US20140282513A1 - Instruction set architecture for compute-based object stores - Google Patents

Instruction set architecture for compute-based object stores Download PDF

Info

Publication number
US20140282513A1
US20140282513A1 US13/831,349 US201313831349A US2014282513A1 US 20140282513 A1 US20140282513 A1 US 20140282513A1 US 201313831349 A US201313831349 A US 201313831349A US 2014282513 A1 US2014282513 A1 US 2014282513A1
Authority
US
United States
Prior art keywords
operating system
virtual operating
objects
compute
request
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/831,349
Other versions
US8826279B1 (en
Inventor
David Pacheco
Mark Cavage
Yunong Xiao
Bryan Cantrill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joyent Inc
Original Assignee
Joyent Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joyent Inc filed Critical Joyent Inc
Priority to US13/831,349 priority Critical patent/US8826279B1/en
Assigned to JOYENT, INC. reassignment JOYENT, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CANTRILL, BRYAN, PACHECO, DAVID, XIAO, YUNONG, CAVAGE, MARK
Application granted granted Critical
Publication of US8826279B1 publication Critical patent/US8826279B1/en
Publication of US20140282513A1 publication Critical patent/US20140282513A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/455Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/455Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
    • G06F9/45504Abstract machines for programme code execution, e.g. Java virtual machine [JVM], interpreters, emulators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/465Distributed object oriented systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/54Interprogram communication
    • G06F9/547Remote procedure calls [RPC]; Web services
    • G06F9/548Object oriented; Remote method invocation [RMI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2209/00Indexing scheme relating to G06F9/00
    • G06F2209/50Indexing scheme relating to G06F9/50
    • G06F2209/5017Task decomposition

Definitions

  • the present technology relates generally to an instruction set architecture (ISA) for compute-centric object stores.
  • ISAs of the present technology allow for efficient scheduling and management of compute operations across distributed object stores.
  • the ISAs provide a means for expressing compute operations within the context of a distributed object store, as well as a mechanism for coordinating how data flows through a compute-centric object store system.
  • a cloud-based computing environment is a resource that typically combines the computational power of a large model of processors and/or that combines the storage capacity of a large model of computer memories or storage devices.
  • systems that provide a cloud resource may be utilized exclusively by their owners; or such systems may be accessible to outside users who deploy applications within the computing infrastructure to obtain the benefit of large computational or storage resources.
  • the cloud may be formed, for example, by a network of servers with each server (or at least a plurality thereof) providing processor and/or storage resources. These servers may manage workloads provided by multiple users (e.g., cloud resource consumers or other users). Typically, each user places workload demands upon the cloud that vary in real-time, sometimes dramatically. The nature and extent of these variations typically depend on the type of business associated with the user.
  • a virtual machine is an emulation of a real-world computing system.
  • the virtual machine provides a user with one or more different operating systems than the operating system of the local machine (“host”) that is running the virtual machine.
  • the VM provides a complete system platform that provides the one or more operating systems.
  • the VM is typically managed by a hypervisor that mediates computing resources of the host machine for use by the VM via hardware emulation.
  • the use of hardware emulation is often deleterious to VM performance and, in turn, reduces the number of VMs that may run on a given host machine.
  • the hypervisor must coordinate the varying workloads of the VMs to prevent instability.
  • systems that provide data centered distributed applications such as systems that run applications on large clusters of shared hardware are often programming intensive for users. That is, these systems require users to create complex programs for executing compute operations against objects or data stores. This is often caused by the complexity of the hardware and/or software frameworks required to manage data flow through and/or hardware resource virtualization within these systems.
  • the present technology may be directed to systems that comprise: (a) one or more processors; and (b) logic encoded in one or more tangible media for execution by the one or more processors and when executed operable to perform operations comprising: (i) receiving a request from a user, the request identifying a compute operation that is to be executed against an object in a distributed object store; (ii) locating the object within the distributed object store, the object being stored on a physical node; (iii) assigning a virtual operating system container to the object; (iv) providing an instruction set to a daemon associated with the object, the daemon controlling execution of the compute operation by the virtual operating system container according to the instruction sets; and (v) storing output of the virtual operating system container in the distributed object store.
  • the present technology may be directed to a multitenant object storage system that comprises: (a) receiving a request from a user, the request identifying parameters of a compute operation that is to be executed against objects in a distributed object store, the request also comprising an identifier; (b) generating a set of tasks from the request that comprise an instruction set for a daemon; (c) locating the objects within the distributed object store, the objects being stored on a physical node; (d) providing the set of tasks to a daemon of the physical node, the daemon controlling execution of the compute operation by a virtual operating system container based upon the set of tasks; and (e) storing an output of the virtual operating system container in the distributed object store.
  • FIG. 1 is a block diagram of an exemplary architecture in which embodiments of the present technology may be practiced
  • FIG. 2 is a schematic diagram of an exemplary guest virtual operating system container
  • FIG. 3 is a schematic diagram illustrating the colocation of guest virtual operating system containers for multiple tenants on an object store
  • FIG. 4 is a schematic diagram of a guest virtual operating system container applied onto an object store
  • FIG. 5 is a flowchart of an exemplary method for executing a compute flow using a set of tasks, according to an instruction set architecture
  • FIG. 6 illustrates an exemplary computing system that may be used to implement embodiments according to the present technology.
  • FIG. 1 is a block diagram of an exemplary architecture 100 in which embodiments of the present technology may be practiced.
  • the architecture 100 comprises a plurality of client devices 105 A-N that communicatively couple with a compute-centric object store system, hereinafter “system 110 .”
  • system 110 may include a plurality of systems, such as system 110 .
  • the plurality of client devices 105 A-N may communicatively couple with the system 110 via any one or combination of a number of private and/or public networks, such as the Internet.
  • the client devices 105 A-N may submit requests or jobs to a network service 110 B, which is a constituent part of the system 110 .
  • the network service 110 E evaluates request received from users to determine one or more physical nodes that comprise objects that correspond to the request.
  • the system 110 comprises an object store 110 A that provides “compute” as a first class citizen of an object store 110 A. More specifically, compute operations (e.g., instructing the system to compute on objects in the object store) of the present technology resemble a top-level API function, similar to processes like storing or fetching objects in the object store 110 A.
  • object store comprise a network service for storing unstructured, arbitrary-sized chunks of data (objects). It will be further understood that the object store may not support modifications to existing objects, but supports full object replacement operations, although systems that support both object modification and full object replacement operations may also utilize the features of the present technology to perform compute operations directly on (e.g., in-situ) objects within the object store.
  • the system 110 may be configured to receive a request to perform a compute operation on at least a portion of an object store, from a first user. Again, the user may be associated with one of the client devices. The request identifies parameters of the compute operation as well as objects against which the compute operation is executed.
  • the system 110 may assign virtual operating system containers to a user, based upon a request.
  • the system 110 may map objects to the containers that are associated with the user. Typically, these objects are identified by the user in the request.
  • a virtual operating system container performs the compute operation on an object according to the identified parameters of the request.
  • the system 110 may then clear the virtual operating system containers and return the virtual operating system containers to a pool of virtual operating system containers. Additional aspects of the system 110 will be described in greater detail below.
  • a compute-centric object store may be created to operate without the user of virtual operating system (global kernel) or virtual operating system containers. While such an object store would provide advantages such as in-situ computation of data (where objects are processed directly on the object store), the object store may not isolate tenants in the similarly to systems that utilize a virtual operating system and/or virtual operating system containers.
  • the compute-centric object store may be configured to receiving a request to perform a compute operation on at least a portion of an object store from a first user via a network service, the request identifying parameters of the compute operation.
  • the object store may also execute an operating system process for the objects identified in the request.
  • the operating system process may perform the compute operation on the object according to the identified parameters of the request. Additionally, once the compute operation has been executed, the operating system process may be terminated by the virtual operating system.
  • in-situ computation will be understood to include the execution of compute operations against objects in an object store, where the objects not moved or copied from or within the object store.
  • the system 110 is comprised of a hardware layer 115 that provides a logical interface with at least one or more processors and a memory which stores logic that is executed by the one or more processors.
  • the hardware layer 115 controls one or more of the hardware components of a computing system, such as the computing system 600 of FIG. 6 , which will be described in greater detail below.
  • the hardware layer 115 may manage the hardware components of a server blade or another similar device.
  • the hardware layer 115 provides access to the physical hardware that services a global operating system kernel 120 that cooperates with the hardware layer 115 .
  • the global operating system kernel 120 may also be referred to as a host operating system kernel.
  • the global operating system kernel 120 is configured to administer and manage a pool of guest virtual operating system containers, such as containers 125 A-N.
  • the containers 125 A-N may operate on a distributed object store in a multitenant manner, where multiple containers can operate on the same object store simultaneously. It will be understood that each user is assigned container from the pool, on an as-needed basis. When a container is applied to an object store the container is referred to as a tenant.
  • the system kernel 120 may be utilized to setup the pool of guest virtual operating system containers.
  • the system kernel 120 may also be configured to provide a command line interpreter interface that allows users to request jobs, execute other operating system implemented applications, and interact with a virtual operating system in a manner that is substantially indistinguishable relative to an operating system executing on a bare metal device.
  • a job may be input by a user via a command line interpreter, such as a Unix shell terminal. More specifically, the user may express a computation using the same language as the language used by a Unix shell terminal.
  • the actual request is submitted to the network service 110 B. Indeed, a request may be submitted as an HTTP request to the network service 110 B.
  • the body of the request describes the computation to perform in terms of what commands are input into the command line interpreter, which is running within a container.
  • the user may specify one or more desired compute operations that are to be executed against objects (such as object 130 ) within an object store 110 A (see FIG. 3 ).
  • object store 110 A may include, for example, a local or distributed object store that maintains contiguous blobs, blocks, or chunks of data.
  • objects stored in the object store 110 A are complete objects, such as files or other similar data structures.
  • the compute operations executed against the object store 110 A may be performed in such a way that partial stores of data are avoided.
  • the system kernel 120 may collocate containers 125 A-N onto the object store 110 A, and execute the containers 125 A-N simultaneously.
  • a plurality of containers such as container 125 A has been placed onto each of a plurality of objects within the object store 110 A.
  • a virtual operating system container is assigned to each of the plurality of objects specified in the user request.
  • the assignment of a single container to a single object occurs when the system executes a “map” phase operation. The details of map and reduce phases provide by the system 110 will be described in greater detail below.
  • a virtual operating system container may be a lightweight virtualization solution offering a complete and secure user environment that operates on a single global kernel (system kernel 120 ), providing performance characteristics that are similar to operating systems that operate on bare metal devices. That is, a virtual machine operates on emulated hardware and is subject to control by a hypervisor, which produces computing inefficiencies.
  • a virtual operating system container may operate without the computing inefficiencies of a typical virtual machine.
  • the system kernel 120 may utilize a KVM (Kernel Virtual Machine) that improves the efficiency of the a virtual operating system, such as the global operating system kernel, by leveraging CPU virtualization extensions to eliminate a substantial majority of the binary translation (i.e., hardware emulation) that are frequently required by VMs.
  • KVM Kernel Virtual Machine
  • an exemplary virtual operating system container 125 A ( FIG. 1 ) is shown as comprising a quick emulation layer (QEMU) 135 , a virtual guest operating system 140 , and a compute application 145 that is managed by the virtual guest operating system 140 .
  • the QEMU 135 provides hardware emulation and is also VMM (virtual machine monitor). It is noteworthy that in some embodiments the QEMU 135 is not a strict hypervisor layer, but rather each QEMU 135 may be independent in some exemplary embodiments. That is, there may be one QEMU 135 one per container instead of a single QEMU 135 supporting several VMs.
  • the operations of both a VM and a VMM may be combined into the QEMU 135 .
  • the compute application 145 that is executed may include a primitive O/S compute operation.
  • Exemplary compute operations may include operating system primitive operations, such as query, word count, send, receive, and so forth. Additionally, the operations may comprise more sophisticated operations, such as operations that include audio or video transcoding. Additionally, in some instances, users may store programs or applications in the object store itself. Users may then execute the programs as a part of a compute operation.
  • the compute operations may include one or more phases such as a map phase, followed by a reduce phase.
  • a map phase may include an operation that is executed against each of a plurality of objects individually, by a plurality of containers.
  • a unique container is assigned to each object that is to be processed.
  • a reduce phase may be executed by a single container against a plurality of objects in a batch manner.
  • the objects of the object store 135 may comprise text files.
  • the application 145 may execute a map phase to count the words in each of the text files.
  • the output of the application 145 may be stored in a plurality of output objects that are stored in the object store 135 .
  • a compute application 145 of another container may execute a reduce phase that sums the output objects of the map phase and generates a word count for all objects within the object store 135 .
  • system kernel 120 may schedule and coordinate various compute operations (and phases) performed by the compute applications 145 of all containers.
  • system kernel 120 may act similarly to a hypervisor that manages the compute operations of the various active containers.
  • the system kernel 120 may instruct the containers to perform a series of map functions, as well as a reduce functions.
  • the map and reduce functions may be coordinated to produce the desired output specified in the request.
  • the system kernel 120 may select a first set of containers, which includes container 125 A from the pool of containers. This container 125 A is assigned to a user. In response to receiving a request from a second user, the system kernel 120 may also select a second set of containers from the pool of containers.
  • the system kernel 120 may map the first set of containers to a plurality of objects, such as object 130 , stored in the object store 110 A. Likewise, the system kernel 120 may map a second set of containers to a plurality of different objects stored in the object store 110 A for the second user.
  • the objects and containers for the first user may be referred to as a compute zone of the first user, while the objects mapped to the container 125 N may be referred to as a compute zone of the second user.
  • the maintenance of compute zones allows the system kernel 120 to provide multitenant access to the object store 110 A, even when the first and second users are potentially adversarial. For example, the first and second users may be commercial competitors.
  • the system kernel 120 maintains compute zones in order to balkanize object storage and prevent access to objects of other users. Additionally, the balkanization of object storage also ensures fair distribution of resources between users.
  • system kernel 120 may maintain as many containers and compute zones as allowed by the processor(s) of the hardware layer 115 . Additionally, the system kernel 120 assigns a container to a user on an as-needed basis, meaning that containers may not be assigned permanently to a user, which would result in a monopolization of resources when the user is not performing compute operations.
  • FIG. 4 illustrates the placement of the container 125 A onto the data store 110 A. It is understood that the container 125 A encircles a plurality of objects in the data store 110 A. This mapping of multiple object to a single container would be commonly seen in a reduce phase, where the container is performing a concatenating or summation process on the outputs of individual containers, such as the containers shown in FIG. 3 .
  • the system kernel 120 need not transfer objects from the object store 110 A into the container for processing in some exemplary embodiments.
  • the container operates directly on the objects of the object store 110 A.
  • the containers 125 A-N managed by the system kernel 120 are empty when the containers 125 A-N are in the pool. After objects are mapped to the container, compute operations may be executed by the container on the objects, and a desired output is generated, the system kernel 120 may clear the container and return the container to the pool.
  • the system kernel 120 may not generate containers until a request is received from a user. That is, the system kernel 120 may “spin up” or launch containers when a request is received from the user. This allows for minimum impact to the bare metal resources, such as the CPU, as the system kernel 120 need not even maintain a pool of virtual operating system containers, which are awaiting user requests. That is, maintaining a pool of containers requires CPU and memory resources.
  • the system kernel 120 may terminate the containers, rather than clearing the containers and returning the containers to a pool.
  • an instruction set architecture may be implemented within the system 110 .
  • the instruction set architecture may specify an application programming interface that allows the system 110 to interact with the distributed object store.
  • the system 110 communicatively couples with the object store 110 A using a services related application programming interface (SAPI) 155 , which provides features such as automatic discovery of object stores, dynamic configuration of object stores, and an API for a user portal.
  • SAPI services related application programming interface
  • the SAPI allows users to configure, deploy, and upgrade applications using a set of loosely-coupled, federated services.
  • the SAPI may include an underlying API and an autoconfig agent, also referred to as a daemon 150 .
  • a SAPI client may also be disseminated to clients. It will be understood that the daemon 150 may be associated with a physical node 160 of the object store 110 A.
  • various object stores such as object store 110 A of FIGS. 3 and 4 , comprise a single SAPI zone.
  • the SAPI zone may be stateless and the SAPI zone may be configured to write objects into the object store 110 A.
  • the SAPI zone may also communicatively couple with a VM API to provision zones and a network API (NAPI) to reserve network interface controllers (NIC) and lookup network universal unique identifiers (UUID).
  • NAPI network API
  • NIC network interface controllers
  • UUID lookup network universal unique identifiers
  • SAPI 155 may comprise three main object types such as applications, services, and instances. It is noteworthy that an application may comprise one or more services, and each service may comprise one or more instances. Moreover, instances may represent actual object store zones, and such zones inherit zone parameters and metadata from their associated applications and services.
  • the application, service, and instance information may be used by the compute application of a virtual operating system container that is placed onto an object store.
  • the daemon 150 may control the operation of the containers operating on the daemon's object store.
  • Each application, service and instance may include three sets of properties.
  • “params” may comprise zone parameters like a zone's RAM size, disk quota, image UUID, and so forth. These parameters are evaluated when a zone is provisioned.
  • Another property comprises “metadata”, which defines metadata available to the daemon 150 . These metadata keys and values form the input of a script template in a configuration manifest (described below). As these values are updated, the daemon 150 may rewrite any configuration and make reference to changed metadata values.
  • Yet another property comprises “manifests” that define a set of configuration manifests are indexed by name to facilitate inheriting manifest from parent objects.
  • Creating applications and services have no effect on running zones.
  • a zone is provisioned using the above information from its associated application, service, and instance.
  • applications and services e.g., a job or request
  • a job may be thought of abstractly as a workflow template.
  • objects need only be defined by the user. The workflow template is then applied against the objects.
  • the daemon 150 of a zone may be tasked with maintaining configuration inside that zone.
  • the daemon 150 queries the SAPI 155 directly to determine which files to write and where to write them within the object store 110 A.
  • the daemon 150 uses objects called configuration manifests; those objects describe the contents, location, and semantics of configuration files for a zone.
  • Those manifests contain a script template which is rendered using the metadata from the associated application, service, and instance.
  • the system kernel 120 may coordinate a compute flow of compute operations which are managed by the daemon 150 . That is, the system kernel 120 may receive a request or “job” from a user, via a command line interpreter. The request identifies parameters of a compute operation that is to be executed against objects in a distributed object store. For example, a request may include performing a word count operation on a file.
  • the system kernel 120 may assign an identifier for the request.
  • This identifier provides a unique identifier that allows objects and outputs of compute operations to be correlated to the user. Objects previously stored in the object store may be correlated to the user utilizing a unique identifier.
  • the identifier comprises the name of an input object or job name. This name may be specified by an end user submitting a job/request to the system or may be generated by the system from the request.
  • An exemplary find object command may include Find
  • the system kernel 120 may query various daemons of object stores to locate the objects within the distributed object store. After the object have been located, the system kernel 120 may generate a set of tasks (e.g., an instruction set) that defines the various compute operations that are to be performed by the daemon of the located object store.
  • the set of tasks may include only one word count task that is provided to a single daemon of an object store (e.g., physical node). This relatively simple compute operation does not require coordination or scheduling of operations of multiple objects.
  • the daemon 150 may provide instructions to one or more virtual operating system containers that are placed onto the object store by the system kernel 120 . That is, the instruction sets provided to the containers is based upon the task assigned to the daemon 150 from the system kernel 120 .
  • the set of tasks may include a more complex arrangement of operations that are executed against a plurality of objects stores.
  • the system kernel 120 may interact with the daemon to coordinate processing of these objects in a specified order.
  • the set of tasks may define various map phases that are to be executed on the objects of the object store, as well as various reduce phases that are executed on the outputs of the map phases.
  • objects within the workflow may be tracked and correlated together using the identifier. For example, if an instruction set passed to a daemon requires performing a word count compute operation on 100 text files, each of the objects of the compute operation would be correlated using the identifier. Thus, the objects of the compute operation would comprise 100 objects that each includes a word count value for their corresponding text file.
  • the identifier may be appended to the object as metadata.
  • a map phase may result in multiple outputs, which are generated from a single input object. For example, assume that usage logs for a computing device are stored for a 24 hour time period. To determine hourly usage rates, the 24 hour log object may be separated into 24 distinct objects. Thus, the map phase may receive the 24 hour log object and may split the same into constituent output objects to complete the map phase.
  • a more complex request may require a more complicated set of tasks (e.g., phases). For example, if the user desires to look at all 11 p.m. to 12 p.m. user logs for a plurality of computing devices, the set of tasks may require not only the map task where a single input object is processed into multiple objects, but also a reduce phase that sums a plurality of 11 p.m. to 12 p.m. user logs for a plurality of devices.
  • the system kernel 120 will provide a daemon with tasks that include a map phase for generating the hour increment logs from various input objects. Additionally, the tasks also inform the daemon to return the output objects, which may be stored as an aggregate 11 p.m. to 12 p.m. log object within the object store.
  • daemon of a physical node may control execution of compute operations by the one or more virtual operating system containers that are placed onto the object store via the system kernel 120 .
  • intermediate output objects may not be output to the user directly, but may be fed back into the system for additional processing, such as with the map and reduce phases described above.
  • the set of tasks generated by the system kernel 120 may include any number of map phases and/or reduce phases, which vary according to the steps required to produce the desired output.
  • FIG. 5 is a flowchart of an exemplary method 500 for executing a compute flow using a set of tasks, according to an instruction set architecture.
  • the method 500 may include a step 505 of receiving a request from a user, the request identifying parameters of a compute operation that is to be executed against objects in a distributed object store.
  • the method may include a step 510 of locating one or more objects within the distributed object store, the one or more objects being stored on one or more physical nodes. Once objects have been located, the method may include a step 515 of generating a set of tasks from the request that comprise instructions for a daemon. Again, the set of tasks may define applications, services and instances that are that can be utilized by virtual operating system containers. It will be understood that the set of tasks comprises an instruction set that is a translation of the user request into meaningful input that can be executed by one or more virtual operating system containers.
  • the method Upon generating the set of tasks, the method includes a step 520 of providing the set of tasks to a daemon of the physical node.
  • the daemon controls execution of the compute operation by one or more virtual operating system containers based upon the set of tasks.
  • the daemon functions as a virtual operating system hypervisor that coordinates the operation and execution of the containers.
  • the method includes a step 525 of storing an output of the virtual operating system container in the distributed object store.
  • FIG. 6 illustrates an exemplary computing system 600 that may be used to implement an embodiment of the present systems and methods.
  • the system 600 of FIG. 6 may be implemented in the contexts of the likes of computing systems, networks, servers, or combinations thereof.
  • the computing system 600 of FIG. 6 includes one or more processors 610 and main memory 620 .
  • Main memory 620 stores, in part, instructions and data for execution by processor 610 .
  • Main memory 620 may store the executable code when in operation.
  • the system 600 of FIG. 6 further includes a mass storage device 630 , portable storage device 640 , output devices 650 , user input devices 660 , a display system 670 , and peripheral devices 680 .
  • FIG. 6 The components shown in FIG. 6 are depicted as being connected via a single bus 690 .
  • the components may be connected through one or more data transport means.
  • Processor unit 610 and main memory 620 may be connected via a local microprocessor bus, and the mass storage device 630 , peripheral device(s) 680 , portable storage device 640 , and display system 670 may be connected via one or more input/output (I/O) buses.
  • I/O input/output
  • Mass storage device 630 which may be implemented with a magnetic disk drive or an optical disk drive, is a non-volatile storage device for storing data and instructions for use by processor unit 610 . Mass storage device 630 may store the system software for implementing embodiments of the present technology for purposes of loading that software into main memory 620 .
  • Portable storage device 640 operates in conjunction with a portable non-volatile storage medium, such as a floppy disk, compact disk, digital video disc, or USB storage device, to input and output data and code to and from the computer system 600 of FIG. 6 .
  • a portable non-volatile storage medium such as a floppy disk, compact disk, digital video disc, or USB storage device.
  • the system software for implementing embodiments of the present technology may be stored on such a portable medium and input to the computer system 600 via the portable storage device 640 .
  • User input devices 660 provide a portion of a user interface.
  • User input devices 660 may include an alphanumeric keypad, such as a keyboard, for inputting alpha-numeric and other information, or a pointing device, such as a mouse, a trackball, stylus, or cursor direction keys.
  • Additional user input devices 660 may comprise, but are not limited to, devices such as speech recognition systems, facial recognition systems, motion-based input systems, gesture-based systems, and so forth.
  • user input devices 660 may include a touchscreen.
  • the system 600 as shown in FIG. 6 includes output devices 650 . Suitable output devices include speakers, printers, network interfaces, and monitors.
  • Display system 670 may include a liquid crystal display (LCD) or other suitable display device.
  • Display system 670 receives textual and graphical information, and processes the information for output to the display device.
  • LCD liquid crystal display
  • Peripherals device(s) 680 may include any type of computer support device to add additional functionality to the computer system. Peripheral device(s) 680 may include a modem or a router.
  • the components provided in the computer system 600 of FIG. 6 are those typically found in computer systems that may be suitable for use with embodiments of the present technology and are intended to represent a broad category of such computer components that are well known in the art.
  • the computer system 600 of FIG. 6 may be a personal computer, hand held computing system, telephone, mobile computing system, workstation, server, minicomputer, mainframe computer, or any other computing system.
  • the computer may also include different bus configurations, networked platforms, multi-processor platforms, etc.
  • Various operating systems may be used including Unix, Linux, Windows, Mac OS, Palm OS, Android, iOS (known as iPhone OS before June 2010), QNX, and other suitable operating systems.
  • Computer-readable storage media refer to any medium or media that participate in providing instructions to a central processing unit (CPU), a processor, a microcontroller, or the like. Such media may take forms including, but not limited to, non-volatile and volatile media such as optical or magnetic disks and dynamic memory, respectively. Common forms of computer-readable storage media include a floppy disk, a flexible disk, a hard disk, magnetic tape, any other magnetic storage medium, a CD-ROM disk, digital video disk (DVD), any other optical storage medium, RAM, PROM, EPROM, a FLASHEPROM, any other memory chip or cartridge.
  • Computer program code for carrying out operations for aspects of the present technology may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be coupled with the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
  • LAN local area network
  • WAN wide area network
  • Internet Service Provider for example, AT&T, MCI, Sprint, EarthLink, MSN, GTE, etc.
  • These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
  • the computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s).
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Stored Programmes (AREA)

Abstract

Instruction set architectures for compute-centric object stores. An exemplary method may include receiving a request from a user, the request identifying parameters of a compute operation that is to be executed against one or more objects in a distributed object store, generating a set of tasks from the request that comprise instructions for a daemon, locating the one or more objects within the distributed object store, the one or more objects being stored on a physical node. The method includes providing the set of tasks to a daemon, the daemon controlling execution of the compute operation by a virtual operating system container based upon the set of tasks, and storing an output of the virtual operating system container in the distributed object store.

Description

    FIELD OF THE PRESENT TECHNOLOGY
  • The present technology relates generally to an instruction set architecture (ISA) for compute-centric object stores. ISAs of the present technology allow for efficient scheduling and management of compute operations across distributed object stores. The ISAs provide a means for expressing compute operations within the context of a distributed object store, as well as a mechanism for coordinating how data flows through a compute-centric object store system.
  • BACKGROUND
  • Various methods and systems for providing multitenant computing systems, such as cloud computing, have been attempted. In general, a cloud-based computing environment is a resource that typically combines the computational power of a large model of processors and/or that combines the storage capacity of a large model of computer memories or storage devices. For example, systems that provide a cloud resource may be utilized exclusively by their owners; or such systems may be accessible to outside users who deploy applications within the computing infrastructure to obtain the benefit of large computational or storage resources.
  • The cloud may be formed, for example, by a network of servers with each server (or at least a plurality thereof) providing processor and/or storage resources. These servers may manage workloads provided by multiple users (e.g., cloud resource consumers or other users). Typically, each user places workload demands upon the cloud that vary in real-time, sometimes dramatically. The nature and extent of these variations typically depend on the type of business associated with the user.
  • Oftentimes, these cloud computing systems leverage virtual machines for their users. A virtual machine (“VM”) is an emulation of a real-world computing system. Often, the virtual machine provides a user with one or more different operating systems than the operating system of the local machine (“host”) that is running the virtual machine. The VM provides a complete system platform that provides the one or more operating systems. The VM is typically managed by a hypervisor that mediates computing resources of the host machine for use by the VM via hardware emulation. The use of hardware emulation is often deleterious to VM performance and, in turn, reduces the number of VMs that may run on a given host machine. Additionally, as the number of VMs on a host machine increases and they begin to operate concurrently, the hypervisor must coordinate the varying workloads of the VMs to prevent instability.
  • In general, systems that provide data centered distributed applications, such as systems that run applications on large clusters of shared hardware are often programming intensive for users. That is, these systems require users to create complex programs for executing compute operations against objects or data stores. This is often caused by the complexity of the hardware and/or software frameworks required to manage data flow through and/or hardware resource virtualization within these systems.
  • SUMMARY OF THE PRESENT TECHNOLOGY
  • According to some embodiments, the present technology may be directed to systems that comprise: (a) one or more processors; and (b) logic encoded in one or more tangible media for execution by the one or more processors and when executed operable to perform operations comprising: (i) receiving a request from a user, the request identifying a compute operation that is to be executed against an object in a distributed object store; (ii) locating the object within the distributed object store, the object being stored on a physical node; (iii) assigning a virtual operating system container to the object; (iv) providing an instruction set to a daemon associated with the object, the daemon controlling execution of the compute operation by the virtual operating system container according to the instruction sets; and (v) storing output of the virtual operating system container in the distributed object store.
  • According to some embodiments, the present technology may be directed to a multitenant object storage system that comprises: (a) receiving a request from a user, the request identifying parameters of a compute operation that is to be executed against objects in a distributed object store, the request also comprising an identifier; (b) generating a set of tasks from the request that comprise an instruction set for a daemon; (c) locating the objects within the distributed object store, the objects being stored on a physical node; (d) providing the set of tasks to a daemon of the physical node, the daemon controlling execution of the compute operation by a virtual operating system container based upon the set of tasks; and (e) storing an output of the virtual operating system container in the distributed object store.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Certain embodiments of the present technology are illustrated by the accompanying figures. It will be understood that the figures are not necessarily to scale and that details not necessary for an understanding of the technology or that render other details difficult to perceive may be omitted. It will be understood that the technology is not necessarily limited to the particular embodiments illustrated herein.
  • FIG. 1 is a block diagram of an exemplary architecture in which embodiments of the present technology may be practiced;
  • FIG. 2 is a schematic diagram of an exemplary guest virtual operating system container;
  • FIG. 3 is a schematic diagram illustrating the colocation of guest virtual operating system containers for multiple tenants on an object store;
  • FIG. 4 is a schematic diagram of a guest virtual operating system container applied onto an object store;
  • FIG. 5 is a flowchart of an exemplary method for executing a compute flow using a set of tasks, according to an instruction set architecture; and
  • FIG. 6 illustrates an exemplary computing system that may be used to implement embodiments according to the present technology.
  • DESCRIPTION OF EXEMPLARY EMBODIMENTS
  • While this technology is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail several specific embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the technology and is not intended to limit the technology to the embodiments illustrated.
  • The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the present technology. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
  • It will be understood that like or analogous elements and/or components, referred to herein, may be identified throughout the drawings with like reference characters. It will be further understood that several of the figures are merely schematic representations of the present technology. As such, some of the components may have been distorted from their actual scale for pictorial clarity.
  • FIG. 1 is a block diagram of an exemplary architecture 100 in which embodiments of the present technology may be practiced. The architecture 100 comprises a plurality of client devices 105A-N that communicatively couple with a compute-centric object store system, hereinafter “system 110.” It will be understood that the architecture 100 may include a plurality of systems, such as system 110. For the sake of brevity and clarity, a detailed description of an exemplary system 110 will be provided below, although the features of the system 110 apply equally to all of the plurality of systems. The plurality of client devices 105A-N may communicatively couple with the system 110 via any one or combination of a number of private and/or public networks, such as the Internet. According to some embodiments, the client devices 105A-N may submit requests or jobs to a network service 110B, which is a constituent part of the system 110. In some instances, the network service 110E evaluates request received from users to determine one or more physical nodes that comprise objects that correspond to the request.
  • In general, the system 110 comprises an object store 110A that provides “compute” as a first class citizen of an object store 110A. More specifically, compute operations (e.g., instructing the system to compute on objects in the object store) of the present technology resemble a top-level API function, similar to processes like storing or fetching objects in the object store 110A.
  • It will be understood that the terms “object store” comprise a network service for storing unstructured, arbitrary-sized chunks of data (objects). It will be further understood that the object store may not support modifications to existing objects, but supports full object replacement operations, although systems that support both object modification and full object replacement operations may also utilize the features of the present technology to perform compute operations directly on (e.g., in-situ) objects within the object store.
  • In some embodiments, the system 110 may be configured to receive a request to perform a compute operation on at least a portion of an object store, from a first user. Again, the user may be associated with one of the client devices. The request identifies parameters of the compute operation as well as objects against which the compute operation is executed.
  • In some instances, the system 110 may assign virtual operating system containers to a user, based upon a request. The system 110 may map objects to the containers that are associated with the user. Typically, these objects are identified by the user in the request. A virtual operating system container performs the compute operation on an object according to the identified parameters of the request. The system 110 may then clear the virtual operating system containers and return the virtual operating system containers to a pool of virtual operating system containers. Additional aspects of the system 110 will be described in greater detail below.
  • It will be understood that a compute-centric object store may be created to operate without the user of virtual operating system (global kernel) or virtual operating system containers. While such an object store would provide advantages such as in-situ computation of data (where objects are processed directly on the object store), the object store may not isolate tenants in the similarly to systems that utilize a virtual operating system and/or virtual operating system containers.
  • In these instances, the compute-centric object store may be configured to receiving a request to perform a compute operation on at least a portion of an object store from a first user via a network service, the request identifying parameters of the compute operation. The object store may also execute an operating system process for the objects identified in the request. The operating system process may perform the compute operation on the object according to the identified parameters of the request. Additionally, once the compute operation has been executed, the operating system process may be terminated by the virtual operating system.
  • The terms in-situ computation will be understood to include the execution of compute operations against objects in an object store, where the objects not moved or copied from or within the object store.
  • In some embodiments, the system 110 is comprised of a hardware layer 115 that provides a logical interface with at least one or more processors and a memory which stores logic that is executed by the one or more processors. Generally, the hardware layer 115 controls one or more of the hardware components of a computing system, such as the computing system 600 of FIG. 6, which will be described in greater detail below. By way of non-limiting example, the hardware layer 115 may manage the hardware components of a server blade or another similar device. The hardware layer 115 provides access to the physical hardware that services a global operating system kernel 120 that cooperates with the hardware layer 115. The global operating system kernel 120 may also be referred to as a host operating system kernel.
  • Generally, the global operating system kernel 120 is configured to administer and manage a pool of guest virtual operating system containers, such as containers 125A-N. The containers 125A-N may operate on a distributed object store in a multitenant manner, where multiple containers can operate on the same object store simultaneously. It will be understood that each user is assigned container from the pool, on an as-needed basis. When a container is applied to an object store the container is referred to as a tenant.
  • According to some embodiments, the system kernel 120 may be utilized to setup the pool of guest virtual operating system containers. The system kernel 120 may also be configured to provide a command line interpreter interface that allows users to request jobs, execute other operating system implemented applications, and interact with a virtual operating system in a manner that is substantially indistinguishable relative to an operating system executing on a bare metal device.
  • Generally, a job may be input by a user via a command line interpreter, such as a Unix shell terminal. More specifically, the user may express a computation using the same language as the language used by a Unix shell terminal. The actual request is submitted to the network service 110B. Indeed, a request may be submitted as an HTTP request to the network service 110B. The body of the request describes the computation to perform in terms of what commands are input into the command line interpreter, which is running within a container. Contrastingly systems that utilize multiple VMs that each comprises an operating system kernel, which are managed by a hypervisor, often require users to construct complex programs or scripts to perform compute operations. Compute operations for traditional VM systems require complex programming due to a complex framework that is used by the hypervisor to coordinate hardware emulation for each of the VMs.
  • Using the command line interpreter interface, the user may specify one or more desired compute operations that are to be executed against objects (such as object 130) within an object store 110A (see FIG. 3). It is noteworthy that the object store 110A may include, for example, a local or distributed object store that maintains contiguous blobs, blocks, or chunks of data. It will be understood that the objects stored in the object store 110A are complete objects, such as files or other similar data structures. Moreover, the compute operations executed against the object store 110A may be performed in such a way that partial stores of data are avoided.
  • In order to perform compute operations on objects for multiple users, the system kernel 120 may collocate containers 125A-N onto the object store 110A, and execute the containers 125A-N simultaneously. In FIG. 3, a plurality of containers, such as container 125A has been placed onto each of a plurality of objects within the object store 110A. Thus, a virtual operating system container is assigned to each of the plurality of objects specified in the user request. Most frequently, the assignment of a single container to a single object occurs when the system executes a “map” phase operation. The details of map and reduce phases provide by the system 110 will be described in greater detail below.
  • Broadly speaking, a virtual operating system container may be a lightweight virtualization solution offering a complete and secure user environment that operates on a single global kernel (system kernel 120), providing performance characteristics that are similar to operating systems that operate on bare metal devices. That is, a virtual machine operates on emulated hardware and is subject to control by a hypervisor, which produces computing inefficiencies. A virtual operating system container may operate without the computing inefficiencies of a typical virtual machine.
  • In some instances, the system kernel 120 may utilize a KVM (Kernel Virtual Machine) that improves the efficiency of the a virtual operating system, such as the global operating system kernel, by leveraging CPU virtualization extensions to eliminate a substantial majority of the binary translation (i.e., hardware emulation) that are frequently required by VMs.
  • Turning to FIG. 2, an exemplary virtual operating system container 125A (FIG. 1) is shown as comprising a quick emulation layer (QEMU) 135, a virtual guest operating system 140, and a compute application 145 that is managed by the virtual guest operating system 140. The QEMU 135 provides hardware emulation and is also VMM (virtual machine monitor). It is noteworthy that in some embodiments the QEMU 135 is not a strict hypervisor layer, but rather each QEMU 135 may be independent in some exemplary embodiments. That is, there may be one QEMU 135 one per container instead of a single QEMU 135 supporting several VMs. Advantageously, the operations of both a VM and a VMM may be combined into the QEMU 135.
  • According to some embodiments, the compute application 145 that is executed may include a primitive O/S compute operation. Exemplary compute operations may include operating system primitive operations, such as query, word count, send, receive, and so forth. Additionally, the operations may comprise more sophisticated operations, such as operations that include audio or video transcoding. Additionally, in some instances, users may store programs or applications in the object store itself. Users may then execute the programs as a part of a compute operation.
  • In some instances the compute operations may include one or more phases such as a map phase, followed by a reduce phase. Generally, a map phase may include an operation that is executed against each of a plurality of objects individually, by a plurality of containers. In some instances, a unique container is assigned to each object that is to be processed.
  • In contrast, a reduce phase may be executed by a single container against a plurality of objects in a batch manner. Using an example such as word count, it will be assumed that the objects of the object store 135 may comprise text files. The application 145 may execute a map phase to count the words in each of the text files. The output of the application 145 may be stored in a plurality of output objects that are stored in the object store 135. A compute application 145 of another container may execute a reduce phase that sums the output objects of the map phase and generates a word count for all objects within the object store 135.
  • It will be understood that the system kernel 120 may schedule and coordinate various compute operations (and phases) performed by the compute applications 145 of all containers. In sum, the system kernel 120 may act similarly to a hypervisor that manages the compute operations of the various active containers. Based upon the request input by the user, the system kernel 120 may instruct the containers to perform a series of map functions, as well as a reduce functions. The map and reduce functions may be coordinated to produce the desired output specified in the request.
  • Turning to FIG. 3, after receiving a request from a user, the system kernel 120 may select a first set of containers, which includes container 125A from the pool of containers. This container 125A is assigned to a user. In response to receiving a request from a second user, the system kernel 120 may also select a second set of containers from the pool of containers.
  • Based upon the request received from the first tenant, the system kernel 120 may map the first set of containers to a plurality of objects, such as object 130, stored in the object store 110A. Likewise, the system kernel 120 may map a second set of containers to a plurality of different objects stored in the object store 110A for the second user. The objects and containers for the first user may be referred to as a compute zone of the first user, while the objects mapped to the container 125N may be referred to as a compute zone of the second user. The maintenance of compute zones allows the system kernel 120 to provide multitenant access to the object store 110A, even when the first and second users are potentially adversarial. For example, the first and second users may be commercial competitors. For security, the system kernel 120 maintains compute zones in order to balkanize object storage and prevent access to objects of other users. Additionally, the balkanization of object storage also ensures fair distribution of resources between users.
  • It will be understood that the system kernel 120 may maintain as many containers and compute zones as allowed by the processor(s) of the hardware layer 115. Additionally, the system kernel 120 assigns a container to a user on an as-needed basis, meaning that containers may not be assigned permanently to a user, which would result in a monopolization of resources when the user is not performing compute operations.
  • FIG. 4 illustrates the placement of the container 125A onto the data store 110A. It is understood that the container 125A encircles a plurality of objects in the data store 110A. This mapping of multiple object to a single container would be commonly seen in a reduce phase, where the container is performing a concatenating or summation process on the outputs of individual containers, such as the containers shown in FIG. 3.
  • Additionally, because the container is placed onto the object store, the system kernel 120 need not transfer objects from the object store 110A into the container for processing in some exemplary embodiments. Advantageously, the container operates directly on the objects of the object store 110A.
  • According to some embodiments, the containers 125A-N managed by the system kernel 120 are empty when the containers 125A-N are in the pool. After objects are mapped to the container, compute operations may be executed by the container on the objects, and a desired output is generated, the system kernel 120 may clear the container and return the container to the pool.
  • In some instances, the system kernel 120 may not generate containers until a request is received from a user. That is, the system kernel 120 may “spin up” or launch containers when a request is received from the user. This allows for minimum impact to the bare metal resources, such as the CPU, as the system kernel 120 need not even maintain a pool of virtual operating system containers, which are awaiting user requests. That is, maintaining a pool of containers requires CPU and memory resources. When the compute operations have been completed, the system kernel 120 may terminate the containers, rather than clearing the containers and returning the containers to a pool.
  • In accordance with the present disclosure, an instruction set architecture may be implemented within the system 110. In some embodiments, the instruction set architecture may specify an application programming interface that allows the system 110 to interact with the distributed object store.
  • According to some embodiments, the system 110 communicatively couples with the object store 110A using a services related application programming interface (SAPI) 155, which provides features such as automatic discovery of object stores, dynamic configuration of object stores, and an API for a user portal. In sum, the SAPI allows users to configure, deploy, and upgrade applications using a set of loosely-coupled, federated services. In some embodiments, the SAPI may include an underlying API and an autoconfig agent, also referred to as a daemon 150. A SAPI client may also be disseminated to clients. It will be understood that the daemon 150 may be associated with a physical node 160 of the object store 110A.
  • In accordance with some embodiments according to the present disclosure, various object stores, such as object store 110A of FIGS. 3 and 4, comprise a single SAPI zone. It will be understood that the SAPI zone may be stateless and the SAPI zone may be configured to write objects into the object store 110A. In addition to storing objects, the SAPI zone may also communicatively couple with a VM API to provision zones and a network API (NAPI) to reserve network interface controllers (NIC) and lookup network universal unique identifiers (UUID).
  • It will be understood that the SAPI 155 may comprise three main object types such as applications, services, and instances. It is noteworthy that an application may comprise one or more services, and each service may comprise one or more instances. Moreover, instances may represent actual object store zones, and such zones inherit zone parameters and metadata from their associated applications and services.
  • Also, the application, service, and instance information may be used by the compute application of a virtual operating system container that is placed onto an object store. The daemon 150 may control the operation of the containers operating on the daemon's object store.
  • Each application, service and instance may include three sets of properties. For example, “params” may comprise zone parameters like a zone's RAM size, disk quota, image UUID, and so forth. These parameters are evaluated when a zone is provisioned. Another property comprises “metadata”, which defines metadata available to the daemon 150. These metadata keys and values form the input of a script template in a configuration manifest (described below). As these values are updated, the daemon 150 may rewrite any configuration and make reference to changed metadata values. Yet another property comprises “manifests” that define a set of configuration manifests are indexed by name to facilitate inheriting manifest from parent objects.
  • It is noteworthy that creating applications and services have no effect on running zones. When an instance is created, a zone is provisioned using the above information from its associated application, service, and instance. Stated otherwise, applications and services (e.g., a job or request) may be defined separate from the objects that the applications and services are to be executed against. Thus, a job may be thought of abstractly as a workflow template. Advantageously, when the user requests the execution of a job, objects need only be defined by the user. The workflow template is then applied against the objects.
  • In some embodiments, the daemon 150 of a zone may be tasked with maintaining configuration inside that zone. The daemon 150 queries the SAPI 155 directly to determine which files to write and where to write them within the object store 110A.
  • The daemon 150 uses objects called configuration manifests; those objects describe the contents, location, and semantics of configuration files for a zone. Those manifests contain a script template which is rendered using the metadata from the associated application, service, and instance.
  • When a user provides a request to the system 110, the system kernel 120 may coordinate a compute flow of compute operations which are managed by the daemon 150. That is, the system kernel 120 may receive a request or “job” from a user, via a command line interpreter. The request identifies parameters of a compute operation that is to be executed against objects in a distributed object store. For example, a request may include performing a word count operation on a file.
  • To facilitate compute flow during the compute process, the system kernel 120 may assign an identifier for the request. This identifier provides a unique identifier that allows objects and outputs of compute operations to be correlated to the user. Objects previously stored in the object store may be correlated to the user utilizing a unique identifier. According to some embodiments, the identifier comprises the name of an input object or job name. This name may be specified by an end user submitting a job/request to the system or may be generated by the system from the request.
  • The user may also identify objects for the compute operation, using, for example, the command line interpreter. An exemplary find object command may include Find|User|Object Store Location; where the Object Store Location defines the object store that includes the object(s) which are necessary for execution of the compute operation.
  • In some instances, the system kernel 120 may query various daemons of object stores to locate the objects within the distributed object store. After the object have been located, the system kernel 120 may generate a set of tasks (e.g., an instruction set) that defines the various compute operations that are to be performed by the daemon of the located object store. In the example provided above, the set of tasks may include only one word count task that is provided to a single daemon of an object store (e.g., physical node). This relatively simple compute operation does not require coordination or scheduling of operations of multiple objects.
  • The daemon 150 may provide instructions to one or more virtual operating system containers that are placed onto the object store by the system kernel 120. That is, the instruction sets provided to the containers is based upon the task assigned to the daemon 150 from the system kernel 120.
  • In some instances, the set of tasks may include a more complex arrangement of operations that are executed against a plurality of objects stores. The system kernel 120 may interact with the daemon to coordinate processing of these objects in a specified order.
  • Additionally, the set of tasks may define various map phases that are to be executed on the objects of the object store, as well as various reduce phases that are executed on the outputs of the map phases. It will be understood that objects within the workflow may be tracked and correlated together using the identifier. For example, if an instruction set passed to a daemon requires performing a word count compute operation on 100 text files, each of the objects of the compute operation would be correlated using the identifier. Thus, the objects of the compute operation would comprise 100 objects that each includes a word count value for their corresponding text file. The identifier may be appended to the object as metadata.
  • It will also be understood that a map phase may result in multiple outputs, which are generated from a single input object. For example, assume that usage logs for a computing device are stored for a 24 hour time period. To determine hourly usage rates, the 24 hour log object may be separated into 24 distinct objects. Thus, the map phase may receive the 24 hour log object and may split the same into constituent output objects to complete the map phase.
  • It will be understood that a more complex request may require a more complicated set of tasks (e.g., phases). For example, if the user desires to look at all 11 p.m. to 12 p.m. user logs for a plurality of computing devices, the set of tasks may require not only the map task where a single input object is processed into multiple objects, but also a reduce phase that sums a plurality of 11 p.m. to 12 p.m. user logs for a plurality of devices.
  • In sum, the system kernel 120 will provide a daemon with tasks that include a map phase for generating the hour increment logs from various input objects. Additionally, the tasks also inform the daemon to return the output objects, which may be stored as an aggregate 11 p.m. to 12 p.m. log object within the object store.
  • It will be understood that the daemon of a physical node (e.g., object store) may control execution of compute operations by the one or more virtual operating system containers that are placed onto the object store via the system kernel 120.
  • Thus, it is appreciated with that intermediate output objects may not be output to the user directly, but may be fed back into the system for additional processing, such as with the map and reduce phases described above. Moreover, the set of tasks generated by the system kernel 120 may include any number of map phases and/or reduce phases, which vary according to the steps required to produce the desired output.
  • FIG. 5 is a flowchart of an exemplary method 500 for executing a compute flow using a set of tasks, according to an instruction set architecture. The method 500 may include a step 505 of receiving a request from a user, the request identifying parameters of a compute operation that is to be executed against objects in a distributed object store.
  • According to some embodiments, the method may include a step 510 of locating one or more objects within the distributed object store, the one or more objects being stored on one or more physical nodes. Once objects have been located, the method may include a step 515 of generating a set of tasks from the request that comprise instructions for a daemon. Again, the set of tasks may define applications, services and instances that are that can be utilized by virtual operating system containers. It will be understood that the set of tasks comprises an instruction set that is a translation of the user request into meaningful input that can be executed by one or more virtual operating system containers.
  • Upon generating the set of tasks, the method includes a step 520 of providing the set of tasks to a daemon of the physical node. Again, the daemon controls execution of the compute operation by one or more virtual operating system containers based upon the set of tasks. The daemon functions as a virtual operating system hypervisor that coordinates the operation and execution of the containers.
  • Finally, the method includes a step 525 of storing an output of the virtual operating system container in the distributed object store.
  • FIG. 6 illustrates an exemplary computing system 600 that may be used to implement an embodiment of the present systems and methods. The system 600 of FIG. 6 may be implemented in the contexts of the likes of computing systems, networks, servers, or combinations thereof. The computing system 600 of FIG. 6 includes one or more processors 610 and main memory 620. Main memory 620 stores, in part, instructions and data for execution by processor 610. Main memory 620 may store the executable code when in operation. The system 600 of FIG. 6 further includes a mass storage device 630, portable storage device 640, output devices 650, user input devices 660, a display system 670, and peripheral devices 680.
  • The components shown in FIG. 6 are depicted as being connected via a single bus 690. The components may be connected through one or more data transport means. Processor unit 610 and main memory 620 may be connected via a local microprocessor bus, and the mass storage device 630, peripheral device(s) 680, portable storage device 640, and display system 670 may be connected via one or more input/output (I/O) buses.
  • Mass storage device 630, which may be implemented with a magnetic disk drive or an optical disk drive, is a non-volatile storage device for storing data and instructions for use by processor unit 610. Mass storage device 630 may store the system software for implementing embodiments of the present technology for purposes of loading that software into main memory 620.
  • Portable storage device 640 operates in conjunction with a portable non-volatile storage medium, such as a floppy disk, compact disk, digital video disc, or USB storage device, to input and output data and code to and from the computer system 600 of FIG. 6. The system software for implementing embodiments of the present technology may be stored on such a portable medium and input to the computer system 600 via the portable storage device 640.
  • User input devices 660 provide a portion of a user interface. User input devices 660 may include an alphanumeric keypad, such as a keyboard, for inputting alpha-numeric and other information, or a pointing device, such as a mouse, a trackball, stylus, or cursor direction keys. Additional user input devices 660 may comprise, but are not limited to, devices such as speech recognition systems, facial recognition systems, motion-based input systems, gesture-based systems, and so forth. For example, user input devices 660 may include a touchscreen. Additionally, the system 600 as shown in FIG. 6 includes output devices 650. Suitable output devices include speakers, printers, network interfaces, and monitors.
  • Display system 670 may include a liquid crystal display (LCD) or other suitable display device. Display system 670 receives textual and graphical information, and processes the information for output to the display device.
  • Peripherals device(s) 680 may include any type of computer support device to add additional functionality to the computer system. Peripheral device(s) 680 may include a modem or a router.
  • The components provided in the computer system 600 of FIG. 6 are those typically found in computer systems that may be suitable for use with embodiments of the present technology and are intended to represent a broad category of such computer components that are well known in the art. Thus, the computer system 600 of FIG. 6 may be a personal computer, hand held computing system, telephone, mobile computing system, workstation, server, minicomputer, mainframe computer, or any other computing system. The computer may also include different bus configurations, networked platforms, multi-processor platforms, etc. Various operating systems may be used including Unix, Linux, Windows, Mac OS, Palm OS, Android, iOS (known as iPhone OS before June 2010), QNX, and other suitable operating systems.
  • It is noteworthy that any hardware platform suitable for performing the processing described herein is suitable for use with the systems and methods provided herein. Computer-readable storage media refer to any medium or media that participate in providing instructions to a central processing unit (CPU), a processor, a microcontroller, or the like. Such media may take forms including, but not limited to, non-volatile and volatile media such as optical or magnetic disks and dynamic memory, respectively. Common forms of computer-readable storage media include a floppy disk, a flexible disk, a hard disk, magnetic tape, any other magnetic storage medium, a CD-ROM disk, digital video disk (DVD), any other optical storage medium, RAM, PROM, EPROM, a FLASHEPROM, any other memory chip or cartridge.
  • Computer program code for carrying out operations for aspects of the present technology may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be coupled with the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
  • The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present technology has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the present technology in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the present technology. Exemplary embodiments were chosen and described in order to best explain the principles of the present technology and its practical application, and to enable others of ordinary skill in the art to understand the present technology for various embodiments with various modifications as are suited to the particular use contemplated.
  • Aspects of the present technology are described above with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the present technology. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
  • These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
  • The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
  • The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present technology. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
  • While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. The descriptions are not intended to limit the scope of the technology to the particular forms set forth herein. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments. It should be understood that the above description is illustrative and not restrictive. To the contrary, the present descriptions are intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the technology as defined by the appended claims and otherwise appreciated by one of ordinary skill in the art. The scope of the technology should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents.

Claims (19)

1. A system, comprising:
one or more processors; and
logic encoded in one or more tangible media for execution by the one or more processors and when executed operable to perform operations comprising:
receiving a request from a user, the request identifying a compute operation that is to be executed against an object in a distributed object store;
locating the object within the distributed object store, the object being stored on a physical node;
assigning a virtual operating system container to the object;
providing an instruction set to a daemon associated with the object, the daemon controlling execution of the compute operation by the virtual operating system container according to the instruction set; and
storing output of the virtual operating system container in the distributed object store.
2. The system according to claim 1, wherein the instruction set causes the virtual operating system container to generate a plurality of outputs using the object.
3. The system according to claim 1, wherein the request is received via a command line interpreter.
4. The system according to claim 1, wherein the virtual operating system container performs the compute operation on the object in such a way that the object remains in-situ within the object store.
5. The system according to claim 1, wherein the virtual operating system container is selected from a pool of virtual operating system containers managed by a global operating kernel system.
6. The system according to claim 5, wherein the virtual operating system container is returned to the pool of virtual operating system containers managed by a global operating system kernel after the virtual operating system container has been cleared.
7. The system according to claim 1, wherein assigning comprises making a read-only instantiation of the object available to applications executing inside the virtual operating system container.
8. The system according to claim 1, further comprising assigning an identifier to the request, wherein the daemon correlates the output of the container to the request using the identifier.
9. The system according to claim 8, wherein the identifier is associated with a compute zone for a user, allowing a global operating system kernel to correlate the output, the request, and the user.
10. A method, comprising:
receiving a request from a user, the request identifying parameters of a compute operation that is to be executed against one or more objects in a distributed object store, the request also comprising an identifier;
generating a set of tasks from the request that comprise instructions for a daemon;
locating the one or more objects within the distributed object store, the one or more objects being stored on a physical node;
providing the set of tasks to the daemon, the daemon controlling execution of the compute operation by a virtual operating system container based upon the set of tasks; and
storing an output of the virtual operating system container in the distributed object store.
11. The method according to claim 10, wherein a plurality of outputs of the virtual operating system container are correlated to the identifier.
12. The method according to claim 10, wherein the set of tasks define a compute flow that defines compute operations that are executed according to a schedule.
13. The method according to claim 12, wherein the compute operations comprise compute phases that include any of:
a map phase where virtual operating system containers perform a first process on a plurality of single objects of the one or more physical nodes;
a reduce phase where the virtual operating system container performs a second process on a plurality of output objects of the map phase; and
any combination of map phases and reduce phases.
14. The method according to claim 13, further comprising correlating the plurality of output objects of the map phase to the request using the identifier, wherein the virtual operating system container of the reduce phase locates the plurality of output objects stored in the one or more physical nodes using the identifier.
15. The method according to claim 10, wherein the instructions define applications, services, and instances for virtual operating system containers that operate on the objects.
16. The method according to claim 10, wherein the instructions cause the virtual operating system containers to generate a plurality of output objects from a single input object.
17. The method according to claim 16, wherein the plurality of output objects are correlated to one another using the identifier.
18. The method according to claim 10, wherein the virtual operating system container performs a compute operation on an object in such a way that the object remains in-situ within the object store.
19. The method according to claim 10, wherein the daemon controls operation of a plurality of virtual operating system containers assigned to a plurality of objects, using the set of tasks.
US13/831,349 2013-03-14 2013-03-14 Instruction set architecture for compute-based object stores Active US8826279B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/831,349 US8826279B1 (en) 2013-03-14 2013-03-14 Instruction set architecture for compute-based object stores

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/831,349 US8826279B1 (en) 2013-03-14 2013-03-14 Instruction set architecture for compute-based object stores

Publications (2)

Publication Number Publication Date
US8826279B1 US8826279B1 (en) 2014-09-02
US20140282513A1 true US20140282513A1 (en) 2014-09-18

Family

ID=51400213

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/831,349 Active US8826279B1 (en) 2013-03-14 2013-03-14 Instruction set architecture for compute-based object stores

Country Status (1)

Country Link
US (1) US8826279B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8881279B2 (en) 2013-03-14 2014-11-04 Joyent, Inc. Systems and methods for zone-based intrusion detection
US8898205B2 (en) 2013-03-15 2014-11-25 Joyent, Inc. Object store management operations within compute-centric object stores
US8943284B2 (en) 2013-03-14 2015-01-27 Joyent, Inc. Systems and methods for integrating compute resources in a storage area network
US8959217B2 (en) 2010-01-15 2015-02-17 Joyent, Inc. Managing workloads and hardware resources in a cloud resource
US9092238B2 (en) 2013-03-15 2015-07-28 Joyent, Inc. Versioning schemes for compute-centric object stores
US9104456B2 (en) 2013-03-14 2015-08-11 Joyent, Inc. Zone management of compute-centric object stores
US9582327B2 (en) 2013-03-14 2017-02-28 Joyent, Inc. Compute-centric object stores and methods of use
US9740705B2 (en) 2015-12-04 2017-08-22 International Business Machines Corporation Storlet workflow optimization leveraging clustered file system roles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9424089B2 (en) * 2012-01-24 2016-08-23 Samsung Electronics Co., Ltd. Hardware acceleration of web applications
US10585712B2 (en) 2017-05-31 2020-03-10 International Business Machines Corporation Optimizing a workflow of a storlet architecture

Family Cites Families (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6393495B1 (en) 1995-11-21 2002-05-21 Diamond Multimedia Systems, Inc. Modular virtualizing device driver architecture
US6792606B2 (en) 1998-07-17 2004-09-14 International Business Machines Corporation Method and apparatus for object persistence
US6901594B1 (en) 1999-04-23 2005-05-31 Nortel Networks Ltd. Apparatus and method for establishing communication between applications
US6553391B1 (en) 2000-06-08 2003-04-22 International Business Machines Corporation System and method for replicating external files and database metadata pertaining thereto
US20020069356A1 (en) 2000-06-12 2002-06-06 Kwang Tae Kim Integrated security gateway apparatus
GB2366401B (en) 2000-08-25 2005-06-01 Mitel Corp Resource sharing with sliding constraints
US7379994B2 (en) 2000-10-26 2008-05-27 Metilinx Aggregate system resource analysis including correlation matrix and metric-based analysis
US20020198995A1 (en) 2001-04-10 2002-12-26 International Business Machines Corporation Apparatus and methods for maximizing service-level-agreement profits
US20020156767A1 (en) 2001-04-12 2002-10-24 Brian Costa Method and service for storing records containing executable objects
US8370936B2 (en) 2002-02-08 2013-02-05 Juniper Networks, Inc. Multi-method gateway-based network security systems and methods
US7640547B2 (en) 2002-02-08 2009-12-29 Jpmorgan Chase & Co. System and method for allocating computing resources of a distributed computing system
US20030229794A1 (en) 2002-06-07 2003-12-11 Sutton James A. System and method for protection against untrusted system management code by redirecting a system management interrupt and creating a virtual machine container
US7047254B2 (en) 2002-10-31 2006-05-16 Hewlett-Packard Development Company, L.P. Method and apparatus for providing aggregate object identifiers
US7899901B1 (en) 2002-12-02 2011-03-01 Arcsight, Inc. Method and apparatus for exercising and debugging correlations for network security system
US7774191B2 (en) * 2003-04-09 2010-08-10 Gary Charles Berkowitz Virtual supercomputer
US7496892B2 (en) 2003-05-06 2009-02-24 Andrew Nuss Polymorphic regular expressions
WO2005004370A2 (en) 2003-06-28 2005-01-13 Geopacket Corporation Quality determination for packetized information
JP4025260B2 (en) 2003-08-14 2007-12-19 株式会社東芝 Scheduling method and information processing system
US8417673B2 (en) 2003-10-07 2013-04-09 International Business Machines Corporation Method, system, and program for retaining versions of files
US7265754B2 (en) 2003-11-12 2007-09-04 Proto Manufacturing Ltd. Method for displaying material characteristic information
US7437730B2 (en) 2003-11-14 2008-10-14 International Business Machines Corporation System and method for providing a scalable on demand hosting system
US20050188075A1 (en) 2004-01-22 2005-08-25 International Business Machines Corporation System and method for supporting transaction and parallel services in a clustered system based on a service level agreement
US7761923B2 (en) 2004-03-01 2010-07-20 Invensys Systems, Inc. Process control methods and apparatus for intrusion detection, protection and network hardening
CA2486103A1 (en) 2004-10-26 2006-04-26 Platespin Ltd. System and method for autonomic optimization of physical and virtual resource use in a data center
US8181182B1 (en) 2004-11-16 2012-05-15 Oracle America, Inc. Resource allocation brokering in nested containers
US7685148B2 (en) 2005-01-31 2010-03-23 Computer Associates Think, Inc. Automatically configuring a distributed computing system according to a hierarchical model
EP1717755B1 (en) 2005-03-08 2011-02-09 Oculus Info Inc. System and method for large scale information analysis using data visualization techniques
US20110016214A1 (en) 2009-07-15 2011-01-20 Cluster Resources, Inc. System and method of brokering cloud computing resources
US7870256B2 (en) 2005-03-25 2011-01-11 Hewlett-Packard Development Company, L.P. Remote desktop performance model for assigning resources
US7774457B1 (en) 2005-03-25 2010-08-10 Hewlett-Packard Development Company, L.P. Resource evaluation for a batch job and an interactive session concurrently executed in a grid computing environment
US8010498B2 (en) 2005-04-08 2011-08-30 Microsoft Corporation Virtually infinite reliable storage across multiple storage devices and storage services
US8886778B2 (en) 2005-04-29 2014-11-11 Netapp, Inc. System and method for proxying network management protocol commands to enable cluster wide management of data backups
US8667179B2 (en) 2005-04-29 2014-03-04 Microsoft Corporation Dynamic utilization of condensing metadata
US7933870B1 (en) 2005-10-12 2011-04-26 Adobe Systems Incorporated Managing file information
US7558859B2 (en) 2005-10-17 2009-07-07 Microsoft Corporation Peer-to-peer auction based data distribution
US7603671B2 (en) 2005-11-04 2009-10-13 Sun Microsystems, Inc. Performance management in a virtual computing environment
US20070118653A1 (en) 2005-11-22 2007-05-24 Sabre Inc. System, method, and computer program product for throttling client traffic
US7801912B2 (en) * 2005-12-29 2010-09-21 Amazon Technologies, Inc. Method and apparatus for a searchable data service
US7529780B1 (en) 2005-12-30 2009-05-05 Google Inc. Conflict management during data object synchronization between client and server
US20070174429A1 (en) 2006-01-24 2007-07-26 Citrix Systems, Inc. Methods and servers for establishing a connection between a client system and a virtual machine hosting a requested computing environment
US8417746B1 (en) 2006-04-03 2013-04-09 F5 Networks, Inc. File system management with enhanced searchability
US8104041B2 (en) 2006-04-24 2012-01-24 Hewlett-Packard Development Company, L.P. Computer workload redistribution based on prediction from analysis of local resource utilization chronology data
US9703285B2 (en) 2006-04-27 2017-07-11 International Business Machines Corporation Fair share scheduling for mixed clusters with multiple resources
US7814465B2 (en) 2006-05-12 2010-10-12 Oracle America, Inc. Method and apparatus for application verification
US7721091B2 (en) 2006-05-12 2010-05-18 International Business Machines Corporation Method for protecting against denial of service attacks using trust, quality of service, personalization, and hide port messages
US8555288B2 (en) 2006-05-17 2013-10-08 Teradata Us, Inc. Managing database utilities to improve throughput and concurrency
US20080080396A1 (en) 2006-09-28 2008-04-03 Microsoft Corporation Marketplace for cloud services resources
US7917599B1 (en) 2006-12-15 2011-03-29 The Research Foundation Of State University Of New York Distributed adaptive network memory engine
US20080155110A1 (en) 2006-12-22 2008-06-26 Morris Robert P METHODS AND SYSTEMS FOR DETERMINING SCHEME HANDLING PROCEDURES FOR PROCESSING URIs BASED ON URI SCHEME MODIFIERS
US7673113B2 (en) 2006-12-29 2010-03-02 Intel Corporation Method for dynamic load balancing on partitioned systems
US8380880B2 (en) 2007-02-02 2013-02-19 The Mathworks, Inc. Scalable architecture
US8464251B2 (en) 2007-03-31 2013-06-11 Intel Corporation Method and apparatus for managing page tables from a non-privileged software domain
US8706914B2 (en) 2007-04-23 2014-04-22 David D. Duchesneau Computing infrastructure
US8141090B1 (en) 2007-04-24 2012-03-20 Hewlett-Packard Development Company, L.P. Automated model-based provisioning of resources
US20090077235A1 (en) 2007-09-19 2009-03-19 Sun Microsystems, Inc. Mechanism for profiling and estimating the runtime needed to execute a job
US9621649B2 (en) 2007-09-28 2017-04-11 Xcerion Aktiebolag Network operating system
US8151265B2 (en) 2007-12-19 2012-04-03 International Business Machines Corporation Apparatus for and method for real-time optimization of virtual machine input/output performance
US7849111B2 (en) 2007-12-31 2010-12-07 Teradata Us, Inc. Online incremental database dump
US8006079B2 (en) 2008-02-22 2011-08-23 Netapp, Inc. System and method for fast restart of a guest operating system in a virtual machine environment
JP4724730B2 (en) 2008-04-09 2011-07-13 株式会社日立製作所 Information processing system operation management method, operation management program, operation management apparatus, and information processing system
US8904383B2 (en) 2008-04-10 2014-12-02 Hewlett-Packard Development Company, L.P. Virtual machine migration according to environmental data
US8365167B2 (en) 2008-04-15 2013-01-29 International Business Machines Corporation Provisioning storage-optimized virtual machines within a virtual desktop environment
US8849971B2 (en) 2008-05-28 2014-09-30 Red Hat, Inc. Load balancing in cloud-based networks
US9069599B2 (en) 2008-06-19 2015-06-30 Servicemesh, Inc. System and method for a cloud computing abstraction layer with security zone facilities
US9842004B2 (en) 2008-08-22 2017-12-12 Red Hat, Inc. Adjusting resource usage for cloud-based networks
US8103776B2 (en) 2008-08-29 2012-01-24 Red Hat, Inc. Systems and methods for storage allocation in provisioning of virtual machines
US8271974B2 (en) 2008-10-08 2012-09-18 Kaavo Inc. Cloud computing lifecycle management for N-tier applications
US9141381B2 (en) 2008-10-27 2015-09-22 Vmware, Inc. Version control environment for virtual machines
US7912951B2 (en) 2008-10-28 2011-03-22 Vmware, Inc. Quality of service management
US8645837B2 (en) 2008-11-26 2014-02-04 Red Hat, Inc. Graphical user interface for managing services in a distributed computing system
US9870541B2 (en) 2008-11-26 2018-01-16 Red Hat, Inc. Service level backup using re-cloud network
US8099411B2 (en) 2008-12-15 2012-01-17 Teradata Us, Inc. System, method, and computer-readable medium for applying conditional resource throttles to facilitate workload management in a database system
US8799895B2 (en) 2008-12-22 2014-08-05 Electronics And Telecommunications Research Institute Virtualization-based resource management apparatus and method and computing system for virtualization-based resource management
US8001247B2 (en) 2009-02-27 2011-08-16 Red Hat, Inc. System for trigger-based “gated” dynamic virtual and physical system provisioning
US20130129068A1 (en) 2009-03-02 2013-05-23 Twilio, Inc. Method and system for a multitenancy telephone network
US8375195B2 (en) 2009-03-05 2013-02-12 Oracle America, Inc. Accessing memory locations for paged memory objects in an object-addressed memory system
US7904540B2 (en) 2009-03-24 2011-03-08 International Business Machines Corporation System and method for deploying virtual machines in a computing environment
US8103847B2 (en) 2009-04-08 2012-01-24 Microsoft Corporation Storage virtual containers
US8433749B2 (en) 2009-04-15 2013-04-30 Accenture Global Services Limited Method and system for client-side scaling of web server farm architectures in a cloud data center
US8856783B2 (en) 2010-10-12 2014-10-07 Citrix Systems, Inc. Allocating virtual machines according to user-specific virtual machine metrics
CA2760251A1 (en) 2009-05-19 2010-11-25 Security First Corp. Systems and methods for securing data in the cloud
US9450783B2 (en) 2009-05-28 2016-09-20 Red Hat, Inc. Abstracting cloud management
US20100306767A1 (en) 2009-05-29 2010-12-02 Dehaan Michael Paul Methods and systems for automated scaling of cloud computing systems
US20100332629A1 (en) 2009-06-04 2010-12-30 Lauren Ann Cotugno Secure custom application cloud computing architecture
US20100318609A1 (en) 2009-06-15 2010-12-16 Microsoft Corporation Bridging enterprise networks into cloud
US8201169B2 (en) 2009-06-15 2012-06-12 Vmware, Inc. Virtual machine fault tolerance
US8286178B2 (en) 2009-06-24 2012-10-09 International Business Machines Corporation Allocation and regulation of CPU entitlement for virtual processors in logical partitioned platform
CA2674402C (en) 2009-07-31 2016-07-19 Ibm Canada Limited - Ibm Canada Limitee Optimizing on demand allocation of virtual machines using a stateless preallocation pool
US9740533B2 (en) 2009-08-03 2017-08-22 Oracle International Corporation Altruistic dependable memory overcommit for virtual machines
US8694819B2 (en) 2009-08-24 2014-04-08 Hewlett-Packard Development Company, L.P. System and method for gradually adjusting a virtual interval timer counter value to compensate the divergence of a physical interval timer counter value and the virtual interval timer counter value
US8271653B2 (en) 2009-08-31 2012-09-18 Red Hat, Inc. Methods and systems for cloud management using multiple cloud management schemes to allow communication between independently controlled clouds
US8862720B2 (en) 2009-08-31 2014-10-14 Red Hat, Inc. Flexible cloud management including external clouds
US20110078303A1 (en) 2009-09-30 2011-03-31 Alcatel-Lucent Usa Inc. Dynamic load balancing and scaling of allocated cloud resources in an enterprise network
US10268522B2 (en) 2009-11-30 2019-04-23 Red Hat, Inc. Service aggregation using graduated service levels in a cloud network
US9842006B2 (en) 2009-12-01 2017-12-12 International Business Machines Corporation Application processing allocation in a computing system
US8490087B2 (en) 2009-12-02 2013-07-16 International Business Machines Corporation System and method for transforming legacy desktop environments to a virtualized desktop model
US20110138382A1 (en) 2009-12-03 2011-06-09 Recursion Software, Inc. System and method for loading resources into a virtual machine
US8726334B2 (en) 2009-12-09 2014-05-13 Microsoft Corporation Model based systems management in virtualized and non-virtualized environments
US9009294B2 (en) 2009-12-11 2015-04-14 International Business Machines Corporation Dynamic provisioning of resources within a cloud computing environment
US8452835B2 (en) 2009-12-23 2013-05-28 Citrix Systems, Inc. Systems and methods for object rate limiting in multi-core system
US8984503B2 (en) 2009-12-31 2015-03-17 International Business Machines Corporation Porting virtual images between platforms
EP2521976B1 (en) 2010-01-08 2018-04-18 Sauce Labs, Inc. Real time verification of web applications
US8583945B2 (en) 2010-01-14 2013-11-12 Muse Green Investments LLC Minimizing power consumption in computers
US9021046B2 (en) 2010-01-15 2015-04-28 Joyent, Inc Provisioning server resources in a cloud resource
US8301746B2 (en) 2010-01-26 2012-10-30 International Business Machines Corporation Method and system for abstracting non-functional requirements based deployment of virtual machines
US9130912B2 (en) 2010-03-05 2015-09-08 International Business Machines Corporation System and method for assisting virtual machine instantiation and migration
US20110270968A1 (en) 2010-04-30 2011-11-03 Salsburg Michael A Decision support system for moving computing workloads to public clouds
US8719804B2 (en) 2010-05-05 2014-05-06 Microsoft Corporation Managing runtime execution of applications on cloud computing systems
US8661132B2 (en) 2010-05-28 2014-02-25 International Business Machines Corporation Enabling service virtualization in a cloud
DE102010017215A1 (en) 2010-06-02 2011-12-08 Aicas Gmbh Method for carrying out a memory management
US9495427B2 (en) 2010-06-04 2016-11-15 Yale University Processing of data using a database system in communication with a data processing framework
US8935317B2 (en) 2010-06-23 2015-01-13 Microsoft Corporation Dynamic partitioning of applications between clients and servers
US8434081B2 (en) 2010-07-02 2013-04-30 International Business Machines Corporation Storage manager for virtual machines with virtual storage
CN102971710B (en) 2010-07-06 2016-06-29 松下电器(美国)知识产权公司 Virtual computer system, virtual computer control method and integrated circuit
EP2609502A4 (en) 2010-08-24 2017-03-29 Jay Moorthi Method and apparatus for clearing cloud compute demand
US20120054742A1 (en) 2010-09-01 2012-03-01 Microsoft Corporation State Separation Of User Data From Operating System In A Pooled VM Environment
US9152464B2 (en) 2010-09-03 2015-10-06 Ianywhere Solutions, Inc. Adjusting a server multiprogramming level based on collected throughput values
US8544007B2 (en) 2010-09-13 2013-09-24 Microsoft Corporation Customization, deployment and management of virtual and physical machine images in an enterprise system
US8769534B2 (en) 2010-09-23 2014-07-01 Accenture Global Services Limited Measuring CPU utilization in a cloud computing infrastructure by artificially executing a bursting application on a virtual machine
US9235442B2 (en) 2010-10-05 2016-01-12 Accenture Global Services Limited System and method for cloud enterprise services
US9946582B2 (en) 2010-10-14 2018-04-17 Nec Corporation Distributed processing device and distributed processing system
WO2011110026A1 (en) 2010-10-29 2011-09-15 华为技术有限公司 Method and apparatus for realizing load balance of resources in data center
US8336051B2 (en) 2010-11-04 2012-12-18 Electron Database Corporation Systems and methods for grouped request execution
US20120131156A1 (en) 2010-11-24 2012-05-24 Brandt Mark S Obtaining unique addresses and fully-qualified domain names in a server hosting system
KR101738641B1 (en) 2010-12-17 2017-05-23 삼성전자주식회사 Apparatus and method for compilation of program on multi core system
US8863138B2 (en) 2010-12-22 2014-10-14 Intel Corporation Application service performance in cloud computing
US20120173709A1 (en) 2011-01-05 2012-07-05 Li Li Seamless scaling of enterprise applications
US20120179874A1 (en) 2011-01-07 2012-07-12 International Business Machines Corporation Scalable cloud storage architecture
US8713566B2 (en) 2011-01-31 2014-04-29 International Business Machines Corporation Method and system for delivering and executing virtual container on logical partition of target computing device
US8984269B2 (en) 2011-02-28 2015-03-17 Red Hat, Inc. Migrating data among cloud-based storage networks via a data distribution service
US8555276B2 (en) 2011-03-11 2013-10-08 Joyent, Inc. Systems and methods for transparently optimizing workloads
US8429282B1 (en) 2011-03-22 2013-04-23 Amazon Technologies, Inc. System and method for avoiding system overload by maintaining an ideal request rate
US8615676B2 (en) 2011-03-24 2013-12-24 International Business Machines Corporation Providing first field data capture in a virtual input/output server (VIOS) cluster environment with cluster-aware vioses
US8875240B2 (en) 2011-04-18 2014-10-28 Bank Of America Corporation Tenant data center for establishing a virtual machine in a cloud environment
US9124494B2 (en) 2011-05-26 2015-09-01 Kaseya Limited Method and apparatus of performing remote management of a managed machine
US8412945B2 (en) 2011-08-09 2013-04-02 CloudPassage, Inc. Systems and methods for implementing security in a cloud computing environment
US8631131B2 (en) 2011-09-07 2014-01-14 Red Hat Israel, Ltd. Virtual machine pool cache
US8806005B2 (en) 2011-09-12 2014-08-12 Microsoft Corporation Cross-machine event log correlation
US20130086590A1 (en) 2011-09-30 2013-04-04 John Mark Morris Managing capacity of computing environments and systems that include a database
US9395920B2 (en) 2011-11-17 2016-07-19 Mirosoft Technology Licensing, LLC Throttle disk I/O using disk drive simulation model
US9170849B2 (en) 2012-01-09 2015-10-27 Microsoft Technology Licensing, Llc Migration of task to different pool of resources based on task retry count during task lease
US8893140B2 (en) 2012-01-24 2014-11-18 Life Coded, Llc System and method for dynamically coordinating tasks, schedule planning, and workload management
US8972986B2 (en) 2012-05-25 2015-03-03 International Business Machines Corporation Locality-aware resource allocation for cloud computing
US8924977B2 (en) 2012-06-18 2014-12-30 International Business Machines Corporation Sequential cooperation between map and reduce phases to improve data locality
US8677359B1 (en) 2013-03-14 2014-03-18 Joyent, Inc. Compute-centric object stores and methods of use

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8959217B2 (en) 2010-01-15 2015-02-17 Joyent, Inc. Managing workloads and hardware resources in a cloud resource
US9021046B2 (en) 2010-01-15 2015-04-28 Joyent, Inc Provisioning server resources in a cloud resource
US8881279B2 (en) 2013-03-14 2014-11-04 Joyent, Inc. Systems and methods for zone-based intrusion detection
US8943284B2 (en) 2013-03-14 2015-01-27 Joyent, Inc. Systems and methods for integrating compute resources in a storage area network
US9104456B2 (en) 2013-03-14 2015-08-11 Joyent, Inc. Zone management of compute-centric object stores
US9582327B2 (en) 2013-03-14 2017-02-28 Joyent, Inc. Compute-centric object stores and methods of use
US8898205B2 (en) 2013-03-15 2014-11-25 Joyent, Inc. Object store management operations within compute-centric object stores
US9075818B2 (en) 2013-03-15 2015-07-07 Joyent, Inc. Object store management operations within compute-centric object stores
US9092238B2 (en) 2013-03-15 2015-07-28 Joyent, Inc. Versioning schemes for compute-centric object stores
US9792290B2 (en) 2013-03-15 2017-10-17 Joyent, Inc. Object store management operations within compute-centric object stores
US9740705B2 (en) 2015-12-04 2017-08-22 International Business Machines Corporation Storlet workflow optimization leveraging clustered file system roles

Also Published As

Publication number Publication date
US8826279B1 (en) 2014-09-02

Similar Documents

Publication Publication Date Title
US8677359B1 (en) Compute-centric object stores and methods of use
US8826279B1 (en) Instruction set architecture for compute-based object stores
US9104456B2 (en) Zone management of compute-centric object stores
US9891942B2 (en) Maintaining virtual machines for cloud-based operators in a streaming application in a ready state
US9792290B2 (en) Object store management operations within compute-centric object stores
US9983863B2 (en) Method to optimize provisioning time with dynamically generated virtual disk contents
US9628353B2 (en) Using cloud resources to improve performance of a streaming application
US9710292B2 (en) Allowing management of a virtual machine by multiple cloud providers
US20180267824A1 (en) Replicating a virtual machine implementing parallel operators in a streaming application based on performance
US20150334039A1 (en) Bursting cloud resources to affect state change performance
US9407523B2 (en) Increasing performance of a streaming application by running experimental permutations
US9338229B2 (en) Relocating an application from a device to a server
US20150373078A1 (en) On-demand helper operator for a streaming application
US20160191617A1 (en) Relocating an embedded cloud for fast configuration of a cloud computing environment
US20150134774A1 (en) Sharing of portable initialized objects between computing platforms
Chapke Auto Provisioning Portal

Legal Events

Date Code Title Description
AS Assignment

Owner name: JOYENT, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PACHECO, DAVID;CAVAGE, MARK;XIAO, YUNONG;AND OTHERS;SIGNING DATES FROM 20130313 TO 20130314;REEL/FRAME:030397/0070

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8