US20140291293A1 - Vacuum chamber with a one-piece metallic cover for self-centering - Google Patents

Vacuum chamber with a one-piece metallic cover for self-centering Download PDF

Info

Publication number
US20140291293A1
US20140291293A1 US14/242,463 US201414242463A US2014291293A1 US 20140291293 A1 US20140291293 A1 US 20140291293A1 US 201414242463 A US201414242463 A US 201414242463A US 2014291293 A1 US2014291293 A1 US 2014291293A1
Authority
US
United States
Prior art keywords
isolating cylinder
metallic
ceramic isolating
metallic cover
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/242,463
Other versions
US9324520B2 (en
Inventor
Dietmar Gentsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Schweiz AG
Original Assignee
ABB Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Technology AG filed Critical ABB Technology AG
Assigned to ABB TECHNOLOGY AG reassignment ABB TECHNOLOGY AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GENTSCH, DIETMAR
Publication of US20140291293A1 publication Critical patent/US20140291293A1/en
Application granted granted Critical
Publication of US9324520B2 publication Critical patent/US9324520B2/en
Assigned to ABB SCHWEIZ AG reassignment ABB SCHWEIZ AG MERGER (SEE DOCUMENT FOR DETAILS). Assignors: ABB TECHNOLOGY LTD.
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/02Bases, casings, or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • H01H2033/66215Details relating to the soldering or brazing of vacuum switch housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • H01H2033/66223Details relating to the sealing of vacuum switch housings

Definitions

  • the disclosure relates to a vacuum chamber including at least one ceramic isolating cylinder with two face ends. At least one of the two face ends of the ceramic isolating cylinder is closed by a metallic cover having an outer and an inner part. A distal end of the outer part of the metallic cover is thinner relative to the remainder of the outer part of the metallic cover and forms a metallic lid. The metallic lid is connected to at least one of the two face ends of the ceramic isolating cylinder in a vacuum tight manner.
  • Such vacuum chambers can be used in a switchgear assembly whose gas, such as air, is an insulating gas that can be at atmospheric pressure. Consequently, an insulating cylinder, covers and a bellow can be configured in terms of strength for atmospheric pressure. Cases are conceivable in which the vacuum chamber is installed in a switchgear assembly whose pressure is substantially increased, for example, up to approximately 25 bars, with the result that the parts as mentioned before should all be configured such that they withstand this pressure.
  • Circuit breakers provide protection for electrical systems from electrical fault conditions such as current overloads, short circuits, and low level voltage conditions.
  • Circuit breakers can include a spring-powered operating mechanism which opens electrical contacts inside a vacuum interrupter to interrupt the current flowing through the conductors in an electrical system in response to abnormal conditions.
  • Vacuum interrupters can include separable main contacts disposed within an insulated and hermetically sealed vacuum chamber.
  • the vacuum chamber can include one or more sections of ceramics for electrical insulation and one or more metal components to form an envelope in which a vacuum may be drawn.
  • the metal components can be easily formed and can provide a structural strength lacking in the ceramic components.
  • the ceramic shell can be cylindrical. However, other cross-sectional shapes can be used.
  • the metal components can include two end caps and, where there are multiple ceramic sections, one or more external center shields disposed between the ceramic sections.
  • EP 1 742 242 B1 discloses a metal component for a vacuum chamber of a circuit breaker, wherein the vacuum chamber has at least one electrically insulating hollow body.
  • the metal component includes a body structured to be coupled to the hollow body, and a sealing edge extending from the body.
  • the sealing edge has a distal tip with a sealing surface, and a gradual reduction in cross-sectional thickness between the body and the sealing surface, so that the sealing surface is the thinnest portion of the sealing edge.
  • the sealing edge is generally circular with the inner and outer surfaces thereof defined by respective inner and outer diameters. The gradual reduction in cross-sectional thickness is created by the inner and outer diameters becoming respectively smaller and larger as measured from a point adjacent to the sealing surface to a point adjacent to the body.
  • U.S. Pat. No. 7,508,636 B2 relates to a vacuum chamber with at least one insulating cylinder made of ceramic material.
  • the face ends of the ceramic insulating cylinder are closed off by a cover, each with a movable contact element attached to a movable contact stem and with a fixed contact element attached to a fixed contact stem, which each penetrate the cover.
  • a vacuum-tight sealing element is fastened between the one cover and the movable contact stem and permits a movement of the contact stem.
  • the covers are tightly soldered or brazed to the respective face end of the adjacent insulating cylinder by interposing at least one supporting ring. The sealing element is fastened to the cover and the contact stem.
  • the covers are provided with a cup-like arrangement and include an edge which is thinner relative to the remainder of the area.
  • the sealing element includes two or more layers which are connected, and especially welded or brazed, with their free ends in a vacuum-tight manner with each other and with the cover and the contact stem, respectively.
  • a vacuum chamber including at least one ceramic isolating cylinder with two face ends; and a metallic cover configured for closing at least one of the two face ends of the ceramic isolating cylinder, the metallic cover including an outer part and an inner part, wherein a distal end of the outer part of the metallic cover is thinner relative to a remainder of the outer part of the metallic cover and forms a metallic lid, wherein the metallic lid is connected to at least one of the two face ends of the ceramic isolating cylinder in a vacuum tight manner, wherein the metallic cover is formed in one piece and an inner part of the metallic cover fits with an inner girthed area of the ceramic isolating cylinder to realize a self-centering of the metallic lid to at least one of the two face ends of the ceramic isolating cylinder.
  • a medium voltage vacuum circuit breaker comprising: at least one ceramic isolating cylinder with two face ends; a metallic cover configured for closing at least one of the two face ends of the ceramic isolating cylinder, the metallic cover including: an outer part and an inner part, wherein a distal end of the outer part of the metallic cover is thinner relative to a remainder of the outer part of the metallic cover and forms a metallic lid, wherein the metallic lid is connected to at least one of the two face ends of the ceramic isolating cylinder in a vacuum tight manner, wherein the metallic cover is formed in one piece and an inner part of the metallic cover fits with an inner girthed area of the ceramic isolating cylinder to realize a self-centering of the metallic lid to at least one of the two face ends of the ceramic isolating cylinder; and an actuator for generating an operation force for transmission via a jackshaft arrangement to a vacuum interrupter with a vacuum chamber of the vacuum circuit breaker.
  • FIG. 1 shows a longitudinal cut through a medium voltage vacuum circuit breaker including a vacuum interrupter with a vacuum chamber according to an exemplary embodiment of the disclosure
  • FIG. 2 shows a fragmented, sectional view through the vacuum chamber with a metallic cover according to FIG. 1 ;
  • FIG. 3 shows a fragmented, sectional view through an exemplary embodiment of the vacuum chamber with a metallic cover according to the disclosure.
  • Exemplary embodiments of the present disclosure provide a vacuum chamber with a metallic cover which can make available fast and automated assembling of the metallic cover on the vacuum chamber and which can reduce production costs.
  • the metallic cover can be formed in one piece and fits with the inner part of the metallic cover at an inner girthed area of the ceramic isolating cylinder to realize a self-centering of the metallic lid to at least one of the two face ends of the ceramic isolating cylinder.
  • the inner part of the metallic cover can be used for self-centering.
  • An exemplary embodiment of the metallic cover according to the disclosure can include three parts.
  • a first part includes a metallic lid and extends axially away from at least one of the two face ends of the ceramic isolating cylinder.
  • a second part extends radial away from the first part towards an interior of the at least one ceramic isolating cylinder.
  • a third part extends in a combination of radial and axial direction towards the girthed area of the at least one ceramic isolating cylinder.
  • the three parts are not joined together, but formed from one piece.
  • One further possibility will be the use of a compensation layer in between of the metal part and the ceramic by the use of copper material.
  • the metallic cover can include four parts.
  • a first part includes the metallic lid and extends axially away from at least one of the two face ends of the ceramic isolating cylinder.
  • a second part extends radial away from the first part towards the interior of the at least one ceramic isolating cylinder.
  • a third part extends basically parallel to the first part axially towards the interior of the at least one ceramic isolating cylinder.
  • a fourth part extends basically parallel to the second part axially towards the girthed area of the at least one ceramic isolating cylinder.
  • the four parts are as well as the three parts not joined together, but formed from one piece.
  • a distal end of the inner part of the metallic cover is provided with a rounded shape for avoiding voltage peaks.
  • the metallic lid can be connected to at least one of the two face ends of the ceramic isolating cylinder by soldering or brazing. Furthermore, it is imaginable to connect the ceramic isolating cylinder by other joining techniques for example, welding and glueing. Moreover, brazing foil is a further possibility to connect these two parts. Micro-plastic deformation will be taken from the brazing material.
  • the metallic lid can have a wall thickness of 0.4 mm or less in the area where it is connected to the at least one of the two face ends of the ceramic isolating cylinder. This provides a low thermal expansion in the connection area.
  • the vacuum chamber is part of a vacuum interrupter of a medium voltage vacuum circuit breaker, including an actuator for generating an operation force wherein the operation force is transmitted via a jackshaft arrangement to the vacuum interrupter.
  • the metallic lid can have a wall thickness of 0.4 mm or less in the area where it is connected to the at least one of the two face ends of the ceramic isolating cylinder and there will be a compensation layer between the metallic lid and the surface, like shown in FIG. 3 .
  • FIG. 1 shows a medium voltage vacuum circuit breaker 12 which includes a ceramic isolating cylinder 16 with an embedded upper electrical terminal 17 and a lower electrical terminal 18 forming an electrical switch for a medium voltage circuit. Therefore, the upper electrical terminal 17 is connected to a corresponding fixed upper electrical contact 19 which is mounted in a vacuum chamber 1 of a vacuum interrupter 15 .
  • the vacuum chamber 1 is closed by a metallic cover 3 which is arranged on a face end 2 of the ceramic isolating cylinder 16 and a bellow 27 which is arranged between the metallic cover 3 and a contact stem of a movable lower electrical contact 20 .
  • the lower electrical contact 20 is movably mounted in relation to the vacuum interrupter 15 .
  • the lower electrical terminal 18 is connected to the corresponding movable lower electrical contact 20 .
  • the movable lower electrical contact 20 is movable between a closed and opened switching position via a jackshaft arrangement 14 .
  • a flexible conductor 21 of copper material is provided in order to electrically connect the lower electrical terminal 18
  • the jackshaft arrangement 14 internally couples the mechanical energy of an electromagnetic actuator 13 to the ceramic isolating cylinder 16 of the vacuum interrupter 15 .
  • the electromagnetic actuator 13 includes a movable ferromagnetic plunger 22 which is guided by two axes 23 a and 23 b in a ferromagnetic frame 24 .
  • a permanent magnet 25 is arranged on an inner extent area of the ferromagnetic frame 24 to create a magnetic flux so that the movable ferromagnetic plunger 22 is tightly held in one of the two end positions.
  • Two coils 26 a and 26 b are partially arranged inside the ferromagnetic frame 24 and can be used to modify the magnetic flux in a way that the movable ferromagnetic plunger 22 can move from a top position to a bottom position.
  • the movable ferromagnetic plunger 22 at the top position represents an open position of the medium voltage vacuum circuit breaker 12 .
  • FIG. 2 shows a detail of a vacuum chamber 1 according to an exemplary embodiment of the present disclosure including a ceramic isolating cylinder 16 .
  • the vacuum chamber 1 is closed by the metallic cover 3 which is arranged on the face end 2 of the ceramic isolating cylinder 16 .
  • the metallic cover 3 includes an outer and an inner part 4 , 5 , wherein a distal end of the outer part 4 of the metallic cover 3 is thinner relative to the remainder of the outer part 4 of the metallic cover 3 and forms a metallic lid 6 .
  • the metallic lid 6 is connected to the face end 2 of the ceramic isolating cylinder 16 in a vacuum tight manner by soldering.
  • the metallic lid 6 has a wall thickness of 0.2 mm in the area where it is connected to the face end 2 of the ceramic isolating cylinder 1 .
  • the metallic cover 3 is formed in one piece and fits with the inner part 5 of the metallic cover 3 at an inner girthed area 7 of the ceramic isolating cylinder 16 to realize a self-centering of the metallic lid 6 to the face end 2 of the ceramic isolating cylinder 16 .
  • the metallic cover 3 can include three parts 8 a , 9 a , 10 a .
  • a first part 8 a includes the metallic lid 6 and extends axially away from at least one of the two face ends 2 of the ceramic isolating cylinder 1 .
  • a second part 9 a extends radial away from the first part 8 a towards an interior of the at least one ceramic isolating cylinder 1 .
  • a third part 10 a extends in a combination of radial and axial direction towards the girthed area 7 of the ceramic isolating cylinder 1 .
  • a distal end of the inner part 5 of the metallic cover 3 is provided with a rounded shape to avoid voltage peaks.
  • the fitting with the inner part 5 of the metallic cover 3 at the inner girthed area 7 of the ceramic isolating cylinder 16 realizes a self-centering of the metallic lid 6 to the face end 2 of the ceramic isolating cylinder 16 .
  • FIG. 3 shows a detail of an exemplary embodiment of the vacuum chamber 1 with the metallic cover 3 according to the disclosure.
  • the metallic cover 3 shown in FIG. 3 can include four parts 8 b , 9 b , 10 b , 11 b .
  • a first and a second part 8 b and 9 b of the four parts 8 b , 9 b , 10 b , 11 b can be identical to the first and second part 8 a and 9 a in FIG. 2 .
  • the first part 8 b includes the metallic lid 6 and extends axially away from the face end 2 of the ceramic isolating cylinder 1 .
  • the second part 9 b extends radial away from the first part 8 b towards the interior of the ceramic isolating cylinder 1 .
  • a third part 10 b extends basically parallel to the first part 8 b axially towards the interior of the ceramic isolating cylinder 1
  • a fourth part 11 b extends basically parallel to the second part 9 b axially towards the girthed area 7 of the ceramic isolating cylinder 1 .
  • the fitting with the inner part 5 of the metallic cover 3 at the inner girthed area 7 of the ceramic isolating cylinder 16 realizes a self-centering of the metallic lid 6 to the face end 2 of the ceramic isolating cylinder 16 .
  • FIG. 2 and FIG. 3 are simplified views and focus on the ceramic isolating cylinder 1 and the metallic cover 3 .
  • the bellow 27 shown in FIG. 1 which is arranged between the metallic cover 3 and the contact stem of the movable lower electrical contact 20 , is not shown in FIG. 2 and FIG. 3 .
  • the vacuum chamber 1 could be part of a low voltage vacuum circuit breaker.
  • the metallic lid 6 can be made from a plastic material which is formed by injection molding.
  • FIG. 3 there can be arranged an additional part between the lid 6 and face end 2 for compensation such as a copper material.

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

The disclosure relates to a vacuum chamber including at least one ceramic isolating cylinder with two face ends. At least one of the two face ends of the ceramic isolating cylinder is closed by a metallic cover including an outer and an inner part. A distal end of the outer part of the metallic cover is thinner relative to the remainder of the outer part of the metallic cover and forms a metallic lid. The metallic lid is connected to at least one of the two face ends of the ceramic isolating cylinder in a vacuum tight manner. The metallic cover can be formed in one piece and fits with the inner part of the metallic cover at an inner girthed area of the ceramic isolating cylinder to realize a self-centering of the metallic lid to at least one of the two face ends of the ceramic isolating cylinder.

Description

    RELATED APPLICATION(S)
  • This application claims priority to European Patent Application 13001668.6 filed in Europe on Apr. 2, 2014. The entire contents of this application are hereby incorporated by reference in its entirety.
  • FIELD
  • The disclosure relates to a vacuum chamber including at least one ceramic isolating cylinder with two face ends. At least one of the two face ends of the ceramic isolating cylinder is closed by a metallic cover having an outer and an inner part. A distal end of the outer part of the metallic cover is thinner relative to the remainder of the outer part of the metallic cover and forms a metallic lid. The metallic lid is connected to at least one of the two face ends of the ceramic isolating cylinder in a vacuum tight manner.
  • BACKGROUND INFORMATION
  • Such vacuum chambers can be used in a switchgear assembly whose gas, such as air, is an insulating gas that can be at atmospheric pressure. Consequently, an insulating cylinder, covers and a bellow can be configured in terms of strength for atmospheric pressure. Cases are conceivable in which the vacuum chamber is installed in a switchgear assembly whose pressure is substantially increased, for example, up to approximately 25 bars, with the result that the parts as mentioned before should all be configured such that they withstand this pressure.
  • Known circuit breakers provide protection for electrical systems from electrical fault conditions such as current overloads, short circuits, and low level voltage conditions. Circuit breakers can include a spring-powered operating mechanism which opens electrical contacts inside a vacuum interrupter to interrupt the current flowing through the conductors in an electrical system in response to abnormal conditions. Vacuum interrupters can include separable main contacts disposed within an insulated and hermetically sealed vacuum chamber.
  • The vacuum chamber can include one or more sections of ceramics for electrical insulation and one or more metal components to form an envelope in which a vacuum may be drawn. The metal components can be easily formed and can provide a structural strength lacking in the ceramic components. The ceramic shell can be cylindrical. However, other cross-sectional shapes can be used. The metal components can include two end caps and, where there are multiple ceramic sections, one or more external center shields disposed between the ceramic sections.
  • EP 1 742 242 B1 discloses a metal component for a vacuum chamber of a circuit breaker, wherein the vacuum chamber has at least one electrically insulating hollow body. The metal component includes a body structured to be coupled to the hollow body, and a sealing edge extending from the body. The sealing edge has a distal tip with a sealing surface, and a gradual reduction in cross-sectional thickness between the body and the sealing surface, so that the sealing surface is the thinnest portion of the sealing edge. The sealing edge is generally circular with the inner and outer surfaces thereof defined by respective inner and outer diameters. The gradual reduction in cross-sectional thickness is created by the inner and outer diameters becoming respectively smaller and larger as measured from a point adjacent to the sealing surface to a point adjacent to the body.
  • U.S. Pat. No. 7,508,636 B2 relates to a vacuum chamber with at least one insulating cylinder made of ceramic material. The face ends of the ceramic insulating cylinder are closed off by a cover, each with a movable contact element attached to a movable contact stem and with a fixed contact element attached to a fixed contact stem, which each penetrate the cover. Furthermore, a vacuum-tight sealing element is fastened between the one cover and the movable contact stem and permits a movement of the contact stem. The covers are tightly soldered or brazed to the respective face end of the adjacent insulating cylinder by interposing at least one supporting ring. The sealing element is fastened to the cover and the contact stem. The covers are provided with a cup-like arrangement and include an edge which is thinner relative to the remainder of the area. The sealing element includes two or more layers which are connected, and especially welded or brazed, with their free ends in a vacuum-tight manner with each other and with the cover and the contact stem, respectively.
  • SUMMARY
  • A vacuum chamber is disclosed including at least one ceramic isolating cylinder with two face ends; and a metallic cover configured for closing at least one of the two face ends of the ceramic isolating cylinder, the metallic cover including an outer part and an inner part, wherein a distal end of the outer part of the metallic cover is thinner relative to a remainder of the outer part of the metallic cover and forms a metallic lid, wherein the metallic lid is connected to at least one of the two face ends of the ceramic isolating cylinder in a vacuum tight manner, wherein the metallic cover is formed in one piece and an inner part of the metallic cover fits with an inner girthed area of the ceramic isolating cylinder to realize a self-centering of the metallic lid to at least one of the two face ends of the ceramic isolating cylinder.
  • A medium voltage vacuum circuit breaker is disclosed, comprising: at least one ceramic isolating cylinder with two face ends; a metallic cover configured for closing at least one of the two face ends of the ceramic isolating cylinder, the metallic cover including: an outer part and an inner part, wherein a distal end of the outer part of the metallic cover is thinner relative to a remainder of the outer part of the metallic cover and forms a metallic lid, wherein the metallic lid is connected to at least one of the two face ends of the ceramic isolating cylinder in a vacuum tight manner, wherein the metallic cover is formed in one piece and an inner part of the metallic cover fits with an inner girthed area of the ceramic isolating cylinder to realize a self-centering of the metallic lid to at least one of the two face ends of the ceramic isolating cylinder; and an actuator for generating an operation force for transmission via a jackshaft arrangement to a vacuum interrupter with a vacuum chamber of the vacuum circuit breaker.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the following, the disclosure will be described in greater detail by reference to exemplary embodiments and with reference to the attached drawings, in which
  • FIG. 1 shows a longitudinal cut through a medium voltage vacuum circuit breaker including a vacuum interrupter with a vacuum chamber according to an exemplary embodiment of the disclosure;
  • FIG. 2 shows a fragmented, sectional view through the vacuum chamber with a metallic cover according to FIG. 1; and
  • FIG. 3 shows a fragmented, sectional view through an exemplary embodiment of the vacuum chamber with a metallic cover according to the disclosure.
  • The reference symbols used in the drawings, and their meanings, are listed in summary form in the list of reference symbols. In principle, identical parts are provided
  • DETAILED DESCRIPTION
  • Exemplary embodiments of the present disclosure provide a vacuum chamber with a metallic cover which can make available fast and automated assembling of the metallic cover on the vacuum chamber and which can reduce production costs.
  • According to an exemplary embodiment of the disclosure, the metallic cover can be formed in one piece and fits with the inner part of the metallic cover at an inner girthed area of the ceramic isolating cylinder to realize a self-centering of the metallic lid to at least one of the two face ends of the ceramic isolating cylinder. Thus, the inner part of the metallic cover can be used for self-centering. An advantage is that the metallic cover is formed in one piece what makes it possible to use advantageous production processes. The metallic cover can be made from, for example, a stainless steel material which is formed by deep drawing, rolling or spinning. Furthermore, fast and automated assembling of the metallic cover on the vacuum chamber is possible and reduces material, assembling time and, therefore, costs.
  • An exemplary embodiment of the metallic cover according to the disclosure can include three parts. A first part includes a metallic lid and extends axially away from at least one of the two face ends of the ceramic isolating cylinder. A second part extends radial away from the first part towards an interior of the at least one ceramic isolating cylinder. A third part extends in a combination of radial and axial direction towards the girthed area of the at least one ceramic isolating cylinder. The three parts are not joined together, but formed from one piece. One further possibility will be the use of a compensation layer in between of the metal part and the ceramic by the use of copper material.
  • According to an exemplary embodiment according to the disclosure, the metallic cover can include four parts. A first part includes the metallic lid and extends axially away from at least one of the two face ends of the ceramic isolating cylinder. A second part extends radial away from the first part towards the interior of the at least one ceramic isolating cylinder. A third part extends basically parallel to the first part axially towards the interior of the at least one ceramic isolating cylinder. A fourth part extends basically parallel to the second part axially towards the girthed area of the at least one ceramic isolating cylinder. The four parts are as well as the three parts not joined together, but formed from one piece.
  • However, it is possible to shape the metallic cover in many different ways to achieve the effect of the disclosure.
  • According to an exemplary embodiment of the vacuum chamber according to the disclosure, a distal end of the inner part of the metallic cover is provided with a rounded shape for avoiding voltage peaks.
  • The metallic lid can be connected to at least one of the two face ends of the ceramic isolating cylinder by soldering or brazing. Furthermore, it is imaginable to connect the ceramic isolating cylinder by other joining techniques for example, welding and glueing. Moreover, brazing foil is a further possibility to connect these two parts. Micro-plastic deformation will be taken from the brazing material.
  • Furthermore, the metallic lid can have a wall thickness of 0.4 mm or less in the area where it is connected to the at least one of the two face ends of the ceramic isolating cylinder. This provides a low thermal expansion in the connection area.
  • In addition, the vacuum chamber is part of a vacuum interrupter of a medium voltage vacuum circuit breaker, including an actuator for generating an operation force wherein the operation force is transmitted via a jackshaft arrangement to the vacuum interrupter.
  • The metallic lid can have a wall thickness of 0.4 mm or less in the area where it is connected to the at least one of the two face ends of the ceramic isolating cylinder and there will be a compensation layer between the metallic lid and the surface, like shown in FIG. 3.
  • FIG. 1 shows a medium voltage vacuum circuit breaker 12 which includes a ceramic isolating cylinder 16 with an embedded upper electrical terminal 17 and a lower electrical terminal 18 forming an electrical switch for a medium voltage circuit. Therefore, the upper electrical terminal 17 is connected to a corresponding fixed upper electrical contact 19 which is mounted in a vacuum chamber 1 of a vacuum interrupter 15. The vacuum chamber 1 is closed by a metallic cover 3 which is arranged on a face end 2 of the ceramic isolating cylinder 16 and a bellow 27 which is arranged between the metallic cover 3 and a contact stem of a movable lower electrical contact 20. The lower electrical contact 20 is movably mounted in relation to the vacuum interrupter 15. The lower electrical terminal 18 is connected to the corresponding movable lower electrical contact 20. The movable lower electrical contact 20 is movable between a closed and opened switching position via a jackshaft arrangement 14. A flexible conductor 21 of copper material is provided in order to electrically connect the lower electrical terminal 18 with the movable lower electrical contact 20.
  • The jackshaft arrangement 14 internally couples the mechanical energy of an electromagnetic actuator 13 to the ceramic isolating cylinder 16 of the vacuum interrupter 15. The electromagnetic actuator 13 includes a movable ferromagnetic plunger 22 which is guided by two axes 23 a and 23 b in a ferromagnetic frame 24. A permanent magnet 25 is arranged on an inner extent area of the ferromagnetic frame 24 to create a magnetic flux so that the movable ferromagnetic plunger 22 is tightly held in one of the two end positions. Two coils 26 a and 26 b, one at the top and the other at the bottom of the ferromagnetic frame 24, are partially arranged inside the ferromagnetic frame 24 and can be used to modify the magnetic flux in a way that the movable ferromagnetic plunger 22 can move from a top position to a bottom position. The movable ferromagnetic plunger 22 at the top position represents an open position of the medium voltage vacuum circuit breaker 12.
  • FIG. 2 shows a detail of a vacuum chamber 1 according to an exemplary embodiment of the present disclosure including a ceramic isolating cylinder 16. The vacuum chamber 1 is closed by the metallic cover 3 which is arranged on the face end 2 of the ceramic isolating cylinder 16. The metallic cover 3 includes an outer and an inner part 4, 5, wherein a distal end of the outer part 4 of the metallic cover 3 is thinner relative to the remainder of the outer part 4 of the metallic cover 3 and forms a metallic lid 6. The metallic lid 6 is connected to the face end 2 of the ceramic isolating cylinder 16 in a vacuum tight manner by soldering. Furthermore, the metallic lid 6 has a wall thickness of 0.2 mm in the area where it is connected to the face end 2 of the ceramic isolating cylinder 1. The metallic cover 3 is formed in one piece and fits with the inner part 5 of the metallic cover 3 at an inner girthed area 7 of the ceramic isolating cylinder 16 to realize a self-centering of the metallic lid 6 to the face end 2 of the ceramic isolating cylinder 16.
  • The metallic cover 3 can include three parts 8 a, 9 a, 10 a. A first part 8 a includes the metallic lid 6 and extends axially away from at least one of the two face ends 2 of the ceramic isolating cylinder 1. A second part 9 a extends radial away from the first part 8 a towards an interior of the at least one ceramic isolating cylinder 1. A third part 10 a extends in a combination of radial and axial direction towards the girthed area 7 of the ceramic isolating cylinder 1. A distal end of the inner part 5 of the metallic cover 3 is provided with a rounded shape to avoid voltage peaks. The fitting with the inner part 5 of the metallic cover 3 at the inner girthed area 7 of the ceramic isolating cylinder 16 realizes a self-centering of the metallic lid 6 to the face end 2 of the ceramic isolating cylinder 16.
  • FIG. 3 shows a detail of an exemplary embodiment of the vacuum chamber 1 with the metallic cover 3 according to the disclosure. The metallic cover 3 shown in FIG. 3 can include four parts 8 b, 9 b, 10 b, 11 b. A first and a second part 8 b and 9 b of the four parts 8 b, 9 b, 10 b, 11 b can be identical to the first and second part 8 a and 9 a in FIG. 2. The first part 8 b includes the metallic lid 6 and extends axially away from the face end 2 of the ceramic isolating cylinder 1. The second part 9 b extends radial away from the first part 8 b towards the interior of the ceramic isolating cylinder 1. A third part 10 b extends basically parallel to the first part 8 b axially towards the interior of the ceramic isolating cylinder 1, and a fourth part 11 b extends basically parallel to the second part 9 b axially towards the girthed area 7 of the ceramic isolating cylinder 1. The fitting with the inner part 5 of the metallic cover 3 at the inner girthed area 7 of the ceramic isolating cylinder 16 realizes a self-centering of the metallic lid 6 to the face end 2 of the ceramic isolating cylinder 16.
  • FIG. 2 and FIG. 3 are simplified views and focus on the ceramic isolating cylinder 1 and the metallic cover 3. Thus, the bellow 27 shown in FIG. 1, which is arranged between the metallic cover 3 and the contact stem of the movable lower electrical contact 20, is not shown in FIG. 2 and FIG. 3.
  • While the disclosure has been illustrated and described in detail in the drawings and foregoing description, such illustration and description are to be considered illustrative or exemplary and not restrictive; the disclosure is not limited to the disclosed embodiments. Other variations to the disclosed embodiments can be understood and effected by those skilled in the art and practicing the claimed disclosure, from a study of the drawings, the disclosure, and the appended claims. In particular, the vacuum chamber 1 could be part of a low voltage vacuum circuit breaker. In this case, the metallic lid 6 can be made from a plastic material which is formed by injection molding.
  • In FIG. 3, there can be arranged an additional part between the lid 6 and face end 2 for compensation such as a copper material.
  • Thus, it will be appreciated by those skilled in the art that the present invention can be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The presently disclosed embodiments are therefore considered in all respects to be illustrative and not restricted. The scope of the invention is indicated by the appended claims rather than the foregoing description and all changes that come within the meaning and range and equivalence thereof are intended to be embraced therein.
  • REFERENCE SIGNS
    • 1 vacuum chamber
    • 2 face end
    • 3 metallic cover
    • 4 outer part
    • 5 inner part
    • 6 metallic lid
    • 7 inner girthed area
    • 8 a, 8 b first part
    • 9 a, 9 b second part
    • 10 a, 10 b third part
    • 11 b forth part
    • 12 vacuum circuit breaker
    • 13 actuator
    • 14 jackshaft arrangement
    • 15 vacuum interrupter
    • 16 ceramic isolating cylinder
    • 17 upper electrical terminal
    • 18 lower electrical terminal
    • 19 upper electrical contact
    • 20 lower electrical contact
    • 21 flexible conductor
    • 22 ferromagnetic plunger
    • 23 a, 23 b axis
    • 24 ferromagnetic frame
    • 25 permanent magnet
    • 26 a, 26 b coil
    • 27 bellow

Claims (18)

What is claimed is:
1. A vacuum chamber comprising:
at least one ceramic isolating cylinder with two face ends; and
a metallic cover configured for closing at least one of the two face ends of the ceramic isolating cylinder, the metallic cover including:
an outer part and an inner part, wherein a distal end of the outer part of the metallic cover is thinner relative to a remainder of the outer part of the metallic cover and forms a metallic lid, wherein the metallic lid is connected to at least one of the two face ends of the ceramic isolating cylinder in a vacuum tight manner,
wherein the metallic cover is formed in one piece and an inner part of the metallic cover fits with an inner girthed area of the ceramic isolating cylinder to realize a self-centering of the metallic lid to at least one of the two face ends of the ceramic isolating cylinder.
2. The vacuum chamber of claim 1, wherein the metallic cover comprises:
three parts, wherein a first part includes the metallic lid and is arranged to extend axially away from at least one of the two face ends of the ceramic isolating cylinder, a second part extends radially away from the first part towards an interior of the at least one ceramic isolating cylinder, and a third part extends in a combination of radial and axial directions towards the girthed area of the at least one ceramic isolating cylinder.
3. The vacuum chamber of claim 1, wherein the metallic cover comprises:
four parts, wherein a first part includes the metallic lid and extends axially away from at least one of the two face ends of the ceramic isolating cylinder, a second part extends radial away from the first part towards the interior of the at least one ceramic isolating cylinder, a third part extends basically parallel to the first part axially towards the interior of the at least one ceramic isolating cylinder, and a fourth part extends basically parallel to the second part, axially towards the girthed area of the at least one ceramic isolating cylinder.
4. The vacuum chamber of claim 1, wherein the metallic cover is made from a stainless steel material.
5. The vacuum chamber of claim 1, wherein the metallic cover is a deep drawn, rolled, or spun cover.
6. The vacuum chamber of claim 1, wherein a distal end of the inner part of the metallic cover is of a rounded shape.
7. The vacuum chamber of claim 1, comprising:
a soldered or brazed connection of the metallic lid to at least one of the two face ends of the ceramic isolating cylinder.
8. The vacuum chamber of claim 1, wherein the metallic lid has a wall thickness of 0.4 mm or less in the area where it is connected to the at least one of the two face ends of the ceramic isolating cylinder.
9. The vacuum chamber of claim 8, comprising:
a compensation layer between the metallic lid and at least one of the two face ends.
10. A medium voltage vacuum circuit breaker, comprising:
at least one ceramic isolating cylinder with two face ends;
a metallic cover configured for closing at least one of the two face ends of the ceramic isolating cylinder, the metallic cover including:
an outer part and an inner part, wherein a distal end of the outer part of the metallic cover is thinner relative to a remainder of the outer part of the metallic cover and forms a metallic lid, wherein the metallic lid is connected to at least one of the two face ends of the ceramic isolating cylinder in a vacuum tight manner,
wherein the metallic cover is formed in one piece and an inner part of the metallic cover fits with an inner girthed area of the ceramic isolating cylinder to realize a self-centering of the metallic lid to at least one of the two face ends of the ceramic isolating cylinder; and
an actuator for generating an operation force for transmission via a jackshaft arrangement to a vacuum interrupter with a vacuum chamber of the vacuum circuit breaker.
11. The medium voltage vacuum circuit breaker of claim 10, wherein the metallic cover comprises:
three parts, wherein a first part includes the metallic lid and is arranged to extend axially away from at least one of the two face ends of the ceramic isolating cylinder, a second part extends radially away from the first part towards an interior of the at least one ceramic isolating cylinder, and a third part extends in a combination of radial and axial directions towards the girthed area of the at least one ceramic isolating cylinder.
12. The medium voltage vacuum circuit breaker of claim 10, wherein the metallic cover comprises:
four parts, wherein a first part includes the metallic lid and extends axially away from at least one of the two face ends of the ceramic isolating cylinder, a second part extends radial away from the first part towards the interior of the at least one ceramic isolating cylinder, a third part extends basically parallel to the first part axially towards the interior of the at least one ceramic isolating cylinder, and a fourth part extends basically parallel to the second part, axially towards the girthed area of the at least one ceramic isolating cylinder.
13. The medium voltage vacuum circuit breaker of claim 10, wherein the metallic cover is made from a stainless steel material.
14. The medium voltage vacuum circuit breaker of claim 10, wherein the metallic cover is a deep drawn, rolled, or spun cover.
15. The medium voltage vacuum circuit breaker of claim 10, wherein a distal end of the inner part of the metallic cover is of a rounded shape.
16. The medium voltage vacuum circuit breaker of claim 10, comprising:
a soldered or brazed connection of at least one of the two face ends of the ceramic isolating cylinder.
17. The medium voltage vacuum circuit breaker of claim 10, wherein the metallic lid has a wall thickness of 0.4 mm or less in the area where it is connected to the at least one of the two face ends of the ceramic isolating cylinder.
18. The medium voltage vacuum circuit breaker of claim 10, comprising a compensation layer between the metallic lid and at least one of the two face ends.
US14/242,463 2013-04-02 2014-04-01 Vacuum chamber with a one-piece metallic cover for self-centering Expired - Fee Related US9324520B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13001668.6A EP2787520B1 (en) 2013-04-02 2013-04-02 Vacuum chamber with a one-piece metallic cover for self-centering
EP13001668 2013-04-02
EP13001668.6 2013-04-02

Publications (2)

Publication Number Publication Date
US20140291293A1 true US20140291293A1 (en) 2014-10-02
US9324520B2 US9324520B2 (en) 2016-04-26

Family

ID=48047796

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/242,463 Expired - Fee Related US9324520B2 (en) 2013-04-02 2014-04-01 Vacuum chamber with a one-piece metallic cover for self-centering

Country Status (4)

Country Link
US (1) US9324520B2 (en)
EP (1) EP2787520B1 (en)
CN (1) CN104103452B (en)
IN (1) IN2014DE00840A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150248978A1 (en) * 2012-11-08 2015-09-03 Abb Technology Ag Vacuum interrupter arrangement for a medium voltage circuit breaker with cup-shaped tmf-contacts
CN108352271A (en) * 2015-10-26 2018-07-31 Abb瑞士股份有限公司 There are one the vacuum interrupters of movable contact for tool
US10242825B1 (en) * 2014-09-16 2019-03-26 Cleaveland/Price Inc. High voltage switch vacuum interrupter
US10304644B2 (en) * 2014-12-31 2019-05-28 Hyosung Heavy Industries Corporation Vacuum interrupter and driving method therefor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156626A (en) 1980-05-06 1981-12-03 Meidensha Electric Mfg Co Ltd Vacuum breaker
DE3628174A1 (en) * 1986-08-20 1988-02-25 Calor Emag Elektrizitaets Ag Vacuum switching chamber
CN1241224C (en) * 2000-12-13 2006-02-08 西门子公司 Connection area between housing parts of vacuum interrupter, and vacuum interrupter having connection area of this type
US6965089B2 (en) * 2003-02-21 2005-11-15 Mcgraw-Edison Company Axial magnetic field vacuum fault interrupter
DE60303773T2 (en) 2003-12-05 2006-09-21 Société Technique pour l'Energie Atomique TECHNICATOME Hybrid circuit breaker
US20070007250A1 (en) * 2005-07-08 2007-01-11 Eaton Corporation Sealing edge cross-sectional profiles to allow brazing of metal parts directly to a metallized ceramic for vacuum interrupter envelope construction
WO2007049920A1 (en) * 2005-10-25 2007-05-03 Ematech Inc. Electro-magnetic force driving actuator and circuit breaker using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150248978A1 (en) * 2012-11-08 2015-09-03 Abb Technology Ag Vacuum interrupter arrangement for a medium voltage circuit breaker with cup-shaped tmf-contacts
US9484169B2 (en) * 2012-11-08 2016-11-01 Abb Schweiz Ag Vacuum interrupter arrangement for a medium voltage circuit breaker with cup-shaped TMF-contacts
US10242825B1 (en) * 2014-09-16 2019-03-26 Cleaveland/Price Inc. High voltage switch vacuum interrupter
US10304644B2 (en) * 2014-12-31 2019-05-28 Hyosung Heavy Industries Corporation Vacuum interrupter and driving method therefor
CN108352271A (en) * 2015-10-26 2018-07-31 Abb瑞士股份有限公司 There are one the vacuum interrupters of movable contact for tool
US10553372B2 (en) * 2015-10-26 2020-02-04 Abb Schweiz Ag Vacuum interrupter with one movable contact

Also Published As

Publication number Publication date
CN104103452A (en) 2014-10-15
IN2014DE00840A (en) 2015-06-19
EP2787520A1 (en) 2014-10-08
CN104103452B (en) 2018-06-08
US9324520B2 (en) 2016-04-26
EP2787520B1 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
EP2539911B1 (en) Retainer, vacuum interrupter, and electrical switching apparatus including the same
EP2593953B1 (en) Method for producing a circuit-breaker pole part
US9324520B2 (en) Vacuum chamber with a one-piece metallic cover for self-centering
EP1742242B1 (en) Brazed metallic end cap for a vacuum interrupter envelope
US8653398B2 (en) Electrical device with a multi-chamber housing
KR102645464B1 (en) Maximizing the wall thickness of Cu-Cr floating central shield components by moving the contact gap away from the central flange axial position.
EP3042384B1 (en) Vacuum switching apparatus and contact assembly therefor
EP2704173A1 (en) Electromagnetic actuator for a medium voltage vacuum circuit breaker
JPS62241222A (en) Vacuum bottle for circuit breaker
CN102292788A (en) Vacuum switch tube
KR20040007319A (en) Vacuum swich gear
KR200482657Y1 (en) Vacuum interrupter
JP3611855B2 (en) Vacuum switch valve
KR101013689B1 (en) Manufacturing method of vacuum sealer and metal seal cup for vacuum interrupter
JP2007305497A (en) Vacuum switch and conditioning method thereof
KR20040010177A (en) Manufacturing method of vacuum switch gear
KR20000071457A (en) Switchgear
CN103329235B (en) Interrupter insert for a circuit breaker device
KR200465840Y1 (en) Vacuum interupter for a vacuum circuit breaker
KR20140004334U (en) Vacuum interrupter
JP2012099310A (en) Vacuum valve
JP2008159386A (en) Vacuum valve

Legal Events

Date Code Title Description
AS Assignment

Owner name: ABB TECHNOLOGY AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENTSCH, DIETMAR;REEL/FRAME:033536/0623

Effective date: 20140613

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: ABB SCHWEIZ AG, SWITZERLAND

Free format text: MERGER;ASSIGNOR:ABB TECHNOLOGY LTD.;REEL/FRAME:040622/0128

Effective date: 20160509

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Expired due to failure to pay maintenance fee

Effective date: 20200426