US20140274757A1 - Differential Methylation Level of CpG Loci That Are Determinative of a Biochemical Reoccurrence of Prostate Cancer - Google Patents
Differential Methylation Level of CpG Loci That Are Determinative of a Biochemical Reoccurrence of Prostate Cancer Download PDFInfo
- Publication number
- US20140274757A1 US20140274757A1 US13/829,253 US201313829253A US2014274757A1 US 20140274757 A1 US20140274757 A1 US 20140274757A1 US 201313829253 A US201313829253 A US 201313829253A US 2014274757 A1 US2014274757 A1 US 2014274757A1
- Authority
- US
- United States
- Prior art keywords
- methylation
- dna
- prostate cancer
- cpg
- locus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000007069 methylation reaction Methods 0.000 title claims abstract description 176
- 230000011987 methylation Effects 0.000 title claims abstract description 175
- 206010060862 Prostate cancer Diseases 0.000 title claims abstract description 93
- 208000000236 Prostatic Neoplasms Diseases 0.000 title claims abstract description 93
- 238000000034 method Methods 0.000 claims description 60
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 claims description 51
- 229940104302 cytosine Drugs 0.000 claims description 20
- 238000011282 treatment Methods 0.000 claims description 20
- 150000007523 nucleic acids Chemical class 0.000 claims description 18
- 102000039446 nucleic acids Human genes 0.000 claims description 16
- 108020004707 nucleic acids Proteins 0.000 claims description 16
- 230000002265 prevention Effects 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 210000001124 body fluid Anatomy 0.000 claims description 3
- 238000003752 polymerase chain reaction Methods 0.000 claims 2
- 239000000090 biomarker Substances 0.000 abstract description 56
- 210000002307 prostate Anatomy 0.000 abstract description 18
- 238000003745 diagnosis Methods 0.000 abstract description 10
- 238000004393 prognosis Methods 0.000 abstract description 5
- 239000000101 novel biomarker Substances 0.000 abstract description 2
- 108020004414 DNA Proteins 0.000 description 102
- 108090000623 proteins and genes Proteins 0.000 description 74
- 206010028980 Neoplasm Diseases 0.000 description 45
- 108091008146 restriction endonucleases Proteins 0.000 description 37
- 201000011510 cancer Diseases 0.000 description 26
- 102000007066 Prostate-Specific Antigen Human genes 0.000 description 25
- 108010072866 Prostate-Specific Antigen Proteins 0.000 description 25
- 239000000523 sample Substances 0.000 description 25
- 230000007067 DNA methylation Effects 0.000 description 20
- 238000003556 assay Methods 0.000 description 18
- 230000014509 gene expression Effects 0.000 description 18
- 108091029523 CpG island Proteins 0.000 description 17
- 201000010099 disease Diseases 0.000 description 17
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 17
- 210000001519 tissue Anatomy 0.000 description 17
- 230000003321 amplification Effects 0.000 description 15
- 238000003199 nucleic acid amplification method Methods 0.000 description 15
- 230000001419 dependent effect Effects 0.000 description 13
- 210000004027 cell Anatomy 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 11
- 230000000306 recurrent effect Effects 0.000 description 11
- 238000001514 detection method Methods 0.000 description 10
- 102000004169 proteins and genes Human genes 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 8
- 241000282414 Homo sapiens Species 0.000 description 8
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 8
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 8
- 210000000349 chromosome Anatomy 0.000 description 8
- 102000040430 polynucleotide Human genes 0.000 description 8
- 108091033319 polynucleotide Proteins 0.000 description 8
- 239000002157 polynucleotide Substances 0.000 description 8
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- 238000012417 linear regression Methods 0.000 description 7
- 125000003729 nucleotide group Chemical group 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 102100030334 Friend leukemia integration 1 transcription factor Human genes 0.000 description 6
- 108091028043 Nucleic acid sequence Proteins 0.000 description 6
- 102100033200 Rho guanine nucleotide exchange factor 7 Human genes 0.000 description 6
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 6
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 6
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 239000002773 nucleotide Substances 0.000 description 6
- 239000008194 pharmaceutical composition Substances 0.000 description 6
- 108090000765 processed proteins & peptides Proteins 0.000 description 6
- 208000023958 prostate neoplasm Diseases 0.000 description 6
- 108091029430 CpG site Proteins 0.000 description 5
- 102100027286 Fanconi anemia group C protein Human genes 0.000 description 5
- 102100024594 Histone-lysine N-methyltransferase PRDM16 Human genes 0.000 description 5
- 101000686942 Homo sapiens Histone-lysine N-methyltransferase PRDM16 Proteins 0.000 description 5
- 101000731738 Homo sapiens Inactive ADP-ribosyltransferase ARH2 Proteins 0.000 description 5
- 101000927796 Homo sapiens Rho guanine nucleotide exchange factor 7 Proteins 0.000 description 5
- 102100032448 Inactive ADP-ribosyltransferase ARH2 Human genes 0.000 description 5
- 102100029440 Retrotransposon Gag-like protein 9 Human genes 0.000 description 5
- 102100032848 Sorting nexin-8 Human genes 0.000 description 5
- 102100028590 Zinc finger protein 787 Human genes 0.000 description 5
- 238000001574 biopsy Methods 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 238000003776 cleavage reaction Methods 0.000 description 5
- 238000007477 logistic regression Methods 0.000 description 5
- 239000013610 patient sample Substances 0.000 description 5
- 229920001184 polypeptide Polymers 0.000 description 5
- 102000004196 processed proteins & peptides Human genes 0.000 description 5
- 230000007017 scission Effects 0.000 description 5
- 230000004083 survival effect Effects 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- 102100032423 Bcl-2-associated transcription factor 1 Human genes 0.000 description 4
- 102100038385 Coiled-coil domain-containing protein R3HCC1L Human genes 0.000 description 4
- 102100038195 Exonuclease mut-7 homolog Human genes 0.000 description 4
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 4
- 101000743767 Homo sapiens Coiled-coil domain-containing protein R3HCC1L Proteins 0.000 description 4
- 101001062996 Homo sapiens Friend leukemia integration 1 transcription factor Proteins 0.000 description 4
- 101000864039 Homo sapiens Nonsense-mediated mRNA decay factor SMG5 Proteins 0.000 description 4
- 101000699844 Homo sapiens Retrotransposon Gag-like protein 9 Proteins 0.000 description 4
- 101000653503 Homo sapiens TATA box-binding protein-like 1 Proteins 0.000 description 4
- 101000915587 Homo sapiens Zinc finger protein 787 Proteins 0.000 description 4
- 102100029940 Nonsense-mediated mRNA decay factor SMG5 Human genes 0.000 description 4
- 102100030633 TATA box-binding protein-like 1 Human genes 0.000 description 4
- 108091023040 Transcription factor Proteins 0.000 description 4
- 102000040945 Transcription factor Human genes 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 238000011471 prostatectomy Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 230000000392 somatic effect Effects 0.000 description 4
- 229940035893 uracil Drugs 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- 102000011814 AMMECR1 Human genes 0.000 description 3
- 108050002283 AMMECR1 Proteins 0.000 description 3
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 3
- 108010077544 Chromatin Proteins 0.000 description 3
- 102100022008 Complex I assembly factor TIMMDC1, mitochondrial Human genes 0.000 description 3
- 102100029142 Cyclic nucleotide-gated cation channel alpha-3 Human genes 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 108010027673 Fanconi Anemia Complementation Group C protein Proteins 0.000 description 3
- 101000798490 Homo sapiens Bcl-2-associated transcription factor 1 Proteins 0.000 description 3
- 101000753266 Homo sapiens Complex I assembly factor TIMMDC1, mitochondrial Proteins 0.000 description 3
- 101000958030 Homo sapiens Exonuclease mut-7 homolog Proteins 0.000 description 3
- 101001132819 Homo sapiens Protein CBFA2T3 Proteins 0.000 description 3
- 101000893493 Homo sapiens Protein flightless-1 homolog Proteins 0.000 description 3
- 101000652807 Homo sapiens Protein shisa-9 Proteins 0.000 description 3
- 101000868440 Homo sapiens Sorting nexin-8 Proteins 0.000 description 3
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 3
- 101000818890 Homo sapiens Zinc finger protein 19 Proteins 0.000 description 3
- 102100038990 Multiple epidermal growth factor-like domains protein 8 Human genes 0.000 description 3
- 102100040681 Platelet-derived growth factor C Human genes 0.000 description 3
- 102100033812 Protein CBFA2T3 Human genes 0.000 description 3
- 102100022309 Protein KIBRA Human genes 0.000 description 3
- 102100030889 Protein shisa-9 Human genes 0.000 description 3
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 3
- 102100036802 Transmembrane protein 145 Human genes 0.000 description 3
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 3
- 102100021406 Zinc finger protein 19 Human genes 0.000 description 3
- 102100026335 Zinc finger protein 276 Human genes 0.000 description 3
- 229960005305 adenosine Drugs 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 230000002902 bimodal effect Effects 0.000 description 3
- 210000003483 chromatin Anatomy 0.000 description 3
- 230000002596 correlated effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 210000004602 germ cell Anatomy 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- 206010004446 Benign prostatic hyperplasia Diseases 0.000 description 2
- 208000005623 Carcinogenesis Diseases 0.000 description 2
- 101000771071 Homo sapiens Cyclic nucleotide-gated cation channel alpha-3 Proteins 0.000 description 2
- 101000955249 Homo sapiens Multiple epidermal growth factor-like domains protein 8 Proteins 0.000 description 2
- 101000611888 Homo sapiens Platelet-derived growth factor C Proteins 0.000 description 2
- 101001046603 Homo sapiens Protein KIBRA Proteins 0.000 description 2
- 101000851650 Homo sapiens Transmembrane protein 145 Proteins 0.000 description 2
- 101000648679 Homo sapiens Transmembrane protein 79 Proteins 0.000 description 2
- 101000785698 Homo sapiens Zinc finger protein 276 Proteins 0.000 description 2
- 108700020796 Oncogene Proteins 0.000 description 2
- 102000043276 Oncogene Human genes 0.000 description 2
- 208000004403 Prostatic Hyperplasia Diseases 0.000 description 2
- MEFKEPWMEQBLKI-AIRLBKTGSA-N S-adenosyl-L-methioninate Chemical compound O[C@@H]1[C@H](O)[C@@H](C[S+](CC[C@H](N)C([O-])=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 MEFKEPWMEQBLKI-AIRLBKTGSA-N 0.000 description 2
- 102100028839 Transmembrane protein 79 Human genes 0.000 description 2
- 210000001766 X chromosome Anatomy 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 229960001570 ademetionine Drugs 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000036952 cancer formation Effects 0.000 description 2
- 231100000504 carcinogenesis Toxicity 0.000 description 2
- 230000024245 cell differentiation Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 230000013020 embryo development Effects 0.000 description 2
- 238000001976 enzyme digestion Methods 0.000 description 2
- 230000001973 epigenetic effect Effects 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 230000006607 hypermethylation Effects 0.000 description 2
- 230000014200 hypermethylation of CpG island Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 230000002779 inactivation Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 208000024312 invasive carcinoma Diseases 0.000 description 2
- 210000001165 lymph node Anatomy 0.000 description 2
- 238000007403 mPCR Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000003753 real-time PCR Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000013515 script Methods 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 210000001550 testis Anatomy 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- HWPZZUQOWRWFDB-UHFFFAOYSA-N 1-methylcytosine Chemical compound CN1C=CC(N)=NC1=O HWPZZUQOWRWFDB-UHFFFAOYSA-N 0.000 description 1
- 102100032861 AMME syndrome candidate gene 1 protein Human genes 0.000 description 1
- 206010069754 Acquired gene mutation Diseases 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- 201000000046 Beckwith-Wiedemann syndrome Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 206010053138 Congenital aplastic anaemia Diseases 0.000 description 1
- 101710181119 Cyclic nucleotide-gated cation channel alpha-3 Proteins 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 230000030933 DNA methylation on cytosine Effects 0.000 description 1
- 101000652725 Drosophila melanogaster Transcription initiation factor TFIID subunit 5 Proteins 0.000 description 1
- 102000040848 ETS family Human genes 0.000 description 1
- 108091071901 ETS family Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 108700039887 Essential Genes Proteins 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 101710104814 Exonuclease mut-7 Proteins 0.000 description 1
- 201000004939 Fanconi anemia Diseases 0.000 description 1
- 101710131621 Fanconi anemia group C protein homolog Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 108700037539 Friend leukemia integration 1 transcription factor Proteins 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000797616 Homo sapiens AMME syndrome candidate gene 1 protein Proteins 0.000 description 1
- 101000752722 Homo sapiens Apoptosis-stimulating of p53 protein 1 Proteins 0.000 description 1
- 101001120056 Homo sapiens Phosphatidylinositol 3-kinase regulatory subunit alpha Proteins 0.000 description 1
- 101001120097 Homo sapiens Phosphatidylinositol 3-kinase regulatory subunit beta Proteins 0.000 description 1
- 101001116549 Homo sapiens Protein CBFA2T2 Proteins 0.000 description 1
- 101001000998 Homo sapiens Protein phosphatase 1 regulatory subunit 12C Proteins 0.000 description 1
- 102100031612 Hypermethylated in cancer 1 protein Human genes 0.000 description 1
- 101710133850 Hypermethylated in cancer 1 protein Proteins 0.000 description 1
- 108091029795 Intergenic region Proteins 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- -1 MEM79 Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 208000035346 Margins of Excision Diseases 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 102000016397 Methyltransferase Human genes 0.000 description 1
- 108060004795 Methyltransferase Proteins 0.000 description 1
- 101000652808 Mus musculus Protein shisa-9 Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 108010083674 Myelin Proteins Proteins 0.000 description 1
- 102000006386 Myelin Proteins Human genes 0.000 description 1
- 102100031623 Myelin transcription factor 1-like protein Human genes 0.000 description 1
- 101150059596 Myt1l gene Proteins 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 108091093037 Peptide nucleic acid Proteins 0.000 description 1
- 201000010769 Prader-Willi syndrome Diseases 0.000 description 1
- 208000032236 Predisposition to disease Diseases 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 101710145046 Protein kibra Proteins 0.000 description 1
- 108010080989 Proto-Oncogene Protein c-fli-1 Proteins 0.000 description 1
- 102000002185 R3H domains Human genes 0.000 description 1
- 108050009559 R3H domains Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- 108700025701 Retinoblastoma Genes Proteins 0.000 description 1
- 101710154090 Retrotransposon Gag-like protein 9 Proteins 0.000 description 1
- 108010053823 Rho Guanine Nucleotide Exchange Factors Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 108020004459 Small interfering RNA Proteins 0.000 description 1
- 101710166423 Sorting nexin MVP1 Proteins 0.000 description 1
- 101710103900 Sorting nexin-8 Proteins 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 108700009124 Transcription Initiation Site Proteins 0.000 description 1
- 101710171080 Transmembrane protein 145 Proteins 0.000 description 1
- 101710111280 Vacuolar protein sorting-associated protein VTA1 homolog Proteins 0.000 description 1
- 238000001772 Wald test Methods 0.000 description 1
- 101001032469 Xenopus laevis Glutathione S-transferase P 1 Proteins 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 101710143861 Zinc finger protein 276 Proteins 0.000 description 1
- 101710182074 Zinc finger protein 787 Proteins 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 150000003838 adenosines Chemical class 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N adenyl group Chemical group N1=CN=C2N=CNC2=C1N GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 238000009167 androgen deprivation therapy Methods 0.000 description 1
- 101150010487 are gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 238000001369 bisulfite sequencing Methods 0.000 description 1
- 238000009534 blood test Methods 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 210000003679 cervix uteri Anatomy 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007911 de novo DNA methylation Effects 0.000 description 1
- 230000009615 deamination Effects 0.000 description 1
- 238000006481 deamination reaction Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006326 desulfonation Effects 0.000 description 1
- 238000005869 desulfonation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000000104 diagnostic biomarker Substances 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 210000004696 endometrium Anatomy 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 230000008995 epigenetic change Effects 0.000 description 1
- 230000004049 epigenetic modification Effects 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 230000037440 gene silencing effect Effects 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000010448 genetic screening Methods 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 230000006197 histone deacetylation Effects 0.000 description 1
- 238000001794 hormone therapy Methods 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 101150030475 impact gene Proteins 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 238000007855 methylation-specific PCR Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 108091005573 modified proteins Proteins 0.000 description 1
- 102000035118 modified proteins Human genes 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 210000005012 myelin Anatomy 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 210000004197 pelvis Anatomy 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 108010017992 platelet-derived growth factor C Proteins 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000092 prognostic biomarker Substances 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 210000000582 semen Anatomy 0.000 description 1
- 210000001625 seminal vesicle Anatomy 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 230000037439 somatic mutation Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 239000006163 transport media Substances 0.000 description 1
- 238000012384 transportation and delivery Methods 0.000 description 1
- 239000000107 tumor biomarker Substances 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 201000010653 vesiculitis Diseases 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/106—Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/112—Disease subtyping, staging or classification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/154—Methylation markers
Definitions
- the U.S. Government may have an interest in, or certain rights to, the subject matter of this disclosure as provided for by the terms of grant number W81XWH-10-1-0790 from the Department of Defense through the Telemedicine and Advanced Technology Research Center (TATRC).
- TATRC Telemedicine and Advanced Technology Research Center
- the present invention relates to compositions and methods for cancer diagnosis, research and therapy, including but not limited to, cancer bio markers.
- the present invention relates to methylation levels of certain CpG loci as prognostic and diagnostic markers for prostate cancer or a biochemical recurrence of prostate cancer.
- Prostate cancer is the most commonly diagnosed malignancy for men in the United States with an estimated 238,590 new cases projected for 2013.
- the most current means for detecting prostate cancer is a combination of a digital rectal exam (DRE) and monitoring levels of prostate-specific antigen (PSA) in the blood.
- Prostate-specific antigen is a protease produced by the prostate gland.
- PSA is present at low concentration in the blood of healthy males, and an increase in the concentration of PSA in the blood can be indicative of a prostate tumor.
- PSA testing was recommended as a screening tool for all men over 50.
- two large-scale, randomized trials of PSA screening suggest that prostate cancer is over-diagnosed and over-treated, likely because many cancers that are detected are never destined to progress.
- Prostate cancer can have an aggressive and lethal course and an estimated 29,720 men are projected to die of prostate cancer in 2013, however, for most patients, prostate cancer is a slow growing disease. This broad range of clinical behavior is likely a reflection of the underlying genomic diversity of the tumors.
- Previous studies of prostate tumors reported significant heterogeneity in the gene expression profiles and genomic structural alterations including DNA copy number changes and gene fusions often involving the ETS family of transcription factors detectable in approximately half of prostate tumors. Exon sequencing of known oncogenes and tumor suppressors has found few somatic mutations and the calculated background mutation rate appears to be relatively low. This suggests the presence of other forms of genomic aberrations that contribute to the observed gene expression variations, and in turn, the diversity in tumor behavior.
- PSA prostate specific antigen
- DRE digital rectal exam
- PSA is an enzyme produced in the prostate that is found in the seminal fluid and the bloodstream.
- An elevated PSA level in the bloodstream does not necessarily indicate prostate cancer, since PSA can also be raised by infection or other prostate conditions such as benign prostatic hyperplasia (BPH).
- BPH benign prostatic hyperplasia
- Many men with an elevated PSA do not have prostate cancer. Nonetheless, a PSA level greater than 4.0 nanograms per milliliter of serum was established initially as the cutoff where the sensitivity for detecting prostate cancer was the highest and the specificity for detecting non-cancerous conditions was the lowest.
- a PSA level above 4.0 ng per milliliter of serum may trigger a prostate biopsy to search for cancer.
- the digital rectal exam is usually performed along with the PSA test, to check for physical abnormalities that can result from tumor growth.
- the PSA test is an imperfect screening tool. A man can have prostate cancer and still have a PSA level in the “normal” range. Approximately 25% of men who are diagnosed with prostate cancer have a PSA level below 4.0. In addition, only 25% of men with a PSA level of 4-10 are found to have prostate cancer. With a PSA level exceeding 10, this rate jumps to approximately 65%.
- prostate cancer lacks the sensitivity and specificity required for the detection of very early prostate lesions and diagnosis ultimately relies on an invasive biopsy.
- prognostic markers for prostate cancer that provide information on how aggressively the tumor will grow. Therefore, more intrusive therapeutic routes are often chosen that result in a drastic reduction in the quality of life for the patient, even though the majority of prostate tumors are slow growing and non-aggressive. This ultimately leads to undue burden on the healthcare system and an uncessary decrease in quality of life for the patient.
- the present invention addresses the need for distinguishing aggressive prostate tumors through identification of specific genomic DNA methylation biomarkers that can distinguish patients that will undergo biochemical recurrence.
- DNA methyltransferases transfer methyl groups from the universal methyl donor S-adenosyl methionine to specific sites on a DNA molecule.
- DNA methylases transfer methyl groups from the universal methyl donor S-adenosyl methionine to specific sites on a DNA molecule.
- DNA methylation is an epigenetic method of altering DNA that influences gene expression, for example during embryogenesis and cellular differentiation.
- the most common type of DNA methylation in eukaryotic cells is the methylation of cytosine residues that are 5′ neighbors of guanine (“CG” dinucleotides, also referred to as “CpGs”).
- CG guanine
- CpGs DNA methylation regulates biological processes without altering genomic sequence.
- DNA methylation regulates gene expression, DNA-protein interactions, cellular differentiation, suppresses transposable elements, and X Chomosome inactivation.
- Improper methylation of DNA is believed to be the cause of some diseases such as Beckwith-Wiedemann syndrome and Prader-Willi syndrome. It has also been purposed that improper methylation is a contributing factor in many cancers. For example, de novo methylation of the Rb gene has been demonstrated in retinoblastomas. In addition, expression of tumor suppressor genes have been shown to be abolished by de novo DNA methylation of a normally unmethylated 5′ CpG island. Many additional effects of methylation are discussed in detail in published International Patent Publication No. WO 00/051639.
- Methylation of cytosines at their carbon-5 position plays an important role both during development and in tumorigenesis.
- Recent work has shown that the gene silencing effect of methylated regions is accomplished through the interaction of methylcytosine binding proteins with other structural components of chromatin, which, in turn, makes the DNA inaccessible to transcription factors through histone deacetylation and chromatin structure changes.
- the methylation occurs almost exclusively in CpG dinucleotides. While the bulk of human genomic DNA is depleted in CpG sites, there are CpG-rich stretches, so-called CpG islands, which are located in promoter regions of more than 70% of all known human genes. In normal cells, CpG islands are unmethylated, reflecting a transcriptionally active state of the respective gene.
- Epigenetic silencing of tumor suppressor genes by hypermethylation of CpG islands is a very early and stable characteristic of tumorigenesis. Hypermethylation of CpG islands located in the promoter regions of tumor suppressor genes are now firmly established as the most frequent mechanisms for gene inactivation in cancers.
- FIG. 1 shows bar graphs of the percent methylation of each of the predictive CpG loci in the biochemically recurrent patients and the non-recurrent patients.
- B biochemically recurrent patients
- N patients that are not biochemically recurrent.
- FIG. 2 shows the ROC curve for the best 3 CpG methylation model+Gleason grade from the 18 best predictive CpG loci found using linear regression (solid black line), the ROC curve for the average of all possible 3 CpG loci models from the 18 CpGs (dashes and circles), the ROC curve for Gleason grade alone (short dashes), and the ROC curve for something with no predictive power (thin black line).
- the ROC curve including both DNA methylation and Gleason grade (solid black line) is statistically significantly better (pval of 0.00031) at predicting patients who will biochemically recur over Gleason grade alone (black dashes).
- FIG. 3 shows the ROC curve models from the analysis of the predictive CpGs discovered using survival analysis.
- the solid black line shows the best predictive model of 3 CpG methylation values+Gleason grade out of the 100 CpGs tested, and this is a perfect predictor of recurrence in our dataset.
- the line with dashes and circles represents the average of the 10 best models from the 100 CpGs tested, the line with short dashes represents the predictive power of Gleason grade alone, and the black line represents a model with no predictive power.
- the present invention relates to the identification of novel biomarkers for diagnosis and prognosis of prostate cancer.
- the biomarkers of the invention are CpG loci that have altered methylation levels relative to normal prostate tissue, as set forth, for example, in Table 1.
- the biomarkers are indicative of the biochemical reoccurrence of prostate cancer.
- the methylation level of one or a plurality of biomarkers set forth in Table 1 is determined in a patient sample suspected of comprising prostate cancer cells; wherein altered methylation at the indicated biomarker is indicative of prostate cancer or a biochemical recurrence of prostate cancer. In some embodiments, a plurality of biomarkers is evaluated for altered methylation.
- the patient sample is a tumor biopsy.
- the patient sample is a convenient bodily fluid, for example a blood sample, urine sample, and the like.
- the biomarkers of the present invention may further be combined with other biomarkers for prostate cancer, including without limitation prostate specific antigen, chromosome copy number alterations, and the like.
- the present invention is based, in part, on the discovery that sequences in certain DNA regions are methylated in cancer cells, but not normal cells, or that methylation level at specific loci in prostate cancer patients that undergo biochemical recurrence have a different methylation level then the same loci in patients that do not undergo recurrence.
- the inventors have found that methylation of biomarkers within the DNA regions described herein (such as those identified in Table 1) are associated with prostate cancer or the reoccurrence of prostate cancer.
- the inventors have recognized that methods for detecting the biomarker sequences and DNA regions comprising the biomarker sequences as well as sequences adjacent to the biomarkers that contain CpG loci subsequences, methylation level of the DNA regions, and/or expression of the genes regulated by the DNA regions can be used to predict recurrence of cancer cells or to detect cancer cells. Detecting cancer cells allows for diagnostic tests that detect disease, assess the risk of contracting disease, determining a predisposition to disease, stage disease, diagnosis of disease, monitor disease, and/or prognostic biomarkers such as these methylation markers can be used to aid in the selection of treatment for a patient after prostatectomy.
- the “Gleason” grading system is used to help evaluate the prognosis of men with prostate cancer. Together with other parameters, it is incorporated into a strategy of prostate cancer staging, which predicts prognosis and helps guide therapy.
- a Gleason “score” or “grade” is given to prostate cancer based upon its microscopic appearance. Tumors with a low Gleason score typically grow slowly enough that they may not pose a significant threat to the patients in their lifetimes. These patients are monitored (“watchful waiting” or “active surveillance”) over time. Cancers with a higher Gleason score are more aggressive and have a worse prognosis, and these patients are generally treated with surgery (e.g., radical prostectomy) and, in some cases, therapy (e.g., radiation, hormone, ultrasound, chemotherapy).
- surgery e.g., radical prostectomy
- therapy e.g., radiation, hormone, ultrasound, chemotherapy.
- mice refers to any animal, including mammals, such as, but not limited to, mice, rats, other rodents, rabbits, dogs, cats, swine, cattle, sheep, horses, primates, or humans.
- in need of prevention refers to a judgment made by a caregiver that a patient requires or will benefit from prevention. This judgment is made based on a variety of factors that are in the realm of a caregiver's expertise, and may include the knowledge that the patient may become ill as the result of a disease state that is treatable by a compound or pharmaceutical composition of the disclosure.
- in need of treatment refers to a judgment made by a caregiver that a patient requires or will benefit from treatment. This judgment is made based on a variety of factors that are in the realm of a caregiver's expertise, and may include the knowledge that the patient is ill as the result of a disease state that is treatable by a compound or pharmaceutical composition of the disclosure.
- Methods refers to cytosine methylation at positions C5 or N4 of cytosine, the N6 position of adenine or other types of nucleic acid methylation.
- In vitro amplified DNA is unmethylated because in vitro DNA amplification methods do not retain the methylation pattern of the amplification template.
- unmethylated DNA or “methylated DNA” can also refer to amplified DNA whose original template was methylated or methylated, respectively.
- methylation level refers to whether one or more cytosine residues present in a CpG context have or do not have a methylation group. Methylation level may also refer to the fraction of cells in a sample that do or do not have a methylation group on such cytosines. Methylation level may also alternatively describe whether a singe CpG dinucleotide is methylated.
- a “methylation-dependent restriction enzyme” refers to a restriction enzyme that cleaves or digests DNA at or in proximity to a methylated recognition sequence, but does not cleave DNA at or near the same sequence when the recognition sequence is not methylated.
- Methylation-dependent restriction enzymes include those that cut at a methylated recognition sequence (e.g., DpnI) and enzymes that cut at a sequence near but not at the recognition sequence (e.g., McrBC).
- McrBC's recognition sequence is 5′ RmC (N40-3000) RmC 3′ where “R” is a purine and “mC” is a methylated cytosine and “N40-3000” indicates the distance between the two RmC half sites for which a restriction event has been observed.
- McrBC generally cuts close to one half-site or the other, but cleavage positions are typically distributed over several base pairs, approximately 30 base pairs from the methylated base. McrBC sometimes cuts 3′ of both half sites, sometimes 5′ of both half sites, and sometimes between the two sites.
- Exemplary methylation-dependent restriction enzymes include, e.g., McrBC (see, e.g., U.S. Pat. No.
- a “methylation-sensitive restriction enzyme” refers to a restriction enzyme that cleaves DNA at or in proximity to an unmethylated recognition sequence but does not cleave at or in proximity to the same sequence when the recognition sequence is methylated.
- Exemplary methylation-sensitive restriction enzymes are described in, e.g., McClelland et al., Nucleic Acids Res. 22(17):3640-59 (1994) and http://rebase.neb.com.
- Suitable methylation-sensitive restriction enzymes that do not cleave DNA at or near their recognition sequence when an adenosine within the recognition sequence is methylated at position N.sup.6 include, e.g., Mbo I.
- any methylation-sensitive restriction enzyme including homologs and orthologs of the restriction enzymes described herein, is also suitable for use in the present invention.
- a methylation-sensitive restriction enzyme that fails to cut in the presence of methylation of a cytosine at or near its recognition sequence may be insensitive to the presence of methylation of an adenosine at or near its recognition sequence.
- a methylation-sensitive restriction enzyme that fails to cut in the presence of methylation of an adenosine at or near its recognition sequence may be insensitive to the presence of methylation of a cytosine at or near its recognition sequence.
- Sau3AI is sensitive (i.e., fails to cut) to the presence of a methylated cytosine at or near its recognition sequence, but is insensitive (i.e., cuts) to the presence of a methylated adenosine at or near its recognition sequence.
- methylation-sensitive restriction enzymes are blocked by methylation of bases on one or both strands of DNA encompassing of their recognition sequence, while other methylation-sensitive restriction enzymes are blocked only by methylation on both strands, but can cut if a recognition site is hemi-methylated.
- prostate cancer is used interchangeably and in the broadest sense refers to all stages and all forms of cancer arising from the tissue of the prostate gland.
- peptide each refer to a molecule comprising two or more amino acid residues joined to each other by peptide bonds.
- proteins encompass, e.g., native and artificial proteins, protein fragments and polypeptide analogs such as muteins, variants, and fusion proteins of a protein sequence as well as post-translationally, or otherwise covalently or non-covalently, modified proteins.
- nucleic acid and “nucleic acid” are used interchangeably throughout and include DNA molecules (e.g., cDNA or genomic DNA), RNA molecules (e.g., mRNA, siRNA), analogs of the DNA or RNA generated using nucleotide analogs (e.g., peptide nucleic acids and non-naturally occurring nucleotide analogs), and hybrids thereof.
- the nucleic acid molecule can be single-stranded or double-stranded.
- the nucleic acid molecules of the invention comprise a contiguous open reading frame encoding an antibody, or a fragment, derivative, mutein, or variant thereof, of the invention.
- the nucleic acids can be any length.
- nucleotides can be, for example, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500, 750, 1,000, 1,500, 3,000, 5,000 or more nucleotides in length, and/or can comprise one or more additional sequences, for example, regulatory sequences, and/or be part of a larger nucleic acid, for example, a vector.
- prevent refers to administering a compound either alone or as contained in a pharmaceutical composition prior to the onset of clinical symptoms of a disease state so as to prevent any symptom, aspect or characteristic of the disease state. Such preventing and suppressing need not be absolute to be useful.
- recurrence is used herein to refer to local or distant recurrence (i.e., metastasis) of cancer.
- prostate cancer can recur locally in the tissue next to the prostate or in the seminal vesicles. The cancer may also affect the surrounding lymph nodes in the pelvis or lymph nodes outside this area. Prostate cancer can also spread to tissues next to the prostate, such as pelvic muscles, bones, or other organs.
- Recurrence can be determined by clinical recurrence detected by, for example, imaging study or biopsy, or biochemical recurrence, which is defined by detectable PSA levels in the blood after prostatectomy.
- terapéuticaally effective amount in reference to the treating, preventing or suppressing of a disease state, refers to an amount of a compound either alone or as contained in a pharmaceutical composition that is capable of having any detectable, positive effect on any symptom, aspect, or characteristics of the disease state/condition. Such effect need not be absolute to be beneficial.
- treat refers to administering a compound either alone or as contained in a pharmaceutical composition after the onset of clinical symptoms of a disease state so as to reduce or eliminate any symptom, aspect or characteristic of the disease state. Such treating need not be absolute to be useful.
- DNA methylation is a heritable, reversible and epigenetic change. Yet, DNA methylation has the potential to alter gene expression, which has profound developmental and genetic consequences.
- the methylation reaction involves flipping a target cytosine out of an intact double helix to allow the transfer of a methyl group from S adenosyl-methionine in a cleft of the enzyme DNA (cystosine-5)-methyltransferase to form 5-methylcytosine (5-mCyt).
- This enzymatic conversion is the most common epigenetic modification of DNA known to exist in vertebrates, and is essential for normal embryonic development.
- CpG islands comprise about 1% of vertebrate genomes and also account for about 15% of the total number of CpG dinucleotides.
- CpG islands are typically between 0.2 to about 1 kb in length and are located upstream of many housekeeping and tissue-specific genes, but may also extend into gene coding regions.
- methylation levels of cytosine residues within CpG islands in somatic tissues can modulate gene expression throughout the genome.
- Methylation levels of cytosine residues contained within CpG islands of certain genes has been inversely correlated with gene activity.
- methylation of cytosine residues within CpG islands in somatic tissue is generally associated with decreased gene expression and can affect a variety of mechanisms including, for example, disruption of local chromatin structure, inhibition of transcription factor-DNA binding, or by recruitment of proteins which interact specifically with methylated sequences indirectly preventing transcription factor binding.
- CpG islands on autosomal genes remain unmethylated in the germline and methylation of these islands is usually independent of gene expression.
- Tissue-specific genes are usually unmethylated at the receptive target organs but are methylated in the germline and in non-expressing adult tissues.
- CpG islands of constitutively-expressed housekeeping genes are normally unmethylated in the germline and in somatic tissues.
- a recent study showed evidence that methylation status of CpGs located within 2000 base pairs of a gene's transcription start site is negatively correlated with gene expression.
- Abnormal methylation of CpG islands associated with tumor suppressor genes can cause altered gene expression. Increased methylation (hypermethylation) of such regions can lead to progressive reduction of normal gene expression resulting in the selection of a population of cells having a selective growth advantage. Conversely, decreased methylation (hypomethylation) of oncogenes can lead to modulation of normal gene expression resulting in the selection of a population of cells having a selective growth advantage. In some examples, hypermethylation and/or hypomethylation of one or more CpG dinucleotide is considered to be abnormal methylation.
- the present disclosure provides biomarkers useful for the detection of the prostate cancer or reoccurence of prostate cancer, wherein the methlyation level of the biomarker is indicative of the reoccurence of prostate cancer.
- the methylation level is determined by a cytosine.
- the biomarkers are associated with certain genes in an individual.
- the biomarkers are associated with certain CpG loci.
- the CpG loci may be located in the promoter region of a gene, in an intron or exon of a gene or located near the gene in a patient's genomic DNA.
- the CpG may not be associated with any known gene or may be located in an intergenic region of a chromosome.
- the CpG loci may be associated with one or more than one gene.
- the gene associated with the biomarker is ADPRHL1 which is also referred to as ADP-ribosylhydrolase like 1.
- the CpG loci are cg00474017 or cg05387119.
- the gene associated with the biomarker is ZNF787 which is also referred to as zinc finger protein 787, TIP 20 and TTF-I-interacting peptide 20.
- the CpG locus is cg06161930.
- the gene associated with the biomarker gene is SHISA9 which is also referred to as CKAMP44 and cystine-knot AMPAR moduclating protein.
- the CpG locus is cg06345462.
- the gene associated with the biomarker gene is FLI1 also known as friend leukemia integration 1 transcription factor, proto-oncogene Fli-1 or transcription factor ERGB.
- the CpG locus is cg11017065.
- the gene associated with the biomarker is SNX8 which is also known as sorting nexin 8 and Mvp1.
- the CpG locus is cg13641082.
- the gene associated with the biomarker is FANCC which is also known as protein FACC, Fanconi anemia, complementation group C and FA3.
- FANCC protein FACC
- Fanconi anemia Fanconi anemia
- complementation group C complementation group C
- FA3 complementation group C
- the CpG locus is cg14127626.
- the gene associated with the biomarker is TMEM79 which is also known as transmembran protein 79.
- the CpG locus is cg18973101.
- the gene associated with the biomarker is SMG5 which is also known as ESTIB, PLTS-RP1 and SMG-5.
- the CpG locus is cg18973101.
- the gene associated with the biomarker is RGAG1 which is also known as MAR9 and retrotransposon gag domain containing 1.
- the CpG locus is cg20522409. This CpG locus is on the X chromosome.
- the gene associated with the biomarker is AMMECR1 which is also known as Alport syndrome, mental retardation, midface hypoplasia and elliptocytosis chromosomal region gene 1.
- the CpG locus is cg20522409. This CpG locus is on the X chromosome.
- the gene associated with the biomarker is TIMMDC1 which is also known as translocase of inner mitochondrial membrane domain containing 1.
- the CpG locus is cg21139795.
- the gene associated with the biomarker is CD80 which is also known as B7-1 and BB1.
- the CpG locus is cg21139795.
- the gene associated with the biomarker is MYTIL which is also known as myelin transcription factor i-like protein and NZF01.
- the CpG locus is cg21741679.
- the gene associated with the biomarker is BCLAF1 which is also known as BTF.
- the CpG locus is cg21889703.
- the gene associated with the biomarker is ARHGEF7 which is also known as COOL-1, p85 and PIXB.
- the CpG locus is cg22032283.
- the gene associated with the biomarker is C10orf28 which is also known as PSORT and R3H domain and coiled-coli containin I-like.
- the CpG locus is cg26450259.
- the gene associated with the biomarker is LOC348021.
- the CpG locus is cg27252467.
- the gene associated with the biomarker is TBPL1 which is also known as STUD and TLF.
- the CpG locus is cg00004608.
- the gene associated with the biomarker is CBFA2T3 which is also known as MTG16.
- the CpG locus is cg00493358.
- the gene associated with the biomarker is ZNF276 which is also known as zinc finger protein 276.
- the CpG locus is cg07221183.
- the gene associated with the biomarker is ZNF19 which is also known as zinc finger 19 protein.
- the CpG locus is cg07506795.
- the gene associated with the biomarker is PDGFC which is also known as Platelet-derived growth factor C.
- the CpG locus is cg07537734.
- the gene associated with the biomarker is HLA-DPB2 whish is also known as DPB.
- the CpG locus is cg11786476.
- the gene associated with the biomarker is EXD3 which is also known as exonuclease 3′-5′ domain containing 3 and mut-7.
- the CpG locus is cg13916516.
- the gene associated with the biomarker is WWC1 is also known as KIBRA.
- the CpG locus is cg18472912.
- the gene associated with the biomarker is PRDM16 which is also known as MEL1, PR domain containing 16 and KIAA1675.
- the CpG locus is cg23821340.
- the gene associated with the biomarker is CNGA3 which is also known as CNG3.
- the CpG locus is cg24778248.
- the gene associated with the biomarker is MEGF8 which is also known as SBP1.
- the CpG locus is cg26548653.
- the gene associated with the biomarker is TMEM145 which is also known as transmembrane protein 145.
- the CpG locus is cg26548653.
- the CpG locus is cg19480425 located on chromosome 22. In one embodiment, the CpG locus is cg20077773 located on chromosome 12. In one embodiment, the CpG locus is cg26204682 located on chromosome 4. In one embodiment, the CpG locus is cg17881513 located on chromosome 8. In one embodiment, the CpG locus is cg18516946 located on chromosome 11. In one embodiment, the CpG locus is cg24773418 located on chromosome 14.
- the methylation level of one (1) of the following CpG loci may be determined (by any method set forth herein) to determine whether an individual is or may be at a risk for prostate cancer or a biochemical reoccurence of prostate cancer: cg00474017, cg05387119, cg06161930, cg11017065, cg1364108, cg14127626, cg18973101, cg19480425, cg20077773, cg20522409, cg21889703, cg22032283, cg26204682, cg06345462, cg21139795, cg21741679, cg26450259 and cg27252467.
- the methylation level of two (2) or more or three (3) or more of the forgoing CpG loci may be determined (by any method set forth herein) to determine whether an individual is or may be at a risk for prostate cancer or a biochemical reoccurence of prostate cancer.
- the methylation level of any one of the following biomarkers and associated genes may be determined (by any method set forth herein) to determine whether an individual is or may be at a risk for prostate cancer or a biochemical reoccurence of prostate cancer: ADPRHL1, AMMECR1, RGAG1, ZNF787, FLI1, SNX8, FANCC, SMG5, MEM79, BCLAF1, ARHGEF7, ZNF19, C10orf28, SHISA9, MYTIL, LOC348021.
- the methylation level of two (2) or more or three (3) or more of the forgoing biomarkers be determined (by any method set forth herein) to determine whether a patient is or may be at a risk for prostate cancer or a biochemical reoccurence of prostate cancer.
- an increase in the methylation level of one or more of the following CpG loci is indicative of prostate cancer or the biochemical reoccurrence of prostate cancer: cg06161930, cg13641082, cg19480425, cg20077773, cg21889703, cg06345462, cg21139795, cg21741679, cg00004608, cg07537734, cg18472912, cg24773418, cg24778248 and cg26548653.
- a decrease in the methylation level of one or more of the following CpG loci is indicative of prostate cancer or the biochemical reoccurrence of prostate cancer: cg00474017, cg05387119, cg11017065, cg18973101, cg20522409, cg26204682, cg26450259, cg00493358, cg07221183, cg07506795, cg11786476, cg13916516, cg18516946, cg17881513 and cg23821340.
- Table 1 shows the CpG loci, their chromosomal position (if known), and the genes associated with the CpG loci:
- the “CpG loci” column is the reference number provided by Illumina's ® Golden Gate and Infinium ® Assays.
- the “position” column are the genomic positions that correspond to the most current knowledge of the human genome sequence, which is the Human Feburary 2009 assembly known as GRCh37/hg19.
- the nucleotide sequences of the CpG loci in Table 1 are shown in Table 2 as well as the sequence listing filed herewith.
- Chro- Position in mo- Associated Human Genome CpG loci some Gene(s) 19 (hg19) SEQ ID NO. cg00474017 13 ADPRHL1 114074435 SEQ ID NO.
- the methylation level of the chromosomal DNA within a DNA region or portion thereof (e.g., at least one cytosine residue) selected from the CpG loci identified in Table 1 is determined.
- the methylation level of all cytosines within at least 20, 50, 100, 200, 500 or more contiguous base pairs of the CpG loci is also determined.
- the methylation level of the cytosine at cg18472912 is determined.
- pluralities of CpG loci are assessed and their methylation level determined.
- the methylation level of a CpG loci is determined and then normalized (e.g., compared) to the methylation of a control locus.
- the control locus will have a known, relatively constant, methylation level.
- the control sequence can be previously determined to have no, some or a high amount of methylation (or methylation level), thereby providing a relative constant value to control for error in detection methods, etc., unrelated to the presence or absence of cancer.
- the control locus is endogenous, i.e., is part of the genome of the individual sampled.
- testes-specific histone 2B gene (hTH2B in human) gene is known to be methylated in all somatic tissues except testes.
- control locus can be an exogenous locus, i.e., a DNA sequence spiked into the sample in a known quantity and having a known methylation level.
- the methylation sites in a DNA region can reside in non-coding transcriptional control sequences (e.g. promoters, enhancers, etc.) or in coding sequences, including introns and exons of the associated genes.
- the methods comprise detecting the methylation level in the promoter regions (e.g., comprising the nucleic acid sequence that is about 1.0 kb, 1.5 kb, 2.0 kb, 2.5 kb, 3.0 kb, 3.5 kb or 4.0 kb 5′ from the transcriptional start site through to the transcriptional start site) of one or more of the associated genes identified in Table 1.
- Any method for detecting methylation levels can be used in the methods of the present invention.
- methods for detecting methylation levels include randomly shearing or randomly fragmenting the genomic DNA, cutting the DNA with a methylation-dependent or methylation-sensitive restriction enzyme and subsequently selectively identifying and/or analyzing the cut or uncut DNA.
- Selective identification can include, for example, separating cut and uncut DNA (e.g., by size) and quantifying a sequence of interest that was cut or, alternatively, that was not cut.
- the method can encompass amplifying intact DNA after restriction enzyme digestion, thereby only amplifying DNA that was not cleaved by the restriction enzyme in the area amplified.
- amplification can be performed using primers that are gene specific.
- adaptors can be added to the ends of the randomly fragmented DNA, the DNA can be digested with a methylation-dependent or methylation-sensitive restriction enzyme, intact DNA can be amplified using primers that hybridize to the adaptor sequences.
- a second step can be performed to determine the presence, absence or quantity of a particular gene in an amplified pool of DNA.
- the DNA is amplified using real-time, quantitative PCR.
- the methods comprise quantifying the average methylation density in a target sequence within a population of genomic DNA.
- the method comprises contacting genomic DNA with a methylation-dependent restriction enzyme or methylation-sensitive restriction enzyme under conditions that allow for at least some copies of potential restriction enzyme cleavage sites in the locus to remain uncleaved; quantifying intact copies of the locus; and comparing the quantity of amplified product to a control value representing the quantity of methylation of control DNA, thereby quantifying the average methylation density in the locus compared to the methylation density of the control DNA.
- the methylation level of a CpG loci can be determined by providing a sample of genomic DNA comprising the CpG locus, cleaving the DNA with a restriction enzyme that is either methylation-sensitive or methylation-dependent, and then quantifying the amount of intact DNA or quantifying the amount of cut DNA at the locus of interest.
- the amount of intact or cut DNA will depend on the initial amount of genomic DNA containing the locus, the amount of methylation in the locus, and the number (i.e., the fraction) of nucleotides in the locus that are methylated in the genomic DNA.
- the amount of methylation in a DNA locus can be determined by comparing the quantity of intact DNA or cut DNA to a control value representing the quantity of intact DNA or cut DNA in a similarly-treated DNA sample.
- the control value can represent a known or predicted number of methylated nucleotides.
- the control value can represent the quantity of intact or cut DNA from the same locus in another (e.g., normal, non-diseased) cell or a second locus.
- methylation-sensitive or methylation-dependent restriction enzyme By using at least one methylation-sensitive or methylation-dependent restriction enzyme under conditions that allow for at least some copies of potential restriction enzyme cleavage sites in the locus to remain uncleaved and subsequently quantifying the remaining intact copies and comparing the quantity to a control, average methylation density of a locus can be determined. If the methylation-sensitive restriction enzyme is contacted to copies of a DNA locus under conditions that allow for at least some copies of potential restriction enzyme cleavage sites in the locus to remain uncleaved, then the remaining intact DNA will be directly proportional to the methylation density, and thus may be compared to a control to determine the relative methylation density of the locus in the sample.
- a methylation-dependent restriction enzyme is contacted to copies of a DNA locus under conditions that allow for at least some copies of potential restriction enzyme cleavage sites in the locus to remain uncleaved, then the remaining intact DNA will be inversely proportional to the methylation density, and thus may be compared to a control to determine the relative methylation density of the locus in the sample.
- Kits for the above methods can include, e.g., one or more of methylation-dependent restriction enzymes, methylation-sensitive restriction enzymes, amplification (e.g., PCR) reagents, probes and/or primers.
- amplification e.g., PCR
- Quantitative amplification methods can be used to quantify the amount of intact DNA within a locus flanked by amplification primers following restriction digestion. Methods of quantitative amplification are disclosed in, e.g., U.S. Pat. Nos. 6,180,349; 6,033,854; and 5,972,602. Amplifications may be monitored in “real time.”
- Additional methods for detecting methylation levels can involve genomic sequencing before and after treatment of the DNA with bisulfite.
- array-based assays such as the Illumina® Human Methylation450 BeadChip and multi-plex PCR assays.
- the multi-plex PCR assay is Patch PCR. PatchPCR can be used to determine the methylation level of a certain CpG loci. See Varley KE and Mitra RD (2010). Bisulfite Patch PCR enables multiplexed sequencing of promoter methylation across cancer samples. Genome Research. 20:1279-1287.
- restriction enzyme digestion of PCR products amplified from bisulfite-converted DNA is used to detect DNA methylation levels.
- a “MethyLight” assay is used alone or in combination with other methods to detect methylation level. Briefly, in the MethyLight process, genomic DNA is converted in a sodium bisulfite reaction (the bisulfite process converts unmethylated cytosine residues to uracil). Amplification of a DNA sequence of interest is then performed using PCR primers that hybridize to CpG dinucleotides. By using primers that hybridize only to sequences resulting from bisulfite conversion of unmethylated DNA, (or alternatively to methylated sequences that are not converted) amplification can indicate methylation status of sequences where the primers hybridize.
- kits for use with MethyLight can include sodium bisulfite as well as primers or detectably-labeled probes (including but not limited to Taqman or molecular beacon probes) that distinguish between methylated and unmethylated DNA that have been treated with bisulfite.
- kit components can include, e.g., reagents necessary for amplification of DNA including but not limited to, PCR buffers, deoxynucleotides; and a thermostable polymerase.
- a Ms-SNuPE (Methylation-sensitive Single Nucleotide Primer Extension) reaction is used alone or in combination with other methods to detect methylation level.
- the Ms-SNuPE technique is a quantitative method for assessing methylation differences at specific CpG sites based on bisulfite treatment of DNA, followed by single-nucleotide primer extension. Briefly, genomic DNA is reacted with sodium bisulfite to convert unmethylated cytosine to uracil while leaving 5-methylcytosine unchanged. Amplification of the desired target sequence is then performed using PCR primers specific for bisulfite-converted DNA, and the resulting product is isolated and used as a template for methylation analysis at the CpG site(s) of interest.
- Typical reagents for Ms-SNuPE analysis can include, but are not limited to: PCR primers for specific gene (or methylation-altered DNA sequence or CpG island); optimized PCR buffers and deoxynucleotides; gel extraction kit; positive control primers; Ms-SNuPE primers for a specific gene; reaction buffer (for the Ms-SNuPE reaction); and detectably-labeled nucleotides.
- bisulfite conversion reagents may include: DNA denaturation buffer; sulfonation buffer; DNA recovery regents or kit (e.g., precipitation, ultrafiltration, affinity column); desulfonation buffer; and DNA recovery components.
- a methylation-specific PCR (“MSP”) reaction is used alone or in combination with other methods to detect DNA methylation.
- An MSP assay entails initial modification of DNA by sodium bisulfite, converting all unmethylated, but not methylated, cytosines to uracil, and subsequent amplification with primers specific for methylated versus unmethylated DNA.
- Additional methylation level detection methods include, but are not limited to, methylated CpG island amplification and those described in, e.g., U.S. Patent Publication 2005/0069879; Rein, et al. Nucleic Acids Res. 26 (10): 2255-64 (1998); Olek, et al. Nat. Genet. 17(3): 275-6 (1997); and PCT Publication No. WO 00/70090.
- This invention also provides kits for the detection and/or quantification of the diagnostic biomarkers of the invention, or expression or methylation level thereof using the methods described herein.
- Kits for detection of methylation level can comprise at least one polynucleotide that hybridizes to one of the CpG loci identified in Table 1 (or a nucleic acid sequence at least 90% identical to the CpG loci of Tale 1), or that hybridizes to a region of DNA flanking one of the CpG identified in Table 1, and at least one reagent for detection of gene methylation.
- Reagents for detection of methylation include, e.g., sodium bisulfite, polynucleotides designed to hybridize to sequence that is the product of a biomarker sequence of the invention if the biomarker sequence is not methylated, and/or a methylation-sensitive or methylation-dependent restriction enzyme.
- kits can provide solid supports in the form of an assay apparatus that is adapted to use in the assay.
- the kits may further comprise detectable labels, optionally linked to a polynucleotide, e.g., a probe, in the kit.
- detectable labels optionally linked to a polynucleotide, e.g., a probe, in the kit.
- Other materials useful in the performance of the assays can also be included in the kits, including test tubes, transfer pipettes, and the like.
- the kits can also include written instructions for the use of one or more of these reagents in any of the assays described herein.
- kits of the invention comprise one or more (e.g., 1, 2, 3, 4, or more) different polynucleotides (e.g., primers and/or probes) capable of specifically amplifying at least a portion of a DNA region where the DNA region includes one of the CpG Loci identified in Table 1.
- one or more detectably-labeled polypeptides capable of hybridizing to the amplified portion can also be included in the kit.
- the kits comprise sufficient primers to amplify 2, 3, 4, 5, 6, 7, 8, 9, 10, or more different DNA regions or portions thereof, and optionally include detectably-labeled polynucleotides capable of hybridizing to each amplified DNA region or portion thereof.
- the kits further can comprise a methylation-dependent or methylation sensitive restriction enzyme and/or sodium bisulfite.
- the present disclosure provides methods for the treatment and/or prevention of a disease state that is characterized, at least in part, by the altered methylation level of the CpG loci identified in Table 1.
- the altered methylation at CpG loci are associated with the occurrence in a patient of a cancer.
- the cancer is prostate cancer.
- the altered methylation levels of the CpG loci are associated with the reoccurrence of prostate cancer.
- the altered methylation levels of the CpG loci is differentially diagnostic in a patient suffering from prostate cancer as compared to a patient not suffering from prostate cancer.
- determining the methylation levels of at least one of the CpG loci identified in Table 1 is predictive of prostate cancer or the recurrence of prostate cancer.
- FIG. 1 shows that shows bar graphs of the percent methylation of each of the CpG loci in the biochemically recurrent patients and the non-recurrent patient where “B” is used for patients with a biochemical recurrence of prostate cancer and “N” is used for patients without a biochemical recurrence of prostate cancer.
- FIG. 2 shows the ROC curve for the best 3 CpG methylation model+Gleason grade from the 18 CpGs found using linear regression (solid black line), the ROC curve for the average of all possible 3 CpG models from the 18 CpGs (dashes and circles), the ROC curve for Gleason grade alone (short dashes), and the ROC curve for something with no predictive power (thin black line).
- the ROC curve including both DNA methylation and Gleason grade (solid black line) is statistically significantly better (pval of 0.00031) at predicting patients who will biochemically recur over Gleason grade alone (black dashes).
- FIG. 3 shows the ROC curve models from the analysis of the predictive CpGs discovered using survival analysis.
- the solid black line shows the best predictive model of 3 CpG methylation values+Gleason grade out of the 100 CpGs tested, and this is a perfect predictor of recurrence in our dataset.
- the line with dashes and circles represents the average of the 10 best models from the 100 CpGs tested, the line with short dashes represents the predictive power of Gleason grade alone, and the black line represents a model with no predictive power.
- the methylation levels of the CpG loci identified in Table 1 is detected to aid in the treatment, prevention or diagnosis of a cancer, such as prostate cancer.
- the steps in the method of treatment or prevention are:
- Identifying a patient in need of the prevention or treatment of prostate cancer This identifying step may be accomplished by many different methods. The patient could be identified by a physician who believes the patient would benefit from such treatment prevention or by standard genetic screening or analysis indicating the patient would benefit from such treatment or prevention.
- the patient sample is a tumor biopsy.
- the patient sample is a convenient bodily fluid, for example a blood sample, urine sample, and the like.
- the sample may be obtained by other means as well.
- C Determining the methylation levels of one or more of the CpG loci or dinculetides at the Hg19 positions identified on Table 1. This determination step may be accomplished by any of the means set forth in this disclosure. In one embodiment, the methylation level of one of the CpG loci is determined while in other embodiments, the methylation levels of a plurality of the CpG loci are determined. Additionally, other tests may be used in conjunction with this determining step, including without limitation PSA assays and the Gleason score.
- a methylation level of the CpG loci determined in step “C” different from the control is indictitive of the reoccurrence of prostate cancer. This comparasion step may be accomplished by any of the methods set forth herein.
- the composition may include compounds for hormone therapy such as androgen deprivation therapy.
- the method of treatment or prevention above is used if the patient has previously undergone treatment, such as radiation, a prostatectomy or hormone treatment for prostate cancer and a reoccurrence of prostate cancer is feared.
- the present invention provides methods for determining the methylation status of an individual.
- the methods comprise obtaining a biological sample from an individual; and determining the methylation level of at least one cytosine within a DNA region in a sample from an individual where the DNA region is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to, or comprises, a sequence selected from the group consisting of SEQ ID NOS.: 1-32.
- the methods comprise:
- the methods comprise:
- the calculations for the methods described herein can involve computer-based calculations and tools. For example, a methylation level for a DNA region or a CpG loci can be compared by a computer to a threshold value, as described herein.
- the tools are advantageously provided in the form of computer programs that are executable by a general purpose computer system (referred to herein as a “host computer”) of conventional design.
- the host computer may be configured with many different hardware components and can be made in many dimensions and styles (e.g., desktop PC, laptop, tablet PC, handheld computer, server, workstation, mainframe). Standard components, such as monitors, keyboards, disk drives, CD and/or DVD drives, and the like, may be included.
- the connections may be provided via any suitable transport media (e.g., wired, optical, and/or wireless media) and any suitable communication protocol (e.g., TCP/IP); the host computer may include suitable networking hardware (e.g., modem, Ethernet card, WiFi card).
- suitable transport media e.g., wired, optical, and/or wireless media
- TCP/IP any suitable communication protocol
- the host computer may include suitable networking hardware (e.g., modem, Ethernet card, WiFi card).
- the host computer may implement any of a variety of operating systems, including UNIX, Linux, Microsoft Windows, MacOS, or any other operating system.
- Computer code for implementing aspects of the present invention may be written in a variety of languages, including PERL, C, C++, Java, JavaScript, VBScript, AWK, or any other scripting or programming language that can be executed on the host computer or that can be compiled to execute on the host computer. Code may also be written or distributed in low level languages such as assembler languages or machine languages.
- the host computer system advantageously provides an interface via which the user controls operation of the tools.
- software tools are implemented as scripts (e.g., using PERL), execution of which can be initiated by a user from a standard command line interface of an operating system such as Linux or UNIX.
- commands can be adapted to the operating system as appropriate.
- a graphical user interface may be provided, allowing the user to control operations using a pointing device.
- the present invention is not limited to any particular user interface.
- Scripts or programs incorporating various features of the present invention may be encoded on various computer readable media for storage and/or transmission.
- suitable media include magnetic disk or tape, optical storage media such as compact disk (CD) or DVD (digital versatile disk), flash memory, and carrier signals adapted for transmission via wired, optical, and/or wireless networks conforming to a variety of protocols, including the Internet.
- the invention provides computer implemented methods for determining the presence or absence of cancer (including but not limited to prostate cancer or the biochemical reoccurrence of prostate cancer) in an individual.
- the methods comprise: receiving, at a host computer, a methylation value representing the methylation level of at least one cytosine within a DNA region in a sample from the individual where the DNA region is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to, or comprises, a sequence is selected from the group consisting of SEQ ID NOS: 1-32; and comparing, in the host computer, the methylation level to a threshold value, wherein the threshold value distinguishes between individuals with and without cancer (including but not limited to prostate cancer or the biochemical reoccurrence of prostate cancer), wherein the comparison of the methylation level to the threshold value is predictive of the presence or absence of cancer (including but not limited to prostate cancer or the biochemical reoccurrence of prostate cancer) in the individual.
- the receiving step comprises receiving at least two methylation values, the two methylation values representing the methylation level of at least one cytosine biomarkers from two different DNA regions; and the comparing step comprises comparing the methylation values to one or more threshold value(s) wherein the threshold value distinguishes between individuals with and without cancer (including but not limited to prostate cancer or the biochemical reoccurence of prostate cancer), wherein the comparison of the methylation value to the threshold value is predictive of the presence or absence of cancer (including but not limited to cancers of the bladder, breast, cervix, colon, endometrium, esophagus, head and neck, liver, lung(s), ovaries, prostate, rectum, and thyroid, and melanoma) in the individual.
- cancer including but not limited to cancers of the bladder, breast, cervix, colon, endometrium, esophagus, head and neck, liver, lung(s), ovaries, prostate, rectum, and thyroid, and melanoma
- the invention provides computer program products for determining the presence or absence of cancer (including but not limited to prostate cancer or the biochemical reoccurence of prostate cancer), in an individual.
- the computer readable products comprise: a computer readable medium encoded with program code, the program code including: program code for receiving a methylation value representing the methylation status of at least one cytosine within a DNA region in a sample from the individual where the DNA region is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to, or comprises, a sequence selected from the group consisting of SEQ ID NOS: 1-32 and program code for comparing the methylation value to a threshold value, wherein the threshold value distinguishes between individuals with and without cancer (including but not limited to prostate cancer or the biochemical reoccurence of prostate cancer), wherein the comparison of the methylation value to the threshold value is predictive of the presence or absence of cancer (including but not limited to prostate cancer or the bio
- Prostate tissues used for this study were collected at Stanford University Medical Center between 1999 and 2007 with patient informed consent under an IRB-approved protocol. Tissue samples were removed from each prostate, flash-frozen, and stored at ⁇ 80° C. Tumor tissue samples underwent macro-dissection to enrich for tumor cell population, and tumor tissues in which at least 90% of the epithelial cells were cancerous were selected for nucleic acid extractions. Nucleic acid was extracted from the tissues using QIAGEN AllPrep DNA/RNA mini kit (QIAGEN).
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Hospice & Palliative Care (AREA)
- Biophysics (AREA)
- Oncology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
- The U.S. Government may have an interest in, or certain rights to, the subject matter of this disclosure as provided for by the terms of grant number W81XWH-10-1-0790 from the Department of Defense through the Telemedicine and Advanced Technology Research Center (TATRC).
- The present invention relates to compositions and methods for cancer diagnosis, research and therapy, including but not limited to, cancer bio markers. In particular, the present invention relates to methylation levels of certain CpG loci as prognostic and diagnostic markers for prostate cancer or a biochemical recurrence of prostate cancer.
- Prostate cancer is the most commonly diagnosed malignancy for men in the United States with an estimated 238,590 new cases projected for 2013. The most current means for detecting prostate cancer is a combination of a digital rectal exam (DRE) and monitoring levels of prostate-specific antigen (PSA) in the blood. Prostate-specific antigen is a protease produced by the prostate gland. PSA is present at low concentration in the blood of healthy males, and an increase in the concentration of PSA in the blood can be indicative of a prostate tumor. Until recently, PSA testing was recommended as a screening tool for all men over 50. However, two large-scale, randomized trials of PSA screening suggest that prostate cancer is over-diagnosed and over-treated, likely because many cancers that are detected are never destined to progress. Prostate cancer can have an aggressive and lethal course and an estimated 29,720 men are projected to die of prostate cancer in 2013, however, for most patients, prostate cancer is a slow growing disease. This broad range of clinical behavior is likely a reflection of the underlying genomic diversity of the tumors. Previous studies of prostate tumors reported significant heterogeneity in the gene expression profiles and genomic structural alterations including DNA copy number changes and gene fusions often involving the ETS family of transcription factors detectable in approximately half of prostate tumors. Exon sequencing of known oncogenes and tumor suppressors has found few somatic mutations and the calculated background mutation rate appears to be relatively low. This suggests the presence of other forms of genomic aberrations that contribute to the observed gene expression variations, and in turn, the diversity in tumor behavior.
- Methods of detecting and/or diagnosing prostate cancer have been described previously. See for instance the following issued U.S. Pat. No. 7,524,633—Method of detection of prostate cancer; U.S. Pat. No. 7,427,476—PITX2 polynucleotide, polypeptide and methods of use therefore; U.S. Pat. No. 7,381,808—Method and nucleic acids for the differentiation of prostate tumors; U.S. Pat. No. 7,252,935—Method of detection of prostate cancer; U.S. Pat. No. 7,195,870—Diagnosis of diseases associated with gene regulation; U.S. Pat. No. 7,049,062—Assay for methylation in the GST-Pi gene; U.S. Pat. No. 6,864,093—Method of identifying and treating invasive carcinomas; U.S. Pat. No. 6,815,166—HIN-1, a tumor suppressor gene; U.S. Pat. No. 6,783,933—CACNA1G polynucleotide, polypeptide and methods of use therefore; U.S. Pat. No. 6,569,684—Method of identifying and treating invasive carcinomas; U.S. Pat. No. 5,552,277—Genetic diagnosis of prostate cancer; and U.S. Pat. No. 5,846,712 Tumor suppressor gene, HIC-1. In addition, conventional methods utilize the prostate specific antigen (PSA) blood test, and the digital rectal exam (DRE). PSA is an enzyme produced in the prostate that is found in the seminal fluid and the bloodstream. An elevated PSA level in the bloodstream does not necessarily indicate prostate cancer, since PSA can also be raised by infection or other prostate conditions such as benign prostatic hyperplasia (BPH). Many men with an elevated PSA do not have prostate cancer. Nonetheless, a PSA level greater than 4.0 nanograms per milliliter of serum was established initially as the cutoff where the sensitivity for detecting prostate cancer was the highest and the specificity for detecting non-cancerous conditions was the lowest. A PSA level above 4.0 ng per milliliter of serum may trigger a prostate biopsy to search for cancer. The digital rectal exam is usually performed along with the PSA test, to check for physical abnormalities that can result from tumor growth.
- The PSA test is an imperfect screening tool. A man can have prostate cancer and still have a PSA level in the “normal” range. Approximately 25% of men who are diagnosed with prostate cancer have a PSA level below 4.0. In addition, only 25% of men with a PSA level of 4-10 are found to have prostate cancer. With a PSA level exceeding 10, this rate jumps to approximately 65%.
- Current diagnostic tools for prostate cancer lack the sensitivity and specificity required for the detection of very early prostate lesions and diagnosis ultimately relies on an invasive biopsy. Once prostate cancer is diagnosed, there are no available prognostic markers for prostate cancer that provide information on how aggressively the tumor will grow. Therefore, more intrusive therapeutic routes are often chosen that result in a drastic reduction in the quality of life for the patient, even though the majority of prostate tumors are slow growing and non-aggressive. This ultimately leads to undue burden on the healthcare system and an uncessary decrease in quality of life for the patient. The present invention addresses the need for distinguishing aggressive prostate tumors through identification of specific genomic DNA methylation biomarkers that can distinguish patients that will undergo biochemical recurrence.
- DNA methyltransferases (also referred to as DNA methylases) transfer methyl groups from the universal methyl donor S-adenosyl methionine to specific sites on a DNA molecule. Several biological functions have been attributed to the methylated bases in DNA, such as the protection of the DNA from digestion by restriction enzymes in prokaryotic cells. In eukaryotic cells, DNA methylation is an epigenetic method of altering DNA that influences gene expression, for example during embryogenesis and cellular differentiation. The most common type of DNA methylation in eukaryotic cells is the methylation of cytosine residues that are 5′ neighbors of guanine (“CG” dinucleotides, also referred to as “CpGs”). DNA methylation regulates biological processes without altering genomic sequence. DNA methylation regulates gene expression, DNA-protein interactions, cellular differentiation, suppresses transposable elements, and X Chomosome inactivation.
- Improper methylation of DNA is believed to be the cause of some diseases such as Beckwith-Wiedemann syndrome and Prader-Willi syndrome. It has also been purposed that improper methylation is a contributing factor in many cancers. For example, de novo methylation of the Rb gene has been demonstrated in retinoblastomas. In addition, expression of tumor suppressor genes have been shown to be abolished by de novo DNA methylation of a normally unmethylated 5′ CpG island. Many additional effects of methylation are discussed in detail in published International Patent Publication No. WO 00/051639.
- Methylation of cytosines at their carbon-5 position plays an important role both during development and in tumorigenesis. Recent work has shown that the gene silencing effect of methylated regions is accomplished through the interaction of methylcytosine binding proteins with other structural components of chromatin, which, in turn, makes the DNA inaccessible to transcription factors through histone deacetylation and chromatin structure changes. The methylation occurs almost exclusively in CpG dinucleotides. While the bulk of human genomic DNA is depleted in CpG sites, there are CpG-rich stretches, so-called CpG islands, which are located in promoter regions of more than 70% of all known human genes. In normal cells, CpG islands are unmethylated, reflecting a transcriptionally active state of the respective gene. Epigenetic silencing of tumor suppressor genes by hypermethylation of CpG islands is a very early and stable characteristic of tumorigenesis. Hypermethylation of CpG islands located in the promoter regions of tumor suppressor genes are now firmly established as the most frequent mechanisms for gene inactivation in cancers.
-
FIG. 1 shows bar graphs of the percent methylation of each of the predictive CpG loci in the biochemically recurrent patients and the non-recurrent patients. B=biochemically recurrent patients, N=patients that are not biochemically recurrent. -
FIG. 2 shows the ROC curve for the best 3 CpG methylation model+Gleason grade from the 18 best predictive CpG loci found using linear regression (solid black line), the ROC curve for the average of all possible 3 CpG loci models from the 18 CpGs (dashes and circles), the ROC curve for Gleason grade alone (short dashes), and the ROC curve for something with no predictive power (thin black line). The ROC curve including both DNA methylation and Gleason grade (solid black line) is statistically significantly better (pval of 0.00031) at predicting patients who will biochemically recur over Gleason grade alone (black dashes). -
FIG. 3 shows the ROC curve models from the analysis of the predictive CpGs discovered using survival analysis. The solid black line shows the best predictive model of 3 CpG methylation values+Gleason grade out of the 100 CpGs tested, and this is a perfect predictor of recurrence in our dataset. The line with dashes and circles represents the average of the 10 best models from the 100 CpGs tested, the line with short dashes represents the predictive power of Gleason grade alone, and the black line represents a model with no predictive power. - The present invention relates to the identification of novel biomarkers for diagnosis and prognosis of prostate cancer. The biomarkers of the invention are CpG loci that have altered methylation levels relative to normal prostate tissue, as set forth, for example, in Table 1. In one embodiment, the biomarkers are indicative of the biochemical reoccurrence of prostate cancer.
- In some embodiments of the invention, the methylation level of one or a plurality of biomarkers set forth in Table 1 is determined in a patient sample suspected of comprising prostate cancer cells; wherein altered methylation at the indicated biomarker is indicative of prostate cancer or a biochemical recurrence of prostate cancer. In some embodiments, a plurality of biomarkers is evaluated for altered methylation.
- In some embodiments the patient sample is a tumor biopsy. In other embodiments the patient sample is a convenient bodily fluid, for example a blood sample, urine sample, and the like. The biomarkers of the present invention may further be combined with other biomarkers for prostate cancer, including without limitation prostate specific antigen, chromosome copy number alterations, and the like.
- While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed here.
- The present invention is based, in part, on the discovery that sequences in certain DNA regions are methylated in cancer cells, but not normal cells, or that methylation level at specific loci in prostate cancer patients that undergo biochemical recurrence have a different methylation level then the same loci in patients that do not undergo recurrence. Specifically, the inventors have found that methylation of biomarkers within the DNA regions described herein (such as those identified in Table 1) are associated with prostate cancer or the reoccurrence of prostate cancer.
- In view of this discovery, the inventors have recognized that methods for detecting the biomarker sequences and DNA regions comprising the biomarker sequences as well as sequences adjacent to the biomarkers that contain CpG loci subsequences, methylation level of the DNA regions, and/or expression of the genes regulated by the DNA regions can be used to predict recurrence of cancer cells or to detect cancer cells. Detecting cancer cells allows for diagnostic tests that detect disease, assess the risk of contracting disease, determining a predisposition to disease, stage disease, diagnosis of disease, monitor disease, and/or prognostic biomarkers such as these methylation markers can be used to aid in the selection of treatment for a patient after prostatectomy.
- Unless otherwise defined herein, scientific and technical terms used in connection with the present invention shall have the meanings that are commonly understood by those of ordinary skill in the art. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. Generally, nomenclatures used in connection with, and techniques of, cell and tissue culture, molecular biology, immunology, microbiology, genetics and protein and nucleic acid chemistry and hybridization described herein are those well known and commonly used in the art. The methods and techniques of the present invention are generally performed according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification unless otherwise indicated. See, e.g., Sambrook et al. Molecular Cloning: A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989) and Ausubel et al, Current Protocols in Molecular Biology, Greene Publishing Associates (1992), and Harlow and Lane Antibodies: A Laboratory Manual Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1990), which are incorporated herein by reference. Enzymatic reactions and purification techniques, if any, are performed according to manufacturer's specifications, as commonly accomplished in the art or as described herein. The terminology used in connection with, and the laboratory procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well known and commonly used in the art. Standard techniques can be used for chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, and delivery, and treatment of patients.
- The “Gleason” grading system is used to help evaluate the prognosis of men with prostate cancer. Together with other parameters, it is incorporated into a strategy of prostate cancer staging, which predicts prognosis and helps guide therapy. A Gleason “score” or “grade” is given to prostate cancer based upon its microscopic appearance. Tumors with a low Gleason score typically grow slowly enough that they may not pose a significant threat to the patients in their lifetimes. These patients are monitored (“watchful waiting” or “active surveillance”) over time. Cancers with a higher Gleason score are more aggressive and have a worse prognosis, and these patients are generally treated with surgery (e.g., radical prostectomy) and, in some cases, therapy (e.g., radiation, hormone, ultrasound, chemotherapy).
- The term “individual” or “patient” as used herein refers to any animal, including mammals, such as, but not limited to, mice, rats, other rodents, rabbits, dogs, cats, swine, cattle, sheep, horses, primates, or humans.
- The term “in need of prevention” as used herein refers to a judgment made by a caregiver that a patient requires or will benefit from prevention. This judgment is made based on a variety of factors that are in the realm of a caregiver's expertise, and may include the knowledge that the patient may become ill as the result of a disease state that is treatable by a compound or pharmaceutical composition of the disclosure.
- The term “in need of treatment” as used herein refers to a judgment made by a caregiver that a patient requires or will benefit from treatment. This judgment is made based on a variety of factors that are in the realm of a caregiver's expertise, and may include the knowledge that the patient is ill as the result of a disease state that is treatable by a compound or pharmaceutical composition of the disclosure.
- “Methylation” refers to cytosine methylation at positions C5 or N4 of cytosine, the N6 position of adenine or other types of nucleic acid methylation. In vitro amplified DNA is unmethylated because in vitro DNA amplification methods do not retain the methylation pattern of the amplification template. However, “unmethylated DNA” or “methylated DNA” can also refer to amplified DNA whose original template was methylated or methylated, respectively.
- The term “methylation level” as applied to a gene refers to whether one or more cytosine residues present in a CpG context have or do not have a methylation group. Methylation level may also refer to the fraction of cells in a sample that do or do not have a methylation group on such cytosines. Methylation level may also alternatively describe whether a singe CpG dinucleotide is methylated.
- A “methylation-dependent restriction enzyme” refers to a restriction enzyme that cleaves or digests DNA at or in proximity to a methylated recognition sequence, but does not cleave DNA at or near the same sequence when the recognition sequence is not methylated. Methylation-dependent restriction enzymes include those that cut at a methylated recognition sequence (e.g., DpnI) and enzymes that cut at a sequence near but not at the recognition sequence (e.g., McrBC). For example, McrBC's recognition sequence is 5′ RmC (N40-3000)
RmC 3′ where “R” is a purine and “mC” is a methylated cytosine and “N40-3000” indicates the distance between the two RmC half sites for which a restriction event has been observed. McrBC generally cuts close to one half-site or the other, but cleavage positions are typically distributed over several base pairs, approximately 30 base pairs from the methylated base. McrBC sometimes cuts 3′ of both half sites, sometimes 5′ of both half sites, and sometimes between the two sites. Exemplary methylation-dependent restriction enzymes include, e.g., McrBC (see, e.g., U.S. Pat. No. 5,405,760), McrA, MrrA, BisI, GlaI and DpnI. One of skill in the art will appreciate that any methylation-dependent restriction enzyme, including homologs and orthologs of the restriction enzymes described herein, is also suitable for use in the present invention. - A “methylation-sensitive restriction enzyme” refers to a restriction enzyme that cleaves DNA at or in proximity to an unmethylated recognition sequence but does not cleave at or in proximity to the same sequence when the recognition sequence is methylated. Exemplary methylation-sensitive restriction enzymes are described in, e.g., McClelland et al., Nucleic Acids Res. 22(17):3640-59 (1994) and http://rebase.neb.com. Suitable methylation-sensitive restriction enzymes that do not cleave DNA at or near their recognition sequence when a cytosine within the recognition sequence is methylated include, e.g., Aat II, Aci I, Acl I, Age I, Alu I, Asc I, Ase I, AsiS I, Bbe I, BsaA I, BsaH I, BsiE I, BsiW I, BsrF I, BssH II, BssK I, BstB I, BstN I, BstU I, Cla I, Eae L, Eag L, Fau I, Fse I, Hha I, HinPl I, HinC II, Hpa II, Hpy99 I, HpyCH4 IV, Kas I, Mbo I, Mlu I, MapAl I, Msp I, Nae I, Nar I, Not I, Pml I, Pst I, Pvu I, Rsr II, Sac II, Sap I, Sau3A I, Sfl I, Sfo I, SgrA I, Sma I, SnaB I, Tsc I, Xma I, and Zra I. Suitable methylation-sensitive restriction enzymes that do not cleave DNA at or near their recognition sequence when an adenosine within the recognition sequence is methylated at position N.sup.6 include, e.g., Mbo I. One of skill in the art will appreciate that any methylation-sensitive restriction enzyme, including homologs and orthologs of the restriction enzymes described herein, is also suitable for use in the present invention. One of skill in the art will further appreciate that a methylation-sensitive restriction enzyme that fails to cut in the presence of methylation of a cytosine at or near its recognition sequence may be insensitive to the presence of methylation of an adenosine at or near its recognition sequence. Likewise, a methylation-sensitive restriction enzyme that fails to cut in the presence of methylation of an adenosine at or near its recognition sequence may be insensitive to the presence of methylation of a cytosine at or near its recognition sequence. For example, Sau3AI is sensitive (i.e., fails to cut) to the presence of a methylated cytosine at or near its recognition sequence, but is insensitive (i.e., cuts) to the presence of a methylated adenosine at or near its recognition sequence. One of skill in the art will also appreciate that some methylation-sensitive restriction enzymes are blocked by methylation of bases on one or both strands of DNA encompassing of their recognition sequence, while other methylation-sensitive restriction enzymes are blocked only by methylation on both strands, but can cut if a recognition site is hemi-methylated.
- The term “prostate cancer” is used interchangeably and in the broadest sense refers to all stages and all forms of cancer arising from the tissue of the prostate gland.
- The terms “peptide,” “polypeptide,” and “protein” each refer to a molecule comprising two or more amino acid residues joined to each other by peptide bonds. These terms encompass, e.g., native and artificial proteins, protein fragments and polypeptide analogs such as muteins, variants, and fusion proteins of a protein sequence as well as post-translationally, or otherwise covalently or non-covalently, modified proteins.
- The terms “polynucleotide” and “nucleic acid” are used interchangeably throughout and include DNA molecules (e.g., cDNA or genomic DNA), RNA molecules (e.g., mRNA, siRNA), analogs of the DNA or RNA generated using nucleotide analogs (e.g., peptide nucleic acids and non-naturally occurring nucleotide analogs), and hybrids thereof. The nucleic acid molecule can be single-stranded or double-stranded. In one embodiment, the nucleic acid molecules of the invention comprise a contiguous open reading frame encoding an antibody, or a fragment, derivative, mutein, or variant thereof, of the invention. The nucleic acids can be any length. They can be, for example, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500, 750, 1,000, 1,500, 3,000, 5,000 or more nucleotides in length, and/or can comprise one or more additional sequences, for example, regulatory sequences, and/or be part of a larger nucleic acid, for example, a vector.
- The terms “prevent”, “preventing”, “prevention” “suppress”, “suppressing” and “suppression” as used herein refer to administering a compound either alone or as contained in a pharmaceutical composition prior to the onset of clinical symptoms of a disease state so as to prevent any symptom, aspect or characteristic of the disease state. Such preventing and suppressing need not be absolute to be useful.
- The term “recurrence” is used herein to refer to local or distant recurrence (i.e., metastasis) of cancer. For example, prostate cancer can recur locally in the tissue next to the prostate or in the seminal vesicles. The cancer may also affect the surrounding lymph nodes in the pelvis or lymph nodes outside this area. Prostate cancer can also spread to tissues next to the prostate, such as pelvic muscles, bones, or other organs. Recurrence can be determined by clinical recurrence detected by, for example, imaging study or biopsy, or biochemical recurrence, which is defined by detectable PSA levels in the blood after prostatectomy.
- The term “therapeutically effective amount”, in reference to the treating, preventing or suppressing of a disease state, refers to an amount of a compound either alone or as contained in a pharmaceutical composition that is capable of having any detectable, positive effect on any symptom, aspect, or characteristics of the disease state/condition. Such effect need not be absolute to be beneficial.
- The terms “treat”, “treating” and “treatment” as used herein refers to administering a compound either alone or as contained in a pharmaceutical composition after the onset of clinical symptoms of a disease state so as to reduce or eliminate any symptom, aspect or characteristic of the disease state. Such treating need not be absolute to be useful.
- DNA methylation is a heritable, reversible and epigenetic change. Yet, DNA methylation has the potential to alter gene expression, which has profound developmental and genetic consequences. The methylation reaction involves flipping a target cytosine out of an intact double helix to allow the transfer of a methyl group from S adenosyl-methionine in a cleft of the enzyme DNA (cystosine-5)-methyltransferase to form 5-methylcytosine (5-mCyt). This enzymatic conversion is the most common epigenetic modification of DNA known to exist in vertebrates, and is essential for normal embryonic development.
- The presence of 5-mCyt at CpG dinucleotides has resulted in a 5-fold depletion of this sequence in the genome during vertebrate evolution, presumably due to spontaneous deamination of 5-mCyt to T. Those areas of the genome that do not show such suppression are referred to as “CpG islands”. These CpG island regions comprise about 1% of vertebrate genomes and also account for about 15% of the total number of CpG dinucleotides. CpG islands are typically between 0.2 to about 1 kb in length and are located upstream of many housekeeping and tissue-specific genes, but may also extend into gene coding regions. Therefore, the methylation levels of cytosine residues within CpG islands in somatic tissues can modulate gene expression throughout the genome. Methylation levels of cytosine residues contained within CpG islands of certain genes has been inversely correlated with gene activity. Thus, methylation of cytosine residues within CpG islands in somatic tissue is generally associated with decreased gene expression and can affect a variety of mechanisms including, for example, disruption of local chromatin structure, inhibition of transcription factor-DNA binding, or by recruitment of proteins which interact specifically with methylated sequences indirectly preventing transcription factor binding. Despite a generally inverse correlation between methylation of CpG islands and gene expression, most CpG islands on autosomal genes remain unmethylated in the germline and methylation of these islands is usually independent of gene expression. Tissue-specific genes are usually unmethylated at the receptive target organs but are methylated in the germline and in non-expressing adult tissues. CpG islands of constitutively-expressed housekeeping genes are normally unmethylated in the germline and in somatic tissues. A recent study showed evidence that methylation status of CpGs located within 2000 base pairs of a gene's transcription start site is negatively correlated with gene expression. For CpGs within a gene body, the methylation status of CpGs not in CpG islands is positively correlated with gene expression, whereas CpGs in the gene body in CpG islands can both negatively and positively impact gene expression (Varley et al, 2013).
- Abnormal methylation of CpG islands associated with tumor suppressor genes can cause altered gene expression. Increased methylation (hypermethylation) of such regions can lead to progressive reduction of normal gene expression resulting in the selection of a population of cells having a selective growth advantage. Conversely, decreased methylation (hypomethylation) of oncogenes can lead to modulation of normal gene expression resulting in the selection of a population of cells having a selective growth advantage. In some examples, hypermethylation and/or hypomethylation of one or more CpG dinucleotide is considered to be abnormal methylation.
- The present disclosure provides biomarkers useful for the detection of the prostate cancer or reoccurence of prostate cancer, wherein the methlyation level of the biomarker is indicative of the reoccurence of prostate cancer. In one embodiment, the methylation level is determined by a cytosine. In one embodiment, the biomarkers are associated with certain genes in an individual. In one embodiment, the biomarkers are associated with certain CpG loci. In one embodiment, the CpG loci may be located in the promoter region of a gene, in an intron or exon of a gene or located near the gene in a patient's genomic DNA. In an alternate embodiment, the CpG may not be associated with any known gene or may be located in an intergenic region of a chromosome. In some embodiments, the CpG loci may be associated with one or more than one gene.
- In one embodiment, the gene associated with the biomarker is ADPRHL1 which is also referred to as ADP-ribosylhydrolase like 1. In one embodiment, the CpG loci are cg00474017 or cg05387119.
- In an alternate embodiment, the gene associated with the biomarker is ZNF787 which is also referred to as zinc finger protein 787, TIP 20 and TTF-I-interacting peptide 20. In one embodiment, the CpG locus is cg06161930.
- In an alternate embodiment, the gene associated with the biomarker gene is SHISA9 which is also referred to as CKAMP44 and cystine-knot AMPAR moduclating protein. In one embodiment, the CpG locus is cg06345462.
- In yet an alternate embodiment, the gene associated with the biomarker gene is FLI1 also known as friend leukemia integration 1 transcription factor, proto-oncogene Fli-1 or transcription factor ERGB. In one embodiment, the CpG locus is cg11017065.
- In yet an alternate embodiment, the gene associated with the biomarker is SNX8 which is also known as sorting
nexin 8 and Mvp1. In one embodiment, the CpG locus is cg13641082. - In an alternate embodiment, the gene associated with the biomarker is FANCC which is also known as protein FACC, Fanconi anemia, complementation group C and FA3. In one embodiment, the CpG locus is cg14127626.
- In an alternate embodiment, the gene associated with the biomarker is TMEM79 which is also known as transmembran protein 79. In one embodiment, the CpG locus is cg18973101.
- In an alternate embodiment, the gene associated with the biomarker is SMG5 which is also known as ESTIB, PLTS-RP1 and SMG-5. In one embodiment, the CpG locus is cg18973101.
- In an alternate embodiment, the gene associated with the biomarker is RGAG1 which is also known as MAR9 and retrotransposon gag domain containing 1. In one embodiment, the CpG locus is cg20522409. This CpG locus is on the X chromosome.
- In an alternate embodiment, the gene associated with the biomarker is AMMECR1 which is also known as Alport syndrome, mental retardation, midface hypoplasia and elliptocytosis chromosomal region gene 1. In one embodiment, the CpG locus is cg20522409. This CpG locus is on the X chromosome.
- In an alternate embodiment, the gene associated with the biomarker is TIMMDC1 which is also known as translocase of inner mitochondrial membrane domain containing 1. In one embodiment, the CpG locus is cg21139795.
- In an alternate embodiment, the gene associated with the biomarker is CD80 which is also known as B7-1 and BB1. In one embodiment, the CpG locus is cg21139795.
- In an alternate embodiment, the gene associated with the biomarker is MYTIL which is also known as myelin transcription factor i-like protein and NZF01. In one embodiment, the CpG locus is cg21741679.
- In an alternate embodiment, the gene associated with the biomarker is BCLAF1 which is also known as BTF. In one embodiment, the CpG locus is cg21889703.
- In an alternate embodiment, the gene associated with the biomarker is ARHGEF7 which is also known as COOL-1, p85 and PIXB. In one embodiment, the CpG locus is cg22032283.
- In an alternate embodiment, the gene associated with the biomarker is C10orf28 which is also known as PSORT and R3H domain and coiled-coli containin I-like. In one embodiment, the CpG locus is cg26450259.
- In an alternate embodiment, the gene associated with the biomarker is LOC348021. In one embodiment, the CpG locus is cg27252467.
- In an alternate embodiment, the gene associated with the biomarker is TBPL1 which is also known as STUD and TLF. In one embodiment, the CpG locus is cg00004608.
- In an alternate embodiment, the gene associated with the biomarker is CBFA2T3 which is also known as MTG16. In one embodiment, the CpG locus is cg00493358.
- In an alternate embodiment, the gene associated with the biomarker is ZNF276 which is also known as zinc finger protein 276. In one embodiment, the CpG locus is cg07221183.
- In an alternate embodiment, the gene associated with the biomarker is ZNF19 which is also known as zinc finger 19 protein. In one embodiment, the CpG locus is cg07506795.
- In an alternate embodiment, the gene associated with the biomarker is PDGFC which is also known as Platelet-derived growth factor C. In one embodiment, the CpG locus is cg07537734.
- In an alternate embodiment, the gene associated with the biomarker is HLA-DPB2 whish is also known as DPB. In one embodiment, the CpG locus is cg11786476.
- In an alternate embodiment, the gene associated with the biomarker is EXD3 which is also known as
exonuclease 3′-5′ domain containing 3 and mut-7. In one embodiment, the CpG locus is cg13916516. - In an alternate embodiment, the gene associated with the biomarker is WWC1 is also known as KIBRA. In one embodiment, the CpG locus is cg18472912.
- In an alternate embodiment, the gene associated with the biomarker is PRDM16 which is also known as MEL1, PR domain containing 16 and KIAA1675. In one embodiment, the CpG locus is cg23821340.
- In an alternate embodiment, the gene associated with the biomarker is CNGA3 which is also known as CNG3. In one embodiment, the CpG locus is cg24778248.
- In an alternate embodiment, the gene associated with the biomarker is MEGF8 which is also known as SBP1. In one embodiment, the CpG locus is cg26548653.
- In an alternate embodiment, the gene associated with the biomarker is TMEM145 which is also known as transmembrane protein 145. In one embodiment, the CpG locus is cg26548653.
- In one embodiment, the CpG locus is cg19480425 located on
chromosome 22. In one embodiment, the CpG locus is cg20077773 located on chromosome 12. In one embodiment, the CpG locus is cg26204682 located on chromosome 4. In one embodiment, the CpG locus is cg17881513 located onchromosome 8. In one embodiment, the CpG locus is cg18516946 located on chromosome 11. In one embodiment, the CpG locus is cg24773418 located on chromosome 14. - In one embodiment, the methylation level of one (1) of the following CpG loci may be determined (by any method set forth herein) to determine whether an individual is or may be at a risk for prostate cancer or a biochemical reoccurence of prostate cancer: cg00474017, cg05387119, cg06161930, cg11017065, cg1364108, cg14127626, cg18973101, cg19480425, cg20077773, cg20522409, cg21889703, cg22032283, cg26204682, cg06345462, cg21139795, cg21741679, cg26450259 and cg27252467. In some aspects, the methylation level of two (2) or more or three (3) or more of the forgoing CpG loci may be determined (by any method set forth herein) to determine whether an individual is or may be at a risk for prostate cancer or a biochemical reoccurence of prostate cancer.
- In some aspects, the methylation level of any one of the following biomarkers and associated genes may be determined (by any method set forth herein) to determine whether an individual is or may be at a risk for prostate cancer or a biochemical reoccurence of prostate cancer: ADPRHL1, AMMECR1, RGAG1, ZNF787, FLI1, SNX8, FANCC, SMG5, MEM79, BCLAF1, ARHGEF7, ZNF19, C10orf28, SHISA9, MYTIL, LOC348021. In some aspects, the methylation level of two (2) or more or three (3) or more of the forgoing biomarkers be determined (by any method set forth herein) to determine whether a patient is or may be at a risk for prostate cancer or a biochemical reoccurence of prostate cancer.
- In one embodiment, an increase in the methylation level of one or more of the following CpG loci is indicative of prostate cancer or the biochemical reoccurrence of prostate cancer: cg06161930, cg13641082, cg19480425, cg20077773, cg21889703, cg06345462, cg21139795, cg21741679, cg00004608, cg07537734, cg18472912, cg24773418, cg24778248 and cg26548653.
- In one embodiment, a decrease in the methylation level of one or more of the following CpG loci is indicative of prostate cancer or the biochemical reoccurrence of prostate cancer: cg00474017, cg05387119, cg11017065, cg18973101, cg20522409, cg26204682, cg26450259, cg00493358, cg07221183, cg07506795, cg11786476, cg13916516, cg18516946, cg17881513 and cg23821340.
- Table 1 shows the CpG loci, their chromosomal position (if known), and the genes associated with the CpG loci:
-
TABLE 1 The biomarkers of the present disclosure. The “CpG loci” column is the reference number provided by Illumina's ® Golden Gate and Infinium ® Assays. The “position” column are the genomic positions that correspond to the most current knowledge of the human genome sequence, which is the Human Feburary 2009 assembly known as GRCh37/hg19. The nucleotide sequences of the CpG loci in Table 1 are shown in Table 2 as well as the sequence listing filed herewith. Chro- Position in mo- Associated Human Genome CpG loci some Gene(s) 19 (hg19) SEQ ID NO. cg00474017 13 ADPRHL1 114074435 SEQ ID NO. 1 cg05387119 13 ADPRHL1 114074465 SEQ ID NO. 2 cg06161930 19 ZNF787 56633191 SEQ ID NO. 3 cg06345462 16 SHISA9 13263104 SEQ ID NO. 4 cg11017065 11 FLI1 128564874 SEQ ID NO. 5 cg13641082 7 SNX8 2319604 SEQ ID NO. 6 cg14127626 9 FANCC 98075481 SEQ ID NO. 7 cg18973101 1 SMG5; 156251280 SEQ ID NO. 8 TMEM79 cg19480425 22 NA 22339538 SEQ ID NO. 9 cg20077773 12 NA 46851689 SEQ ID NO. 10 cg20522409 X AMMECR1; 109661602 SEQ ID NO. 11 RGAG1 cg21139795 3 CD80; 119243933 SEQ ID NO. 12 TIMMDC1 cg21741679 2 MYT1L 2176774 SEQ ID NO. 13 cg21889703 6 BCLAF1 136607649 SEQ ID NO. 14 cg22032283 13 ARHGEF7 111936044 SEQ ID NO. 15 cg26204682 4 NA 105781484 SEQ ID NO. 16 cg26450259 10 C10orf28 99912042 SEQ ID NO. 17 cg27252467 13 LOC348021 39585665 SEQ ID NO. 18 cg00004608 6 TBPL1 134272463 SEQ ID NO. 19 cg00493358 16 CBFA2T3 88980724 SEQ ID NO. 20 cg07221183 16 ZNF276 89800359 SEQ ID NO. 21 cg07506795 16 ZNF19 71523560 SEQ ID NO. 22 cg07537734 4 PDGFC 157893541 SEQ ID NO. 23 cg11786476 6 HLA-DPB2 33096738 SEQ ID NO. 24 cg13916516 9 EXD3 140268774 SEQ ID NO. 25 cg17881513 8 NA 10717687 SEQ ID NO. 26 cg18472912 5 WWC1 167799541 SEQ ID NO. 27 cg18516946 11 NA 94774414 SEQ ID NO. 28 cg23821340 1 PRDM16 3303053 SEQ ID NO. 29 cg24773418 14 NA 33402512 SEQ ID NO. 30 cg24778248 2 CNGA3 98963062 SEQ ID NO. 31 cg26548653 19 TMEM145; 42829042 SEQ ID NO. 32 MEGF8 - In some embodiments, the methylation level of the chromosomal DNA within a DNA region or portion thereof (e.g., at least one cytosine residue) selected from the CpG loci identified in Table 1 is determined. In some embodiments, the methylation level of all cytosines within at least 20, 50, 100, 200, 500 or more contiguous base pairs of the CpG loci is also determined. For example, in one embodiment, the methylation level of the cytosine at cg18472912 is determined. In some embodiments, pluralities of CpG loci are assessed and their methylation level determined.
- In some embodiments of the invention, the methylation level of a CpG loci is determined and then normalized (e.g., compared) to the methylation of a control locus. Typically the control locus will have a known, relatively constant, methylation level. For example, the control sequence can be previously determined to have no, some or a high amount of methylation (or methylation level), thereby providing a relative constant value to control for error in detection methods, etc., unrelated to the presence or absence of cancer. In some embodiments, the control locus is endogenous, i.e., is part of the genome of the individual sampled. For example, in mammalian cells, the testes-specific histone 2B gene (hTH2B in human) gene is known to be methylated in all somatic tissues except testes. Alternatively, the control locus can be an exogenous locus, i.e., a DNA sequence spiked into the sample in a known quantity and having a known methylation level.
- The methylation sites in a DNA region can reside in non-coding transcriptional control sequences (e.g. promoters, enhancers, etc.) or in coding sequences, including introns and exons of the associated genes. In some embodiments, the methods comprise detecting the methylation level in the promoter regions (e.g., comprising the nucleic acid sequence that is about 1.0 kb, 1.5 kb, 2.0 kb, 2.5 kb, 3.0 kb, 3.5 kb or 4.0 kb 5′ from the transcriptional start site through to the transcriptional start site) of one or more of the associated genes identified in Table 1.
- Any method for detecting methylation levels can be used in the methods of the present invention.
- In some embodiments, methods for detecting methylation levels include randomly shearing or randomly fragmenting the genomic DNA, cutting the DNA with a methylation-dependent or methylation-sensitive restriction enzyme and subsequently selectively identifying and/or analyzing the cut or uncut DNA. Selective identification can include, for example, separating cut and uncut DNA (e.g., by size) and quantifying a sequence of interest that was cut or, alternatively, that was not cut. Alternatively, the method can encompass amplifying intact DNA after restriction enzyme digestion, thereby only amplifying DNA that was not cleaved by the restriction enzyme in the area amplified. In some embodiments, amplification can be performed using primers that are gene specific. Alternatively, adaptors can be added to the ends of the randomly fragmented DNA, the DNA can be digested with a methylation-dependent or methylation-sensitive restriction enzyme, intact DNA can be amplified using primers that hybridize to the adaptor sequences. In this case, a second step can be performed to determine the presence, absence or quantity of a particular gene in an amplified pool of DNA. In some embodiments, the DNA is amplified using real-time, quantitative PCR.
- In some embodiments, the methods comprise quantifying the average methylation density in a target sequence within a population of genomic DNA. In some embodiments, the method comprises contacting genomic DNA with a methylation-dependent restriction enzyme or methylation-sensitive restriction enzyme under conditions that allow for at least some copies of potential restriction enzyme cleavage sites in the locus to remain uncleaved; quantifying intact copies of the locus; and comparing the quantity of amplified product to a control value representing the quantity of methylation of control DNA, thereby quantifying the average methylation density in the locus compared to the methylation density of the control DNA.
- The methylation level of a CpG loci can be determined by providing a sample of genomic DNA comprising the CpG locus, cleaving the DNA with a restriction enzyme that is either methylation-sensitive or methylation-dependent, and then quantifying the amount of intact DNA or quantifying the amount of cut DNA at the locus of interest. The amount of intact or cut DNA will depend on the initial amount of genomic DNA containing the locus, the amount of methylation in the locus, and the number (i.e., the fraction) of nucleotides in the locus that are methylated in the genomic DNA. The amount of methylation in a DNA locus can be determined by comparing the quantity of intact DNA or cut DNA to a control value representing the quantity of intact DNA or cut DNA in a similarly-treated DNA sample. The control value can represent a known or predicted number of methylated nucleotides. Alternatively, the control value can represent the quantity of intact or cut DNA from the same locus in another (e.g., normal, non-diseased) cell or a second locus.
- By using at least one methylation-sensitive or methylation-dependent restriction enzyme under conditions that allow for at least some copies of potential restriction enzyme cleavage sites in the locus to remain uncleaved and subsequently quantifying the remaining intact copies and comparing the quantity to a control, average methylation density of a locus can be determined. If the methylation-sensitive restriction enzyme is contacted to copies of a DNA locus under conditions that allow for at least some copies of potential restriction enzyme cleavage sites in the locus to remain uncleaved, then the remaining intact DNA will be directly proportional to the methylation density, and thus may be compared to a control to determine the relative methylation density of the locus in the sample. Similarly, if a methylation-dependent restriction enzyme is contacted to copies of a DNA locus under conditions that allow for at least some copies of potential restriction enzyme cleavage sites in the locus to remain uncleaved, then the remaining intact DNA will be inversely proportional to the methylation density, and thus may be compared to a control to determine the relative methylation density of the locus in the sample.
- Kits for the above methods can include, e.g., one or more of methylation-dependent restriction enzymes, methylation-sensitive restriction enzymes, amplification (e.g., PCR) reagents, probes and/or primers.
- Quantitative amplification methods (e.g., quantitative PCR or quantitative linear amplification) can be used to quantify the amount of intact DNA within a locus flanked by amplification primers following restriction digestion. Methods of quantitative amplification are disclosed in, e.g., U.S. Pat. Nos. 6,180,349; 6,033,854; and 5,972,602. Amplifications may be monitored in “real time.”
- Additional methods for detecting methylation levels can involve genomic sequencing before and after treatment of the DNA with bisulfite. When sodium bisulfite is contacted to DNA, unmethylated cytosine is converted to uracil, while methylated cytosine is not modified. Such additional embodiments include the use of array-based assays such as the Illumina® Human Methylation450 BeadChip and multi-plex PCR assays. In one embodiment, the multi-plex PCR assay is Patch PCR. PatchPCR can be used to determine the methylation level of a certain CpG loci. See Varley KE and Mitra RD (2010). Bisulfite Patch PCR enables multiplexed sequencing of promoter methylation across cancer samples. Genome Research. 20:1279-1287.
- In some embodiments, restriction enzyme digestion of PCR products amplified from bisulfite-converted DNA is used to detect DNA methylation levels.
- In some embodiments, a “MethyLight” assay is used alone or in combination with other methods to detect methylation level. Briefly, in the MethyLight process, genomic DNA is converted in a sodium bisulfite reaction (the bisulfite process converts unmethylated cytosine residues to uracil). Amplification of a DNA sequence of interest is then performed using PCR primers that hybridize to CpG dinucleotides. By using primers that hybridize only to sequences resulting from bisulfite conversion of unmethylated DNA, (or alternatively to methylated sequences that are not converted) amplification can indicate methylation status of sequences where the primers hybridize. Similarly, the amplification product can be detected with a probe that specifically binds to a sequence resulting from bisulfite treatment of a unmethylated (or methylated) DNA. If desired, both primers and probes can be used to detect methylation status. Thus, kits for use with MethyLight can include sodium bisulfite as well as primers or detectably-labeled probes (including but not limited to Taqman or molecular beacon probes) that distinguish between methylated and unmethylated DNA that have been treated with bisulfite. Other kit components can include, e.g., reagents necessary for amplification of DNA including but not limited to, PCR buffers, deoxynucleotides; and a thermostable polymerase.
- In some embodiments, a Ms-SNuPE (Methylation-sensitive Single Nucleotide Primer Extension) reaction is used alone or in combination with other methods to detect methylation level. The Ms-SNuPE technique is a quantitative method for assessing methylation differences at specific CpG sites based on bisulfite treatment of DNA, followed by single-nucleotide primer extension. Briefly, genomic DNA is reacted with sodium bisulfite to convert unmethylated cytosine to uracil while leaving 5-methylcytosine unchanged. Amplification of the desired target sequence is then performed using PCR primers specific for bisulfite-converted DNA, and the resulting product is isolated and used as a template for methylation analysis at the CpG site(s) of interest.
- Typical reagents (e.g., as might be found in a typical Ms-SNuPE-based kit) for Ms-SNuPE analysis can include, but are not limited to: PCR primers for specific gene (or methylation-altered DNA sequence or CpG island); optimized PCR buffers and deoxynucleotides; gel extraction kit; positive control primers; Ms-SNuPE primers for a specific gene; reaction buffer (for the Ms-SNuPE reaction); and detectably-labeled nucleotides. Additionally, bisulfite conversion reagents may include: DNA denaturation buffer; sulfonation buffer; DNA recovery regents or kit (e.g., precipitation, ultrafiltration, affinity column); desulfonation buffer; and DNA recovery components.
- In some embodiments, a methylation-specific PCR (“MSP”) reaction is used alone or in combination with other methods to detect DNA methylation. An MSP assay entails initial modification of DNA by sodium bisulfite, converting all unmethylated, but not methylated, cytosines to uracil, and subsequent amplification with primers specific for methylated versus unmethylated DNA.
- Additional methylation level detection methods include, but are not limited to, methylated CpG island amplification and those described in, e.g., U.S. Patent Publication 2005/0069879; Rein, et al. Nucleic Acids Res. 26 (10): 2255-64 (1998); Olek, et al. Nat. Genet. 17(3): 275-6 (1997); and PCT Publication No. WO 00/70090.
- This invention also provides kits for the detection and/or quantification of the diagnostic biomarkers of the invention, or expression or methylation level thereof using the methods described herein.
- For Kits for detection of methylation level can comprise at least one polynucleotide that hybridizes to one of the CpG loci identified in Table 1 (or a nucleic acid sequence at least 90% identical to the CpG loci of Tale 1), or that hybridizes to a region of DNA flanking one of the CpG identified in Table 1, and at least one reagent for detection of gene methylation. Reagents for detection of methylation include, e.g., sodium bisulfite, polynucleotides designed to hybridize to sequence that is the product of a biomarker sequence of the invention if the biomarker sequence is not methylated, and/or a methylation-sensitive or methylation-dependent restriction enzyme. The kits can provide solid supports in the form of an assay apparatus that is adapted to use in the assay. The kits may further comprise detectable labels, optionally linked to a polynucleotide, e.g., a probe, in the kit. Other materials useful in the performance of the assays can also be included in the kits, including test tubes, transfer pipettes, and the like. The kits can also include written instructions for the use of one or more of these reagents in any of the assays described herein.
- In some embodiments, the kits of the invention comprise one or more (e.g., 1, 2, 3, 4, or more) different polynucleotides (e.g., primers and/or probes) capable of specifically amplifying at least a portion of a DNA region where the DNA region includes one of the CpG Loci identified in Table 1. Optionally, one or more detectably-labeled polypeptides capable of hybridizing to the amplified portion can also be included in the kit. In some embodiments, the kits comprise sufficient primers to amplify 2, 3, 4, 5, 6, 7, 8, 9, 10, or more different DNA regions or portions thereof, and optionally include detectably-labeled polynucleotides capable of hybridizing to each amplified DNA region or portion thereof. The kits further can comprise a methylation-dependent or methylation sensitive restriction enzyme and/or sodium bisulfite.
- The present disclosure provides methods for the treatment and/or prevention of a disease state that is characterized, at least in part, by the altered methylation level of the CpG loci identified in Table 1.
- In one embodiment, the altered methylation at CpG loci are associated with the occurrence in a patient of a cancer. In one embodiment, the cancer is prostate cancer. In one embodiment, the altered methylation levels of the CpG loci are associated with the reoccurrence of prostate cancer. In one embodiment, the altered methylation levels of the CpG loci is differentially diagnostic in a patient suffering from prostate cancer as compared to a patient not suffering from prostate cancer.
- As illustrated in
FIGS. 1A-3 , determining the methylation levels of at least one of the CpG loci identified in Table 1 is predictive of prostate cancer or the recurrence of prostate cancer.FIG. 1 shows that shows bar graphs of the percent methylation of each of the CpG loci in the biochemically recurrent patients and the non-recurrent patient where “B” is used for patients with a biochemical recurrence of prostate cancer and “N” is used for patients without a biochemical recurrence of prostate cancer. -
FIG. 2 shows the ROC curve for the best 3 CpG methylation model+Gleason grade from the 18 CpGs found using linear regression (solid black line), the ROC curve for the average of all possible 3 CpG models from the 18 CpGs (dashes and circles), the ROC curve for Gleason grade alone (short dashes), and the ROC curve for something with no predictive power (thin black line). The ROC curve including both DNA methylation and Gleason grade (solid black line) is statistically significantly better (pval of 0.00031) at predicting patients who will biochemically recur over Gleason grade alone (black dashes). -
FIG. 3 shows the ROC curve models from the analysis of the predictive CpGs discovered using survival analysis. The solid black line shows the best predictive model of 3 CpG methylation values+Gleason grade out of the 100 CpGs tested, and this is a perfect predictor of recurrence in our dataset. The line with dashes and circles represents the average of the 10 best models from the 100 CpGs tested, the line with short dashes represents the predictive power of Gleason grade alone, and the black line represents a model with no predictive power. - Other non-limiting methods of diagnosis and treatment are described below. In this embodiment, the methylation levels of the CpG loci identified in Table 1 is detected to aid in the treatment, prevention or diagnosis of a cancer, such as prostate cancer.
- The steps in the method of treatment or prevention, in one embodiment are:
- A. Identifying a patient in need of the prevention or treatment of prostate cancer. This identifying step may be accomplished by many different methods. The patient could be identified by a physician who believes the patient would benefit from such treatment prevention or by standard genetic screening or analysis indicating the patient would benefit from such treatment or prevention.
- B. Obtaining a sample from the patient. In some embodiments the patient sample is a tumor biopsy. In other embodiments the patient sample is a convenient bodily fluid, for example a blood sample, urine sample, and the like. The sample may be obtained by other means as well.
- C. Determining the methylation levels of one or more of the CpG loci or dinculetides at the Hg19 positions identified on Table 1. This determination step may be accomplished by any of the means set forth in this disclosure. In one embodiment, the methylation level of one of the CpG loci is determined while in other embodiments, the methylation levels of a plurality of the CpG loci are determined. Additionally, other tests may be used in conjunction with this determining step, including without limitation PSA assays and the Gleason score.
- D. Comparing the methylation levels of CpG loci determined in step “C” to a reference or control. In one embodiment, a methylation level of the CpG loci determined in step “C” different from the control is indictitive of the reoccurrence of prostate cancer. This comparasion step may be accomplished by any of the methods set forth herein.
- E. Treating the patient with a therapeutically effective amount of a composition or radiation therapy if the comparing step in “D” above indicates the reoccurrence of prostate cancer. In one embodiment, the composition may include compounds for hormone therapy such as androgen deprivation therapy.
- In one embodiment, the method of treatment or prevention above is used if the patient has previously undergone treatment, such as radiation, a prostatectomy or hormone treatment for prostate cancer and a reoccurrence of prostate cancer is feared.
- In an alternate embodiment, the present invention provides methods for determining the methylation status of an individual. In one aspect, the methods comprise obtaining a biological sample from an individual; and determining the methylation level of at least one cytosine within a DNA region in a sample from an individual where the DNA region is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to, or comprises, a sequence selected from the group consisting of SEQ ID NOS.: 1-32.
- In some embodiments, the methods comprise:
-
- A. Determining the methylation status of at least one cytosine within a DNA region in a sample from the individual where the DNA region is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to, or comprises, a sequence selected from the group consisting of SEQ ID NOS.: 1-32 and
- B. Comparing the methylation status of the at least one cytosine to a threshold value for the biomarker, wherein the threshold value distinguishes between individuals with and without cancer, wherein the comparison of the methylation status to the threshold value is predictive of the presence or absence of prostate cancer in the individual.
- In some embodiments, the methods comprise:
-
- A. Determining the methylation status of at least one cytosine within a DNA region in a sample from the individual where the DNA region is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to, or comprises, a sequence selected from the group consisting of SEQ ID NOS.: 1-32 and
- B. Comparing the methylation status of the at least one cytosine to a threshold value for the biomarker, wherein the threshold value distinguishes between individuals with and without cancer, wherein the comparison of the methylation status to the threshold value is predictive of the biochemical reoccurence of prostate cancer in the individual.
- The calculations for the methods described herein can involve computer-based calculations and tools. For example, a methylation level for a DNA region or a CpG loci can be compared by a computer to a threshold value, as described herein. The tools are advantageously provided in the form of computer programs that are executable by a general purpose computer system (referred to herein as a “host computer”) of conventional design. The host computer may be configured with many different hardware components and can be made in many dimensions and styles (e.g., desktop PC, laptop, tablet PC, handheld computer, server, workstation, mainframe). Standard components, such as monitors, keyboards, disk drives, CD and/or DVD drives, and the like, may be included. Where the host computer is attached to a network, the connections may be provided via any suitable transport media (e.g., wired, optical, and/or wireless media) and any suitable communication protocol (e.g., TCP/IP); the host computer may include suitable networking hardware (e.g., modem, Ethernet card, WiFi card). The host computer may implement any of a variety of operating systems, including UNIX, Linux, Microsoft Windows, MacOS, or any other operating system.
- Computer code for implementing aspects of the present invention may be written in a variety of languages, including PERL, C, C++, Java, JavaScript, VBScript, AWK, or any other scripting or programming language that can be executed on the host computer or that can be compiled to execute on the host computer. Code may also be written or distributed in low level languages such as assembler languages or machine languages.
- The host computer system advantageously provides an interface via which the user controls operation of the tools. In the examples described herein, software tools are implemented as scripts (e.g., using PERL), execution of which can be initiated by a user from a standard command line interface of an operating system such as Linux or UNIX. Those skilled in the art will appreciate that commands can be adapted to the operating system as appropriate. In other embodiments, a graphical user interface may be provided, allowing the user to control operations using a pointing device. Thus, the present invention is not limited to any particular user interface.
- Scripts or programs incorporating various features of the present invention may be encoded on various computer readable media for storage and/or transmission. Examples of suitable media include magnetic disk or tape, optical storage media such as compact disk (CD) or DVD (digital versatile disk), flash memory, and carrier signals adapted for transmission via wired, optical, and/or wireless networks conforming to a variety of protocols, including the Internet.
- In a further aspect, the invention provides computer implemented methods for determining the presence or absence of cancer (including but not limited to prostate cancer or the biochemical reoccurrence of prostate cancer) in an individual. In some embodiments, the methods comprise: receiving, at a host computer, a methylation value representing the methylation level of at least one cytosine within a DNA region in a sample from the individual where the DNA region is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to, or comprises, a sequence is selected from the group consisting of SEQ ID NOS: 1-32; and comparing, in the host computer, the methylation level to a threshold value, wherein the threshold value distinguishes between individuals with and without cancer (including but not limited to prostate cancer or the biochemical reoccurrence of prostate cancer), wherein the comparison of the methylation level to the threshold value is predictive of the presence or absence of cancer (including but not limited to prostate cancer or the biochemical reoccurrence of prostate cancer) in the individual.
- In some embodiments, the receiving step comprises receiving at least two methylation values, the two methylation values representing the methylation level of at least one cytosine biomarkers from two different DNA regions; and the comparing step comprises comparing the methylation values to one or more threshold value(s) wherein the threshold value distinguishes between individuals with and without cancer (including but not limited to prostate cancer or the biochemical reoccurence of prostate cancer), wherein the comparison of the methylation value to the threshold value is predictive of the presence or absence of cancer (including but not limited to cancers of the bladder, breast, cervix, colon, endometrium, esophagus, head and neck, liver, lung(s), ovaries, prostate, rectum, and thyroid, and melanoma) in the individual.
- In another aspect, the invention provides computer program products for determining the presence or absence of cancer (including but not limited to prostate cancer or the biochemical reoccurence of prostate cancer), in an individual. In some embodiments, the computer readable products comprise: a computer readable medium encoded with program code, the program code including: program code for receiving a methylation value representing the methylation status of at least one cytosine within a DNA region in a sample from the individual where the DNA region is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to, or comprises, a sequence selected from the group consisting of SEQ ID NOS: 1-32 and program code for comparing the methylation value to a threshold value, wherein the threshold value distinguishes between individuals with and without cancer (including but not limited to prostate cancer or the biochemical reoccurence of prostate cancer), wherein the comparison of the methylation value to the threshold value is predictive of the presence or absence of cancer (including but not limited to prostate cancer or the biochemical reoccurence of prostate cancer), in the individual.
- Prostate tissues used for this study were collected at Stanford University Medical Center between 1999 and 2007 with patient informed consent under an IRB-approved protocol. Tissue samples were removed from each prostate, flash-frozen, and stored at −80° C. Tumor tissue samples underwent macro-dissection to enrich for tumor cell population, and tumor tissues in which at least 90% of the epithelial cells were cancerous were selected for nucleic acid extractions. Nucleic acid was extracted from the tissues using QIAGEN AllPrep DNA/RNA mini kit (QIAGEN).
- Five hundred nanograms of DNA from each tissue was sodium bisulfite treated, and DNA methylation levels were assayed using the Illumina Infinium HumanMethylation 450K beadchip array (Illumina). We calculated the methylation beta score as: β=IntensityMethylated/(IntensityMethylated+IntensityUnmethylated). We converted any data points that were not significantly above the background intensity to NAs. We removed any CpG with greater than 10% missing values. In order to correct for batch effect, we performed a Combat normalization on array chip number using the ComBat R package. Post-ComBat normalization, we observed that the Infinium I and II assays showed two distinct bimodal β-value distributions, so we developed a regression method to convert the type I and type II assays to a single bimodal β-distribution corresponding to Reduced Representation Bisulfite Sequencing (RRBS) β-values. This corrected for the distinct bimodal distributions and aligned our data with RRBS values to allow for future integration with RRBS data. We selected four samples to develop a regression equation to convert Methyl 450K data to RRBS data. We split the Combat normalized Methylation 450K data based on the type I or type II assay giving us 12,687 CpGs for the type I assay and 8,439 CpGs for the type II assay. We then developed a linear and quadric equation relating the Methylation 450 type I and type II assays β-values to the RRBS β-values using least-squares regression. After testing the equations and visual inspection of the RRBS vs. Methylation 450K β-values scatter plots, we determined the quadric equation gave the best fit to the data. The β-value distribution is fixed at zero and one, thus after the Methylation 450K data was converted to RRBS β-values using the quadric equations, any values less than zero were assigned zeros and values greater than one were assigned ones. The equations for correction are shown below:
- Infinium I to RRBS
-
RRBS β=0.00209+0.4377×Methyl450β+0.6303×Methyl450β 2 - Infinium II to RRBS
-
RRBS β=−0.01146+0.2541×Methyl450β+0.9832×Methyl450β 2 - Discovery of CpG Loci with DNA Methylation Levels Statistically Associated with Biochemical Recurrence Using Linear Regression Models:
- Prior to any statistical analysis, in order to improve statistical power, we removed any CpG that had a standard deviation across all samples less than 0.01, as these CpGs were considered unchanged across samples. This left us with 347,899 CpGs for the statistical analysis. We fit the tumor prostate DNA methylation data to a linear model using the lm function in R. We included several clinical covariates in the linear model, including patient PSA level before prostatectomy surgery, patient pathological Gleason grade, T score (from TNM prostate staging score), N score (from TNM prostate staging score), whether the patient had positive surgical margins or not, whether the tumor invaded the seminal vesicals, whether the tumor invaded the capsule of the prostate, and whether the patient is biochemically recurrent. At an FDR of 10%, we discovered 13 CpG loci that had DNA methylation patterns that were statistically associated with biochemical recurrence. We also fit the tumor prostate DNA methylation data to a Robust linear model using the rlm function in R. At an FDR of 5%, filtering out CpGs that did not converge, we found 1,222 CpG loci that had DNA methylation patterns that were statistically associated with biochemical recurrence. Because significant rlm results are prone to outliers, we further filtered the significant CpGs to highlight CpGs with the largest methylation differences between the biochemically recurrent patients and the non-recurrent patients. We selected, from the 1,222 CpG loci, CpGs with a median methylation difference between biochemical recurrent patients and non-recurrent patients of at least 10%, and a Median Absolute Deviation (meaning the dispersion of the data around the median) no greater than 20%. This filtering process left us with 5 additional CpGs over the 13 that we discovered through linear regression.
- Discovery of CpG Loci with DNA Methylation Levels Statistically Associated with Biochemical Recurrence Using Survival Analysis:
- After the static regression analysis was completed we used survival analysis to include time to recurrence in our study. The time to recurrence data was censored; hence we used the Cox proportional hazards model to study the affect of CpG methylation on recurrence times. We used the Wald test to determine significant CpGs for recurrence. We found 1,627 CpGs with an FDR of 0.05. To investigate all combinations of the 1,627 CpGs would have required 716,490,715 individual models with 3 CpGs, hence we elected to test the 100 most significant CpG s (requiring 161,700 models) from the survival analysis to determine their predictive power for prostate cancer recurrence. We then applied the same logistic regression analysis as used for the linear regression CpGs and identified 14 more CpGs with a very strong predictive power for prostate cancer recurrence.
- After the CpGs were identified using linear regression, we used logistic regression to determine the predictive power of these CpGs for prostate cancer recurrence. Based on the sample size of 73 tumors, we elected to study all possible combinations of 3 significant CpGs along with Gleason score to determine which combinations of CpGs provided the best prediction of biochemical recurrence. We developed a logistic regression model for each of the 816 combinations of 3 CpGs and Gleason score. For each model we determined the Akaike information criterion (AIC) to determine the best predictors. We used the AIC since it judges models based on how close the fitted values tend to be to the expected values. The optimal models will minimize the AIC. We then took the models with the lowest AIC and determined the sensitivity and specificity of each model. We used the sensitivity and specificity to produce ROC curves for these models. Since a perfect predictor will have an area under the ROC curve of 1, we then calculated the area under the ROC curves and selected the model with the area closest to 1 as the best model to predict recurrence. The best model had an area of 0.97. To test the ability of the CpGs to predict recurrence we randomly selected CpGs that were not identified using linear regression. Using these CpGs we developed logistic regression models, the ROC curves, and calculated the area under these curves. For these models the area was close to 0.5, which is the expected area when a model provides no predicative power.
Claims (2)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/829,253 US20140274757A1 (en) | 2013-03-14 | 2013-03-14 | Differential Methylation Level of CpG Loci That Are Determinative of a Biochemical Reoccurrence of Prostate Cancer |
PCT/US2014/025848 WO2014160114A1 (en) | 2013-03-14 | 2014-03-13 | Differential methylation level of cpg loci that are determinative of a biochemical reoccurrence of prostate cancer |
EP19150785.4A EP3498862A3 (en) | 2013-03-14 | 2014-03-13 | Differential methylation level of cpg loci that are determinative of a biochemical reoccurrence of prostate cancer |
US14/774,227 US11566291B2 (en) | 2013-03-14 | 2014-03-13 | Differential methylation level of CpG loci that are determinative of a biochemical reoccurrence of prostate cancer |
EP14773292.9A EP2971170B1 (en) | 2013-03-14 | 2014-03-13 | Differential methylation level of cpg loci that are determinative of a biochemical reoccurrence of prostate cancer |
US14/977,779 US10501804B2 (en) | 2013-03-14 | 2015-12-22 | Differential methylation level of CPG loci that are determinative of a biochemical reoccurrence of prostate cancer |
US16/667,599 US11085088B2 (en) | 2013-03-14 | 2019-10-29 | Method of treating prostate cancer |
US18/101,052 US20230242997A1 (en) | 2013-03-14 | 2023-01-24 | Differential Methylation Level of CpG Loci That Are Determinative of a Biochemical Reoccurrence of Prostate Cancer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/829,253 US20140274757A1 (en) | 2013-03-14 | 2013-03-14 | Differential Methylation Level of CpG Loci That Are Determinative of a Biochemical Reoccurrence of Prostate Cancer |
Related Child Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2014/025848 Continuation-In-Part WO2014160114A1 (en) | 2013-03-14 | 2014-03-13 | Differential methylation level of cpg loci that are determinative of a biochemical reoccurrence of prostate cancer |
US14/774,227 Continuation-In-Part US11566291B2 (en) | 2013-03-14 | 2014-03-13 | Differential methylation level of CpG loci that are determinative of a biochemical reoccurrence of prostate cancer |
US14/774,227 Continuation US11566291B2 (en) | 2013-03-14 | 2014-03-13 | Differential methylation level of CpG loci that are determinative of a biochemical reoccurrence of prostate cancer |
US14/977,779 Continuation US10501804B2 (en) | 2013-03-14 | 2015-12-22 | Differential methylation level of CPG loci that are determinative of a biochemical reoccurrence of prostate cancer |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140274757A1 true US20140274757A1 (en) | 2014-09-18 |
Family
ID=51529818
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/829,253 Abandoned US20140274757A1 (en) | 2013-03-14 | 2013-03-14 | Differential Methylation Level of CpG Loci That Are Determinative of a Biochemical Reoccurrence of Prostate Cancer |
US14/774,227 Active 2034-09-21 US11566291B2 (en) | 2013-03-14 | 2014-03-13 | Differential methylation level of CpG loci that are determinative of a biochemical reoccurrence of prostate cancer |
US14/977,779 Active US10501804B2 (en) | 2013-03-14 | 2015-12-22 | Differential methylation level of CPG loci that are determinative of a biochemical reoccurrence of prostate cancer |
US16/667,599 Active US11085088B2 (en) | 2013-03-14 | 2019-10-29 | Method of treating prostate cancer |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/774,227 Active 2034-09-21 US11566291B2 (en) | 2013-03-14 | 2014-03-13 | Differential methylation level of CpG loci that are determinative of a biochemical reoccurrence of prostate cancer |
US14/977,779 Active US10501804B2 (en) | 2013-03-14 | 2015-12-22 | Differential methylation level of CPG loci that are determinative of a biochemical reoccurrence of prostate cancer |
US16/667,599 Active US11085088B2 (en) | 2013-03-14 | 2019-10-29 | Method of treating prostate cancer |
Country Status (3)
Country | Link |
---|---|
US (4) | US20140274757A1 (en) |
EP (2) | EP2971170B1 (en) |
WO (1) | WO2014160114A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11427874B1 (en) | 2019-08-26 | 2022-08-30 | Epi One Inc. | Methods and systems for detection of prostate cancer by DNA methylation analysis |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130022974A1 (en) * | 2011-06-17 | 2013-01-24 | The Regents Of The University Of Michigan | Dna methylation profiles in cancer |
WO2013033627A2 (en) * | 2011-09-01 | 2013-03-07 | The Regents Of The University Of California | Diagnosis and treatment of arthritis using epigenetics |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6033854A (en) | 1991-12-16 | 2000-03-07 | Biotronics Corporation | Quantitative PCR using blocking oligonucleotides |
US5405760A (en) | 1992-04-30 | 1995-04-11 | New England Biolabs, Inc. | Process for producing recombinant McrBC endonuclease and cleavage of methylated DNA |
WO1995006137A1 (en) | 1993-08-27 | 1995-03-02 | Australian Red Cross Society | Detection of genes |
US5552277A (en) | 1994-07-19 | 1996-09-03 | The Johns Hopkins University School Of Medicine | Genetic diagnosis of prostate cancer |
US5756668A (en) | 1994-11-15 | 1998-05-26 | The Johns Hopkins University School Of Medicine | Hypermethylated in cancer polypeptide, HIC-1 |
US5786146A (en) * | 1996-06-03 | 1998-07-28 | The Johns Hopkins University School Of Medicine | Method of detection of methylated nucleic acid using agents which modify unmethylated cytosine and distinguishing modified methylated and non-methylated nucleic acids |
AUPP312998A0 (en) | 1998-04-23 | 1998-05-14 | Commonwealth Scientific And Industrial Research Organisation | Diagnostic assay |
DE60030842T2 (en) | 1999-03-01 | 2007-05-10 | Halogenetics Inc., Aventura | USES OF COMPOSITIONS INCLUDING CldC AS RADIATION SENSITIATORS IN THE TREATMENT OF NEOPLASTIC DISEASES |
US6331393B1 (en) | 1999-05-14 | 2001-12-18 | University Of Southern California | Process for high-throughput DNA methylation analysis |
US6180349B1 (en) | 1999-05-18 | 2001-01-30 | The Regents Of The University Of California | Quantitative PCR method to enumerate DNA copy number |
US6783933B1 (en) | 1999-09-15 | 2004-08-31 | The Johns Hopkins University School Of Medicine | CACNA1G polynucleotide, polypeptide and methods of use therefor |
US6569684B2 (en) | 2000-01-06 | 2003-05-27 | University Of Central Florida | Method of identifying and treating invasive carcinomas |
AU2001278420A1 (en) | 2000-04-06 | 2001-11-07 | Epigenomics Ag | Diagnosis of diseases associated with dna repair |
US7662549B1 (en) | 2000-10-27 | 2010-02-16 | The University Of Southern California | Methylation altered DNA sequences as markers associated with human cancer |
US6815166B2 (en) | 2001-02-23 | 2004-11-09 | Dana-Farber Cancer Institute, Inc. | HIN-1, a tumor suppressor gene |
DE10128508A1 (en) | 2001-06-14 | 2003-02-06 | Epigenomics Ag | Methods and nucleic acids for the differentiation of prostate tumors |
DE10130800B4 (en) | 2001-06-22 | 2005-06-23 | Epigenomics Ag | Method for the detection of cytosine methylation with high sensitivity |
ES2304462T3 (en) | 2001-11-16 | 2008-10-16 | The Johns Hopkins University School Of Medicine | PROSTATE CANCER DETECTION METHOD. |
WO2005111232A2 (en) * | 2004-05-17 | 2005-11-24 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Silencing of tumor-suppressive genes by cpg-methylation in prostate cancer |
US8268549B2 (en) | 2005-04-15 | 2012-09-18 | University Of Maryland, Baltimore | Method and assay for determining methylation of GAL3 promoter for early diagnosis of prostate cancer |
EP1951911A2 (en) * | 2005-11-08 | 2008-08-06 | Euclid Diagnostics LLC | Materials and methods for assaying for methylation of cpg islands associated with genes in the evaluation of cancer |
US20070141582A1 (en) | 2005-12-15 | 2007-06-21 | Weiwei Li | Method and kit for detection of early cancer or pre-cancer using blood and body fluids |
US20100003670A1 (en) | 2006-10-31 | 2010-01-07 | Haiying Wang | Characterizing prostate cancer |
AU2008214377A1 (en) | 2007-02-02 | 2008-08-14 | Orion Genomics Llc | Gene methylation in cancer diagnosis |
US20080254455A1 (en) | 2007-04-12 | 2008-10-16 | Haiying Wang | Detecting prostate cancer |
US20100297067A1 (en) * | 2007-05-14 | 2010-11-25 | The Johns Hopkins University | Methylation markers for prostate cancer and methods of use |
WO2011037936A2 (en) | 2009-09-24 | 2011-03-31 | Oregon Health & Science University | Detection of dna methylation of tal1, erg and/or cd40 to diagnose prostate cancer |
US20140045915A1 (en) * | 2010-08-31 | 2014-02-13 | The General Hospital Corporation | Cancer-related biological materials in microvesicles |
US20120135877A1 (en) | 2010-11-03 | 2012-05-31 | Jarrard David F | DNA Methylation Markers For Prostate Cancer Field Defect |
WO2012138609A2 (en) | 2011-04-04 | 2012-10-11 | The Board Of Trustees Of The Leland Stanford Junior University | Methylation biomarkers for diagnosis of prostate cancer |
-
2013
- 2013-03-14 US US13/829,253 patent/US20140274757A1/en not_active Abandoned
-
2014
- 2014-03-13 EP EP14773292.9A patent/EP2971170B1/en active Active
- 2014-03-13 WO PCT/US2014/025848 patent/WO2014160114A1/en active Application Filing
- 2014-03-13 EP EP19150785.4A patent/EP3498862A3/en active Pending
- 2014-03-13 US US14/774,227 patent/US11566291B2/en active Active
-
2015
- 2015-12-22 US US14/977,779 patent/US10501804B2/en active Active
-
2019
- 2019-10-29 US US16/667,599 patent/US11085088B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130022974A1 (en) * | 2011-06-17 | 2013-01-24 | The Regents Of The University Of Michigan | Dna methylation profiles in cancer |
WO2013033627A2 (en) * | 2011-09-01 | 2013-03-07 | The Regents Of The University Of California | Diagnosis and treatment of arthritis using epigenetics |
Also Published As
Publication number | Publication date |
---|---|
EP3498862A3 (en) | 2019-07-31 |
EP3498862A2 (en) | 2019-06-19 |
US10501804B2 (en) | 2019-12-10 |
US20200056247A1 (en) | 2020-02-20 |
WO2014160114A1 (en) | 2014-10-02 |
US20160258023A1 (en) | 2016-09-08 |
EP2971170B1 (en) | 2019-01-09 |
US20160017435A1 (en) | 2016-01-21 |
EP2971170A4 (en) | 2017-02-15 |
EP2971170A1 (en) | 2016-01-20 |
US11566291B2 (en) | 2023-01-31 |
US11085088B2 (en) | 2021-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11965207B2 (en) | Detection of DNA that originates from a specific cell-type and related methods | |
US20220213559A1 (en) | Diagnostic gene marker panel for colorectal cancer | |
US20090280479A1 (en) | Use of free circulating dna for diagnosis, prognosis, and treatment of cancer funding | |
US10017818B2 (en) | Multiplex detection of DNA that originates from a specific cell-type | |
JP2009538624A (en) | Methods of gene methylation in cancer diagnosis | |
US10526642B2 (en) | DNA methylation in colorectal and breast cancer diagnostic methods | |
US20220349009A1 (en) | Detecting esophageal disorders | |
JP2022526415A (en) | Detection of pancreatic ductal adenocarcinoma in plasma | |
US20240093302A1 (en) | Non-invasive cancer detection based on dna methylation changes | |
US11085088B2 (en) | Method of treating prostate cancer | |
US9822412B2 (en) | Detection of DNA that originates from a specific cell-type | |
US20090186360A1 (en) | Detection of GSTP1 hypermethylation in prostate cancer | |
US20150218643A1 (en) | Differential methylation level of cpg loci that are determinative of kidney cancer | |
US20230242997A1 (en) | Differential Methylation Level of CpG Loci That Are Determinative of a Biochemical Reoccurrence of Prostate Cancer | |
US20110217706A1 (en) | Gene methylation in cancer diagnosis | |
US20090186359A1 (en) | Detecting prostate cancer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HUDSONALPHA INSTITUTE FOR BIOTECHNOLOGY, ALABAMA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIRBY, MARIE K.;MYERS, RICHARD M.;REEL/FRAME:031971/0057 Effective date: 20140109 |
|
AS | Assignment |
Owner name: BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROOKS, JAMES D.;REEL/FRAME:036398/0138 Effective date: 20140708 Owner name: BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROOKS, JAMES D.;REEL/FRAME:036398/0138 Effective date: 20140708 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |