US20140301367A1 - Method and device for processing data during cell handover in lte system - Google Patents

Method and device for processing data during cell handover in lte system Download PDF

Info

Publication number
US20140301367A1
US20140301367A1 US14/308,568 US201414308568A US2014301367A1 US 20140301367 A1 US20140301367 A1 US 20140301367A1 US 201414308568 A US201414308568 A US 201414308568A US 2014301367 A1 US2014301367 A1 US 2014301367A1
Authority
US
United States
Prior art keywords
enb
pdcp
message
sdu
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/308,568
Inventor
Ying Wang
Haijing Hu
Yihua Jiang
Guosheng Zhao
Xunwei Zhao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Telecommunications Technology CATT
Original Assignee
China Academy of Telecommunications Technology CATT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Telecommunications Technology CATT filed Critical China Academy of Telecommunications Technology CATT
Priority to US14/308,568 priority Critical patent/US20140301367A1/en
Publication of US20140301367A1 publication Critical patent/US20140301367A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1642Formats specially adapted for sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1874Buffer management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off

Definitions

  • the present invention relates to the technical field of the Long Term Evolution (LTE) system in mobile communications, and particularly to a method for indicating data re-transmission during cell handover in the LTE system and a device thereof.
  • LTE Long Term Evolution
  • the idea of User Equipment (UE) assistant to network control i.e., the steps of “measure-report-decide-execute”, is still adopted.
  • the S_eNB decides that the UE shall handover to the Target Evolved Node B (T_eNB) according to measurement reports from the UE and the T_eNB
  • the S_eNB exchanges information with the T_eNB directly via an X2 interface, to complete resource preparation in the target cell; then, the S_eNB instructs the UE to handover to the target cell; after a successful handover, the T_eNB informs the S_eNB to release radio resource of the original cell.
  • the S_eNB transmits data that is not transmitted yet to the T_eNB and updates relation of nodes between a user plane and a control plane.
  • a flowchart of cell handover in the LTE system in the prior art mainly includes:
  • the S_eNB configures the UE with a measurement procedure
  • the UE sends a measurement report to the S_eNB;
  • the S_eNB makes a UE handover decision according to the measurement report and Radio Resource Management (RRM) information;
  • RRM Radio Resource Management
  • the S_eNB sends a handover request to the T_eNB;
  • the T_eNB On receiving the handover request from the S_eNB, the T_eNB performs an admission control procedure according to the received E-RAB Quality of Service (QoS) information;
  • QoS Quality of Service
  • the T_eNB sends a Handover Request Acknowledge message to the S_eNB;
  • the S_eNB sends a Handover Command message to the UE, to instruct the UE to perform a handover;
  • the UE sends a Synchronization message to the T_eNB;
  • the T_eNB feeds a Synchronization Reply message back to the UE, the Synchronization Reply message including UL resource allocation information, a time advance, etc.;
  • the UE sends a Handover Complete Acknowledge message to the T_eNB after the UE accesses the target cell successfully.
  • an uplink data forwarding solution is adopted, which is performed between step [ 7 ] and step [ 8 ] of FIG. 1 (as illustrated by dotted lines).
  • the data forwarding refers to that: the S_eNB forwards received disordered Packet Data Convergence Protocol-Service Data Units (PDCP-SDUs) to the T_eNB, and the PDCP-SDUs are attached with Sequence Numbers (SNs), then the T_eNB sends the received PDCP-SDUs to the Service Gateway (S-GW).
  • PDCP-SDUs Packet Data Convergence Protocol-Service Data Units
  • SNs Sequence Numbers
  • ordered transmission of upper layer PDUs is based on continuous PDCP-SNs and a re-order function provided by the PDCP layer.
  • the re-order function of the PDCP layer of the T_eNB ensures the ordered transmission of the uplink PDCP-SDUs.
  • the air interface is based on the Automatic Repeat Request/Hybrid Automatic Repeat Request (ARQ/HARQ) mechanism.
  • the S_eNB feeds ACKs back to the UE on successfully receiving ordered PDCP-SDUs.
  • the UE re-transmits to the T_eNB those PDCP-SDUs whose ACKs are not received at the UE.
  • the UE does not receive any ACK to a PDCP in two cases: in the first case, the S_eNB does not receive the PDCPs due to reasons such as network, etc., and does not feed ACKs back to the UE accordingly; in the second case, the S_eNB has received ordered PDCPs successfully, however, ACKs are not fed back to the UE successfully due to network reasons.
  • the above second case may result in insignificant re-transmission from the UE to the T_eNB and a waste of precious radio resource. Examples are described hereinafter with reference to the two cases.
  • FIG. 2 illustrates a fact in which re-transmission of PDCP-SDUs from the UE results in an insignificant waste.
  • the S_eNB receives data 1 , 2 and 3 from the UE successfully and transmits the data 1 , 2 and 3 to the S-GW via an S 1 interface. It is assumed that the UE receives only an ACK to the data 1 fed back from the network side and does not receive ACKs to the data 2 and 3 .
  • the UE continues to send the data 2 and 3 to the T_eNB, the T_eNB receives the data 2 and 3 and sends the re-transmitted data 2 and 3 to the S-GW, which results in reception of repeated data in the Evolved Packet Core (EPC) system and a waste of precious radio resource at the air interface.
  • EPC Evolved Packet Core
  • FIG. 3 illustrates another fact in which re-transmission of PDCP-SDUs from the UE results in an insignificant waste.
  • the UE sends data a, b, c and d to the S_eNB, however, the data b fails during transmission and the S_eNB receives only the data a, c and d, and the data c and d becomes disordered.
  • the S_eNB sends the ordered data a to the S-GW, buffers the disordered data c and d in a buffer, and then sends the data c and d to the T_eNB which delivers the data c and d to the S-GW.
  • the UE does not receive any ACK to the data c and d.
  • the UE receives only an ACK to the data a, and re-transmits the data b, c and d to the T_eNB because the UE does not receive any ACK to the data b, c and d.
  • the data c and d is re-transmitted.
  • the S_eNB sends the buffered data c and d to the T_eNB; on the other hand, the UE re-transmits the data c and d to the T_eNB due to no reception of any ACK, thereby resulting in a waste of resource.
  • the present invention provides a method for processing data during cell handover in a Long Term Evolution (LTE) system, so as to solve the problem of waste of radio resource due to re-transmission of redundant PDCP-SDUs in the conventional solution.
  • LTE Long Term Evolution
  • the present invention further provides a device for processing data during cell handover in a Long Term Evolution (LTE) system, i.e., a UE.
  • LTE Long Term Evolution
  • a method for processing data during cell handover in a Long Term Evolution (LTE) system includes:
  • the UE receives the SN of the PDCP-SDU that is received by the S_eNB through a synchronization reply message, a Radio Resource Control (RRC) message, a Radio Link Control (RLC) message or a Media Access Control (MAC) message.
  • RRC Radio Resource Control
  • RLC Radio Link Control
  • MAC Media Access Control
  • the method further includes:
  • a User Equipment (UE) for processing data during cell handover in a Long Term Evolution (LTE) system includes: an Evolved Node B (eNB) interface unit and a queue adjustment unit, where
  • the UE further includes: a re-transmission queue and a message parsing unit, where
  • the UE re-transmits a PDCP to the T_eNB if only the UE does not receive an ACK to the PDCP.
  • the UE further determines whether the UE has received from the T_eNB a PDCP-SN indicating that the S_eNB has received the PDCP. If the UE does not receive the ACK to the PDCP but receives the PDCP-SN indicating that the S_eNB has received the PDCP, the UE does not re-transmit the PDCP, thereby avoiding re-transmission of redundant PDCPs and resulting in effective saving of radio resource compared with the conventional solution.
  • FIG. 1 is a diagram of cell handover in the LTE system in the prior art
  • FIG. 2 is a first diagram of resending data from the UE in the prior art
  • FIG. 3 is a second diagram of resending data from the UE in the prior art
  • FIG. 4 is a diagram of a first embodiment of the method according to the present invention.
  • FIG. 5 is a flowchart of the first embodiment of the method according to the present invention.
  • FIG. 6 is an exemplary diagram of the first embodiment of the method according to the present invention.
  • FIG. 7 is a flowchart of a second embodiment of the method according to the present invention.
  • FIG. 8 is a flowchart of a third embodiment of the method according to the present invention.
  • FIG. 9 is a diagram of a structure of an S_eNB device according to the present invention.
  • FIG. 10 is a diagram of a structure of a T_eNB device according to the present invention.
  • FIG. 11 is a diagram of a structure of a UE device according to the present invention.
  • the core of the present invention lies in that a process is added during cell handover of the UE, i.e., the S_eNB informs the UE via the T_eNB that which PDCP-SDUs have been received by the S_eNB successfully and the UE does not need to re-transmit the PDCP-SDUs even if the UE does not receive ACKs to the PDCP-SDUs.
  • the UE re-transmits a PDCP-SDU to the T_eNB if only the UE does not receive an ACK to the PDCP-SDU.
  • the UE further determines whether the UE has received from the T_eNB the SN indicating that the S_eNB has received the PDCP-SDU.
  • the UE does not receive an ACK to a PDCP-SDU but receives a PDCP-SDU SN indicating reception of the PDCP-SDU, the UE does not re-transmit the PDCP-SDU, thereby avoiding re-transmission of duplicate PDCP-SDU and resulting in effective saving of radio resource compared with the conventional solution.
  • FIG. 4 is a diagram of cell handover in the LTE system according to the first embodiment.
  • the cell handover includes the following steps.
  • the S_eNB configures the UE with a measurement procedure according to roaming restriction information.
  • the measurement information provided by the S_eNB may be of assistance to control the connection mobility function of the UE.
  • step 402 the UE sends a measurement report to the S_eNB.
  • the S_eNB makes a handover decision to perform cell handover of the UE according to the measurement report from the UE and RRM information.
  • the S_eNB sends to the T_eNB a Handover Request message carrying necessary information so that the T_eNB prepares handover resource.
  • the Handover Request message also indicates whether the system supports DL/UL data forwarding, and the Handover Request message further includes a SAE bearer context.
  • the SAE bearer context includes Transport Network Layer (TNL) information of the S-GW for transmitting upper layer data, QoS information born by SAE, etc.
  • TNL Transport Network Layer
  • step 405 the T_eNB performs an admission control procedure based on the received QoS information born by SAE.
  • step 406 the T_eNB sends a Handover Request Acknowledge message to the S_eNB while preparing the handover resource.
  • the Handover Request Acknowledge message includes a Tunnel End Point Identifier (TEID) and an address of TNL supporting DL/UL data forwarding allocated by the T_eNB.
  • TEID Tunnel End Point Identifier
  • step 407 the S_eNB sends a Handover Command message to the UE to instruct the UE to perform handover on receiving the Handover Request Acknowledge message from the T_eNB.
  • the Handover Command message includes a new Radio Network Temporary Identity (RNTI), a possible starting time, a System Information Block (SIB) of the T_eNB, etc.
  • RNTI Radio Network Temporary Identity
  • SIB System Information Block
  • the UE On receiving the Handover Command message from the S_eNB, the UE ceases sending PDCP-SDUs to the S_eNB.
  • the UE may utilize a Radio Link Control (RLC) Acknowledge procedure or other mechanisms to ensure proper reception of the Handover Command message.
  • RLC Radio Link Control
  • the S_eNB After sending the Handover Command message, the S_eNB commences performing the UL/DL data forwarding, i.e., buffers the PDCP-SDUs received from the UE in the Buffer and sends the PDCP-SDUs to the T_eNB.
  • the S_eNB sends a “PDCP-SN report” to the T_eNB via an X2 interface to inform the T_eNB of SNs of all received PDCP-SDUs on receiving the RLC layer Acknowledge message in response to the Handover Command message or after the S_eNB waits for a period of time in case of receiving no RLC layer Acknowledge message.
  • the above-mentioned period of time in case of receiving no RLC layer Acknowledge message depends on the possible starting time of the Handover Command message.
  • step 409 the UE sends a Synchronization message to the T_eNB to request synchronization with the T_eNB once the possible starting time of the Handover Command message arrives. Then, the T_eNB begins to obtain the time advance of the UE.
  • step 410 after the UE is synchronized with the T_eNB, the T_eNB sends to the UE a Synchronization Reply message including UL resource allocation information, the time advance, the PDCP-SNs of the PDCP-SN report, etc.
  • the T_eNB may possibly not receive the PDCP-SN report from the S_eNB in time due to the delay of the X2 interface after the UE is synchronized with the T_eNB. If the T_eNB has not received the PDCP-SN report when replying to the UE, the Synchronization Reply message does not include the PDCP-SNs; otherwise the Synchronization Reply message includes the PDCP-SNs.
  • the UE discards corresponding PDCPs from the re-transmission queue according to the indication of PDCP-SNs for the purpose of saving rare resource of the air interface.
  • the UE proceeds as the prior art in case of no PDCP-SNs. It can be seen that the solution according to the present invention is easy to be compatible with the prior art.
  • step 411 the UE sends a Handover Confirm message to the T_eNB after the UE accesses the target cell successfully, to inform of the completion of handover procedure.
  • step 408 emphasizes on addition of step 408 , modification to step 410 , and subsequent re-transmission of PDCPs at the UE.
  • FIG. 5 is a flowchart of the first embodiment, which includes step 501 to step 506 .
  • step 501 after the S_eNB sends the Handover Command message to the UE, the S_eNB sends a PDCP-SN report to the T_eNB on receiving an RLC Acknowledge message or after the S_eNB waits for a period of time.
  • step 502 it is determined whether the T_eNB has received the PDCP-SN report from the S_eNB after the UE synchronizes with the T_eNB.
  • the branch of step 503 is executed if the T_eNB has received the PDCP-SN report from the S_eNB.
  • the branch of step 505 is executed if the T_eNB has not received the PDCP-SN report from the S_eNB.
  • step 503 the T_eNB sends a Synchronization Reply message carrying PDCP-SNs to the UE.
  • step 504 the UE discards PDCP SDUs corresponding to the PDCP-SNs from a PDCP re-transmission queue in which corresponding ACKs are not received, and re-transmits only the rest of PDCP-SDUs in the re-transmission queue to the T_eNB.
  • the T_eNB sends a Synchronization Reply message to the UE.
  • the Synchronization Reply message includes UL resource allocation information and a time advance.
  • step 506 the UE re-transmits to the T_eNB all PDCP-SDUs whose ACKs are not received.
  • the UE sends data a, b, c and d to the S_eNB, however, the data b fails during transmission, and the UE does not receive any ACK to the data b according.
  • the S_eNB receives only the data a, c and d, and the data c and d becomes disordered. It is assumed that the UE does not receive any ACK to the data c and d.
  • the S_eNB adds a step of assembling the PDCP-SDU SN report for the received PDCP-SDUs based on the conventional procedure.
  • the PDCP-SDU SN report includes SNs of the data a, c and d.
  • the S_eNB delivers the PDCP-SDU SN report to the T_eNB at an appropriate time (on receiving the RLC Acknowledge message, or after the S_eNB waits for a period of time).
  • the T_eNB informs the UE that which PDCP-SDUs have been received by the S_eNB successfully through a Synchronization Reply message, i.e., the data a, c and d has been received, which need not to be re-transmitted.
  • the UE receives only an ACK to the data a, and puts the data b, c and d to the re-transmission queue for re-transmission.
  • the UE discards the data c and d from the re-transmission queue because the UE knows from the Synchronization Reply message that the data c and d has been received by the S_eNB. That is, the UE re-transmits only the failed data b to the T_eNB.
  • re-transmission of the data c and d (the S_eNB forwards the data c and d to the T_eNB by data forwarding) can be avoided, saving precious radio resource of the air interface.
  • FIG. 6 A diagram of processing the scenario of FIG. 3 by using this embodiment is illustrated in FIG. 6 .
  • the T_eNB sends a Reply message including no PDCP-SDU SN to the UE in a conventional manner after the synchronization of the UE in case of receiving no PDCP-SDU SN.
  • the T_eNB sends a Reply message to the UE after receiving PDCP-SDU SNs within a preset period of time in the second embodiment, delivering the PDCP-SDU SNs to the UE as far as possible and ensuring no re-transmission of redundant PDCP-SDUs from the UE.
  • FIG. 7 is a flowchart of the second embodiment, which includes step 701 to step 707 .
  • step 701 after the S_eNB sends a Handover Command message to the UE, the S_eNB sends a PDCP-SDU SN report to the T_eNB on receiving an RLC Acknowledge message or after the S_eNB waits for a period of time.
  • step 702 it is determined whether the T_eNB has received the PDCP-SDU SN report from the S_eNB after the UE is synchronized with the T_eNB.
  • the branch of step 703 is executed if the T_eNB has received the PDCP- SDU SN report from the S_eNB.
  • the branch of step 705 is executed if the T_eNB has not received the PDCP- SDU SN report from the S_eNB.
  • step 703 the T_eNB sends a Synchronization Reply message carrying PDCP-SDU SNs to the UE.
  • step 704 the UE discards PDCP-SDUs corresponding to the PDCP-SDU SNs from the PDCP re-transmission queue in which corresponding ACKs are not received, and re-transmits only the rest of PDCP-SDUs in the re-transmission queue to the T_eNB.
  • step 705 it is determined whether the PDCP-SN report is received within a preset period of time.
  • Step 703 is executed if the PDCP-SN report is received within a preset period of time.
  • Step 706 is executed if the waiting time exceeds the period of time.
  • step 706 is executed.
  • the T_eNB sends a Synchronization Reply message to the UE.
  • the Synchronization Reply message includes only UL resource allocation information and a time advance.
  • step 707 the UE re-transmits all PDCP-SDUs whose ACKs are not received to the T_eNB.
  • the T_eNB does not send the Synchronization Reply message immediately in case of not receiving the PDCP-SDU SN report but waits for a period of time according to the second embodiment, further ensuring the reception of the Synchronization Reply message including PDCP-SDU SNs and further effectively ensuring saving of radio resource.
  • the third embodiment differs from the above two embodiments in that the processing of T_eNB after step 408 .
  • the T_eNB carries the PDCP-SDU SNs in the Reply message to the UE if the T_eNB has received the PDCP-SDU SN report from the S_eNB before the synchronization of UE.
  • the T_eNB does not carry the PDCP-SDU SNs in the Reply message to the UE if the T_eNB has not received the PDCP-SDU SN report from the S_eNB after the synchronization of UE, but sends an RRC message, an RLC message or a MAC message to the UE carrying the PDCP-SDU SNs immediately once the T_eNB receives the PDCP-SDU SN report.
  • the UE discards PDCP-SDUs corresponding to the PDCP-SDU SNs carried in the RRC message, the RLC message or the MAC message from the re-transmission queue, and re-transmits the rest of PDCP-SDUs of the queue to the T_eNB.
  • FIG. 8 is flowchart of the third embodiment, which includes step 801 to step 808 .
  • step 801 after the S_eNB sends a Handover Command message to the UE, the S_eNB sends a PDCP-SDU SN report to the T_eNB on receiving an RLC Acknowledge message or after the S_eNB waits for a period of time.
  • step 802 it is determined whether the T_eNB has received the PDCP-SDU SN report sent from the S_eNB after the UE is synchronized with the T_eNB.
  • the branch of step 803 is executed if the T_eNB has received the PDCP-SDU SN report sent from the S_eNB, otherwise the branch of step 805 is executed.
  • step 803 the T_eNB sends to the UE a Synchronization Reply message carrying PDCP-SDU SNs.
  • step 804 the UE discards PDCP-SDUs corresponding to the PDCP-SDU SNs from the PDCP-SDU re-transmission queue in which corresponding ACKs are not received, and re-transmits only the rest of PDCP-SDUs in the re-transmission queue to the T_eNB.
  • the T_eNB sends a Synchronization Reply message to the UE.
  • the Synchronization Reply message includes only UL resource allocation information and a time advance.
  • step 806 the T_eNB receives the PDCP-SDU SN report sent from the S_eNB.
  • the T_eNB sends to the UE an RRC message, an RLC message or a MAC message carrying the PDCP-SDU SNs immediately.
  • step 808 the UE discards PDCP-SDUs corresponding to the PDCP-SDU SNs carried in the RRC message, the RLC message or the MAC message from the re-transmission queue, and re-transmits only the rest of PDCP-SDUs in the queue to the T_eNB.
  • the T_eNB still sends the Synchronization Reply message to the UE in the prior art in case of receiving no PDCP-SN report, which is well compatible with the prior art.
  • the T_eNB sends to the UE the RRC message, the RLC message or the MAC message immediately so that the possibility of re-transmitting redundant PDCP-SDUs is reduced to the least extent, ensuring effective and reasonable utilization of radio resource.
  • FIG. 9 A diagram of a structure of an S_eNB according to the present invention is illustrated in FIG. 9 .
  • the S_eNB includes a report assembling unit 903 .
  • the report assembling unit 903 is mainly responsible for assembling a PDCP-SDU SN report including SNs of PDCP-SDUs received at the UE interface unit 902 .
  • the PDCP-SDU SN report is sent to the T_eNB at an appropriate time (on receiving an RLC Acknowledge message, or after the report assembling unit 903 waits for a period of time) via the X2 interface unit 901 .
  • FIG. 10 A diagram of a structure of a T_eNB according to the present invention is illustrated in FIG. 10 .
  • the T_eNB includes a message assembling unit 1003 .
  • the message assembling unit 1003 is mainly responsible for assembling a message including the PDCP-SDU SNs received at the S_eNB.
  • the X2 interface unit 1001 is further adapted to receive the PDCP-SDU SN report sent from the S_eNB, the report including the PDCP-SDU SNs received at the S_eNB.
  • the UE interface unit 1002 is further adapted to send the message assembled by the message assembling unit 1003 to the UE.
  • the message assembled by the message assembling unit 1003 may be a Synchronization Reply message, an RRC message, an RLC message, or a MAC message.
  • FIG. 11 A diagram of a structure of a UE according to the present invention is illustrated in FIG. 11 .
  • the UE includes a message parsing unit 1103 and a queue adjustment unit 1104 .
  • the eNB interface unit 1101 is further adapted to receive from the T_eNB a message indicating PDCP-SDU SNs that have been received by the S_eNB.
  • the message parsing unit 1103 is mainly responsible for parsing the message to obtain the PDCP-SDU SNs that have been received by the S_eNB.
  • the queue adjustment unit 1104 is mainly responsible for discarding the PDCP-SDU SNs that have been received by the S_eNB from the re-transmission queue 1102 . Accordingly, the eNB interface unit 1101 re-transmits the rest of PDCP-SDUs in the re-transmission queue 1102 to the T_eNB.
  • the message indicating the PDCP-SDU SNs that have been received by the S_eNB may be a Synchronization Reply message, an RRC message, an RLC message, or a MAC message.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method and UE for processing data during cell handover in a Long Term Evolution (LTE) system are provided. The method includes: receiving, by User Equipment (UE), a Sequence Number (SN) of a Packet Data Convergence Protocol-Service Data Unit
(PDCP-SDU) that is received by a Source Evolved Node B (S_eNB) from a Target Evolved Node B (T_eNB); discarding, by the UE, the PDCP-SDU that is received by the S_eNB from a re-transmission queue, and re-transmitting other PDCP-SDUs in the queue to the T_eNB. Thereby, UE would not re-transmit PDCP-SDU corresponding to received SN, which avoids re-transmission of useless PDCP-SDU, and saves radio resources comparing with prior solutions.

Description

  • The present application is a Continuation Application of U.S. patent application Ser. No. 12/677,502, filed on Mar. 10, 2010, which is a U.S. Nationalization of PCT Application Number PCT/CN08/72231, filed on Sep. 2, 2008, which claims priority to Chinese Patent Application No. 200710121647.X, entitled “METHOD FOR DATA RE-TRANSMISSION DURING CELL HANDOVER IN LTE SYSTEM AND APPARATUS THEREOF”, filed with Chinese Patent Office on Sep. 11, 2007, all of which are incorporated herein in their entireties.
  • FIELD
  • The present invention relates to the technical field of the Long Term Evolution (LTE) system in mobile communications, and particularly to a method for indicating data re-transmission during cell handover in the LTE system and a device thereof.
  • BACKGROUND
  • During the cell handover in the LTE system, the idea of User Equipment (UE) assistant to network control, i.e., the steps of “measure-report-decide-execute”, is still adopted. When the Source Evolved Node B (S_eNB) decides that the UE shall handover to the Target Evolved Node B (T_eNB) according to measurement reports from the UE and the T_eNB, the S_eNB exchanges information with the T_eNB directly via an X2 interface, to complete resource preparation in the target cell; then, the S_eNB instructs the UE to handover to the target cell; after a successful handover, the T_eNB informs the S_eNB to release radio resource of the original cell. In addition, the S_eNB transmits data that is not transmitted yet to the T_eNB and updates relation of nodes between a user plane and a control plane.
  • Referring to FIG. 1, a flowchart of cell handover in the LTE system in the prior art mainly includes:
  • [1] The S_eNB configures the UE with a measurement procedure;
  • [2] The UE sends a measurement report to the S_eNB;
  • [3] The S_eNB makes a UE handover decision according to the measurement report and Radio Resource Management (RRM) information;
  • [4] The S_eNB sends a handover request to the T_eNB;
  • [5] On receiving the handover request from the S_eNB, the T_eNB performs an admission control procedure according to the received E-RAB Quality of Service (QoS) information;
  • [6] The T_eNB sends a Handover Request Acknowledge message to the S_eNB;
  • [7] The S_eNB sends a Handover Command message to the UE, to instruct the UE to perform a handover;
  • [8] The UE sends a Synchronization message to the T_eNB;
  • [9] The T_eNB feeds a Synchronization Reply message back to the UE, the Synchronization Reply message including UL resource allocation information, a time advance, etc.;
  • [10] The UE sends a Handover Complete Acknowledge message to the T_eNB after the UE accesses the target cell successfully.
  • On the user plane, in order to avoid loss of uplink data from the UE and to maintain ordered transmission of the uplink data during the handover, an uplink data forwarding solution is adopted, which is performed between step [7] and step [8] of FIG. 1 (as illustrated by dotted lines). Generally, the data forwarding refers to that: the S_eNB forwards received disordered Packet Data Convergence Protocol-Service Data Units (PDCP-SDUs) to the T_eNB, and the PDCP-SDUs are attached with Sequence Numbers (SNs), then the T_eNB sends the received PDCP-SDUs to the Service Gateway (S-GW). During the handover, ordered transmission of upper layer PDUs is based on continuous PDCP-SNs and a re-order function provided by the PDCP layer. In the uplink, the re-order function of the PDCP layer of the T_eNB ensures the ordered transmission of the uplink PDCP-SDUs.
  • In the present LTE system, the air interface is based on the Automatic Repeat Request/Hybrid Automatic Repeat Request (ARQ/HARQ) mechanism. The S_eNB feeds ACKs back to the UE on successfully receiving ordered PDCP-SDUs. The UE re-transmits to the T_eNB those PDCP-SDUs whose ACKs are not received at the UE. It is not difficult to understand that the UE does not receive any ACK to a PDCP in two cases: in the first case, the S_eNB does not receive the PDCPs due to reasons such as network, etc., and does not feed ACKs back to the UE accordingly; in the second case, the S_eNB has received ordered PDCPs successfully, however, ACKs are not fed back to the UE successfully due to network reasons. The above second case may result in insignificant re-transmission from the UE to the T_eNB and a waste of precious radio resource. Examples are described hereinafter with reference to the two cases.
  • FIG. 2 illustrates a fact in which re-transmission of PDCP-SDUs from the UE results in an insignificant waste. The S_eNB receives data 1, 2 and 3 from the UE successfully and transmits the data 1, 2 and 3 to the S-GW via an S1 interface. It is assumed that the UE receives only an ACK to the data 1 fed back from the network side and does not receive ACKs to the data 2 and 3. In this case, the UE continues to send the data 2 and 3 to the T_eNB, the T_eNB receives the data 2 and 3 and sends the re-transmitted data 2 and 3 to the S-GW, which results in reception of repeated data in the Evolved Packet Core (EPC) system and a waste of precious radio resource at the air interface.
  • FIG. 3 illustrates another fact in which re-transmission of PDCP-SDUs from the UE results in an insignificant waste. The UE sends data a, b, c and d to the S_eNB, however, the data b fails during transmission and the S_eNB receives only the data a, c and d, and the data c and d becomes disordered. According to the conventional solution of data forwarding, the S_eNB sends the ordered data a to the S-GW, buffers the disordered data c and d in a buffer, and then sends the data c and d to the T_eNB which delivers the data c and d to the S-GW. It is assumed that the UE does not receive any ACK to the data c and d. In this case, the UE receives only an ACK to the data a, and re-transmits the data b, c and d to the T_eNB because the UE does not receive any ACK to the data b, c and d. Apparently, the data c and d is re-transmitted. On one hand, the S_eNB sends the buffered data c and d to the T_eNB; on the other hand, the UE re-transmits the data c and d to the T_eNB due to no reception of any ACK, thereby resulting in a waste of resource.
  • SUMMARY
  • In view of this, the present invention provides a method for processing data during cell handover in a Long Term Evolution (LTE) system, so as to solve the problem of waste of radio resource due to re-transmission of redundant PDCP-SDUs in the conventional solution.
  • Corresponding to the method, the present invention further provides a device for processing data during cell handover in a Long Term Evolution (LTE) system, i.e., a UE.
  • The technical solution of the present invention is described as follows.
  • A method for processing data during cell handover in a Long Term Evolution (LTE) system includes:
      • receiving, by User Equipment (UE), a Sequence Number (SN) of a Packet Data Convergence Protocol-Service Data Unit (PDCP-SDU) that is received by a Source Evolved Node B (S_eNB) from a Target Evolved Node B (T_eNB);
      • discarding, by the UE, the PDCP-SDU that is received by the S_eNB from a re-transmission queue, and re-transmitting other PDCP-SDUs in the queue to the T_eNB.
  • The UE receives the SN of the PDCP-SDU that is received by the S_eNB through a synchronization reply message, a Radio Resource Control (RRC) message, a Radio Link Control (RLC) message or a Media Access Control (MAC) message.
  • The method further includes:
      • receiving, by the UE, a Handover Command message from the S_eNB; and
      • performing, by the UE, handover based on the Handover Command message.
  • A User Equipment (UE) for processing data during cell handover in a Long Term Evolution (LTE) system includes: an Evolved Node B (eNB) interface unit and a queue adjustment unit, where
      • the eNB interface unit is adapted to receive a Sequence Number (SN) of a Packet Data Convergence Protocol-Service Data Unit (PDCP-SDU) that is received by a Source Evolved Node B (S_eNB) from a Target Evolved Node B (T_eNB);
      • the queue adjustment unit is configured to discard the PDCP-SDU that is received by the S_eNB from a re-transmission queue;
      • the eNB interface unit is further configured to re-transmit other PDCP-SDUs in the queue to the T_eNB.
  • The UE further includes: a re-transmission queue and a message parsing unit, where
      • the re-transmission queue is adapted to buffer PDCP-SDUs; and
      • the message parsing unit is adapted to parse a message to obtain the SN of the PDCP-SDU that is received by the S_eNB.
  • The above technical solution includes the following technical effects.
  • In the solution of cell handover in the LTE system according to the prior art, the UE re-transmits a PDCP to the T_eNB if only the UE does not receive an ACK to the PDCP. However, in the present invention, the UE further determines whether the UE has received from the T_eNB a PDCP-SN indicating that the S_eNB has received the PDCP. If the UE does not receive the ACK to the PDCP but receives the PDCP-SN indicating that the S_eNB has received the PDCP, the UE does not re-transmit the PDCP, thereby avoiding re-transmission of redundant PDCPs and resulting in effective saving of radio resource compared with the conventional solution.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagram of cell handover in the LTE system in the prior art;
  • FIG. 2 is a first diagram of resending data from the UE in the prior art;
  • FIG. 3 is a second diagram of resending data from the UE in the prior art;
  • FIG. 4 is a diagram of a first embodiment of the method according to the present invention;
  • FIG. 5 is a flowchart of the first embodiment of the method according to the present invention;
  • FIG. 6 is an exemplary diagram of the first embodiment of the method according to the present invention;
  • FIG. 7 is a flowchart of a second embodiment of the method according to the present invention;
  • FIG. 8 is a flowchart of a third embodiment of the method according to the present invention;
  • FIG. 9 is a diagram of a structure of an S_eNB device according to the present invention;
  • FIG. 10 is a diagram of a structure of a T_eNB device according to the present invention; and
  • FIG. 11 is a diagram of a structure of a UE device according to the present invention.
  • DETAILED DESCRIPTION
  • The core of the present invention lies in that a process is added during cell handover of the UE, i.e., the S_eNB informs the UE via the T_eNB that which PDCP-SDUs have been received by the S_eNB successfully and the UE does not need to re-transmit the PDCP-SDUs even if the UE does not receive ACKs to the PDCP-SDUs.
  • Further, the present invention is implemented in the following manner:
      • 1] The S_eNB sends a PDCP-SDU SN report to the T_eNB, to inform the T_eNB of PDCP-SDU SNs (including SNs of all ordered and unordered PDCP-SDUs) that have been received by the S_eNB;
      • 2] The T_eNB re-transmits the PDCP-SDU SNs to the UE according to the report, to inform the UE which PDCP-SDUs have been received;
      • 3] The UE does not re-transmit the PDCP-SDUs according to the received PDCP-SDU SNs.
  • In the solution of cell handover in the LTE system in the prior art, the UE re-transmits a PDCP-SDU to the T_eNB if only the UE does not receive an ACK to the PDCP-SDU. However, in the present invention, the UE further determines whether the UE has received from the T_eNB the SN indicating that the S_eNB has received the PDCP-SDU. If the UE does not receive an ACK to a PDCP-SDU but receives a PDCP-SDU SN indicating reception of the PDCP-SDU, the UE does not re-transmit the PDCP-SDU, thereby avoiding re-transmission of duplicate PDCP-SDU and resulting in effective saving of radio resource compared with the conventional solution.
  • Embodiments of the present invention are described in detail hereinafter with reference to the accompanying drawings.
  • It is not difficult to understand that a signaling is added in cell handover according to the present invention, so as to transmit the PDCP-SDU SNs that have been received by the S_eNB. The UE does not re-transmit the PDCP-SDUs. In order to make the whole procedure more clear, the procedure of cell handover in the LTE system, i.e., a modified solution based on the cell handover described in the background of the invention, is described hereinafter.
  • FIG. 4 is a diagram of cell handover in the LTE system according to the first embodiment. The cell handover includes the following steps.
  • In step 401, the S_eNB configures the UE with a measurement procedure according to roaming restriction information.
  • The measurement information provided by the S_eNB may be of assistance to control the connection mobility function of the UE.
  • In step 402, the UE sends a measurement report to the S_eNB.
  • In step 403, the S_eNB makes a handover decision to perform cell handover of the UE according to the measurement report from the UE and RRM information.
  • In step 404, the S_eNB sends to the T_eNB a Handover Request message carrying necessary information so that the T_eNB prepares handover resource. The Handover Request message also indicates whether the system supports DL/UL data forwarding, and the Handover Request message further includes a SAE bearer context.
  • The SAE bearer context includes Transport Network Layer (TNL) information of the S-GW for transmitting upper layer data, QoS information born by SAE, etc.
  • In step 405, the T_eNB performs an admission control procedure based on the received QoS information born by SAE.
  • In step 406, the T_eNB sends a Handover Request Acknowledge message to the S_eNB while preparing the handover resource.
  • The Handover Request Acknowledge message includes a Tunnel End Point Identifier (TEID) and an address of TNL supporting DL/UL data forwarding allocated by the T_eNB.
  • In step 407, the S_eNB sends a Handover Command message to the UE to instruct the UE to perform handover on receiving the Handover Request Acknowledge message from the T_eNB.
  • The Handover Command message includes a new Radio Network Temporary Identity (RNTI), a possible starting time, a System Information Block (SIB) of the T_eNB, etc.
  • On receiving the Handover Command message from the S_eNB, the UE ceases sending PDCP-SDUs to the S_eNB. The UE may utilize a Radio Link Control (RLC) Acknowledge procedure or other mechanisms to ensure proper reception of the Handover Command message.
  • After sending the Handover Command message, the S_eNB commences performing the UL/DL data forwarding, i.e., buffers the PDCP-SDUs received from the UE in the Buffer and sends the PDCP-SDUs to the T_eNB.
  • In step 408, the S_eNB sends a “PDCP-SN report” to the T_eNB via an X2 interface to inform the T_eNB of SNs of all received PDCP-SDUs on receiving the RLC layer Acknowledge message in response to the Handover Command message or after the S_eNB waits for a period of time in case of receiving no RLC layer Acknowledge message.
  • The above-mentioned period of time in case of receiving no RLC layer Acknowledge message depends on the possible starting time of the Handover Command message.
  • In step 409, the UE sends a Synchronization message to the T_eNB to request synchronization with the T_eNB once the possible starting time of the Handover Command message arrives. Then, the T_eNB begins to obtain the time advance of the UE.
  • In step 410, after the UE is synchronized with the T_eNB, the T_eNB sends to the UE a Synchronization Reply message including UL resource allocation information, the time advance, the PDCP-SNs of the PDCP-SN report, etc.
  • The T_eNB may possibly not receive the PDCP-SN report from the S_eNB in time due to the delay of the X2 interface after the UE is synchronized with the T_eNB. If the T_eNB has not received the PDCP-SN report when replying to the UE, the Synchronization Reply message does not include the PDCP-SNs; otherwise the Synchronization Reply message includes the PDCP-SNs.
  • The UE discards corresponding PDCPs from the re-transmission queue according to the indication of PDCP-SNs for the purpose of saving rare resource of the air interface. The UE proceeds as the prior art in case of no PDCP-SNs. It can be seen that the solution according to the present invention is easy to be compatible with the prior art.
  • In step 411, the UE sends a Handover Confirm message to the T_eNB after the UE accesses the target cell successfully, to inform of the completion of handover procedure.
  • Therefore, the present invention emphasizes on addition of step 408, modification to step 410, and subsequent re-transmission of PDCPs at the UE.
  • FIG. 5 is a flowchart of the first embodiment, which includes step 501 to step 506.
  • In step 501, after the S_eNB sends the Handover Command message to the UE, the S_eNB sends a PDCP-SN report to the T_eNB on receiving an RLC Acknowledge message or after the S_eNB waits for a period of time.
  • In step 502, it is determined whether the T_eNB has received the PDCP-SN report from the S_eNB after the UE synchronizes with the T_eNB. The branch of step 503 is executed if the T_eNB has received the PDCP-SN report from the S_eNB. The branch of step 505 is executed if the T_eNB has not received the PDCP-SN report from the S_eNB.
  • In step 503, the T_eNB sends a Synchronization Reply message carrying PDCP-SNs to the UE.
  • In step 504, the UE discards PDCP SDUs corresponding to the PDCP-SNs from a PDCP re-transmission queue in which corresponding ACKs are not received, and re-transmits only the rest of PDCP-SDUs in the re-transmission queue to the T_eNB.
  • In step 505, the T_eNB sends a Synchronization Reply message to the UE. Being the same as that in the conventional solution, the Synchronization Reply message includes UL resource allocation information and a time advance.
  • In step 506, the UE re-transmits to the T_eNB all PDCP-SDUs whose ACKs are not received.
  • With the present invention, insignificant re-transmission of PDCP-SDUs from the UE to the T_eNB can be avoided.
  • Also taking the scenario as illustrated in FIG. 3 as an example, the UE sends data a, b, c and d to the S_eNB, however, the data b fails during transmission, and the UE does not receive any ACK to the data b according. The S_eNB receives only the data a, c and d, and the data c and d becomes disordered. It is assumed that the UE does not receive any ACK to the data c and d. According to the solution of this embodiment, the S_eNB adds a step of assembling the PDCP-SDU SN report for the received PDCP-SDUs based on the conventional procedure. The PDCP-SDU SN report includes SNs of the data a, c and d. The S_eNB delivers the PDCP-SDU SN report to the T_eNB at an appropriate time (on receiving the RLC Acknowledge message, or after the S_eNB waits for a period of time). The T_eNB informs the UE that which PDCP-SDUs have been received by the S_eNB successfully through a Synchronization Reply message, i.e., the data a, c and d has been received, which need not to be re-transmitted. The UE receives only an ACK to the data a, and puts the data b, c and d to the re-transmission queue for re-transmission. However, the UE discards the data c and d from the re-transmission queue because the UE knows from the Synchronization Reply message that the data c and d has been received by the S_eNB. That is, the UE re-transmits only the failed data b to the T_eNB. Compared with the conventional solution, re-transmission of the data c and d (the S_eNB forwards the data c and d to the T_eNB by data forwarding) can be avoided, saving precious radio resource of the air interface. A diagram of processing the scenario of FIG. 3 by using this embodiment is illustrated in FIG. 6.
  • The second embodiment of the method according to the present invention is described hereinafter.
  • In the above first embodiment, the T_eNB sends a Reply message including no PDCP-SDU SN to the UE in a conventional manner after the synchronization of the UE in case of receiving no PDCP-SDU SN. In contrast, the T_eNB sends a Reply message to the UE after receiving PDCP-SDU SNs within a preset period of time in the second embodiment, delivering the PDCP-SDU SNs to the UE as far as possible and ensuring no re-transmission of redundant PDCP-SDUs from the UE.
  • FIG. 7 is a flowchart of the second embodiment, which includes step 701 to step 707.
  • In step 701, after the S_eNB sends a Handover Command message to the UE, the S_eNB sends a PDCP-SDU SN report to the T_eNB on receiving an RLC Acknowledge message or after the S_eNB waits for a period of time.
  • In step 702, it is determined whether the T_eNB has received the PDCP-SDU SN report from the S_eNB after the UE is synchronized with the T_eNB. The branch of step 703 is executed if the T_eNB has received the PDCP- SDU SN report from the S_eNB. The branch of step 705 is executed if the T_eNB has not received the PDCP- SDU SN report from the S_eNB.
  • In step 703, the T_eNB sends a Synchronization Reply message carrying PDCP-SDU SNs to the UE.
  • In step 704, the UE discards PDCP-SDUs corresponding to the PDCP-SDU SNs from the PDCP re-transmission queue in which corresponding ACKs are not received, and re-transmits only the rest of PDCP-SDUs in the re-transmission queue to the T_eNB.
  • In step 705, it is determined whether the PDCP-SN report is received within a preset period of time. Step 703 is executed if the PDCP-SN report is received within a preset period of time. Step 706 is executed if the waiting time exceeds the period of time.
  • There is a plurality of reasons for failing to receive the PDCP-SN report, such as the delay of the X2 interface, or the network transmission congestion, or improper parsing of the received PDCP-SDU SNs at the T_eNB, in this case, step 706 is executed.
  • In step 706, the T_eNB sends a Synchronization Reply message to the UE. As being the same as that in the conventional solution, the Synchronization Reply message includes only UL resource allocation information and a time advance.
  • In step 707, the UE re-transmits all PDCP-SDUs whose ACKs are not received to the T_eNB.
  • Based on the first embodiment, the T_eNB does not send the Synchronization Reply message immediately in case of not receiving the PDCP-SDU SN report but waits for a period of time according to the second embodiment, further ensuring the reception of the Synchronization Reply message including PDCP-SDU SNs and further effectively ensuring saving of radio resource.
  • The third embodiment of the present invention is described hereinafter.
  • The third embodiment differs from the above two embodiments in that the processing of T_eNB after step 408. In the third embodiment, the T_eNB carries the PDCP-SDU SNs in the Reply message to the UE if the T_eNB has received the PDCP-SDU SN report from the S_eNB before the synchronization of UE. The T_eNB does not carry the PDCP-SDU SNs in the Reply message to the UE if the T_eNB has not received the PDCP-SDU SN report from the S_eNB after the synchronization of UE, but sends an RRC message, an RLC message or a MAC message to the UE carrying the PDCP-SDU SNs immediately once the T_eNB receives the PDCP-SDU SN report. Accordingly, the UE discards PDCP-SDUs corresponding to the PDCP-SDU SNs carried in the RRC message, the RLC message or the MAC message from the re-transmission queue, and re-transmits the rest of PDCP-SDUs of the queue to the T_eNB.
  • FIG. 8 is flowchart of the third embodiment, which includes step 801 to step 808.
  • In step 801, after the S_eNB sends a Handover Command message to the UE, the S_eNB sends a PDCP-SDU SN report to the T_eNB on receiving an RLC Acknowledge message or after the S_eNB waits for a period of time.
  • In step 802, it is determined whether the T_eNB has received the PDCP-SDU SN report sent from the S_eNB after the UE is synchronized with the T_eNB. The branch of step 803 is executed if the T_eNB has received the PDCP-SDU SN report sent from the S_eNB, otherwise the branch of step 805 is executed.
  • In step 803, the T_eNB sends to the UE a Synchronization Reply message carrying PDCP-SDU SNs.
  • In step 804, the UE discards PDCP-SDUs corresponding to the PDCP-SDU SNs from the PDCP-SDU re-transmission queue in which corresponding ACKs are not received, and re-transmits only the rest of PDCP-SDUs in the re-transmission queue to the T_eNB.
  • In step 805, the T_eNB sends a Synchronization Reply message to the UE. As being the same as that in the conventional solution, the Synchronization Reply message includes only UL resource allocation information and a time advance.
  • In step 806, the T_eNB receives the PDCP-SDU SN report sent from the S_eNB.
  • In step 807, the T_eNB sends to the UE an RRC message, an RLC message or a MAC message carrying the PDCP-SDU SNs immediately.
  • In step 808, the UE discards PDCP-SDUs corresponding to the PDCP-SDU SNs carried in the RRC message, the RLC message or the MAC message from the re-transmission queue, and re-transmits only the rest of PDCP-SDUs in the queue to the T_eNB.
  • In this embodiment, the T_eNB still sends the Synchronization Reply message to the UE in the prior art in case of receiving no PDCP-SN report, which is well compatible with the prior art. The T_eNB sends to the UE the RRC message, the RLC message or the MAC message immediately so that the possibility of re-transmitting redundant PDCP-SDUs is reduced to the least extent, ensuring effective and reasonable utilization of radio resource.
  • A diagram of a structure of an S_eNB according to the present invention is illustrated in FIG. 9. Besides an X2 interface unit 901 communicated with the T_eNB and a UE interface unit 902 communicated with the UE, the S_eNB includes a report assembling unit 903.
  • The report assembling unit 903 is mainly responsible for assembling a PDCP-SDU SN report including SNs of PDCP-SDUs received at the UE interface unit 902. The PDCP-SDU SN report is sent to the T_eNB at an appropriate time (on receiving an RLC Acknowledge message, or after the report assembling unit 903 waits for a period of time) via the X2 interface unit 901.
  • A diagram of a structure of a T_eNB according to the present invention is illustrated in FIG. 10. Besides an X2 interface unit 1001 communicated with the S_eNB and a UE interface unit 1002 communicated with the UE, the T_eNB includes a message assembling unit 1003.
  • The message assembling unit 1003 is mainly responsible for assembling a message including the PDCP-SDU SNs received at the S_eNB. Based on the functions of respective units of the conventional T_eNB, the X2 interface unit 1001 is further adapted to receive the PDCP-SDU SN report sent from the S_eNB, the report including the PDCP-SDU SNs received at the S_eNB. The UE interface unit 1002 is further adapted to send the message assembled by the message assembling unit 1003 to the UE. The message assembled by the message assembling unit 1003 may be a Synchronization Reply message, an RRC message, an RLC message, or a MAC message.
  • A diagram of a structure of a UE according to the present invention is illustrated in FIG. 11. Besides an eNB interface unit 1101 communicated with the S_eNB or the T_eNB and a re-transmission queue 1102 in which PDCP-SDUs are buffered, the UE includes a message parsing unit 1103 and a queue adjustment unit 1104.
  • Based on conventional functions, the eNB interface unit 1101 is further adapted to receive from the T_eNB a message indicating PDCP-SDU SNs that have been received by the S_eNB. The message parsing unit 1103 is mainly responsible for parsing the message to obtain the PDCP-SDU SNs that have been received by the S_eNB. The queue adjustment unit 1104 is mainly responsible for discarding the PDCP-SDU SNs that have been received by the S_eNB from the re-transmission queue 1102. Accordingly, the eNB interface unit 1101 re-transmits the rest of PDCP-SDUs in the re-transmission queue 1102 to the T_eNB. The message indicating the PDCP-SDU SNs that have been received by the S_eNB may be a Synchronization Reply message, an RRC message, an RLC message, or a MAC message.
  • Reference can be made to the aforementioned method embodiments for specific implementations of the S_eNB, the T_eNB and the UE according to the present invention, which is not repeated here.
  • The above description is merely for preferred embodiments of the present invention.
  • It should be noted that an ordinary skill in the art without departing from the scope of the present invention can make a plurality of changes and modifications, which shall be encompassed in the protection scope of the present invention.

Claims (5)

1. A method for processing data during cell handover in a Long Term Evolution (LTE) system, comprising:
receiving, by User Equipment (UE), a Sequence Number (SN) of a Packet Data Convergence Protocol-Service Data Unit (PDCP-SDU) that is received by a Source Evolved Node B (S_eNB) from a Target Evolved Node B (T_eNB);
discarding, by the UE, the PDCP-SDU that is received by the S_eNB from a re-transmission queue, and re-transmitting other PDCP-SDUs in the queue to the T_eNB.
2. The method according to claim 1, wherein the UE receives the SN of the PDCP-SDU that is received by the S_eNB through a synchronization reply message, a Radio Resource Control (RRC) message, a Radio Link Control (RLC) message or a Media Access Control (MAC) message.
3. The method according to claim 2, further comprising:
receiving, by the UE, a Handover Command message from the S_eNB; and
performing, by the UE, handover based on the Handover Command message.
4. A User Equipment (UE) for processing data during cell handover in a Long Term Evolution (LTE) system, comprising: an Evolved Node B (eNB) interface unit and a queue adjustment unit, wherein
the eNB interface unit is adapted to receive a Sequence Number (SN) of a Packet Data Convergence Protocol-Service Data Unit (PDCP-SDU) that is received by a Source Evolved Node B (S_eNB) from a Target Evolved Node B (T_eNB);
the queue adjustment unit is configured to discard the PDCP-SDU that is received by the S_eNB from a re-transmission queue;
the eNB interface unit is further configured to re-transmit other PDCP-SDUs in the queue to the T_eNB.
5. The UE according to claim 4, further comprising: a re-transmission queue and a message parsing unit, wherein
the re-transmission queue is adapted to buffer PDCP-SDUs; and
the message parsing unit is adapted to parse a message to obtain the SN of the PDCP-SDU that is received by the S_eNB.
US14/308,568 2007-09-11 2014-06-18 Method and device for processing data during cell handover in lte system Abandoned US20140301367A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/308,568 US20140301367A1 (en) 2007-09-11 2014-06-18 Method and device for processing data during cell handover in lte system

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN200710121647.X 2007-09-11
CN200710121647A CN101389119B (en) 2007-09-11 2007-09-11 Data retransmission method and device in process of LTE system cell switching
PCT/CN2008/072231 WO2009033400A1 (en) 2007-09-11 2008-09-02 Method and device for indicating data re-transmission when area switching in lte system
US67750210A 2010-03-10 2010-03-10
US14/308,568 US20140301367A1 (en) 2007-09-11 2014-06-18 Method and device for processing data during cell handover in lte system

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US12/677,502 Continuation US8797998B2 (en) 2007-09-11 2008-09-02 Method and device for indicating data re-transmission when area switching in LTE system
PCT/CN2008/072231 Continuation WO2009033400A1 (en) 2007-09-11 2008-09-02 Method and device for indicating data re-transmission when area switching in lte system

Publications (1)

Publication Number Publication Date
US20140301367A1 true US20140301367A1 (en) 2014-10-09

Family

ID=40451583

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/677,502 Active 2029-09-22 US8797998B2 (en) 2007-09-11 2008-09-02 Method and device for indicating data re-transmission when area switching in LTE system
US14/308,568 Abandoned US20140301367A1 (en) 2007-09-11 2014-06-18 Method and device for processing data during cell handover in lte system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/677,502 Active 2029-09-22 US8797998B2 (en) 2007-09-11 2008-09-02 Method and device for indicating data re-transmission when area switching in LTE system

Country Status (6)

Country Link
US (2) US8797998B2 (en)
EP (1) EP2190149B1 (en)
JP (1) JP5034081B2 (en)
KR (1) KR101141124B1 (en)
CN (1) CN101389119B (en)
WO (1) WO2009033400A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10425346B2 (en) 2013-07-24 2019-09-24 Sun Patent Trust Efficient discard mechanism in small cell deployment

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082803A2 (en) * 2009-01-19 2010-07-22 Lg Electronics Inc. Method for delivering message based on cpm service and server thereof
WO2010085913A1 (en) * 2009-02-02 2010-08-05 华为技术有限公司 Method, device and system for multi-carrier cell handover
CN101841852B (en) * 2009-03-20 2013-01-16 中兴通讯股份有限公司 Method, device and system for transmitting uplink data in cross-base station handover
BRPI0925339A2 (en) * 2009-04-27 2016-04-26 Huawei Tech Co Ltd information processing method, system and equipment
CN102239720A (en) * 2009-08-14 2011-11-09 华为技术有限公司 Control method for data processing, service node and terminal equipment
US9166677B2 (en) * 2010-01-19 2015-10-20 Qualcomm Incorporated Method and apparatus for associating a relay in wireless communications
CN102143538B (en) * 2010-01-29 2013-08-14 电信科学技术研究院 Method for switching radio access network (RAN) and base station
KR20110101403A (en) * 2010-03-08 2011-09-16 삼성전자주식회사 Apparatus and method for forwarding packet by base station in wireless communication system
EP2375815B1 (en) * 2010-03-30 2013-07-24 Mitsubishi Electric R&D Centre Europe B.V. Handover in a home network where data is buffered in a routing module
CN103098515B (en) * 2010-03-31 2016-05-04 诺基亚技术有限公司 During being redirected, adopt the method and apparatus of the instruction of the temporary information of storing
WO2012070048A1 (en) * 2010-11-24 2012-05-31 Elta Systems Ltd. Handover initiation methods and systems for improvement of cellular network performance
US9125087B2 (en) * 2011-10-22 2015-09-01 Qualcomm Incorporated Systems and methods for header compression
CN103313325B (en) * 2012-03-09 2018-04-27 中兴通讯股份有限公司 Switching method and device, data processing method and device
GB2502954B (en) * 2012-05-23 2014-10-15 Nvidia Corp Processing data units
US9072027B2 (en) 2012-12-07 2015-06-30 Alcatel Lucent Methods and apparatuses for facilitating D2D bearer switching
CN109561452B (en) 2013-02-01 2024-03-01 华为技术有限公司 Data interaction method and device
US9357580B2 (en) 2013-02-07 2016-05-31 Industrial Technology Research Institute Method for switching communication connection mode, communication system, base station, transmitter and receiver
GB2520923B (en) * 2013-11-01 2017-07-26 Samsung Electronics Co Ltd Bearer reconfiguration
JP6445032B2 (en) 2013-11-01 2018-12-26 サムスン エレクトロニクス カンパニー リミテッド Method and apparatus for reconfiguring a bearer
CN103731891B (en) * 2013-12-27 2017-08-29 上海华为技术有限公司 control method and device
CN105379342B (en) * 2014-02-28 2019-11-29 华为技术有限公司 A kind of method and apparatus that data retransmit
EP3122115B1 (en) * 2014-03-20 2024-10-16 Fujitsu Limited Wireless communication apparatus and wireless communication method
CN105338572B (en) 2014-06-23 2020-07-31 北京三星通信技术研究有限公司 Data distribution method and device for split bearer in dual connectivity
CN105472681B (en) * 2014-09-03 2020-03-03 上海诺基亚贝尔股份有限公司 Dynamic migration method and device for virtual base station
CN106686673B (en) * 2015-11-11 2020-07-17 大唐移动通信设备有限公司 Method and device for processing SN switching failure in UE switching process
US11146993B2 (en) * 2015-11-27 2021-10-12 Nokia Technologies Oy Handover with postponed path switch
CN108282824B (en) * 2017-01-05 2020-03-06 电信科学技术研究院 State updating method, node and user terminal
US10512004B2 (en) * 2017-04-26 2019-12-17 Motorola Mobility Llc Indicating status of forwarded data
CN107241164B (en) * 2017-05-05 2021-10-22 大唐移动通信设备有限公司 Method and device for processing repeated transmission of radio bearer
JP6509950B2 (en) * 2017-06-08 2019-05-08 ▲ホア▼▲ウェイ▼技術有限公司Huawei Technologies Co.,Ltd. Data exchange method and apparatus
WO2019090730A1 (en) * 2017-11-10 2019-05-16 Oppo广东移动通信有限公司 Processing method in data replication and related device
JP7258039B2 (en) 2018-03-03 2023-04-14 オッポ広東移動通信有限公司 User device and method for controlling its transmission in a wireless communication system
CN110958090B (en) * 2018-09-27 2021-09-14 维沃移动通信有限公司 Configuration method of PDCP (packet data convergence protocol) duplicate and terminal equipment
CN111585723B (en) * 2019-02-15 2022-05-13 华为技术有限公司 Auxiliary information and method and device for transmitting auxiliary information
CN111866969B (en) * 2019-04-30 2021-10-26 华为技术有限公司 Data processing method, communication device and system
WO2022154740A1 (en) * 2021-01-14 2022-07-21 Telefonaktiebolaget Lm Ericsson (Publ) Handover during quality of experience reporting

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030157927A1 (en) * 2002-02-16 2003-08-21 Lg Electronics Inc. Method for relocating SRNS in a mobile communication system
US20070213060A1 (en) * 2006-03-07 2007-09-13 Interdigital Technology Corporation Method and apparatus for supporting handoff in an lte gtp based wireless communication system

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5978679A (en) * 1996-02-23 1999-11-02 Qualcomm Inc. Coexisting GSM and CDMA wireless telecommunications networks
US6725040B2 (en) 2001-07-09 2004-04-20 Asustek Computer Inc. Lossless SRNS relocation procedure in a wireless communications system
KR100595583B1 (en) * 2001-07-09 2006-07-03 엘지전자 주식회사 Method for transmitting packet data according to handover in a mobile communication system
US6717927B2 (en) * 2002-04-05 2004-04-06 Interdigital Technology Corporation System for efficient recovery of node B buffered data following serving high speed downlink shared channel cell change
FI20031779A0 (en) * 2003-12-05 2003-12-05 Nokia Corp The method, system and transmitted side protocol unit for transmitting the data packets of the unacknowledged mode services
WO2006083149A1 (en) * 2005-02-07 2006-08-10 Samsung Electronics Co., Ltd. Method and apparatus for requesting/transmitting status report of a mobile communication system
CN1933664A (en) 2005-09-14 2007-03-21 北京三星通信技术研究有限公司 Method for supporting user equipment transferability in LTE system
CN1949925A (en) 2005-10-10 2007-04-18 华为技术有限公司 Smooth switching method for use in LTE technique
EP1946460B1 (en) * 2005-10-31 2014-07-30 LG Electronics Inc. Data transfer management in a radio communications network
CN101346906B (en) 2005-12-23 2013-10-16 Lg电子株式会社 Random access procedure processing method
CN100502588C (en) 2005-12-31 2009-06-17 华为技术有限公司 Cell switching method of cross-evolving node B in the long-evolving mobile communication network
US20080167054A1 (en) * 2006-01-31 2008-07-10 Interdigital Technology Corporation Method and system for performing cell update and routing area update procedures while a wireless transmit/receive unit is in an idle state
ATE498983T1 (en) 2006-02-24 2011-03-15 Ericsson Telefon Ab L M TECHNIQUE FOR CONFIGURING TRACK LAYER ENTITIES FOR A HANDOVER
JP4858690B2 (en) * 2006-06-14 2012-01-18 日本電気株式会社 Mobile communication system and data transmission method during handover
TW200803271A (en) 2006-06-19 2008-01-01 Innovative Sonic Ltd Method and apparatus for uplink data handling upon handover in a wireless communications system
NZ580223A (en) 2007-04-25 2011-12-22 Ericsson Telefon Ab L M A method and apparatus for seamless handover in a wireless communication network
US8437306B2 (en) * 2007-08-08 2013-05-07 Qualcomm Incorporated Layer 2 tunneling of data during handover in a wireless communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030157927A1 (en) * 2002-02-16 2003-08-21 Lg Electronics Inc. Method for relocating SRNS in a mobile communication system
US20070213060A1 (en) * 2006-03-07 2007-09-13 Interdigital Technology Corporation Method and apparatus for supporting handoff in an lte gtp based wireless communication system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10425346B2 (en) 2013-07-24 2019-09-24 Sun Patent Trust Efficient discard mechanism in small cell deployment
US11050674B2 (en) 2013-07-24 2021-06-29 Sun Patent Trust Efficient discard mechanism in small cell deployment
US11601373B2 (en) 2013-07-24 2023-03-07 Sun Patent Trust Efficient discard mechanism in small cell deployment
US11831558B2 (en) 2013-07-24 2023-11-28 Sun Patent Trust Efficient discard mechanism in small cell deployment

Also Published As

Publication number Publication date
JP5034081B2 (en) 2012-09-26
CN101389119B (en) 2012-09-05
EP2190149A1 (en) 2010-05-26
WO2009033400A1 (en) 2009-03-19
EP2190149A4 (en) 2014-03-12
US8797998B2 (en) 2014-08-05
US20100177736A1 (en) 2010-07-15
JP2010539757A (en) 2010-12-16
EP2190149B1 (en) 2019-10-02
CN101389119A (en) 2009-03-18
KR101141124B1 (en) 2012-05-02
KR20100063788A (en) 2010-06-11

Similar Documents

Publication Publication Date Title
US8797998B2 (en) Method and device for indicating data re-transmission when area switching in LTE system
US10129795B2 (en) Data transfer management in a radio communications network
TWI342139B (en) Method and network node for data transfer management in a radio communications network
KR101387475B1 (en) method of processing data in mobile communication system having a plurality of network entities
KR100972261B1 (en) Data management method in mobile communication system
US9001781B2 (en) Handover handling
EP1946460B1 (en) Data transfer management in a radio communications network
US8611304B2 (en) Method, system and base station for transmitting data during cell handover
US8588784B2 (en) Mobile communication system, wireless base station and hand over reconnection method for use therewith including an accumulation portion for holding data
JP2013513988A (en) Relay handover control
US8837310B2 (en) Method and system for determining an end time of uplink back propagation
CN102246555B (en) Method, base station and relay node for processing handover
WO2022151297A1 (en) Data transmission method and apparatus
CN101364934B (en) Method and apparatus for non-access message processing in switching
KR100969765B1 (en) Method and apparatus for handover in mobile telecommunication system
CN102246554B (en) Switching process method, relay node and target node
EP3247162A1 (en) Method for retransmitting rlc data packet and base station

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION