US20140274949A1 - Personal care compositions - Google Patents

Personal care compositions Download PDF

Info

Publication number
US20140274949A1
US20140274949A1 US14/210,523 US201414210523A US2014274949A1 US 20140274949 A1 US20140274949 A1 US 20140274949A1 US 201414210523 A US201414210523 A US 201414210523A US 2014274949 A1 US2014274949 A1 US 2014274949A1
Authority
US
United States
Prior art keywords
composition
spray
fragrance
cyclic oligosaccharide
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/210,523
Inventor
Timothy Alan Scavone
Brian Francis Gray
Peter Christopher Ellingson
Dean Larry DuVal
Misael Omar AVILES
Victor Nicholas Vega
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to US14/210,523 priority Critical patent/US20140274949A1/en
Assigned to THE PROCTER & GAMBLE COMPANY reassignment THE PROCTER & GAMBLE COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AVILES, MISAEL OMAR, DUVAL, LARRY DEAN, ELLINGSON, PETER CHRISTOPHER, GRAY, BRIAN FRANCIS, SCAVONE, TIMOTHY ALAN, VEGA, VICTOR NICHOLAS
Publication of US20140274949A1 publication Critical patent/US20140274949A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B9/00Essential oils; Perfumes
    • C11B9/0069Heterocyclic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/716Glucans
    • A61K31/724Cyclodextrins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/046Aerosols; Foams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • A61K8/345Alcohols containing more than one hydroxy group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/36Carboxylic acids; Salts or anhydrides thereof
    • A61K8/362Polycarboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/738Cyclodextrins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q13/00Formulations or additives for perfume preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q15/00Anti-perspirants or body deodorants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/20Chemical, physico-chemical or functional or structural properties of the composition as a whole
    • A61K2800/30Characterized by the absence of a particular group of ingredients

Definitions

  • the present disclosure generally relates to compositions comprising particular cyclic oligosaccharides, a fragrance, and a volatile solvent; and methods relating thereto.
  • fragrances are often prematurely lost because many fragrances are relatively highly volatile and thus evaporate quickly after application. Because the amount of the fragrance that is released into the surrounding area generally decreases after application of a personal care composition, a consumer is likely to perceive potentially minimal or no fragrance odor character after time. Therefore, there is a need for improved personal care compositions that can deliver pleasant fragrances for extended periods of time during and after application of the product.
  • a method for delivering an improved moisture-triggered fragrance release system comprising contacting a suitable substrate with a composition comprising a cyclic oligosaccharide selected from the group consisting of a water-soluble cyclic oligosaccharide, an ethanol-soluble cyclic oligosaccharide, a water- and ethanol-soluble cyclic oligosaccharide, and mixtures thereof; a fragrance; a volatile solvent; and a nonvolatile solvent; wherein the weight ratio of the nonvolatile solvent to the cyclic oligosaccharide is less than 1:1.
  • a method for delivering an improved moisture-triggered fragrance release system comprising contacting a suitable substrate with an aerosolized composition comprising a cyclic oligosaccharide selected from the group consisting of a water-soluble cyclic oligosaccharide, an ethanol-soluble cyclic oligosaccharide, a water- and ethanol-soluble cyclic oligosaccharide, and mixtures thereof; a fragrance; a volatile solvent; and a propellant; wherein the aerosolized composition is free of nonvolatile solvents.
  • a composition comprising a cyclic oligosaccharide selected from the group consisting of a water-soluble cyclic oligosaccharide, an ethanol-soluble cyclic oligosaccharide, a water- and ethanol-soluble cyclic oligosaccharide, and mixtures thereof; a fragrance; a volatile solvent; and a nonvolatile solvent; wherein the weight ratio of the nonvolatile solvent to the cyclic oligosaccharide is less than 1:1.
  • An aerosolized composition comprising a cyclic oligosaccharide selected from the group consisting of a water-soluble cyclic oligosaccharide, an ethanol-soluble cyclic oligosaccharide, a water- and ethanol-soluble cyclic oligosaccharide, and mixtures thereof; a fragrance; a volatile solvent; and a propellant; wherein the aerosolized composition is free of nonvolatile solvents.
  • the devices, apparatuses, methods, components, and/or compositions of the present invention can include, consist essentially of, or consist of, the components of the present invention as well as other ingredients described herein.
  • Free of means that the stated ingredient has not been added to the composition. However, the stated ingredient may incidentally form as a byproduct or a reaction product of the other components of the personal care composition.
  • Nonvolatile refers to those materials that are liquid under ambient conditions and which have a measurable vapor pressure at 25° C. These materials typically have a vapor pressure less than about 0.01 mmHg, and an average boiling point typically greater than about 250° C.
  • soluble means at least about 0.1 g of solute dissolves in 100 ml of solvent at 25° C. and 1 atm of pressure.
  • “Substantially free” of means an amount of a material that is less than 1%, 0.5%, 0.25%, 0.1%, 0.05%, 0.01%, or 0.001% by weight of a composition.
  • Cyclic oligosaccharides and in particular cyclodextrins, have been used as a means to deliver a moisture-triggered fragrance from non-polar systems.
  • a fragrance is typically encapsulated within the cyclodextrin and is released when moisture is introduced into the system.
  • One of the challenges of delivering a similar moisture-triggered fragrance release system in polar form is that the polar environment will typically release the fragrance within the system itself and not provide a long lasting fragrance.
  • compositions described herein may include a cyclic oligosaccharide.
  • cyclic oligosaccharide means a cyclic structure comprising six or more saccharide units.
  • the cyclic oligosaccharides can have six, seven, or eight saccharide units or mixtures thereof. It is common in the art to refer to six, seven and eight membered cyclic oligosaccharides as ⁇ , ⁇ , and ⁇ , respectively.
  • the cyclic oligosaccharides that may be useful include those that are soluble in water, ethanol, or both water and ethanol.
  • the cyclic oligosaccharides useful herein may have a solubility of at least about 0.1 g/100 ml, at 25° C. and 1 atm of pressure in either water, ethanol, or both water and ethanol.
  • the compositions disclosed herein may comprise from about 0.001% to about 40%, from about 0.1% to about 25%, from about 0.3% to about 20%, from about 0.5% to about 10%, or from about 0.75% to about 5%, by weight of the composition, of a cyclic oligosaccharide.
  • the compositions disclosed herein may comprise from 0.001% to 40%, from 0.1% to 25%, from 0.3% to 20%, from 0.5% to 10%, or from 0.75% to 5%, by weight of the composition, of a cyclic oligosaccharide.
  • the cyclic oligosaccharide may comprise any suitable saccharide or mixture of saccharides.
  • suitable saccharides include, but are not limited to, glucose, fructose, mannose, galactose, maltose, and mixtures thereof.
  • the cyclic oligosaccharide, or mixture of cyclic oligosaccharides may be substituted by any suitable substituent or mixture of substituents.
  • mixture of substituents means that two or more different suitable substituents may be substituted onto one cyclic oligosaccharide.
  • substituents include, but are not limited to, alkyl groups, hydroxyalkyl groups, dihydroxyalkyl groups, carboxyalkyl groups, aryl groups, maltosyl groups, allyl groups, benzyl groups, alkanoyl groups, and mixtures thereof. These substituents may be saturated or unsaturated, straight or branched chain. For example, the substituents may include saturated and straight chain alkyl groups, hydroxyalkyl groups, and mixtures thereof.
  • the alkyl and hydroxyalkyl substituents may also be selected from C 1 -C 8 alkyl or hydroxyalkyl groups, alkyl and hydroxyalkyl substituents from C 1 -C 6 alkyl or hydroxyalkyl groups, and alkyl and hydroxyalkyl substituents from C 1 -C 4 alkyl or hydroxyalkyl groups.
  • the alkyl and hydroxyalkyl substituents may be, for example, propyl, ethyl, methyl, and hydroxypropyl.
  • the cyclic oligosaccharides may have an average degree of substitution of at least 1.6, wherein the term “degree of substitution” means the average number of substituents per saccharide unit.
  • the cyclic oligosaccharides may have an average degree of substitution of less than about 2.8 or from about 1.7 to about 2.0.
  • the average number of substituents may be determined using common Nuclear Magnetic Resonance techniques known in the art.
  • cyclic oligosaccharides useful herein include methyl- ⁇ -cyclodextrins, methyl- ⁇ -cyclodextrins, hydroxypropyl- ⁇ -cyclodextrins, hydroxypropyl- ⁇ -cyclodextrins, and mixtures thereof.
  • compositions described herein may include a volatile solvent or a mixture of volatile solvents.
  • the volatile solvents may comprise greater than 10%, greater than 30%, greater than 40%, greater than 50%, greater than 60%, greater than 70%, greater than 80%, greater than 90% or greater than 95%, by weight of the composition.
  • the volatile solvents useful herein may be relatively odorless and safe for use on human skin. Suitable volatile solvents may include C 1 -C 4 alcohols and mixtures thereof. For example, ethanol may be used as the volatile solvent.
  • volatile solvents include methanol, propanol, isopropanol, butanol, and mixtures thereof.
  • the composition may comprise a nonvolatile solvent or a mixture of nonvolatile solvents.
  • nonvolatile solvents include benzyl benzoate, diethyl phthalate, isopropyl myristate, propylene glycol, dipropylene glycol, triethyl citrate, and mixtures thereof. If present, the nonvolatile solvent may be included at a weight ratio of the nonvolatile solvent to the cyclic oligosaccharide of less than 1:1, less than 1:2, less than 1:10, or less than 1:100.
  • the nonvolatile solvent may also be included at a weight ratio of the nonvolatile solvent to the cyclic oligosaccharide of less than about 1:1, less than about 1:2, less than about 1:10, or less than about 1:100 From a weight percentage perspective, the nonvolatile solvent may be included at a level of from about 0.5% to about 5% or from about 1% to about 3% by weight of the composition.
  • Some suitable nonvolatile solvents may provide skin or other benefits since they are left behind on the skin upon applying the composition to one's skin. For example, panthenol, panthenyl triacetate, or other Vitamin B5 derivatives can act as both a nonvolatile solvent and a skin conditioning agent.
  • the composition may comprise a fragrance.
  • fragrance is used to indicate any odoriferous material. Any fragrance that is cosmetically acceptable may be used in the composition.
  • the fragrance may be one that is a liquid at room temperature.
  • the fragrance(s) may be present at a level from about 0.01% to about 40%, from about 0.1% to about 25%, from about 0.25% to about 20%, or from about 0.5% to about 15%, by weight of the composition.
  • fragrances A wide variety of chemicals are known as fragrances, including aldehydes, ketones, and esters. More commonly, naturally occurring plant and animal oils and exudates comprising complex mixtures of various chemical components are known for use as fragrances.
  • Non-limiting examples of the fragrances useful herein include pro-fragrances such as acetal pro-fragrances, ketal pro-fragrances, ester pro-fragrances, hydrolyzable inorganic-organic pro-fragrances, and mixtures thereof.
  • the fragrances may be released from the pro-fragrances in a number of ways. For example, the fragrance may be released as a result of simple hydrolysis, or by a shift in an equilibrium reaction, or by a pH-change, or by enzymatic release.
  • the fragrances herein may be relatively simple in their chemical make-up, comprising a single chemical, or may comprise highly sophisticated complex mixtures of natural and synthetic chemical components, all chosen to provide any desired odor.
  • the fragrances may have a boiling point (BP) of about 500° C. or lower, about 400° C. or lower, or about 350° C. or lower.
  • BP boiling point
  • the C log P value of the fragrances may be about 0.1 or greater, about 0.5 or greater, about 1.0 or greater, and about 1.2 or greater.
  • C log P means the logarithm to the base 10 of the octanol/water partition coefficient.
  • the C log P can be readily calculated from a program called “C LOG P” which is available from Daylight Chemical Information Systems Inc., Irvine Calif., USA. Octanol/water partition coefficients are described in more detail in U.S. Pat. No. 5,578,563.
  • Suitable fragrances are also disclosed in U.S. Pat. No. 4,145,184, U.S. Pat. No. 4,209,417, U.S. Pat. No. 4,515,705, and U.S. Pat. No. 4,152,272.
  • Non-limiting examples of fragrances include animal fragrances such as musk oil, civet, castoreum, ambergris, plant fragrances such as nutmeg extract, cardomon extract, ginger extract, cinnamon extract, patchouli oil, geranium oil, orange oil, mandarin oil, orange flower extract, cedarwood, vetyver, lavandin, ylang extract, tuberose extract, sandalwood oil, bergamot oil, rosemary oil, spearmint oil, peppermint oil, lemon oil, lavender oil, citronella oil, chamomille oil, clove oil, sage oil, neroli oil, labdanum oil, eucalyptus oil, verbena oil, mimosa extract, narcissus extract, carrot seed extract, jasmine extract, olibanum extract, rose extract, and mixtures thereof.
  • animal fragrances such as musk oil, civet, castoreum, ambergris
  • plant fragrances such as nutmeg extract, cardomon extract, ginger extract, cinnamon extract
  • fragrances include, but are not limited to, chemical substances such as acetophenone, adoxal, aldehyde C-12, aldehyde C-14, aldehyde C-18, allyl caprylate, ambroxan, amyl acetate, dimethylindane derivatives, ⁇ -amylcinnamic aldehyde, anethole, anisaldehyde, benzaldehyde, benzyl acetate, benzyl alcohol and ester derivatives, benzyl propionate, benzyl salicylate, borneol, butyl acetate, camphor, carbitol, cinnamaldehyde, cinnamyl acetate, cinnamyl alcohol, cis-3-hexanol and ester derivatives, cis-3-hexenyl methyl carbonate, citral, citronellol and ester derivatives, cumin aldehyde,
  • compositions described herein may include water. If present, the water may comprise from about 0.1% to about 40%, from about 1% to about 30%, or from about 5% to about 20%, by weight, of the composition.
  • compositions described herein may include a propellant.
  • propellants include compressed air, nitrogen, inert gases, carbon dioxide, and mixtures thereof.
  • Propellants may also include gaseous hydrocarbons like propane, n-butane, isobutene, cyclopropane, and mixtures thereof.
  • Halogenated hydrocarbons like 1,1-difluoroethane may also be used as propellants.
  • propellants include 1,1,1,2,2-pentafluoroethane, 1,1,1,2-tetrafluoroethane, 1,1,1,2,3,3,3-heptafluoropropane, trans-1,3,3,3-tetrafluoroprop-1-ene, dimethyl ether, dichlorodifluoromethane (propellant 12), 1,1-dichloro-1,1,2,2-tetrafluoroethane (propellant 114), 1-chloro-1,1-difluoro-2,2-trifluoroethane (propellant 115), 1-chloro-1,1-difluoroethylene (propellant 142B), 1,1-difluoroethane (propellant 152A), monochlorodifluoromethane, and mixtures thereof.
  • propellants suitable for use include, but are not limited to, A-46 (a mixture of isobutane, butane and propane), A-31 (isobutane), A-17 (n-butane), A-108 (propane), AP70 (a mixture of propane, isobutane and n-butane), AP40 (a mixture of propane, isobutene and n-butane), AP30 (a mixture of propane, isobutane and n-butane), and 152A (1,1 difluoroethane).
  • A-46 a mixture of isobutane, butane and propane
  • A-31 isobutane
  • A-17 n-butane
  • A-108 propane
  • AP70 a mixture of propane, isobutane and n-butane
  • AP40 a mixture of propane, isobutene and n-butane
  • AP30 a mixture of propane, isobutane and n
  • the propellant may have a concentration from about 15%, 25%, 30%, 32%, 34%, 35%, 36%, 38%, 40%, or 42% to about 70%, 65%, 60%, 54%, 52%, 50%, 48%, 46%, 44%, or 42% by weight of the total fill of materials stored within the container. It should be appreciated that compositions of the present invention may also be devoid of a propellant.
  • compositions disclosed herein also contain a variety of other ingredients that may render the composition more cosmetically or aesthetically acceptable or provide the composition with additional usage benefits. These other ingredients are well-known to those skilled in the art. These include any cosmetically acceptable ingredient such as may be found in the CTFA International Cosmetic ingredient Dictionary and Handbook, 7 th edition, edited by Wenninger and McEwen, ( The Cosmetic, Toiletry, and Fragrance Association , Inc., Washington, D.C., 1997). As used herein “cosmetically acceptable” means a material (e.g., compound or composition) that is suitable for use in contact with skin, hair, or other suitable substrate.
  • the compositions may include alcohol denaturants such as denatonium benzoate; UV stabilizers such as benzophenone-2; antioxidants such as tocopheryl acetate; preservatives such as phenoxyethanol, benzyl alcohol, methyl paraben, propyl paraben; dyes; pH adjusting agents such as lactic acid, citric acid, sodium citrate, succinic acid, phosphoric acid, sodium hydroxide, sodium carbonate; deodorants and antimicrobials such as farnesol and zinc phenolsulphonate; humectants such as glycerine; oils; skin conditioning agents such as allantoin, panthenol and other Vitamin B5 derivatives; cooling agents such as trimethyl isopropyl butanamide and menthol; hair conditioning ingredients such as panthenol, panthetine, pantotheine, panthenyl ethyl ether, and combinations thereof; silicones; salts in general, such as potassium acetate and sodium chloride; and mixture
  • these additional ingredients may be present at a level of less than 10%, by weight, of the total composition.
  • Embodiments of the present invention include feminine and adult incontinence sprays/spritzes. Intimate skin that was shaven or irritated due to mechanical or chemical contact (e.g., prolonged exposure to menses and urine) can be sensitive to the volatile solvents included in the compositions of the present invention.
  • skin conditioning agents such as, for example, Vitamin B5 (e.g., panthenol, panthenyl triacetate, and mixtures thereof) derivatives, are useful in the composition to help mitigate stinging or general discomfort from the volatile solvent.
  • compositions described herein may be free of, substantially free of, or may include an antiperspirant active (i.e. any substance, mixture, or other material having antiperspirant activity).
  • antiperspirant actives include astringent metallic salts, like the inorganic and organic salts of aluminum, zirconium and zinc, as well as mixtures thereof.
  • antiperspirant actives include, for example, the aluminum and zirconium salts, such as aluminum halides, aluminum hydroxyhalides, zirconyl oxyhalides, zirconyl hydroxyhalides, and mixtures thereof.
  • the composition may be included in an article of manufacture comprising a spray dispenser.
  • the spray dispenser may comprise a vessel for containing the composition to be dispensed.
  • the spray dispenser may comprise an aerosolized composition (i.e. a composition comprising a propellant) within the vessel as well.
  • Other non-limiting examples of spray dispensers include non-aerosol dispensers (e.g. vapor sprays), manually activated dispensers, pump-spray dispensers, or any other suitable spray dispenser available in the art.
  • compositions described herein may be packaged with any container known in the art or with any spray dispenser suitable for delivering the composition to a substrate.
  • the composition may be applied to any substance where moisture is available to trigger the release of the fragrance.
  • the composition may be applied to any area of the skin or may be applied to any area of the body.
  • the composition may be applied to any article, such as a fabric, or any absorbent article including, but not limited to, feminine hygiene articles, diapers, and adult incontinence articles.
  • the composition may be used as a body spray, feminine spray, adult incontinence spray, baby spray, or other spray.
  • a consumer may apply a feminine spray or adult incontinence spray to their body as well as one or more exterior surfaces of a feminine hygiene/incontinence article.
  • a benefit of allowing a consumer to self-dose the composition onto a pre-purchased article is that the consumer can choose how much composition is desired for each article use and vary the application volume as needed.
  • Some feminine hygiene and adult incontinence articles may contain a fragrance and/or odor managing material (e.g., zeolites, absorbent gelling materials) within the article. And some feminine hygiene and adult incontinence articles are devoid of such materials. Consumers accordingly can apply compositions of the present invention to outer surfaces of articles with or without a fragrance/odor managing material within the article.
  • fragrance compounds having a “thiol vapor pressure suppression index” (TVPS) of more than 20 may be suitable.
  • Thiol Vapor Pressure Suppression (TVPS) index is a measure of the reduction in butanethiol concentration in the headspace by a compound, as measured using a fast GC instrument, the zNose 7100 (Electronic Sensor Technologies, Newbury Park, Calif.). Before any measurements the instrument is calibrated according to manufacturer's instructions under the same experimental settings. The instrument has a DB-5 column (EST Part No. SYS7100C5, Electronic Sensor Technologies, Newbury Park, Calif.) 1 m in length, 0.25 ⁇ m phase thickness, and 0.25 mm in diameter. The experimental settings for TVPS measurements are:
  • TVPS of a compound is measured in the following way: 100 ⁇ l ⁇ 1 ⁇ l of a 1% v/v butanethiol (99%, purity) solution in ethanol (200 proof) is added into a 1 ml vial (8 ⁇ 40 mm). These vials are borosilicate glass straight walled vial. A suitable butanethiol is item 112925 from Sigma-Aldrich (Sigma-Aldrich, St. Louis, Mo.). In another 1 ml vial (8 ⁇ 40 mm), 5 ⁇ l ⁇ 0.2 ⁇ l of the compound is added.
  • Both open vials are then placed inside a 20 ml headspace vial (22 ⁇ 75 mm), and the vial is immediately sealed using a screw thread closure with PTFE/Silicone septa.
  • the vial is heated to 37° C. for 4 hours. After 4 hours, the vial is removed from the oven and let to equilibrate at 25° C. ⁇ 2° C. for 15 minutes.
  • the headspace inside the vial is sampled using the zNose following the experimental protocol outlined above. Samples with butanethiol alone, and the volatile active alone, are run using the same protocol to identify the peaks for both materials.
  • An acceptable retention index for butanethiol is 720 ⁇ 30.
  • peaks butanethiol peak and the volatile material peak co-elute
  • one skilled in the art can modify the protocol settings to separate those peaks.
  • a minimum resolution of 1.5 should be obtained.
  • the instrument In between samples, the instrument needs to be cleaned to remove any trace materials. To clean the instrument, the instrument is run without samples as needed until no peaks greater than 100 counts are observed.
  • the amount of butanethiol in the headspace is measured from the area of the peak on the chromatograph for butanethiol (A BtSH,Rx ).
  • a BtSH,Rx The area of the peak on the chromatograph for butanethiol.
  • TVPS A BtSH , C - A BtSH , Rx A BtSH , C ⁇ ⁇ 100
  • Fragrance compounds having a TVPS higher than 20 include, but are not limited to, (a) melonal, adoxal, trans-2-hexenal, ligustral, Floral Super, Florhydral, 5-methyl-2-thiophene-carboxaldehyde, hydratropic aldehyde, undecenal, 9-undecenal, 10-undecenal, trans-4-decenal, cis-6-nonenal, isocyclocitral, precyclemone b, (E)-2,(z)-6-nonadienal, undecyl aldehyde, methyl-octyl-acetaldehyde, Lauric aldehyde, silvial, vanillin, and floralozone.
  • All these compounds in list (a) above are particularly reactive toward malodourant molecules containing Sulphur atoms (thiol type malodors, typically associated with protein degradation e.g. in menstrual fluids, feces, food etc).
  • the primary function of the reactive compounds is to chemically react with malodors, such as malodourant molecules containing Nitrogen atoms (amine type odors, typically deriving from the degradation of urine or certain foods like onions) and/or malodourant molecules containing Sulphur atoms (thiol type malodors, typically associated with protein degradation e.g. in menstrual fluids, feces, food etc).
  • Ammonia/amines are one component of malodor associated with the absorption of bodily fluids, such as menses or urine.
  • bodily fluids such as menses or urine.
  • ammonia/amines are typically present in high amounts in absorbent products used for urine absorption due to degradation of urea.
  • Ammonia/amines and their derivatives can react with aldehydes and/or ketones to form imines (according to the so-called Schiff base reaction).
  • This reaction is catalyzed by enzymes and/or by a slightly acidic pH 4 to 5.
  • the moderate acid requirement is necessary to allow protonation of the hydroxyl intermediate to allow water to leave.
  • Malodourant sulphur based compounds are typically generated by the degradation of proteins e.g. in menstrual fluids feces or food and so their control is particularly important in menstrual absorbent articles such as sanitary napkins or pantyliners as well as in other absorbent articles which get in contact with other proteinaceous materials such food residues or feces.
  • the mechanism of action is not fully understood at the moment, but it is believed that it is connected to the fact that Thiols can react with aldehydes and ketones to form thioacetals and thioketals.
  • the chemical reactions described above can be obtained from any aldehyde, but in practice the reactivity of aldehydes in these type of reactions and in the specific context of an absorbent article is very different.
  • the reactive compounds of the present invention are effective in reacting with Nitrogen based malodourant molecules and particularly effective in reacting with sulphur based malodourant molecules.
  • Suitable additional fragrance compounds are listed here below in lists (b), (c), (d) and (e).
  • Suitable selected additional aldehydes and/or ketones include the following listed in list (b): hexyl cinnamic aldehyde, alpha-amylcinnamic aldehyde, p-anisaldehyde, benzaldehyde, cinnamic aldehyde, cuminic aldehyde, decanal, cyclamen aldehyde, p-t-butyl-alpha-methyldihydrocinnamaldehyde, 4-hydroxy-3-methoxycinnamaldehyde, vanillin isobutyrate, 2-phenyl-3-(2-furyl)prop-2-enal, ethyl vanillin acetate, vanillin acetate, heptanal, lauryl aldehyde, nonanal, octanal, phen
  • Components from list (c) are menthol, menthyl acetate, menthyl lactate, menthyl propionate, menthyl butyrate, menthone, mint terpenes, laevo-carvone, Cis-3-Hexenol & Cis-3-Hexenyl acetate, koavone, methyl dioxolan.
  • Components from class (d) are methyl-dihydrojasmonate, methyl jasmonate, eucalyptol, tetrahydro-linalool, Phenyl-Ethyl alcohol, Hexyl iso-butyrate, Linalyl acetate, Benzyl acetate, Benzyl alcohol, or mixture thereof. These are volatile materials which are well complexed in particular when the complexing agent is a cyclodextrin and are release very quickly upon contact with a water based liquid.
  • components from class (e) include camphor, p-menthane, limonene, cresol, linalool, myrcenol, tetrahydromyrcenol, di-hydromyrcenol, myrcene, citronellol, citronellyl derivatives, geraniol, geranyl derivatives, mugetanol, eugenol, jasmal, terpineol, pinanol, cedrene, damascone, beta pinene, cineole and its derivatives, nonadienol, ethylhexanal, octanol acetate, methyl furfural, terpinene, thujene, amylacetate, camphene, citronellal, hydroxycitronellal, ethyl maltol, methyl phenyl carbinyl acetate, dihydrocoumarin, di-hydromyr
  • the blotter card should be placed with the application side face up on a paper towel.
  • the blotter card should be allowed to dry at room temperature for about 4 hours.
  • spray each sample once with distilled water directly over the application area of the blotter card.
  • the lid to the polyethylene terephthalate cup should be closed and the samples are ready for analysis.
  • zNose a zNose Fast-GC Analyzer (Model #MEA007100) with DB-624 column from Electronic Sensor Technology, Inc., (hereinafter referred to as “zNose”) or equivalent for analysis.
  • zNose Prior to running the samples, the zNose should be cleaned and calibrated.
  • To clean and calibrate the zNose first turn on the zNose, open the helium valve, and open the program, MicroSense 4.5. Allow all parts of the instrument to reach their appropriate temperatures which can take approximately 15 minutes.
  • helium in the zNose If the helium in the zNose is low, connect a helium tank to the back of the zNose (marked “Helium”) by way of a hose, open the valve on the helium tank, and fill until the zNose pressure gauge reaches about 1000 psi. Once full, close the valve on the helium tank, release the pressure from the hose, and remove the hose from the zNose.
  • the zNose is clean and operational when all peaks are below 100 counts as per manufacturer's instructions. Ensure the ‘Test settings’ are set according to the following: Sensor (50 C), Column (40 C), Valve (145 C), Inlet (200 C), Trap (200 C), Pump Time (10 seconds). Once test settings are set, calibrate the zNose with a n-alkanes standard as stated in the zNose's accompanying manual. This will ensure the zNose is operating according to the manufacturer's standards.
  • the new alarm file should contain no tagged peaks.
  • Samples should be analyzed randomly. Analyze the 1 st sample according to the manufacturer's instructions. A cleaning step should be performed after each sample is analyzed by bubbling methanol for 5 seconds. Next, a blank should be analyzed to ensure that no peaks remain. If no peaks remain, analyze the 1 st sample a second time. Perform a cleaning step with bubbling methanol for 5 seconds followed by an analysis of a blank to ensure that no peaks remain. If no peaks remain, analyze the 1 st sample a third time. Perform a cleaning step with bubbling methanol for 5 seconds followed by an analysis of a blank to ensure that no peaks remain. Repeat the above steps for each sample. All testing should take place within an hour from the analysis of the first sample and within 4 to 5 hours after the application of the sample to the blotter card.
  • Evaluations were conducted under controlled environmental conditions by a trained panel using the following standardized procedures. Approximately 10-20 expert panelists participated in each evaluation. Compositions were sprayed using a 3 ounce plastic bottle (Matrix Packaging) fitted with a 3 ounce spray actuator from Seaquist Perfect Dispensing. Compositions were shaken and then sprayed for 2 seconds onto the forearm of a panelist, approximately 2 to 6 inches below the wrist in an area preferably with minimal hair. The actuator was held about 6 inches away from the forearm. The process was repeated with the other forearm. Each panelist rated the intensity of the fragrance, from 1-8, in order of increasing intensity (e.g.
  • the forearms were sprayed with one spritz of water using a 3 ounce plastic bottle (Matrix Packaging) fitted with a 3 ounce spray actuator from Seaquist Perfect Dispensing and the panelist rated the intensity before and after the water spritz.
  • the ratings were recorded and subsequently analyzed by the Wilcoxon method.
  • compositions were sprayed onto a 3 inch by 5 inch cardboard, professional aerosol testing blotter card (available from Orlandi Inc.) using a 3 ounce plastic bottle (Matrix Packaging) fitted with a 3 ounce spray actuator from Seaquist Perfect Dispensing. An amount of 0.050 g ⁇ 0.0025 of composition was applied to each blotter card. The amount sprayed onto each blotter card can be confirmed using an analytical balance. Following the spraying of the composition, the blotter cards were allowed to dry for 24 hours.
  • blotter cards were sprayed with approximately 0.025 g of water using a 3 ounce plastic bottle (Matrix Packaging) fitted with a 3 ounce spray actuator from Seaquist Perfect Dispensing and placed into a 7 ounce clear polyethylene terephthalate cup for evaluation. Panelists were instructed to rate the intensity of the fragrances from 1-7 in order of increasing intensity (e.g. a rating of 1 being the lowest intensity and a rating of 7 being the highest intensity). The ratings were recorded and subsequently analyzed by the Wilcoxon method.
  • Table 1 illustrates the effect of nonvolatile solvents on the release of a fragrance into the headspace.
  • the total area count for the compositions shown in Table 1 were measured using the Headspace Test Method disclosed herein. Examples contained 0.25% by weight of the composition of a typical fragrance, 1% by weight of the composition of methylated- ⁇ -cyclodextrin (shown as “m ⁇ CD” in Table 1), and the nonvolatile solvents, dipropylene glycol or triethyl citrate at the indicated percentiles. The remainder of the formulation was balanced to 100% with ethanol. Formulations were mixed to ensure homogeneity.
  • Example B and Example C Comparing Example B and Example C to Example A from Table 1, the addition of either dipropylene glycol or triethyl citrate decreased the amount of fragrance released into the headspace by approximately 21% and 33%, respectively. Increasing the concentration of either dipropylene glycol or triethyl citrate relative to methylated- ⁇ -cyclodextrin in the composition further decreased the amount of fragrance released into the headspace in a dose-dependent manner. For example, comparing Example D to Example B, increasing the concentration of dipropylene glycol relative to methylated- ⁇ -cyclodextrin decreased the amount of fragrance released into the headspace from a count of 159514 for Example B to a count of 70821 for Example C.
  • Example H Comparing Example H to Example A from Table 1, the inclusion of dipropylene glycol in the composition at a ratio of 1:1 of dipropylene glycol:methylated- ⁇ -cyclodextrin reduced the amount of fragrance released into the headspace by approximately 95%. Similar trends were observed when triethyl citrate was included in the composition in place of dipropylene glycol. These data suggest that the inclusion of nonvolatile solvents can suppress the release of a fragrance from a composition including methylated- ⁇ -cyclodextrin. The data further suggests that the ratio of nonvolatile solvent to methylated- ⁇ -cyclodextrin is an important consideration for formulating such compositions in view of maximizing the release of the fragrance into the headspace.
  • Example 1 included a ratio of nonvolatile solvent to methylated- ⁇ -cyclodextrin due to trace amounts of dipropylene glycol within the fragrance itself.
  • Example 2 Comparing Example 2 to Example 1, increasing the concentration of the nonvolatile solvent, dipropylene glycol, relative to methylated- ⁇ -cyclodextrin to a ratio of 1:4 resulted in average ranking of 6.0, a ranking statistically significantly lower than that attributed to Example 1.
  • Example 3 increasing the concentration of the nonvolatile solvent, triethyl citrate, relative to methylated- ⁇ -cyclodextrin to a ratio of 1:5 resulted in an average ranking of 3.8, a statistically significantly lower ranking than attributed to Example 1.
  • Example 4 and Example 6 Comparing Example 4 and Example 6 to Example 2, further increasing the concentration of the nonvolatile solvent, dipropylene glycol, relative to methylated- ⁇ -cyclodextrin to a ratio of 1:1 (Example 4) or 2:1 (Example 6) resulted in an average ranking of 3.6 and 2.6, respectively; a ranking statistically significantly lower than that attributed to Example 2. No significant difference was observed between Example 4 and Example 3, Example 5 and Example 3, Example 6 and Example 3, or Example 7 and Example 3.
  • Table 3 below illustrates the effect of nonvolatile solvents on the release of a fragrance into the headspace in aerosolized compositions as determined by the Fragrance Expert Panel described herein. Table 3 illustrates the average ratings of Panelists who rated the forearms of subjects 180 min after the spraying of Example 8, 9, and 10, before and after a spritz of water.
  • Example 8 included the nonvolatile solvents, dipropylene glycol and isopropyl myristate, but did not include methylated- ⁇ -cyclodextrin.
  • Example 9 included methylated- ⁇ -cyclodextrin and the nonvolatile solvents, dipropylene glycol and isopropyl myristate.
  • Example 10 included methylated- ⁇ -cyclodextrin but did not include the nonvolatile solvents, dipropylene glycol and isopropyl myristate.
  • Example 10 Denatured Alcohol 34.35 33.35 46.00 Dipropylene Glycol 12.41 11.41 0 Isopropyl Myristate 0.83 0.83 0 Zinc Phenosulphonate 0.41 0.41 0 Cavasol W7 m ⁇ CD 0 2.00 2.00 Fragrance 1.32 1.32 1.32 Propane 6.163 6.163 Isobutane 34.381 34.381 34.381 1,1-Difluoroethane 10.136 10.136 10.136 (HFC-152a) Ratio Nonvolatile NA 5:1 NA solvent:m ⁇ CD Average Panelist 4.3 4.6 4.6 Ranking (3 hour pre-mist) Average Panelist 4 4.5 4.9 Ranking (3 hour post-mist)
  • Example 9 Comparing Example 8 to Example 9, the addition of methylated- ⁇ -cyclodextrin to the composition of Example 9 did not result in a statistically significant increase in the average ranking despite the increase in average scores when ratings were conducted before the application of the water. In contrast, after the application of water, Example 9 had a statistically significant increase in rating as compared to Example 8 (4.5 versus 4). Comparing Example 9 to 10, the exclusion of nonvolatile solvents as in Example 10 did not result in a statistically significant increase in the ranking by the Panelists as compared to Example 9 when ratings were conducted before the application of the water.
  • Example 10 the exclusion of nonvolatile solvents as in Example 10 resulted in a statistically significant increase in the average ranking as compared to Example 9 when ratings were conducted after the application of water (4.9 versus 4.5).
  • Example 11 includes 1,1-Difluoroethane, methylated- ⁇ -cyclodextrin, and a fragrance.
  • Example Material 11 Denatured Alcohol 61.25 Water 0.75 Dipropylene Glycol 0 Isopropyl Myristate 0 Zinc 0 Phenosulphonate Cavasol W7 m ⁇ CD 1.00 Fragrance 2.00 Propane 0 Isobutane 0 1,1-Difluoroethane 35.00% (HFC-152a)
  • Table 5 below illustrates examples of compositions of the present invention in the form of a feminine or adult incontinence spray that can be applied to intimate skin and/or an absorbent article for managing odors associated with menses, urine, or other bodily exudates.
  • Exemplary feminine and adult incontinence spray compositions are provided in Table 5 below.
  • Examples 12-19 can be packaged into portable containers that are discrete and can be carried into public and other non-personal bathrooms so that the composition can be applied to intimate skin and/or absorbent articles.
  • Exemplary containers include spray bottles having an interior volume of 25, 50, 75, or 100 milliliters.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Birds (AREA)
  • Emergency Medicine (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Cosmetics (AREA)
  • Fats And Perfumes (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Medicinal Preparation (AREA)

Abstract

A composition suitable for topical application, for example, is provided. In some examples, the composition can include particular cyclic oligosaccharides, a fragrance, and a volatile solvent. The compositions disclosed herein may provide a longer lasting fragrance.

Description

    TECHNICAL FIELD
  • The present disclosure generally relates to compositions comprising particular cyclic oligosaccharides, a fragrance, and a volatile solvent; and methods relating thereto.
  • BACKGROUND
  • Consumers often desire personal care compositions that deliver pleasant fragrances during and/or after application of the product. However, producing such products is often challenging for numerous reasons. For example, fragrances are often prematurely lost because many fragrances are relatively highly volatile and thus evaporate quickly after application. Because the amount of the fragrance that is released into the surrounding area generally decreases after application of a personal care composition, a consumer is likely to perceive potentially minimal or no fragrance odor character after time. Therefore, there is a need for improved personal care compositions that can deliver pleasant fragrances for extended periods of time during and after application of the product.
  • SUMMARY
  • A method for delivering an improved moisture-triggered fragrance release system comprising contacting a suitable substrate with a composition comprising a cyclic oligosaccharide selected from the group consisting of a water-soluble cyclic oligosaccharide, an ethanol-soluble cyclic oligosaccharide, a water- and ethanol-soluble cyclic oligosaccharide, and mixtures thereof; a fragrance; a volatile solvent; and a nonvolatile solvent; wherein the weight ratio of the nonvolatile solvent to the cyclic oligosaccharide is less than 1:1.
  • A method for delivering an improved moisture-triggered fragrance release system comprising contacting a suitable substrate with an aerosolized composition comprising a cyclic oligosaccharide selected from the group consisting of a water-soluble cyclic oligosaccharide, an ethanol-soluble cyclic oligosaccharide, a water- and ethanol-soluble cyclic oligosaccharide, and mixtures thereof; a fragrance; a volatile solvent; and a propellant; wherein the aerosolized composition is free of nonvolatile solvents.
  • A composition comprising a cyclic oligosaccharide selected from the group consisting of a water-soluble cyclic oligosaccharide, an ethanol-soluble cyclic oligosaccharide, a water- and ethanol-soluble cyclic oligosaccharide, and mixtures thereof; a fragrance; a volatile solvent; and a nonvolatile solvent; wherein the weight ratio of the nonvolatile solvent to the cyclic oligosaccharide is less than 1:1.
  • An aerosolized composition comprising a cyclic oligosaccharide selected from the group consisting of a water-soluble cyclic oligosaccharide, an ethanol-soluble cyclic oligosaccharide, a water- and ethanol-soluble cyclic oligosaccharide, and mixtures thereof; a fragrance; a volatile solvent; and a propellant; wherein the aerosolized composition is free of nonvolatile solvents.
  • DETAILED DESCRIPTION
  • While the specification concludes with the claims particularly pointing and distinctly claiming the invention, it is believed that the present invention will be better understood from the following description.
  • The devices, apparatuses, methods, components, and/or compositions of the present invention can include, consist essentially of, or consist of, the components of the present invention as well as other ingredients described herein.
  • All percentages and ratios used herein are by weight of the total composition and all measurements made are at 25° C., unless otherwise designated.
  • All measurements used herein are in metric units unless otherwise specified.
  • Reference within the specification to “embodiment(s)” or the like means that a particular material, feature, structure and/or characteristic described in connection with the embodiment is included in at least one embodiment, but it does not mean that all embodiments incorporate the material, feature, structure, and/or characteristic described. Furthermore, materials, features, structures and/or characteristics may be combined in any suitable manner across different embodiments and materials, features, structures and/or characteristics may be omitted or substituted from what is described.
  • “Free of” means that the stated ingredient has not been added to the composition. However, the stated ingredient may incidentally form as a byproduct or a reaction product of the other components of the personal care composition.
  • “Nonvolatile” refers to those materials that are liquid under ambient conditions and which have a measurable vapor pressure at 25° C. These materials typically have a vapor pressure less than about 0.01 mmHg, and an average boiling point typically greater than about 250° C.
  • “Soluble” means at least about 0.1 g of solute dissolves in 100 ml of solvent at 25° C. and 1 atm of pressure.
  • “Substantially free” of means an amount of a material that is less than 1%, 0.5%, 0.25%, 0.1%, 0.05%, 0.01%, or 0.001% by weight of a composition.
  • Cyclic oligosaccharides, and in particular cyclodextrins, have been used as a means to deliver a moisture-triggered fragrance from non-polar systems. In this regard, a fragrance is typically encapsulated within the cyclodextrin and is released when moisture is introduced into the system. One of the challenges of delivering a similar moisture-triggered fragrance release system in polar form is that the polar environment will typically release the fragrance within the system itself and not provide a long lasting fragrance.
  • Surprisingly, it has been found that limiting the amount of nonvolatile solvents in polar and aqueous compositions as described herein may dramatically improve the benefit of a long lasting fragrance provided by the cyclic oligosaccharides.
  • Cyclic Oligosaccharides
  • The compositions described herein may include a cyclic oligosaccharide. As used herein, the term “cyclic oligosaccharide” means a cyclic structure comprising six or more saccharide units. The cyclic oligosaccharides can have six, seven, or eight saccharide units or mixtures thereof. It is common in the art to refer to six, seven and eight membered cyclic oligosaccharides as α, β, and γ, respectively. The cyclic oligosaccharides that may be useful include those that are soluble in water, ethanol, or both water and ethanol. The cyclic oligosaccharides useful herein may have a solubility of at least about 0.1 g/100 ml, at 25° C. and 1 atm of pressure in either water, ethanol, or both water and ethanol. The compositions disclosed herein may comprise from about 0.001% to about 40%, from about 0.1% to about 25%, from about 0.3% to about 20%, from about 0.5% to about 10%, or from about 0.75% to about 5%, by weight of the composition, of a cyclic oligosaccharide. The compositions disclosed herein may comprise from 0.001% to 40%, from 0.1% to 25%, from 0.3% to 20%, from 0.5% to 10%, or from 0.75% to 5%, by weight of the composition, of a cyclic oligosaccharide.
  • The cyclic oligosaccharide may comprise any suitable saccharide or mixture of saccharides. Examples of suitable saccharides include, but are not limited to, glucose, fructose, mannose, galactose, maltose, and mixtures thereof. The cyclic oligosaccharide, or mixture of cyclic oligosaccharides, may be substituted by any suitable substituent or mixture of substituents. Herein the use of the term “mixture of substituents” means that two or more different suitable substituents may be substituted onto one cyclic oligosaccharide. Suitable examples of substituents include, but are not limited to, alkyl groups, hydroxyalkyl groups, dihydroxyalkyl groups, carboxyalkyl groups, aryl groups, maltosyl groups, allyl groups, benzyl groups, alkanoyl groups, and mixtures thereof. These substituents may be saturated or unsaturated, straight or branched chain. For example, the substituents may include saturated and straight chain alkyl groups, hydroxyalkyl groups, and mixtures thereof. The alkyl and hydroxyalkyl substituents, for example, may also be selected from C1-C8 alkyl or hydroxyalkyl groups, alkyl and hydroxyalkyl substituents from C1-C6 alkyl or hydroxyalkyl groups, and alkyl and hydroxyalkyl substituents from C1-C4 alkyl or hydroxyalkyl groups. The alkyl and hydroxyalkyl substituents may be, for example, propyl, ethyl, methyl, and hydroxypropyl.
  • In addition to the substituents themselves, the cyclic oligosaccharides may have an average degree of substitution of at least 1.6, wherein the term “degree of substitution” means the average number of substituents per saccharide unit. For example, the cyclic oligosaccharides may have an average degree of substitution of less than about 2.8 or from about 1.7 to about 2.0. The average number of substituents may be determined using common Nuclear Magnetic Resonance techniques known in the art. Examples of cyclic oligosaccharides useful herein include methyl-α-cyclodextrins, methyl-β-cyclodextrins, hydroxypropyl-α-cyclodextrins, hydroxypropyl-β-cyclodextrins, and mixtures thereof.
  • Volatile Solvents
  • The compositions described herein may include a volatile solvent or a mixture of volatile solvents. The volatile solvents may comprise greater than 10%, greater than 30%, greater than 40%, greater than 50%, greater than 60%, greater than 70%, greater than 80%, greater than 90% or greater than 95%, by weight of the composition. The volatile solvents useful herein may be relatively odorless and safe for use on human skin. Suitable volatile solvents may include C1-C4 alcohols and mixtures thereof. For example, ethanol may be used as the volatile solvent. Some other non-limiting examples of volatile solvents include methanol, propanol, isopropanol, butanol, and mixtures thereof.
  • Nonvolatile Solvents
  • The composition may comprise a nonvolatile solvent or a mixture of nonvolatile solvents. Non-limiting examples of nonvolatile solvents include benzyl benzoate, diethyl phthalate, isopropyl myristate, propylene glycol, dipropylene glycol, triethyl citrate, and mixtures thereof. If present, the nonvolatile solvent may be included at a weight ratio of the nonvolatile solvent to the cyclic oligosaccharide of less than 1:1, less than 1:2, less than 1:10, or less than 1:100. The nonvolatile solvent may also be included at a weight ratio of the nonvolatile solvent to the cyclic oligosaccharide of less than about 1:1, less than about 1:2, less than about 1:10, or less than about 1:100 From a weight percentage perspective, the nonvolatile solvent may be included at a level of from about 0.5% to about 5% or from about 1% to about 3% by weight of the composition. Some suitable nonvolatile solvents may provide skin or other benefits since they are left behind on the skin upon applying the composition to one's skin. For example, panthenol, panthenyl triacetate, or other Vitamin B5 derivatives can act as both a nonvolatile solvent and a skin conditioning agent.
  • Fragrances
  • The composition may comprise a fragrance. As used herein, “fragrance” is used to indicate any odoriferous material. Any fragrance that is cosmetically acceptable may be used in the composition. For example, the fragrance may be one that is a liquid at room temperature. Generally, the fragrance(s) may be present at a level from about 0.01% to about 40%, from about 0.1% to about 25%, from about 0.25% to about 20%, or from about 0.5% to about 15%, by weight of the composition.
  • A wide variety of chemicals are known as fragrances, including aldehydes, ketones, and esters. More commonly, naturally occurring plant and animal oils and exudates comprising complex mixtures of various chemical components are known for use as fragrances. Non-limiting examples of the fragrances useful herein include pro-fragrances such as acetal pro-fragrances, ketal pro-fragrances, ester pro-fragrances, hydrolyzable inorganic-organic pro-fragrances, and mixtures thereof. The fragrances may be released from the pro-fragrances in a number of ways. For example, the fragrance may be released as a result of simple hydrolysis, or by a shift in an equilibrium reaction, or by a pH-change, or by enzymatic release. The fragrances herein may be relatively simple in their chemical make-up, comprising a single chemical, or may comprise highly sophisticated complex mixtures of natural and synthetic chemical components, all chosen to provide any desired odor.
  • The fragrances may have a boiling point (BP) of about 500° C. or lower, about 400° C. or lower, or about 350° C. or lower. The BP of many fragrances are disclosed in Perfume and Flavor Chemicals (Aroma Chemicals), Steffen Arctander (1969). The C log P value of the fragrances may be about 0.1 or greater, about 0.5 or greater, about 1.0 or greater, and about 1.2 or greater. As used herein, “C log P” means the logarithm to the base 10 of the octanol/water partition coefficient. The C log P can be readily calculated from a program called “C LOG P” which is available from Daylight Chemical Information Systems Inc., Irvine Calif., USA. Octanol/water partition coefficients are described in more detail in U.S. Pat. No. 5,578,563.
  • Suitable fragrances are also disclosed in U.S. Pat. No. 4,145,184, U.S. Pat. No. 4,209,417, U.S. Pat. No. 4,515,705, and U.S. Pat. No. 4,152,272. Non-limiting examples of fragrances include animal fragrances such as musk oil, civet, castoreum, ambergris, plant fragrances such as nutmeg extract, cardomon extract, ginger extract, cinnamon extract, patchouli oil, geranium oil, orange oil, mandarin oil, orange flower extract, cedarwood, vetyver, lavandin, ylang extract, tuberose extract, sandalwood oil, bergamot oil, rosemary oil, spearmint oil, peppermint oil, lemon oil, lavender oil, citronella oil, chamomille oil, clove oil, sage oil, neroli oil, labdanum oil, eucalyptus oil, verbena oil, mimosa extract, narcissus extract, carrot seed extract, jasmine extract, olibanum extract, rose extract, and mixtures thereof.
  • Other examples of suitable fragrances include, but are not limited to, chemical substances such as acetophenone, adoxal, aldehyde C-12, aldehyde C-14, aldehyde C-18, allyl caprylate, ambroxan, amyl acetate, dimethylindane derivatives, α-amylcinnamic aldehyde, anethole, anisaldehyde, benzaldehyde, benzyl acetate, benzyl alcohol and ester derivatives, benzyl propionate, benzyl salicylate, borneol, butyl acetate, camphor, carbitol, cinnamaldehyde, cinnamyl acetate, cinnamyl alcohol, cis-3-hexanol and ester derivatives, cis-3-hexenyl methyl carbonate, citral, citronellol and ester derivatives, cumin aldehyde, cyclamen aldehyde, cyclo galbanate, damascones, decalactone, decanol, estragole, dihydromyrcenol, dimethyl benzyl carbinol, 6,8-dimethyl-2-nonanol, dimethyl benzyl carbinyl butyrate, ethyl acetate, ethyl isobutyrate, ethyl butyrate, ethyl propionate, ethyl caprylate, ethyl cinnamate, ethyl hexanoate, ethyl valerate, ethyl vanillin, eugenol, exaltolide, fenchone, fruity esters such as ethyl 2-methyl butyrate, galaxolide, geraniol and ester derivatives, helional, 2-heptonone, hexenol, α-hexylcinnamic aldehyde, hydroxycitronellal, indole, isoamyl acetate, isoeugenol acetate, ionones, isoeugenol, isoamyl iso-valerate, iso E super, limonene, linalool, lilial, linalyl acetate, lyral, majantol, mayol, melonal, menthol, p-methylacetophenone, methyl anthranilate, methyl cedrylone, methyl dihydrojasmonate, methyl eugenol, methyl ionone, methyl-α-naphthyl ketone, methylphenylcarbinyl acetate, mugetanol, γ-nonalactone, octanal, phenyl ethyl acetate, phenylacetaldehyde dimethyl acetate, phenoxyethyl isobutyrate, phenyl ethyl alcohol, pinenes, sandalore, santalol, stemone, thymol, terpenes, triplal, triethyl citrate, 3,3,5-trimethylcyclohexanol, γ-undecalactone, undecenal, vanillin, veloutone, verdox, and mixtures thereof.
  • Water
  • The compositions described herein may include water. If present, the water may comprise from about 0.1% to about 40%, from about 1% to about 30%, or from about 5% to about 20%, by weight, of the composition.
  • Propellant
  • The compositions described herein may include a propellant. Some examples of propellants include compressed air, nitrogen, inert gases, carbon dioxide, and mixtures thereof. Propellants may also include gaseous hydrocarbons like propane, n-butane, isobutene, cyclopropane, and mixtures thereof. Halogenated hydrocarbons like 1,1-difluoroethane may also be used as propellants. Some non-limiting examples of propellants include 1,1,1,2,2-pentafluoroethane, 1,1,1,2-tetrafluoroethane, 1,1,1,2,3,3,3-heptafluoropropane, trans-1,3,3,3-tetrafluoroprop-1-ene, dimethyl ether, dichlorodifluoromethane (propellant 12), 1,1-dichloro-1,1,2,2-tetrafluoroethane (propellant 114), 1-chloro-1,1-difluoro-2,2-trifluoroethane (propellant 115), 1-chloro-1,1-difluoroethylene (propellant 142B), 1,1-difluoroethane (propellant 152A), monochlorodifluoromethane, and mixtures thereof. Some other propellants suitable for use include, but are not limited to, A-46 (a mixture of isobutane, butane and propane), A-31 (isobutane), A-17 (n-butane), A-108 (propane), AP70 (a mixture of propane, isobutane and n-butane), AP40 (a mixture of propane, isobutene and n-butane), AP30 (a mixture of propane, isobutane and n-butane), and 152A (1,1 difluoroethane). The propellant may have a concentration from about 15%, 25%, 30%, 32%, 34%, 35%, 36%, 38%, 40%, or 42% to about 70%, 65%, 60%, 54%, 52%, 50%, 48%, 46%, 44%, or 42% by weight of the total fill of materials stored within the container. It should be appreciated that compositions of the present invention may also be devoid of a propellant.
  • Other Ingredients
  • The compositions disclosed herein also contain a variety of other ingredients that may render the composition more cosmetically or aesthetically acceptable or provide the composition with additional usage benefits. These other ingredients are well-known to those skilled in the art. These include any cosmetically acceptable ingredient such as may be found in the CTFA International Cosmetic ingredient Dictionary and Handbook, 7 th edition, edited by Wenninger and McEwen, (The Cosmetic, Toiletry, and Fragrance Association, Inc., Washington, D.C., 1997). As used herein “cosmetically acceptable” means a material (e.g., compound or composition) that is suitable for use in contact with skin, hair, or other suitable substrate. For example, the compositions may include alcohol denaturants such as denatonium benzoate; UV stabilizers such as benzophenone-2; antioxidants such as tocopheryl acetate; preservatives such as phenoxyethanol, benzyl alcohol, methyl paraben, propyl paraben; dyes; pH adjusting agents such as lactic acid, citric acid, sodium citrate, succinic acid, phosphoric acid, sodium hydroxide, sodium carbonate; deodorants and antimicrobials such as farnesol and zinc phenolsulphonate; humectants such as glycerine; oils; skin conditioning agents such as allantoin, panthenol and other Vitamin B5 derivatives; cooling agents such as trimethyl isopropyl butanamide and menthol; hair conditioning ingredients such as panthenol, panthetine, pantotheine, panthenyl ethyl ether, and combinations thereof; silicones; salts in general, such as potassium acetate and sodium chloride; and mixtures thereof. When present, these additional ingredients may be present at a level of less than 10%, by weight, of the total composition. Embodiments of the present invention include feminine and adult incontinence sprays/spritzes. Intimate skin that was shaven or irritated due to mechanical or chemical contact (e.g., prolonged exposure to menses and urine) can be sensitive to the volatile solvents included in the compositions of the present invention. Thus, skin conditioning agents such as, for example, Vitamin B5 (e.g., panthenol, panthenyl triacetate, and mixtures thereof) derivatives, are useful in the composition to help mitigate stinging or general discomfort from the volatile solvent.
  • Antiperspirant Active
  • The compositions described herein may be free of, substantially free of, or may include an antiperspirant active (i.e. any substance, mixture, or other material having antiperspirant activity). Examples of antiperspirant actives include astringent metallic salts, like the inorganic and organic salts of aluminum, zirconium and zinc, as well as mixtures thereof. Such antiperspirant actives include, for example, the aluminum and zirconium salts, such as aluminum halides, aluminum hydroxyhalides, zirconyl oxyhalides, zirconyl hydroxyhalides, and mixtures thereof.
  • Article of Manufacture
  • The composition may be included in an article of manufacture comprising a spray dispenser. The spray dispenser may comprise a vessel for containing the composition to be dispensed. The spray dispenser may comprise an aerosolized composition (i.e. a composition comprising a propellant) within the vessel as well. Other non-limiting examples of spray dispensers include non-aerosol dispensers (e.g. vapor sprays), manually activated dispensers, pump-spray dispensers, or any other suitable spray dispenser available in the art.
  • Method of Use
  • The compositions described herein may be packaged with any container known in the art or with any spray dispenser suitable for delivering the composition to a substrate. The composition may be applied to any substance where moisture is available to trigger the release of the fragrance. When the composition is applied to the human body, the composition may be applied to any area of the skin or may be applied to any area of the body. Alternatively, the composition may be applied to any article, such as a fabric, or any absorbent article including, but not limited to, feminine hygiene articles, diapers, and adult incontinence articles. For example, the composition may be used as a body spray, feminine spray, adult incontinence spray, baby spray, or other spray. A consumer may apply a feminine spray or adult incontinence spray to their body as well as one or more exterior surfaces of a feminine hygiene/incontinence article. A benefit of allowing a consumer to self-dose the composition onto a pre-purchased article is that the consumer can choose how much composition is desired for each article use and vary the application volume as needed. Some feminine hygiene and adult incontinence articles may contain a fragrance and/or odor managing material (e.g., zeolites, absorbent gelling materials) within the article. And some feminine hygiene and adult incontinence articles are devoid of such materials. Consumers accordingly can apply compositions of the present invention to outer surfaces of articles with or without a fragrance/odor managing material within the article.
  • Feminine/Adult Incontinence Applications
  • While the specification has illustrated suitable fragrance materials above, the disclosure below highlights some exemplary (non-limiting) fragrance compounds that can be particularly suitable for compositions of the present invention when they are in the form of a feminine hygiene or adult incontinence product. In some embodiments, fragrance compounds having a “thiol vapor pressure suppression index” (TVPS) of more than 20 may be suitable. Thiol Vapor Pressure Suppression (TVPS) index is a measure of the reduction in butanethiol concentration in the headspace by a compound, as measured using a fast GC instrument, the zNose 7100 (Electronic Sensor Technologies, Newbury Park, Calif.). Before any measurements the instrument is calibrated according to manufacturer's instructions under the same experimental settings. The instrument has a DB-5 column (EST Part No. SYS7100C5, Electronic Sensor Technologies, Newbury Park, Calif.) 1 m in length, 0.25 μm phase thickness, and 0.25 mm in diameter. The experimental settings for TVPS measurements are:
  • Sampling time: 10 s
  • Sensor Temperature: 40° C.
  • Initial Column Temperature: 40° C.
  • Inlet Temperature: 40° C.
  • Valve Temperature: 40° C.
  • Column Temperature Ramp Rate: 10 C.°/s
  • Final Column Temperature: 200° C.
  • TVPS of a compound is measured in the following way: 100 μl±1 μl of a 1% v/v butanethiol (99%, purity) solution in ethanol (200 proof) is added into a 1 ml vial (8×40 mm). These vials are borosilicate glass straight walled vial. A suitable butanethiol is item 112925 from Sigma-Aldrich (Sigma-Aldrich, St. Louis, Mo.). In another 1 ml vial (8×40 mm), 5 μl±0.2 μl of the compound is added. Both open vials are then placed inside a 20 ml headspace vial (22×75 mm), and the vial is immediately sealed using a screw thread closure with PTFE/Silicone septa. The vial is heated to 37° C. for 4 hours. After 4 hours, the vial is removed from the oven and let to equilibrate at 25° C.±2° C. for 15 minutes. The headspace inside the vial is sampled using the zNose following the experimental protocol outlined above. Samples with butanethiol alone, and the volatile active alone, are run using the same protocol to identify the peaks for both materials. An acceptable retention index for butanethiol is 720±30. If the peaks butanethiol peak and the volatile material peak co-elute, one skilled in the art can modify the protocol settings to separate those peaks. A minimum resolution of 1.5 should be obtained. For example one can change the column temperature ramp rate. In between samples, the instrument needs to be cleaned to remove any trace materials. To clean the instrument, the instrument is run without samples as needed until no peaks greater than 100 counts are observed.
  • The amount of butanethiol in the headspace is measured from the area of the peak on the chromatograph for butanethiol (ABtSH,Rx). To calculate the percentage of butanethiol reduction in the headspace, a control with the butanethiol solution without the volatile material is run in the same manner and the area is measured as well (ABtSH,C). TVPS is then measured as the percentage reduction in butanethiol area calculated using the following formula:
  • TVPS = A BtSH , C - A BtSH , Rx A BtSH , C × 100
  • Fragrance compounds having a TVPS higher than 20 include, but are not limited to, (a) melonal, adoxal, trans-2-hexenal, ligustral, Floral Super, Florhydral, 5-methyl-2-thiophene-carboxaldehyde, hydratropic aldehyde, undecenal, 9-undecenal, 10-undecenal, trans-4-decenal, cis-6-nonenal, isocyclocitral, precyclemone b, (E)-2,(z)-6-nonadienal, undecyl aldehyde, methyl-octyl-acetaldehyde, Lauric aldehyde, silvial, vanillin, and floralozone.
  • All these compounds in list (a) above are particularly reactive toward malodourant molecules containing Sulphur atoms (thiol type malodors, typically associated with protein degradation e.g. in menstrual fluids, feces, food etc). The primary function of the reactive compounds is to chemically react with malodors, such as malodourant molecules containing Nitrogen atoms (amine type odors, typically deriving from the degradation of urine or certain foods like onions) and/or malodourant molecules containing Sulphur atoms (thiol type malodors, typically associated with protein degradation e.g. in menstrual fluids, feces, food etc). Ammonia/amines are one component of malodor associated with the absorption of bodily fluids, such as menses or urine. For example, ammonia/amines are typically present in high amounts in absorbent products used for urine absorption due to degradation of urea. Ammonia/amines and their derivatives can react with aldehydes and/or ketones to form imines (according to the so-called Schiff base reaction).
  • Figure US20140274949A1-20140918-C00001
  • This reaction is catalyzed by enzymes and/or by a slightly acidic pH 4 to 5. The moderate acid requirement is necessary to allow protonation of the hydroxyl intermediate to allow water to leave.
  • Malodourant sulphur based compounds are typically generated by the degradation of proteins e.g. in menstrual fluids feces or food and so their control is particularly important in menstrual absorbent articles such as sanitary napkins or pantyliners as well as in other absorbent articles which get in contact with other proteinaceous materials such food residues or feces. The mechanism of action is not fully understood at the moment, but it is believed that it is connected to the fact that Thiols can react with aldehydes and ketones to form thioacetals and thioketals.
  • Figure US20140274949A1-20140918-C00002
  • In principle the chemical reactions described above can be obtained from any aldehyde, but in practice the reactivity of aldehydes in these type of reactions and in the specific context of an absorbent article is very different. The reactive compounds of the present invention are effective in reacting with Nitrogen based malodourant molecules and particularly effective in reacting with sulphur based malodourant molecules.
  • Preferred additional fragrance compounds are listed here below in lists (b), (c), (d) and (e). Suitable selected additional aldehydes and/or ketones include the following listed in list (b): hexyl cinnamic aldehyde, alpha-amylcinnamic aldehyde, p-anisaldehyde, benzaldehyde, cinnamic aldehyde, cuminic aldehyde, decanal, cyclamen aldehyde, p-t-butyl-alpha-methyldihydrocinnamaldehyde, 4-hydroxy-3-methoxycinnamaldehyde, vanillin isobutyrate, 2-phenyl-3-(2-furyl)prop-2-enal, ethyl vanillin acetate, vanillin acetate, heptanal, lauryl aldehyde, nonanal, octanal, phenylacetaldehyde, phenyl propyl aldehyde, salycil aldehyde, citral, 2,4-dihydroxy-3-methylbenzaldehyde, 2-hydroxy-4-methylbenzaldehyde, 5-methyl salicylic aldehydes, 4-nitrobenzaldehyde, o-nitrobenzaldehyde, 5-ethyl-2-thiophenecarbaldehyde, 2-thiophenecarbaldehyde, asaronaldehyde, 5-(hydroxymethyl)-2-furaldehyde, 2-benzofurancarboxaldehyde, 2,3,4-trimethoxybenzaldehyde, protocatechualdehyde, heliotropine, 4-ethoxy-3-methoxy benzaldehyde, 3,4,5-trimethoxybenzaldehyde, 3-hydroxybenzaldehyde, o-methoxycinnamaldehyde, 3,5-dimethoxy-4-hydroxycinnamaldehyde, 2,8-dithianon-4-3n-4-carboxaldehyde, sorbinaldehyde, 2,4-heptadienal, 2,4-decadienal, 2,4-nonadienal, 2,4-nonadienal, (E,E)-,2,4-octadien-1-al, 2,4-octadienal, 2,4-dodecadienal, 2,4-undecadienal, 2,4-tridecadien-1-al, 2-trans-4-cis-7-cis-tridecatrienal, piperonylidene propionaldehyde, 2-methyl-3-(2-furyl)acrolein, 2,4-pentadienal, 2-furfurylidene butyraldehyde, helional, lyral, 3-hexenal, safranal, veratraldehyde, 3-(2-furyl)acrolein, pyruvaldehyde, ethanedial, 1-(2,6,6-trimethyl-1-cyclohexenyl)pent-1-en-3-one; 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-3-Buten-2-one; 4-(2,6,6-trimethyl-2-cyclohexen-1-yl)-3-buten-2-one, 5-(2,6,6-Trimethyl-2-cyclohexen-1-yl)4-penten-3-one, (E)-4-(2,2-dimethyl-6-methylidenecyclohexyl)but-3-en-2-one.
  • Components from list (c) are menthol, menthyl acetate, menthyl lactate, menthyl propionate, menthyl butyrate, menthone, mint terpenes, laevo-carvone, Cis-3-Hexenol & Cis-3-Hexenyl acetate, koavone, methyl dioxolan.
  • Components from class (d) are methyl-dihydrojasmonate, methyl jasmonate, eucalyptol, tetrahydro-linalool, Phenyl-Ethyl alcohol, Hexyl iso-butyrate, Linalyl acetate, Benzyl acetate, Benzyl alcohol, or mixture thereof. These are volatile materials which are well complexed in particular when the complexing agent is a cyclodextrin and are release very quickly upon contact with a water based liquid. Their presence allows the absorbent article to respond more quickly to an insult of malodourant liquid by releasing a compound that have a good general masking effect against malodors, in particular, being very volatile, reduces the vapor pressure of other malodourant compounds slowing down their evaporation rate.
  • And components from class (e) include camphor, p-menthane, limonene, cresol, linalool, myrcenol, tetrahydromyrcenol, di-hydromyrcenol, myrcene, citronellol, citronellyl derivatives, geraniol, geranyl derivatives, mugetanol, eugenol, jasmal, terpineol, pinanol, cedrene, damascone, beta pinene, cineole and its derivatives, nonadienol, ethylhexanal, octanol acetate, methyl furfural, terpinene, thujene, amylacetate, camphene, citronellal, hydroxycitronellal, ethyl maltol, methyl phenyl carbinyl acetate, dihydrocoumarin, di-hydromyrcenyl acetate, geraniol, geranial, isoamylacetate, ethyl, and/or triethyl acetate, para-cresol, para-cymene, methyl abietate, hexyl-2-methyl butyrate, hexyl-2-methyl butyrate, and mixtures thereof.
  • Headspace Test Method
  • Prepare a 3 inch by 5 inch cardboard, professional aerosol testing blotter card (available from Orlandi Inc.) for each sample to be tested. Pre-weigh each blotter card with an analytical balance. Spray each sample evenly onto a blotter card. This can be done using a 3 ounce plastic bottle (Matrix Packaging) fitted with a 3 ounce spray actuator from Seaquist Perfect Dispensing. The blotter card should be weighed after the sample is sprayed to ensure that approximately 0.050 grams±0.0025 of sample was sprayed onto the blotter card. If the blotter card was not evenly wet among the application area upon visual evaluation or if the amount of sample sprayed was not approximately 0.050 grams±0.0025, the blotter card should be disposed and the process should be repeated.
  • Once all samples are prepared, the blotter card should be placed with the application side face up on a paper towel. The blotter card should be allowed to dry at room temperature for about 4 hours. After drying, using a similar plastic bottle fitted with the spray actuator as described above, spray each sample once with distilled water directly over the application area of the blotter card. Immediately after spraying, place each blotter card containing a sample into a different 7 ounce clear polyethylene terephthalate cup containing a lid. This can be done by rolling the blotter card into a cylinder across the long axis of the blotter card and arranging the blotter card so that the application side is facing the center of the cup. Once placed, the lid to the polyethylene terephthalate cup should be closed and the samples are ready for analysis.
  • Next, prepare a zNose Fast-GC Analyzer (Model #MEA007100) with DB-624 column from Electronic Sensor Technology, Inc., (hereinafter referred to as “zNose”) or equivalent for analysis. Prior to running the samples, the zNose should be cleaned and calibrated. To clean and calibrate the zNose, first turn on the zNose, open the helium valve, and open the program, MicroSense 4.5. Allow all parts of the instrument to reach their appropriate temperatures which can take approximately 15 minutes.
  • If the helium in the zNose is low, connect a helium tank to the back of the zNose (marked “Helium”) by way of a hose, open the valve on the helium tank, and fill until the zNose pressure gauge reaches about 1000 psi. Once full, close the valve on the helium tank, release the pressure from the hose, and remove the hose from the zNose.
  • To clean the inlet and needle of the zNose, fill half of a vial with methanol and insert the bubbler so that the tip of the bubbler is fully emerged in the methanol. Place the vial on a sampler needle. In the control panel, type in 90 seconds and select “Pump” to bubble the methanol. Next, hit the “Fire Trap” twice in the control panel. Raise the column temperature to 190° C. in the test settings for 15 seconds. Once complete, reduce the column temperature back to 40° C. Back the sensor once by clicking the proper button on the monitoring tools. Run a high temperature blank, raising the sensor temperature to 100° C. and save this file. The blank should be an empty headspace of the same container in which the sampling is done. Run a low temperature blank by lowering the sensor temperature to 40° C. If large peaks remain, repeat the cleaning procedures as stated above. If large peaks remain after cleaning, refer to the Maintenance and Repair section in the zNose's accompanying manual. If peaks are less than 300 counts and are in higher KI, the contamination peaks may be tagged and accounted for in the calculations.
  • The zNose is clean and operational when all peaks are below 100 counts as per manufacturer's instructions. Ensure the ‘Test settings’ are set according to the following: Sensor (50 C), Column (40 C), Valve (145 C), Inlet (200 C), Trap (200 C), Pump Time (10 seconds). Once test settings are set, calibrate the zNose with a n-alkanes standard as stated in the zNose's accompanying manual. This will ensure the zNose is operating according to the manufacturer's standards.
  • Once the zNose is clean and calibrated, create a new alarm file. The new alarm file should contain no tagged peaks. Samples should be analyzed randomly. Analyze the 1st sample according to the manufacturer's instructions. A cleaning step should be performed after each sample is analyzed by bubbling methanol for 5 seconds. Next, a blank should be analyzed to ensure that no peaks remain. If no peaks remain, analyze the 1st sample a second time. Perform a cleaning step with bubbling methanol for 5 seconds followed by an analysis of a blank to ensure that no peaks remain. If no peaks remain, analyze the 1st sample a third time. Perform a cleaning step with bubbling methanol for 5 seconds followed by an analysis of a blank to ensure that no peaks remain. Repeat the above steps for each sample. All testing should take place within an hour from the analysis of the first sample and within 4 to 5 hours after the application of the sample to the blotter card.
  • Once all samples have been analyzed, transfer the data to Microsoft® Excel® or equivalent and sum the total area under all the peaks associated with each sample. For each sample, there should be a ‘total peak area’ representing each of the 3 runs per sample. Calculate the average, standard deviation, and the percent relative standard deviation (i.e., % RSD) for each sample. A mean, standard deviation, and % RSD should now be available for each sample based on a sample size of n=3.
  • Fragrance Expert Panel
  • Evaluations were conducted under controlled environmental conditions by a trained panel using the following standardized procedures. Approximately 10-20 expert panelists participated in each evaluation. Compositions were sprayed using a 3 ounce plastic bottle (Matrix Packaging) fitted with a 3 ounce spray actuator from Seaquist Perfect Dispensing. Compositions were shaken and then sprayed for 2 seconds onto the forearm of a panelist, approximately 2 to 6 inches below the wrist in an area preferably with minimal hair. The actuator was held about 6 inches away from the forearm. The process was repeated with the other forearm. Each panelist rated the intensity of the fragrance, from 1-8, in order of increasing intensity (e.g. a rating of 1 being the lowest intensity and a rating of 8 being the highest intensity) before application of the composition (baseline), and at 15 min, 30 min, and 60 min after spraying of the composition. At times 45 min, 90 min, and 180 min after spraying of the composition, the forearms were sprayed with one spritz of water using a 3 ounce plastic bottle (Matrix Packaging) fitted with a 3 ounce spray actuator from Seaquist Perfect Dispensing and the panelist rated the intensity before and after the water spritz. The ratings were recorded and subsequently analyzed by the Wilcoxon method.
  • Fragrance Untrained Panel
  • Evaluations were conducted under controlled environmental conditions by an untrained panel using the following standardized procedures. Approximately 5 untrained panelists participated in each evaluation. Compositions were sprayed onto a 3 inch by 5 inch cardboard, professional aerosol testing blotter card (available from Orlandi Inc.) using a 3 ounce plastic bottle (Matrix Packaging) fitted with a 3 ounce spray actuator from Seaquist Perfect Dispensing. An amount of 0.050 g±0.0025 of composition was applied to each blotter card. The amount sprayed onto each blotter card can be confirmed using an analytical balance. Following the spraying of the composition, the blotter cards were allowed to dry for 24 hours. After drying, blotter cards were sprayed with approximately 0.025 g of water using a 3 ounce plastic bottle (Matrix Packaging) fitted with a 3 ounce spray actuator from Seaquist Perfect Dispensing and placed into a 7 ounce clear polyethylene terephthalate cup for evaluation. Panelists were instructed to rate the intensity of the fragrances from 1-7 in order of increasing intensity (e.g. a rating of 1 being the lowest intensity and a rating of 7 being the highest intensity). The ratings were recorded and subsequently analyzed by the Wilcoxon method.
  • Examples
  • The following examples are given solely for the purpose of illustration and are not to be construed as limiting the invention, as many variations thereof are possible.
  • Table 1 below illustrates the effect of nonvolatile solvents on the release of a fragrance into the headspace. The total area count for the compositions shown in Table 1 were measured using the Headspace Test Method disclosed herein. Examples contained 0.25% by weight of the composition of a typical fragrance, 1% by weight of the composition of methylated-β-cyclodextrin (shown as “mβCD” in Table 1), and the nonvolatile solvents, dipropylene glycol or triethyl citrate at the indicated percentiles. The remainder of the formulation was balanced to 100% with ethanol. Formulations were mixed to ensure homogeneity.
  • TABLE 1
    Example Example Example Example Example Example Example Example Example
    A B C D E F G H I
    Ethanol 98.75 98.74 98.74 98.65 98.65 98.26 98.26 97.76 97.76
    mβCD 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99
    Typical Fragrance 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
    Dipropylene Glycol 0 0.01 0.1 0.5 1.0
    Triethyl Citrate 0 0.01 0.1 0.5 1.0
    Ratio of non- NA 1:100 1:100 1:10 1:10 1:2 1:2 1:1 1:1
    volatile solvent
    to mβCD
    zNose Headspace 202268 159514 136332 70821 108203 52142 7008 10787 5256
    Total Peaks *
    * zNose Headspace Total Peaks excludes those contributed by the non-volatile solvents, dipropylene glycol and triethyl citrate.
  • Comparing Example B and Example C to Example A from Table 1, the addition of either dipropylene glycol or triethyl citrate decreased the amount of fragrance released into the headspace by approximately 21% and 33%, respectively. Increasing the concentration of either dipropylene glycol or triethyl citrate relative to methylated-β-cyclodextrin in the composition further decreased the amount of fragrance released into the headspace in a dose-dependent manner. For example, comparing Example D to Example B, increasing the concentration of dipropylene glycol relative to methylated-β-cyclodextrin decreased the amount of fragrance released into the headspace from a count of 159514 for Example B to a count of 70821 for Example C. Comparing Example H to Example A from Table 1, the inclusion of dipropylene glycol in the composition at a ratio of 1:1 of dipropylene glycol:methylated-β-cyclodextrin reduced the amount of fragrance released into the headspace by approximately 95%. Similar trends were observed when triethyl citrate was included in the composition in place of dipropylene glycol. These data suggest that the inclusion of nonvolatile solvents can suppress the release of a fragrance from a composition including methylated-β-cyclodextrin. The data further suggests that the ratio of nonvolatile solvent to methylated-β-cyclodextrin is an important consideration for formulating such compositions in view of maximizing the release of the fragrance into the headspace.
  • Table 2 below illustrates the influence of nonvolatile solvents on the release of a fragrance into the headspace as determined by the Fragrance Untrained Panel described herein. Example 1 included a ratio of nonvolatile solvent to methylated-β-cyclodextrin due to trace amounts of dipropylene glycol within the fragrance itself. Example 1, which contained the least amount of nonvolatile solvent relative to methylated-β-cyclodextrin, obtained the highest average ranking by the Fragrance Untrained Panel with a score of 7.0. Comparing Example 2 to Example 1, increasing the concentration of the nonvolatile solvent, dipropylene glycol, relative to methylated-β-cyclodextrin to a ratio of 1:4 resulted in average ranking of 6.0, a ranking statistically significantly lower than that attributed to Example 1. Comparing Example 3 to Example 1, increasing the concentration of the nonvolatile solvent, triethyl citrate, relative to methylated-β-cyclodextrin to a ratio of 1:5 resulted in an average ranking of 3.8, a statistically significantly lower ranking than attributed to Example 1.
  • TABLE 2
    Example Example Example Example Example Example Example
    Material 1 2 3 4 5 6 7
    Denatured Alcohol 93 92.07 92.07 88.35 88.35 83.7 83.7
    Dipropylene Glycol 0 1 0 5 0 10 0
    Triethyl Citrate 0 0 1 0 5 0 10
    Cavasol W7 mβCD 5 4.95 4.95 4.75 4.75 4.5 4.5
    Fragrance 2 1.98 1.98 1.9 1.9 1.8 1.8
    Ratio Nonvolatile 1:25 1:4 1:5 1:1 1:1 2:1 2:1
    solvent:mβCD
    Average Panelist 7.0 6.0 3.8 3.6 2.8 2.6 2.2
    Ranking
  • Comparing Example 4 and Example 6 to Example 2, further increasing the concentration of the nonvolatile solvent, dipropylene glycol, relative to methylated-β-cyclodextrin to a ratio of 1:1 (Example 4) or 2:1 (Example 6) resulted in an average ranking of 3.6 and 2.6, respectively; a ranking statistically significantly lower than that attributed to Example 2. No significant difference was observed between Example 4 and Example 3, Example 5 and Example 3, Example 6 and Example 3, or Example 7 and Example 3. These data corroborate the findings obtained from the Headspace Test Method that the inclusion of nonvolatile solvents in such compositions can suppress the release of a fragrance and that the ratio of nonvolatile solvent to methylated-β-cyclodextrin is an important consideration for formulating such compositions in view of maximizing the release of the fragrance into the headspace.
  • Table 3 below illustrates the effect of nonvolatile solvents on the release of a fragrance into the headspace in aerosolized compositions as determined by the Fragrance Expert Panel described herein. Table 3 illustrates the average ratings of Panelists who rated the forearms of subjects 180 min after the spraying of Example 8, 9, and 10, before and after a spritz of water. Example 8 included the nonvolatile solvents, dipropylene glycol and isopropyl myristate, but did not include methylated-β-cyclodextrin. Example 9 included methylated-β-cyclodextrin and the nonvolatile solvents, dipropylene glycol and isopropyl myristate. Example 10 included methylated-β-cyclodextrin but did not include the nonvolatile solvents, dipropylene glycol and isopropyl myristate.
  • TABLE 3
    Material Example 8 Example 9 Example 10
    Denatured Alcohol 34.35 33.35 46.00
    Dipropylene Glycol 12.41 11.41 0
    Isopropyl Myristate 0.83 0.83 0
    Zinc Phenosulphonate 0.41 0.41 0
    Cavasol W7 mβCD 0 2.00 2.00
    Fragrance 1.32 1.32 1.32
    Propane 6.163 6.163 6.163
    Isobutane 34.381 34.381 34.381
    1,1-Difluoroethane 10.136 10.136 10.136
    (HFC-152a)
    Ratio Nonvolatile NA 5:1 NA
    solvent:mβCD
    Average Panelist 4.3 4.6 4.6
    Ranking
    (3 hour pre-mist)
    Average Panelist 4 4.5 4.9
    Ranking
    (3 hour post-mist)
  • Comparing Example 8 to Example 9, the addition of methylated-β-cyclodextrin to the composition of Example 9 did not result in a statistically significant increase in the average ranking despite the increase in average scores when ratings were conducted before the application of the water. In contrast, after the application of water, Example 9 had a statistically significant increase in rating as compared to Example 8 (4.5 versus 4). Comparing Example 9 to 10, the exclusion of nonvolatile solvents as in Example 10 did not result in a statistically significant increase in the ranking by the Panelists as compared to Example 9 when ratings were conducted before the application of the water. Surprisingly, the exclusion of nonvolatile solvents as in Example 10 resulted in a statistically significant increase in the average ranking as compared to Example 9 when ratings were conducted after the application of water (4.9 versus 4.5). These data corroborate the findings obtained from the Headspace Test Method and the Fragrance Untrained Panel that the inclusion of nonvolatile solvents in such compositions can suppress the release of a fragrance.
  • Table 4 below illustrates another example of an aerosolized composition. Example 11 includes 1,1-Difluoroethane, methylated-β-cyclodextrin, and a fragrance.
  • TABLE 4
    Example
    Material 11
    Denatured Alcohol 61.25
    Water 0.75
    Dipropylene Glycol 0
    Isopropyl Myristate 0
    Zinc 0
    Phenosulphonate
    Cavasol W7 mβCD 1.00
    Fragrance 2.00
    Propane 0
    Isobutane 0
    1,1-Difluoroethane 35.00%
    (HFC-152a)
  • Table 5 below (values are in weight percent) illustrates examples of compositions of the present invention in the form of a feminine or adult incontinence spray that can be applied to intimate skin and/or an absorbent article for managing odors associated with menses, urine, or other bodily exudates. Exemplary feminine and adult incontinence spray compositions are provided in Table 5 below. Examples 12-19 can be packaged into portable containers that are discrete and can be carried into public and other non-personal bathrooms so that the composition can be applied to intimate skin and/or absorbent articles. Exemplary containers include spray bottles having an interior volume of 25, 50, 75, or 100 milliliters.
  • TABLE 5
    Denatured Panthenyl methyl-β- α- Fragrance
    Ex. Ethanol Cyclomethicone Panthenol Triacetate cyclodextrin cyclodextrin Composition
    12 93 0 0 0 5 0 2
    13 91.5 0 1 1 5 0 1.5
    14 95 0 1 0 3 0 1
    15 88 0 5 0 5 0 2
    16 88 0 4 1 5 0 2
    17 88.2 0 5 0 2.5 2.5 1.8
    18 88.7 0 0 0 4.5 5 1.8
    19 56.2 40 0 0 2 0 1.8

    Table 6 below provides an exemplary fragrance composition that can be incorporated into Examples 12-19 listed in Table 5.
  • TABLE 6
    Weight percent of the
    Fragrance Component fragrance composition
    Methyl Dihydro Jasmonate 14
    Koavone 7
    Hydoxycitronellal 10
    Beta Ionone 10
    Helional 10
    Anisic Aldehyde 9.5
    Phenyl Ethanol 8
    Dihydro Myrcenol 10
    Floral Super 4.5
    Flohydral 4.25
    Alpha Ionone 3
    Benzaldehyde 2
    Melonal 2
    Ligustral Or Triplal 1.5
    Citral 1
    Vanillin 1
    Delta Demascone 0.75
    Cinnamic Aldehyde 0.75
    Ehtyl Maltol 0.5
    Adoxal 0.25
  • It should be understood that every maximum numerical limitation given throughout this specification includes every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification will include every higher numerical limitation, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.
  • The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”
  • Every document cited herein, including any cross referenced or related patent or application and any related patent or application identified in the Application Data Sheet accompanying this application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
  • While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims (19)

What is claimed is:
1. A feminine or adult incontinence spray composition, the composition comprising:
a cyclic oligosaccharide selected from the group consisting of a water-soluble cyclic oligosaccharide, an ethanol-soluble cyclic oligosaccharide, a water- and ethanol-soluble cyclic oligosaccharide, and mixtures thereof;
i) a fragrance;
ii) a volatile solvent; and
iii) a nonvolatile solvent;
wherein the weight ratio of the nonvolatile solvent to the cyclic oligosaccharide is less than 1:1.
2. The spray of claim 1, wherein the composition comprises water- and ethanol-soluble cyclic oligosaccharide.
3. The spray of claim 2, wherein the composition comprises from about 0.75% to about 5% of the water- and ethanol-soluble cyclic oligosaccharide by weight of the composition.
4. The spray of claim 1, wherein the fragrance comprises a fragrance composition comprising more than 30%, by weight of the fragrance composition, of perfume aldehydes at least 10% of which having a Thiol Vapor Pressure Suppression index of greater than 20.
5. The spray of claim 2, wherein the water- and ethanol-soluble cyclic oligosaccharide is selected from the group consisting of hydroxypropyl-α-cyclodextrin, hydroxylpropyl-β-cyclodextrin, methyl-α-cyclodextrin, methyl-β-cyclodextrin, and mixtures thereof.
6. The spray of claim 2, wherein the water- and ethanol-soluble cyclic oligosaccharide comprises methyl-β-cyclodextrin.
7. The spray of claim 1, wherein the nonvolatile solvent is selected from the group consisting of benzyl benzoate, diethyl phthalate, triethyl citrate, propylene glycol, isopropyl myristate, dipropylene glycol, panthenol, panthenyl triacetate, and mixtures thereof.
8. The spray of claim 1, wherein the composition comprises greater than 60% of the volatile solvent by weight of the composition.
9. The spray of claim 1, wherein the composition comprises from about 0.5% to about 5% of the nonvolatile solvent by weight of the composition.
10. The spray of claim 1, further comprising a Vitamin B5 derivative.
11. A feminine or adult incontinence spray composition, the composition comprising:
a cyclic oligosaccharide selected from the group consisting of a water-soluble cyclic oligosaccharide, an ethanol-soluble cyclic oligosaccharide, a water- and ethanol-soluble cyclic oligosaccharide, and mixtures thereof;
i) a fragrance;
ii) a volatile solvent; and
iii) a nonvolatile solvent comprising a Vitamin B5 derivative;
wherein the weight ratio of the nonvolatile solvent to the cyclic oligosaccharide is less than 1:1, and wherein the composition comprises greater than 60% of the volatile solvent by weight of the composition.
12. The spray of claim 11, wherein the fragrance comprises a fragrance composition comprising more than 30%, by weight of the fragrance composition, of perfume aldehydes having a Thiol Vapor Pressure Suppression index of greater than 20.
13. The spray of claim 11, wherein the composition comprises greater than 80% of the volatile solvent by weight of the composition.
14. The spray of claim 11, wherein the composition comprises greater than 90% of the volatile solvent by weight of the composition.
15. A method for providing a fragrance composition in conjunction with wearing a feminine hygiene article or adult incontinence article, the method comprising the steps of:
a) providing a spray composition comprising a cyclic oligosaccharide selected from the group consisting of a water-soluble cyclic oligosaccharide, an ethanol-soluble cyclic oligosaccharide, a water- and ethanol-soluble cyclic oligosaccharide, and mixtures thereof;
i) a fragrance;
ii) a volatile solvent; and
iii) a nonvolatile solvent;
wherein the weight ratio of the nonvolatile solvent to the cyclic oligosaccharide is less than 1:1;
b) spraying an amount of the spray composition onto at least one of the exterior surface of a pre-purchased feminine hygiene article or adult incontinence article, and the body; and
c) wearing the feminine hygiene article or adult incontinence for a period of time, during which at least some of the fragrance is released from the spray composition.
16. The method of claim 15, wherein the nonvolatile solvent comprises a Vitamin B5 derivative.
17. The method of claim 15, wherein the fragrance comprises a fragrance composition comprising more than 30%, by weight of the fragrance composition, of perfume aldehydes at least 10% of which having a Thiol Vapor Pressure Suppression index of greater than 20.
18. The method of claim 15, wherein the spray composition comprises greater than 80% of the volatile solvent by weight of the spray composition.
19. The method of claim 15, wherein the spray composition comprises greater than 90% of the volatile solvent by weight of the spray composition.
US14/210,523 2013-03-15 2014-03-14 Personal care compositions Abandoned US20140274949A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/210,523 US20140274949A1 (en) 2013-03-15 2014-03-14 Personal care compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361790378P 2013-03-15 2013-03-15
US14/210,523 US20140274949A1 (en) 2013-03-15 2014-03-14 Personal care compositions

Publications (1)

Publication Number Publication Date
US20140274949A1 true US20140274949A1 (en) 2014-09-18

Family

ID=50439512

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/209,427 Active 2034-06-26 US9896645B2 (en) 2013-03-15 2014-03-13 Personal care compositions
US14/210,523 Abandoned US20140274949A1 (en) 2013-03-15 2014-03-14 Personal care compositions
US15/868,080 Active US10316269B2 (en) 2013-03-15 2018-01-11 Personal care compositions

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/209,427 Active 2034-06-26 US9896645B2 (en) 2013-03-15 2014-03-13 Personal care compositions

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/868,080 Active US10316269B2 (en) 2013-03-15 2018-01-11 Personal care compositions

Country Status (6)

Country Link
US (3) US9896645B2 (en)
EP (2) EP2968101B1 (en)
JP (3) JP2016512565A (en)
CN (2) CN105050577A (en)
RU (2) RU2015137146A (en)
WO (2) WO2014151171A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10316269B2 (en) 2013-03-15 2019-06-11 The Procter & Gamble Company Personal care compositions
US20240185661A1 (en) * 2022-12-01 2024-06-06 Throne Labs, Inc. Systems and methods for managing publicly accessible amenities

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111544205A (en) 2014-10-09 2020-08-18 宝洁公司 Disposable absorbent articles for adults comprising an improved design and array of said articles
US10456307B2 (en) 2015-01-16 2019-10-29 The Procter & Gamble Company Adult disposable absorbent articles and arrays of said articles comprising absorbent cores having channels
GB2554228B (en) 2015-03-16 2021-08-04 Procter & Gamble Absorbent articles with improved strength
WO2016149251A1 (en) 2015-03-16 2016-09-22 The Procter & Gamble Company Absorbent articles with improved cores
CN107405233B (en) 2015-03-20 2021-06-04 宝洁公司 Disposable absorbent articles comprising visual properties and arrays of said articles
US10449099B2 (en) 2015-06-25 2019-10-22 The Procter & Gamble Company Adult disposable absorbent articles and arrays of said articles comprising improved capacity profiles
CN107920928A (en) 2015-08-13 2018-04-17 宝洁公司 There is band structure with figure
US20170056257A1 (en) 2015-08-27 2017-03-02 The Procter & Gamble Company Belted structure
JP2019500935A (en) 2015-12-15 2019-01-17 ザ プロクター アンド ギャンブル カンパニー Absorbent core with adhesive free of tackifier
CA3005629A1 (en) 2015-12-15 2017-06-22 The Procter & Gamble Company Belted structure with tackifier-free adhesive
WO2017132119A1 (en) 2016-01-26 2017-08-03 The Procter & Gamble Company Absorbent cores with high molecular weight superabsorbent immobilizer
EP3290087B1 (en) * 2016-09-06 2020-10-14 The Procter & Gamble Company Spray compositions, sprayable products, and methods of treating a surface with the same
WO2018048718A1 (en) * 2016-09-06 2018-03-15 The Procter & Gamble Company Aerosol compositions
MX2019002545A (en) 2016-09-06 2019-07-01 Procter & Gamble Antiperspirant and deodorant compositions.
DE102017217735A1 (en) * 2017-10-05 2019-04-11 Henkel Ag & Co. Kgaa "Deodorants with extended scent adhesion"
CN112351762A (en) 2018-07-26 2021-02-09 宝洁公司 Absorbent core comprising superabsorbent polymer immobilization material
US10588871B1 (en) 2019-06-28 2020-03-17 Nexzol Pharma, Inc. Transdermal formulation for the treatment of pain and/or inflammation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6767507B1 (en) * 1998-11-25 2004-07-27 The Procter & Gamble Company Uncomplexed cyclodextrin compositions for odor control
US20110031249A1 (en) * 2008-10-30 2011-02-10 Fissler Gmbh Pressure vessel
US20110150814A1 (en) * 2009-12-17 2011-06-23 Ricky Ah-Man Woo Malodor control composition having a mixture of volatile aldehydes and methods thereof

Family Cites Families (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4145184A (en) 1975-11-28 1979-03-20 The Procter & Gamble Company Detergent composition containing encapsulated perfume
US4209417A (en) 1976-08-13 1980-06-24 The Procter & Gamble Company Perfumed particles and detergent composition containing same
GB1587122A (en) 1976-10-29 1981-04-01 Procter & Gamble Ltd Fabric conditioning compositions
US4515705A (en) 1983-11-14 1985-05-07 The Procter & Gamble Company Compositions containing odor purified proteolytic enzymes and perfumes
CH675966A5 (en) 1987-02-20 1990-11-30 Firmenich & Cie
JP2775488B2 (en) * 1989-10-06 1998-07-16 大日本除蟲菊株式会社 How to control indoor dust mites
CA2013485C (en) 1990-03-06 1997-04-22 John Michael Gardlik Solid consumer product compositions containing small particle cyclodextrin complexes
JP2857629B2 (en) * 1990-03-30 1999-02-17 株式会社資生堂 Deodorants
GB9022147D0 (en) 1990-10-11 1990-11-21 Unilever Plc Perfumed underarm hygiene products
US5176903A (en) 1990-12-13 1993-01-05 Revlon Consumer Products Corporation Antiperspirant/deodorant containing microcapsules
US5135747A (en) 1991-05-17 1992-08-04 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Deodorant/antiperspirant products with fragrance and encapsulated odor counteractant
GB9120952D0 (en) 1991-10-02 1991-11-13 Unilever Plc Perfume particles
US5378468A (en) 1992-09-22 1995-01-03 The Mennen Company Composition containing body activated fragrance for contacting the skin and method of use
US5508259A (en) 1993-02-11 1996-04-16 Firmenich Sa Perfuming composition
US5380707A (en) 1993-08-13 1995-01-10 The Mennen Company Enhanced efficacy, long-lasting fragrance composition, and deodorant composition, for masking malodor, containing the fragrance composition
US5578563A (en) * 1994-08-12 1996-11-26 The Procter & Gamble Company Composition for reducing malodor impression on inanimate surfaces
JPH08176587A (en) * 1994-12-27 1996-07-09 Shiseido Co Ltd Perfume composition
US5626856A (en) 1995-06-30 1997-05-06 Safe & Dry Company, Inc. Cosmetic delivery vehicles and related compositions
GB9626793D0 (en) 1996-12-23 1997-02-12 Unilever Plc Antiperspirant or deodorant composition
US6306818B1 (en) 1996-06-24 2001-10-23 Givaudan Roure (International) Sa Fragrance precursors
US5882638A (en) 1996-10-24 1999-03-16 The Proctor & Gamble Company Methods using uncomplexed cyclodextrin solutions for controlling environmental odors
US5874067A (en) 1996-10-24 1999-02-23 The Procter & Gamble Company Methods for controlling environmental odors on the body
US5879666A (en) 1996-10-24 1999-03-09 The Procter & Gamble Company Methods and compositions for reducing body odor
US5897855A (en) 1996-10-24 1999-04-27 The Procter & Gamble Company Methods and compositions for reducing body odor
US5780020A (en) 1996-10-28 1998-07-14 The Proctor & Gamble Company Methods and compositions for reducing body odor
US5861144A (en) 1997-06-09 1999-01-19 The Procter & Gamble Company Perfumed compositions for reducing body odors and excess moisture
ID28183A (en) * 1997-06-09 2001-05-10 Procter & Gamble FOOD CLEANING COMPOSITION CONTAINING CYCODODSTRINE
JPH1112105A (en) * 1997-06-27 1999-01-19 Nissei Tekunika:Kk Repellent composition for bird and beast
US5932198A (en) 1997-12-15 1999-08-03 The Gillette Company α-amides of L-amino acids as fragrance precursors
US6180121B1 (en) 1998-03-05 2001-01-30 Colgate-Palmolive Company Fragrance enhancing compositions for cosmetic products
US6036964A (en) 1998-03-05 2000-03-14 Colgate-Palmolive Company Personal hygiene product with enhanced fragrance delivery
DE69838130T2 (en) 1998-06-15 2008-04-10 The Procter & Gamble Company, Cincinnati fragrance compositions
WO2000051560A1 (en) 1999-03-02 2000-09-08 Shaw Mudge & Company Fragrance and flavor compositions containing odor neutralizing agents
WO2000067715A1 (en) 1999-05-07 2000-11-16 The Procter & Gamble Company Cosmetic compositions
WO2000067714A1 (en) * 1999-05-07 2000-11-16 The Procter & Gamble Company Cosmetic compositions
US6123932A (en) 1999-06-14 2000-09-26 The Procter & Gamble Company Deodorant compositions containing cyclodextrin odor controlling agents
US6110449A (en) 1999-06-14 2000-08-29 The Procter & Gamble Company Anhydrous antiperspirant cream compositions improved perfume longevity
US6165452A (en) 1999-07-21 2000-12-26 International Flavors & Frangrances Inc. Cyclic trimers of aldehydes, organoletpic uses thereof and process for preparing same
US6308818B1 (en) 1999-08-02 2001-10-30 Asyst Technologies, Inc. Transport system with integrated transport carrier and directors
US7208464B2 (en) 2000-06-02 2007-04-24 The Procter & Gamble Company Fragrance compositions
US6893647B1 (en) * 2000-05-05 2005-05-17 The Procter & Gamble Company Cosmetic compositions
GB0011389D0 (en) 2000-05-11 2000-06-28 Procter & Gamble Compositions containing volatile solvents
US7820615B2 (en) 2000-05-11 2010-10-26 Rhe Procter & Gamble Company Method of providing delayed release of a volatile solvent from hydro-alcoholic cosmetic compositions
US7208462B2 (en) * 2000-06-02 2007-04-24 The Procter & Gamble Company Fragrance compositions
WO2001093813A2 (en) 2000-06-02 2001-12-13 The Procter & Gamble Company Fragrance compositions
ATE374059T1 (en) 2000-06-02 2007-10-15 Procter & Gamble FRAGRANCE COMPOSITIONS
US7208463B2 (en) * 2000-06-02 2007-04-24 The Procter & Gamble Company Fragrance compositions
AU2001214416A1 (en) 2000-10-27 2002-05-06 The Procter And Gamble Company Fragrance compositions
US7413731B2 (en) * 2000-10-27 2008-08-19 The Procter And Gamble Company Fragrance compositions
US7407650B2 (en) * 2000-10-27 2008-08-05 The Procter & Gamble Company Fragrance compositions
WO2002043684A1 (en) * 2000-10-27 2002-06-06 The Procter & Gamble Company Fragrance compositions
EP1203578A1 (en) 2000-11-03 2002-05-08 The Procter & Gamble Company Methods and compositions for improved fragrancing of a surface
US7041337B2 (en) 2000-11-03 2006-05-09 The Procter & Gamble Company Methods of fragrancing a surface
US7208465B2 (en) 2000-11-03 2007-04-24 The Procter & Gamble Company Methods and compositions for improved fragrancing of a surface
EP1203577A1 (en) 2000-11-03 2002-05-08 The Procter & Gamble Company Methods of fragrancing a surface
GB0102562D0 (en) 2001-02-01 2001-03-21 Unilever Plc Cosmetic products for the reduction of sweat acidity
US20030049290A1 (en) 2001-08-31 2003-03-13 Jha Brajesh Kumar Deodorant composition
US20030194416A1 (en) 2002-04-15 2003-10-16 Adl Shefer Moisture triggered release systems comprising aroma ingredients providing fragrance burst in response to moisture
US20040175404A1 (en) 2002-04-15 2004-09-09 Adi Shefer Moisture triggered sealed release system
US7067152B2 (en) 2002-04-17 2006-06-27 Salvona Llc Multi component moisture triggered controlled release system that imparts long lasting cooling sensation on the target site and/or provides high impact fragrance or flavor burst
WO2003090706A1 (en) 2002-04-26 2003-11-06 The Procter & Gamble Company Fragrance release
US6752982B2 (en) 2002-06-12 2004-06-22 The Gillette Company Personal care product
US20030235545A1 (en) 2002-06-24 2003-12-25 Eric Guenin Cool and dry soft solid antiperspirant
US7235261B2 (en) 2002-06-27 2007-06-26 Haarmann & Reimer Corporation Controlled release encapsulation
US6835373B2 (en) 2002-07-12 2004-12-28 The Procter & Gamble Company Non-irritating antiperspirant compositions containing acidic antiperspirant active
US20040091435A1 (en) 2002-11-13 2004-05-13 Adi Shefer Deodorant and antiperspirant controlled release system
US20040109833A1 (en) 2002-12-09 2004-06-10 Xiaozhong Tang High efficacy, low irritation aluminum salts and related products
US20060159639A1 (en) 2003-03-03 2006-07-20 Miharu Ogura Pseudo body odor composition and perfume composition for inhibiting body odor
US20040202632A1 (en) 2003-04-10 2004-10-14 Unilever Home & Personal Care Usa, Division Of Conocpo, Inc. Fragranced solid cosmetic compositions based on a starch delivery system
US7998403B2 (en) * 2003-05-05 2011-08-16 The Proctor & Gamble Company Method of freshening air
US20050003975A1 (en) 2003-06-18 2005-01-06 Browne Yvonne Bridget Blooming soap bars
US20060263311A1 (en) 2005-05-19 2006-11-23 Scavone Timothy A Consumer noticeable improvement in wetness protection using solid antiperspirant compositions
US8147808B2 (en) 2005-05-19 2012-04-03 The Procter & Gamble Company Consumer noticeable improvement in wetness protection using solid antiperspirant compositions
US8632755B2 (en) 2005-05-19 2014-01-21 The Procter & Gamble Company Consumer noticeable improvement in wetness protection
US20060292098A1 (en) 2005-05-19 2006-12-28 Scavone Timothy A Consumer noticeable improvement in wetness protection
US20080317684A1 (en) * 2006-09-06 2008-12-25 Isw Group, Inc. Topical Compositions
US20080213203A1 (en) 2007-03-01 2008-09-04 Timothy Alan Seavone Antiperspirant compositions comprising cyclodextrin complexing material
US20080213204A1 (en) 2007-03-01 2008-09-04 Timothy Alan Scavone Antiperspirant compositions comprising cyclodextrin complexing material
US10149910B2 (en) * 2007-03-01 2018-12-11 The Procter & Gamble Plaza Compositions and/or articles comprising cyclodextrin complexing material
US20080215023A1 (en) 2007-03-01 2008-09-04 Timothy Alan Scavone Compositions and/or articles comprising cyclodextrin complexing material
JP5829438B2 (en) * 2011-06-17 2015-12-09 高砂香料工業株式会社 Fragrance composition
US8632756B1 (en) 2012-11-27 2014-01-21 The Dial Corporation Antiperspirant compositions and methods for preparing antiperspirant compositions
EP2968101B1 (en) 2013-03-15 2020-05-27 The Procter and Gamble Company Personal care compositions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6767507B1 (en) * 1998-11-25 2004-07-27 The Procter & Gamble Company Uncomplexed cyclodextrin compositions for odor control
US20110031249A1 (en) * 2008-10-30 2011-02-10 Fissler Gmbh Pressure vessel
US20110150814A1 (en) * 2009-12-17 2011-06-23 Ricky Ah-Man Woo Malodor control composition having a mixture of volatile aldehydes and methods thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10316269B2 (en) 2013-03-15 2019-06-11 The Procter & Gamble Company Personal care compositions
US20240185661A1 (en) * 2022-12-01 2024-06-06 Throne Labs, Inc. Systems and methods for managing publicly accessible amenities

Also Published As

Publication number Publication date
JP6518740B2 (en) 2019-05-22
WO2014151171A1 (en) 2014-09-25
CN105120835A (en) 2015-12-02
US20180134989A1 (en) 2018-05-17
CN105050577A (en) 2015-11-11
RU2015137152A (en) 2017-04-24
US20140274870A1 (en) 2014-09-18
RU2015137146A (en) 2017-04-20
EP2968101A1 (en) 2016-01-20
CN105120835B (en) 2020-07-24
JP2018029970A (en) 2018-03-01
US10316269B2 (en) 2019-06-11
US9896645B2 (en) 2018-02-20
EP2968101B1 (en) 2020-05-27
EP2968102A1 (en) 2016-01-20
JP2016515867A (en) 2016-06-02
JP2016512565A (en) 2016-04-28
WO2014151555A1 (en) 2014-09-25

Similar Documents

Publication Publication Date Title
US20140274949A1 (en) Personal care compositions
RU2440095C2 (en) Personal hygiene product containing cyclodextrin as material binding aromatic substances
CN101621978B (en) Personal care product comprising cyclodextrin as frgrance-complexing material
US7919452B2 (en) Hydro-alcoholic cosmetic compositions with a delayed release
WO2000067714A1 (en) Cosmetic compositions
US11458049B2 (en) Absorbent articles including perfume and cyclodextrins
EP3743163A1 (en) Fragrance compositions and uses thereof
EP3103523A1 (en) Absorbent article comprising fragrance composition
US10072233B2 (en) Fragrance and flavor compositions comprising neopentyl glycol diacetate
BR112017000307B1 (en) ANHYDRO COMPOSITION, AEROSOL DEVICE, COSMETIC PROCESSES AND PRODUCT
EP1280509B1 (en) Compositions containing volatile solvents
WO2000067716A1 (en) Cosmetic compositions comprising cyclic oligosaccharide and fragrance

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE PROCTER & GAMBLE COMPANY, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCAVONE, TIMOTHY ALAN;GRAY, BRIAN FRANCIS;ELLINGSON, PETER CHRISTOPHER;AND OTHERS;REEL/FRAME:032436/0660

Effective date: 20140211

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION