US20140378405A1 - Salix extract, its use and formulations containing it - Google Patents
Salix extract, its use and formulations containing it Download PDFInfo
- Publication number
- US20140378405A1 US20140378405A1 US13/925,393 US201313925393A US2014378405A1 US 20140378405 A1 US20140378405 A1 US 20140378405A1 US 201313925393 A US201313925393 A US 201313925393A US 2014378405 A1 US2014378405 A1 US 2014378405A1
- Authority
- US
- United States
- Prior art keywords
- extract
- content
- salicin
- salix
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000284 extract Substances 0.000 title claims abstract description 51
- 241000124033 Salix Species 0.000 title claims abstract description 20
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 title claims abstract description 20
- 239000000203 mixture Substances 0.000 title description 6
- 238000009472 formulation Methods 0.000 title description 3
- NGFMICBWJRZIBI-UJPOAAIJSA-N salicin Chemical class O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC=CC=C1CO NGFMICBWJRZIBI-UJPOAAIJSA-N 0.000 claims abstract description 36
- 229920001864 tannin Polymers 0.000 claims abstract description 31
- 235000018553 tannin Nutrition 0.000 claims abstract description 31
- 239000001648 tannin Substances 0.000 claims abstract description 31
- 239000011347 resin Substances 0.000 claims abstract description 14
- 229920005989 resin Polymers 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 7
- 230000008569 process Effects 0.000 claims abstract description 7
- 238000002360 preparation method Methods 0.000 claims abstract description 6
- 238000000605 extraction Methods 0.000 claims description 13
- 239000001253 polyvinylpolypyrrolidone Substances 0.000 claims description 11
- 235000013809 polyvinylpolypyrrolidone Nutrition 0.000 claims description 11
- 229920000523 polyvinylpolypyrrolidone Polymers 0.000 claims description 11
- 238000000746 purification Methods 0.000 claims description 9
- 239000002904 solvent Substances 0.000 claims description 8
- 238000001179 sorption measurement Methods 0.000 claims description 3
- 229920002770 condensed tannin Polymers 0.000 abstract description 7
- 239000003921 oil Substances 0.000 abstract description 6
- 102000035195 Peptidases Human genes 0.000 abstract description 4
- 108091005804 Peptidases Proteins 0.000 abstract description 4
- 239000004365 Protease Substances 0.000 abstract description 4
- 239000002184 metal Substances 0.000 abstract description 4
- 230000009471 action Effects 0.000 abstract description 3
- 238000010521 absorption reaction Methods 0.000 abstract description 2
- 239000002253 acid Substances 0.000 abstract description 2
- 150000007513 acids Chemical class 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 30
- NGFMICBWJRZIBI-JZRPKSSGSA-N Salicin Natural products O([C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@H](CO)O1)c1c(CO)cccc1 NGFMICBWJRZIBI-JZRPKSSGSA-N 0.000 description 26
- NGFMICBWJRZIBI-UHFFFAOYSA-N alpha-salicin Natural products OC1C(O)C(O)C(CO)OC1OC1=CC=CC=C1CO NGFMICBWJRZIBI-UHFFFAOYSA-N 0.000 description 26
- 229940120668 salicin Drugs 0.000 description 26
- 238000004128 high performance liquid chromatography Methods 0.000 description 22
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 13
- 239000007858 starting material Substances 0.000 description 13
- 239000000047 product Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 239000007864 aqueous solution Substances 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 235000019198 oils Nutrition 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 239000007900 aqueous suspension Substances 0.000 description 4
- 238000004440 column chromatography Methods 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 3
- 241001299682 Salix purpurea Species 0.000 description 3
- 229960001138 acetylsalicylic acid Drugs 0.000 description 3
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- PZNPLUBHRSSFHT-RRHRGVEJSA-N 1-hexadecanoyl-2-octadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[C@@H](COP([O-])(=O)OCC[N+](C)(C)C)COC(=O)CCCCCCCCCCCCCCC PZNPLUBHRSSFHT-RRHRGVEJSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- 238000011097 chromatography purification Methods 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007903 gelatin capsule Substances 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- 235000020660 omega-3 fatty acid Nutrition 0.000 description 2
- 201000008482 osteoarthritis Diseases 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- OVARTBFNCCXQKS-UHFFFAOYSA-N propan-2-one;hydrate Chemical compound O.CC(C)=O OVARTBFNCCXQKS-UHFFFAOYSA-N 0.000 description 2
- 206010039073 rheumatoid arthritis Diseases 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 239000008347 soybean phospholipid Substances 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 101150071146 COX2 gene Proteins 0.000 description 1
- 101100114534 Caenorhabditis elegans ctc-2 gene Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 201000005569 Gout Diseases 0.000 description 1
- 101150000187 PTGS2 gene Proteins 0.000 description 1
- 102000016611 Proteoglycans Human genes 0.000 description 1
- 108010067787 Proteoglycans Proteins 0.000 description 1
- 208000025747 Rheumatic disease Diseases 0.000 description 1
- 101000942305 Zea mays Cytokinin dehydrogenase 1 Proteins 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- -1 acts on COX 1 Chemical compound 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000006286 aqueous extract Substances 0.000 description 1
- 230000002917 arthritic effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000013375 chromatographic separation Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 235000021323 fish oil Nutrition 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229940040371 lecithin 10 mg Drugs 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 1
- 235000020665 omega-6 fatty acid Nutrition 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000552 rheumatic effect Effects 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 239000005418 vegetable material Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7028—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/35—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
- A61K31/352—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7024—Esters of saccharides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7028—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
- A61K31/7034—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/76—Salicaceae (Willow family), e.g. poplar
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2236/00—Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
Definitions
- the present invention relates to an extract of Salix spp obtainable by fractioning on a resin and to the process for its preparation.
- the extract of the invention is characterized by a high content in salicin derivatives, a reduced content in high molecular tannins and a content in proanthocyanidins sufficient to inhibit some tissue metal proteases.
- the product is formulated in oils rich in ⁇ -3 and ⁇ -6 acids which provide a better absorption of the active principles, also increasing synergistically their action.
- Bark and branches extracts of different species of Salix have been used for unmemorable time for the treatment of articular rheumatic forms and gout.
- Salix extracts were, however, substantially abandoned at the end of the 19 th century, when aspirin was synthesized by acetylation of salicylic acid, obtained by oxidation of the compounds present in Salix .
- aspirin and Salix extracts have substantial differences in terms of mechanisms of action and activity on bone joints.
- the extracts act on the enzyme COX 2, while aspirin mainly acts on COX 1, which involves the well-known side effects on the gastrointestinal tract and blood coagulation, which severely restrict its prolonged use which is conversely necessary in the case of such chronic-degenerative pathologies as arthrosis and rheumatoid arthritis.
- Salix extracts have extremely variable contents in salicin derivatives, which are on the average up to 15%, and tannin content ranging from 8 to 20%. Tannins present in Salix extracts, as is the case with all gallic and catechic tannins, have strong affinity with proteins and proteoglycans, which involves tissue damages in case of long-lasting treatments.
- the present invention relates to a process for the preparation of novel Salix spp extracts, characterized by an high content in salicin derivatives, a reduced content in high molecular tannins and a sufficient content in proanthocyanidins in order to inhibit some tissue metal proteases.
- Salix extracts particularly the extracts of the present invention, compared with salicin derivatives alone, is connected to the presence of proanthocyanidins, strong radicals scavengers and powerful inhibitors of metal proteases, which are activated in arthritic conditions via over-expression of leukocyte I1 1 .
- the process of the invention for the preparation of Salix extracts differs from those of the prior art in the extract contents in salicin and its derivatives and in the use of matrices which provide the selective reduction in tannin contents, while retaining the therapeutically useful proanthocyanidins in the extract.
- the process of the invention includes four main steps:
- Step (a) is accomplished by extraction of the vegetable material, consisting of plant bark and branches, with a C1-C3 alcohol or acetone or mixtures of these solvents or aqueous solutions of these solvents or water alone. A 30% v/v water-ethanol solution is preferred.
- the extraction temperature can range from 10° C. to 80° C., preferably is 25° C.
- Step (b) allows to remove water-insolubles, particularly high molecular tannins, from the extract.
- Step (c) allows to remove most water-soluble tannins from the extract. This is an optional step, that can be carried out to remove any tannins still present in the extract after step (b). These metabolites can be removed by using polyvinylpolypyrrolidone (PVPP).
- PVPP polyvinylpolypyrrolidone
- Step (d) allows to fractionate the extract removing most useless metabolites (sugars, and the like), while keeping the desired secondary ones, i.e. salicin derivatives and oligomeric proanthocyanidins.
- This step consist in a chromatographic separation through adsorption on a polymeric resin.
- suitable resins for this purpose are Styrene-DVB resins such as AmberliteHP20® or Rohm and Haas XAD1180®, and acrylic resins such as Rohm and Haas XAD7HP®.
- free salicin can be separated from its derivatives, obtaining fractions rich in free salicin with reduced amounts of its derivatives and fractions with completely different compositions.
- the total extract obtained from Salix bark and branches with 30% ethanol is concentrated to a dry residue ranging from 5% to 50% w/w, preferably 25% w/w, and left at a temperature from 1° C. to 20° C., preferably at 4° C., without stirring for a time from 1 hour to 24 hours, preferably 16 hours.
- the resulting suspension is centrifuged at 4° C. to remove the residual precipitate containing high molecular derivatives and tannins from the clear aqueous solution.
- Water-insoluble or poorly soluble tannins contained in the total extract are removed by water purification, which can be further improved by optional treatment (step c) with polyvinylpolypyrrolidone (PVPP).
- PVPP polyvinylpolypyrrolidone
- the partial water purification (step b) can only remove part of tannins (above 50% w/w. of tannins present), while PVPP purification removes residual tannins within values below 5% of the final extract weight.
- the clear aqueous solution from step b) is treated with PVPP (1-50% w/w, preferably 1:30, most preferably 1:20 on the dry residue of the aqueous extract to treat) keeping stirring for 1 or more hours.
- the solution is filtered from PVPP and adsorbed tannins. Then the aqueous solution is adsorbed on the resin, thoroughly washing the substrate with water to remove undesired soluble substances. The solution unretained is discarded.
- the product is eluted with a water-alcohol solution (C1-C3 alcohols, preferably ethanol), with water content ranging from 50% v/v to 0% v/v, preferably 10% v/v.
- a water-acetone solution with water content ranging from 50% v/v to 0% v/v, preferably 10% v/v, can also be used.
- the water-ethanol solution is concentrated to dryness or atomized.
- the resulting extract can be formulated in the ordinary pharmaceutical solid forms or as an oily suspension in capsules, particularly in oils rich in ⁇ -3/ ⁇ -6 poly-unsaturated fatty acids; particularly preferred are Enothera biennis oil and fish oil and its derivatives.
- Active dosages for the treatment of arthrosis and rheumatoid arthritis in humans range from 100 to 1000 mg daily, according to the severity of the disease to treat.
- the total extract which can be used as the starting material for the subsequent column chromatography separation is prepared.
- the free salicin HPLC content is 4.63%; the total salicin HPLC content is 15.4% w/w.
- the tannin content is 16.26% w/w.
- the total extract which can be used as the starting material for the subsequent column chromatography separation is prepared.
- the free salicin HPLC content is 4.3%; the total salicin HPLC content is 15.7% w/w.
- the tannin content is 15.42% w/w.
- the total extract which can be used as the starting material for the subsequent column chromatography separation is prepared.
- the free salicin HPLC content is 3.94%; the total salicin HPLC content is 13.6% w/w.
- the tannin content is 6.8% w/w.
- the total extract which can be used as the starting material for the subsequent column chromatography separation is prepared.
- the free salicin HPLC content is 5.9%; the total salicin HPLC content is 19.9% w/w.
- the tannin content is 14.5% w/w.
- Solution 1 obtained at the end of the workup described in Example 1 (step a) is concentrated by a rotary evaporator at 60° C. under reduced pressure, to obtain an aqueous suspension with a dry residue of 25% w/w of the total aqueous suspension, the total weight of said solution being 615 g.
- the resulting aqueous suspension is cooled at 4° C. and left to stand for 16 hours, then the still cold aqueous suspension is centrifuged at 3000 g for 20 minutes to separate the precipitated residue from the clear aqueous solution.
- This precipitate having a dry residue of 16.3 g, is rich in tannins and high molecular products and is removed.
- the resulting clear solution (solution 2) has a dry residue equivalent to 137 g of partially purified extract having HPLC content in free salicin of 5.0% and HPLC content in total salicin of 16.7% w/w.
- the tannin content is 6.9% w/w.
- the weight yield vs. starting material is 13.7% w/w.
- the clear aqueous solution obtained at the end of the partial purification process of step b (Example 5, solution 2), having a dry residue of 137 g, is treated to remove water-soluble tannins.
- the solution is added with 14 g of PVPP, corresponding to approx. 10% w/w. of the dry residue of the extract to treat. After stirring for 1 hour at room temperature, PVPP is separated from the solution by centrifugation.
- the resulting solution (solution 3) has a dry residue equivalent to 125 g of partially purified extract, having HPLC content in free salicin of 5.3% and HPLC content in total salicin of 8% w/w.
- the tannin content is 1.2% w/w.
- the weight yield vs. starting material is 12.5% w/w.
- aqueous solution obtained from step c (Example 6, solution 3) is loaded onto a chromatographic column containing 1250 ml of Rohm and Haas XAD1180® resin conditioned with water.
- the water-alcohol solution is adsorbed to the resin, while the unretained solution exiting the column is discarded.
- the resin is then washed with 1.25 liters of water, removing also this solution as its content in desired components is negligible.
- These discarded aqueous solutions (product 1) have in fact a total dry residue of 52.6 g, with HPLC content in free salicin of 0.87%, and HPLC content in total salicin of 0.92% w/w.
- the column is eluted with 3.75 liters of 90% v/v aqueous ethanol.
- the resulting eluate is recovered and dried at 60° C. under reduced pressure, to yield 72.4 grams of dry product (product 2), corresponding to a yield vs. the starting material of 7.2% w/w.
- HPLC content in free salicin is 8.95%
- total salicin HPLC content is 30.0% w/w.
- the content in oligomeric proanthocyanidins is 11.2% w/w
- the content in tannins is 2.1% w/w.
- aqueous solution from step c (Example 6, solution 3) is loaded onto a chromatographic column containing 1250 ml of Rohm and Haas XAD1180® resin conditioned with water.
- the water-alcohol solution is adsorbed to the resin, while the unretained solution exiting the column is discarded.
- the resin is then washed with 1.25 liters of water, removing also this solution as its content in desired components is negligible.
- These discarded aqueous solutions (product 3) have in fact a total dry residue of 51.7 g, with free salicin HPLC content of 1.34%, and total salicin HPLC content of 1.41% w/w.
- the column is eluted with 3.75 liters of 90% v/v aqueous ethanol.
- the resulting eluate is recovered and dried at 60° C. under reduced pressure, to yield 43.2 grams of dry product (product 5), corresponding to a weight yield vs. starting material of 4.3% w/w, HPLC content in free salicin of 0.45%, HPLC content in total salicin of 39.7% w/w.
- Salix rubra extract according to Example 7 250 mg Gliceryl monostearate 30 mg Soy lecithin 10 mg Enothera biennis oil q.s. to 700 mg
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Molecular Biology (AREA)
- Alternative & Traditional Medicine (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Medical Informatics (AREA)
- Botany (AREA)
- Biotechnology (AREA)
- Engineering & Computer Science (AREA)
- Medicines Containing Plant Substances (AREA)
Abstract
The present invention relates to an extract of Salix spp obtainable by fractioning on a resin and to the process for its preparation.
The extract of the invention is characterized by an high content in salicin derivatives, reduced content in high molecular tannins and a content in proanthocyanidins sufficient to inhibit some tissue metal proteases. The product is formulated in oils rich in ω-3 and ω-6 acids which provide a better absorption of the extract active principles, also increasing synergetically their action.
Description
- The present invention relates to an extract of Salix spp obtainable by fractioning on a resin and to the process for its preparation.
- The extract of the invention is characterized by a high content in salicin derivatives, a reduced content in high molecular tannins and a content in proanthocyanidins sufficient to inhibit some tissue metal proteases. The product is formulated in oils rich in ω-3 and ω-6 acids which provide a better absorption of the active principles, also increasing synergistically their action.
- Bark and branches extracts of different species of Salix have been used for unmemorable time for the treatment of articular rheumatic forms and gout. Salix extracts were, however, substantially abandoned at the end of the 19th century, when aspirin was synthesized by acetylation of salicylic acid, obtained by oxidation of the compounds present in Salix. However, aspirin and Salix extracts have substantial differences in terms of mechanisms of action and activity on bone joints. The extracts act on the enzyme COX 2, while aspirin mainly acts on COX 1, which involves the well-known side effects on the gastrointestinal tract and blood coagulation, which severely restrict its prolonged use which is conversely necessary in the case of such chronic-degenerative pathologies as arthrosis and rheumatoid arthritis.
- It is known from the literature that Salix extracts have extremely variable contents in salicin derivatives, which are on the average up to 15%, and tannin content ranging from 8 to 20%. Tannins present in Salix extracts, as is the case with all gallic and catechic tannins, have strong affinity with proteins and proteoglycans, which involves tissue damages in case of long-lasting treatments.
- There is therefore the need for a convenient process, which is easily applicable in the industry and provides extracts with standardized contents in the active components.
- The present invention relates to a process for the preparation of novel Salix spp extracts, characterized by an high content in salicin derivatives, a reduced content in high molecular tannins and a sufficient content in proanthocyanidins in order to inhibit some tissue metal proteases.
- It has surprisingly been found that the extraction of Salix bark or branches under suitable conditions, and the specific purification treatment of the resulting extract, provides extracts with salicin derivatives content up to 50%, tannin content not above than 5% and oligomeric procyanindins content higher than 5%.
- The advantage of using Salix extracts, particularly the extracts of the present invention, compared with salicin derivatives alone, is connected to the presence of proanthocyanidins, strong radicals scavengers and powerful inhibitors of metal proteases, which are activated in arthritic conditions via over-expression of leukocyte I11.
- The process of the invention for the preparation of Salix extracts differs from those of the prior art in the extract contents in salicin and its derivatives and in the use of matrices which provide the selective reduction in tannin contents, while retaining the therapeutically useful proanthocyanidins in the extract.
- The process of the invention includes four main steps:
-
- a) Extraction of Salix spp branches and bark with suitable solvents which solubilize the desired products (total extract);
- b) Removal of water-insoluble (or poorly soluble) tannins;
- c) Removal of water-soluble tannins;
- d) Increase of salicin derivatives through a purification on an adsorption resin column.
- Step (a) is accomplished by extraction of the vegetable material, consisting of plant bark and branches, with a C1-C3 alcohol or acetone or mixtures of these solvents or aqueous solutions of these solvents or water alone. A 30% v/v water-ethanol solution is preferred.
- The extraction temperature can range from 10° C. to 80° C., preferably is 25° C.
- Step (b) allows to remove water-insolubles, particularly high molecular tannins, from the extract.
- Step (c) allows to remove most water-soluble tannins from the extract. This is an optional step, that can be carried out to remove any tannins still present in the extract after step (b). These metabolites can be removed by using polyvinylpolypyrrolidone (PVPP).
- Step (d) allows to fractionate the extract removing most useless metabolites (sugars, and the like), while keeping the desired secondary ones, i.e. salicin derivatives and oligomeric proanthocyanidins. This step consist in a chromatographic separation through adsorption on a polymeric resin. Examples of suitable resins for this purpose are Styrene-DVB resins such as AmberliteHP20® or Rohm and Haas XAD1180®, and acrylic resins such as Rohm and Haas XAD7HP®.
- During the column fractionation step using suitable solvent mixtures, free salicin can be separated from its derivatives, obtaining fractions rich in free salicin with reduced amounts of its derivatives and fractions with completely different compositions.
- The total extract obtained from Salix bark and branches with 30% ethanol is concentrated to a dry residue ranging from 5% to 50% w/w, preferably 25% w/w, and left at a temperature from 1° C. to 20° C., preferably at 4° C., without stirring for a time from 1 hour to 24 hours, preferably 16 hours.
- The resulting suspension is centrifuged at 4° C. to remove the residual precipitate containing high molecular derivatives and tannins from the clear aqueous solution.
- Water-insoluble or poorly soluble tannins contained in the total extract are removed by water purification, which can be further improved by optional treatment (step c) with polyvinylpolypyrrolidone (PVPP).The partial water purification (step b) can only remove part of tannins (above 50% w/w. of tannins present), while PVPP purification removes residual tannins within values below 5% of the final extract weight.
- Therefore, the clear aqueous solution from step b) is treated with PVPP (1-50% w/w, preferably 1:30, most preferably 1:20 on the dry residue of the aqueous extract to treat) keeping stirring for 1 or more hours.
- The solution is filtered from PVPP and adsorbed tannins. Then the aqueous solution is adsorbed on the resin, thoroughly washing the substrate with water to remove undesired soluble substances. The solution unretained is discarded.
- The product is eluted with a water-alcohol solution (C1-C3 alcohols, preferably ethanol), with water content ranging from 50% v/v to 0% v/v, preferably 10% v/v. Alternatively, a water-acetone solution with water content ranging from 50% v/v to 0% v/v, preferably 10% v/v, can also be used. The water-ethanol solution is concentrated to dryness or atomized. The resulting extract can be formulated in the ordinary pharmaceutical solid forms or as an oily suspension in capsules, particularly in oils rich in ω-3/ω-6 poly-unsaturated fatty acids; particularly preferred are Enothera biennis oil and fish oil and its derivatives.
- Active dosages for the treatment of arthrosis and rheumatoid arthritis in humans range from 100 to 1000 mg daily, according to the severity of the disease to treat.
- The invention is described in greater detail in the following examples.
- In this step, the total extract which can be used as the starting material for the subsequent column chromatography separation is prepared.
- 1000 grams of Salix branches and bark are covered with 1.5 liters of 30% v/v ethanol at 20° C. for 4 hours in a static percolator. After 4 hours, the percolate is recovered and extracted 6 times again under the same conditions, but using 1 liter of solvent per extraction, to obtain approx. 7 liters of total percolate. The combined percolates are filtered to remove impurities and vegetable residues. This solution (product 1) has a total dry residue of 154 grams, the yield vs. starting material being 15.4% w/w.
- The free salicin HPLC content is 4.63%; the total salicin HPLC content is 15.4% w/w. The tannin content is 16.26% w/w.
- In this step, the total extract which can be used as the starting material for the subsequent column chromatography separation is prepared.
- 1000 grams of Salix branches and bark are extracted with 1.5 liters of 80% v/v acetone at 20° C. for 4 hours in a static percolator. After 4 hours, the percolate is recovered and extracted 6 times again under the same conditions, but using 1 liter of solvent per extraction, to obtain approx. 7 liters of total percolate. The combined percolates are hot filtered and concentrated by a rotary evaporator at 60° C. under reduced pressure. This extract has a total dry residue of 143 grams, the yield vs. starting material being 14.3% w/w.
- The free salicin HPLC content is 4.3%; the total salicin HPLC content is 15.7% w/w. The tannin content is 15.42% w/w.
- In this step, the total extract which can be used as the starting material for the subsequent column chromatography separation is prepared.
- 1000 grams of Salix small branches and bark are covered with 1.5 liters of water at 20° C. for 4 hours in a static percolator. After 4 hours, the percolate is recovered and extracted 6 times again under the same conditions, but using 1 liter of solvent per extraction, to obtain approx. 7 liters of total percolate. The combined percolates are filtered with suction and concentrated by a rotary evaporator at 60° C. under reduced pressure. This extract has a total dry residue of 167 grams, the yield vs. starting material being 16.7% w/w.
- The free salicin HPLC content is 3.94%; the total salicin HPLC content is 13.6% w/w. The tannin content is 6.8% w/w.
- In this step, the total extract which can be used as the starting material for the subsequent column chromatography separation is prepared.
- 1000 grams of Salix branches are covered with 1.5 liters of methanol at 20° C. for 4 hours in a static percolator. After 4 hours, the percolate is recovered and extracted 6 times again under the same conditions, but using 1 liter of solvent per extraction, to obtain approx. 7 liters of total percolate. The combined percolates are filtered and concentrated by a rotary evaporator at 60° C. under reduced pressure. This extract has a total dry residue of 101 grams, the yield vs. starting material being 10.1% w/w.
- The free salicin HPLC content is 5.9%; the total salicin HPLC content is 19.9% w/w. The tannin content is 14.5% w/w.
- Solution 1 obtained at the end of the workup described in Example 1 (step a) is concentrated by a rotary evaporator at 60° C. under reduced pressure, to obtain an aqueous suspension with a dry residue of 25% w/w of the total aqueous suspension, the total weight of said solution being 615 g.
- The resulting aqueous suspension is cooled at 4° C. and left to stand for 16 hours, then the still cold aqueous suspension is centrifuged at 3000 g for 20 minutes to separate the precipitated residue from the clear aqueous solution. This precipitate, having a dry residue of 16.3 g, is rich in tannins and high molecular products and is removed.
- The resulting clear solution (solution 2) has a dry residue equivalent to 137 g of partially purified extract having HPLC content in free salicin of 5.0% and HPLC content in total salicin of 16.7% w/w. The tannin content is 6.9% w/w.
- The weight yield vs. starting material is 13.7% w/w.
- The clear aqueous solution obtained at the end of the partial purification process of step b (Example 5, solution 2), having a dry residue of 137 g, is treated to remove water-soluble tannins.
- The solution is added with 14 g of PVPP, corresponding to approx. 10% w/w. of the dry residue of the extract to treat. After stirring for 1 hour at room temperature, PVPP is separated from the solution by centrifugation.
- The resulting solution (solution 3) has a dry residue equivalent to 125 g of partially purified extract, having HPLC content in free salicin of 5.3% and HPLC content in total salicin of 8% w/w. The tannin content is 1.2% w/w.
- The weight yield vs. starting material is 12.5% w/w.
- The aqueous solution obtained from step c (Example 6, solution 3) is loaded onto a chromatographic column containing 1250 ml of Rohm and Haas XAD1180® resin conditioned with water. The water-alcohol solution is adsorbed to the resin, while the unretained solution exiting the column is discarded. The resin is then washed with 1.25 liters of water, removing also this solution as its content in desired components is negligible. These discarded aqueous solutions (product 1) have in fact a total dry residue of 52.6 g, with HPLC content in free salicin of 0.87%, and HPLC content in total salicin of 0.92% w/w.
- The column is eluted with 3.75 liters of 90% v/v aqueous ethanol. The resulting eluate is recovered and dried at 60° C. under reduced pressure, to yield 72.4 grams of dry product (product 2), corresponding to a yield vs. the starting material of 7.2% w/w. HPLC content in free salicin is 8.95%, total salicin HPLC content is 30.0% w/w. The content in oligomeric proanthocyanidins is 11.2% w/w, the content in tannins is 2.1% w/w.
- The aqueous solution from step c (Example 6, solution 3) is loaded onto a chromatographic column containing 1250 ml of Rohm and Haas XAD1180® resin conditioned with water. The water-alcohol solution is adsorbed to the resin, while the unretained solution exiting the column is discarded. The resin is then washed with 1.25 liters of water, removing also this solution as its content in desired components is negligible. These discarded aqueous solutions (product 3) have in fact a total dry residue of 51.7 g, with free salicin HPLC content of 1.34%, and total salicin HPLC content of 1.41% w/w.
- The resin is washed with 2.5 liters of 10% v/v aqueous ethanol, to obtain a solution (product 4) with a dry residue of 17.1 g (yield vs. starting material of 1.7% w/w.). Free salicin HPLC content is 34.6%, total salicin HPLC content is 34.9% w/w.
- The column is eluted with 3.75 liters of 90% v/v aqueous ethanol. The resulting eluate is recovered and dried at 60° C. under reduced pressure, to yield 43.2 grams of dry product (product 5), corresponding to a weight yield vs. starting material of 4.3% w/w, HPLC content in free salicin of 0.45%, HPLC content in total salicin of 39.7% w/w.
- Formulation of Salix rubra extract in oily suspension for soft-gelatin capsules.
-
-
Salix rubra extract according to Example 7 250 mg Gliceryl monostearate 30 mg Soy lecithin 10 mg Enothera biennis oil q.s. to 700 mg - 1) Heat Enothera biennis oil at about 70° C. and melt glyceryl monostearate therein, under stirring.
- 2) Add soy lecithin to the resulting solution.
- 3) Disperse Salix rubra extract in the resulting solution, promoting the homogeneous distribution with a suitable stirring system.
- Gradually cool the resulting solution under stirring.
Claims (4)
1.-9. (canceled)
10. A process for the preparation of extract with salicin derivatives content up to 50%, tannin content not higher than 5% and oligomeric procyanindins content higher than 5%, comprising the steps of:
a) extraction of Salix spp branches and bark with suitable solvents which solubilize a total extract;
b) removal of water-insoluble or poorly soluble from the total extract tannins by using polyvinylpolypyrrolidone (PVPP);
c) removal of water-soluble tannins; and
d) purification on an adsorption resin column to increase the content in salicin derivatives.
11. (canceled)
12. (canceled)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/925,393 US20140378405A1 (en) | 2013-06-24 | 2013-06-24 | Salix extract, its use and formulations containing it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/925,393 US20140378405A1 (en) | 2013-06-24 | 2013-06-24 | Salix extract, its use and formulations containing it |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140378405A1 true US20140378405A1 (en) | 2014-12-25 |
Family
ID=52111406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/925,393 Abandoned US20140378405A1 (en) | 2013-06-24 | 2013-06-24 | Salix extract, its use and formulations containing it |
Country Status (1)
Country | Link |
---|---|
US (1) | US20140378405A1 (en) |
-
2013
- 2013-06-24 US US13/925,393 patent/US20140378405A1/en not_active Abandoned
Non-Patent Citations (2)
Title |
---|
Kompantsev, V. A., & Glyzin, V. I. (1973). Phenolic glycosides of the bark of Salix schwerinii. Chemistry of Natural Compounds, 9(4), 519-520. * |
Toth, G. B., & Pavia, H. (2001). Removal of dissolved brown algal phlorotannins using insoluble polyvinylpolypyrrolidone (PVPP). Journal of chemical ecology, 27(9), 1899-1910. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120270825A1 (en) | Salix extract, its use and formulations containing it | |
JP2009501708A (en) | Korean thistle extract, its use and formulations containing it | |
RU2400246C2 (en) | Extracts from grape seeds obtained by fractioning on resin | |
JP2002501030A5 (en) | ||
WO2002012159A1 (en) | Process for producing oleanolic acid and/or maslinic acid | |
WO2008107183A1 (en) | Cynara scolymus extracts and compositions containing them | |
KR20110017402A (en) | Process for preparing a eucalyptus extract | |
Azrie et al. | Effect of solvents on the extraction of Kacip Fatimah (Labisia pumila) leaves | |
US8197862B2 (en) | Method of making distilled olive juice extracts | |
US20140378405A1 (en) | Salix extract, its use and formulations containing it | |
KR20150020466A (en) | The Composition Including the Extract of Cheonnyuncho Fruit for Use in the Treatment or Prevention of Inflammation | |
AU2010264200B2 (en) | Method for isolating cimiracemate A | |
KR20190060891A (en) | Method for producing hop extract | |
EP3437648A1 (en) | Method for producing nepodin-rich extract of rumex plant and nepodin-rich extract of rumex plant | |
JP2000290188A (en) | Xanthine oxydase inhibotor | |
JP2018140956A (en) | Vaccinium myrtillus-derived anthocyanin systemic absorption-promoting composition | |
AU2008224056A1 (en) | Cynara scolymus extracts and compositions containing them | |
US20080220096A1 (en) | Cynara scolymus extracts and compositions containing them | |
JP2013014550A (en) | Aggrecan degradation inhibitor | |
JP2012206983A (en) | Aggrecan degradation inhibitor | |
JP2007053947A (en) | Esterified propolis, method for production of the same, anticancer agent, and food formulation | |
JP2007238454A (en) | Angiogenesis inhibitor | |
JP2004123761A (en) | Xanthine oxidase inhibitor | |
JP2013544818A (en) | Extract of Nikkei substantially free of coumarin and process for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |