colostrum or secretions sample from a separate one of each of the four teats of a cow's udder.
- One, some, or all of the chambers may optionally contain exogenous targets to facilitate autofocus, as described below.
- the sample cartridge is nonreversible, or is configured so that it may be inserted into the XYZ stage in a single orientation only.
- each teat of origin of a milk sample deposited within each chamber is identified or recorded, this facilitates identification of an infected teat or gland for subsequent treatment, and/or aids in identifying the severity or extent of infection of a particular cow.
- FIG. 17 illustrate a mode of operating a device as described above, with FIGS. 18-23 illustrating the images displayed on (i.e., “screen shots” from) the user interface or “touch screen” of the apparatus of FIG. 2 described above.
- All components including the XYZ drive assembly, the light, the camera or imaging device, and the touch screen, may be operatively associated with and controlled by the controller or microprocessor as discussed above, programmed in a suitable language such as MICROSOFT C#.
- the XYZ stage Upon activating the system, the XYZ stage can be “homed” in accordance with known techniques, such as with electromechanical sensors, during which time a “homing” message such as shown in FIG. 18 may be displayed on the display screen.
- following the process may begin (before or after “homing”) by entering animal data, such as an animal identification or “ID” through a display interface such as shown in FIG. 19 .
- animal data such as an animal identification or “ID”
- the type of sample to be screened may be selected (e.g., milk, colostrum, secretions), and/or the number of separate chambers to be analyzed can be entered (which, in the case of a cow, can correspond to the quadrant of the mammary gland, and/or the specific teat, from which the sample is collected), such as through a suitable display and data entry screen such as shown in FIG. 20 .
- Elimination of one or more chambers from the analysis procedure may advantageously reduce the overall time of the test.
- the sample cartridge may be inserted (before or after the entry of the animal data), optionally as prompted through the display of a “load sample” or “load cartridge” message such as given in FIG. 21 . If desired, access to the cartridge carrier may be secured through a manually operated door, or an automated door controlled by the controller to open, and close, at the appropriate time in the operating cycle.
- the microscope is autofocused on the first sample chamber (as shown in FIG. 17 ) and imaging (including identification and counting of cells of interest) is carried out on the first sample chamber.
- Autofocusing may be carried out by any suitable technique, including but not limited to those described in U.S. Pat. Nos. 8,014,583; 7,141,773; 5,790,710; 5,647,025; 5,483,055; and 4,810,869, and variations thereof that will be apparent to those skilled in the art.
- autofocusing is carried out prior to acquisition of an image of the specimen or sample through the camera, typically through calculating a focus score.
- the focus score can be calculated by any suitable technique, including but not limited to those described in F.
- a display such as shown in FIG. 22 may optionally be provided during imaging, giving information such as the microscope image and the position (XY, and optionally Z) being scanned or imaged.
- the optical stage is positioned by the controller over the next sample chamber to be imaged, again autofocused thereon as described above, and again imaged as described above. This process is repeated until all sample chambers have been imaged.
- an input signal can be provided to the controller to omit sampling of a particular chamber, such as through the touch screen 115 , for example by selecting individual “valid quarters” through the “left front”, “right front”, “left rear”, and “right rear” buttons of the screen shown in FIG. 20 , and/or by a “skip quarter” button as shown in FIG. 22 .
- Identification and counting of cells can be carried out in accordance with known techniques or variations thereof that will be apparent to those skilled in the art. See, e.g., A. Katz, Image Analysis and Supervised Learning in the Automated Differentiation of White Blood Cells from Microscopic Images , Master's Thesis (Royal Melbourne Institute of Technology 2000); see also U.S. Pat. No. 7,991,213 to Tafas and US Patent Application Nos. 2004/0085443 to Kallioniemi; 2011/0182490 to Hoyt; 2011/0255753 to Levenson; and 2011/0255745 to Hodder.
- Determination of infection can be carried out from cell counts and identities in accordance with known techniques or variations thereof that will be apparent to those skilled in the art, such as by total leukocyte count or differential leukocyte count. See, e.g., Rodriguez and Galanaugh, supra; H. Tvedten et al., Automated differential leukocyte count in horses, cattle, and cats using the Technicon H-1E hematology system, Vet. Clin Pathol. 25, 14-22 (1996); G. Leitner et al., Milk leucocyte population patterns in bovine udder infection of different aetiology, J. Vet. Med B. Infect Dis. Vet. Public Health 47, 581-89 (2000); H.
- Results of imaging, identification, counting and analysis can be printed, stored on a suitable memory, and/or displayed on a final image screen such as that shown in FIG. 23 .
- the exogenous target should be visible by the particular optical system in use. This will depend on the magnification, excitation wavelength, size of field of view, etc. This will influence decisions on which size, shape, emission wavelengths, etc. of the texture.
- the exogenous target should be distinguishable from the target objects.
- the exogeneous target reside at substantially the same (or a known distance from) the focal plane of the target objects (e.g., be mixed with a biological sample suspected of containing cells to be imaged and/or counted, and/or placed in the same chamber as will contain a biological sample comprising cells to be imaged and/or counted).
- the exogeneous target should be of a size, shape, and number so as to not substantially obscure the view of the intended target objects, such as cells to be imaged and/or counted. And, the exogenous target should provide sufficient contrast with an empty field of view so as to provide an adequate focal peak and allow for reliable, reasonably rapid, and/or robust focusing.
- the exogenous targets may be formed of any suitable material, including organic polymers, inorganic materials (including crystalline materials, amorphous materials, metals, etc.) and composites thereof.
- the exogenous targets may be contained loosely within the chamber, fixed to one wall of the chamber, or surface to be imaged (e.g., by adhesive, by electrostatic, hydrophilic, or hydrophobic interaction, covalent bond directly or through a linking group, etc.), and/or faulted on one wall of the chamber (e.g., by molding, etching, painting, silk-screening, lithography, etc.).
- the exogenous targets may be opaque or transparent. When transparent the targets may be “tinted” so as to transmit light therethrough at a predetermined wavelength (for example, so that they appear red, green, blue, yellow, etc., to a human observer).
- the exogenous targets may be regular or irregular in shape (for example, cylinders, spheres, cubes, pyramids, prisms, cones, rods, etc.).
- the targets have an average diameter of from 0.1, 0.5 or 1 micrometers up to 2, 5, or 10 micrometers.
- the number of exogenous targets is not critical, but in some embodiments the speed of the autofocus process can be increased by increasing, at least to a point, the number of exogenous targets in the chamber so that the targets are readily located in the automated microscope.
- a plurality of targets are included in the sample chamber (e.g., 2, 4, 6, 8 or 10 targets, up to 100, 200, 400, 600 or 800 exogenous targets, or more)
- plurality preferably consists of or consists essentially of targets having substantially the same size, shape, and optical characteristics.
- the targets are beads, such as fluorescent microbeads.
- microbeads are commonly available and used for calibrating flow cytometers or fluorescent microscopes (see, e.g., U.S. Pat. Nos. 4,698,262; 4,714,682; and 4,868,126).
- the targets are preferably optically distinguishable from cells to be counted (and hence would not be useful as calibration standards for the particular cells to be counted and/or imaged by the methods described herein).
- Optically distinguishable may be achieved by any suitable technique, such as by utilizing targets of a different and distinguishable shape from the cells to be counted, by utilizing targets that emit, transmit, and/or reflect light at a different wavelength from the cells to be counted when under the same illumination conditions, and combinations thereof.
- An embodiment of the invention is carried out by addition of microscopic fluorescent beads to a sample to be imaged, in combination with an automated microscope including an XYZ stage under the control of a computer.
- a sufficient concentration of such beads will ensure that there is a very high probability of having beads within any given field of view, thereby ensuring that there is sufficient texture for the autofocus algorithm.
- the surface or sample can be interpolated by inclusion of a suitable interpolation program, routine or subroutine within the autofocus subroutine, to thereby facilitate imaging of the sample, or speed imaging of the sample.
- Such interpolation can be carried out by any suitable algorithm or method, including but not limited to the planar best fit method, the weighted least squares fit method, and the quadratic fit method.
- planar best fit method including but not limited to the weighted least squares fit method, and the quadratic fit method.
- quadratic fit method Such procedures are known and described in, for example, I. Coope, “Circle fitting by linear and nonlinear least squares”. Journal of Optimization Theory and Applications 76 (2): 381 (1993); Ake Bjorck, Numerical Methods for Least Squares Problems , Society for Industrial and Applied Mathematics (April 1996); etc.
- Method 1 involves the average of x, y and z points; Method 2: Least Squares Linear Regression; and Method 3: Weighted Least Squares Regression.
- Data x, y, and z focus points collected outside the viewing/imaging sample area. At least 3 data points are required.
- the method involves a second order quadratic surface, Data: x, y, and z focus points are collected somewhere outside the viewing/imaging/sample area. At least six data points are required.
- the exogeneous targets may be simply included in the chamber.
- the sample is collected on a surface that carry antibodies that bind the cells.
- Antibodies may be covalently or non-covalently coupled to the surface by any suitable technique as is known in the art.
- the exogenous targets be in or on the chamber, or on the (generally planar, but not always perfectly planar) surface supporting the specimen or sample to be imaged, at a plurality of locations. While in some embodiments 3 locations will be sufficient, in other embodiments 4, 5, or 6 or more locations are desired. The locations may be separate and discrete from one another (that is, without exogenous target deposited therebetween) or may be contiguous (that is, with exogenous target therebetween).
- Spacing between the locations will in general be determined by factors such as magnification and the size of the sample to be imaged (particularly in the XY dimensions), but in some embodiments the locations will be spaced apart at least 10, 20, or 30 percent of the average width of the sample support surface or chamber to be imaged. Such spacing may be achieved by depositing the exogenous targets at discrete locations around the region where the antibodies are deposited, by depositing the exogenous targets at discrete locations among the region where the antibodies are deposited, by depositing exogenous targets on at least a major portion, or all of, the support surface or chamber to be imaged, etc.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Theoretical Computer Science (AREA)
- Optics & Photonics (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Urology & Nephrology (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Cell Biology (AREA)
- Human Computer Interaction (AREA)
- General Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Tropical Medicine & Parasitology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Biotechnology (AREA)
- Radiology & Medical Imaging (AREA)
- Microbiology (AREA)
- Ecology (AREA)
- Medical Informatics (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- Microscoopes, Condenser (AREA)
Abstract
Description
- This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/667,691, filed Jul. 3, 2012, and U.S. Provisional Patent Application Ser. No. 61/696,517, filed Sep. 4, 2012, the disclosures of which are incorporated by reference herein in their entirety.
- The present invention concerns diagnostic methods and apparatus, particularly methods and apparatus useful for detecting white blood cells or analytes in bodily fluids of production animals (for example, bovine mastitis in cattle from milk).
- Mastitis is the inflammation of the mammary gland caused by microorganisms that invade one or more quadrants of the bovine udder, multiply, and produce toxins that are harmful to the mammary gland. Economic loss to mastitis in the United States is estimated to be over 2 billion dollars. This is approximately 10% of the total value of farm milk sales, and about two-thirds of this loss is due to reduced milk production in subclinically infected cows.
- In subclinical mastitis, there may be no visible signs of the disease, and diagnosis of subclinical mastitis may be performed by a somatic cell count (SCC) of the milk. The SCC is the number of leukocytes or white blood cells per volume of milk and is also used as an index of milk quality. It has also been recognized that there are multiple types of leukocytes, each with its own significance. In milk from a healthy animal, the predominant cell types are lymphocytes, followed by much lesser numbers of neutrophils and macrophages. The percentages of each kind of cell rise and fall as part of the immune response to infection. Those percentages, “the differential milk leukocyte count”, represent the unique immune status of an individual quarter udder, at a specific point in time for better diagnosis of subclinical mastitis.
- One method for detecting the differential milk leukocyte count is using flow-cytometry, which is an expensive, sophisticated tool typically only found in top research laboratories and generally not practical for the farmer. Another method for detecting the differential milk leukocyte count is the “manual milk differential smear” (MMDS), which is a difficult and time consuming procedure, and is subject to great variability, even when performed by highly trained laboratory technologists. Both flow-cytometry and MMDS present practical difficulties for field research or a barn environment.
- U.S. Patent Application Publication No. 2009/0233329 to Rodriguez discloses a wedge microfluidic slide chamber for detecting mastitis or other diseases from a body fluid of a mammal, such as from cow's milk. While manual and automated procedures for carrying out disease detection with the aid of such a sample cartridge are described, again there is not described a system and apparatus useful for implementing such procedures in a field or barn environment.
- A first aspect of the invention is an automated microscope apparatus, comprising: an outer housing having an external wall; optionally but preferably an internal wall in said housing, and configured to form a first compartment and a separate second compartment in said outer housing; a microscope assembly in said housing, preferably in said first compartment; and a microprocessor in said housing, preferably in said second compartment; and optionally but preferably a heat sink mounted on said housing external wall, preferably adjacent said second compartment, with said microprocessor thermally coupled to said heat sink and operatively associated with said microscope assembly.
- In some embodiments, the microscope assembly comprises: a support frame; a subframe; a plurality of vibration isolators connecting said support frame to said subframe; an XYZ stage connected to said subframe; and an optical stage connected to said subframe. An XYZ drive assembly interconnecting said XYZ stage to said subframe is preferably included.
- In some embodiments, the microprocessor is included as a passively cooled microprocessor assembly, comprising: a heat sink having a front surface and back surface; a circuit board having a front surface and back surface, with said microprocessor mounted on said circuit board front surface; a thermal coupler positioned between said microprocessor and said heat sink back surface, said thermal coupler fixed to and in thermal contact with said heat sink back surface; a clamp connected to said thermal coupler and configured to clamp said microprocessor to said thermal coupler, thereby placing said microprocessor, said thermal coupler, and said heat sink in thermal contact with one another.
- In some embodiments, the XYZ stage is for securing a sample cartridge in the automated microscope having X, Y, and Z planes of movement, the sample cartridge having an end portion, a pair of generally parallel opposing side edge portions, and a locking edge portion formed thereon. The XYZ stage comprises a base member having a planar stage surface portion; a pair of generally parallel oppositely facing guide members on said planar stage surface and configured for slideably receiving said cartridge therebetween; and a locking member on said planar stage surface portion and positioned to press against the sample cartridge locking edge portion when said sample cartridge is inserted between said guide members, so that pressure is exerted by said lock member through said sample cartridge against at least one of said guide members, whereby the cartridge is removably locked in place on the XYZ stage in the Z plane.
- A further aspect of the invention is an automated system for detecting a disorder in a subject, comprising: an XYZ stage configured to secure a sample cartridge; said sample cartridge comprising at least one chamber, said at least one chamber containing a biological sample collected from a subject; an imaging system operatively associated with said XYZ stage and configured to image selected cells in said sample, said selected cells including at least neutrophils; an autofocusing system operatively associated with said imaging system and said XYZ stage and configured to focus said imaging system on said at least one chamber; a processor running a software program or other suitable means for generating a count of at least neutrophils in said sample as an aid to detecting a disorder in said subject. In some embodiments, where the cartridge contains multiple chambers, the system may include a controller configured to optionally repeat at least said imaging for at least one additional chamber on said cartridge, as discussed further below.
- A further aspect of the invention is a method of automatically focusing a microscope on a specimen by capturing an image from each of a plurality of focal planes in or on said specimen, calculating a focus score for each of said images, selecting the focal plane corresponding to the image having the best focus score, and then repositioning said specimen relative to said microscope so that said microscope is focused on said selected focal plane, characterized by including a plurality of exogenous targets in or on said specimen.
- A further aspect of the invention is an automated microscope comprising a specimen support stage, an objective lens, a camera, at least one drive assembly operatively associated with said support stage and/or said objective lens, all of which may be as described herein, and further characterized by a controller operatively associated with said at least one drive assembly for carrying out an autofocus method as described herein.
- The foregoing and other objects and aspects of the present invention are described in greater detail below. The disclosures of all US patent references cited herein are to be incorporated herein by reference.
-
FIG. 1 is a partial schematic diagram of an apparatus of the present invention. -
FIG. 2 is a perspective view of an apparatus of the present invention, with a sample cartridge to be inserted and touch screen user interface for input of information and display of results. -
FIG. 3 is a schematic diagram of an apparatus of the present invention, showing vibration damping components and chamber separation. -
FIG. 4 is a cut-away perspective view of the apparatus ofFIG. 2 . -
FIG. 5 is a side sectional view of an optical stage of the apparatus ofFIG. 2 , showing the light source, objective lens, filters, dichroic mirror and camera. -
FIG. 6 is a perspective view of a microscope assembly and passively cooled microprocessor assembly of the apparatus ofFIG. 2 with the cover removed and support frames removed. -
FIG. 7 is a perspective view of a microscope assembly of the apparatus ofFIG. 2 , with the support frame removed, showing the XYZ drive. -
FIG. 8 is a perspective view of the mount, vibration dampers, and support frame of a microscope assembly ofFIG. 2 , upon which the optical stage ofFIG. 5 is to be mounted. -
FIG. 9 is a perspective view of a passively cooled microprocessor assembly of the apparatus ofFIG. 2 . -
FIG. 10 is an exploded view of the microprocessor assembly ofFIG. 9 . -
FIG. 11 is a perspective view of an XYZ stage of the apparatus ofFIG. 2 , as configured for retaining a pair of sample cartridges. -
FIG. 12 is a top plan view of the XYZ stage ofFIG. 11 . -
FIG. 13 is a side view of the XYZ stage ofFIG. 11 . -
FIG. 14 is a perspective view of the XYZ stage ofFIG. 11 , showing a first sample cartridge seated in place, and a second sample cartridge to be inserted. -
FIG. 15 is a perspective view of an alternate XYZ stage for an apparatus ofFIG. 2 , in which a single sample cartridge is to be inserted. -
FIG. 16 is a perspective view of the XYZ stage ofFIG. 15 , with a sample cartridge inserted. -
FIG. 17 is a schematic flow chart of a first mode of operation of an apparatus ofFIG. 2 for detecting mastitis in cattle. -
FIG. 18 illustrates the display of a user interface of an apparatus ofFIG. 2 during homing of the optical stage; -
FIG. 19 illustrates the display of a user interface of an apparatus ofFIG. 2 for input of animal data or information, particularly the identity of the animal from which the sample(s) are collected; -
FIG. 20 illustrates the display of a user interface of an apparatus ofFIG. 2 for input of animal data or information, particularly the type of sample collected, and the number of chambers in the sample cartridge for which sample imaging and analysis is to be carried out; -
FIG. 21 illustrates the display of a user interface of an apparatus ofFIG. 2 after homing and/or information entry is completed and when the apparatus is ready to receive the sample cartridge. -
FIG. 22 illustrates the display of a user interface of an apparatus ofFIG. 2 during image acquisition and analysis of one of the four separate chambers of a sample cartridge. -
FIG. 23 illustrates the display of a user interface of an apparatus ofFIG. 2 after image acquisition and differential leukocyte analysis has been completed. Note that one of the four quarters is indicated as “positive” for mastitis. - The present invention will now be described more fully hereinafter, in which embodiments of the invention are shown. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, like numbers refer to like elements throughout. Thicknesses and dimensions of some components may be exaggerated for clarity.
- Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
- The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. As used herein the expression “and/or” includes any and all combinations of one or more of the associated listed items.
- In addition, spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
- Well-known functions or constructions may not be described in detail for brevity and/or clarity.
- “Subject” as used herein includes both human and animal subjects for veterinary purposes, as well as plants for agricultural purposes. Examples of animal subjects include, but are not limited to, mammalian subjects such as dog, cat, cow, sheep, goat, llama, alpaca, camel, horse, pig, chicken, and turkey subjects.
- Dairy animals such as cows, goats, sheep, buffalo, and camel, for the production of milk are particularly preferred for some embodiments of the invention.
- “Milk” as used herein generally refers to mammalian milk of any species (e.g., cow, goat, human, etc.). The milk is typically raw milk, and is typically raw milk produced by dairy cattle. In some embodiments “milk” includes colostrum; in other embodiments “milk” refers to milk intended for human consumption after the production of colostrum has ceased. The milk may optionally be diluted (typically with an aqueous diluent such as distilled water, saline solution, or buffer solution).
- “Colostrum” as used herein is a form of milk produced by mammals in the first few days after birth, that may be higher in antibodies (for imparting passive immunity to offspring).
- “Secretions” as used herein is a form of milk produced by mammals just prior to giving birth. Such secretions are sometimes also referred to as “colostrum” but in the present application “secretions” refers to the type of milk produced prior to the subject giving birth, while colostrum refers to the type of milk produced just after the subject giving birth.
- “Sample cartridge” or “diagnostic cartridge” as used herein may be any suitable cartridge for containing a cell sample, including but are not limited to cartridges suitable for differential leukocyte analysis as described In R. Rodriguez and C. Galanaugh, US Patent Application Publication No. 2009/0233329 (published Sep. 17, 2009), the disclosure of which is incorporated herein by reference in its entirety, and optionally incorporating the modifications or features discussed further below. In general, and as illustrated further below, such as cartridge includes at least one (e.g., two, four) sample chambers (e.g., a microfluidic chamber), which chamber or chambers may contain suitable cell or leukocyte observation colorants, stains, or reagents (e.g., reagents suitable for visualizing the cells under epifluorescent microscopy). The sample chambers are preferably aligned with one another on the cartridge (that is, on substantially the same Z plane as one another on the cartridge). In a preferred embodiment, each chamber contains reagents for separately and distinctly imaging or detecting neutrophils (or “polymorphonuclear leukocytes” (PMN)), lymphocytes, and macrophages, for differential leukocyte count diagnosis of infections such as bovine mastitis, in accordance with procedures known in the art, or which will be apparent to those skilled in the art based upon the instant disclosure, as discussed further below.
- A partial schematic diagram of an apparatus of the present invention is given as an overview in
FIG. 1 . The apparatus comprises an XYZ stage (10) mounted on an XYZ drive assembly (30). A sample cartridge (40) is removably inserted into or engaged by the XYZ stage. The optical components for carrying out epifluorescent microscopy include a light or light source (51), a beam splitter (52), a camera (54), and an objective lens (56), all configured so that light from the source is directed onto the sample cartridge, and light emitted or fluoresced from the sample cartridge is directed to the camera. Filters (58, 59) are provided between the camera and beam splitter, and between the light source and beam splitter, so that the appropriate wavelengths of light are directed onto the sample cartridge, and the appropriate wavelengths of light are directed onto the camera. All components including the camera, light, and XYZ drive assembly, are controlled by any suitable controller (80), which may comprise a computer or microprocessor with associated memory units, power, and additional control boards (not always shown) such as an XYZ controller board. - Individual components of the methods and apparatus described herein may be as known in the art, or variations thereof that will be apparent to those skilled in the art based on the instant disclosure and prior automated microscopy apparatus such as described in U.S. Pat. No. 4,998,284 to Bacus; U.S. Pat. No. 5,548,661 to Price; U.S. Pat. No. 5,790,710 to Price; U.S. Pat. No. 6,381,058 to Ramm; U.S. Pat. No. 6,929,953 to Wardlaw; U.S. Pat. No. 6,927,903 to Stuckey; U.S. Pat. No. 8,000,511 to Perz; U.S. Pat. No. 8,045,165 to Wardlaw; U.S. Pat. No. 8,081,303 to Levine; or US Patent Application No. 2001/0041347 to Sammak.
-
FIG. 2 is a perspective view of an apparatus (100) of the present invention, as constructed for portability and use in a dusty or otherwise harsh environment such as a barn or farm, or out-of-doors where animals to be diagnosed are found. All components ofFIG. 1 above (andFIG. 3 below) are contained within the housing, except for the sample cartridge, which is removably inserted through a suitable opening (112) in the housing. A touch screen display (114) on the front of the device (e.g., an ESTECOM 6.5 inch intelligent panel LCD display/monitor) is provided to both display results and control the apparatus through its operational steps, as discussed further below. -
FIG. 3 is a schematic diagram of an apparatus of the present invention similar toFIG. 1 above. In addition to the components shown inFIG. 1 , additional features are now shown. The optical components (50) are shown as mounted on a subframe (90), which subframe is in turn mounted on a support frame (92) through vibration isolators (94). In addition, the microscopy components are shown as being contained within a separate, relatively cool, compartment (96) from the controller, which is in a relatively hot or warm compartment (98) (as compared to the microscopy compartment). The apparatus ofFIG. 2 above incorporates these additional features, as discussed further below. - A partial cut-away perspective view of the apparatus of
FIG. 2 is given inFIG. 4 . A baseplate (90) serves a subframe for both the optical stage (50) and the XYZ drive assembly (30), which baseplate is in turn mounted through vibration dampening mounts (94) to the support frame (92). Any suitable active or passive vibration mount may be used, such as polymeric vibration mounts (e.g., those available from Stock Drive Products/Sterling Instruments, or any other suitable source). - An XYZ controller board (122) and a power distribution board (123) are conveniently located on a support bracket (124), which support bracket is mounted on the support frame (92), to facilitate assembly and testing of the microscopy compartment elements before they are placed into the housing, though numerous other configurations will be apparent to those skilled in the art.
- A suitable power supply (131) (e.g., a fanless power supply such as MEAN WELL USP-350-12 350 W power supply) is positioned in the bottom of the unit and covered by a shield or cable tray (132) (cables not shown for clarity) to prevent tangling of cables associated with the XYZ drive assembly, image sensor, and/or light, though numerous other configurations will be apparent, including location of the power supply external to the main housing.
- A heat sink (210) is mounted on the back of the apparatus to cool the electronics compartment, as discussed further below.
-
FIG. 5 is a side sectional view of an optical stage of the apparatus ofFIG. 2 , showing the light source, objective lens, filters including emission filters and excitation filters, dichroic mirror and image sensor (sometimes also referred to as “camera” herein), all contained within or connected to a common housing. Any suitable image sensor may be used, including CMOS image sensors, CCD image sensors, and hybrids thereof, typically 1 or 2 megapixel up to 10 or 20 megapixel, or more in resolution (e.g., a 5.0 megapixel OPTIC ANGLE image sensor). Any suitable light source may be used, including LED light (e.g. a CREE LED). Any suitable objective lens may be used, such as a 5× to 50× or 100× magnification objective lens (e.g., a NIKON MRL 00102 10× objective lens). In some embodiments, the light source is a 480 nm light source or LED; the emission filter is a dual pass filter with the center wavelength of 530 nm and 700 nm; the excitation filter has a center wave length of 470 nm, the dichroic mirror reflects 470 nm light and transmits light greater than 490 nm). - The relationship of the major components of the microscopy compartment to the separate electronics compartment is shown in
FIG. 6 , which is a perspective view of a microscope assembly and passively cooled microprocessor assembly of the apparatus ofFIG. 2 with the cover removed and support frame removed, showing the housing (201) surrounding the microprocessor board contained within the passively cooled electronics compartment. A solid state hard drive (not shown) may be conveniently mounted on the external surface of the electronics compartment housing to provide memory and storage, if desired, though again numerous other configurations will be readily apparent. - The various components of the microscopy compartment are further illustrated in
FIGS. 7-8 .FIG. 7 is a lower perspective view of a microscope assembly of the apparatus ofFIG. 2 , showing the XYZ drive assembly mounted to the base plate (subframe), the optical stage mounted to the subframe, and the vibration isolation bushings, but with the support frame removed. Similarly,FIG. 8 is an upper perspective view of the base plate (subfame), XYZ drive assembly mounted on the base plate, mount, support frame upon which the base plate (subframe) is mounted through the vibration isolation bushings, but now with the optical stage removed. -
FIG. 9 is a perspective view of a passively cooled electronics compartment of the apparatus ofFIG. 2 , showing the electronics compartment housing (in which the microprocessor assembly is contained) mounted on the heat sink. An exploded view of this electronics compartment and microprocessor assembly is shown inFIG. 10 . A mother board (e.g., a ZOTAC H67ITX-CE motherboard) is provided that carries a suitable microprocessor. Suitable microprocessors will generally be those having a thermal design power (or “TDP”, sometimes also called “thermal design point”) of at least 40, 50, or 60 Watts, up to 120, 140, or 160 Watts, or more. Suitable examples include, but are not limited to, Intel i7, Intel i5, and Intel i3 microprocessors. - As will be seen from
FIGS. 9-10 , a passively cooled microprocessor assembly includes a heat sink (210) having a front surface and back surface (212), the heat sink having cooling posts, fins or other suitable projections (213) formed on the front surface. A circuit board (215) or “mother board” having a front surface and back surface is included, with a microprocessor mounted on the circuit board front surface. A thermal coupler (221) (e.g., a copper slug or member; a heat pipe; etc.) is positioned between the microprocessor and said heat sink back surface, with the thermal coupler fixed to and in thermal contact with said heat sink back surface. A plurality of legs (222) are mounted on the heat sink back surface, with the circuit board mounted on the legs, and with the circuit board front surface spaced from and facing said heat sink back surface. - An anchor plate (225) is positioned around the microprocessor between the heat sink back surface and the circuit board front surface, with the anchor plate connected to the thermal coupler. A plurality of posts (226) are connected to the anchor plate and project through the circuit board, with a primary plate (231) connected to the posts opposite the anchor plate with the circuit board therebetween. A secondary plate (233) is slideably received on the plurality of posts and contacts said circuit board back surface. A screw (235) is threaded through the primary plate and contacts the secondary plate, so that tightening of the screw pushes the secondary plate against the circuit board back surface and clamps said microprocessor to said heat sink (optionally but preferably with a thermal grease sandwiched in between), thereby fixing the microprocessor, the thermal coupler, and the heat sink in thermal contact with one another. A housing (201) (e.g., a metal or aluminum) with an associated bezel (203) is provided around the assembly to form an electronics compartment (98) in the device separate from the microscopy compartment, as noted above. There is preferably included at least one thermal isolator (241) formed from a relatively thermally nonconductive material (e.g., an organic polymer), with the thermal coupler and the anchor plate are connected to one another through the at least one thermal isolator.
- A ventilation opening (243) such as an elongated slot may optionally be formed in the heat sink to further facilitate cooling of the electronics chamber. Such an opening or port is preferably configured to inhibit or slow the progression of liquid or solid particles from outside the apparatus entering into the electronics chamber, such as by configuring the slot at a downward angle.
-
FIGS. 11 to 14 illustrate a first embodiment of an XYZ stage (10) of the apparatus ofFIG. 2 , as configured for retaining a pair of sample cartridges (40). As illustrated, each sample cartridge contains a pair of separate chambers (41), and the sample cartridges are reversibly insertable into the XYZ stage. One or both of the chambers may optionally contain exogenous targets to facilitate autofocus, as described below. - As shown in
FIGS. 11 to 14 , such a stage is configured to receive a sample cartridge having an end portion (43), a pair of generally parallel opposing side edge portions (44), and a locking edge portion formed (45) thereon, with each of said side edge portions having an upper corner portion, and with said locking edge portion positioned at an angle in relation to both said side portions and said front portion. The XYZ stage itself comprises a base member (311) having a planar stage surface portion (313), and a pair of generally parallel oppositely facing guide members (315) on said planar stage surface, each of said guide members having an inwardly angled edge portion (317) configured for contacting one of the cartridge side edge upper corner portions when the sample cartridge is inserted therebetween. A terminal block member (319) is provided on the planar stage surface portion and positioned to contact the sample cartridge end portion when the sample cartridge is inserted between said guide members. A locking member (323) (e.g., a spring-loaded ball detent) is included on the planar stage surface portion and positioned to press against the sample cartridge locking edge portion when the sample cartridge is inserted between the guide members and in contact with said terminal block, so that pressure is exerted by said lock member through said sample cartridge against both said terminal block and one of said guide members, whereby the cartridge is removably locked in place on the XYZ stage in at least the Z plane of movement, preferably all three of the X, Y and Z planes of movement, and still more preferably with the cartridge secured with reference to, or with respect to, the X, Y, and Z axes of rotation as well. -
FIGS. 15 to 16 illustrate a second embodiment of an XYZ stage (10) of an apparatus ofFIG. 2 , as configured for retaining a single sample cartridge (40). Like components as compared found inFIGS. 11 to 14 are assigned like numbers. As illustrated inFIGS. 15-16 , the sample cartridge contains four separate chambers (41) (sometimes also referred to as “quadrants” or “quads”), each of which may (for example) be used to contain a milk, colostrum or secretions sample from a separate one of each of the four teats of a cow's udder. One, some, or all of the chambers may optionally contain exogenous targets to facilitate autofocus, as described below. As illustrated, the sample cartridge is nonreversible, or is configured so that it may be inserted into the XYZ stage in a single orientation only. When each teat of origin of a milk sample deposited within each chamber is identified or recorded, this facilitates identification of an infected teat or gland for subsequent treatment, and/or aids in identifying the severity or extent of infection of a particular cow. -
FIG. 17 illustrate a mode of operating a device as described above, withFIGS. 18-23 illustrating the images displayed on (i.e., “screen shots” from) the user interface or “touch screen” of the apparatus ofFIG. 2 described above. All components including the XYZ drive assembly, the light, the camera or imaging device, and the touch screen, may be operatively associated with and controlled by the controller or microprocessor as discussed above, programmed in a suitable language such as MICROSOFT C#. - Upon activating the system, the XYZ stage can be “homed” in accordance with known techniques, such as with electromechanical sensors, during which time a “homing” message such as shown in
FIG. 18 may be displayed on the display screen. - As shown in
FIG. 17 , following the process may begin (before or after “homing”) by entering animal data, such as an animal identification or “ID” through a display interface such as shown inFIG. 19 . Before or after animal identification is entered, the type of sample to be screened may be selected (e.g., milk, colostrum, secretions), and/or the number of separate chambers to be analyzed can be entered (which, in the case of a cow, can correspond to the quadrant of the mammary gland, and/or the specific teat, from which the sample is collected), such as through a suitable display and data entry screen such as shown inFIG. 20 . Elimination of one or more chambers from the analysis procedure may advantageously reduce the overall time of the test. - The sample cartridge may be inserted (before or after the entry of the animal data), optionally as prompted through the display of a “load sample” or “load cartridge” message such as given in
FIG. 21 . If desired, access to the cartridge carrier may be secured through a manually operated door, or an automated door controlled by the controller to open, and close, at the appropriate time in the operating cycle. - After the sample cartridge is inserted, the microscope is autofocused on the first sample chamber (as shown in
FIG. 17 ) and imaging (including identification and counting of cells of interest) is carried out on the first sample chamber. Autofocusing may be carried out by any suitable technique, including but not limited to those described in U.S. Pat. Nos. 8,014,583; 7,141,773; 5,790,710; 5,647,025; 5,483,055; and 4,810,869, and variations thereof that will be apparent to those skilled in the art. In some embodiments, autofocusing is carried out prior to acquisition of an image of the specimen or sample through the camera, typically through calculating a focus score. The focus score can be calculated by any suitable technique, including but not limited to those described in F. Groen et al., A comparison of different focus functions for use in autofocus algorithms,Cytometry 6, 81-91 (1985). Difference from the background, given a uniform background, can be calculated a number of ways, including but not limited to differences in contrast, gradient, and variance. - A display such as shown in
FIG. 22 may optionally be provided during imaging, giving information such as the microscope image and the position (XY, and optionally Z) being scanned or imaged. Once imaging of the first chamber is completed, the optical stage is positioned by the controller over the next sample chamber to be imaged, again autofocused thereon as described above, and again imaged as described above. This process is repeated until all sample chambers have been imaged. In the alternative, an input signal can be provided to the controller to omit sampling of a particular chamber, such as through the touch screen 115, for example by selecting individual “valid quarters” through the “left front”, “right front”, “left rear”, and “right rear” buttons of the screen shown inFIG. 20 , and/or by a “skip quarter” button as shown inFIG. 22 . - Identification and counting of cells can be carried out in accordance with known techniques or variations thereof that will be apparent to those skilled in the art. See, e.g., A. Katz, Image Analysis and Supervised Learning in the Automated Differentiation of White Blood Cells from Microscopic Images, Master's Thesis (Royal Melbourne Institute of Technology 2000); see also U.S. Pat. No. 7,991,213 to Tafas and US Patent Application Nos. 2004/0085443 to Kallioniemi; 2011/0182490 to Hoyt; 2011/0255753 to Levenson; and 2011/0255745 to Hodder.
- Determination of infection can be carried out from cell counts and identities in accordance with known techniques or variations thereof that will be apparent to those skilled in the art, such as by total leukocyte count or differential leukocyte count. See, e.g., Rodriguez and Galanaugh, supra; H. Tvedten et al., Automated differential leukocyte count in horses, cattle, and cats using the Technicon H-1E hematology system, Vet. Clin Pathol. 25, 14-22 (1996); G. Leitner et al., Milk leucocyte population patterns in bovine udder infection of different aetiology, J. Vet. Med B. Infect Dis. Vet. Public Health 47, 581-89 (2000); H. Dosogne et al., Differential Leukocyte Count Method for Bovine Low Somatic Cell Count Milk, J. Dairy Sci. 86, 828-834 (2003); M. Albenzio et al., Differential Leukocyte Count for Ewe Milk with Low and High Somatic Cell Count, J. Dairy Research 78, 43-48 (2011).
- Results of imaging, identification, counting and analysis can be printed, stored on a suitable memory, and/or displayed on a final image screen such as that shown in
FIG. 23 . - General considerations for selecting the exogeneous target are as follows: The exogenous target should be visible by the particular optical system in use. This will depend on the magnification, excitation wavelength, size of field of view, etc. This will influence decisions on which size, shape, emission wavelengths, etc. of the texture. In addition, the exogenous target should be distinguishable from the target objects. Preferably, the exogeneous target reside at substantially the same (or a known distance from) the focal plane of the target objects (e.g., be mixed with a biological sample suspected of containing cells to be imaged and/or counted, and/or placed in the same chamber as will contain a biological sample comprising cells to be imaged and/or counted). The exogeneous target should be of a size, shape, and number so as to not substantially obscure the view of the intended target objects, such as cells to be imaged and/or counted. And, the exogenous target should provide sufficient contrast with an empty field of view so as to provide an adequate focal peak and allow for reliable, reasonably rapid, and/or robust focusing.
- The exogenous targets may be formed of any suitable material, including organic polymers, inorganic materials (including crystalline materials, amorphous materials, metals, etc.) and composites thereof.
- The exogenous targets may be contained loosely within the chamber, fixed to one wall of the chamber, or surface to be imaged (e.g., by adhesive, by electrostatic, hydrophilic, or hydrophobic interaction, covalent bond directly or through a linking group, etc.), and/or faulted on one wall of the chamber (e.g., by molding, etching, painting, silk-screening, lithography, etc.).
- The exogenous targets may be opaque or transparent. When transparent the targets may be “tinted” so as to transmit light therethrough at a predetermined wavelength (for example, so that they appear red, green, blue, yellow, etc., to a human observer).
- The exogenous targets may be regular or irregular in shape (for example, cylinders, spheres, cubes, pyramids, prisms, cones, rods, etc.). In some embodiments, the targets have an average diameter of from 0.1, 0.5 or 1 micrometers up to 2, 5, or 10 micrometers.
- The number of exogenous targets is not critical, but in some embodiments the speed of the autofocus process can be increased by increasing, at least to a point, the number of exogenous targets in the chamber so that the targets are readily located in the automated microscope. Where a plurality of targets are included in the sample chamber (e.g., 2, 4, 6, 8 or 10 targets, up to 100, 200, 400, 600 or 800 exogenous targets, or more), in some embodiments that plurality preferably consists of or consists essentially of targets having substantially the same size, shape, and optical characteristics.
- In some embodiments, the targets are beads, such as fluorescent microbeads. Such microbeads are commonly available and used for calibrating flow cytometers or fluorescent microscopes (see, e.g., U.S. Pat. Nos. 4,698,262; 4,714,682; and 4,868,126).
- The targets are preferably optically distinguishable from cells to be counted (and hence would not be useful as calibration standards for the particular cells to be counted and/or imaged by the methods described herein). Optically distinguishable may be achieved by any suitable technique, such as by utilizing targets of a different and distinguishable shape from the cells to be counted, by utilizing targets that emit, transmit, and/or reflect light at a different wavelength from the cells to be counted when under the same illumination conditions, and combinations thereof.
- Selected aspects of the present invention are explained in greater detail in the following non-limiting Examples.
- An embodiment of the invention is carried out by addition of microscopic fluorescent beads to a sample to be imaged, in combination with an automated microscope including an XYZ stage under the control of a computer. A sufficient concentration of such beads will ensure that there is a very high probability of having beads within any given field of view, thereby ensuring that there is sufficient texture for the autofocus algorithm.
- In general, when an automated microscope focuses, a typical approach is a sequence as follows:
-
- 1. Move to some Z location.
- 2. Mathematically process the digital image to obtain a “score” of the image that represents, in relative terms, whether the field of view is in focus.
- 3. Repeat steps 1 and 2 until a peak is found in the focus graph. This peak will represent the position at which that field of view is in best focus.
- By including exogeneous focal targets at a plurality of separate locations in the sample to be imaged, or on the sample carrier surface to be imaged (so long as cells/analytes to be imaged and focus particles are in the same image plane or “Z stack”), the surface or sample can be interpolated by inclusion of a suitable interpolation program, routine or subroutine within the autofocus subroutine, to thereby facilitate imaging of the sample, or speed imaging of the sample.
- Such interpolation can be carried out by any suitable algorithm or method, including but not limited to the planar best fit method, the weighted least squares fit method, and the quadratic fit method. Such procedures are known and described in, for example, I. Coope, “Circle fitting by linear and nonlinear least squares”. Journal of Optimization Theory and Applications 76 (2): 381 (1993); Ake Bjorck, Numerical Methods for Least Squares Problems, Society for Industrial and Applied Mathematics (April 1996); etc.
- The planar best fit method is illustrated by the equation:
-
z=Ax+By+C -
Method 1 involves the average of x, y and z points; Method 2: Least Squares Linear Regression; and Method 3: Weighted Least Squares Regression. Data: x, y, and z focus points collected outside the viewing/imaging sample area. At least 3 data points are required. - The quadratic fit method is illustrated by the equation:
-
z=Ax 2 +By 2 +Cxy+Dx+Ey+F. - The method involves a second order quadratic surface, Data: x, y, and z focus points are collected somewhere outside the viewing/imaging/sample area. At least six data points are required.
- When the cells to be imaged are collected and imaged within the same enclosed chamber, the exogeneous targets may be simply included in the chamber. When cells to be imaged are captured by antibodies bound to a carrier surface, the sample is collected on a surface that carry antibodies that bind the cells. Antibodies may be covalently or non-covalently coupled to the surface by any suitable technique as is known in the art.
- To carry out interpolation, it is preferable that the exogenous targets be in or on the chamber, or on the (generally planar, but not always perfectly planar) surface supporting the specimen or sample to be imaged, at a plurality of locations. While in some
embodiments 3 locations will be sufficient, inother embodiments - The foregoing is illustrative of the present invention, and is not to be construed as limiting thereof. Although exemplary embodiments of this invention have been described, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the claims. The invention is defined by the following claims, with equivalents of the claims to be included therein.
Claims (25)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/239,383 US20150037835A1 (en) | 2012-07-03 | 2013-07-03 | System and method for automated diagnosis |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261667691P | 2012-07-03 | 2012-07-03 | |
US13/928,741 US9816982B2 (en) | 2012-07-03 | 2013-06-27 | Diagnostic apparatus |
US14/239,383 US20150037835A1 (en) | 2012-07-03 | 2013-07-03 | System and method for automated diagnosis |
PCT/US2013/049247 WO2014008352A1 (en) | 2012-07-03 | 2013-07-03 | System and method for automated diagnosis |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/928,741 Continuation US9816982B2 (en) | 2012-07-03 | 2013-06-27 | Diagnostic apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150037835A1 true US20150037835A1 (en) | 2015-02-05 |
Family
ID=49878246
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/928,741 Active 2036-08-19 US9816982B2 (en) | 2012-07-03 | 2013-06-27 | Diagnostic apparatus |
US14/239,383 Abandoned US20150037835A1 (en) | 2012-07-03 | 2013-07-03 | System and method for automated diagnosis |
US15/810,534 Active 2033-11-08 US10620190B2 (en) | 2012-07-03 | 2017-11-13 | Diagnostic apparatus |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/928,741 Active 2036-08-19 US9816982B2 (en) | 2012-07-03 | 2013-06-27 | Diagnostic apparatus |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/810,534 Active 2033-11-08 US10620190B2 (en) | 2012-07-03 | 2017-11-13 | Diagnostic apparatus |
Country Status (3)
Country | Link |
---|---|
US (3) | US9816982B2 (en) |
EP (1) | EP2870499B1 (en) |
WO (2) | WO2014008282A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180143123A1 (en) * | 2016-09-22 | 2018-05-24 | Mehmet Selim Hanay | System and method for sizing and imaging analytes in microfluidics by multimode electromagnetic resonators |
US20220040687A1 (en) * | 2020-08-06 | 2022-02-10 | KovaDx, Inc. | Diagnostic Systems and Methods for Hemolytic Anemias and Other Conditions |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9052315B2 (en) | 2012-05-09 | 2015-06-09 | Advanced Animal Diagnostics, Inc. | Rapid detection of analytes in liquid samples |
US9816982B2 (en) | 2012-07-03 | 2017-11-14 | Advanced Animal Diagnostics, Inc. | Diagnostic apparatus |
US9797893B2 (en) * | 2013-05-09 | 2017-10-24 | Advanced Animal Diagnostics, Inc. | Rapid detection of analytes in liquid samples |
JP6800845B2 (en) * | 2014-10-29 | 2020-12-16 | ルーメンコア インコーポレイテッド | Integrated fluorescent scanning system |
EP3408281A4 (en) | 2016-01-29 | 2019-08-14 | Advanced Animal Diagnostics, Inc. | Methods and compositions for detecting mycoplasma exposure |
US20170276663A1 (en) * | 2016-03-22 | 2017-09-28 | Advanced Animal Diagnotics, Inc. | Methods and compositions for reducing antibiotic administration to farm animals |
BR112019009597B1 (en) * | 2016-11-12 | 2023-11-28 | Caliber Imaging & Diagnostics, Inc. | MICROSCOPE, AND, METHOD FOR TISSUE IMAGE FORMATION |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4698262A (en) * | 1984-04-27 | 1987-10-06 | Becton, Dickinson And Company | Fluorescently labeled microbeads |
US7141773B2 (en) * | 2001-08-06 | 2006-11-28 | Bioview Ltd. | Image focusing in fluorescent imaging |
US8014583B2 (en) * | 2006-12-11 | 2011-09-06 | Cytyc Corporation | Method for assessing image focus quality |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3574064A (en) | 1968-05-09 | 1971-04-06 | Aerojet General Co | Automated biological reaction instrument |
US3883247A (en) | 1973-10-30 | 1975-05-13 | Bio Physics Systems Inc | Method for fluorescence analysis of white blood cells |
US4440301A (en) | 1981-07-16 | 1984-04-03 | American Hospital Supply Corporation | Self-stacking reagent slide |
US4714682A (en) | 1985-12-11 | 1987-12-22 | Flow Cytometry Standards Corporation | Fluorescent calibration microbeads simulating stained cells |
US4868126A (en) | 1985-12-11 | 1989-09-19 | Flow Cytometry Standards Corporation | Method of calibrating a fluorescent microscope using fluorescent calibration microbeads simulating stained cells |
DE3731120A1 (en) | 1987-09-16 | 1989-03-30 | Leitz Ernst Gmbh | UNIVERSAL OBJECT HOLDER FOR MICROSCOPE |
US5367401A (en) | 1990-11-23 | 1994-11-22 | Perceptive Scientific Instruments, Inc. | Microscope slide rotary stage |
US5494829A (en) | 1992-07-31 | 1996-02-27 | Biostar, Inc. | Devices and methods for detection of an analyte based upon light interference |
US20020169394A1 (en) * | 1993-11-15 | 2002-11-14 | Eppstein Jonathan A. | Integrated tissue poration, fluid harvesting and analysis device, and method therefor |
US7853411B2 (en) | 1997-02-27 | 2010-12-14 | Cellomics, Inc. | System for cell-based screening |
US7589962B1 (en) | 1997-07-29 | 2009-09-15 | Intel Corporation | Apparatus for cooling a heat dissipating device located within a portable computer |
US6982431B2 (en) | 1998-08-31 | 2006-01-03 | Molecular Devices Corporation | Sample analysis systems |
WO2001042786A2 (en) | 1999-12-09 | 2001-06-14 | Cellomics, Inc. | System for cell based screening : cell spreading |
WO2002061387A2 (en) | 2000-10-25 | 2002-08-08 | Exiqon A/S | Open substrate platforms suitable for analysis of biomolecules |
US7027628B1 (en) | 2000-11-14 | 2006-04-11 | The United States Of America As Represented By The Department Of Health And Human Services | Automated microscopic image acquisition, compositing, and display |
US6905881B2 (en) | 2000-11-30 | 2005-06-14 | Paul Sammak | Microbead-based test plates and test methods for fluorescence imaging systems |
JP2002265365A (en) | 2001-03-08 | 2002-09-18 | Koyo Chemical Kk | Neutrophil function inhibitor |
US7405072B2 (en) | 2002-07-18 | 2008-07-29 | Picoliter Inc. | Acoustic radiation for ejecting and monitoring pathogenic fluids |
US7522762B2 (en) | 2003-04-16 | 2009-04-21 | Inverness Medical-Biostar, Inc. | Detection, resolution, and identification of arrayed elements |
US7861768B1 (en) | 2003-06-11 | 2011-01-04 | Apple Inc. | Heat sink |
US7345814B2 (en) | 2003-09-29 | 2008-03-18 | Olympus Corporation | Microscope system and microscope focus maintaining device for the same |
EP1598428A1 (en) | 2004-05-18 | 2005-11-23 | Georg Dewald | Methods and kits to detect Hereditary angioedema type III |
US7678337B2 (en) | 2005-04-26 | 2010-03-16 | Abbott Laboratories Inc. | Assembly for carrying and holding slides |
JP4708143B2 (en) | 2005-09-30 | 2011-06-22 | シスメックス株式会社 | Automatic microscope and analyzer equipped with the same |
AU2006325990B2 (en) | 2005-12-16 | 2012-05-31 | Bayer Intellectual Property Gmbh | Kit for assaying active ingredient of termite controlling agent by using immunoassay method |
EP1994439A2 (en) | 2006-03-13 | 2008-11-26 | Ikonisys, Inc. | Automated microscope slide read system |
WO2007112332A2 (en) | 2006-03-24 | 2007-10-04 | Advanced Animal Diagnostics | Microfluidic chamber assembly for mastitis assay |
EP2046940A4 (en) | 2006-06-26 | 2011-08-10 | Life Technologies Corp | Heated cover methods and technology |
KR20090069165A (en) | 2006-08-04 | 2009-06-29 | 아이코니시스 인코포레이티드 | Microscope enclosure system |
US7586674B2 (en) | 2006-10-17 | 2009-09-08 | Hnu-Photonics | Compuscope |
US7957132B2 (en) | 2007-04-16 | 2011-06-07 | Fried Stephen S | Efficiently cool data centers and electronic enclosures using loop heat pipes |
CA2724973C (en) | 2008-05-20 | 2015-08-11 | University Health Network | Device and method for fluorescence-based imaging and monitoring |
JP2012531631A (en) | 2009-06-26 | 2012-12-10 | バイオ−ラッド ラボラトリーズ,インコーポレイティド | Modular microscope structure |
US8965076B2 (en) | 2010-01-13 | 2015-02-24 | Illumina, Inc. | Data processing system and methods |
ATE542136T1 (en) | 2010-03-15 | 2012-02-15 | Boehringer Ingelheim Int | APPARATUS AND METHOD FOR MANIPULATION OR EXAMINATION OF A LIQUID SAMPLE |
US8497138B2 (en) | 2010-09-30 | 2013-07-30 | Genetix Limited | Method for cell selection |
US9052315B2 (en) | 2012-05-09 | 2015-06-09 | Advanced Animal Diagnostics, Inc. | Rapid detection of analytes in liquid samples |
US9816982B2 (en) | 2012-07-03 | 2017-11-14 | Advanced Animal Diagnostics, Inc. | Diagnostic apparatus |
US9797893B2 (en) * | 2013-05-09 | 2017-10-24 | Advanced Animal Diagnostics, Inc. | Rapid detection of analytes in liquid samples |
-
2013
- 2013-06-27 US US13/928,741 patent/US9816982B2/en active Active
- 2013-07-02 EP EP13813619.7A patent/EP2870499B1/en active Active
- 2013-07-02 WO PCT/US2013/049112 patent/WO2014008282A2/en active Application Filing
- 2013-07-03 WO PCT/US2013/049247 patent/WO2014008352A1/en active Application Filing
- 2013-07-03 US US14/239,383 patent/US20150037835A1/en not_active Abandoned
-
2017
- 2017-11-13 US US15/810,534 patent/US10620190B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4698262A (en) * | 1984-04-27 | 1987-10-06 | Becton, Dickinson And Company | Fluorescently labeled microbeads |
US7141773B2 (en) * | 2001-08-06 | 2006-11-28 | Bioview Ltd. | Image focusing in fluorescent imaging |
US8014583B2 (en) * | 2006-12-11 | 2011-09-06 | Cytyc Corporation | Method for assessing image focus quality |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180143123A1 (en) * | 2016-09-22 | 2018-05-24 | Mehmet Selim Hanay | System and method for sizing and imaging analytes in microfluidics by multimode electromagnetic resonators |
US20220040687A1 (en) * | 2020-08-06 | 2022-02-10 | KovaDx, Inc. | Diagnostic Systems and Methods for Hemolytic Anemias and Other Conditions |
Also Published As
Publication number | Publication date |
---|---|
US20140009596A1 (en) | 2014-01-09 |
WO2014008282A3 (en) | 2014-02-27 |
US20180172676A1 (en) | 2018-06-21 |
US9816982B2 (en) | 2017-11-14 |
US10620190B2 (en) | 2020-04-14 |
EP2870499A4 (en) | 2015-12-30 |
EP2870499A2 (en) | 2015-05-13 |
WO2014008352A1 (en) | 2014-01-09 |
EP2870499B1 (en) | 2020-03-11 |
WO2014008282A2 (en) | 2014-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10620190B2 (en) | Diagnostic apparatus | |
US20220075166A1 (en) | Mobile Microscope Assembly | |
US20160279633A1 (en) | Apparatus and Method for Analyzing a Bodily Sample | |
US10983104B2 (en) | Microfluidic chamber assembly for mastitis assay | |
TWI647452B (en) | Testing equipment with magnifying function | |
EP1933128B1 (en) | A method and a system for determination of particles in a liquid sample | |
US10359614B2 (en) | Diagnostic apparatus | |
US20090206234A1 (en) | Analyzer and use thereof | |
JP2013513087A (en) | System and method for time-related microscopy of biological organisms | |
US20190197294A1 (en) | Imaging device for measuring sperm motility | |
JP2022512732A (en) | Equipment and Methods for Motility-Based Label-Free Detection of Motility Objects in Fluid Samples | |
JP2017522614A (en) | Laser light coupling for nanoparticle detection | |
US10094759B1 (en) | Imaging device for measuring sperm motility | |
EP1329706A1 (en) | Rapid imaging of particles in a large fluid volume through flow cell imaging | |
CN112150446A (en) | Microscope examination and film reading scanning method, computer equipment and system | |
US20240095910A1 (en) | Plaque detection method for imaging of cells | |
EP3049847B1 (en) | Diagnostic apparatus including passive autoloader | |
US10426445B2 (en) | Sample collection and transfer assembly and related methods | |
US20240102912A1 (en) | Plaque counting assay method | |
WO2022047683A1 (en) | Rapid testing system and method | |
Cruz et al. | Automated urine microscopy using scale invariant feature transform | |
JP2010054426A (en) | Observation method of disease | |
Baro et al. | Video microscopy as an alternative method for somatic cell count in milk | |
WO2024194295A1 (en) | An automated digital microscope system and method for testing a biological sample | |
WO2023242143A1 (en) | Automatic analyzer and method for optically analyzing a biological sample |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ADVANCED ANIMAL DIAGNOSTICS, INC., NORTH CAROLINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BRESOLIN, STEFANO;CALDERWOOD, DAVID A.;HEINECK, TOBIAS M.;AND OTHERS;SIGNING DATES FROM 20140707 TO 20140708;REEL/FRAME:033258/0258 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: LABORATORY CORPORATION OF AMERICA HOLDINGS, NORTH CAROLINA Free format text: SECURITY INTEREST;ASSIGNOR:ADVANCED ANIMAL DIAGNOSTICS, INC.;REEL/FRAME:040079/0926 Effective date: 20161020 Owner name: CULTIVAN SANDBOX FOOD & AGRICULTURE FUND II, L.P., ILLINOIS Free format text: SECURITY INTEREST;ASSIGNOR:ADVANCED ANIMAL DIAGNOSTICS, INC.;REEL/FRAME:040079/0926 Effective date: 20161020 Owner name: SILICON VALLEY BANK, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:ADVANCED ANIMAL DIAGNOSTICS, INC.;REEL/FRAME:040074/0453 Effective date: 20161020 Owner name: INTERSOUTH PARTNERS VII, L.P., NORTH CAROLINA Free format text: SECURITY INTEREST;ASSIGNOR:ADVANCED ANIMAL DIAGNOSTICS, INC.;REEL/FRAME:040079/0926 Effective date: 20161020 Owner name: SANDBOX ADVANTAGE FUND, L.P., ILLINOIS Free format text: SECURITY INTEREST;ASSIGNOR:ADVANCED ANIMAL DIAGNOSTICS, INC.;REEL/FRAME:040079/0926 Effective date: 20161020 Owner name: CULTIVAN SANDBOX FOOD & AGRICULTURE FUND II, L.P., Free format text: SECURITY INTEREST;ASSIGNOR:ADVANCED ANIMAL DIAGNOSTICS, INC.;REEL/FRAME:040079/0926 Effective date: 20161020 Owner name: LABORATORY CORPORATION OF AMERICA HOLDINGS, NORTH Free format text: SECURITY INTEREST;ASSIGNOR:ADVANCED ANIMAL DIAGNOSTICS, INC.;REEL/FRAME:040079/0926 Effective date: 20161020 |
|
AS | Assignment |
Owner name: CULTIVIAN SANDBOX FOOD & AGRICULTURE FUND II, L.P., ILLINOIS Free format text: SECURITY INTEREST;ASSIGNOR:ADVANCED ANIMAL DIAGNOSTICS, INC.;REEL/FRAME:041834/0684 Effective date: 20170123 Owner name: HANNAN, JTWROS, KAREN LEE AND ROBERT E., SOUTH CAROLINA Free format text: SECURITY INTEREST;ASSIGNOR:ADVANCED ANIMAL DIAGNOSTICS, INC.;REEL/FRAME:041834/0684 Effective date: 20170123 Owner name: INTERSOUTH PARTNERS VII, L.P., NORTH CAROLINA Free format text: SECURITY INTEREST;ASSIGNOR:ADVANCED ANIMAL DIAGNOSTICS, INC.;REEL/FRAME:041834/0684 Effective date: 20170123 Owner name: GREENBAUM, GARY R., ARIZONA Free format text: SECURITY INTEREST;ASSIGNOR:ADVANCED ANIMAL DIAGNOSTICS, INC.;REEL/FRAME:041834/0684 Effective date: 20170123 Owner name: HANNAN, JTWROS, KAREN LEE AND ROBERT E., SOUTH CAR Free format text: SECURITY INTEREST;ASSIGNOR:ADVANCED ANIMAL DIAGNOSTICS, INC.;REEL/FRAME:041834/0684 Effective date: 20170123 Owner name: CULTIVIAN SANDBOX FOOD & AGRICULTURE FUND II, L.P. Free format text: SECURITY INTEREST;ASSIGNOR:ADVANCED ANIMAL DIAGNOSTICS, INC.;REEL/FRAME:041834/0684 Effective date: 20170123 Owner name: ORIGAMI CAPITAL PARTNERS, LLC, ILLINOIS Free format text: SECURITY INTEREST;ASSIGNOR:ADVANCED ANIMAL DIAGNOSTICS, INC.;REEL/FRAME:041834/0684 Effective date: 20170123 Owner name: SANDBOX ADVANTAGE FUND, L.P., ILLINOIS Free format text: SECURITY INTEREST;ASSIGNOR:ADVANCED ANIMAL DIAGNOSTICS, INC.;REEL/FRAME:041834/0684 Effective date: 20170123 |
|
AS | Assignment |
Owner name: ORIGAMI CAPITAL PARTNERS, LLC, ILLINOIS Free format text: SECURITY INTEREST;ASSIGNOR:ADVANCED ANIMAL DIAGNOSTICS, INC.;REEL/FRAME:042204/0515 Effective date: 20170501 Owner name: INTERSOUTH PARTNERS VII, L.P., NORTH CAROLINA Free format text: SECURITY INTEREST;ASSIGNOR:ADVANCED ANIMAL DIAGNOSTICS, INC.;REEL/FRAME:042204/0515 Effective date: 20170501 Owner name: CULTIVIAN SANDBOX FOOD & AGRICULTURE FUND II, L.P. Free format text: SECURITY INTEREST;ASSIGNOR:ADVANCED ANIMAL DIAGNOSTICS, INC.;REEL/FRAME:042204/0515 Effective date: 20170501 Owner name: MIDDLELAND AG FUND II, L.P., DISTRICT OF COLUMBIA Free format text: SECURITY INTEREST;ASSIGNOR:ADVANCED ANIMAL DIAGNOSTICS, INC.;REEL/FRAME:042204/0515 Effective date: 20170501 Owner name: SANDBOX ADVANTAGE FUND, L.P., ILLINOIS Free format text: SECURITY INTEREST;ASSIGNOR:ADVANCED ANIMAL DIAGNOSTICS, INC.;REEL/FRAME:042204/0515 Effective date: 20170501 Owner name: CULTIVIAN SANDBOX FOOD & AGRICULTURE FUND II, L.P., ILLINOIS Free format text: SECURITY INTEREST;ASSIGNOR:ADVANCED ANIMAL DIAGNOSTICS, INC.;REEL/FRAME:042204/0515 Effective date: 20170501 |
|
AS | Assignment |
Owner name: ADVANCED ANIMAL DIAGNOSTICS, INC., NORTH CAROLINA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:047276/0944 Effective date: 20180823 |