US20140338889A1 - Non-rotating wellbore tool and sealing method therefor - Google Patents

Non-rotating wellbore tool and sealing method therefor Download PDF

Info

Publication number
US20140338889A1
US20140338889A1 US14/314,852 US201414314852A US2014338889A1 US 20140338889 A1 US20140338889 A1 US 20140338889A1 US 201414314852 A US201414314852 A US 201414314852A US 2014338889 A1 US2014338889 A1 US 2014338889A1
Authority
US
United States
Prior art keywords
tool
outer sleeve
wellbore
sleeve
deformable member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/314,852
Inventor
Robert Grainger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US14/314,852 priority Critical patent/US20140338889A1/en
Publication of US20140338889A1 publication Critical patent/US20140338889A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/01Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for anchoring the tools or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/128Packers; Plugs with a member expanded radially by axial pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • E21B33/14Methods or devices for cementing, for plugging holes, crevices or the like for cementing casings into boreholes

Definitions

  • the invention relates to wellbore drilling technology, and specifically to tools and methods for cementing in a wellbore.
  • a rotary drilling apparatus In the practice of borehole or wellbore drilling, a rotary drilling apparatus is employed to drill a hole downwardly into the ground, normally to either determine subsurface conditions, obtain samples of subsurface materials, or to extract natural resources located at depth. It is known to inject specialized cementitious material into the borehole to stabilize the hole walls or allow for isolation of certain subsurface strata.
  • drilling tools and methods have been developed over the years, often for mining or oil and gas drilling applications. While they have achieved generally widespread use and acceptance, it is known that certain drilling tools manifest potentially disadvantageous features. For example, some drilling tools are intended for deployment at a certain depth in the borehole, but locking them in place at that desired depth may require rotation of the tool and/or the string or stem used to deploy the tool, with the risk that threaded sections of drill pipe—in which the tool is being deployed—may be loosened at depth, a potentially serious occurrence. Also, some cementing tools can only be positioned when the drill string has first been removed from the hole, a practice known as tripping out the drill string. Tripping out the drill string can be time consuming and, in some contexts, otherwise unnecessary or undesirable.
  • the present invention therefore seeks to provide a wellbore cementing tool and method for using same, where the tool can be deployed within an in-place drill string and locked in place at a desired depth without requiring tool rotation.
  • a sealable wellbore tool comprising:
  • the at least one deformable member is at least one deformable sleeve disposed around the inner body.
  • the at least one deformable member is configured to engage inner surfaces of a drill string within the wellbore.
  • a bushing is preferably disposed between the outer sleeve and the at least one deformable member, the bushing configured to receive upward force from the outer sleeve and to transmit the upward force to the at least one deformable sleeve.
  • the bushing may be secured to the inner body by a shear pin to hold the outer sleeve in the first position, the shear pin configured to rupture upon application of downward force to the tool.
  • the at least one deformable member is also preferably held in place by a rupturable retention member positioned above the at least one deformable member, the retention member configured to rupture upon application of upward force when the at least one deformable member is pressed upwardly by the outer sleeve moving into the second position.
  • the inner body may comprise an angled outer surface configured for the at least one deformable member or deformable sleeve to move against when the outer sleeve presses upwardly against the at least one deformable member or deformable sleeve, thus causing the at least one deformable member or deformable sleeve to move outwardly and engage the inner surface of the wellbore.
  • the outer sleeve preferably extends downwardly past a lowest extent of the inner body.
  • the outer sleeve may also comprise an upper sleeve and a lower sleeve separated by a shear pin, the shear pin configured to rupture when the lower sleeve contacts the downhole obstacle and thereby allow upward movement of the upper sleeve into the second position.
  • a method for sealing a tool in a wellbore comprising the steps of:
  • the outer sleeve is retained in the first position by a shear pin, the method further comprising the step of allowing the shear pin to rupture in response to the forcing of the inner body of the tool downward relative to the outer sleeve.
  • the inner body preferably comprises an angled outer surface configured for the at least one deformable member to move against when the outer sleeve presses upwardly against the at least one deformable sleeve, thus causing the at least one deformable sleeve to press outwardly toward the walls of the wellbore and to sealingly engage the walls of the wellbore.
  • the at least one deformable member deforms and presses outwardly toward inner walls of the drill string, and the at least one deformable member sealingly engages the inner walls of the drill string.
  • FIG. 1 is a simplified sectional view of an upper portion of a tool according to the present invention
  • FIG. 2 is a simplified sectional view of a middle portion of the tool of FIG. 1 ;
  • FIG. 3 is a simplified sectional view of a lower portion of the tool of FIG. 1 ;
  • FIG. 4 a is a simplified sectional view showing the locking members in a disengaged position
  • FIG. 4 b is a simplified sectional view showing the locking members in an engaged position
  • FIG. 5 is a simplified sectional view of a plug according to the present invention.
  • an exemplary tool according to the present invention is identified by the numeral 10 .
  • the tool 10 comprises an upper body 12 , a middle body 14 , and a lower body 16 , all threadably engaged in a manner well known in the art of drilling technologies.
  • An upper metal sleeve 18 is disposed around the middle body 14 for movement relative thereto, as will be described below.
  • a lower metal sleeve 20 shown particularly in FIG. 3 , is disposed around the lower body 16 and extends downwardly past the lowest extent of the lower body 16 , such that the lower sleeve 20 is the part of the tool 10 that contacts the downhole obstacle.
  • the tool 10 is provided with a threaded section 22 for engagement with a hollow stem (not shown); the threaded section 22 is preferably a left-hand thread to help avoid unwanted rotation of the adjacent drill string connections when the hollow stem is disengaged from the tool 10 after use.
  • the hollow stem or string is used to lower the tool 10 into position within the drill string (not shown) and to flow cementitious material to the tool 10 .
  • the tool 10 is provided with a central cavity 26 which extends from the upper end of the tool 10 to the lower body 16 where cementitious materials are allowed to exit through apertures 56 , and the cavity 26 comprises a larger chamber 24 in the upper body 12 .
  • the chamber 24 is present to receive and retain a plug 64 , as is discussed below.
  • the upper body 12 is threadably engaged with the middle body 14 , as can be seen in FIG. 1 , and the middle body 14 supports the means for securing the tool 10 in a desired location in the wellbore.
  • the tool 10 of the exemplary embodiment is configured to be permanently secured inside the drill string, and so the desired location in this case would be the bottom of the hole at the desired drilling depth, with the downhole obstacle being the upper surface of the drill bit; however, it would be obvious to one skilled in the art that other configurations and other drilling applications are possible within the scope of the invention.
  • the securing means comprise four locking members 28 (two of which are visible in FIG. 1 , the four locking members 28 being disposed at equal distances around the tool 10 ).
  • the locking members 28 are pivotally mounted on the middle body 14 by means of pivot pins 30 , such that the locking members 28 are rotatable from a first position shown in FIG. 1 to a second position rotated away from the middle body 14 .
  • the locking members 28 are biased toward the second position by means of wedges 36 which are driven downwardly by springs 34 , the spring 34 in turn controlled by set screws 32 .
  • the wedges 36 are driven downwardly by the springs 34 , but the angled contact face of the wedge 36 imparts an outward rotation of the locking member 28 .
  • FIGS. 4 a and 4 b the means for allowing the locking members 28 to rotate outwardly is illustrated.
  • the upper sleeve 18 is disposed in a generally downward orientation, such that slots 38 in the upper sleeve 18 are positioned below the locking members 28 .
  • the slots 38 are not aligned with the locking members 28 , the locking members 28 cannot extend through the upper sleeve 18 .
  • the upper sleeve 18 can be raised relative to the middle body 14 , such that the slots 38 align with the locking members 28 and allow the locking members 28 to extend through the upper sleeve 18 , as can be seen in FIG. 4 b.
  • the mechanism for allowing the upper sleeve 18 to move upwardly relative to the middle body 14 and allow the locking members 28 to pass through the slots 38 is described below.
  • the lower sleeve 20 is shown mounted on the middle body 14 and extending downwardly to cover the lower body 16 .
  • the lower sleeve 20 is the lowest part of the tool 10 when installed in a drill string, it is obvious that the lower end 62 of the lower sleeve 20 will be the part of the tool 10 that contacts the downhole obstacle (in this case a drill bit).
  • the lower sleeve 20 is mounted on a steel bushing 42 which wraps around the middle body 14 , and the bushing 42 is secured to the middle body 14 by a shear pin 40 .
  • the bushing 42 is overlain by sleeves 44 a, 44 b made of rubber or any alternative material known to those skilled in the art as providing the desired deformability and sealing utility in a given setting, and the uppermost sleeve 44 a is connected to the upper sleeve 18 by means of screws 48 .
  • the sleeves 44 a, 44 b are held in position by a plastic ring 46 .
  • the lower body 16 is mounted at the lower end of the middle body 14 by means of a threaded engagement 50 .
  • the lower body 16 is illustrated in FIG. 3 and functions both to allow passage of cementitious material to the bit and as a backflow preventer when the tool 10 is installed.
  • the lower body 16 comprises a ball chamber 76 that is positioned at the lower extent of the cavity 26 .
  • the ball chamber 76 houses a ball 54 which allows cementitious material to pass from the cavity 26 through four equally radially disposed apertures 56 and out of the tool 10 .
  • the ball 54 instead presses upwardly against a hardened seat ring 52 and thereby prevents backflow into the cavity 26 .
  • the ball 54 is biased upwardly by means of a spring 58 , which spring 58 is controlled by means of a pressure-adjusting screw 60 (which can be rotated by means of a hexagonal head 78 ).
  • the plug 64 is to be inserted into the tool 10 after injection of a desired volume of cementitious material.
  • the plug 64 comprises an upper rubber member 66 , a shaft 68 , and a lower rubber member 70 .
  • Each of the rubber members 66 , 70 are provided with ribs or projections 72 of rubber to contact adjacent walls.
  • the lower part of the plug 64 is inserted into the cavity 26 immediately below the chamber 24 , and is therefore provided with three O-rings 74 .
  • the tool 10 When a user wishes to cement a drilled borehole, the tool 10 is threadably connected to a hollow stem and then lowered into the interior of the drill string. When the tool 10 reaches the end of the drill string, the lower end 62 of the lower sleeve 20 strikes the drill bit. As downward force continues to be applied to the tool 10 , however, the central body of the tool 10 (specifically the threadably connected upper body 12 and middle body 14 ) is pushed downward relative to the lower sleeve 20 and the bushing 42 on which the sleeve 20 is mounted. This causes the shear pin 40 to rupture, allowing movement of the lower sleeve 20 and bushing 42 relative to the middle body 14 .
  • the bushing 42 presses upwardly against the sleeves 44 a,b.
  • This upward movement is now applied to the sleeves 44 a,b, causing the plastic ring 46 to rupture and drive the upper sleeve 18 upwardly relative to the middle body 14 .
  • the sleeves 44 a,b are also pressed outwardly toward the inner surface of the drill string due to the angled surface of the middle body 14 , thereby forming a seal against the drill string and preventing any backflow of cementitious material around the tool 10 and upwards within the drill string.
  • the upper sleeve 18 moves from the first position shown in FIG. 4 a to the second position shown in FIG. 4 b.
  • the slots 38 move into position adjacent the locking members 28 , the locking members 28 are outwardly biased through the slots 38 and engage the inner surfaces of the drill string. The tool 10 is then secured within the drill string immediately above the bit, and cementing can begin.
  • cementitious material is then injected into the hollow stem, downwardly toward the tool 10 .
  • the cementitious material passes into the chamber 24 and thence into the cavity 26 , ultimately passing out the apertures 56 and downwardly toward the bit, where it will pass through the bit and into the annulus between the drill string and borehole walls.
  • the plug 64 is sent down the hollow stem to the tool 10 . Once the plug 64 reaches the tool 10 , it presses into the chamber 24 , where the lower rubber member 70 terminates travel in the chamber 24 and the O-rings 74 seal against the upper end of the cavity 26 . The upper rubber member 66 helps to centralize and stabilize the plug 64 . Once in position, the plug 64 prevents any material from passing through the tool 10 to the bit. In addition, the ball 54 presses upwardly against the hardened seat ring 52 to prevent backflow into the cavity 26 , while the sleeves 44 a,b prevent backflow around the outside of the tool 10 . The hollow stem can then be disengaged from the threaded section 22 and tripped out of the hole, leaving the tool 10 in position adjacent the bit.
  • the tool can be deployed and allowed to engage the inner surface of a drill string without rotation of the tool. Also, the tool can be deployed in an in-place drill string, so no tripping out is required.
  • the use of the ball valve and plug help prevent undesired flow of cementitious material in either direction, and the plug itself can be used to clean out the hollow stem as it travels downwardly toward the tool.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Earth Drilling (AREA)

Abstract

A wellbore tool, such as a cementing tool, configured for placement in a wellbore or drill string, and method of sealing the tool in the wellbore or drill string. The tool is lowered on a stem into the wellbore or drill string and contacts a downhole obstacle (the bit when lowered in a drill string), such that the downward pressure on the tool causes a shear pin to shear, resulting in upward movement of an outer sleeve relative to the central body of the tool. The outer sleeve, when upwardly displaced, pushes against a deformable sleeve, and the deformable sleeve then presses outwardly against the inner walls of the wellbore or drill string, sealing the tool therein. The deformable sleeve can be directed outwardly by contacting it during upward displacement of the outer sleeve with an angled surface of the central body.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This is a divisional application of copending U.S. patent application Ser. No. 14/033,754, filed Sep. 23, 2013, which claims priority to Canadian Patent Serial No. 2,790,548, filed Sep. 24, 2012; the entire contents of which are hereby incorporated by reference herein in their entireties.
  • FIELD OF THE INVENTION
  • The invention relates to wellbore drilling technology, and specifically to tools and methods for cementing in a wellbore.
  • BACKGROUND OF THE INVENTION
  • In the practice of borehole or wellbore drilling, a rotary drilling apparatus is employed to drill a hole downwardly into the ground, normally to either determine subsurface conditions, obtain samples of subsurface materials, or to extract natural resources located at depth. It is known to inject specialized cementitious material into the borehole to stabilize the hole walls or allow for isolation of certain subsurface strata.
  • Various cementing tools and methods have been developed over the years, often for mining or oil and gas drilling applications. While they have achieved generally widespread use and acceptance, it is known that certain drilling tools manifest potentially disadvantageous features. For example, some drilling tools are intended for deployment at a certain depth in the borehole, but locking them in place at that desired depth may require rotation of the tool and/or the string or stem used to deploy the tool, with the risk that threaded sections of drill pipe—in which the tool is being deployed—may be loosened at depth, a potentially serious occurrence. Also, some cementing tools can only be positioned when the drill string has first been removed from the hole, a practice known as tripping out the drill string. Tripping out the drill string can be time consuming and, in some contexts, otherwise unnecessary or undesirable.
  • It would therefore be desirable to have a wellbore cementing tool that could be employed without tripping out the drill string or requiring rotation that might destabilize the string in place.
  • SUMMARY OF THE INVENTION
  • The present invention therefore seeks to provide a wellbore cementing tool and method for using same, where the tool can be deployed within an in-place drill string and locked in place at a desired depth without requiring tool rotation.
  • According to a first aspect of the present invention there is provided a sealable wellbore tool comprising:
      • an inner body;
      • at least one deformable member disposed adjacent an external surface of the inner body and configured for sealing engagement with an inner surface of the wellbore; and
      • an outer sleeve slidably disposed adjacent the external surface of the inner body, the outer sleeve below and in operable communication with the at least one deformable member;
      • wherein the outer sleeve is movable from a first downwardly disposed position relative to the inner body to a second upwardly disposed position relative to the inner body when the tool is lowered into the wellbore and the outer sleeve contacts a downhole obstacle;
      • wherein when the outer sleeve is in the first position, the at least one deformable member is disengaged from the inner surface of the wellbore; and
      • wherein when the outer sleeve is in the second position, the outer sleeve presses upwardly against the at least one deformable member causing the at least one deformable member to deform and engage the inner surface of the wellbore.
  • In exemplary embodiments of the first aspect of the present invention, the at least one deformable member is at least one deformable sleeve disposed around the inner body. Where the downhole obstacle is a drill bit, the at least one deformable member is configured to engage inner surfaces of a drill string within the wellbore. A bushing is preferably disposed between the outer sleeve and the at least one deformable member, the bushing configured to receive upward force from the outer sleeve and to transmit the upward force to the at least one deformable sleeve. The bushing may be secured to the inner body by a shear pin to hold the outer sleeve in the first position, the shear pin configured to rupture upon application of downward force to the tool. The at least one deformable member is also preferably held in place by a rupturable retention member positioned above the at least one deformable member, the retention member configured to rupture upon application of upward force when the at least one deformable member is pressed upwardly by the outer sleeve moving into the second position.
  • The inner body may comprise an angled outer surface configured for the at least one deformable member or deformable sleeve to move against when the outer sleeve presses upwardly against the at least one deformable member or deformable sleeve, thus causing the at least one deformable member or deformable sleeve to move outwardly and engage the inner surface of the wellbore.
  • The outer sleeve preferably extends downwardly past a lowest extent of the inner body. The outer sleeve may also comprise an upper sleeve and a lower sleeve separated by a shear pin, the shear pin configured to rupture when the lower sleeve contacts the downhole obstacle and thereby allow upward movement of the upper sleeve into the second position.
  • According to a second aspect of the present invention there is provided a method for sealing a tool in a wellbore, wherein the method comprises the steps of:
      • a. providing a tool comprising an inner body, an outer sleeve slidable relative to the inner body between first and second positions, and at least one deformable member configured for sealing engagement with the wellbore;
      • b. lowering the tool with the outer sleeve in the first position into the wellbore until the outer sleeve contacts a downhole obstacle;
      • c. forcing the inner body of the tool downward relative to the outer sleeve;
      • d. allowing the outer sleeve to move to the second position, thereby pressing upwardly on the at least one deformable member;
      • e. allowing the at least one deformable member to deform and press outwardly toward walls of the wellbore; and
      • f. allowing the at least one deformable member to sealingly engage the walls of the wellbore.
  • In exemplary embodiments of the second aspect of the present invention, the outer sleeve is retained in the first position by a shear pin, the method further comprising the step of allowing the shear pin to rupture in response to the forcing of the inner body of the tool downward relative to the outer sleeve. The inner body preferably comprises an angled outer surface configured for the at least one deformable member to move against when the outer sleeve presses upwardly against the at least one deformable sleeve, thus causing the at least one deformable sleeve to press outwardly toward the walls of the wellbore and to sealingly engage the walls of the wellbore. Where the tool is lowered into a drill string in the wellbore and the downhole obstacle is a drill bit, the at least one deformable member deforms and presses outwardly toward inner walls of the drill string, and the at least one deformable member sealingly engages the inner walls of the drill string.
  • A detailed description of an exemplary embodiment of the present invention is given in the following. It is to be understood, however, that the invention is not to be construed as being limited to this embodiment.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the accompanying drawings, which illustrate an exemplary embodiment of the present invention:
  • FIG. 1 is a simplified sectional view of an upper portion of a tool according to the present invention;
  • FIG. 2 is a simplified sectional view of a middle portion of the tool of FIG. 1;
  • FIG. 3 is a simplified sectional view of a lower portion of the tool of FIG. 1;
  • FIG. 4 a is a simplified sectional view showing the locking members in a disengaged position;
  • FIG. 4 b is a simplified sectional view showing the locking members in an engaged position; and
  • FIG. 5 is a simplified sectional view of a plug according to the present invention.
  • Exemplary embodiments of the present invention will now be described with reference to the accompanying drawings.
  • DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENT
  • In the following description, an exemplary tool according to the present invention is identified by the numeral 10. Referring specifically to FIGS. 1 to 3, the tool 10 comprises an upper body 12, a middle body 14, and a lower body 16, all threadably engaged in a manner well known in the art of drilling technologies. An upper metal sleeve 18 is disposed around the middle body 14 for movement relative thereto, as will be described below. A lower metal sleeve 20, shown particularly in FIG. 3, is disposed around the lower body 16 and extends downwardly past the lowest extent of the lower body 16, such that the lower sleeve 20 is the part of the tool 10 that contacts the downhole obstacle.
  • The tool 10 is provided with a threaded section 22 for engagement with a hollow stem (not shown); the threaded section 22 is preferably a left-hand thread to help avoid unwanted rotation of the adjacent drill string connections when the hollow stem is disengaged from the tool 10 after use. The hollow stem or string is used to lower the tool 10 into position within the drill string (not shown) and to flow cementitious material to the tool 10. The tool 10 is provided with a central cavity 26 which extends from the upper end of the tool 10 to the lower body 16 where cementitious materials are allowed to exit through apertures 56, and the cavity 26 comprises a larger chamber 24 in the upper body 12. The chamber 24 is present to receive and retain a plug 64, as is discussed below.
  • The upper body 12 is threadably engaged with the middle body 14, as can be seen in FIG. 1, and the middle body 14 supports the means for securing the tool 10 in a desired location in the wellbore. The tool 10 of the exemplary embodiment is configured to be permanently secured inside the drill string, and so the desired location in this case would be the bottom of the hole at the desired drilling depth, with the downhole obstacle being the upper surface of the drill bit; however, it would be obvious to one skilled in the art that other configurations and other drilling applications are possible within the scope of the invention.
  • The securing means comprise four locking members 28 (two of which are visible in FIG. 1, the four locking members 28 being disposed at equal distances around the tool 10). The locking members 28 are pivotally mounted on the middle body 14 by means of pivot pins 30, such that the locking members 28 are rotatable from a first position shown in FIG. 1 to a second position rotated away from the middle body 14. The locking members 28 are biased toward the second position by means of wedges 36 which are driven downwardly by springs 34, the spring 34 in turn controlled by set screws 32. The wedges 36 are driven downwardly by the springs 34, but the angled contact face of the wedge 36 imparts an outward rotation of the locking member 28.
  • In the position shown in FIG. 1, however, the locking members 28 cannot rotate outwardly due to the presence of the upper sleeve 18. Turning now to FIGS. 4 a and 4 b, the means for allowing the locking members 28 to rotate outwardly is illustrated. In FIG. 4 a, the upper sleeve 18 is disposed in a generally downward orientation, such that slots 38 in the upper sleeve 18 are positioned below the locking members 28. When the slots 38 are not aligned with the locking members 28, the locking members 28 cannot extend through the upper sleeve 18. However, the upper sleeve 18 can be raised relative to the middle body 14, such that the slots 38 align with the locking members 28 and allow the locking members 28 to extend through the upper sleeve 18, as can be seen in FIG. 4 b. The mechanism for allowing the upper sleeve 18 to move upwardly relative to the middle body 14 and allow the locking members 28 to pass through the slots 38 is described below.
  • Turning now to FIGS. 2 and 3, the lower sleeve 20 is shown mounted on the middle body 14 and extending downwardly to cover the lower body 16. As the lower sleeve 20 is the lowest part of the tool 10 when installed in a drill string, it is obvious that the lower end 62 of the lower sleeve 20 will be the part of the tool 10 that contacts the downhole obstacle (in this case a drill bit). The lower sleeve 20 is mounted on a steel bushing 42 which wraps around the middle body 14, and the bushing 42 is secured to the middle body 14 by a shear pin 40. The bushing 42 is overlain by sleeves 44 a, 44 b made of rubber or any alternative material known to those skilled in the art as providing the desired deformability and sealing utility in a given setting, and the uppermost sleeve 44 a is connected to the upper sleeve 18 by means of screws 48. The sleeves 44 a, 44 b are held in position by a plastic ring 46. The lower body 16 is mounted at the lower end of the middle body 14 by means of a threaded engagement 50.
  • The lower body 16 is illustrated in FIG. 3 and functions both to allow passage of cementitious material to the bit and as a backflow preventer when the tool 10 is installed. The lower body 16 comprises a ball chamber 76 that is positioned at the lower extent of the cavity 26. The ball chamber 76 houses a ball 54 which allows cementitious material to pass from the cavity 26 through four equally radially disposed apertures 56 and out of the tool 10. In the event of backflow into the chamber 76, the ball 54 instead presses upwardly against a hardened seat ring 52 and thereby prevents backflow into the cavity 26. The ball 54 is biased upwardly by means of a spring 58, which spring 58 is controlled by means of a pressure-adjusting screw 60 (which can be rotated by means of a hexagonal head 78).
  • Turning now to FIG. 5, a plug 64 is illustrated. The plug 64 is to be inserted into the tool 10 after injection of a desired volume of cementitious material. The plug 64 comprises an upper rubber member 66, a shaft 68, and a lower rubber member 70. Each of the rubber members 66, 70 are provided with ribs or projections 72 of rubber to contact adjacent walls. The lower part of the plug 64 is inserted into the cavity 26 immediately below the chamber 24, and is therefore provided with three O-rings 74.
  • Use of the tool 10 will now be described. When a user wishes to cement a drilled borehole, the tool 10 is threadably connected to a hollow stem and then lowered into the interior of the drill string. When the tool 10 reaches the end of the drill string, the lower end 62 of the lower sleeve 20 strikes the drill bit. As downward force continues to be applied to the tool 10, however, the central body of the tool 10 (specifically the threadably connected upper body 12 and middle body 14) is pushed downward relative to the lower sleeve 20 and the bushing 42 on which the sleeve 20 is mounted. This causes the shear pin 40 to rupture, allowing movement of the lower sleeve 20 and bushing 42 relative to the middle body 14. As the bushing 42 has been freed to move upwardly relative to the middle body 14, the bushing 42 presses upwardly against the sleeves 44 a,b. This upward movement is now applied to the sleeves 44 a,b, causing the plastic ring 46 to rupture and drive the upper sleeve 18 upwardly relative to the middle body 14. The sleeves 44 a,b are also pressed outwardly toward the inner surface of the drill string due to the angled surface of the middle body 14, thereby forming a seal against the drill string and preventing any backflow of cementitious material around the tool 10 and upwards within the drill string.
  • As the sleeves 44 a,b push the upper sleeve 18 upwardly relative to the middle body 14, the upper sleeve 18 moves from the first position shown in FIG. 4 a to the second position shown in FIG. 4 b. When the slots 38 move into position adjacent the locking members 28, the locking members 28 are outwardly biased through the slots 38 and engage the inner surfaces of the drill string. The tool 10 is then secured within the drill string immediately above the bit, and cementing can begin.
  • Cementitious material is then injected into the hollow stem, downwardly toward the tool 10. The cementitious material passes into the chamber 24 and thence into the cavity 26, ultimately passing out the apertures 56 and downwardly toward the bit, where it will pass through the bit and into the annulus between the drill string and borehole walls.
  • Once a volume of cementitious material has been injected that the user has determined will be adequate for the desired cementing activity, the plug 64 is sent down the hollow stem to the tool 10. Once the plug 64 reaches the tool 10, it presses into the chamber 24, where the lower rubber member 70 terminates travel in the chamber 24 and the O-rings 74 seal against the upper end of the cavity 26. The upper rubber member 66 helps to centralize and stabilize the plug 64. Once in position, the plug 64 prevents any material from passing through the tool 10 to the bit. In addition, the ball 54 presses upwardly against the hardened seat ring 52 to prevent backflow into the cavity 26, while the sleeves 44 a,b prevent backflow around the outside of the tool 10. The hollow stem can then be disengaged from the threaded section 22 and tripped out of the hole, leaving the tool 10 in position adjacent the bit.
  • As can be readily seen, then, there are numerous advantages provided by the present invention. First, the tool can be deployed and allowed to engage the inner surface of a drill string without rotation of the tool. Also, the tool can be deployed in an in-place drill string, so no tripping out is required. The use of the ball valve and plug help prevent undesired flow of cementitious material in either direction, and the plug itself can be used to clean out the hollow stem as it travels downwardly toward the tool.
  • The foregoing is considered as illustrative only of the principles of the invention. Thus, while certain aspects and embodiments of the invention have been described, these have been presented by way of example only and are not intended to limit the scope of the invention. The scope of the claims should not be limited by the exemplary embodiments set forth in the foregoing, but should be given the broadest interpretation consistent with the specification as a whole.

Claims (14)

1. A sealable wellbore tool comprising:
an inner body;
at least one deformable member disposed adjacent an external surface of the inner body and configured for sealing engagement with an inner surface of the wellbore; and
an outer sleeve slidably disposed adjacent the external surface of the inner body, the outer sleeve below and in operable communication with the at least one deformable member;
wherein the outer sleeve is movable from a first downwardly disposed position relative to the inner body to a second upwardly disposed position relative to the inner body when the tool is lowered into the wellbore and the outer sleeve contacts a downhole obstacle;
wherein when the outer sleeve is in the first position, the at least one deformable member is disengaged from the inner surface of the wellbore; and
wherein when the outer sleeve is in the second position, the outer sleeve presses upwardly against the at least one deformable member causing the at least one deformable member to deform and engage the inner surface of the wellbore.
2. The tool of claim 1 wherein the at least one deformable member is at least one deformable sleeve disposed around the inner body.
3. The tool of claim 1 wherein the downhole obstacle is a drill bit and the at least one deformable member is configured to engage inner surfaces of a drill string within the wellbore.
4. The tool of claim 1 further comprising a bushing disposed between the outer sleeve and the at least one deformable member, the bushing configured to receive upward force from the outer sleeve and to transmit the upward force to the at least one deformable sleeve.
5. The tool of claim 4 wherein the bushing is secured to the inner body by a shear pin to hold the outer sleeve in the first position, the shear pin configured to rupture upon application of downward force to the tool.
6. The tool of claim 1 wherein the at least one deformable member is held in place by a rupturable retention member positioned above the at least one deformable member, the retention member configured to rupture upon application of upward force when the at least one deformable member is pressed upwardly by the outer sleeve moving into the second position.
7. The tool of claim 1 wherein the inner body comprises an angled outer surface configured for the at least one deformable member to move against when the outer sleeve presses upwardly against the at least one deformable member, thus causing the at least one deformable member to move outwardly and engage the inner surface of the wellbore.
8. The tool of claim 2 wherein the inner body comprises an angled outer surface configured for the at least one deformable sleeve to move against when the outer sleeve presses upwardly against the at least one deformable sleeve, thus causing the at least one deformable sleeve to move outwardly and engage the inner surface of the wellbore.
9. The tool of claim 1 wherein the outer sleeve extends downwardly past a lowest extent of the inner body.
10. The tool of claim 1 wherein the outer sleeve comprises an upper sleeve and a lower sleeve separated by a shear pin, the shear pin configured to rupture when the lower sleeve contacts the downhole obstacle and thereby allow upward movement of the upper sleeve into the second position.
11. A method for sealing a tool in a wellbore, wherein the method comprises the steps of:
a. providing a tool comprising an inner body, an outer sleeve slidable relative to the inner body between first and second positions, and at least one deformable member configured for sealing engagement with the wellbore;
b. lowering the tool with the outer sleeve in the first position into the wellbore until the outer sleeve contacts a downhole obstacle;
c. forcing the inner body of the tool downward relative to the outer sleeve;
d. allowing the outer sleeve to move to the second position, thereby pressing upwardly on the at least one deformable member;
e. allowing the at least one deformable member to deform and press outwardly toward walls of the wellbore; and
f. allowing the at least one deformable member to sealingly engage the walls of the wellbore.
12. The method of claim 11 wherein the outer sleeve is retained in the first position by a shear pin, the method further comprising the step of allowing the shear pin to rupture in response to the forcing of the inner body of the tool downward relative to the outer sleeve.
13. The method of claim 11 wherein the inner body comprises an angled outer surface configured for the at least one deformable member to move against when the outer sleeve presses upwardly against the at least one deformable sleeve, thus causing the at least one deformable sleeve to press outwardly toward the walls of the wellbore and to sealingly engage the walls of the wellbore.
14. The method of claim 11 wherein the tool is lowered into a drill string in the wellbore and the downhole obstacle is a drill bit, such that:
the at least one deformable member deforms and presses outwardly toward inner walls of the drill string; and
the at least one deformable member sealingly engages the inner walls of the drill string.
US14/314,852 2012-09-24 2014-06-25 Non-rotating wellbore tool and sealing method therefor Abandoned US20140338889A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/314,852 US20140338889A1 (en) 2012-09-24 2014-06-25 Non-rotating wellbore tool and sealing method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CA2790548 2012-09-24
CA2790548A CA2790548C (en) 2012-09-24 2012-09-24 Wellbore cementing tool having outwardly biased locking members
US14/033,754 US9441450B2 (en) 2012-09-24 2013-09-23 Wellbore cementing tool
US14/314,852 US20140338889A1 (en) 2012-09-24 2014-06-25 Non-rotating wellbore tool and sealing method therefor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/033,754 Division US9441450B2 (en) 2012-09-24 2013-09-23 Wellbore cementing tool

Publications (1)

Publication Number Publication Date
US20140338889A1 true US20140338889A1 (en) 2014-11-20

Family

ID=50337747

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/033,754 Active 2034-10-09 US9441450B2 (en) 2012-09-24 2013-09-23 Wellbore cementing tool
US14/314,852 Abandoned US20140338889A1 (en) 2012-09-24 2014-06-25 Non-rotating wellbore tool and sealing method therefor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/033,754 Active 2034-10-09 US9441450B2 (en) 2012-09-24 2013-09-23 Wellbore cementing tool

Country Status (3)

Country Link
US (2) US9441450B2 (en)
AU (1) AU2013231147B2 (en)
CA (2) CA2790548C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140083697A1 (en) * 2012-09-24 2014-03-27 Robert Grainger Wellbore cementing tool
US20160201428A1 (en) * 2014-06-25 2016-07-14 Robert Grainger Non-rotating connector for wellbore cementing tool

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104389550A (en) * 2014-10-30 2015-03-04 郑州神利达钻采设备有限公司 Well cementation tool of combined structure

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1804818A (en) * 1929-03-11 1931-05-12 Spang And Company Well packer
US2496546A (en) * 1946-04-15 1950-02-07 Merla Tool Corp Pump anchoring device
US3543849A (en) * 1968-10-01 1970-12-01 Dresser Ind Cement retainer valve for well packers
US3706342A (en) * 1969-09-15 1972-12-19 Brown J Woolley Packer for wells
US5048613A (en) * 1988-05-31 1991-09-17 Shilling James R Wireline resettable packoff assembly
US5358048A (en) * 1993-04-27 1994-10-25 Ctc International Hydraulic port collar
US5791413A (en) * 1995-11-16 1998-08-11 Baker Hughes Incorporated Wireline-set, retrievable packer with flow control plug at the top
US6142227A (en) * 1995-09-08 2000-11-07 Bronnteknologiutvikling As Expandable retrievable bridge plug
US20030132007A1 (en) * 2000-05-04 2003-07-17 Howlett Paul David Compression set packer
US20050194143A1 (en) * 2004-03-05 2005-09-08 Baker Hughes Incorporated One trip perforating, cementing, and sand management apparatus and method
US20090107675A1 (en) * 2007-10-03 2009-04-30 Tesco Corporation Liner Drilling and Cementing System Utilizing a Concentric Inner String
US20110011575A1 (en) * 2008-04-09 2011-01-20 Cameron International Corporation Straight-bore back pressure valve
US20120085539A1 (en) * 2009-06-16 2012-04-12 Agr Well tool and method for in situ introduction of a treatment fluid into an annulus in a well
US20130264068A1 (en) * 2012-04-04 2013-10-10 Andrew James Hanson Reverse cementing valve
US20140083697A1 (en) * 2012-09-24 2014-03-27 Robert Grainger Wellbore cementing tool
US20150159449A1 (en) * 2012-07-04 2015-06-11 Xtreme Well Technology Limited Downhole tool

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1048109A1 (en) * 1981-03-25 1983-10-15 Ленинградский Ордена Ленина,Ордена Октябрьской Революции И Ордена Трудового Красного Знамени Горный Институт Им.Г.В.Плеханова Arrangement for isolating hazard zones in wells

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1804818A (en) * 1929-03-11 1931-05-12 Spang And Company Well packer
US2496546A (en) * 1946-04-15 1950-02-07 Merla Tool Corp Pump anchoring device
US3543849A (en) * 1968-10-01 1970-12-01 Dresser Ind Cement retainer valve for well packers
US3706342A (en) * 1969-09-15 1972-12-19 Brown J Woolley Packer for wells
US5048613A (en) * 1988-05-31 1991-09-17 Shilling James R Wireline resettable packoff assembly
US5358048A (en) * 1993-04-27 1994-10-25 Ctc International Hydraulic port collar
US6142227A (en) * 1995-09-08 2000-11-07 Bronnteknologiutvikling As Expandable retrievable bridge plug
US5791413A (en) * 1995-11-16 1998-08-11 Baker Hughes Incorporated Wireline-set, retrievable packer with flow control plug at the top
US20030132007A1 (en) * 2000-05-04 2003-07-17 Howlett Paul David Compression set packer
US20050194143A1 (en) * 2004-03-05 2005-09-08 Baker Hughes Incorporated One trip perforating, cementing, and sand management apparatus and method
US20090107675A1 (en) * 2007-10-03 2009-04-30 Tesco Corporation Liner Drilling and Cementing System Utilizing a Concentric Inner String
US20110011575A1 (en) * 2008-04-09 2011-01-20 Cameron International Corporation Straight-bore back pressure valve
US20120085539A1 (en) * 2009-06-16 2012-04-12 Agr Well tool and method for in situ introduction of a treatment fluid into an annulus in a well
US20130264068A1 (en) * 2012-04-04 2013-10-10 Andrew James Hanson Reverse cementing valve
US20150159449A1 (en) * 2012-07-04 2015-06-11 Xtreme Well Technology Limited Downhole tool
US20140083697A1 (en) * 2012-09-24 2014-03-27 Robert Grainger Wellbore cementing tool

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140083697A1 (en) * 2012-09-24 2014-03-27 Robert Grainger Wellbore cementing tool
US9441450B2 (en) * 2012-09-24 2016-09-13 Robert Grainger Wellbore cementing tool
US20160201428A1 (en) * 2014-06-25 2016-07-14 Robert Grainger Non-rotating connector for wellbore cementing tool
US9605510B2 (en) * 2014-06-25 2017-03-28 Robert Grainger Non-rotating connector for wellbore cementing tool

Also Published As

Publication number Publication date
AU2013231147A1 (en) 2014-04-10
CA2855054C (en) 2016-11-22
CA2790548C (en) 2017-07-04
US20140083697A1 (en) 2014-03-27
AU2013231147B2 (en) 2016-08-04
CA2790548A1 (en) 2014-03-24
CA2855054A1 (en) 2014-03-24
US9441450B2 (en) 2016-09-13

Similar Documents

Publication Publication Date Title
US7225870B2 (en) Hydraulic tools for setting liner top packers and method for cementing liners
US7128154B2 (en) Single-direction cementing plug
US7896091B2 (en) Convertible seal
CA2639342C (en) Degradable downhole check valve
CA2814334C (en) Well completion
US20170260825A1 (en) Wellbore isolation device with slip assembly
US9057240B2 (en) Debris barrier for downhole tools
US10724322B2 (en) Apparatus and method for forming a lateral wellbore
US20130292119A1 (en) Downhole plug
US9206674B2 (en) Apparatus and methods of running an expandable liner
CA2960731C (en) Stage tool
AU2012362655A1 (en) Downhole tool with pumpable section
US7971640B2 (en) Method and device for setting a bottom packer
CN106761541A (en) A kind of Hydraulic Anchorage sealing device
US9605510B2 (en) Non-rotating connector for wellbore cementing tool
US20140338889A1 (en) Non-rotating wellbore tool and sealing method therefor
WO2012106039A2 (en) Disconnect devices for downhole strings
EA037374B1 (en) Casing window assembly

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION