US20140287268A1 - CoPtCr-BASED BIT PATTERNED MAGNETIC DEVICE - Google Patents

CoPtCr-BASED BIT PATTERNED MAGNETIC DEVICE Download PDF

Info

Publication number
US20140287268A1
US20140287268A1 US14/179,185 US201414179185A US2014287268A1 US 20140287268 A1 US20140287268 A1 US 20140287268A1 US 201414179185 A US201414179185 A US 201414179185A US 2014287268 A1 US2014287268 A1 US 2014287268A1
Authority
US
United States
Prior art keywords
magnetic
approximately
magnetic elements
layer
recording layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/179,185
Inventor
Dieter K. Weller
Hans J. Richter
Samuel D. Harkness, IV
Erol Girt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seagate Technology LLC
Original Assignee
Seagate Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seagate Technology LLC filed Critical Seagate Technology LLC
Priority to US14/179,185 priority Critical patent/US20140287268A1/en
Publication of US20140287268A1 publication Critical patent/US20140287268A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/656Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing Co
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/855Coating only part of a support with a magnetic layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7379Seed layer, e.g. at least one non-magnetic layer is specifically adapted as a seed or seeding layer

Definitions

  • the present invention relates to improved bit-patterned magnetic media (“BPM”) with magnetic layer/underlayer structure providing ultra-high areal recording density, and to methods of fabricating same.
  • BPM bit-patterned magnetic media
  • the invention has particular utility in the manufacture and use of high areal recording density magnetic media, e.g., in hard disk form, suitable for use in computer-related applications.
  • the data/information is stored in a continuous magnetic thin film overlying a substantially rigid, non-magnetic disk.
  • Each bit of data/information is stored by magnetizing a small area of the thin magnetic film using a magnetic transducer (write head) that provides a sufficiently strong magnetic field to effect a selected alignment of the small area (magnetic grain) of the film.
  • the magnetic moment, area, and location of the small area comprise a bit of binary information which must be precisely defined in order to allow a magnetic read head to retrieve the stored data/information.
  • the superparamagnetic effect is a major limiting factor in increasing the areal recording density of continuous film magnetic recording media.
  • Superparamagnetism results from thermal excitations which perturb the magnetization of grains in a ferromagnetic material, resulting in unstable magnetization.
  • the superparamagnetic instabilities become more problematic.
  • the superparamagnetic effect is most evident when the grain volume V is sufficiently small such that the inequality KV/k B T>40 cannot be maintained, where K is the magnetic crystalline anisotropy energy density of the material, k B is Boltzmann's constant, and T is the absolute temperature.
  • thermal energy demagnetizes the individual magnetic grains and the stored data bits are no longer stable. Consequently, as the magnetic grain size is decreased in order to increase the areal recording density, a threshold is reached for a given K and temperature T such that stable data storage is no longer possible.
  • patterned or bit patterned magnetic media have been proposed as a means for overcoming the above-described problem of conventional continuous magnetic media associated with magnetization reversal via the superparamagnetic effect, e.g., as disclosed in U.S. Pat. 5,956,216, the entire disclosure of which is incorporated herein by reference.
  • the term “patterned” media generally refers to magnetic data/information storage and retrieval media wherein a plurality of discrete, independent regions of magnetic material form discrete, independent magnetic elements which function as recording bits are formed on a non-magnetic substrate. Since the regions of ferromagnetic material comprising the magnetic bits or elements are independent of each other, mutual interference between neighboring bits can be minimized. As a consequence, patterned magnetic media are advantageous vis-a-vis continuous magnetic media in reducing recording losses and noises arising from neighboring magnetic bits.
  • each magnetic bit or element has the same size and shape, and is composed of the same magnetic material as the other elements.
  • the elements are arranged in a regular pattern over the substrate surface, with each element having a small size and desired magnetic anisotropy, so that, in the absence of an externally applied magnetic field, the magnetic moments of each discrete magnetic element will aligned along the same magnetic easy axis. Stated differently, the magnetic moment of each discrete magnetic element has only two states: the same in magnitude but aligned in opposite directions.
  • Each discrete magnetic element forms a single magnetic domain or bit and the size, area, and location of each domain is determined during the fabrication process.
  • the direction of the magnetic moment of the single magnetic domain element or bit is flipped along the easy axis, and during reading operation, the direction of the magnetic moment of the single magnetic domain element or bit is sensed.
  • the direction of the magnetic easy axis of each of the magnetic domains, elements, or bits can be parallel or perpendicular to the surface of the domain, element, or bit, corresponding to conventional continuous longitudinal and perpendicular media, respectively
  • patterned media comprised of domains, elements, or bits with perpendicularly oriented magnetic easy axis are advantageous in achieving higher areal recording densities for the reasons given above.
  • Patterned media in disk form offer a number of advantages relative to conventional disk media. Specifically, the writing process is changed, requiring synchronization of the head to the media; this results in much lower noise and lower error rate, thereby allowing much higher areal recording density.
  • the writing process does not define the location, shape, and magnetization value of a bit, but merely flips the magnetization orientation of a patterned single domain magnetic structure. Writing of data can be essentially perfect, even when the transducer head deviates slightly from the intended bit location and partially overlaps neighboring bits, as long as only the magnetization direction of the intended bit is flipped.
  • the writing process must define the location, shape, and magnetization of a bit.
  • patterned media Another advantage of patterned media is that crosstalk between neighboring bits is reduced relative to conventional media, whereby areal recording density is increased. Each individual magnetic element, domain, or bit of a patterned medium can be tracked individually, and reading is less jittery than in conventional disks.
  • bit patterned media BPM
  • bit patterned media BPM
  • the escalating requirements for even higher areal recording densities necessitate further development of reliable, high magnetic performance BPM with optimal magnetic materials and layer structures. Consequently, there exists a clear need for improved bit patterned media with higher areal recording densities than are presently available, and which include magnetic layer structures which provide optimal bit patterned media function in terms of magnetic performance characteristics, stability, and ease of fabrication.
  • An advantage of the present invention is improved bit patterned magnetic recording media.
  • Another advantage of the present invention is improved bit patterned media with improved magnetic recording characteristics and capable of bit densities in the range from about 250 Gbit/in 2 to about 10 Tbit/in 2
  • Still another advantage of the present invention is an improved method of fabricating bit patterned media with improved magnetic recording characteristics and capable of bit densities in the range from about 250 Gbit/in 2 to about 10 Tbit/in 2
  • an improved bit patterned magnetic recording medium comprising:
  • K 1 magnetic anisotropy constant
  • H K 2 K 1 M s up to about 35 kOe
  • XRD X-Ray d
  • the seed layer is lattice matched to and promotes growth of the perpendicular magnetic recording layer with a hexagonal (0001) crystal structure with c-axis perpendicular to a surface thereof and an XRD rocking curve with full width at half maximum (FWHM) of ⁇ 5° or less.
  • the seed layer is from about 5 to about 10 nm thick, and is formed of elemental Ru or an alloy thereof, or of Pt or Pd, or an alloy thereof.
  • the perpendicular magnetic recording layer is from about 5 to about 20 nm thick.
  • the substrate is ferromagnetic and comprises a magnetically soft material, or the substrate is non-magnetic and the layer stack further comprises a layer of magnetically soft material (SUL) between the seed layer and the substrate surface.
  • SUL magnetically soft material
  • the layer stack further comprises a protective overcoat layer over the perpendicular magnetic recording layer; the plurality of spaced apart magnetic elements are arranged in a patterned array at a density in the range from about 250 Gbit/in 2 to about 10 Tbit/in 2 ; each of the magnetic elements is cylindrically shaped and of equal height, cubic shaped, spherically shaped, or shaped as an elongated parallelepiped; and the medium further comprises:
  • Another aspect of the present invention is an improved method of fabricating a bit patterned magnetic recording medium, comprising steps of:
  • step (b) comprises forming the seed layer of elemental Ru or an alloy thereof, or Pt or Pd, or an alloy thereof, which seed layer is lattice matched to and promotes growth of the perpendicular magnetic recording layer with a hexagonal (0001) crystal structure with c-axis perpendicular to a surface thereof and an XRD rocking curve with full width at half maximum (FWHM) of ⁇ 5° or less.
  • FWHM full width at half maximum
  • step (b) comprises forming a Co 1-x-y Pt x Cr y alloy material wherein 0.19 ⁇ x ⁇ 0.33, 0.05 ⁇ y ⁇ 0.15
  • the Co 1-x-y Pt x Cr y alloy material has a high perpendicular magnetic anisotropy K of at least about 3 ⁇ 10 6 erg/cm 3 .
  • step (a) comprises providing a ferromagnetic substrate comprised of a magnetically soft material or comprises providing a non-magnetic substrate with a layer of a magnetically soft material (SUL) on a surface thereof and underlying the seed layer formed in step (b); and the method further comprises a step of:
  • step (b) comprises forming the plurality of spaced apart magnetic elements arranged in a patterned array on the substrate surface at a density in the range from about 250 Gbit/in 2 to about 10 Tbit/in 2 , each of the magnetic elements being cylindrically shaped and of equal height, cubic shaped, spherically shaped, or shaped as an elongated parallelepiped.
  • FIG. 1 is a simplified, schematic perspective view of a portion of a bit patterned magnetic recording medium according to an illustrative, but nonlimitative, embodiment of the present invention
  • FIG. 2 is a simplified, schematic cross-sectional view of a bit or element according to an illustrative, but non-limitative, embodiment of the present invention.
  • FIG. 3 is a graph for illustrating variation of magnetic anisotropy of Co 1-x-y Pt x Cr y alloy materials according to the invention as a function of Pt content.
  • the present invention has been made with the aim of providing further improvements in bit patterned magnetic recording media for satisfying the continuously escalating requirements for even higher areal recording densities (e.g., on the order of Tbit/in 2 ) in computer-related data/information storage and retrieval applications.
  • areal recording densities e.g., on the order of Tbit/in 2
  • bit patterned magnetic recording media the continuous magnetic recording layer or film of conventional media is replaced with a plurality of discrete elements (or “bits”), each comprising at least one magnetic recording layer.
  • Each discrete magnetic element or bit is separated from neighboring elements or bits by a non-magnetic material, the interelement spacing being sufficiently large to eliminate or reduce exchange interactions between the elements.
  • Each element or bit is of the same size and shape, comprised of the same layer structure and materials, and arrayed in a regular pattern on the surface of a suitable substrate.
  • Each element or bit is of small physical size, with a preferred shape anisotropy, such that, in the absence of an applied magnetic field, the magnetic moments of each element or bit are aligned along a specific axis of the element or bit.
  • the magnetic moments of each of the elements or bits exist in only two states which are equal in magnitude but aligned in opposite directions.
  • each element or bit constitutes a single magnetic domain, the size, area, and location of each element or bit predetermined in the fabrication process.
  • a writing operation of bit patterned media involves “flipping” the direction of the magnetic moment of the single magnetic domain.
  • a reading operation of bit patterned media involves sensing the direction of the magnetic moment of the single magnetic domain.
  • the “easy” axis of the direction of the magnetic moment of the single magnetic domain can be parallel to the surface of the medium, as in “longitudinal” recording, or perpendicular to the surface of the medium, as in “perpendicular” recording.
  • the present invention is primarily directed toward the latter type (i.e., perpendicular) type of recording.
  • medium 10 comprises a substrate 14 , a regularly arrayed plurality of cylindrical column-shaped discrete magnetic elements or bits 16 (sometimes referred to as “dots”), each forming a single magnetic domain, a non-magnetic material 18 (e.g., an oxide, such as AlO x , SiO x , WO 3 , Nb 2 O 5 , TiO 2 , etc., or a nitride, such as SiN x , AlN x , TiN x , etc.) filling the spaces between neighboring elements or bits 16 , and a protective overcoat layer (not shown in the figure for illustrative clarity) on the upper surface of the medium.
  • a non-magnetic material 18 e.g., an oxide, such as AlO x , SiO x , WO 3 , Nb 2 O 5 , TiO 2 , etc.
  • a nitride such as SiN x , AlN x , Ti
  • the cylindrical columnar-shaped elements or bits have magnetization easy axis vectors of equal magnitude extending in opposing directions along the long axis of each element or bit, which vectors are perpendicular to surface 17 of medium 10 .
  • elements or bits 16 are shown as cylindrical column-shaped, bit patterned media such as medium 10 are not limited to the exemplary arrangement shown in FIG. 1 and may comprise elements or bits having a variety of shapes, configurations, areal densities, and array patterns.
  • elements or bits 16 may be being cylindrically shaped and of equal height (as in the illustrated embodiment), cubic shaped, spherically shaped, or in the form of an elongated parallelepiped, and may be arrayed in linear row and column, hexagonal close-packing, etc., patterns.
  • bit densities may vary widely, and range from about 250 Gbit/in 2 to about 10 Tbit/in 2 .
  • substrate 14 may comprise a magnetically soft material, or the substrate may comprise a non-magnetic material with a layer of magnetically soft material 15 (“SUL”) formed on the surface 14 A of the substrate over which the magnetic elements or bits 16 are formed.
  • SUL magnetically soft material
  • Typical dimensions of cylindrical columnar shaped magnetic elements or bits 16 with perpendicular magnetic recording layers include lengths from about 5 to about 20 nm and diameters from about 2.5 to about 5 nm.
  • each cylindrical column-shaped element 16 includes a layer stack 20 .
  • the latter includes, in overlying order, a respective portion of substrate 14 comprised of a magnetically soft material (or a non-magnetic material with SUL 15 formed thereon), a seed layer 19 , and a magnetically hard perpendicular recording layer 21 .
  • a portion of a protective overcoat layer typically comprising a carbon-based material such as diamond-like carbon (“DLC”) overlies the uppermost surface of the medium (which layer is not shown in the figure for illustrative clarity).
  • DLC diamond-like carbon
  • Suitable magnetically soft, low coercivity materials for use as substrate 14 include, but are not limited to: Ni, Co, Fe, a Fe-containing alloy such as NiFe (Permalloy), FeN, FeSiAl, FeSiAlN, FeTaC, a Co-containing alloy such as CoZr, CoZrCr, CoZrTa, CoZrNb, or a CoFe containing alloy such as CoFeZrNb, CoFeZrTa, CoFe, FeCoB, FeCoCrB, and FeCoC.
  • NiFe Permalloy
  • FeN FeSiAl
  • FeSiAlN FeTaC
  • Co-containing alloy such as CoZr, CoZrCr, CoZrTa, CoZrNb
  • CoFe containing alloy such as CoFeZrNb, CoFeZrTa, CoFe, FeCoB, FeCoCrB, and FeCoC.
  • substrate 14 may be formed of a non-magnetic material such as, but not limited to: Al, Al—Mg alloys, other Al-based alloys, NiP-plated Al or Al-based alloys, glass, ceramics, glass-ceramics, polymeric materials, and composites or laminates of these materials, with an about 50 to about 300 run thick layer of any of the aforementioned magnetically soft materials formed thereon as a SUL 15 .
  • a non-magnetic material such as, but not limited to: Al, Al—Mg alloys, other Al-based alloys, NiP-plated Al or Al-based alloys, glass, ceramics, glass-ceramics, polymeric materials, and composites or laminates of these materials, with an about 50 to about 300 run thick layer of any of the aforementioned magnetically soft materials formed thereon as a SUL 15 .
  • the seed layer 19 is from about 5 to about 10 nm thick and typically formed of elemental Ru or an alloy thereof (e.g., RuCr), or Pt or Pd, or an alloy thereof. Seed layer 19 is lattice matched to and promotes growth of the perpendicular magnetic recording layer with a hexagonal (0001) crystal structure with c-axis perpendicular to a surface thereof and an X-ray diffraction (XRD) rocking curve with full width at half maximum (FWHM) of ⁇ 5° or less.
  • XRD X-ray diffraction
  • seed layer 19 While a number of materials forming layers with hcp or fcc crystallographic structure may be utilized as the seed layer 19 , e.g., CoCr, CoCrRu, CoCrPt, CoCrTa, Cu, etc., Ru is advantageously utilized for seed layer 19 because it forms smooth, continuous, hexagonal films on the abovementioned SUL materials, e.g., FeCoB, when deposited thereon (as by sputtering) in thicknesses of about 10 nm or less.
  • SUL materials e.g., FeCoB
  • Ru has a good crystal lattice match to Co and CoPt magnetic alloys, and its films are very well-textured, as, e.g., characterized by (XRD) rocking curve with full width at half maximum (FWHM) of ⁇ 5° or less.
  • Ru films advantageously have a (0001) crystal orientation with the c-axis of the hexagonal unit cell directed perpendicular to the film plane.
  • CoPt-based magnetically hard recording layers epitaxially formed thereon e.g., as by sputtering utilizing a target with alloy composition corresponding to the desired layer composition
  • Alternative materials for use as seed layer 19 include (111) face-centered materials such as Pt, Pd, and alloys thereof.
  • At least one magnetically hard perpendicular recording layer 21 comprising a Co 1-x-y Pt x Cr y alloy material.
  • XRD X-Ray diffraction
  • the choice/selection of magnetic parameters depends upon the bit density of the media to be fabricated.
  • K and M s are relatively lower, e.g., 4 ⁇ 10 6 erg/cm 3 and 800-1000 emu/cm 3 , respectively; whereas, for media with higher bit densities on the order of about 10 Tbit/in 2 , K and M s are relatively higher, e.g., 1-2 ⁇ 10 2 erg/cm 3 and 1000-1200 emu/cm 3 , respectively.
  • FIG. 3 shown therein is a graph illustrating the variation of magnetic anisotropy K of Co 1-x-y Pt x Cr y alloy materials according to the invention as a function of Pt and Cr content, wherein Cr is added to CoPt alloys for increasing corrosion resistance of the films.
  • addition of Cr degrades the magnetic anisotropy K in proportion to its content, with ⁇ 15 at. % Cr considered as an upper practical limit of Cr content.
  • the data of FIG. 3 allow for determination of optimal Co 1-x-y Pt x Cr y alloy compositions for obtaining desirably high values of magnetic anisotropy K.
  • optimally high values of magnetic anisotropy K for use m perpendicular bit patterned media are obtained when 0.05 ⁇ x ⁇ 0.35 and 0 ⁇ y ⁇ 0.15.
  • each constituent layer of the layer stacks 20 comprising the magnetic elements or bits 16 , as well as the protective overcoat layer may be deposited or otherwise formed by any suitable technique utilized for formation of thin film layers, e.g., any suitable physical vapor deposition (“PVD”) technique, including, but not limited to, sputtering, vacuum evaporation, ion plating, cathodic arc deposition (“CAD”), etc., or by any combination of various PVD techniques.
  • PVD physical vapor deposition
  • a lubricant topcoat layer may be provided over the upper surface of the protective overcoat layer in any convenient manner, e.g., as by dipping the thus-formed medium into a liquid bath containing a solution of the lubricant compound.
  • medium 10 with discrete magnetic elements or bits 16 may be formed in any conventional manner, e.g., as described in U.S. Pat. No. 5,820,769, the entire disclosure of which is incorporated herein by reference.
  • Such methods include initial deposition of a layer stack 20 of desired structure or design, such as in the embodiment illustrated in FIG. 2 , which layer stack extends continuously over the surface of substrate 14 , followed by patterning according to conventional techniques, including, for example, physical and/or chemical deposition and materials removal methodologies including photolithographic masking, etching, etc., or by photolithographic masking followed by selective deposition of materials comprising the layer stack 20 through apertures formed in the masking layer.
  • the present invention is not limited to formation of circular, columnar shaped discrete magnetic elements 16 arrayed in a hexagonal close packed pattern as in FIG. 1 ; rather, the invention is broadly applicable to all manner of shapes and array patterns of discrete magnetic elements or bits.
  • the present invention advantageously provides improved performance, high areal density, bit patterned magnetic media which media provide a wide range of areal recording densities extending from the Gbit/in 2 range to the Tbit/in 2 range by virtue of utilization of the improved Co 1-x-y Pt x Cr y alloy materials described herein.
  • the media of the present invention enjoy particular utility in ultra-high recording density systems for computer-related applications.
  • the inventive media can be fabricated by means of conventional media manufacturing technologies, as indicated above.

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

Provided herein is an apparatus, including a plurality of spaced apart perpendicular magnetic elements. Each of the magnetic elements includes a respective discrete magnetic domain and each of the magnetic elements includes a magnetic recording layer comprising a Co1-x-yPtxCry alloy material, where 0.05≦x≦0.35 and 0≦y≦0.15.

Description

    RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 11/525,958, titled “CoPtCr-based bit patterned magnetic media”, filed 25 Sep. 2006.
  • FIELD OF THE INVENTION
  • The present invention relates to improved bit-patterned magnetic media (“BPM”) with magnetic layer/underlayer structure providing ultra-high areal recording density, and to methods of fabricating same. The invention has particular utility in the manufacture and use of high areal recording density magnetic media, e.g., in hard disk form, suitable for use in computer-related applications.
  • BACKGROUND OF THE INVENTION
  • Designers, manufacturers, and users of electronic computers and computing systems require reliable and efficient equipment for storage and retrieval of information in digital form. Conventional storage systems, such as magnetic disk drives, are typically utilized for this purpose and are well known in the art. However, the amount of information that is digitally stored continually increases, and designers and manufacturers of magnetic recording media work to increase the storage capacity of magnetic disks.
  • In conventional magnetic disk data/information storage, the data/information is stored in a continuous magnetic thin film overlying a substantially rigid, non-magnetic disk. Each bit of data/information is stored by magnetizing a small area of the thin magnetic film using a magnetic transducer (write head) that provides a sufficiently strong magnetic field to effect a selected alignment of the small area (magnetic grain) of the film. The magnetic moment, area, and location of the small area comprise a bit of binary information which must be precisely defined in order to allow a magnetic read head to retrieve the stored data/information.
  • Such conventional magnetic disk storage media incur drawbacks and disadvantages which adversely affect realization of high areal density data/information storage, as follows:
  • (1) the boundaries between adjacent pairs of bits tend to be ragged in continuous magnetic films, resulting in noise generation during reading; and
  • (2) the requirement for increased areal recording density has necessitated a corresponding decrease in recording bit size or area. Consequently, grain sizes of continuous film media have become extremely minute, e.g., on the order of nanometers (nm). In order to obtain a sufficient output signal from such minute bits, the saturation magnetization (M5) and thickness of the film must be as large as possible. However, the magnetization of such minute bits is extremely small, resulting in a loss of stored information due to magnetization reversal by “thermal fluctuation”, also known as the “superparamagnetic effect”.
  • Regarding item (2), it is further noted that for longitudinal type continuous magnetic media, wherein the magnetic easy axis is oriented parallel to the film plane (i.e., surface), magnetization reversal by the superparamagnetic effect may occur even with relatively large magnetic particles or grains, thereby limiting future increases in areal recording density to levels necessitated by current and projected computer-related applications. On the other hand, for perpendicular type continuous magnetic media, wherein the magnetic easy axis is oriented perpendicular to the film plane (i.e., surface), growth of the magnetic particles or grains in the film thickness direction increases the volume of magnetization of the particles or grains while maintaining a small cross-sectional area (as measured in the film plane). As a consequence, onset of the superparamagnetic effect can be suppressed for very small particles or grains of minute width. However, further decrease in grain width in perpendicular media necessitated by increasing requirements for areal recording density will inevitably result in onset of the superparamagnetic effect even for such type media.
  • The superparamagnetic effect is a major limiting factor in increasing the areal recording density of continuous film magnetic recording media. Superparamagnetism results from thermal excitations which perturb the magnetization of grains in a ferromagnetic material, resulting in unstable magnetization. As the grain size of magnetic media is reduced to achieve higher areal recording density, the superparamagnetic instabilities become more problematic. The superparamagnetic effect is most evident when the grain volume V is sufficiently small such that the inequality KV/kBT>40 cannot be maintained, where K is the magnetic crystalline anisotropy energy density of the material, kB is Boltzmann's constant, and T is the absolute temperature. When this inequality is not satisfied, thermal energy demagnetizes the individual magnetic grains and the stored data bits are no longer stable. Consequently, as the magnetic grain size is decreased in order to increase the areal recording density, a threshold is reached for a given K and temperature T such that stable data storage is no longer possible.
  • So-called “patterned” or “bit patterned” magnetic media (“BPM”) have been proposed as a means for overcoming the above-described problem of conventional continuous magnetic media associated with magnetization reversal via the superparamagnetic effect, e.g., as disclosed in U.S. Pat. 5,956,216, the entire disclosure of which is incorporated herein by reference. The term “patterned” media generally refers to magnetic data/information storage and retrieval media wherein a plurality of discrete, independent regions of magnetic material form discrete, independent magnetic elements which function as recording bits are formed on a non-magnetic substrate. Since the regions of ferromagnetic material comprising the magnetic bits or elements are independent of each other, mutual interference between neighboring bits can be minimized. As a consequence, patterned magnetic media are advantageous vis-a-vis continuous magnetic media in reducing recording losses and noises arising from neighboring magnetic bits.
  • Generally, each magnetic bit or element has the same size and shape, and is composed of the same magnetic material as the other elements. The elements are arranged in a regular pattern over the substrate surface, with each element having a small size and desired magnetic anisotropy, so that, in the absence of an externally applied magnetic field, the magnetic moments of each discrete magnetic element will aligned along the same magnetic easy axis. Stated differently, the magnetic moment of each discrete magnetic element has only two states: the same in magnitude but aligned in opposite directions. Each discrete magnetic element forms a single magnetic domain or bit and the size, area, and location of each domain is determined during the fabrication process.
  • During writing operation of patterned media, the direction of the magnetic moment of the single magnetic domain element or bit is flipped along the easy axis, and during reading operation, the direction of the magnetic moment of the single magnetic domain element or bit is sensed. While the direction of the magnetic easy axis of each of the magnetic domains, elements, or bits can be parallel or perpendicular to the surface of the domain, element, or bit, corresponding to conventional continuous longitudinal and perpendicular media, respectively, patterned media comprised of domains, elements, or bits with perpendicularly oriented magnetic easy axis are advantageous in achieving higher areal recording densities for the reasons given above.
  • Patterned media in disk form offer a number of advantages relative to conventional disk media. Specifically, the writing process is changed, requiring synchronization of the head to the media; this results in much lower noise and lower error rate, thereby allowing much higher areal recording density. In patterned disk media, the writing process does not define the location, shape, and magnetization value of a bit, but merely flips the magnetization orientation of a patterned single domain magnetic structure. Writing of data can be essentially perfect, even when the transducer head deviates slightly from the intended bit location and partially overlaps neighboring bits, as long as only the magnetization direction of the intended bit is flipped. By contrast, in conventional magnetic disk media, the writing process must define the location, shape, and magnetization of a bit. Therefore, with such conventional disk media, if the transducer head deviates from the intended location, the head will write to part of the intended bit and to part of the neighboring bits. Another advantage of patterned media is that crosstalk between neighboring bits is reduced relative to conventional media, whereby areal recording density is increased. Each individual magnetic element, domain, or bit of a patterned medium can be tracked individually, and reading is less jittery than in conventional disks.
  • Notwithstanding the substantial increase in recording/data storage performance capability afforded by bit patterned media (BPM) vis-a-vis conventional continuous film-based media, the escalating requirements for even higher areal recording densities necessitate further development of reliable, high magnetic performance BPM with optimal magnetic materials and layer structures. Consequently, there exists a clear need for improved bit patterned media with higher areal recording densities than are presently available, and which include magnetic layer structures which provide optimal bit patterned media function in terms of magnetic performance characteristics, stability, and ease of fabrication.
  • DISCLOSURE OF THE INVENTION
  • An advantage of the present invention is improved bit patterned magnetic recording media.
  • Another advantage of the present invention is improved bit patterned media with improved magnetic recording characteristics and capable of bit densities in the range from about 250 Gbit/in2 to about 10 Tbit/in2
  • Still another advantage of the present invention is an improved method of fabricating bit patterned media with improved magnetic recording characteristics and capable of bit densities in the range from about 250 Gbit/in2 to about 10 Tbit/in2
  • Additional advantages and other aspects and features of the present invention will be set forth in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from the practice of the present invention. The advantages of the present invention may be realized and obtained as particularly pointed out in the appended claims.
  • According to an aspect of the present invention, the foregoing and other advantages are obtained in part by an improved bit patterned magnetic recording medium, comprising:
  • (a) a substrate having a surface; and
  • (b) a plurality of spaced apart magnetic elements on the surface, each of the elements constituting a discrete magnetic domain or bit of the same structure and comprised of a stack of thin film layers, said stack including, in order from the substrate surface:
      • (i) a seed layer; and
      • (ii) a perpendicular magnetic recording layer in contact with a surface of the seed layer and comprising a Co1-x-yPtxCry alloy material, where 0.05≦x≦0.35 and 0≦y≦0.15.
  • According to preferred embodiments of the present invention, the Co1-x-yPtxCry alloy material has a first order magnetic anisotropy constant K1 up to about 2×107 erg/cm3, a saturation magnetization Ms up to about 1200 emu/cm3 an anisotropy field HK=2 K1Ms up to about 35 kOe, a hexagonal (0001) crystal structure with c-axis perpendicular to a surface thereof and an X-Ray diffraction (XRD) rocking curve with a full width at half maximum (FWHM) of ˜5° or less.
  • In accordance with further preferred embodiments of the present invention, the seed layer is lattice matched to and promotes growth of the perpendicular magnetic recording layer with a hexagonal (0001) crystal structure with c-axis perpendicular to a surface thereof and an XRD rocking curve with full width at half maximum (FWHM) of ˜5° or less. Preferably, the seed layer is from about 5 to about 10 nm thick, and is formed of elemental Ru or an alloy thereof, or of Pt or Pd, or an alloy thereof.
  • Preferred embodiments of the invention include those wherein 0.23≦x≦0.33, y=0, and the Co1-x-yPtxCry alloy material is a Co1-xPtx alloy material with a high perpendicular magnetic anisotropy K of at least about 1.1×107 erg/cm3. Further embodiments of the invention include those wherein x=0.25 and said Co1-xPtx alloy material is Co3Pt, and wherein 0.19≦x≦0.33, 0.05≦y≦0.15, and the Co1-x-yPtxCry alloy material has a high perpendicular magnetic anisotropy K of at least about 3×106 erg/cm3.
  • Preferably, the perpendicular magnetic recording layer is from about 5 to about 20 nm thick.
  • According to preferred embodiments of the present invention, the substrate is ferromagnetic and comprises a magnetically soft material, or the substrate is non-magnetic and the layer stack further comprises a layer of magnetically soft material (SUL) between the seed layer and the substrate surface.
  • According to still further preferred embodiments of the present invention, the layer stack further comprises a protective overcoat layer over the perpendicular magnetic recording layer; the plurality of spaced apart magnetic elements are arranged in a patterned array at a density in the range from about 250 Gbit/in2 to about 10 Tbit/in2; each of the magnetic elements is cylindrically shaped and of equal height, cubic shaped, spherically shaped, or shaped as an elongated parallelepiped; and the medium further comprises:
  • (c) a non-magnetic material filling spaces between neighboring magnetic elements.
  • Another aspect of the present invention is an improved method of fabricating a bit patterned magnetic recording medium, comprising steps of:
  • (a) providing a substrate having a surface; and
  • (b) forming a plurality of spaced apart magnetic elements on the surface, each of the elements constituting a discrete magnetic domain or bit of the same structure and comprised of a stack of thin film layers, the stack including, in order from the substrate surface:
      • (i) a seed layer; and
      • (ii) a perpendicular magnetic recording layer in contact with a surface of the seed layer and comprising a layer of a Co1-x-yPtxCry alloy material, where 0.05≦x≦0.35 and 0≦y≦0.15, the layer of Co1-x-yPtxCry alloy material having a first order magnetic anisotropy constant K1 up to about 2×107 erg/cm3, a saturation magnetization Ms up to about 1200 emu/cm3, an anisotropy field HK=2K1Ms up to about 35 kOe, a hexagonal (0001) crystal structure with c-axis perpendicular to a surface thereof and an X-Ray diffraction (XRD) rocking curve with a full width at half maximum (FWHM) of ˜5° or less.
  • According to preferred embodiments of the present invention, step (b) comprises forming the seed layer of elemental Ru or an alloy thereof, or Pt or Pd, or an alloy thereof, which seed layer is lattice matched to and promotes growth of the perpendicular magnetic recording layer with a hexagonal (0001) crystal structure with c-axis perpendicular to a surface thereof and an XRD rocking curve with full width at half maximum (FWHM) of ˜5° or less.
  • Further preferred embodiments of the present invention include those wherein step (b) comprises forming a Co1-x-yPtxCry alloy material wherein 0.23≦x≦0.33, y=0, and the Co1-x-yPtxCry alloy material has a high perpendicular magnetic anisotropy K of at least about 1.1×107 erg/cm3, and wherein step (b) comprises forming a Co1-x-yPtxCry alloy material wherein 0.19≦x≦0.33, 0.05≦y≦0.15, and the Co1-x-yPtxCry alloy material has a high perpendicular magnetic anisotropy K of at least about 3×106 erg/cm3.
  • In accordance with still further preferred embodiments of the invention, step (a) comprises providing a ferromagnetic substrate comprised of a magnetically soft material or comprises providing a non-magnetic substrate with a layer of a magnetically soft material (SUL) on a surface thereof and underlying the seed layer formed in step (b); and the method further comprises a step of:
  • (c) forming a protective overcoat layer over the perpendicular magnetic recording layer.
  • Still further preferred embodiments of the present invention include those wherein step (b) comprises forming the plurality of spaced apart magnetic elements arranged in a patterned array on the substrate surface at a density in the range from about 250 Gbit/in2 to about 10 Tbit/in2, each of the magnetic elements being cylindrically shaped and of equal height, cubic shaped, spherically shaped, or shaped as an elongated parallelepiped.
  • Additional advantages and aspects of the present invention will become readily apparent to those skilled in the art from the following detailed description, wherein embodiments of the present invention are shown and described, simply by way of illustration of the best mode contemplated for practicing the present invention. As will be described, the present invention is capable of other and different embodiments, and its several details are susceptible of modification in various obvious respects. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as limitative.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The following detailed description of the embodiments of the present invention can best be understood when read in conjunction with the following drawings, in which the features are not necessarily drawn to scale but rather are drawn as to best illustrate the pertinent features and the same reference numerals are employed throughout for designating similar features, wherein:
  • FIG. 1 is a simplified, schematic perspective view of a portion of a bit patterned magnetic recording medium according to an illustrative, but nonlimitative, embodiment of the present invention;
  • FIG. 2 is a simplified, schematic cross-sectional view of a bit or element according to an illustrative, but non-limitative, embodiment of the present invention; and
  • FIG. 3 is a graph for illustrating variation of magnetic anisotropy of Co1-x-yPtxCry alloy materials according to the invention as a function of Pt content.
  • DESCRIPTION OF THE INVENTION
  • The present invention has been made with the aim of providing further improvements in bit patterned magnetic recording media for satisfying the continuously escalating requirements for even higher areal recording densities (e.g., on the order of Tbit/in2) in computer-related data/information storage and retrieval applications. As indicated supra, there exists a clear need for improved bit patterned media with higher areal recording densities than are presently available, and which include magnetic recording layer materials and structures which provide optimal bit patterned media function in terms of magnetic performance characteristics, stability, and ease of fabrication.
  • As indicated above, in bit patterned magnetic recording media (“BPM”), the continuous magnetic recording layer or film of conventional media is replaced with a plurality of discrete elements (or “bits”), each comprising at least one magnetic recording layer. Each discrete magnetic element or bit is separated from neighboring elements or bits by a non-magnetic material, the interelement spacing being sufficiently large to eliminate or reduce exchange interactions between the elements. Each element or bit is of the same size and shape, comprised of the same layer structure and materials, and arrayed in a regular pattern on the surface of a suitable substrate. Each element or bit is of small physical size, with a preferred shape anisotropy, such that, in the absence of an applied magnetic field, the magnetic moments of each element or bit are aligned along a specific axis of the element or bit. As a consequence, the magnetic moments of each of the elements or bits exist in only two states which are equal in magnitude but aligned in opposite directions. Notwithstanding presence of multiple magnetic grains in each discrete element or bit, each element or bit constitutes a single magnetic domain, the size, area, and location of each element or bit predetermined in the fabrication process. A writing operation of bit patterned media involves “flipping” the direction of the magnetic moment of the single magnetic domain. A reading operation of bit patterned media involves sensing the direction of the magnetic moment of the single magnetic domain. The “easy” axis of the direction of the magnetic moment of the single magnetic domain can be parallel to the surface of the medium, as in “longitudinal” recording, or perpendicular to the surface of the medium, as in “perpendicular” recording. The present invention is primarily directed toward the latter type (i.e., perpendicular) type of recording.
  • Referring to FIG. 1, shown therein is a simplified, schematic perspective view of a portion of a bit patterned perpendicular magnetic recording medium 10 according to an illustrative, but non-limitative, embodiment of the present invention. As illustrated, medium 10 comprises a substrate 14, a regularly arrayed plurality of cylindrical column-shaped discrete magnetic elements or bits 16 (sometimes referred to as “dots”), each forming a single magnetic domain, a non-magnetic material 18 (e.g., an oxide, such as AlOx, SiOx, WO3, Nb2O5, TiO2, etc., or a nitride, such as SiNx, AlNx, TiNx, etc.) filling the spaces between neighboring elements or bits 16, and a protective overcoat layer (not shown in the figure for illustrative clarity) on the upper surface of the medium. As shown by the vertically directed arrows in the figure, the cylindrical columnar-shaped elements or bits have magnetization easy axis vectors of equal magnitude extending in opposing directions along the long axis of each element or bit, which vectors are perpendicular to surface 17 of medium 10.
  • While in the illustrated embodiment, the elements or bits 16 are shown as cylindrical column-shaped, bit patterned media such as medium 10 are not limited to the exemplary arrangement shown in FIG. 1 and may comprise elements or bits having a variety of shapes, configurations, areal densities, and array patterns. For example, elements or bits 16 may be being cylindrically shaped and of equal height (as in the illustrated embodiment), cubic shaped, spherically shaped, or in the form of an elongated parallelepiped, and may be arrayed in linear row and column, hexagonal close-packing, etc., patterns. According to the present invention, bit densities may vary widely, and range from about 250 Gbit/in2 to about 10 Tbit/in2.
  • Further, in the illustrated embodiment wherein medium 10 is a perpendicular medium comprising discrete magnetic elements or bits 16 in the form of cylindrically shaped columns with magnetization easy axis vectors extending in opposing directions perpendicular to the surface 17 of medium 10, substrate 14 may comprise a magnetically soft material, or the substrate may comprise a non-magnetic material with a layer of magnetically soft material 15 (“SUL”) formed on the surface 14A of the substrate over which the magnetic elements or bits 16 are formed. Typical dimensions of cylindrical columnar shaped magnetic elements or bits 16 with perpendicular magnetic recording layers include lengths from about 5 to about 20 nm and diameters from about 2.5 to about 5 nm.
  • Adverting to FIG. 2, shown therein is a simplified, schematic cross-sectional view of a bit or element 16 according to an illustrative, but nonlimitative, embodiment of the present invention. As illustrated, each cylindrical column-shaped element 16 includes a layer stack 20. The latter includes, in overlying order, a respective portion of substrate 14 comprised of a magnetically soft material (or a non-magnetic material with SUL 15 formed thereon), a seed layer 19, and a magnetically hard perpendicular recording layer 21. A portion of a protective overcoat layer, typically comprising a carbon-based material such as diamond-like carbon (“DLC”) overlies the uppermost surface of the medium (which layer is not shown in the figure for illustrative clarity).
  • The thickness of substrate 14 is not critical; however, in the case of magnetic recording media for use in hard disk applications, substrate 14 must be of a thickness to provide the necessary rigidity. Suitable magnetically soft, low coercivity materials for use as substrate 14 include, but are not limited to: Ni, Co, Fe, a Fe-containing alloy such as NiFe (Permalloy), FeN, FeSiAl, FeSiAlN, FeTaC, a Co-containing alloy such as CoZr, CoZrCr, CoZrTa, CoZrNb, or a CoFe containing alloy such as CoFeZrNb, CoFeZrTa, CoFe, FeCoB, FeCoCrB, and FeCoC. Alternatively, substrate 14 may be formed of a non-magnetic material such as, but not limited to: Al, Al—Mg alloys, other Al-based alloys, NiP-plated Al or Al-based alloys, glass, ceramics, glass-ceramics, polymeric materials, and composites or laminates of these materials, with an about 50 to about 300 run thick layer of any of the aforementioned magnetically soft materials formed thereon as a SUL 15.
  • With continued reference to FIG. 2, according to the invention, the seed layer 19 is from about 5 to about 10 nm thick and typically formed of elemental Ru or an alloy thereof (e.g., RuCr), or Pt or Pd, or an alloy thereof. Seed layer 19 is lattice matched to and promotes growth of the perpendicular magnetic recording layer with a hexagonal (0001) crystal structure with c-axis perpendicular to a surface thereof and an X-ray diffraction (XRD) rocking curve with full width at half maximum (FWHM) of ˜5° or less.
  • While a number of materials forming layers with hcp or fcc crystallographic structure may be utilized as the seed layer 19, e.g., CoCr, CoCrRu, CoCrPt, CoCrTa, Cu, etc., Ru is advantageously utilized for seed layer 19 because it forms smooth, continuous, hexagonal films on the abovementioned SUL materials, e.g., FeCoB, when deposited thereon (as by sputtering) in thicknesses of about 10 nm or less. Further, Ru has a good crystal lattice match to Co and CoPt magnetic alloys, and its films are very well-textured, as, e.g., characterized by (XRD) rocking curve with full width at half maximum (FWHM) of ˜5° or less. Finally, Ru films advantageously have a (0001) crystal orientation with the c-axis of the hexagonal unit cell directed perpendicular to the film plane. CoPt-based magnetically hard recording layers epitaxially formed thereon (e.g., as by sputtering utilizing a target with alloy composition corresponding to the desired layer composition) assume the orientation of the underlying Ru seed layer with the low FWHM angle described supra, whereby perpendicularly anisotropic magnetically hard recording layers are formed. Alternative materials for use as seed layer 19 include (111) face-centered materials such as Pt, Pd, and alloys thereof.
  • Overlying and in contact with the surface of seed layer 19 is at least one magnetically hard perpendicular recording layer 21 comprising a Co1-x-yPtxCry alloy material. According to the present invention, layer 21 is from about 5 to about 20 nm thick and the Co1-x-yPtxCry alloy material has a first order magnetic anisotropy constant K1 up to about 2×102 erg/cm3, a saturation magnetization Ms up to about 1100 emu/cm3, an anisotropy field HK=2K1/Ms up to about 35 kOe, a hexagonal (0001) crystal structure with c-axis perpendicular to a surface thereof and an X-Ray diffraction (XRD) rocking curve with a full width at half maximum (FWHM) of ˜5° or less.
  • According to the invention, the choice/selection of magnetic parameters, such as K and Ms, depends upon the bit density of the media to be fabricated. By way of illustration, but not limitation, for media with lower bit densities on the order of about 250 Gb/in2, K and Ms are relatively lower, e.g., 4×106 erg/cm3 and 800-1000 emu/cm3, respectively; whereas, for media with higher bit densities on the order of about 10 Tbit/in2, K and Ms are relatively higher, e.g., 1-2×102 erg/cm3 and 1000-1200 emu/cm3, respectively.
  • Referring to FIG. 3, shown therein is a graph illustrating the variation of magnetic anisotropy K of Co1-x-yPtxCry alloy materials according to the invention as a function of Pt and Cr content, wherein Cr is added to CoPt alloys for increasing corrosion resistance of the films. As may be evident from FIG. 3, addition of Cr degrades the magnetic anisotropy K in proportion to its content, with ˜15 at. % Cr considered as an upper practical limit of Cr content. However, the data of FIG. 3 allow for determination of optimal Co1-x-yPtxCry alloy compositions for obtaining desirably high values of magnetic anisotropy K. Specifically, optimally high values of magnetic anisotropy K for use m perpendicular bit patterned media are obtained when 0.05≦x≦0.35 and 0≦y≦0.15. Other preferred materials according to the present invention for use in perpendicular bit patterned media include Co1-x-yPtxCry alloy materials wherein 0.23≦x≦0.33, y=0, which Co1-xPtx (noting y=0) alloys have a high perpendicular magnetic anisotropy K of at least about 1.1×107 erg/cm3, and Co1-x-yPtxCry alloy materials wherein 0.19≦x≦0.33, 0.05≦y≦0.1 5, which Co1-x-yPtxCry alloys have a high perpendicular magnetic anisotropy K of at least about 3×106 erg/cm3
  • According to the invention, each constituent layer of the layer stacks 20 comprising the magnetic elements or bits 16, as well as the protective overcoat layer, may be deposited or otherwise formed by any suitable technique utilized for formation of thin film layers, e.g., any suitable physical vapor deposition (“PVD”) technique, including, but not limited to, sputtering, vacuum evaporation, ion plating, cathodic arc deposition (“CAD”), etc., or by any combination of various PVD techniques. A lubricant topcoat layer may be provided over the upper surface of the protective overcoat layer in any convenient manner, e.g., as by dipping the thus-formed medium into a liquid bath containing a solution of the lubricant compound.
  • Further according to the invention, medium 10 with discrete magnetic elements or bits 16 may be formed in any conventional manner, e.g., as described in U.S. Pat. No. 5,820,769, the entire disclosure of which is incorporated herein by reference. Such methods include initial deposition of a layer stack 20 of desired structure or design, such as in the embodiment illustrated in FIG. 2, which layer stack extends continuously over the surface of substrate 14, followed by patterning according to conventional techniques, including, for example, physical and/or chemical deposition and materials removal methodologies including photolithographic masking, etching, etc., or by photolithographic masking followed by selective deposition of materials comprising the layer stack 20 through apertures formed in the masking layer. In addition, it should again be noted that the present invention is not limited to formation of circular, columnar shaped discrete magnetic elements 16 arrayed in a hexagonal close packed pattern as in FIG. 1; rather, the invention is broadly applicable to all manner of shapes and array patterns of discrete magnetic elements or bits.
  • Thus, the present invention advantageously provides improved performance, high areal density, bit patterned magnetic media which media provide a wide range of areal recording densities extending from the Gbit/in2 range to the Tbit/in2 range by virtue of utilization of the improved Co1-x-yPtxCry alloy materials described herein. The media of the present invention enjoy particular utility in ultra-high recording density systems for computer-related applications. In addition, the inventive media can be fabricated by means of conventional media manufacturing technologies, as indicated above.
  • In the previous description, numerous specific details are set forth, such as specific materials, structures, processes, etc., in order to provide a better understanding of the present invention. However, the present invention can be practiced without resorting to the details specifically set forth. In other instances, well-known processing materials and techniques have not been described in detail in order not to unnecessarily obscure the present invention.
  • Only the preferred embodiments of the present invention and but a few examples of its versatility are shown and described in the present disclosure. It is to be understood that the present invention is capable of use in various other combinations and environments and is susceptible of changes and/or modifications within the scope of the inventive concept as expressed herein.

Claims (20)

What is claimed:
1. An apparatus, comprising:
a plurality of spaced apart perpendicular magnetic elements above a surface of a substrate, wherein each of the magnetic elements comprises a respective discrete magnetic domain, and wherein each of the magnetic elements comprises a seed layer and a magnetic recording layer, wherein the magnetic recording layer comprises a Co1-x-yPtxCry alloy material, where 0.05≦x≦0.35 and 0≦y≦0.15.
2. The apparatus according to claim 1, wherein the Co1-x-yPtxCry alloy material has a first order magnetic anisotropy constant K1 up to approximately 2×107 erg/cm3, a saturation magnetization Ms, up to approximately 1200 emu/cm3, and an anisotropy field Hk=2K1/Ms up to approximately 35 kOe.
3. The apparatus according to claim 2, wherein the perpendicular magnetic recording layer has a hexagonal (0001) crystal structure with c-axis perpendicular to a surface thereof and an X-Ray diffraction (XRD) rocking curve with a full width at half maximum (FWHM) of ˜5° or less.
4. The apparatus according to claim 1, wherein the seed layer is lattice matched to and configured to promote growth of the perpendicular magnetic recording layer with a hexagonal (0001) crystal structure with c-axis perpendicular to a surface thereof and an XRD rocking curve with full width at half maximum (FWHM) of ˜5° or less.
5. The apparatus according to claim 4, wherein the seed layer is from approximately 5 to approximately 10 nm thick.
6. The apparatus according to claim 5, wherein the seed layer is formed of elemental ruthenium (Ru).
7. The apparatus according to claim 1, wherein 0.23≦x≦0.33, y=0, and the Co1-x-yPtxCry alloy material is a Co1-x-yPtx alloy material with a high perpendicular magnetic anisotropy K of at least approximately 1.1×107 erg/cm3.
8. The apparatus according to claim 7, wherein x=0.25 and the Co1-x-yPtx alloy material is Co3Pt.
9. The apparatus according to claim 1, wherein the Co1-x-yPtxCry alloy material has a high perpendicular magnetic anisotropy K of at least approximately 3×106 erg/cm3.
10. The apparatus according to claim 1, wherein the perpendicular magnetic recording layer is from approximately 5 to approximately 20 nm thick.
11. The apparatus according to claim 1, wherein the substrate is ferromagnetic and comprises a magnetically soft material.
12. The apparatus according to claim 1, wherein the plurality of spaced apart perpendicular magnetic elements are arranged in a patterned array at a density in the range from approximately 250 Gbit/in2 to approximately 10 Tbit/in2, and each of the magnetic elements has a shape selected from the group consisting of cylindrically shaped and of equal height, cubic shaped, spherically shaped, and shaped as an elongated parallelepiped.
13. The apparatus according to claim 1, further comprising a protective overcoat layer over the perpendicular magnetic recording layer; and the apparatus further comprises:
a non-magnetic material filling spaces between neighboring magnetic elements.
14. An apparatus comprising:
a plurality of spaced apart perpendicular magnetic elements, wherein each of the magnetic elements comprises a respective discrete magnetic domain, and wherein each of the magnetic elements comprises a magnetic recording layer comprising a Co1-x-yPtxCry alloy material, where 0.05≦x≦0.35 and 0≦y≦0.15.
15. The apparatus according to claim 1, wherein each of the magnetic elements comprises a stack of film layers, wherein the stack comprises a respective magnetic recording layer and a seed layer.
16. The apparatus according to claim 1, wherein the plurality of magnetic elements are above a substrate.
17. The apparatus according to claim 16, wherein the substrate is ferromagnetic and comprises a magnetically soft material.
18. An apparatus comprising:
a plurality of spaced apart perpendicular magnetic elements above a surface of a substrate, wherein each of the magnetic elements comprises a respective discrete magnetic domain, and wherein each of the magnetic elements comprises a seed layer and a magnetic recording layer, wherein the magnetic recording layer comprises a Co1-x-yPtxCry alloy material, where 0.05≦x≦0.35 and 0≦y≦0.15, and wherein the substrate is ferromagnetic and comprises a magnetically soft material.
19. The apparatus according to claim 18, wherein the seed layer is above a soft under layer (SUL), and wherein the SUL is above the substrate.
20. The apparatus according to claim 18, wherein the seed layer is formed of elemental ruthenium (Ru).
US14/179,185 2006-09-25 2014-02-12 CoPtCr-BASED BIT PATTERNED MAGNETIC DEVICE Abandoned US20140287268A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/179,185 US20140287268A1 (en) 2006-09-25 2014-02-12 CoPtCr-BASED BIT PATTERNED MAGNETIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/525,958 US8673466B2 (en) 2006-09-25 2006-09-25 CoPtCr-based bit patterned magnetic media
US14/179,185 US20140287268A1 (en) 2006-09-25 2014-02-12 CoPtCr-BASED BIT PATTERNED MAGNETIC DEVICE

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/525,958 Continuation US8673466B2 (en) 2006-09-25 2006-09-25 CoPtCr-based bit patterned magnetic media

Publications (1)

Publication Number Publication Date
US20140287268A1 true US20140287268A1 (en) 2014-09-25

Family

ID=39225365

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/525,958 Active 2030-09-29 US8673466B2 (en) 2006-09-25 2006-09-25 CoPtCr-based bit patterned magnetic media
US14/179,185 Abandoned US20140287268A1 (en) 2006-09-25 2014-02-12 CoPtCr-BASED BIT PATTERNED MAGNETIC DEVICE

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/525,958 Active 2030-09-29 US8673466B2 (en) 2006-09-25 2006-09-25 CoPtCr-based bit patterned magnetic media

Country Status (1)

Country Link
US (2) US8673466B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10177197B2 (en) 2015-11-16 2019-01-08 Samsung Electronics Co., Ltd. Magnetic junctions having elongated free layers

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8133534B2 (en) 2004-11-22 2012-03-13 Wisconsin Alumni Research Foundation Methods and compositions for forming patterns with isolated or discrete features using block copolymer materials
DE102005040612A1 (en) * 2005-08-27 2007-03-01 Behr Gmbh & Co. Kg Exhaust gas heat exchanger for exhaust gas recirculation system of internal combustion system, has bypass pipe, designed as high-grade steel pipe having jacket made of high temperature stable plastic, arranged in coolant flowing housing
US8168284B2 (en) 2005-10-06 2012-05-01 Wisconsin Alumni Research Foundation Fabrication of complex three-dimensional structures based on directed assembly of self-assembling materials on activated two-dimensional templates
US8618221B2 (en) * 2005-10-14 2013-12-31 Wisconsin Alumni Research Foundation Directed assembly of triblock copolymers
US8054666B2 (en) * 2006-12-22 2011-11-08 Samsung Electronics Co., Ltd. Information storage devices using magnetic domain wall movement and methods of manufacturing the same
KR100846510B1 (en) * 2006-12-22 2008-07-17 삼성전자주식회사 Information storage device using magnetic domain wall moving and method for manufacturing the same
US7986492B2 (en) * 2007-09-06 2011-07-26 Samsung Electronics Co., Ltd. Process for filling a patterned media of a hard disk with UV-cured lubricant
US9183870B2 (en) 2007-12-07 2015-11-10 Wisconsin Alumni Research Foundation Density multiplication and improved lithography by directed block copolymer assembly
US8411392B2 (en) * 2008-06-24 2013-04-02 Seagate Technology Llc Magnetic field sensor including multiple magnetoresistive sensing elements for patterned media
US7911724B2 (en) * 2009-02-10 2011-03-22 Seagate Technology Llc Write synchronization phase calibration for storage media
US7961417B2 (en) * 2009-02-17 2011-06-14 Seagate Technology Llc Heat assisted magnetic recording apparatus having a plurality of near-field transducers in a recording media
US9142240B2 (en) * 2010-07-30 2015-09-22 Seagate Technology Llc Apparatus including a perpendicular magnetic recording layer having a convex magnetic anisotropy profile
US9299381B2 (en) 2011-02-07 2016-03-29 Wisconsin Alumni Research Foundation Solvent annealing block copolymers on patterned substrates
KR101999870B1 (en) 2011-09-15 2019-10-02 위스콘신 얼럼나이 리서어치 화운데이션 Directed assembly of block copolymer films between a chemically patterned surface and a second surface
US9372398B2 (en) 2012-03-02 2016-06-21 Wisconsin Alumni Research Foundation Patterning in the directed assembly of block copolymers using triblock or multiblock copolymers
US9147423B2 (en) * 2012-04-17 2015-09-29 HGST Netherlands B.V. Method for improving a patterned perpendicular magnetic recording disk with annealing
JP2014086103A (en) * 2012-10-23 2014-05-12 Hitachi Ltd Magnetic recording medium and magnetic storage device
US10403810B2 (en) * 2017-05-11 2019-09-03 The Curators Of The University Of Missouri Magnetic diode in artificial magnetic honeycomb lattice

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5846648A (en) * 1994-01-28 1998-12-08 Komag, Inc. Magnetic alloy having a structured nucleation layer and method for manufacturing same
US5900324A (en) * 1994-10-27 1999-05-04 Hoya Corporation Magnetic recording media, methods for producing the same and magnetic recorders
US6331364B1 (en) * 1999-07-09 2001-12-18 International Business Machines Corporation Patterned magnetic recording media containing chemically-ordered FePt of CoPt
US20050058854A1 (en) * 2003-09-12 2005-03-17 Hitachi, Ltd. Perpendicular magnetic recording medium and manufacturing of the same
US20050164035A1 (en) * 2003-12-09 2005-07-28 Samsung Electronics Co., Ltd. Magnetic recording media
US20060222903A1 (en) * 2005-03-31 2006-10-05 Canon Kabushiki Kaisha Structure and process for production thereof
US20100079911A1 (en) * 2007-04-27 2010-04-01 Showa Denko K.K. Magnetic recording medium, process for producing same, and magnetic recording reproducing apparatus using the magnetic recording medium
US20130155542A1 (en) * 2011-12-14 2013-06-20 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording medium with grain boundary controlling layers

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5820769A (en) 1995-05-24 1998-10-13 Regents Of The University Of Minnesota Method for making magnetic storage having discrete elements with quantized magnetic moments
US6383598B1 (en) 2000-06-21 2002-05-07 International Business Machines Corporation Patterned magnetic recording media with regions rendered nonmagnetic by ion irradiation
US6383597B1 (en) 2000-06-21 2002-05-07 International Business Machines Corporation Magnetic recording media with magnetic bit regions patterned by ion irradiation
US6391430B1 (en) 2000-06-21 2002-05-21 International Business Machines Corporation Patterned magnetic recording media with discrete magnetic regions separated by regions of antiferromagnetically coupled films
US6391530B1 (en) * 2000-11-03 2002-05-21 Kodak Polychrome Graphics, Llc Process for developing exposed radiation-sensitive printing plate precursors
US7138196B2 (en) * 2001-11-09 2006-11-21 Maxtor Corporation Layered thin-film media for perpendicular magnetic recording
US6881503B2 (en) * 2002-06-28 2005-04-19 Seagate Technology Llc Perpendicular magnetic recording media with laminated magnetic layer structure
JP2004178708A (en) * 2002-11-27 2004-06-24 Tdk Corp Magnetic recording medium and magnetic recorder
SG121841A1 (en) * 2002-12-20 2006-05-26 Fuji Elec Device Tech Co Ltd Perpendicular magnetic recording medium and a method for manufacturing the same
WO2004097809A1 (en) * 2003-05-02 2004-11-11 Fujitsu Limited Magnetic recording medium, magnetic storage apparatus and method of producing magnetic recording medium
US6865044B1 (en) 2003-12-03 2005-03-08 Hitachi Global Storage Technologies Netherlands B.V. Method for magnetic recording on patterned multilevel perpendicular media using thermal assistance and fixed write current
JP2006059498A (en) * 2004-08-23 2006-03-02 Tdk Corp Magnetic recording medium, and magnetic recording and reproducing device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5846648A (en) * 1994-01-28 1998-12-08 Komag, Inc. Magnetic alloy having a structured nucleation layer and method for manufacturing same
US5900324A (en) * 1994-10-27 1999-05-04 Hoya Corporation Magnetic recording media, methods for producing the same and magnetic recorders
US6331364B1 (en) * 1999-07-09 2001-12-18 International Business Machines Corporation Patterned magnetic recording media containing chemically-ordered FePt of CoPt
US20050058854A1 (en) * 2003-09-12 2005-03-17 Hitachi, Ltd. Perpendicular magnetic recording medium and manufacturing of the same
US20050164035A1 (en) * 2003-12-09 2005-07-28 Samsung Electronics Co., Ltd. Magnetic recording media
US20060222903A1 (en) * 2005-03-31 2006-10-05 Canon Kabushiki Kaisha Structure and process for production thereof
US20100079911A1 (en) * 2007-04-27 2010-04-01 Showa Denko K.K. Magnetic recording medium, process for producing same, and magnetic recording reproducing apparatus using the magnetic recording medium
US20130155542A1 (en) * 2011-12-14 2013-06-20 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording medium with grain boundary controlling layers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10177197B2 (en) 2015-11-16 2019-01-08 Samsung Electronics Co., Ltd. Magnetic junctions having elongated free layers

Also Published As

Publication number Publication date
US8673466B2 (en) 2014-03-18
US20080075978A1 (en) 2008-03-27

Similar Documents

Publication Publication Date Title
US8673466B2 (en) CoPtCr-based bit patterned magnetic media
US7704614B2 (en) Process for fabricating patterned magnetic recording media
US6723450B2 (en) Magnetic recording medium with antiparallel coupled ferromagnetic films as the recording layer
US7846564B2 (en) Perpendicular magnetic recording media with magnetic anisotropy/coercivity gradient and local exchange coupling
US7235314B2 (en) Inter layers for perpendicular recording media
US7974031B2 (en) Single-pass recording of multilevel patterned media
US20100098972A1 (en) Perpendicular magnetic recording medium and magnetic recording/reproduction apparatus using the same
EP1495466A1 (en) Laminated magnetic recording media with antiferromagnetically coupled layer as one of the individual magnetic layers in the laminate
US9734857B2 (en) Stack including a magnetic zero layer
US20070141400A1 (en) Perpendicular magnetic recording disk with ultrathin nucleation film for improved corrosion resistance and method for making the disk
US20110003175A1 (en) Composite perpendicular media with graded anisotropy layers and exchange break layers
KR20080012108A (en) Perpendicular magnetic recording medium and magnetic storage apparatus
JP2008117506A (en) Perpendicular magnetic recording medium
US6964819B1 (en) Anti-ferromagnetically coupled recording media with enhanced RKKY coupling
US10311907B2 (en) Apparatus comprising magnetically soft underlayer
US6645614B1 (en) Magnetic recording media having enhanced coupling between magnetic layers
US8771848B2 (en) Bit patterned magnetic media
US6852426B1 (en) Hybrid anti-ferromagnetically coupled and laminated magnetic media
US8900655B2 (en) Method for fabricating patterned magnetic recording device
KR101797605B1 (en) Magnetic recording media with reliable writability and erasure
US6737172B1 (en) Multi-layered anti-ferromagnetically coupled magnetic media
US6689497B1 (en) Stabilized AFC magnetic recording media with reduced lattice mismatch between spacer layer(s) and magnetic layers
US20070237986A1 (en) Perpendicular magnetic recording media without soft magnetic underlayer and method of fabricating same
Brucker et al. Perpendicular media: Alloy versus multilayer
JP4348971B2 (en) Method for manufacturing perpendicular magnetic recording medium and perpendicular magnetic recording medium

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION