US20140305088A1 - Filter Element, Filter Device and Method for Producing a Filter Element - Google Patents

Filter Element, Filter Device and Method for Producing a Filter Element Download PDF

Info

Publication number
US20140305088A1
US20140305088A1 US14/312,775 US201414312775A US2014305088A1 US 20140305088 A1 US20140305088 A1 US 20140305088A1 US 201414312775 A US201414312775 A US 201414312775A US 2014305088 A1 US2014305088 A1 US 2014305088A1
Authority
US
United States
Prior art keywords
fold
filter
end section
filter medium
legs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/312,775
Inventor
Michael Maier
Martina Bachfischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mann and Hummel GmbH
Original Assignee
Mann and Hummel GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mann and Hummel GmbH filed Critical Mann and Hummel GmbH
Priority to US14/312,775 priority Critical patent/US20140305088A1/en
Assigned to MANN+HUMMEL GMBH reassignment MANN+HUMMEL GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAIER, MICHAEL, BACHFISCHER, MARTINA
Publication of US20140305088A1 publication Critical patent/US20140305088A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/01Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements
    • B01D29/05Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements supported
    • B01D29/07Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements supported with corrugated, folded or wound filtering sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/13Supported filter elements
    • B01D29/15Supported filter elements arranged for inward flow filtration
    • B01D29/21Supported filter elements arranged for inward flow filtration with corrugated, folded or wound sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/111Making filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/52Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material
    • B01D46/521Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material using folded, pleated material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • B29C65/5064Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like of particular form, e.g. being C-shaped, T-shaped
    • B29C65/5071Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like of particular form, e.g. being C-shaped, T-shaped and being composed by one single element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • B29C65/5064Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like of particular form, e.g. being C-shaped, T-shaped
    • B29C65/5085Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like of particular form, e.g. being C-shaped, T-shaped and comprising grooves, e.g. being E-shaped, H-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/133Fin-type joints, the parts to be joined being flexible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/135Single hemmed joints, i.e. one of the parts to be joined being hemmed in the joint area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/432Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms
    • B29C66/4322Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms by joining a single sheet to itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5344Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially annular, i.e. of finite length, e.g. joining flanges to tube ends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/543Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles joining more than two hollow-preforms to form said hollow articles
    • B29C66/5432Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles joining more than two hollow-preforms to form said hollow articles joining hollow covers and hollow bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81433General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined being toothed, i.e. comprising several teeth or pins, or being patterned
    • B29C66/81435General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined being toothed, i.e. comprising several teeth or pins, or being patterned comprising several parallel ridges, e.g. for crimping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • B29C66/83221Joining or pressing tools reciprocating along one axis cooperating reciprocating tools, each tool reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/481Non-reactive adhesives, e.g. physically hardening adhesives
    • B29C65/4815Hot melt adhesives, e.g. thermoplastic adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7232General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer
    • B29C66/72322General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer consisting of elements other than metals, e.g. boron
    • B29C66/72323Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81411General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat
    • B29C66/81415General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being bevelled
    • B29C66/81417General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being bevelled being V-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/14Filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1051Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina by folding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49908Joining by deforming

Definitions

  • This disclosure concerns a filter element, in particular with multi-layer filter media such as nonwoven filter materials. Moreover, a filter device and a method for connecting flat media are described.
  • filter elements are manufactured, for example, from initially zigzag-folded filter material sheets that are shaped to a tubular body. In order to close the tubular body, terminal fold sections must then be fluid-tightly connected to each other.
  • connection metal clips or clamps, for example, were used that hold together two flat sections resting on each other. It is also common to adhesively connect the two filter material sheets with each other or to connect them by fusing. In particular in case of multi-layer filter media, for example, several layers of thin nonwoven material that is impregnated or comprises special intermediate layers, it is difficult to prevent fraying of the edges that are resting on each other. A special difficulty resides in that the flat media to be connected must be connected fluid-tightly, i.e., the fluid to be filtered may not pass unfiltered at the connecting location through the filter material.
  • An object of the present invention is to provide an improved filter element, in particular with connected terminal fold sections of filter bellows media.
  • a filter element has a first and a second end section of a filter medium.
  • the first and the second end sections are connected flat with each other wherein a sheathing that is compressed with the end sections encloses the terminal edges of the end sections.
  • nonwoven filter materials are conceivable.
  • a starting material generally sheets of an appropriate filter nonwoven are cut, folded, and subsequently end sections are connected to each other. This results then in an endless filter bellows that is processed further.
  • the end sections and the sheathing have preferably the same material. In this way, processing can be realized in a particularly beneficial way and the disposal of a used or soiled filter element requires no special measures.
  • the sheathing can be, for example, in the form of a V-shaped or U-shaped profile wherein the end sections are then inserted into the space between the legs of the U or V and subsequent compression is carried out. In this way, the edges that may have the tendency to fray are completely enclosed by the sheathing.
  • the sheathing is formed of a flat filter medium with at least one longitudinal fold. Between the first and second fold legs of the sheathing, the end sections are provided.
  • the longitudinal folding is realized, for example, parallel to an edge of the corresponding sheathing strip.
  • a filter element has a first and a second end section of a flat filter medium.
  • the first end section has a fold with two fold legs and the end section of the second end section is positioned between the fold legs and is compressed therewith.
  • a filter element has accordingly a flat filter material with at least two end sections wherein the two end sections are fixed on each other and no open terminal edges is existing since either the sheathing encloses both terminal edges or one of the end sections encloses the terminal edge of the other end section.
  • the end sections may originate from a single, for example, folded, filter material sheet or also several sheets or leaves of filter material may be connected to each other.
  • the filter medium can have several layers wherein, for example, between the layers an absorbent material such as active carbon particles may be filled in.
  • filter media are used that between two layers have active carbon particles that absorb dirt or odor.
  • by means of sheathing or enclosure of the terminal edge of at least one of the end sections it is achieved that the layers will not fray or that introduced particles between the layers cannot flow out of the filter element.
  • the end section in the alternative embodiment can also have several folds with the same fold orientation.
  • the section can form, for example, a U-shaped or V-shaped profile into which the edge of the second end section is inserted.
  • the filter element is formed of a filter medium that is folded multiple times in a zigzag shape.
  • the zigzag folding increases the surface area of the filter element through which the fluid to be filtered flows, for example, air or fuel.
  • the end sections, the sheathing and/or the fold legs can be glued in addition. It is also conceivable that the end sections, the sheathing and/or the fold legs are compressed with each other with profiling. By embossment of a profile or a structure during compression, an improved connection for non-woven filter media results.
  • a filter device that has a corresponding filter element and embodies as operating medium filter, for example, a fuel filter or an air or passenger compartment filter for a motor vehicle.
  • a method for producing a filter element it is provided: connecting a first end section of a flat filter medium with a second end section of a flat filter medium wherein the terminal edges of the end sections are enclosed by a sheathing. The sheathing is moreover compressed together with the end sections.
  • a filter element In a variant of the manufacturing process for a filter element it is provided: connecting a first with a second end section of a flat filter medium.
  • the first end section is provided with a fold with two fold legs and the second end section is compressed between the fold legs with the latter.
  • Compression or connection of the end sections with the sheathing or the fold legs can be realized, for example, by ultrasound, fusing or laser welding.
  • FIG. 1 is a schematic perspective illustration of a first embodiment of a filter element
  • FIG. 2 is a schematic a perspective illustration of a second embodiment of a filter element
  • FIGS. 3-5 are detailed illustrations of end sections of the filter medium connected to each other;
  • FIGS. 6 , 7 are schematic illustrations for explaining variants of the manufacturing process for filter elements
  • FIG. 8 is a schematic section illustration of an alternative embodiment of end sections of the filter medium connected to each other;
  • FIG. 9 is a schematic illustration of an embodiment of a filter device.
  • FIGS. 10A and 10B are schematic illustrations for explaining a further variant of the manufacturing process for filter elements.
  • FIG. 1 shows a first embodiment of a filter element.
  • the filter element 1 is formed of a sheet of flat filter medium such as a nonwoven filter material.
  • rectangular nonwoven filter material sheets are shaped such that end sections of the sheet 3 are resting on each other.
  • an endless filter bellows 2 is formed thereby wherein the end sections 3 are secured by a sheathing 4 .
  • the filter element 1 can for example be inserted in a filter device in a filter cup such that the fluid to be filtered, for example, fuel, oil or also air, must pass through the filter medium and is purified thereby.
  • FIG. 2 shows a perspective illustration of a second embodiment wherein a filter element 10 is formed of a zigzag-folded nonwoven filter material.
  • the zigzag-shaped filter material is formed to a bellows 2 in that end sections or terminal fold sections 3 are connected to each other.
  • end sections or terminal fold sections 3 are connected to each other.
  • the connection of the end sections 3 of the flat filter material is illustrated in the following Figures in more detail.
  • FIG. 3 a detail of a filter element is shown that illustrates two connected end sections of the filter material sheet.
  • a first filter material sheet 2 A and a second filter material sheet 2 B are illustrated.
  • the end sections are identified by reference characters 3 A and 3 B.
  • the end sections correspond thus to a predetermined strip of a rim or edge 9 of the respective filter material sheet 2 A. 2 B. Since in FIG. 3 and also in the following Figures only a detail of the area of the end sections 3 A, 3 B connected to each other is illustrated, the filter material sheets 2 A and 2 B may originate also from a single filter material sheet as, for example, illustrated in FIG. 1 or 2 .
  • the two end sections 3 A, 3 B that are resting flat on each other are enclosed by a sheathing 4 .
  • the sheathing 4 is formed, for example, also of the same filter material and has in the embodiment of FIG. 3 a U-shaped profile.
  • the U-shaped profile results from the dual folding 5 A, 5 B of a strip of filter material.
  • the compression can be realized by high-pressure action assisted by laser welding or ultrasonic action. In this way, the filter media at least partially will join and this leads to a fluid-tight connection with each other.
  • FIG. 4 shows an alternative embodiment with two filter material sheets 2 A, 2 B.
  • a sheathing 4 is provided which, in comparison to FIG. 3 , has a V-shaped profile.
  • the end sections 3 A, 3 B of the flat filter medium 2 A, 2 B are positioned between the two fold legs 4 A, 4 B that are formed by the longitudinal fold 5 of the sheathing.
  • the two terminal edges 9 of the end sections 3 A, 3 B can press, for example, at the inner side against the fold edge 5 of the sheathing 4 .
  • FIG. 5 A further variant for the connection of two end sections of flat filter materials is illustrated in FIG. 5 .
  • a first filter material sheet 2 A and a second filter material sheet 2 B are illustrated. As already indicated, they can also be oppositely positioned end sections of a single filter material sheet.
  • the end section 3 A of the first filter material sheet 2 A at the bottom in FIG. 5 , is provided with a fold 5 .
  • the end section 3 A can also be understood as being provided with a V-shaped profile. In this way, by the fold 5 , parallel to the terminal edge 9 of the end section 3 A, two fold legs 6 A and 6 B are produced. Between the fold legs 6 A and 6 B the end section 3 B of the second filter material sheet 2 B is inserted.
  • the three layers i.e., the upper first fold leg 6 A, the end section 3 B of the second filter material sheet 2 B, and the lower fold leg 6 B of the first end section 3 A are compressed with each other or joined.
  • FIG. 6 a manufacturing process for corresponding filter elements in which end sections are connected to each other is schematically explained.
  • two zigzag-folded filter media 2 A, 2 B are illustrated.
  • a terminal fold section is placed between the legs of a U-shaped sheathing 4 .
  • the terminal edges 9 abut the central leg 24 of the sheathing 4 .
  • a spacing between the terminal edges 9 and the facing side of the central leg 24 of the sheathing 4 may exist.
  • the layers of the sheathing are compressed with the terminal (fold) sections.
  • a sonotrode 12 and an anvil 11 are pressed together.
  • the sonotrode generates ultrasound that is matched, for example, to the material to be connected in order to achieve a particularly reliable connection of the material layers with each other.
  • FIG. 7 a manufacturing process for producing a connection as illustrated in FIG. 5 is illustrated.
  • Two zigzag-folded filter materials 2 A, 2 B are illustrated again.
  • An end section of the first filter material sheet 2 A is provided with a fold 5 and comprises thus two fold legs 6 A and 6 B as well as a fold edge 5 .
  • the terminal edge 9 of the second end section of the second filter material sheet 2 B is inserted between the fold legs 6 A and 6 B.
  • compression of the layers with each other is carried out, for example, by using an anvil 11 and a sonotrode 12 .
  • both elements can be pressed against each other or only one of them, for example, only the sonotrode is designed to be movable.
  • FIG. 8 shows a section illustration of an alternative embodiment for end sections connected to each other of a filter medium. In this connection, multi-layer filter media are illustrated. FIG. 8 shows only the end sections connected to each other in cross-section.
  • the filter media 2 A, 2 B each have two layers 7 , 8 of a nonwoven filter material. Between the layers 7 , 8 , for example, active carbon particles 19 are strewn that serve as an absorber.
  • the sheathing is formed of a simple strip of nonwoven material but can also be a plastic profile that is provided with three parallel folds 5 A, 5 B, and 5 C with the same orientation.
  • the sheathing comprises therefore fold legs or fold sections 4 A, 4 B, 4 C, and 4 D that are each defined by the folds 5 A, 5 B, 5 C and the edges 23 .
  • FIG. 8 shows that the terminal edge 9 of the filter medium 2 A, 2 B is enclosed by the sheathing. This means in particular that the active carbon particles 19 cannot fall out.
  • FIG. 9 shows a filter device, for example, as a fuel filter, that is embodied with an afore described filter element 10 .
  • the filter device or the fuel filter 13 compromises a folded bellows 2 that is formed of zigzag-folded filter material and is secured between two covers 14 , 15 .
  • the folded bellows 2 corresponds to a filter element 10 in which two end sections 3 are joined by compression with each other.
  • the connecting possibilities as illustrated in FIG. 3-5 or 8 can be used.
  • the upper cover 15 is provided with a connector 16 that has an opening 18 .
  • the fluid to be filtered can enter for example in the direction of arrow 17 into the interior of the folded bellows 2 and can flow out by passing through the folds of the filter material.
  • the filter element can be inserted into a filter cup or an angular bellows can be formed.
  • FIG. 10 shows a further variant of a connection of two filter material end sections or method steps for producing the same.
  • FIG. 10A shows similar to FIGS. 6 and 7 zigzag-folded filter materials 2 A, 2 B.
  • the end section 3 A of the first filter material is folded twice in the same orientation, as indicated by the reference characters 5 A and 5 B and encloses the end section 3 B of the second filter material sheet 2 B.
  • Sonotrode 12 and anvil 11 are provided with a profiling, for example, knurling. This means that upon compression of the end sections 3 A, 3 B, for example, a slightly zigzag-shaped or irregular profile is embossed into the material layers.
  • FIG. 10B the result of the two end sections or filter sheets 2 A, 2 B compressed with each other is illustrated. Because of the multiple folding or embossment a particularly fast and reliable fluid-tight joining or connection of the two end sections 3 A, 3 B is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Materials (AREA)

Abstract

A filter element (1) has first and second end sections (3A, 3B) of a flat filter medium which are secured to one another. A sheathing (4) is provided, wherein said sheathing is compressed by the end sections (3A, 3B) and surrounds the end edges (9) of the end sections (3A, 3B). Alternatively, the filter element (1) has first and second end sections (3A, 3B) of a flat filter medium, wherein the first end section (3A) has a fold (5) having two fold legs (6A, 6B). The end section (3B) of the second end section (2B) is then compressed between the fold legs (6A, 6B).

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. application Ser. No. 12/452,455 filed Apr. 20, 2012 and which will issue as U.S. Pat. No. 8,757,394 on Jun. 24, 2014. U.S. application Ser. No. 12/452,455 is a bypass Continuation of international patent application no. PCT/EP2010/064977, filed Oct. 7, 2010 designating the United States of America, the entire disclosure of which is incorporated herein by reference. Priority is claimed based on German patent application no. 10 2009 050 257.2, filed Oct. 21, 2009.
  • TECHNICAL FIELD
  • This disclosure concerns a filter element, in particular with multi-layer filter media such as nonwoven filter materials. Moreover, a filter device and a method for connecting flat media are described.
  • BACKGROUND OF THE INVENTION
  • In order to filter, for example, in the automotive field, fluids such as fuels, operating media or passenger compartment air, folded or pleated nonwoven filter materials are frequently used. In this connection, it is often required to connect various edges or end sections of these flat filter materials with each other. Known filter elements are manufactured, for example, from initially zigzag-folded filter material sheets that are shaped to a tubular body. In order to close the tubular body, terminal fold sections must then be fluid-tightly connected to each other.
  • In the past, in this connection metal clips or clamps, for example, were used that hold together two flat sections resting on each other. It is also common to adhesively connect the two filter material sheets with each other or to connect them by fusing. In particular in case of multi-layer filter media, for example, several layers of thin nonwoven material that is impregnated or comprises special intermediate layers, it is difficult to prevent fraying of the edges that are resting on each other. A special difficulty resides in that the flat media to be connected must be connected fluid-tightly, i.e., the fluid to be filtered may not pass unfiltered at the connecting location through the filter material.
  • SUMMARY OF THE INVENTION
  • An object of the present invention is to provide an improved filter element, in particular with connected terminal fold sections of filter bellows media.
  • Accordingly, a filter element has a first and a second end section of a filter medium. The first and the second end sections are connected flat with each other wherein a sheathing that is compressed with the end sections encloses the terminal edges of the end sections.
  • As a filter medium, in particular nonwoven filter materials are conceivable. As a starting material generally sheets of an appropriate filter nonwoven are cut, folded, and subsequently end sections are connected to each other. This results then in an endless filter bellows that is processed further.
  • The end sections and the sheathing have preferably the same material. In this way, processing can be realized in a particularly beneficial way and the disposal of a used or soiled filter element requires no special measures.
  • By compression, for example, by plungers that are pressed against each other by employing ultrasound or high pressures and/or increased temperature, the materials of the filter medium and of the sheathing will join particularly well.
  • The sheathing can be, for example, in the form of a V-shaped or U-shaped profile wherein the end sections are then inserted into the space between the legs of the U or V and subsequent compression is carried out. In this way, the edges that may have the tendency to fray are completely enclosed by the sheathing.
  • For example, the sheathing is formed of a flat filter medium with at least one longitudinal fold. Between the first and second fold legs of the sheathing, the end sections are provided. The longitudinal folding is realized, for example, parallel to an edge of the corresponding sheathing strip.
  • Alternatively, a filter element has a first and a second end section of a flat filter medium. The first end section has a fold with two fold legs and the end section of the second end section is positioned between the fold legs and is compressed therewith.
  • A filter element has accordingly a flat filter material with at least two end sections wherein the two end sections are fixed on each other and no open terminal edges is existing since either the sheathing encloses both terminal edges or one of the end sections encloses the terminal edge of the other end section. In this connection, the end sections may originate from a single, for example, folded, filter material sheet or also several sheets or leaves of filter material may be connected to each other. The filter medium can have several layers wherein, for example, between the layers an absorbent material such as active carbon particles may be filled in. For example, filter media are used that between two layers have active carbon particles that absorb dirt or odor. In particular in case of multi-layer filter media, by means of sheathing or enclosure of the terminal edge of at least one of the end sections it is achieved that the layers will not fray or that introduced particles between the layers cannot flow out of the filter element.
  • The end section in the alternative embodiment can also have several folds with the same fold orientation. The section can form, for example, a U-shaped or V-shaped profile into which the edge of the second end section is inserted.
  • Usually, the filter element is formed of a filter medium that is folded multiple times in a zigzag shape. The zigzag folding increases the surface area of the filter element through which the fluid to be filtered flows, for example, air or fuel.
  • In order to improve the connection between the end sections, the end sections, the sheathing and/or the fold legs can be glued in addition. It is also conceivable that the end sections, the sheathing and/or the fold legs are compressed with each other with profiling. By embossment of a profile or a structure during compression, an improved connection for non-woven filter media results.
  • Finally, a filter device is proposed that has a corresponding filter element and embodies as operating medium filter, for example, a fuel filter or an air or passenger compartment filter for a motor vehicle.
  • In a method for producing a filter element it is provided: connecting a first end section of a flat filter medium with a second end section of a flat filter medium wherein the terminal edges of the end sections are enclosed by a sheathing. The sheathing is moreover compressed together with the end sections.
  • In a variant of the manufacturing process for a filter element it is provided: connecting a first with a second end section of a flat filter medium. In this connection, the first end section is provided with a fold with two fold legs and the second end section is compressed between the fold legs with the latter. Compression or connection of the end sections with the sheathing or the fold legs can be realized, for example, by ultrasound, fusing or laser welding.
  • Further possible implementations of the invention comprise also combinations that are not explicitly mentioned of features or embodied variants that are disclosed supra or in the following with respect to embodiments. In this connection, a person of skill in the art will also add individual aspects as improvements or supplements to the respective basic form of the invention.
  • Further embodiments of the invention are the subject matter of the dependent claims as well as of the embodiments of the invention disclosed in the following. In the following, the invention will be explained in more detail with the aid of embodiments with reference to the attached figures.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying Figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views and which together with the detailed description below are incorporated in and form part of the specification, serve to further illustrate various embodiments and to explain various principles and advantages all in accordance with the present invention.
  • Features of the present invention, which are believed to be novel, are set forth in the drawings and more particularly in the appended claims. The invention, together with the further objects and advantages thereof, may be best understood with reference to the following description, taken in conjunction with the accompanying drawings. The drawings show a form of the invention that is presently preferred; however, the invention is not limited to the precise arrangement shown in the drawings.
  • FIG. 1 is a schematic perspective illustration of a first embodiment of a filter element;
  • FIG. 2 is a schematic a perspective illustration of a second embodiment of a filter element;
  • FIGS. 3-5 are detailed illustrations of end sections of the filter medium connected to each other;
  • FIGS. 6, 7 are schematic illustrations for explaining variants of the manufacturing process for filter elements;
  • FIG. 8 is a schematic section illustration of an alternative embodiment of end sections of the filter medium connected to each other;
  • FIG. 9 is a schematic illustration of an embodiment of a filter device; and
  • FIGS. 10A and 10B are schematic illustrations for explaining a further variant of the manufacturing process for filter elements.
  • In the Figures, same, or functionally the same, elements inasmuch as nothing else is indicated, are identified with the same reference characters.
  • Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.
  • DETAILED DESCRIPTION
  • Before describing in detail embodiments that are in accordance with the present invention, it should be observed that the embodiments reside primarily in combinations of apparatus components and methods related to a filter element as well as means and methods of securing edges of filter media together. Accordingly, the apparatus components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.
  • In this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element preceded by “comprises . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.
  • FIG. 1 shows a first embodiment of a filter element. In this connection, the filter element 1 is formed of a sheet of flat filter medium such as a nonwoven filter material. First, rectangular nonwoven filter material sheets are shaped such that end sections of the sheet 3 are resting on each other. In FIG. 1 an endless filter bellows 2 is formed thereby wherein the end sections 3 are secured by a sheathing 4. The filter element 1 can for example be inserted in a filter device in a filter cup such that the fluid to be filtered, for example, fuel, oil or also air, must pass through the filter medium and is purified thereby.
  • FIG. 2 shows a perspective illustration of a second embodiment wherein a filter element 10 is formed of a zigzag-folded nonwoven filter material. The zigzag-shaped filter material is formed to a bellows 2 in that end sections or terminal fold sections 3 are connected to each other. By the zigzag-shaped folding a larger surface area of the filter material in the filter element 10 results. The connection of the end sections 3 of the flat filter material is illustrated in the following Figures in more detail.
  • In FIG. 3, a detail of a filter element is shown that illustrates two connected end sections of the filter material sheet. A first filter material sheet 2A and a second filter material sheet 2B are illustrated. The end sections are identified by reference characters 3A and 3B. The end sections correspond thus to a predetermined strip of a rim or edge 9 of the respective filter material sheet 2A. 2B. Since in FIG. 3 and also in the following Figures only a detail of the area of the end sections 3A, 3B connected to each other is illustrated, the filter material sheets 2A and 2B may originate also from a single filter material sheet as, for example, illustrated in FIG. 1 or 2.
  • The two end sections 3A, 3B that are resting flat on each other are enclosed by a sheathing 4. The sheathing 4 is formed, for example, also of the same filter material and has in the embodiment of FIG. 3 a U-shaped profile. The U-shaped profile results from the dual folding 5A, 5B of a strip of filter material. Between the fold legs the end sections 3A and 3B are inserted and compressed with each other. The compression can be realized by high-pressure action assisted by laser welding or ultrasonic action. In this way, the filter media at least partially will join and this leads to a fluid-tight connection with each other.
  • FIG. 4 shows an alternative embodiment with two filter material sheets 2A, 2B. Again, a sheathing 4 is provided which, in comparison to FIG. 3, has a V-shaped profile. The end sections 3A, 3B of the flat filter medium 2A, 2B are positioned between the two fold legs 4A, 4B that are formed by the longitudinal fold 5 of the sheathing. The two terminal edges 9 of the end sections 3A, 3B can press, for example, at the inner side against the fold edge 5 of the sheathing 4.
  • A further variant for the connection of two end sections of flat filter materials is illustrated in FIG. 5. A first filter material sheet 2A and a second filter material sheet 2B are illustrated. As already indicated, they can also be oppositely positioned end sections of a single filter material sheet. The end section 3A of the first filter material sheet 2A, at the bottom in FIG. 5, is provided with a fold 5. The end section 3A can also be understood as being provided with a V-shaped profile. In this way, by the fold 5, parallel to the terminal edge 9 of the end section 3A, two fold legs 6A and 6B are produced. Between the fold legs 6A and 6B the end section 3B of the second filter material sheet 2B is inserted.
  • The three layers, i.e., the upper first fold leg 6A, the end section 3B of the second filter material sheet 2B, and the lower fold leg 6B of the first end section 3A are compressed with each other or joined.
  • In all of the examples illustrated in FIGS. 3-5 there is no open terminal edge of the filter material. In this way, a particularly reliable fluid-tight sealing action results, in particular, when the filter material sheets are of a multi-layer configuration.
  • In FIG. 6, a manufacturing process for corresponding filter elements in which end sections are connected to each other is schematically explained. In FIG. 6, two zigzag-folded filter media 2A, 2B are illustrated. A terminal fold section is placed between the legs of a U-shaped sheathing 4. For example, the terminal edges 9 abut the central leg 24 of the sheathing 4. However, a spacing between the terminal edges 9 and the facing side of the central leg 24 of the sheathing 4 may exist.
  • Finally, the layers of the sheathing are compressed with the terminal (fold) sections. For this purpose, for example a sonotrode 12 and an anvil 11 are pressed together. The sonotrode generates ultrasound that is matched, for example, to the material to be connected in order to achieve a particularly reliable connection of the material layers with each other.
  • In FIG. 7, a manufacturing process for producing a connection as illustrated in FIG. 5 is illustrated. Two zigzag-folded filter materials 2A, 2B are illustrated again. An end section of the first filter material sheet 2A is provided with a fold 5 and comprises thus two fold legs 6A and 6B as well as a fold edge 5. The terminal edge 9 of the second end section of the second filter material sheet 2B is inserted between the fold legs 6A and 6B. Subsequently, compression of the layers with each other is carried out, for example, by using an anvil 11 and a sonotrode 12. In this connection, both elements (anvil and sonotrode) can be pressed against each other or only one of them, for example, only the sonotrode is designed to be movable.
  • FIG. 8 shows a section illustration of an alternative embodiment for end sections connected to each other of a filter medium. In this connection, multi-layer filter media are illustrated. FIG. 8 shows only the end sections connected to each other in cross-section.
  • In this context, the filter media 2A, 2B each have two layers 7, 8 of a nonwoven filter material. Between the layers 7, 8, for example, active carbon particles 19 are strewn that serve as an absorber. The sheathing is formed of a simple strip of nonwoven material but can also be a plastic profile that is provided with three parallel folds 5A, 5B, and 5C with the same orientation. The sheathing comprises therefore fold legs or fold sections 4A, 4B, 4C, and 4D that are each defined by the folds 5A, 5B, 5C and the edges 23.
  • FIG. 8 shows that the terminal edge 9 of the filter medium 2A, 2B is enclosed by the sheathing. This means in particular that the active carbon particles 19 cannot fall out.
  • FIG. 9 shows a filter device, for example, as a fuel filter, that is embodied with an afore described filter element 10. The filter device or the fuel filter 13 compromises a folded bellows 2 that is formed of zigzag-folded filter material and is secured between two covers 14, 15. The folded bellows 2 corresponds to a filter element 10 in which two end sections 3 are joined by compression with each other. In this connection, in particular the connecting possibilities as illustrated in FIG. 3-5 or 8 can be used.
  • The upper cover 15 is provided with a connector 16 that has an opening 18. The fluid to be filtered can enter for example in the direction of arrow 17 into the interior of the folded bellows 2 and can flow out by passing through the folds of the filter material. Of course, further filter devices are conceivable. For example, the filter element can be inserted into a filter cup or an angular bellows can be formed.
  • Finally, FIG. 10 shows a further variant of a connection of two filter material end sections or method steps for producing the same. FIG. 10A shows similar to FIGS. 6 and 7 zigzag-folded filter materials 2A, 2B. The end section 3A of the first filter material is folded twice in the same orientation, as indicated by the reference characters 5A and 5B and encloses the end section 3B of the second filter material sheet 2B.
  • Sonotrode 12 and anvil 11 are provided with a profiling, for example, knurling. This means that upon compression of the end sections 3A, 3B, for example, a slightly zigzag-shaped or irregular profile is embossed into the material layers.
  • In FIG. 10B the result of the two end sections or filter sheets 2A, 2B compressed with each other is illustrated. Because of the multiple folding or embossment a particularly fast and reliable fluid-tight joining or connection of the two end sections 3A, 3B is provided.
  • The proposed measures for connecting the end sections or the manufacturing processes of filter elements and filter devices leads to a particular seal-tightness of these bellows seam connection or the connection of the end sections. Moreover, an improved visual appearance results because no further auxiliary means such as clamps or adhesives must be used. Moreover, no additional material is required for the manufacture so that the processing can be realized in a particularly cost-efficient way. Because of the use of nonwoven filter material as a sheathing, as it is used for example in the filter material sheets, the disposal of corresponding filter elements is possible also in a particularly simple and inexpensive way. As filter materials in particular thermoplastic nonwoven materials are used that can be easily deformed and compressed.
  • In the foregoing specification, specific embodiments of the present invention have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the present invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of the present invention. The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.

Claims (13)

1. A filter element comprising:
a first end section (3A) at a first edge of a filter medium sheet;
a second section (3B) at a second edge of a filter medium sheet;
wherein said first end section (3A) has a fold (5) forming two facing fold legs (6A, 6B) in the first end section (3A);
wherein said second end section (3B) overlays upon said first end section (3A);
wherein said two fold legs (6A, 6B) are arranged upon opposing sides of said second end section;
wherein said two fold legs (6A, 6B) compress said second end section (3B) between said fold legs, securing said end sections together.
2. The filter element according to claim 1, wherein
said first end section (3A) includes a plurality of folds (5A, 5B), said plurality of folds sharing a common fold orientation direction, said plurality of folds arranged between said two fold legs.
3. The filter element according to claim 2, wherein
said filter medium sheet includes a plurality spaced folds forming a zigzag folded filter medium, the spaced folds sharing a common fold direction with the fold forming the fold legs.
4. The filter element according to claim 1, wherein
said first and second end sections are arranged on opposite edges of a single filter material sheet on opposing lateral sheet edges and are compressively secured together forming a circumferentially closed endless filter bellows (2).
5. The filter element according to claim 1, wherein
said end sections (3A, 3B) or the fold legs (6A, 6B) are moreover connected by gluing.
6. The filter element according to claim 1, wherein
said end sections (3A, 3B) or the fold legs (6A, 6B) are moreover compressed with each other with profiling.
7. The filter element according to claim 1, wherein
said filter medium sheet comprises a plurality of overlaid layers (7, 8).
8. The filter element according to claim 1, wherein
said filter medium sheet comprises a non-woven filter material.
9. The filter element according to claim 8, wherein
said filter medium sheet comprises a non-woven filter material;
wherein the filter medium sheet is a weldable material suitable for ultrasonic welding or laser welding;
wherein said weldable material is any of: a meltable material or a material with a meltable coating.
10. A method of producing a filter element, comprising:
providing a sheet of filter medium having
a first end section (3A) at a first edge of a filter medium sheet; and
a second section (3B) at a second edge of a filter medium sheet;
forming a fold in the sheet of filter medium, the fold having a fold line spaced inwardly on to sheet from the first ends and in the first end section,
the fold forming two fold legs (6A, 6B) in the first end section (3A);
overlaying the first end section of said filter medium sheet onto an against the second end section of said filter medium sheet;
folding the two fold legs onto and against opposing sides of said second end section such that the second end section is arranged between the two fold legs;
securing a first end section of said filter medium onto the second end section of said filter medium, wherein the securing step is practiced by
compressing said fold legs together against opposing sides of the second end section, said compressing securing said first end section onto said second end section.
11. The method of producing a filter element according to claim 10, wherein
in said providing step, said sheet of filter medium is a weldable material suitable for ultrasonic welding or laser welding;
wherein said weldable material is any of: a meltable material or a material with a meltable coating;
wherein in said securing step , said end sections or said fold legs are secured together by ultrasonic welding or laser welding.
12. The method of producing a filter element according to claim 10, wherein
said filter medium sheet is provided with a plurality spaced folds forming a zigzag folded filter medium;
wherein the spaced folds have fold lines sharing a common fold orientation direction with the fold forming the two legs.
13. The method of producing a filter element according to claim 11, wherein
said end sections or said fold legs are secured together by a compression embossment providing a multiple fold embossment into said end sections or said fold legs.
US14/312,775 2009-10-21 2014-06-24 Filter Element, Filter Device and Method for Producing a Filter Element Abandoned US20140305088A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/312,775 US20140305088A1 (en) 2009-10-21 2014-06-24 Filter Element, Filter Device and Method for Producing a Filter Element

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102009050257.2 2009-10-21
DE102009050257A DE102009050257A1 (en) 2009-10-21 2009-10-21 Filter element, filter device and method for producing a filter element
PCT/EP2010/064977 WO2011047963A1 (en) 2009-10-21 2010-10-07 Filter element, filter device and method for producing a filter element
US13/452,455 US8757394B2 (en) 2009-10-21 2012-04-20 Filter element, filter device and method for producing a filter element
US14/312,775 US20140305088A1 (en) 2009-10-21 2014-06-24 Filter Element, Filter Device and Method for Producing a Filter Element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/452,455 Division US8757394B2 (en) 2009-10-21 2012-04-20 Filter element, filter device and method for producing a filter element

Publications (1)

Publication Number Publication Date
US20140305088A1 true US20140305088A1 (en) 2014-10-16

Family

ID=43466459

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/452,455 Expired - Fee Related US8757394B2 (en) 2009-10-21 2012-04-20 Filter element, filter device and method for producing a filter element
US14/312,775 Abandoned US20140305088A1 (en) 2009-10-21 2014-06-24 Filter Element, Filter Device and Method for Producing a Filter Element

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/452,455 Expired - Fee Related US8757394B2 (en) 2009-10-21 2012-04-20 Filter element, filter device and method for producing a filter element

Country Status (4)

Country Link
US (2) US8757394B2 (en)
CN (1) CN203108302U (en)
DE (2) DE102009050257A1 (en)
WO (1) WO2011047963A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009052123A1 (en) * 2009-11-05 2011-05-12 Mann + Hummel Gmbh Filter element, filter device and method for producing a filter element
DE102012013470A1 (en) * 2012-07-09 2014-05-08 Mann + Hummel Gmbh Method and device for manufacturing filter elements and filter element
DE102013015645A1 (en) * 2013-09-23 2015-03-26 Mann + Hummel Gmbh Device and method for producing a filter bellows
CN107052559B (en) * 2017-06-07 2022-12-27 张家港市彰阳工业过滤器有限公司 Double-layer corrugated filter cloth and welding positioning device, welding device and welding method thereof
GB201812152D0 (en) * 2018-07-25 2018-09-05 Bw Tech Limited A method of constructing a tubular water filter
CN114175223A (en) * 2019-07-25 2022-03-11 日立能源瑞士股份公司 Power semiconductor module and method for forming power semiconductor module
TWI699233B (en) * 2019-09-12 2020-07-21 濾能股份有限公司 A cylindric filter device, a manufacturing method and an usage of the same, and a filter system having the same
CN115008756A (en) * 2022-06-09 2022-09-06 贺德克液压技术(上海)有限公司 Optimized longitudinal processing technology of filter material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2749265A (en) * 1953-11-05 1956-06-05 Bendix Aviat Corp Method of making pleated paper filter elements
US3306794A (en) * 1963-02-12 1967-02-28 Wix Corp Method of making a filter element
US4588464A (en) * 1983-09-09 1986-05-13 Kurashiki Boseki Kabushiki Kaisha Method of producing a fluorocarbon filter element
US5114508A (en) * 1984-12-24 1992-05-19 Tokuya Miyagi Filter element and its production
US20010018952A1 (en) * 1999-02-04 2001-09-06 Midmac Systems Filter forming and joining apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3127341A (en) * 1964-03-31 abeles
US4184966A (en) * 1977-09-29 1980-01-22 Pall David B Tubular filter elements with improved side seam seal
IT1091453B (en) * 1977-11-10 1985-07-06 Whitehad Motofides Spa OIL BATH AIR FILTER
JP3492429B2 (en) * 1994-10-11 2004-02-03 山信工業株式会社 Filter element
US5873920A (en) * 1996-09-27 1999-02-23 Dana Corporation Low restriction, high performance air filter
DE19933163A1 (en) 1999-07-20 2001-02-08 Hydac Filtertechnik Gmbh Filter element with welding connection clip and device for producing the same
DE10135421A1 (en) * 2001-07-20 2003-02-13 Hydac Filtertechnik Gmbh Method for producing a connection point for a filter element and device for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2749265A (en) * 1953-11-05 1956-06-05 Bendix Aviat Corp Method of making pleated paper filter elements
US3306794A (en) * 1963-02-12 1967-02-28 Wix Corp Method of making a filter element
US4588464A (en) * 1983-09-09 1986-05-13 Kurashiki Boseki Kabushiki Kaisha Method of producing a fluorocarbon filter element
US4663041A (en) * 1983-09-09 1987-05-05 Kurashiki Baseki Kabushiki Kaisha Fluorocarbon filter element
US5114508A (en) * 1984-12-24 1992-05-19 Tokuya Miyagi Filter element and its production
US20010018952A1 (en) * 1999-02-04 2001-09-06 Midmac Systems Filter forming and joining apparatus

Also Published As

Publication number Publication date
DE112010005044A5 (en) 2012-11-29
CN203108302U (en) 2013-08-07
WO2011047963A1 (en) 2011-04-28
DE112010005044B4 (en) 2023-08-10
DE102009050257A1 (en) 2011-05-12
US8757394B2 (en) 2014-06-24
US20120248026A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
US8757394B2 (en) Filter element, filter device and method for producing a filter element
US9095796B2 (en) Connecting element for multilayer media, filter element, and method for connecting laminar media
US9566731B2 (en) Filter element, filter device and method for producing a filter element
US7794556B2 (en) Filter and method of making
JP4372356B2 (en) Housing, filter, and filter insert
US7713324B2 (en) Filter
US7018493B2 (en) Method for producing a connection interface in a filter element and device for producing the same
JPS5824311A (en) Tubular filter member for fluid and production thereof
US7811350B2 (en) Filter device, manufacturing method for the same, and filter element securing tool
US10207214B2 (en) Filter with bidirectional pleated media
US20130008849A1 (en) Device for Folding a Web-Shaped Filter Medium and Method for Producing a Filter Element Folded in a Zigzag Shape
KR20140074859A (en) Filtering device with a paper filter
US20100051537A1 (en) Filter Element with Glued-On Terminal Disk
JP2002282626A (en) Filter body for liquid
US20140174047A1 (en) Filter Element, Filter Arrangement and Method for Producing the Filter Element
US20060236664A1 (en) Filter system
US20030208998A1 (en) Filter bag and method of manufacture thereof
JP2006132769A (en) Fluid filter device for vehicle
WO2016182792A1 (en) V-bank filter and method of making
JP2000093725A (en) Formed air filter and manufacture thereof
JP2000279716A (en) Fluid filter device for vehicle
JP2011001837A (en) Filter member and air cleaner structure using the same
JPH09173751A (en) Filter member, filter and production of filter
MXPA97008771A (en) Provision of fil

Legal Events

Date Code Title Description
AS Assignment

Owner name: MANN+HUMMEL GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MAIER, MICHAEL;BACHFISCHER, MARTINA;SIGNING DATES FROM 20140331 TO 20140703;REEL/FRAME:033481/0363

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION