US20140356077A1 - Wedge anchor bolt - Google Patents
Wedge anchor bolt Download PDFInfo
- Publication number
- US20140356077A1 US20140356077A1 US13/907,473 US201313907473A US2014356077A1 US 20140356077 A1 US20140356077 A1 US 20140356077A1 US 201313907473 A US201313907473 A US 201313907473A US 2014356077 A1 US2014356077 A1 US 2014356077A1
- Authority
- US
- United States
- Prior art keywords
- wedge
- threaded
- cavity
- wedge member
- screw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000000994 depressogenic effect Effects 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 6
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 230000003313 weakening effect Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 238000010276 construction Methods 0.000 description 6
- 239000011435 rock Substances 0.000 description 6
- 238000004873 anchoring Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 241001503987 Clematis vitalba Species 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical group [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000009194 climbing Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000011151 fibre-reinforced plastic Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/38—Connections for building structures in general
- E04B1/41—Connecting devices specially adapted for embedding in concrete or masonry
- E04B1/4157—Longitudinally-externally threaded elements extending from the concrete or masonry, e.g. anchoring bolt with embedded head
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B29/00—Apparatus for mountaineering
- A63B29/02—Mountain guy-ropes or accessories, e.g. avalanche ropes; Means for indicating the location of accidentally buried, e.g. snow-buried, persons
- A63B29/024—Climbing chocks
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04G—SCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
- E04G21/00—Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
- E04G21/32—Safety or protective measures for persons during the construction of buildings
- E04G21/3261—Safety-nets; Safety mattresses; Arrangements on buildings for connecting safety-lines
- E04G21/3276—Arrangements on buildings for connecting safety-lines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16B—DEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
- F16B13/00—Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose
- F16B13/04—Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose with parts gripping in the hole or behind the reverse side of the wall after inserting from the front
- F16B13/06—Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose with parts gripping in the hole or behind the reverse side of the wall after inserting from the front combined with expanding sleeve
- F16B13/063—Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose with parts gripping in the hole or behind the reverse side of the wall after inserting from the front combined with expanding sleeve by the use of an expander
- F16B13/066—Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose with parts gripping in the hole or behind the reverse side of the wall after inserting from the front combined with expanding sleeve by the use of an expander fastened by extracting a separate expander-part, actuated by the screw, nail or the like
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62B—DEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
- A62B35/00—Safety belts or body harnesses; Similar equipment for limiting displacement of the human body, especially in case of sudden changes of motion
- A62B35/0043—Lifelines, lanyards, and anchors therefore
- A62B35/0068—Anchors
Definitions
- the present invention relates to low cost wedge anchor bolts of the type commonly used to mount metal structures to concrete.
- a low cost wedge anchor bolt 2 has a screw 4 with a screw-head 4 a and a shank 4 b .
- An expandable cage 6 is coaxially disposed around the shank 4 b , and the shank 4 b has a threaded end for engaging the internal threads of a wedge 8 at the distal end of the shank.
- An insertion portion 9 of the bolt 2 defined by the shank 4 b , cage 6 , and wedge 8 , is inserted into a drilled hole in the structure to which the anchor bolt is to be anchored.
- Low cost wedge anchor bolts like that shown in FIG. 1 can be used to provide fall protection for construction workers constructing buildings formed of concrete walls, floors, or ceilings.
- a piece of “bolt attachment” hardware is provided (not shown in FIG. 2 ) allowing for a worker's connection with the anchor bolt.
- the bolt attachment hardware is a plate having two through-apertures, one through which the screw 4 extends, for capturing and thus securing the bolt attachment hardware behind the screw-head and the wall (or ceiling, or other surface) into which the hole is drilled, and the other for allowing the user to connect with the anchor bolt via a clip known as a “carabiner.”
- the worker is wearing a harness and the harness is connected with the bolt attachment hardware via a lanyard having a carabiner at each end, one for connecting to the harness and one for connecting to the bolt attachment hardware.
- Low cost wedge anchor bolts used in providing fall protection for construction workers are generally not needed after construction is complete.
- the components of the basic wedge anchor bolt are typically formed of ordinary steel and are thus susceptible to corrosion. So it is often desirable, and it is often otherwise required by local building codes, to remove them after construction is complete, because corrosion of the bolt will weaken the surrounding concrete, thus weakening the structure.
- “Expansion” type anchor bolts have been provided in the prior art that are easily removable. Examples are those described in U.S. Pat. Nos. 7,357,363 and 8,353,653. A comparison of these with the anchor bolt 2 shows the “expansion” type to be a species of wedge anchor bolt, but with significant adaptations providing for ease of removability.
- the cage is formed of one or more spoons suspended by flexible rods or filaments; the wedge is spring-biased to wedge the spoons against the interior surfaces of the hole; a slidable bushing is provided for transmitting a hammering force applied to the bushing to the wedge for knocking the wedge out of its stuck position, placing the bolt in a relaxed configuration in which the bolt becomes loose in the hole; and a means is provided for remotely pulling the wedge relative to the spoons against the spring-bias to allow the bolt to maintain the relaxed configuration as the bolt is pulled out from the hole.
- the anchor bolt includes a screw member, a wedge member, and a cage member.
- the screw member has a head defining a proximal end of the screw member, and an elongate shank extending from the head and terminating at a distal end of the screw member.
- the shank has a threaded end, the head being or having a feature shaped for coupling with a tool so as to render the tool capable of turning the head about an elongate axis of the screw member, thereby either axially advancing or axially withdrawing the threads of the threaded shank.
- the wedge member is threadably engaged by the threaded portion of the shank.
- the cage member defines a cavity through which the threaded end of the shank extends and into which at least a portion of the threadably engaged wedge member is allowed to non-forcibly penetrate.
- the wedge member is shaped in cooperation with the cavity to force the cavity to undergo a radial expansion as a result of being drawn into the cavity by means of advancing the threads of the threaded shank, the wedge member becoming stuck in the cavity as a result.
- the screw member includes at least one of (1) one or more depressed portions, and (2) one or more projecting portions, defining a step of abruptly increasing radial dimension of the screw, and the cage member includes one or more corresponding step-engaging portions for making an interference contact with the step when the threads have been withdrawn from the cage and wedge members a sufficient amount, so that further withdrawal of the threads ceases to withdraw the threads relative to the cage member while continuing to withdraw the threads relative to the wedge member, thereby forcing the wedge member distally relative to the cavity.
- the anchor bolt is limited to screw members having one or more depressed portions for defining the step; more preferably, the one or more depressed portions is a necked-down portion of the screw member; and most preferably, the necked-down portion is substantially cylindrical.
- each of the one or more step engaging portions is or includes a tang depending from the cage member.
- the anchor bolt includes a keeper at the distal-most end of the threaded member, for stopping the wedge member from becoming completely disengaged with the threaded member and thereby preventing the wedge member from being forced away from the threaded member as a result of forcing the wedge member distally relative to the cavity.
- the anchor bolt includes a screw member, a wedge member, and a cage member, the screw member having a threaded end and defining a screw axis, the threaded end of the screw member being threadably engaged into the wedge member, the cage member defining a cavity through which the threaded end of the screw member extends and into which at least a portion of the threadably engaged wedge member is allowed to non-forcibly penetrate.
- the anchor bolt has been inserted into the hole in a first axial direction parallel to the screw axis, and the wedge member is shaped in cooperation with the cavity to force the cavity to undergo an expansion in one or more directions perpendicular to the screw axis as a result of being drawn into the cavity by means of turning the screw so as to advance the threads of the threaded end, the anchor bolt being thereby wedged in the hole with the wedge member stuck in the cavity.
- the method For ejecting the wedge member from the cavity according to the invention, the method provides a step of turning the screw member in a first radial direction for withdrawing the threads from the wedge member, thereby causing the screw member to translate relative to the cage member in a second axial direction opposite the first axial direction; and a step of stopping the screw member from further axial translation relative to the cage member in the second axial direction while allowing for continued turning of the screw member in the first radial direction, so that further withdrawal of the threads from the wedge member will result in forcing the wedge member in the first axial direction relative to the cavity.
- the method provides a step of continuing to turn the screw in the first radial direction and thereby continuing to withdraw the threads from the wedge member, thereby resulting in forcing the wedge member in the first axial direction relative to the cavity.
- FIG. 1 is an isometric view of a prior art basic wedge anchor bolt.
- FIG. 2 is an isometric view of an easily removable low cost wedge anchor bolt according to the present invention.
- FIG. 3 is an exploded isometric view of the wedge anchor bolt of FIG. 2 .
- FIG. 4 is an isometric view of an alternative wedge according to the invention.
- FIG. 5 is a side sectional view showing the anchor bolt of FIG. 2 installed loosely in a drilled hole.
- FIG. 6 is a side sectional view of the anchor bolt of FIG. 2 in an anchoring configuration, after having been tightened.
- FIG. 7 is a cut-away isometric view of the wedge anchor bolt of FIG. 2 , showing a step formed in a screw according to the invention and a corresponding step-engaging portion of a cage according to the invention, the step-engaging portion being shown looking from the top, the step and step-engaging portion being in a first relative position in which the step-engaging portion is spaced apart from the step.
- FIG. 8 is a cut-away isometric view of the wedge anchor bolt of FIG. 2 , showing the step and step-engaging portion of FIG. 7 with the step-engaging portion being shown looking from the side.
- FIG. 9 is a cut-away isometric view of the wedge anchor bolt of FIG. 2 , showing the step and step-engaging portion as depicted in FIG. 7 in a second relative position in which the step-engaging portion has made contact with the step, after starting from the first relative position of FIG. 7 and withdrawing the threads of the screw.
- FIG. 10 is a cut-away isometric view of the wedge anchor bolt of FIG. 2 , showing the step and step-engaging portion as depicted in FIG. 8 in the second relative position shown in FIG. 9 .
- FIG. 11 is a cut-away side elevation of a screw and cage assembly for reference in defining an “abrupt” transition for a step according to the invention.
- FIG. 12 is a cut-away side elevation of a screw and cage assembly showing an alternative configuration, compared to that shown in FIGS. 3 and 7 - 10 , for a “necked-down” portion of a screw for defining a step according to the invention.
- FIG. 13 is a cut-away side elevation of a screw and cage assembly illustrating a “necked-up” portion of a screw for defining a step according to the invention, for comparison with the “necked-down” portions of FIGS. 3 , 7 - 10 , and 12 .
- FIG. 14 is a cut-away side elevation of a screw and cage assembly showing an alternative configuration, compared to that shown in FIG. 13 , for a “necked-up” portion of a screw for defining a step according to the invention.
- FIG. 15 is a front elevation, taken along the line 15 - 15 , of the screw and cage assembly of FIG. 14 .
- FIG. 16 is a cut-away side elevation of a screw and cage assembly showing a first alternative step-engaging portion to that shown in FIGS. 12-14 , according to the invention.
- FIG. 17 is a cut-away side elevation of a screw and cage assembly showing a second alternative step-engaging portion, which is an alternative to the step-engaging portion of FIG. 16 , according to the invention.
- FIGS. 2 and 3 show a preferred removable low cost wedge anchor bolt 10 according to the present invention. It will be understood that the bolt 10 may be used in any application in which standard prior art wedge anchor bolts are used. However, the bolt 10 is particularly advantageous in applications where it is important to be able to easily remove the bolt when its service life is over.
- At least two such applications are (1) to provide fall protection for construction workers such as previously described; and (2) to provide temporary anchor points for rock climbers.
- low cost wedge anchor bolts used for rock climbing are installed in holes drilled into the rock. Once in place, the bolts are exposed to the elements making it even more important to remove them after a time, both to ensure climber safety and to return the rock, as much as possible, to its natural condition. This is particularly so if the rock is ferrous and is therefore particularly susceptible to weakening as a result of corrosion of the anchor bolt.
- the bolt 10 is preferably provided with bolt attachment hardware 12 having two through apertures—a through aperture 12 a for receiving the screw 14 , and a through aperture 12 b for receiving a caribiner as explained previously.
- the apertures 12 a and 12 b are both contiguously surrounded by metal, thus preventing any possibility of the screw 14 and the caribiner (assuming no failure of the caribiner itself) escaping from the respective apertures.
- Structural support for the bolt 10 is provided by a screw 14 which has a head 14 a at its proximal end.
- the head 14 a shown is hexagonally shaped, to allow for turning the screw about its elongate axis “L” by use of a standard hex wrench.
- the head 14 a may have other shapes, or include features such as slots (e.g., for receiving standard bladed or Phillips type screwdrivers) or shaped depressions (e.g., for receiving a standard hexagonally shaped key or Allen wrench) allowing for the same functionality, that is, for turning the screw by use of a standard hand tool.
- the screw 14 has an elongate shank 14 b which extends from the head 14 a and terminates at the distal end of the screw 14 .
- the shank 14 b has a threaded end 14 b 1 ; turning the screw 14 in one radial direction, e.g., clockwise about the axis L, advances these threads in a first axial direction, along the axis L, toward the distal end of the screw, whereas turning the screw in the opposite radial direction withdraws the threads, in a second axial direction opposite the first axial direction, toward the proximal end of the screw.
- the screw 14 as described can be any ordinary bolt.
- the screw 14 is combined with two more parts, namely a wedge 16 and a cage 18 .
- the external threads of the threaded end 14 b 1 of the shank 14 b of the screw 14 are for engaging complementary internal threads of the wedge 16 .
- the wedge 16 functions in cooperation with a cavity 18 a of the cage 18 to force the cavity to undergo a radial expansion, i.e., in directions perpendicular to the axis L, as a result of being drawn into the cavity by means of advancing the threads of the threaded shank.
- the cavity and, especially, the wedge could have many different shapes to perform this function.
- the cavity is (internally) cylindrical and the wedge is (externally) frustoconical, as in the preferred embodiment shown in FIGS. 2 and 3 .
- an alternative wedge 17 having a series of spaced-apart gripping elements, here axially extending depressions or, in a related alternative (not shown), protusions provides for an improved grip on the internal surface of the cavity, and thus can be advantageous to reduce the tendency of the wedge to spin inside the cavity as the threads are being advanced.
- the cavity is provided at the distal end of the cage 18 . It can be adapted for forced radial expansion in any number of ways known in the art. Generally, two or more lines of weakening 18 b are provided.
- the lines of weakening typically run axially, i.e. parallel to the axis L, and are typically apertures that pass through the sides of the cage. However, it is not essential for the lines of weakening to run axially; for example, they could be spirals. It is, however, preferable for lines of weakening to run more axially than radially (perpendicular to the axis L).
- a line of weakening it is also not essential for a line of weakening to be formed of holes passing through the sides of the cage; for example, it could be a line along which the material of which the cage is formed is thinner, or weaker. Further, it is not essential for a line of weakening to be continuous; for example, it could be a line of perforations. Further still, it is not essential to provide weakening along lines; for example, perforations or apertures could be provided in any desired pattern, so long as sufficient physical integrity of the cavity remains to provide for the anchoring function. Unless otherwise indicated, there is no intention to limit the invention in regards to the configuration of the cavity and wedge combination for achieving the function of forced radial expansion of the cavity by the wedge as a result of drawing the wedge farther into the cavity.
- FIG. 5 shows the bolt 10 just after insertion into a hole 20 which has been drilled into a concrete or rock wall 23 .
- the bolt is, at this point, loose in the hole.
- FIG. 6 shows the same bolt after it has been fully tightened, by turning the head 14 a of the screw in the direction required to advance the threads of the threaded end of the screw into the threads of the wedge.
- the cavity When fully tightened, the cavity is forcibly radially expanded, so that outer surface(s) of the cavity is (are) pressed hard against the internal surface(s) of the hole, and the bolt is gripped by the wall 23 as a result of friction between the outer surface of the cage 16 and the inner surface of the hole.
- the cavity 18 a resists being forcibly expanded due to its own structural integrity, and once it has been expanded sufficiently to seat against the interior surface of the hole, it resists being expanded further by the interior surface of the hole.
- tightening the bolt ultimately results in jamming the wedge 16 in the cavity 18 a , with the wedge becoming stuck in the cavity.
- Loosening the bolt requires turning the head 14 a of the screw in the opposite direction that was required for tightening the bolt, thereby withdrawing the threads. Because the wedge is jammed in the cavity, the threads withdraw from the wedge, and the screw 14 starts to back out of the cage 16 . If not for the feature described immediately below, the screw would continue to back out of the cage until it becomes fully separated from the bolt, leaving the cage and wedge behind, stuck in the hole as in the prior art.
- the screw 14 includes a “necked-down” portion 14 c , which can be seen in FIG. 3 , which results in a step 14 c 1 of abruptly increasing width of the screw; and cooperating with this, the cage 16 includes a corresponding one or more step-engaging portions 18 c for interferingly engaging with the step 14 c 1 , once the screw 14 has backed out of the cage 16 a sufficient amount for the step to come into interfering contact with a free end 18 c 1 of a step-engaging portion.
- FIGS. 7 and 8 show these features prior to the screw 14 being backed out of the cage 16 sufficiently to bring the step into contact with the step-engaging portions of the cage; and corresponding FIGS. 9 and 10 show the same features after such contact has been made, at which point further relative axial movement of the screw relative to the cage is halted. That is, the threads will cease to significantly advance (or withdraw) relative to the cage.
- Ejecting the wedge 16 from the cavity results in a relaxation of the grip provided by the cage on the interior surface of the hole, allowing the screw 14 to be pulled from the hole, carrying the cage 18 along with it as a result of the interfering relationship between the step of the screw and the step-engaging portion(s) of the cage.
- the step defines a region over which there is a transition, more particularly an increase, in the radial dimension of the screw.
- this transition is preferably “abrupt,” meaning that, over a region of “X” units of measure along the axis “L,” measured where the screw is adapted to make contact with the step-engaging portion, the radial dimension “R” increases at least 2 ⁇ , more preferably at least 5 ⁇ , and most preferably at least 10 ⁇ .
- the reason for preferring a more abrupt transition is to confer the greatest mechanical advantage on the step-engaging portion(s).
- a perfect step is where “X” is zero, and X could also be negative (measured from the point “P” in the direction opposite the “+” direction).
- a keeper 22 such as a common circlip, is preferably attached to the screw 14 at its distal end in a standard manner. Providing a keeper is preferable but not essential. If the threaded end of the bolt is not too short, the wedge will remain threaded to the screw after it has been ejected from the cavity.
- the one or more step-engaging features 18 c are preferably integrally formed parts of the cage 18 . As best seen in FIG. 3 , this is by creating, such as by die cutting, one or more elongate apertures 19 through the cage so as to define one or more elongate edges of the feature 18 c , which as a result become separated from the remaining portions of the cage 18 .
- the aperture(s) 19 extend only partially around the feature 18 e , so that the feature 18 c remains connected to the cage 18 , such as in the vicinity indicated as 21 , as a cantilevered projection.
- This projection because it is cantilevered, may be bent, independently of the surrounding material of which the cage is formed, radially inwardly (toward the axis L), allowing the free end of the tang ( 18 c 1 ) to interfere with the step ( 14 c 1 ).
- tang is the closest English word of which Applicant is aware that describes a step-engaging feature like that described immediately above. According to the standard definition, a “tang” is limited to projecting parts that are “slender.” With reference to the dimensions “a” and “b” in FIG. 3 for the step-engaging feature 18 c , and with reference to the dimension “t” in FIG. 8 of the same feature, there may be an ambiguity as to what is meant by “slender.” As shown, dimensions “a” and “b” are roughly equivalent, and it is to be understood that either dimension could be significantly larger than the other. So the feature 18 c is “slender” with respect to the dimension “t,” being considerably less than either dimensions “a” or “b.”
- the term “tang” is defined in its ordinary manner, with the proviso that it is connected to the structure from which it projects without joints or seams, implying that it is formed out of the same block of material of which the cage is formed, and it is slender, meaning for purposes herein that, with reference to its width, length, and depth dimensions as measured along three respective mutually orthogonal axes, at least one of these dimensions is significantly smaller than at least one other of these dimensions, where “significantly smaller” means at least 3 times smaller, more preferably at least 5 times smaller, and most preferably at least 10 times smaller.
- a tang that is more slender can be appreciated by recognizing that, since the tang is formed from the same block of material from which the cage is formed, any material devoted to the tang necessarily subtracts from the material that could have been devoted to the cage. Thus the reason to prefer a tang that is more slender is to minimize the amount of material that is not available for strengthening the cage, to use for the step-engaging function, which requires a significant degree of projection (e.g., a significant dimension “b” as shown in FIG. 3 , or a significant dimension “1” as shown in FIG. 14 ) but not much strength.
- a significant degree of projection e.g., a significant dimension “b” as shown in FIG. 3 , or a significant dimension “1” as shown in FIG. 14
- FIG. 12 shows an alternative screw 24 and cage 28 , illustrating why it is not important for the necked down portion 24 c of the screw to be cylindrical.
- FIG. 13 shows an alternative screw 34 and cage 38 , illustrating an alternative to use of a necked down portion to provide the step.
- a necked down portion to provide the step.
- the portion 34 c could be a removable part, such as a circlip, in which case the screw 34 would have a circumferential groove for receiving the circlip.
- FIGS. 14 and 15 show another alternative screw 44 , illustrating a modification of the screw 34 of FIG. 12 .
- the screw has a projection 44 c that does not encircle the screw as does the projection 34 c of the screw 34 .
- the projection 44 c extends over an arc length “S 1 ” and step-engaging portions 48 e are arranged so that there are no gaps of arc larger than “S 2 ,” where S 2 ⁇ S 1 .
- FIG. 14 is less preferred than those of FIGS. 12 and 13 because it results in a relative abundance of excess space between the cage and screw, allowing for an excess of undesirable lateral movement of the screw inside the cage.
- FIG. 15 is less preferred than that of FIG. 14 because it requires more of the cage to be devoted to the step-engaging function, which tends to weaken the cage if the step-engaging portions are tangs, and which, if the step-engaging portions are attached to the cage with joints or seams, requires more costly manufacturing.
- step-engaging portions ( 28 e , 38 c , 48 c ) are tangs.
- FIG. 16 An alternative to the tang is shown in FIG. 16 .
- the screw could be either 14 or 24 , or it could have a different configuration from either of these.
- the step-engaging portion 58 c is formed by adding metal to the cage. It is not a tang because it connected to the cage with a joint or seam.
- the screw could be either 14 or 24 or it could have a different configuration from either of these.
- the step-engaging portion 68 c is formed by displacing metal of the cage 68 . It is not a tang if it is not slender, and as drawn, it would not be slender unless its measured dimension perpendicular to the plane of the Figure is significantly less than its dimensions “l” and “w” in the plane of the Figure.
- the screw, cage, and wedge are all preferably formed of carbon steel.
- other metals e.g., fiber reinforced plastics
- fiber reinforced plastics e.g., fiber reinforced plastics
- the anchor bolt 10 includes a “compression bushing” 25 , which is typically formed of a polymer.
- the compression bushing 25 has a relatively high compliance as compared to the attachment hardware and the cage 18 and has a substantial thickness allowing for a substantial amount of deformation, qualities which allow it to prevent the attachment hardware 12 from making hard contact with the end 18 d of the cage 18 before seating against the surface 23 a of the structure (see FIG. 6 ).
- This function could alternatively be performed by a split-ring washer, or any other structure providing the same or similar qualities.
- a split-ring washer 26 may also be provided between the screw-head 14 a and the attachment hardware to provide a positive indication to the user of when the anchor bolt 10 is fully tightened.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Physical Education & Sports Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Pulmonology (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Dowels (AREA)
Abstract
Description
- The present invention relates to low cost wedge anchor bolts of the type commonly used to mount metal structures to concrete.
- An example is shown in
FIG. 1 . A low costwedge anchor bolt 2 has ascrew 4 with a screw-head 4 a and ashank 4 b. Anexpandable cage 6 is coaxially disposed around theshank 4 b, and theshank 4 b has a threaded end for engaging the internal threads of awedge 8 at the distal end of the shank. Aninsertion portion 9 of thebolt 2, defined by theshank 4 b,cage 6, andwedge 8, is inserted into a drilled hole in the structure to which the anchor bolt is to be anchored. - Turning the
screw 4 in one direction, typically clockwise, threads theshank 4 b further into thewedge 8, drawing the wedge into thecage 6 and thereby causing the cage to expand. Continuing to turn the screw in the same direction eventually results in thecage 6 being expanded sufficiently tightly against the interior surface(s) of the hole to result in a frictional anchoring of theinsertion portion 9 therein. - Low cost wedge anchor bolts like that shown in
FIG. 1 can be used to provide fall protection for construction workers constructing buildings formed of concrete walls, floors, or ceilings. For that purpose a piece of “bolt attachment” hardware is provided (not shown inFIG. 2 ) allowing for a worker's connection with the anchor bolt. Typically, the bolt attachment hardware is a plate having two through-apertures, one through which thescrew 4 extends, for capturing and thus securing the bolt attachment hardware behind the screw-head and the wall (or ceiling, or other surface) into which the hole is drilled, and the other for allowing the user to connect with the anchor bolt via a clip known as a “carabiner.” Typically, the worker is wearing a harness and the harness is connected with the bolt attachment hardware via a lanyard having a carabiner at each end, one for connecting to the harness and one for connecting to the bolt attachment hardware. - Low cost wedge anchor bolts used in providing fall protection for construction workers are generally not needed after construction is complete. Moreover, to maintain the low cost, the components of the basic wedge anchor bolt are typically formed of ordinary steel and are thus susceptible to corrosion. So it is often desirable, and it is often otherwise required by local building codes, to remove them after construction is complete, because corrosion of the bolt will weaken the surrounding concrete, thus weakening the structure.
- The problem is that the low cost wedge anchor bolt is not easily removable. Once the bolt is tightened, the
cage 6 andwedge 8 become, together, stuck in the hole, and there is no mechanism provided for separating them. Thus while turning the screw in the opposite direction allows for withdrawing thescrew 4 from the hole, thecage 6 and thewedge 8 will typically remain behind, requiring another drilling step to drill these parts out of the hole so that complete removal of the anchor bolt can be accomplished. - “Expansion” type anchor bolts have been provided in the prior art that are easily removable. Examples are those described in U.S. Pat. Nos. 7,357,363 and 8,353,653. A comparison of these with the
anchor bolt 2 shows the “expansion” type to be a species of wedge anchor bolt, but with significant adaptations providing for ease of removability. For example, in the typical expansion type anchor bolt, the cage is formed of one or more spoons suspended by flexible rods or filaments; the wedge is spring-biased to wedge the spoons against the interior surfaces of the hole; a slidable bushing is provided for transmitting a hammering force applied to the bushing to the wedge for knocking the wedge out of its stuck position, placing the bolt in a relaxed configuration in which the bolt becomes loose in the hole; and a means is provided for remotely pulling the wedge relative to the spoons against the spring-bias to allow the bolt to maintain the relaxed configuration as the bolt is pulled out from the hole. - These adaptations have resulted in the cost of expansion type anchor bolts being significantly higher than that of basic, low cost wedge anchor bolts like that shown in
FIG. 1 , to the extent that, even with the additional drilling step, the low cost wedge type anchor bolt is the least costly alternative. - Accordingly there is a need for a basic wedge anchor bolt, i.e., a wedge anchor bolt that is cost competitive with the
bolt 2 shown inFIG. 1 , which provides an ease of removability that has heretofore only been available in the relatively expensive “expansion” type anchor bolts. - Disclosed is an easily removable low cost wedge anchor bolt. The anchor bolt includes a screw member, a wedge member, and a cage member. The screw member has a head defining a proximal end of the screw member, and an elongate shank extending from the head and terminating at a distal end of the screw member. The shank has a threaded end, the head being or having a feature shaped for coupling with a tool so as to render the tool capable of turning the head about an elongate axis of the screw member, thereby either axially advancing or axially withdrawing the threads of the threaded shank. The wedge member is threadably engaged by the threaded portion of the shank. The cage member defines a cavity through which the threaded end of the shank extends and into which at least a portion of the threadably engaged wedge member is allowed to non-forcibly penetrate. The wedge member is shaped in cooperation with the cavity to force the cavity to undergo a radial expansion as a result of being drawn into the cavity by means of advancing the threads of the threaded shank, the wedge member becoming stuck in the cavity as a result.
- For ejecting the wedge member from the cavity according to the invention, the screw member includes at least one of (1) one or more depressed portions, and (2) one or more projecting portions, defining a step of abruptly increasing radial dimension of the screw, and the cage member includes one or more corresponding step-engaging portions for making an interference contact with the step when the threads have been withdrawn from the cage and wedge members a sufficient amount, so that further withdrawal of the threads ceases to withdraw the threads relative to the cage member while continuing to withdraw the threads relative to the wedge member, thereby forcing the wedge member distally relative to the cavity.
- Preferably, the anchor bolt is limited to screw members having one or more depressed portions for defining the step; more preferably, the one or more depressed portions is a necked-down portion of the screw member; and most preferably, the necked-down portion is substantially cylindrical.
- Preferably, in combination with any of the embodiments described above, each of the one or more step engaging portions is or includes a tang depending from the cage member.
- Preferably, in combination with any of the embodiments described above, the anchor bolt includes a keeper at the distal-most end of the threaded member, for stopping the wedge member from becoming completely disengaged with the threaded member and thereby preventing the wedge member from being forced away from the threaded member as a result of forcing the wedge member distally relative to the cavity.
- Also disclosed is a method for removing an anchor bolt from a hole, where the anchor bolt includes a screw member, a wedge member, and a cage member, the screw member having a threaded end and defining a screw axis, the threaded end of the screw member being threadably engaged into the wedge member, the cage member defining a cavity through which the threaded end of the screw member extends and into which at least a portion of the threadably engaged wedge member is allowed to non-forcibly penetrate. The anchor bolt has been inserted into the hole in a first axial direction parallel to the screw axis, and the wedge member is shaped in cooperation with the cavity to force the cavity to undergo an expansion in one or more directions perpendicular to the screw axis as a result of being drawn into the cavity by means of turning the screw so as to advance the threads of the threaded end, the anchor bolt being thereby wedged in the hole with the wedge member stuck in the cavity.
- For ejecting the wedge member from the cavity according to the invention, the method provides a step of turning the screw member in a first radial direction for withdrawing the threads from the wedge member, thereby causing the screw member to translate relative to the cage member in a second axial direction opposite the first axial direction; and a step of stopping the screw member from further axial translation relative to the cage member in the second axial direction while allowing for continued turning of the screw member in the first radial direction, so that further withdrawal of the threads from the wedge member will result in forcing the wedge member in the first axial direction relative to the cavity.
- Preferably, during the step of stopping, the method provides a step of continuing to turn the screw in the first radial direction and thereby continuing to withdraw the threads from the wedge member, thereby resulting in forcing the wedge member in the first axial direction relative to the cavity.
- It is to be understood that this summary is provided as a means of generally determining what follows in the drawings and detailed description and is not intended to limit the scope of the invention. Objects, features and advantages of the invention will be readily understood upon consideration of the following detailed description taken in conjunction with the accompanying drawings.
-
FIG. 1 is an isometric view of a prior art basic wedge anchor bolt. -
FIG. 2 is an isometric view of an easily removable low cost wedge anchor bolt according to the present invention. -
FIG. 3 is an exploded isometric view of the wedge anchor bolt ofFIG. 2 . -
FIG. 4 is an isometric view of an alternative wedge according to the invention. -
FIG. 5 is a side sectional view showing the anchor bolt ofFIG. 2 installed loosely in a drilled hole. -
FIG. 6 is a side sectional view of the anchor bolt ofFIG. 2 in an anchoring configuration, after having been tightened. -
FIG. 7 is a cut-away isometric view of the wedge anchor bolt ofFIG. 2 , showing a step formed in a screw according to the invention and a corresponding step-engaging portion of a cage according to the invention, the step-engaging portion being shown looking from the top, the step and step-engaging portion being in a first relative position in which the step-engaging portion is spaced apart from the step. -
FIG. 8 is a cut-away isometric view of the wedge anchor bolt ofFIG. 2 , showing the step and step-engaging portion ofFIG. 7 with the step-engaging portion being shown looking from the side. -
FIG. 9 is a cut-away isometric view of the wedge anchor bolt ofFIG. 2 , showing the step and step-engaging portion as depicted inFIG. 7 in a second relative position in which the step-engaging portion has made contact with the step, after starting from the first relative position ofFIG. 7 and withdrawing the threads of the screw. -
FIG. 10 is a cut-away isometric view of the wedge anchor bolt ofFIG. 2 , showing the step and step-engaging portion as depicted inFIG. 8 in the second relative position shown inFIG. 9 . -
FIG. 11 is a cut-away side elevation of a screw and cage assembly for reference in defining an “abrupt” transition for a step according to the invention. -
FIG. 12 is a cut-away side elevation of a screw and cage assembly showing an alternative configuration, compared to that shown in FIGS. 3 and 7-10, for a “necked-down” portion of a screw for defining a step according to the invention. -
FIG. 13 is a cut-away side elevation of a screw and cage assembly illustrating a “necked-up” portion of a screw for defining a step according to the invention, for comparison with the “necked-down” portions ofFIGS. 3 , 7-10, and 12. -
FIG. 14 is a cut-away side elevation of a screw and cage assembly showing an alternative configuration, compared to that shown inFIG. 13 , for a “necked-up” portion of a screw for defining a step according to the invention. -
FIG. 15 is a front elevation, taken along the line 15-15, of the screw and cage assembly ofFIG. 14 . -
FIG. 16 is a cut-away side elevation of a screw and cage assembly showing a first alternative step-engaging portion to that shown inFIGS. 12-14 , according to the invention. -
FIG. 17 is a cut-away side elevation of a screw and cage assembly showing a second alternative step-engaging portion, which is an alternative to the step-engaging portion ofFIG. 16 , according to the invention. -
FIGS. 2 and 3 show a preferred removable low costwedge anchor bolt 10 according to the present invention. It will be understood that thebolt 10 may be used in any application in which standard prior art wedge anchor bolts are used. However, thebolt 10 is particularly advantageous in applications where it is important to be able to easily remove the bolt when its service life is over. - At least two such applications are (1) to provide fall protection for construction workers such as previously described; and (2) to provide temporary anchor points for rock climbers. Like in the construction application, low cost wedge anchor bolts used for rock climbing are installed in holes drilled into the rock. Once in place, the bolts are exposed to the elements making it even more important to remove them after a time, both to ensure climber safety and to return the rock, as much as possible, to its natural condition. This is particularly so if the rock is ferrous and is therefore particularly susceptible to weakening as a result of corrosion of the anchor bolt.
- As is standard in the art, the
bolt 10 is preferably provided withbolt attachment hardware 12 having two through apertures—a throughaperture 12 a for receiving thescrew 14, and a throughaperture 12 b for receiving a caribiner as explained previously. Theapertures screw 14 and the caribiner (assuming no failure of the caribiner itself) escaping from the respective apertures. - Structural support for the
bolt 10 is provided by ascrew 14 which has ahead 14 a at its proximal end. Thehead 14 a shown is hexagonally shaped, to allow for turning the screw about its elongate axis “L” by use of a standard hex wrench. Thehead 14 a may have other shapes, or include features such as slots (e.g., for receiving standard bladed or Phillips type screwdrivers) or shaped depressions (e.g., for receiving a standard hexagonally shaped key or Allen wrench) allowing for the same functionality, that is, for turning the screw by use of a standard hand tool. - The
screw 14 has anelongate shank 14 b which extends from thehead 14 a and terminates at the distal end of thescrew 14. Theshank 14 b has a threadedend 14 b 1; turning thescrew 14 in one radial direction, e.g., clockwise about the axis L, advances these threads in a first axial direction, along the axis L, toward the distal end of the screw, whereas turning the screw in the opposite radial direction withdraws the threads, in a second axial direction opposite the first axial direction, toward the proximal end of the screw. - So far, the
screw 14 as described can be any ordinary bolt. To form a low cost wedge anchor bolt, thescrew 14 is combined with two more parts, namely awedge 16 and acage 18. - The external threads of the threaded
end 14 b 1 of theshank 14 b of thescrew 14 are for engaging complementary internal threads of thewedge 16. Thewedge 16 functions in cooperation with acavity 18 a of thecage 18 to force the cavity to undergo a radial expansion, i.e., in directions perpendicular to the axis L, as a result of being drawn into the cavity by means of advancing the threads of the threaded shank. The cavity and, especially, the wedge could have many different shapes to perform this function. Typically, the cavity is (internally) cylindrical and the wedge is (externally) frustoconical, as in the preferred embodiment shown inFIGS. 2 and 3 . Thus the description so far describes both thebolt 10 and theprior art bolt 2 shown inFIG. 1 . And generally, there is no intention to limit the invention to particular shapes or configurations. - However, with reference to
FIG. 4 , analternative wedge 17 having a series of spaced-apart gripping elements, here axially extending depressions or, in a related alternative (not shown), protusions, provides for an improved grip on the internal surface of the cavity, and thus can be advantageous to reduce the tendency of the wedge to spin inside the cavity as the threads are being advanced. Such gripping elements—depressions or protusions—could be provided in any number of shapes, patterns and configurations, and could be provided on the interior surface of the cavity as well, alone or in combination with gripping elements on the wedge itself. - The cavity is provided at the distal end of the
cage 18. It can be adapted for forced radial expansion in any number of ways known in the art. Generally, two or more lines of weakening 18 b are provided. The lines of weakening typically run axially, i.e. parallel to the axis L, and are typically apertures that pass through the sides of the cage. However, it is not essential for the lines of weakening to run axially; for example, they could be spirals. It is, however, preferable for lines of weakening to run more axially than radially (perpendicular to the axis L). It is also not essential for a line of weakening to be formed of holes passing through the sides of the cage; for example, it could be a line along which the material of which the cage is formed is thinner, or weaker. Further, it is not essential for a line of weakening to be continuous; for example, it could be a line of perforations. Further still, it is not essential to provide weakening along lines; for example, perforations or apertures could be provided in any desired pattern, so long as sufficient physical integrity of the cavity remains to provide for the anchoring function. Unless otherwise indicated, there is no intention to limit the invention in regards to the configuration of the cavity and wedge combination for achieving the function of forced radial expansion of the cavity by the wedge as a result of drawing the wedge farther into the cavity. - The resulting anchoring is illustrated by
FIGS. 5 and 6 .FIG. 5 shows thebolt 10 just after insertion into ahole 20 which has been drilled into a concrete orrock wall 23. The bolt is, at this point, loose in the hole. -
FIG. 6 shows the same bolt after it has been fully tightened, by turning thehead 14 a of the screw in the direction required to advance the threads of the threaded end of the screw into the threads of the wedge. When fully tightened, the cavity is forcibly radially expanded, so that outer surface(s) of the cavity is (are) pressed hard against the internal surface(s) of the hole, and the bolt is gripped by thewall 23 as a result of friction between the outer surface of thecage 16 and the inner surface of the hole. - The
cavity 18 a resists being forcibly expanded due to its own structural integrity, and once it has been expanded sufficiently to seat against the interior surface of the hole, it resists being expanded further by the interior surface of the hole. Thus, tightening the bolt ultimately results in jamming thewedge 16 in thecavity 18 a, with the wedge becoming stuck in the cavity. - Loosening the bolt requires turning the
head 14 a of the screw in the opposite direction that was required for tightening the bolt, thereby withdrawing the threads. Because the wedge is jammed in the cavity, the threads withdraw from the wedge, and thescrew 14 starts to back out of thecage 16. If not for the feature described immediately below, the screw would continue to back out of the cage until it becomes fully separated from the bolt, leaving the cage and wedge behind, stuck in the hole as in the prior art. - To solve this problem in accord with the invention, the
screw 14 includes a “necked-down”portion 14 c, which can be seen inFIG. 3 , which results in astep 14 c 1 of abruptly increasing width of the screw; and cooperating with this, thecage 16 includes a corresponding one or more step-engagingportions 18 c for interferingly engaging with thestep 14 c 1, once thescrew 14 has backed out of thecage 16 a sufficient amount for the step to come into interfering contact with afree end 18 c 1 of a step-engaging portion. -
FIGS. 7 and 8 show these features prior to thescrew 14 being backed out of thecage 16 sufficiently to bring the step into contact with the step-engaging portions of the cage; and correspondingFIGS. 9 and 10 show the same features after such contact has been made, at which point further relative axial movement of the screw relative to the cage is halted. That is, the threads will cease to significantly advance (or withdraw) relative to the cage. - Advantageously, as the threads are still threadably engaged with the
wedge 16, continuing to turn thescrew 14 so as to continue to withdraw the threads now forces the wedge in the opposite direction, toward the distal end of the screw, thereby forcibly ejecting it from thecavity 18 a. - Ejecting the
wedge 16 from the cavity results in a relaxation of the grip provided by the cage on the interior surface of the hole, allowing thescrew 14 to be pulled from the hole, carrying thecage 18 along with it as a result of the interfering relationship between the step of the screw and the step-engaging portion(s) of the cage. - As the name implies, the step defines a region over which there is a transition, more particularly an increase, in the radial dimension of the screw. With reference to
FIG. 11 , this transition is preferably “abrupt,” meaning that, over a region of “X” units of measure along the axis “L,” measured where the screw is adapted to make contact with the step-engaging portion, the radial dimension “R” increases at least 2×, more preferably at least 5×, and most preferably at least 10×. The reason for preferring a more abrupt transition is to confer the greatest mechanical advantage on the step-engaging portion(s). A perfect step is where “X” is zero, and X could also be negative (measured from the point “P” in the direction opposite the “+” direction). - To ensure that the
wedge 16 is not ejected so far from the cavity as to become disengaged with the threads of thescrew 14, and therefore to reduce the risk that the wedge will be left behind in the hole, akeeper 22, such as a common circlip, is preferably attached to thescrew 14 at its distal end in a standard manner. Providing a keeper is preferable but not essential. If the threaded end of the bolt is not too short, the wedge will remain threaded to the screw after it has been ejected from the cavity. - To maintain low cost, the one or more step-engaging
features 18 c are preferably integrally formed parts of thecage 18. As best seen inFIG. 3 , this is by creating, such as by die cutting, one or moreelongate apertures 19 through the cage so as to define one or more elongate edges of thefeature 18 c, which as a result become separated from the remaining portions of thecage 18. The aperture(s) 19 extend only partially around the feature 18 e, so that thefeature 18 c remains connected to thecage 18, such as in the vicinity indicated as 21, as a cantilevered projection. This projection, because it is cantilevered, may be bent, independently of the surrounding material of which the cage is formed, radially inwardly (toward the axis L), allowing the free end of the tang (18 c 1) to interfere with the step (14 c 1). - The word “tang” is the closest English word of which Applicant is aware that describes a step-engaging feature like that described immediately above. According to the standard definition, a “tang” is limited to projecting parts that are “slender.” With reference to the dimensions “a” and “b” in
FIG. 3 for the step-engagingfeature 18 c, and with reference to the dimension “t” inFIG. 8 of the same feature, there may be an ambiguity as to what is meant by “slender.” As shown, dimensions “a” and “b” are roughly equivalent, and it is to be understood that either dimension could be significantly larger than the other. So thefeature 18 c is “slender” with respect to the dimension “t,” being considerably less than either dimensions “a” or “b.” - There may also be an ambiguity as to whether a “tang” as ordinarily defined is limited to projections that are monolithic—in the sense of being connected without joints or seams—extensions of the structures from which they depend.
- To resolve these ambiguities, as used herein the term “tang” is defined in its ordinary manner, with the proviso that it is connected to the structure from which it projects without joints or seams, implying that it is formed out of the same block of material of which the cage is formed, and it is slender, meaning for purposes herein that, with reference to its width, length, and depth dimensions as measured along three respective mutually orthogonal axes, at least one of these dimensions is significantly smaller than at least one other of these dimensions, where “significantly smaller” means at least 3 times smaller, more preferably at least 5 times smaller, and most preferably at least 10 times smaller.
- The reason for preferring a tang that is more slender can be appreciated by recognizing that, since the tang is formed from the same block of material from which the cage is formed, any material devoted to the tang necessarily subtracts from the material that could have been devoted to the cage. Thus the reason to prefer a tang that is more slender is to minimize the amount of material that is not available for strengthening the cage, to use for the step-engaging function, which requires a significant degree of projection (e.g., a significant dimension “b” as shown in
FIG. 3 , or a significant dimension “1” as shown inFIG. 14 ) but not much strength. -
FIG. 12 shows analternative screw 24 andcage 28, illustrating why it is not important for the necked downportion 24 c of the screw to be cylindrical. -
FIG. 13 shows analternative screw 34 andcage 38, illustrating an alternative to use of a necked down portion to provide the step. In this case, there is a protruding or “necked up” portion, or projection, 34 c of the screw providing astep 34 c 1. Theportion 34 c could be a removable part, such as a circlip, in which case thescrew 34 would have a circumferential groove for receiving the circlip. -
FIGS. 14 and 15 show anotheralternative screw 44, illustrating a modification of thescrew 34 ofFIG. 12 . In this embodiment, the screw has aprojection 44 c that does not encircle the screw as does theprojection 34 c of thescrew 34. Instead, with reference toFIG. 14 , theprojection 44 c extends over an arc length “S1” and step-engaging portions 48 e are arranged so that there are no gaps of arc larger than “S2,” where S2<S1. - The embodiment of
FIG. 14 is less preferred than those ofFIGS. 12 and 13 because it results in a relative abundance of excess space between the cage and screw, allowing for an excess of undesirable lateral movement of the screw inside the cage. - The embodiment of
FIG. 15 is less preferred than that ofFIG. 14 because it requires more of the cage to be devoted to the step-engaging function, which tends to weaken the cage if the step-engaging portions are tangs, and which, if the step-engaging portions are attached to the cage with joints or seams, requires more costly manufacturing. - In
FIGS. 12-15 , the step-engaging portions (28 e, 38 c, 48 c) are tangs. - An alternative to the tang is shown in
FIG. 16 . The screw could be either 14 or 24, or it could have a different configuration from either of these. In this example the step-engagingportion 58 c is formed by adding metal to the cage. It is not a tang because it connected to the cage with a joint or seam. - Another possible alternative to the tang is shown in
FIG. 17 . Again, the screw could be either 14 or 24 or it could have a different configuration from either of these. In this example, the step-engagingportion 68 c is formed by displacing metal of thecage 68. It is not a tang if it is not slender, and as drawn, it would not be slender unless its measured dimension perpendicular to the plane of the Figure is significantly less than its dimensions “l” and “w” in the plane of the Figure. - As is standard commercial practice in the art of low cost wedge anchor bolts, the screw, cage, and wedge are all preferably formed of carbon steel. However, other metals—indeed other materials (e.g., fiber reinforced plastics)−could be used without departing from the principles of the invention.
- Returning to
FIG. 3 , preferably theanchor bolt 10 includes a “compression bushing” 25, which is typically formed of a polymer. Thecompression bushing 25 has a relatively high compliance as compared to the attachment hardware and thecage 18 and has a substantial thickness allowing for a substantial amount of deformation, qualities which allow it to prevent theattachment hardware 12 from making hard contact with theend 18 d of thecage 18 before seating against thesurface 23 a of the structure (seeFIG. 6 ). This function could alternatively be performed by a split-ring washer, or any other structure providing the same or similar qualities. - A split-
ring washer 26 may also be provided between the screw-head 14 a and the attachment hardware to provide a positive indication to the user of when theanchor bolt 10 is fully tightened. - It is to be understood that, while a specific easily removable low cost wedge anchor bolt has been shown and described as preferred, other configurations could be utilized, in addition to those already mentioned, without departing from the principles of the invention. It should also be understood that, as indicated previously, the concrete anchor point may be used in any application that an anchor point may be used.
- The terms and expressions which have been employed in the foregoing specification are used therein as terms of description and not of limitation, and there is no intention in the use of such terms and expressions to exclude equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims which follow.
Claims (20)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/907,473 US8894329B1 (en) | 2013-05-31 | 2013-05-31 | Wedge anchor bolt |
PCT/US2014/039791 WO2014193952A1 (en) | 2013-05-31 | 2014-05-28 | Wedge anchor bolt |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/907,473 US8894329B1 (en) | 2013-05-31 | 2013-05-31 | Wedge anchor bolt |
Publications (2)
Publication Number | Publication Date |
---|---|
US8894329B1 US8894329B1 (en) | 2014-11-25 |
US20140356077A1 true US20140356077A1 (en) | 2014-12-04 |
Family
ID=51059588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/907,473 Active US8894329B1 (en) | 2013-05-31 | 2013-05-31 | Wedge anchor bolt |
Country Status (2)
Country | Link |
---|---|
US (1) | US8894329B1 (en) |
WO (1) | WO2014193952A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107574819A (en) * | 2015-07-29 | 2018-01-12 | 福建荣盛钢结构实业有限公司 | A kind of high intensity major diameter prestressing force sill anchor and its making construction method |
CN110700254A (en) * | 2019-10-11 | 2020-01-17 | 常熟市双力金属制品有限责任公司 | Sleeve bolt anchor rod installation component capable of being quickly fastened and installed |
US10737126B1 (en) * | 2018-07-31 | 2020-08-11 | Climb Tech, Llc | Wood anchoring device |
US11351433B1 (en) | 2020-12-21 | 2022-06-07 | Dan Krug | Mountain climbing training apparatus |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE537124C2 (en) * | 2013-01-28 | 2015-01-27 | Atlas Copco Rock Drills Ab | Bolt and rock drill with bolt |
DE102013002971A1 (en) * | 2013-02-22 | 2014-08-28 | Péter Csizmadia | Safety sledge with damping and damping elements for fall protection |
CA2985365C (en) * | 2015-05-14 | 2023-09-12 | Lifepoint International Pty. Limited | Anchor, indicator, anchor assembly and fall arrest system |
FR3043738B1 (en) * | 2015-11-18 | 2018-01-05 | Zedel | REMOVABLE SAFETY MOORING DEVICE |
US10718125B2 (en) * | 2016-03-16 | 2020-07-21 | Werner Co. | Monolithic roof anchor |
US10926115B2 (en) * | 2016-09-26 | 2021-02-23 | The Boeing Company | Fall protection apparatus and method |
AU2016101727A4 (en) * | 2016-09-26 | 2016-11-03 | Fci Holdings Delaware, Inc. | Rock bolt |
US10781598B2 (en) * | 2016-10-06 | 2020-09-22 | Crown Castle USA, Inc. | Combination step bolt and fall protection anchorage assemblies |
US11351406B2 (en) * | 2017-06-01 | 2022-06-07 | Engineered Supply L.L.C. | Anchoring stick |
CN109882226B (en) * | 2019-04-13 | 2020-10-27 | 淮南市金德实业有限公司 | Tensioning locking anchor rod |
CN111561499B (en) * | 2020-05-20 | 2021-09-21 | 中国电建集团成都勘测设计研究院有限公司 | Detachable expansion bolt |
CN111561500B (en) * | 2020-05-20 | 2021-07-30 | 中国电建集团成都勘测设计研究院有限公司 | Detachable depth anchoring expansion bolt |
US11446526B2 (en) | 2020-10-28 | 2022-09-20 | Werner Co. | Expansion bolt and pivot and swivel mechanism therefor |
US20230160197A1 (en) * | 2021-11-21 | 2023-05-25 | James Belville | Anchor bolt apparatus |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4173918A (en) * | 1978-03-27 | 1979-11-13 | Raymond Piersall | Roof bolt and the like |
FR2651815B1 (en) * | 1989-09-11 | 1993-02-19 | De Lorenzi Remy | REMOVABLE ASSEMBLY DEVICE FOR JOINING ELEMENTS OF BUILDING CONSTRUCTION. |
US5232311A (en) * | 1991-05-20 | 1993-08-03 | Jennmar Corporation | Roof control system |
US5161916A (en) * | 1991-06-03 | 1992-11-10 | White Claude C | Self-seating expansion anchor |
US5599140A (en) * | 1995-09-13 | 1997-02-04 | The Eastern Company | Mine roof support system including an expansion anchor with means assisting resin component mixing and method of installation thereof |
US6742966B2 (en) * | 2001-01-12 | 2004-06-01 | James D. Cook | Expansion shell assembly |
US7073982B2 (en) * | 2004-09-24 | 2006-07-11 | Jennmar Corporation | Point anchor coated mine roof bolt |
US8282318B2 (en) * | 2009-03-02 | 2012-10-09 | Robertson Jr Roy Lee | Roof bolt anchor with camming element |
US7959379B2 (en) * | 2009-03-02 | 2011-06-14 | Robertson Jr Roy Lee | Bolt anchor |
US8277149B2 (en) * | 2010-08-04 | 2012-10-02 | Fci Holdings Delaware, Inc. | Tensionable cable bolt with crimped shaft |
-
2013
- 2013-05-31 US US13/907,473 patent/US8894329B1/en active Active
-
2014
- 2014-05-28 WO PCT/US2014/039791 patent/WO2014193952A1/en active Application Filing
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107574819A (en) * | 2015-07-29 | 2018-01-12 | 福建荣盛钢结构实业有限公司 | A kind of high intensity major diameter prestressing force sill anchor and its making construction method |
US10737126B1 (en) * | 2018-07-31 | 2020-08-11 | Climb Tech, Llc | Wood anchoring device |
CN110700254A (en) * | 2019-10-11 | 2020-01-17 | 常熟市双力金属制品有限责任公司 | Sleeve bolt anchor rod installation component capable of being quickly fastened and installed |
US11351433B1 (en) | 2020-12-21 | 2022-06-07 | Dan Krug | Mountain climbing training apparatus |
WO2022140034A1 (en) * | 2020-12-21 | 2022-06-30 | Dan Krug | Mountain climbing training apparatus |
Also Published As
Publication number | Publication date |
---|---|
US8894329B1 (en) | 2014-11-25 |
WO2014193952A1 (en) | 2014-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8894329B1 (en) | Wedge anchor bolt | |
US2549993A (en) | Breechblock for explosively actuated fastening tools | |
US10837480B2 (en) | Hollow wall anchor | |
WO2009128171A1 (en) | After application anchor bolt | |
EP1357302B1 (en) | Removable deep set drop-in anchor | |
EP0448993A1 (en) | Dual-lock blind fastener | |
US4195547A (en) | Anchor bolt assembly | |
MXPA06011698A (en) | Method of fastening a guard rail by means of a guard rail bolt, the guard rail bolt and the tool for fastening the guard rail bolt. | |
US4073212A (en) | Anchor bolt with visual engagement indicator | |
US20090214315A1 (en) | Drop-in anchor for concrete structures | |
CA2630089A1 (en) | Self-drilling wall anchor device | |
US8915686B2 (en) | Unitary, strike, drop-in anchor for concrete and the like | |
US3217583A (en) | Unitary expansion anchor for bolts | |
US3332312A (en) | Expansion stud anchor | |
US8382410B2 (en) | Anchor bolt assembly | |
JP4570871B2 (en) | Anchor rod connection to drilling rod | |
US4262577A (en) | Fastener | |
CN102109001A (en) | Double-raised-head slope-shaped loosening-proof clamp spring with rivet function screw component and using method thereof | |
KR20110008780A (en) | Anchor bolt | |
KR100708539B1 (en) | Anchor for fixing | |
KR20160008803A (en) | Anchor bolt assembly | |
KR20080105665A (en) | Ancher bolt | |
EP0626041B1 (en) | Masonry anchors | |
KR100560141B1 (en) | A sleeve for anchor bolt | |
EP2800911B1 (en) | Blind bolt |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CLIMB TECH, LLC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KEKAHUNA, IVAN A.J.;PATRICK, ERIC SHAWN;REEL/FRAME:030527/0176 Effective date: 20130531 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551) Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: WERNER CO., ILLINOIS Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:CLIMB TECH, LLC;REEL/FRAME:059583/0719 Effective date: 20220412 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE UNDER 1.28(C) (ORIGINAL EVENT CODE: M1559); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT, NEW JERSEY Free format text: SECURITY INTEREST;ASSIGNOR:WERNER CO.;REEL/FRAME:063958/0740 Effective date: 20230609 |
|
AS | Assignment |
Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT, NEW JERSEY Free format text: SECURITY INTEREST;ASSIGNOR:WERNER CO.;REEL/FRAME:064126/0396 Effective date: 20230627 |