US20140271247A1 - Infusion pump configured to engage a sensor with tubing - Google Patents

Infusion pump configured to engage a sensor with tubing Download PDF

Info

Publication number
US20140271247A1
US20140271247A1 US13/829,854 US201313829854A US2014271247A1 US 20140271247 A1 US20140271247 A1 US 20140271247A1 US 201313829854 A US201313829854 A US 201313829854A US 2014271247 A1 US2014271247 A1 US 2014271247A1
Authority
US
United States
Prior art keywords
door
pump
pump device
fluid
pump set
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/829,854
Inventor
Daniel Abal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CareFusion 303 Inc
Original Assignee
CareFusion 303 Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CareFusion 303 Inc filed Critical CareFusion 303 Inc
Priority to US13/829,854 priority Critical patent/US20140271247A1/en
Publication of US20140271247A1 publication Critical patent/US20140271247A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B51/00Testing machines, pumps, or pumping installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/08Machines, pumps, or pumping installations having flexible working members having tubular flexible members
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14212Pumping with an aspiration and an expulsion action
    • A61M5/14228Pumping with an aspiration and an expulsion action with linear peristaltic action, i.e. comprising at least three pressurising members or a helical member
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/36Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests with means for eliminating or preventing injection or infusion of air into body
    • A61M5/365Air detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/12General characteristics of the apparatus with interchangeable cassettes forming partially or totally the fluid circuit
    • A61M2205/121General characteristics of the apparatus with interchangeable cassettes forming partially or totally the fluid circuit interface between cassette and base
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/12General characteristics of the apparatus with interchangeable cassettes forming partially or totally the fluid circuit
    • A61M2205/128General characteristics of the apparatus with interchangeable cassettes forming partially or totally the fluid circuit with incorporated valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/60General characteristics of the apparatus with identification means
    • A61M2205/6045General characteristics of the apparatus with identification means having complementary physical shapes for indexing or registration purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/60General characteristics of the apparatus with identification means
    • A61M2205/6063Optical identification systems
    • A61M2205/6081Colour codes

Definitions

  • Infusion pump and sensing device systems are widely used in the medical field for infusing a fluid, such as a medication, to a patient in the environment of intensive care units, cardiac care units, operating rooms or trauma centers.
  • a fluid such as a medication
  • Several types of infusion pump systems permit the infusion of several medications using pumps that are modularly coupled to one another, as it may often be necessary to simultaneously infuse into the patient several different kinds of fluids.
  • Some of the several types of fluids, such as drugs may not be directly compatible with each other and therefore need to be infused into the patient at different points of the body or at different times.
  • Each module may include a modular pump that is configured to be removably coupled to a corresponding pump set that enables the pumping of fluid.
  • the modular pump may include a seat that is sized to receive the pump set, with a door being provided to cover or exposed the seat.
  • the pump set typically includes one or more tubes through which an infusion fluid is pumped from an IV bag toward a patient.
  • the modular pump device typically includes at least one sensor that interacts with the pump set to sense a characteristic of the pump set. It is generally desirable to have the tube of the pump set properly engage the sensor. In addition, there is a risk that the tube of the pump set may become pinched by the door of the pump device as the door is closed.
  • a pump device comprising: a pumping mechanism; a housing containing the pumping mechanism, the housing defining a seat configured to receive a pump set having a fluid lumen that can be acted upon by the pumping mechanism so as to pump fluid through the fluid lumen of the pump set, wherein the pump set is attached to a tube that delivers fluid to the fluid lumen; a sensor in the housing, the sensor configured to sense a characteristic of the tube when the tube engages the sensor; a door movably attached to the housing, wherein the door transitions between an open position that exposes the seat and a closed position that covers the seat; and a structure on the door that urges the tube toward engagement with the sensor as the door is closed with the pump set is mounted in the seat.
  • FIG. 1 shows a schematic view an infusion system configured for pumping a fluid to a patient.
  • FIGS. 2 and 3 shows perspective views of an exemplary pump set for use with the system of FIG. 1 .
  • FIGS. 4 and 5 show top and bottom plan views, respectively, of the pump set.
  • FIG. 6 shows an enlarged view of a valve assembly of the pump set.
  • FIG. 7 shows a front view of the pump set mounted in a seat of a modular pump device.
  • FIG. 8 shows the modular pump device with a door in a closed state.
  • FIG. 9 shows an enlarged view of an inner portion of the door of the modular pump device.
  • FIG. 10 shows a region of an inner door of the modular pump device where a tube seats in the modular pump device.
  • FIG. 11 shows an interior portion of the modular pump device where an air-in-line sensor is located.
  • FIG. 12 shows another region of an inner door of the modular pump device where a tube seats in the modular pump device.
  • a medical fluid infusion system configured for pumping a fluid to a patient, such as in a hospital environment.
  • the system includes one or more modular pump devices each of which is configured to be removably coupled to a pump set. When coupled to one another, the modular pump device and pump set can collectively pump a fluid to a patient.
  • the pump set is configured to be coupled to the modular pump device such as by inserting the pump set into a seat of the pump device.
  • the modular pump device includes at least one sensor, such as an air-in-line (AIL) sensor that is configured to detect whether air is located in a tubing of the medical infusion system.
  • AIL air-in-line
  • a door is opened on the modular pump device to expose a seat that is sized to receive the pump set.
  • the pump set is then seated in the modular pump device and the door is closed to secure the pump set within the seat.
  • the door includes a structure that is configured to exert a force onto a tube of the infusion set so that the tube properly engages the AIL sensor.
  • the structure presses the tube into proper engagement with the AIL sensor as the door is closed.
  • the door of the modular pump device is shaped to minimize or eliminate the risk of the infusion tube being pinched between the door and a housing of the modular pump device as the door is closed.
  • the housing of the modular pump device includes a recess that is sized and shaped to receive at least a portion of the tube when the pump set is seated in the modular pump device and the door is closed.
  • the door is shaped to interact with the modular pump device housing in a manner that urges the tube into the recess as the door is closed so that the tube does not become pinched between the door and the housing of the modular pump device. This is described in more detail below.
  • FIG. 1 shows a schematic representation of an infusion system 100 configured to be used in pumping a fluid to or from a patient.
  • the infusion system 100 includes a fluid container, such as an intravenous (IV) bag 105 , fluidly coupled to a pump set 110 (also referred to as an IV set) via a fluid conduit, such as a tube 115 .
  • the pump set 110 is configured to pump fluid from the IV bag 105 toward a patient via a tube 120 when the pump set 110 is coupled to a modular pump device 112 .
  • the pump set 110 is configured to be removably coupled to the modular pump device 112 such as by inserting the pump set 112 into a seat of the modular pump device 112 .
  • the tube 115 has a proximal end fluidly coupled to (such as via a drip connector) the IV bag 105 , and a distal end fluidly coupled to a fluid lumen of the pump set 110 .
  • the tube 120 has a proximal end fluidly coupled to a fluid lumen of the pump set 110 and a distal end that attaches to the patient via an IV connection.
  • Either of the tubes 115 or 120 may be formed of a single tube or may be formed of a series of tubes removably attached to one another, such as in an end-to-end manner using any of a variety of connectors such as Luer connectors.
  • the tubes 115 and 120 and the fluid lumen of the pump set 110 collectively form a continuous fluid lumen that provides a fluid pathway from the IV bag 105 toward the patient.
  • This continuous fluid lumen may include any of a variety of components that facilitate or otherwise are used in connecting the tubes and/or pumping fluid, including, for example, valves, filters, connectors, etc.
  • FIGS. 2 and 3 shows perspective views of an exemplary pump set 110 .
  • FIGS. 4 and 5 show top and bottom plan views, respectively, of the pump set 110 .
  • the pump set 110 may be in the form of a cassette assembly that removably inserts into a modular pump device.
  • the pump set 110 includes a fluid lumen 205 .
  • the fluid lumen 205 fluidly connects the tube 115 to the tube 120 .
  • the fluid lumen 205 may be acted upon by any of a variety of pump mechanisms of the modular pump device to pump fluid through the fluid lumen 205 in order to achieve fluid flow from the IV bag 105 to or toward the patient.
  • the pump set 110 may be particularly adapted for coupling only to a particular type of modular pump device.
  • the pump set may be adapted to be coupled only to a modular pump device having a particular type of pumping mechanism (such as a peristaltic pump) or to a pump that pumps a particular type of fluid, such as a particular type of drug.
  • an identifier may be associated with the pump set wherein the identifier matches with a corresponding or complementary identifier on the particular modular pump device to which the pump set matches.
  • the identifier may be any type of identifier that uniquely identifies the pump set and that can be associated with a corresponding identifier on the modular pump device.
  • the identifier may be a color code on the pump set that is identical to or otherwise matches with a corresponding color code on the modular pump device. Any type of identifier may be used, such as, for example, a symbol, sound, or color.
  • the fluid lumen 205 may be formed of a tubular structure that defines the fluid lumen 205 .
  • the tubular structure may be formed of any of a variety of materials.
  • Any of a variety of connectors and/or valves may be used to attach the fluid lumen 205 to the tubes 115 and 120 .
  • the fluid lumen 205 has a cross-sectional shape along a plane generally normal to the direction of fluid flow through which fluid can flow.
  • the cross-sectional shape may vary along the interior or exterior of the fluid lumen.
  • the cross-sectional shape may be circular.
  • the cross-sectional shape may be a non-circular shape that facilitates compression of the outer walls of the fluid lumen when a pump mechanism is acting on the fluid lumen.
  • the pump mechanism may achieve pumping through the fluid lumen 205 such as by compressing and/or deforming one or more portions of the fluid lumen to achieve fluid flow through the lumen.
  • the non-circular cross-sectional shape may be, for example, a generally flattened shape, such as oval shape or diamond shape, that facilitates further flattening of the fluid lumen when a pump mechanism acts on the fluid lumen.
  • a proximal end of the fluid lumen tubular structure is fluidly and/or mechanically attached to the tube 115 , such as via a valve assembly 210 .
  • a distal end of the fluid lumen tubular structure is attached to the tube 120 , such as via a connector 220 .
  • the fluid lumen 205 may also be formed of two or more structures that collectively define the fluid lumen 205 therebetween.
  • the fluid lumen 205 is positioned on a frame 225 .
  • the frame 225 is formed of a relatively hard or rigid material such that the frame may act as a platen relative to the fluid lumen 205 for pumping fluid through the fluid lumen 205 .
  • the relatively rigid structure of the frame 225 can be used to secure the fluid lumen 205 in a fixed position and/or shape relative to the frame 225 , such as to eliminate or reduce the risk of the fluid lumen 205 being unintentionally stretched or moved during positioning of the frame 225 into the modular pump device.
  • one or more attachment members are configured to secure the fluid lumen 205 to the frame 225 .
  • two clips 230 a and 230 b are positioned over the fluid lumen 205 and attached to the frame 225 such that the clips 230 secure the fluid lumen 205 to the frame 225 .
  • the first clip 230 a is located near one end of the fluid lumen 205 and the second clip 230 b is located near an opposite end of the fluid lumen 205 . It should be appreciated, however, that various quantities of clips may be used at any of a variety of locations along the fluid lumen 205 and/or the frame 225 .
  • the pump set 110 may be configured so that it can only be inserted into the modular pump device when aligned in a predetermined manner relative to the modular pump device. This eliminates or reduces the likelihood that the pump set 110 will be inserted in an incorrect or improper orientation into the modular pump device.
  • the pump set 110 may be shaped so that it can only be inserted into the modular pump device when positioned in a predetermined orientation relative to the modular pump device.
  • the frame 225 can have an asymmetric shape that fits into a complementary-shaped seat in the modular pump device housing.
  • the frame 225 can have one or more prongs or protrusions that must be aligned with complementary-shaped seats in the modular pump device in order for the frame 225 to be inserted into the modular pump device.
  • the frame 225 has shape that is asymmetric about a vertical axis.
  • the frame 225 has a head region that is rounded and enlarged relative to a relatively thinner elongated body region. This provides the frame 225 with a key-like shape that can only be inserted into a complementary-shaped seat in the modular pump device housing when the frame 225 and the modular pump device housing are properly aligned. Any of a variety of asymmetric shapes can be used.
  • the manner in which the frame 225 inserts into the seat of the modular pump is described in more detail below with reference to FIGS. 7-10 .
  • the pump set 110 includes a valve assembly 210 .
  • the valve assembly 210 includes a valve coupled to the fluid lumen 205 for controlling fluid flow through the fluid lumen 205 .
  • the valve can function in a variety of manners relative to the fluid lumen.
  • the valve can function as a flow stop in that it has an “on” state that permits flow through the fluid lumen 205 and an “off” state that stops or blocks flow through the fluid lumen 205 .
  • the valve can function as flow regulator that permits various levels of flow rate through the fluid lumen 205 based upon various, corresponding states of the valve.
  • the valve assembly 210 comprises a rotary valve that transitions between an off state and an on state.
  • the valve assembly 210 is located at the head region of the frame 225 where the tube 115 attaches to the fluid lumen 205 , although the position of the valve assembly 210 may vary.
  • the valve assembly 210 includes a valve handle 250 that is functionally coupled to a body 255 so as to collectively form a rotary valve, as best shown in FIGS. 2 and 5 .
  • the valve handle 250 can be actuated to open and close the valve assembly 210 .
  • the valve handle 250 can rotate between an open and a closed position. When valve handle 250 is in the open position, the valve is open to permit fluid flow through the fluid lumen 205 . Likewise, when the valve handle 250 is in the closed position, the valve is closed to stop or block fluid flow through the fluid lumen 205 .
  • the valve assembly 210 may also functional as a “dial-a-flow.” That is, the valve assembly 210 is able to be utilized to control the flow rate (e.g., mL/hr).
  • the valve handle 250 may have markings that indicate flow rates. A user may actuate the valve handle 250 (e.g., manually or automatically) and indicate the desired flow rate based on the markings/indications on valve handle 250 .
  • the valve assembly 210 may be shipped to a customer in a closed or open position based on the customer's desires.
  • FIG. 6 shows an enlarged view of the valve assembly 210 and the attached fluid lumen 205 .
  • the valve handle 250 and the body 255 collectively form a rotary valve, although the type of valve may vary.
  • the body 255 is fluidly attached to the fluid lumen 205 .
  • the handle 250 has portion that extends into the body 255 such that the handle 250 can be rotated relative to the body to a variety of positions. Depending on the position of the valve handle 250 relative to the body 255 , fluid flow from the body 255 into the fluid lumen 205 can be opened or blocked. Thus, the valve handle 250 can be actuated via rotation so as to open or close the valve assembly.
  • the valve assembly 210 may be configured to be actuated to an open position when a pumping mechanism (e.g., pumping fingers) occludes the fluid lumen.
  • a pumping mechanism e.g., pumping fingers
  • the pump set may be properly seated in the modular pump device but the valve assembly 210 is not allowed to open because the pumping mechanism is not occluding the fluid lumen.
  • the valve assembly 210 is allowed to be actuated into an open position.
  • the valve handle 250 may have a disk-like shape in that the valve handle 250 is relatively round and planar or substantially flat. In the illustrated version, the valve handle 250 is circular with an undulating circumference that forms a series of knobs.
  • One or more coupling elements such as slots 305 , are located on the valve handle 250 . As described more fully below, the slots 305 are configured to mate with complementary coupling elements, such as tabs, of the modular pump device. When properly coupled to the modular pump device, the act of coupling (or a portion thereof) causes the modular pump device to automatically transition the valve handle 250 to an open position that opens the valve body so as to permit fluid flow through the fluid lumen 205 .
  • FIG. 7 shows a front view of the pump set 110 mounted in a seat 700 of a modular pump device 705 .
  • the seat 700 has a shape that is configured to snugly receive the pump set 110 .
  • the seat may have one or more features, such as tabs or prongs, configured to yield when the pump set 110 is pushed into the seat 700 and then snap into place to secure the pump set 700 within the seat 700 once the pump set 110 is mounted therein.
  • a feedback such as a tactile, audio, or visual feedback, may be provided when the pump set 110 is securely mounted in the seat 700 . For example, a snapping sound may occur when the pump set 110 is securely mounted in the seat.
  • the modular pump device 705 is formed of an outer housing 710 having a front panel 715 on which a user interface or display panel may be positioned.
  • the housing 710 defines an internal cavity in which is mounted a pump mechanism that is configured to act on the fluid lumen 205 ( FIG. 2 ) of the pump set 110 for pumping fluid through the fluid lumen 205 .
  • Any type of pump mechanism may be used, including a peristaltic pump mechanism.
  • the seat 700 is positioned adjacent the front panel 715 although the relative positions may vary.
  • the modular pump device 705 includes an access element, such as an access door 720 .
  • the access door 720 can be opened to access and expose a seat where the pump set 110 can be inserted into the pump.
  • the access door 720 is movably attached to the housing 710 such as via a hinge assembly that permits the door 720 to transition between an open state (as shown in FIG. 7 ) and a closed state (as shown in FIG. 8 .)
  • an actuator such as knob 805
  • the knob 805 can be actuated by a user to lock the door 720 once the door is closed with the pump set 110 mounted in the seat 700 of the modular pump device 705 .
  • Actuation of the knob 805 to the locked state actuates a lock assembly, such as via a pair of latches 915 that latch with or otherwise engage the housing 710 to secure the door in the closed state.
  • the knob 805 can be actuated via rotation. It should be appreciated that mechanisms other than knobs can be used as well as non-rotational actuation.
  • the actuation of the knob 805 to the locked state also automatically transitions the valve assembly of the pump set 110 to the “on” state to permit fluid flow through the pump set 110 .
  • actuation of the knob 805 to the unlocked state automatically transitions the valve assembly of the pump set 110 , when mounted in the modular pump device 705 , to the “off” state. This acts as a safeguard to ensure that the valve of the pump set is always closed upon removal of the pump set from the modular pump device and that the valve opens automatically upon being seated and secured (with the door 720 closed) in the modular pump device 700 .
  • FIG. 9 shows an enlarged view of an inner region of the door 720 where the knob 805 is located.
  • the inner portion of the door includes a pair of protrusions, such as tabs 905 .
  • the tabs 905 protrude toward the pump set 110 when the pump set is mounted in the seat 700 of the modular pump device 700 .
  • the tabs 905 may move inward and outward relative to the door 720 .
  • the tabs 905 may be spring-mounted such that they are biased toward the protruded state shown in FIG. 9 .
  • the tabs 905 are positioned such that they can be aligned with and inserted into the slots 305 ( FIG.
  • FIG. 7 shows the pump set with both the slots 305 and the tabs 905 positioned at a “12 o'clock and 6 o'clock” alignment.
  • knob 805 Because the knob 805 is engaged with the valve handle 250 via the tabs 905 , locking of the knob 805 rotates and actuates the valve handle 250 to the open position to permit fluid flow through the fluid lumen of the valve set. Upon unlocking of the knob 805 , the knob automatically rotates the valve handle 250 back to the closed position.
  • the tabs 905 and slots 305 do not have to be initially aligned when the pump set is positioned in the seat 700 of the modular pump device 705 . Rather, the valve handle 250 may be in any position (open, closed, or between the two) and the tabs 905 will automatically engage the valve handle 250 upon rotation of the knob 805 . If not aligned, when the door 720 is closed the tabs 905 will just be pushed inward of the door. When the knob 805 is rotated, the tabs 905 will eventually align with the slots 305 and spring into the slots by virtue of their spring loading. In this manner, the locking of the door 720 will automatically transition the valve assembly to the on position. Likewise, unlocking of the door automatically transition the valve assembly to the off position.
  • FIG. 10 shows a close-up view of an inside region of the door 720 with the pump set 110 seated in the modular pump device 112 .
  • the inside region faces or is juxtaposed with the pump set 110 when the pump set 110 is seated in the modular pump device and the door 720 is closed.
  • a protrusion 1005 extends out from an inner surface of the door 720 .
  • the protrusion 1005 is positioned on that the door 720 such that it engages a portion 1020 of the tube 115 when the door 720 is moved to the closed position.
  • the protrusion 1005 is sized and shaped such that, when the door is closed, at least a portion of the protrusion 1005 pushes, contacts, or otherwise engages the portion 1020 of the tube 115 . That is, as the door 720 is closed, the protrusion 1005 contacts the tube 115 and exerts a force onto the tube 115 to push the tube 115 into a position that engages a sensor of the modular pump device.
  • the protrusion 1005 is an elongated and relatively thin structure, although the shape of the protrusion can vary.
  • the thickness of the protrusion 1005 can be less than the diameter of the tube 115 .
  • the protrusion is positioned near a lateral edge of the door 720 , although the position of the protrusion 1005 and shape of the protrusion may vary to accommodate a shape and position of an AIL sensor.
  • the protrusion 1005 exerts a force onto the tube 115 at the region 1020 .
  • the force is sufficient to push the tube 115 so that the tube 115 contacts or engages a sensor, such as an air-in-line (AIL) sensor that is disposed in the modular pump device.
  • AIL air-in-line
  • the AIL sensor 1205 is positioned in the housing of the modular pump device 112 .
  • the AIL sensor can engage the tube 115 when the door 720 is closed.
  • FIG. 11 shows an interior region of the modular pump device 112 adjacent a location where the protrusion 1005 would be positioned when the door 720 is closed.
  • An AIL sensor 1105 is positioned so that it can register with the tube 115 .
  • the protrusion 1005 FIG. 10
  • the door 720 and the housing 710 of the modular pump device have a shape that complement one another in a manner that eliminates or reduces the likelihood that the tube 115 will get kinked, pinched, or bent between the housing 710 and the door 720 as the door is closed.
  • the housing 710 forms a recess, seat or indentation 1025 that is sized and shaped to receive the tube 115 when the door 720 is closed.
  • the tube 115 sits within the indentation 1025 , as shown in FIG. 10 , when the pump set 110 is mounted in the modular pump device and the door 720 closed.
  • the indentation 1020 is formed by a round or chamfered surface in the housing 710 that forms into a recess.
  • a complementary rounded or chamfered edge 1030 of the door 720 is sized and shaped relative to the indentation 1025 such that, as the door 720 closes, the edge 1030 exerts a force that is directed toward the indentation 1025 upon any item (such as the tube 115 ) that is positioned between the door 720 and the housing 710 .
  • the edge 1030 of the door 720 pushes the tube 115 toward and into the indentation 1020 rather than constricting or squeezing the tube 115 between the door 720 and the housing 710 . This reduces the likelihood that the tube 115 will become improperly caught between the door and the housing when the door is closed, rather properly seating within the indentation 1025 .
  • FIG. 12 shows a portion of the modular pump device where the pump set 110 connects to the tube 120 .
  • the tube 120 is not shown in FIG. 12 .
  • the housing 710 forms a recess, seat or indentation 1205 that is sized and shaped to receive the tube 120 when the door 720 is closed.
  • the tube 120 sits within the indentation 1205 when the pump set 110 is mounted in the modular pump device and the door 720 closed.
  • the indentation 1205 is formed by a round or chamfered surface in the housing 710 that forms into a recess.
  • a complementary rounded or chamfered edge 1210 of the door 720 is sized and shaped relative to the indentation 1205 such that, as the door 720 closes, the edge 1210 exerts a force that is directed toward the indentation 105 upon any item (such as the tube 120 ) that is positioned between the door 720 and the housing 710 .
  • the edge 1210 of the door 720 pushes the tube 120 toward and into the indentation 1205 rather than constricting or squeezing the tube 120 between the door 720 and the housing 710 . This reduces the likelihood that the tube 120 will become improperly caught between the door and the housing when the door is closed, rather properly seating within the indentation 1205 .
  • One or more aspects or features of the subject matter described herein may be realized in digital electronic circuitry, integrated circuitry, specially designed ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof.
  • ASICs application specific integrated circuits
  • These various implementations may include implementation in one or more computer programs that are executable and/or interpretable on a programmable system including at least one programmable processor, which may be special or general purpose, coupled to receive data and instructions from, and to transmit data and instructions to, a storage system, at least one input device (e.g., mouse, touch screen, etc.), and at least one output device.
  • machine-readable signal refers to any signal used to provide machine instructions and/or data to a programmable processor.
  • the machine-readable medium can store such machine instructions non-transitorily, such as for example as would a non-transient solid state memory or a magnetic hard drive or any equivalent storage medium.
  • the machine-readable medium can alternatively or additionally store such machine instructions in a transient manner, such as for example as would a processor cache or other random access memory associated with one or more physical processor cores.
  • the subject matter described herein can be implemented on a computer having a display device, such as for example a cathode ray tube (CRT) or a liquid crystal display (LCD) monitor for displaying information to the user and a keyboard and a pointing device, such as for example a mouse or a trackball, by which the user may provide input to the computer.
  • a display device such as for example a cathode ray tube (CRT) or a liquid crystal display (LCD) monitor for displaying information to the user and a keyboard and a pointing device, such as for example a mouse or a trackball, by which the user may provide input to the computer.
  • CTR cathode ray tube
  • LCD liquid crystal display
  • a keyboard and a pointing device such as for example a mouse or a trackball
  • Other kinds of devices can be used to provide for interaction with a user as well.
  • feedback provided to the user can be any form of sensory feedback, such as for example visual feedback, auditory feedback, or tactile feedback
  • touch screens or other touch-sensitive devices such as single or multi-point resistive or capacitive trackpads, voice recognition hardware and software, optical scanners, optical pointers, digital image capture devices and associated interpretation software, and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Vascular Medicine (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Emergency Medicine (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

A pump device includes a pumping mechanism and a housing containing the pumping mechanism. A structure on a door of the housing is configured to urge the tube of a pump set toward engagement with a sensor as the door is closed with the pump set is mounted housing.

Description

    BACKGROUND
  • Infusion pump and sensing device systems are widely used in the medical field for infusing a fluid, such as a medication, to a patient in the environment of intensive care units, cardiac care units, operating rooms or trauma centers. Several types of infusion pump systems permit the infusion of several medications using pumps that are modularly coupled to one another, as it may often be necessary to simultaneously infuse into the patient several different kinds of fluids. Some of the several types of fluids, such as drugs, may not be directly compatible with each other and therefore need to be infused into the patient at different points of the body or at different times.
  • In this regard, there exist modular systems in which pump and monitoring modules can be selectively attached, both physically and electrically, to a central management unit. The central management unit controls the operation of pump modules attached to it, and receives and displays information regarding the pump modules. Each module may include a modular pump that is configured to be removably coupled to a corresponding pump set that enables the pumping of fluid. The modular pump may include a seat that is sized to receive the pump set, with a door being provided to cover or exposed the seat. The pump set typically includes one or more tubes through which an infusion fluid is pumped from an IV bag toward a patient.
  • The modular pump device typically includes at least one sensor that interacts with the pump set to sense a characteristic of the pump set. It is generally desirable to have the tube of the pump set properly engage the sensor. In addition, there is a risk that the tube of the pump set may become pinched by the door of the pump device as the door is closed.
  • In view of the foregoing, there is a need for infusion pump systems that facilitate the proper mounting of tubes of the pump set within a modular pump device.
  • SUMMARY
  • Disclosed is a pump device, comprising: a pumping mechanism; a housing containing the pumping mechanism, the housing defining a seat configured to receive a pump set having a fluid lumen that can be acted upon by the pumping mechanism so as to pump fluid through the fluid lumen of the pump set, wherein the pump set is attached to a tube that delivers fluid to the fluid lumen; a sensor in the housing, the sensor configured to sense a characteristic of the tube when the tube engages the sensor; a door movably attached to the housing, wherein the door transitions between an open position that exposes the seat and a closed position that covers the seat; and a structure on the door that urges the tube toward engagement with the sensor as the door is closed with the pump set is mounted in the seat.
  • The details of one or more variations of the subject matter described herein are set forth in the accompanying drawings and the description below. Other features and advantages of the subject matter described herein will be apparent from the description and drawings, and from the claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a schematic view an infusion system configured for pumping a fluid to a patient.
  • FIGS. 2 and 3 shows perspective views of an exemplary pump set for use with the system of FIG. 1.
  • FIGS. 4 and 5 show top and bottom plan views, respectively, of the pump set.
  • FIG. 6 shows an enlarged view of a valve assembly of the pump set.
  • FIG. 7 shows a front view of the pump set mounted in a seat of a modular pump device.
  • FIG. 8 shows the modular pump device with a door in a closed state.
  • FIG. 9 shows an enlarged view of an inner portion of the door of the modular pump device.
  • FIG. 10 shows a region of an inner door of the modular pump device where a tube seats in the modular pump device.
  • FIG. 11 shows an interior portion of the modular pump device where an air-in-line sensor is located.
  • FIG. 12 shows another region of an inner door of the modular pump device where a tube seats in the modular pump device.
  • Like reference symbols in the various drawings indicate like elements.
  • DETAILED DESCRIPTION
  • Disclosed is a medical fluid infusion system configured for pumping a fluid to a patient, such as in a hospital environment. The system includes one or more modular pump devices each of which is configured to be removably coupled to a pump set. When coupled to one another, the modular pump device and pump set can collectively pump a fluid to a patient. The pump set is configured to be coupled to the modular pump device such as by inserting the pump set into a seat of the pump device.
  • The modular pump device includes at least one sensor, such as an air-in-line (AIL) sensor that is configured to detect whether air is located in a tubing of the medical infusion system. In use, a door is opened on the modular pump device to expose a seat that is sized to receive the pump set. The pump set is then seated in the modular pump device and the door is closed to secure the pump set within the seat. The door includes a structure that is configured to exert a force onto a tube of the infusion set so that the tube properly engages the AIL sensor. The structure presses the tube into proper engagement with the AIL sensor as the door is closed.
  • The door of the modular pump device is shaped to minimize or eliminate the risk of the infusion tube being pinched between the door and a housing of the modular pump device as the door is closed. The housing of the modular pump device includes a recess that is sized and shaped to receive at least a portion of the tube when the pump set is seated in the modular pump device and the door is closed. The door is shaped to interact with the modular pump device housing in a manner that urges the tube into the recess as the door is closed so that the tube does not become pinched between the door and the housing of the modular pump device. This is described in more detail below.
  • FIG. 1 shows a schematic representation of an infusion system 100 configured to be used in pumping a fluid to or from a patient. The infusion system 100 includes a fluid container, such as an intravenous (IV) bag 105, fluidly coupled to a pump set 110 (also referred to as an IV set) via a fluid conduit, such as a tube 115. The pump set 110 is configured to pump fluid from the IV bag 105 toward a patient via a tube 120 when the pump set 110 is coupled to a modular pump device 112. The pump set 110 is configured to be removably coupled to the modular pump device 112 such as by inserting the pump set 112 into a seat of the modular pump device 112. The following U.S. patent application describes an exemplary pump system and is incorporated by reference herein in its entirety: U.S. patent application Ser. No. ______ entitled “Modular Medical Device System” (attorney docket no. 45004-038F01US), filed concurrently herewith.
  • With reference still to FIG. 1, the tube 115 has a proximal end fluidly coupled to (such as via a drip connector) the IV bag 105, and a distal end fluidly coupled to a fluid lumen of the pump set 110. Likewise, the tube 120 has a proximal end fluidly coupled to a fluid lumen of the pump set 110 and a distal end that attaches to the patient via an IV connection. Either of the tubes 115 or 120 may be formed of a single tube or may be formed of a series of tubes removably attached to one another, such as in an end-to-end manner using any of a variety of connectors such as Luer connectors. The tubes 115 and 120 and the fluid lumen of the pump set 110 collectively form a continuous fluid lumen that provides a fluid pathway from the IV bag 105 toward the patient. This continuous fluid lumen may include any of a variety of components that facilitate or otherwise are used in connecting the tubes and/or pumping fluid, including, for example, valves, filters, connectors, etc.
  • FIGS. 2 and 3 shows perspective views of an exemplary pump set 110. FIGS. 4 and 5 show top and bottom plan views, respectively, of the pump set 110. As mentioned, the pump set 110 may be in the form of a cassette assembly that removably inserts into a modular pump device. With reference to FIG. 2, the pump set 110 includes a fluid lumen 205. When the pump set 110 is attached to the tubes 115 and 120, the fluid lumen 205 fluidly connects the tube 115 to the tube 120. The fluid lumen 205 may be acted upon by any of a variety of pump mechanisms of the modular pump device to pump fluid through the fluid lumen 205 in order to achieve fluid flow from the IV bag 105 to or toward the patient.
  • As mentioned, the pump set 110 may be particularly adapted for coupling only to a particular type of modular pump device. For example, the pump set may be adapted to be coupled only to a modular pump device having a particular type of pumping mechanism (such as a peristaltic pump) or to a pump that pumps a particular type of fluid, such as a particular type of drug.
  • For such circumstances, an identifier may be associated with the pump set wherein the identifier matches with a corresponding or complementary identifier on the particular modular pump device to which the pump set matches. The identifier may be any type of identifier that uniquely identifies the pump set and that can be associated with a corresponding identifier on the modular pump device. For example, the identifier may be a color code on the pump set that is identical to or otherwise matches with a corresponding color code on the modular pump device. Any type of identifier may be used, such as, for example, a symbol, sound, or color.
  • Any of a variety of structures may be used to form the fluid lumen 205 of the pump set 110. For example, with reference to FIGS. 2 and 5, the fluid lumen 205 may be formed of a tubular structure that defines the fluid lumen 205. The tubular structure may be formed of any of a variety of materials. Any of a variety of connectors and/or valves may be used to attach the fluid lumen 205 to the tubes 115 and 120.
  • The fluid lumen 205 has a cross-sectional shape along a plane generally normal to the direction of fluid flow through which fluid can flow. The cross-sectional shape may vary along the interior or exterior of the fluid lumen. For example, the cross-sectional shape may be circular. Or, the cross-sectional shape may be a non-circular shape that facilitates compression of the outer walls of the fluid lumen when a pump mechanism is acting on the fluid lumen. The pump mechanism may achieve pumping through the fluid lumen 205 such as by compressing and/or deforming one or more portions of the fluid lumen to achieve fluid flow through the lumen. The non-circular cross-sectional shape may be, for example, a generally flattened shape, such as oval shape or diamond shape, that facilitates further flattening of the fluid lumen when a pump mechanism acts on the fluid lumen.
  • A proximal end of the fluid lumen tubular structure is fluidly and/or mechanically attached to the tube 115, such as via a valve assembly 210. A distal end of the fluid lumen tubular structure is attached to the tube 120, such as via a connector 220. The fluid lumen 205 may also be formed of two or more structures that collectively define the fluid lumen 205 therebetween.
  • With reference still to FIGS. 2-5, the fluid lumen 205 is positioned on a frame 225. The frame 225 is formed of a relatively hard or rigid material such that the frame may act as a platen relative to the fluid lumen 205 for pumping fluid through the fluid lumen 205. In addition, the relatively rigid structure of the frame 225 can be used to secure the fluid lumen 205 in a fixed position and/or shape relative to the frame 225, such as to eliminate or reduce the risk of the fluid lumen 205 being unintentionally stretched or moved during positioning of the frame 225 into the modular pump device.
  • As best shown in FIGS. 2 and 5, one or more attachment members, such as clips 230, are configured to secure the fluid lumen 205 to the frame 225. In the illustrated version, two clips 230 a and 230 b are positioned over the fluid lumen 205 and attached to the frame 225 such that the clips 230 secure the fluid lumen 205 to the frame 225. The first clip 230 a is located near one end of the fluid lumen 205 and the second clip 230 b is located near an opposite end of the fluid lumen 205. It should be appreciated, however, that various quantities of clips may be used at any of a variety of locations along the fluid lumen 205 and/or the frame 225.
  • With reference again to FIGS. 2-5, the pump set 110 may be configured so that it can only be inserted into the modular pump device when aligned in a predetermined manner relative to the modular pump device. This eliminates or reduces the likelihood that the pump set 110 will be inserted in an incorrect or improper orientation into the modular pump device. In this regard, the pump set 110 may be shaped so that it can only be inserted into the modular pump device when positioned in a predetermined orientation relative to the modular pump device. For example, the frame 225 can have an asymmetric shape that fits into a complementary-shaped seat in the modular pump device housing. Or the frame 225 can have one or more prongs or protrusions that must be aligned with complementary-shaped seats in the modular pump device in order for the frame 225 to be inserted into the modular pump device.
  • In the version of FIGS. 2-5, the frame 225 has shape that is asymmetric about a vertical axis. The frame 225 has a head region that is rounded and enlarged relative to a relatively thinner elongated body region. This provides the frame 225 with a key-like shape that can only be inserted into a complementary-shaped seat in the modular pump device housing when the frame 225 and the modular pump device housing are properly aligned. Any of a variety of asymmetric shapes can be used. The manner in which the frame 225 inserts into the seat of the modular pump is described in more detail below with reference to FIGS. 7-10.
  • As mentioned, the pump set 110 includes a valve assembly 210. The valve assembly 210 includes a valve coupled to the fluid lumen 205 for controlling fluid flow through the fluid lumen 205. The valve can function in a variety of manners relative to the fluid lumen. For example, the valve can function as a flow stop in that it has an “on” state that permits flow through the fluid lumen 205 and an “off” state that stops or blocks flow through the fluid lumen 205. Or, the valve can function as flow regulator that permits various levels of flow rate through the fluid lumen 205 based upon various, corresponding states of the valve.
  • In the version shown in FIGS. 2-5, the valve assembly 210 comprises a rotary valve that transitions between an off state and an on state. The valve assembly 210 is located at the head region of the frame 225 where the tube 115 attaches to the fluid lumen 205, although the position of the valve assembly 210 may vary. The valve assembly 210 includes a valve handle 250 that is functionally coupled to a body 255 so as to collectively form a rotary valve, as best shown in FIGS. 2 and 5. The valve handle 250 can be actuated to open and close the valve assembly 210. For example, the valve handle 250 can rotate between an open and a closed position. When valve handle 250 is in the open position, the valve is open to permit fluid flow through the fluid lumen 205. Likewise, when the valve handle 250 is in the closed position, the valve is closed to stop or block fluid flow through the fluid lumen 205.
  • The valve assembly 210 may also functional as a “dial-a-flow.” That is, the valve assembly 210 is able to be utilized to control the flow rate (e.g., mL/hr). For example, the valve handle 250 may have markings that indicate flow rates. A user may actuate the valve handle 250 (e.g., manually or automatically) and indicate the desired flow rate based on the markings/indications on valve handle 250. The valve assembly 210 may be shipped to a customer in a closed or open position based on the customer's desires.
  • FIG. 6 shows an enlarged view of the valve assembly 210 and the attached fluid lumen 205. For clarity of illustration, the remaining components of the pump set 110 are not shown in FIG. 6. The valve handle 250 and the body 255 collectively form a rotary valve, although the type of valve may vary. The body 255 is fluidly attached to the fluid lumen 205. The handle 250 has portion that extends into the body 255 such that the handle 250 can be rotated relative to the body to a variety of positions. Depending on the position of the valve handle 250 relative to the body 255, fluid flow from the body 255 into the fluid lumen 205 can be opened or blocked. Thus, the valve handle 250 can be actuated via rotation so as to open or close the valve assembly.
  • Due to the use of a rotary valve, fluid flow is able to be consistent because it is difficult to unintentionally actuate the rotary valve during use. In contrast, during use, tubing wants to relax to its original form. As such, pinch clamps or roller clamps are unintentionally urged to open up which may unintentionally change flow rate.
  • The valve assembly 210 may be configured to be actuated to an open position when a pumping mechanism (e.g., pumping fingers) occludes the fluid lumen. For example, the pump set may be properly seated in the modular pump device but the valve assembly 210 is not allowed to open because the pumping mechanism is not occluding the fluid lumen. However, once the pumping segment is occluded, the valve assembly 210 is allowed to be actuated into an open position.
  • With reference to FIGS. 3 and 6, the valve handle 250 may have a disk-like shape in that the valve handle 250 is relatively round and planar or substantially flat. In the illustrated version, the valve handle 250 is circular with an undulating circumference that forms a series of knobs. One or more coupling elements, such as slots 305, are located on the valve handle 250. As described more fully below, the slots 305 are configured to mate with complementary coupling elements, such as tabs, of the modular pump device. When properly coupled to the modular pump device, the act of coupling (or a portion thereof) causes the modular pump device to automatically transition the valve handle 250 to an open position that opens the valve body so as to permit fluid flow through the fluid lumen 205.
  • FIG. 7 shows a front view of the pump set 110 mounted in a seat 700 of a modular pump device 705. The seat 700 has a shape that is configured to snugly receive the pump set 110. The seat may have one or more features, such as tabs or prongs, configured to yield when the pump set 110 is pushed into the seat 700 and then snap into place to secure the pump set 700 within the seat 700 once the pump set 110 is mounted therein. A feedback, such as a tactile, audio, or visual feedback, may be provided when the pump set 110 is securely mounted in the seat 700. For example, a snapping sound may occur when the pump set 110 is securely mounted in the seat.
  • With reference still to FIG. 7, the modular pump device 705 is formed of an outer housing 710 having a front panel 715 on which a user interface or display panel may be positioned. The housing 710 defines an internal cavity in which is mounted a pump mechanism that is configured to act on the fluid lumen 205 (FIG. 2) of the pump set 110 for pumping fluid through the fluid lumen 205. Any type of pump mechanism may be used, including a peristaltic pump mechanism.
  • In the example shown in FIG. 7, the seat 700 is positioned adjacent the front panel 715 although the relative positions may vary. The modular pump device 705 includes an access element, such as an access door 720. The access door 720 can be opened to access and expose a seat where the pump set 110 can be inserted into the pump. The access door 720 is movably attached to the housing 710 such as via a hinge assembly that permits the door 720 to transition between an open state (as shown in FIG. 7) and a closed state (as shown in FIG. 8.)
  • As best shown in FIG. 8, an actuator, such as knob 805, is coupled to the door 720. The knob 805 can be actuated by a user to lock the door 720 once the door is closed with the pump set 110 mounted in the seat 700 of the modular pump device 705. Actuation of the knob 805 to the locked state actuates a lock assembly, such as via a pair of latches 915 that latch with or otherwise engage the housing 710 to secure the door in the closed state. In the illustrated version, the knob 805 can be actuated via rotation. It should be appreciated that mechanisms other than knobs can be used as well as non-rotational actuation.
  • As will be described in more detail below, the actuation of the knob 805 to the locked state also automatically transitions the valve assembly of the pump set 110 to the “on” state to permit fluid flow through the pump set 110. In addition, actuation of the knob 805 to the unlocked state automatically transitions the valve assembly of the pump set 110, when mounted in the modular pump device 705, to the “off” state. This acts as a safeguard to ensure that the valve of the pump set is always closed upon removal of the pump set from the modular pump device and that the valve opens automatically upon being seated and secured (with the door 720 closed) in the modular pump device 700.
  • The operation of the knob 805 and its interaction with the pump set 110 is now described in more detail with reference to FIG. 9, which shows an enlarged view of an inner region of the door 720 where the knob 805 is located. As mentioned, the inner portion of the door includes a pair of protrusions, such as tabs 905. The tabs 905 protrude toward the pump set 110 when the pump set is mounted in the seat 700 of the modular pump device 700. The tabs 905 may move inward and outward relative to the door 720. The tabs 905 may be spring-mounted such that they are biased toward the protruded state shown in FIG. 9. In addition, the tabs 905 are positioned such that they can be aligned with and inserted into the slots 305 (FIG. 3) of the valve handle 250 when the pump set 110 is seated in the modular pump device and the door 720 closed. Rotation of the knob 805 (FIG. 8) results in corresponding rotation of the tabs 905. In this manner, the tabs 905 can be rotated to a position that align with and insert into the slots 305 of the valve handle 250.
  • For example, FIG. 7 shows the pump set with both the slots 305 and the tabs 905 positioned at a “12 o'clock and 6 o'clock” alignment. If the door 720 is closed, the tabs 905 will insert into and engage the slots 305 of the valve handle 250. The door 720 can then be manually or automatically closed such that the prongs insert into the slots of the valve handle 250. In this manner, the door 720 of the modular pump device physically engages the valve handle 250 via the tabs 905. Upon closing of the door, the knob 805 can be rotated to a locked position. Because the knob 805 is engaged with the valve handle 250 via the tabs 905, locking of the knob 805 rotates and actuates the valve handle 250 to the open position to permit fluid flow through the fluid lumen of the valve set. Upon unlocking of the knob 805, the knob automatically rotates the valve handle 250 back to the closed position.
  • The tabs 905 and slots 305 do not have to be initially aligned when the pump set is positioned in the seat 700 of the modular pump device 705. Rather, the valve handle 250 may be in any position (open, closed, or between the two) and the tabs 905 will automatically engage the valve handle 250 upon rotation of the knob 805. If not aligned, when the door 720 is closed the tabs 905 will just be pushed inward of the door. When the knob 805 is rotated, the tabs 905 will eventually align with the slots 305 and spring into the slots by virtue of their spring loading. In this manner, the locking of the door 720 will automatically transition the valve assembly to the on position. Likewise, unlocking of the door automatically transition the valve assembly to the off position.
  • FIG. 10 shows a close-up view of an inside region of the door 720 with the pump set 110 seated in the modular pump device 112. The inside region faces or is juxtaposed with the pump set 110 when the pump set 110 is seated in the modular pump device and the door 720 is closed. A protrusion 1005 extends out from an inner surface of the door 720. The protrusion 1005 is positioned on that the door 720 such that it engages a portion 1020 of the tube 115 when the door 720 is moved to the closed position. The protrusion 1005 is sized and shaped such that, when the door is closed, at least a portion of the protrusion 1005 pushes, contacts, or otherwise engages the portion 1020 of the tube 115. That is, as the door 720 is closed, the protrusion 1005 contacts the tube 115 and exerts a force onto the tube 115 to push the tube 115 into a position that engages a sensor of the modular pump device.
  • In the illustrated variation, the protrusion 1005 is an elongated and relatively thin structure, although the shape of the protrusion can vary. For example, the thickness of the protrusion 1005 can be less than the diameter of the tube 115. In the illustrated version, the protrusion is positioned near a lateral edge of the door 720, although the position of the protrusion 1005 and shape of the protrusion may vary to accommodate a shape and position of an AIL sensor.
  • As mentioned when the door 720 is closed with the pump set 110 mounted in the modular pump device, the protrusion 1005 exerts a force onto the tube 115 at the region 1020. The force is sufficient to push the tube 115 so that the tube 115 contacts or engages a sensor, such as an air-in-line (AIL) sensor that is disposed in the modular pump device. As shown below with reference to FIG. 11, the AIL sensor 1205 is positioned in the housing of the modular pump device 112.
  • The AIL sensor can engage the tube 115 when the door 720 is closed. For example, FIG. 11 shows an interior region of the modular pump device 112 adjacent a location where the protrusion 1005 would be positioned when the door 720 is closed. An AIL sensor 1105 is positioned so that it can register with the tube 115. When the door 720 is closed, the protrusion 1005 (FIG. 10) presses the tube 115 against the AIL sensor 1105.
  • With reference again to FIG. 10, the door 720 and the housing 710 of the modular pump device have a shape that complement one another in a manner that eliminates or reduces the likelihood that the tube 115 will get kinked, pinched, or bent between the housing 710 and the door 720 as the door is closed. In this regard, the housing 710 forms a recess, seat or indentation 1025 that is sized and shaped to receive the tube 115 when the door 720 is closed. In other words, the tube 115 sits within the indentation 1025, as shown in FIG. 10, when the pump set 110 is mounted in the modular pump device and the door 720 closed. The indentation 1020 is formed by a round or chamfered surface in the housing 710 that forms into a recess.
  • A complementary rounded or chamfered edge 1030 of the door 720 is sized and shaped relative to the indentation 1025 such that, as the door 720 closes, the edge 1030 exerts a force that is directed toward the indentation 1025 upon any item (such as the tube 115) that is positioned between the door 720 and the housing 710. In this manner, as the door 720 closes, the edge 1030 of the door 720 pushes the tube 115 toward and into the indentation 1020 rather than constricting or squeezing the tube 115 between the door 720 and the housing 710. This reduces the likelihood that the tube 115 will become improperly caught between the door and the housing when the door is closed, rather properly seating within the indentation 1025.
  • FIG. 12 shows a portion of the modular pump device where the pump set 110 connects to the tube 120. For clarity of illustration, the tube 120 is not shown in FIG. 12. As with the tube 115, the housing 710 forms a recess, seat or indentation 1205 that is sized and shaped to receive the tube 120 when the door 720 is closed. The tube 120 sits within the indentation 1205 when the pump set 110 is mounted in the modular pump device and the door 720 closed. The indentation 1205 is formed by a round or chamfered surface in the housing 710 that forms into a recess.
  • A complementary rounded or chamfered edge 1210 of the door 720 is sized and shaped relative to the indentation 1205 such that, as the door 720 closes, the edge 1210 exerts a force that is directed toward the indentation 105 upon any item (such as the tube 120) that is positioned between the door 720 and the housing 710. In this manner, as the door 720 closes, the edge 1210 of the door 720 pushes the tube 120 toward and into the indentation 1205 rather than constricting or squeezing the tube 120 between the door 720 and the housing 710. This reduces the likelihood that the tube 120 will become improperly caught between the door and the housing when the door is closed, rather properly seating within the indentation 1205.
  • One or more aspects or features of the subject matter described herein may be realized in digital electronic circuitry, integrated circuitry, specially designed ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof. These various implementations may include implementation in one or more computer programs that are executable and/or interpretable on a programmable system including at least one programmable processor, which may be special or general purpose, coupled to receive data and instructions from, and to transmit data and instructions to, a storage system, at least one input device (e.g., mouse, touch screen, etc.), and at least one output device.
  • These computer programs, which can also be referred to as programs, software, software applications, applications, components, or code, include machine instructions for a programmable processor, and can be implemented in a high-level procedural language, an object-oriented programming language, a functional programming language, a logical programming language, and/or in assembly/machine language. As used herein, the term “machine-readable medium” refers to any computer program product, apparatus and/or device, such as for example magnetic discs, optical disks, memory, and Programmable Logic Devices (PLDs), used to provide machine instructions and/or data to a programmable processor, including a machine-readable medium that receives machine instructions as a machine-readable signal. The term “machine-readable signal” refers to any signal used to provide machine instructions and/or data to a programmable processor. The machine-readable medium can store such machine instructions non-transitorily, such as for example as would a non-transient solid state memory or a magnetic hard drive or any equivalent storage medium. The machine-readable medium can alternatively or additionally store such machine instructions in a transient manner, such as for example as would a processor cache or other random access memory associated with one or more physical processor cores.
  • To provide for interaction with a user, the subject matter described herein can be implemented on a computer having a display device, such as for example a cathode ray tube (CRT) or a liquid crystal display (LCD) monitor for displaying information to the user and a keyboard and a pointing device, such as for example a mouse or a trackball, by which the user may provide input to the computer. Other kinds of devices can be used to provide for interaction with a user as well. For example, feedback provided to the user can be any form of sensory feedback, such as for example visual feedback, auditory feedback, or tactile feedback; and input from the user may be received in any form, including, but not limited to, acoustic, speech, or tactile input. Other possible input devices include, but are not limited to, touch screens or other touch-sensitive devices such as single or multi-point resistive or capacitive trackpads, voice recognition hardware and software, optical scanners, optical pointers, digital image capture devices and associated interpretation software, and the like.
  • The subject matter described herein can be embodied in systems, apparatus, methods, and/or articles depending on the desired configuration. The implementations set forth in the foregoing description do not represent all implementations consistent with the subject matter described herein. Instead, they are merely some examples consistent with aspects related to the described subject matter. Although a few variations have been described in detail above, other modifications or additions are possible. In particular, further features and/or variations can be provided in addition to those set forth herein. For example, the implementations described above can be directed to various combinations and subcombinations of the disclosed features and/or combinations and subcombinations of several further features disclosed above. In addition, the logic flow(s) when depicted in the accompanying figures and/or described herein do not necessarily require the particular order shown, or sequential order, to achieve desirable results. Other implementations may be within the scope of the following claims.

Claims (16)

1. A pump device, comprising:
a pumping mechanism;
a housing containing the pumping mechanism, the housing defining a seat configured to receive a pump set having a fluid lumen that can be acted upon by the pumping mechanism so as to pump fluid through the fluid lumen of the pump set, wherein the pump set is attached to a tube that delivers fluid to the fluid lumen;
a sensor in the housing, the sensor configured to sense a characteristic of the tube when the tube engages the sensor;
a door movably attached to the housing, wherein the door transitions between an open position that exposes the seat and a closed position that covers the seat;
a structure on the door that urges the tube toward engagement with the sensor as the door is closed with the pump set is mounted in the seat.
2. A pump device as in claim 1, wherein the sensor is an air-in-line sensor.
3. A pump device as in claim 1, further comprising a recess in the housing, the recess sized and shaped to receive the tube when the pump set is mounted in the seat.
4. A pump device as in claim 3, wherein the structure on the door also urges tube into the recess in the housing as the door is closed.
5. A pump device as in claim 3, wherein the recess is chamfered.
6. A pump device as in claim 1, wherein the door is rotatably attached to the housing.
7. A pump device as in claim 1, wherein the pumping mechanism is a peristaltic pumping mechanism.
8. A pump device as in claim 1, further comprising:
the pump set for coupling with the pump device, the pump set comprising: a fluid lumen adapted for passage of an infusion fluid toward a patient; a valve assembly that can be actuated to regulate fluid flow through the fluid lumen; and a frame coupled to the fluid lumen and the valve assembly, the frame adapted to be inserted into a seat of a pump device.
9. A pump device as in claim 1, further comprising a door actuator configured to transitioned to a locked state that locks the door in the closed position, wherein the door actuator is configured to automatically transition a valve assembly of the pump set to the open state when the door actuator is transitioned to the locked state.
10. A pump device as in claim 9, wherein the door actuator automatically transitions the valve assembly to the off state when the door actuator is transitioned to the unlocked state.
11. A method of coupling a pump set with a pump device, comprising:
inserting the pump set into a seat of the pump device, wherein the pump device includes a sensor configured to sense a characteristic of fluid flowing through the pump set; and
closing a door of the pump device to secure the pump set in the seat, wherein the door includes protrusion that pushes a fluid tube of the pump set toward engagement with the sensor as the door moves to a closed position.
12. A method as in claim 11, wherein, as the door closes, the door pushes the fluid tube of the pump set away from a position that would cause pinching of the fluid tube.
13. A method as in claim 11, further comprising locking the door, wherein locking the door automatically causes a valve of the pump set to open.
14. A method as in claim 11, further comprising unlocking the door, wherein locking the door automatically causes a valve of the pump set to close.
15. A method as in claim 11, further comprising activating a pump mechanism of the pump device such that the pump mechanism cooperates with the pump set and the platen member to pump fluid through the pump device.
16. A method as in claim 11, wherein closing the door comprises rotating the door from an open position to a closed position.
US13/829,854 2013-03-14 2013-03-14 Infusion pump configured to engage a sensor with tubing Abandoned US20140271247A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/829,854 US20140271247A1 (en) 2013-03-14 2013-03-14 Infusion pump configured to engage a sensor with tubing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/829,854 US20140271247A1 (en) 2013-03-14 2013-03-14 Infusion pump configured to engage a sensor with tubing

Publications (1)

Publication Number Publication Date
US20140271247A1 true US20140271247A1 (en) 2014-09-18

Family

ID=51527748

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/829,854 Abandoned US20140271247A1 (en) 2013-03-14 2013-03-14 Infusion pump configured to engage a sensor with tubing

Country Status (1)

Country Link
US (1) US20140271247A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140271246A1 (en) * 2013-03-14 2014-09-18 Carefusion 303, Inc. Cooperation of platen and pump cassette for pump device
US9468714B2 (en) 2013-03-14 2016-10-18 Carefusion 303, Inc. Memory and identification associated with IV set
US9968739B2 (en) 2013-03-14 2018-05-15 Carefusion 303, Inc. Rotary valve for a disposable infusion set
US10226571B2 (en) 2013-03-14 2019-03-12 Carefusion 303, Inc. Pump segment placement
US10648564B2 (en) 2016-12-30 2020-05-12 Baxter International Inc. Infusion pump door seal for vertical intravenous tubes
US10758669B2 (en) 2016-12-30 2020-09-01 Baxter International Inc. Anti-occlusion intravenous tube port
US10832495B2 (en) 2014-04-18 2020-11-10 Carefusion 303, Inc. Remote maintenance of medical devices
US11167081B2 (en) 2016-06-16 2021-11-09 Smiths Medical Asd, Inc. Assemblies and methods for infusion pump system administration sets
USD975835S1 (en) 2017-07-26 2023-01-17 Smiths Medical Asd, Inc. Infusion set
US11801342B2 (en) 2017-07-19 2023-10-31 Smiths Medical Asd, Inc. Housing arrangements for infusion pumps

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020165503A1 (en) * 2001-05-04 2002-11-07 Morris Matthew G. Medical instrument flow stop interface
US20110004143A1 (en) * 2009-07-01 2011-01-06 Michael James Beiriger Drug Delivery Devices And Related Systems And Methods
US20120035581A1 (en) * 2010-08-06 2012-02-09 Travis Lee W Infusion Pump and Slide Clamp Apparatus and Method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020165503A1 (en) * 2001-05-04 2002-11-07 Morris Matthew G. Medical instrument flow stop interface
US20110004143A1 (en) * 2009-07-01 2011-01-06 Michael James Beiriger Drug Delivery Devices And Related Systems And Methods
US20120035581A1 (en) * 2010-08-06 2012-02-09 Travis Lee W Infusion Pump and Slide Clamp Apparatus and Method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140271246A1 (en) * 2013-03-14 2014-09-18 Carefusion 303, Inc. Cooperation of platen and pump cassette for pump device
US9468714B2 (en) 2013-03-14 2016-10-18 Carefusion 303, Inc. Memory and identification associated with IV set
US9968739B2 (en) 2013-03-14 2018-05-15 Carefusion 303, Inc. Rotary valve for a disposable infusion set
US10226571B2 (en) 2013-03-14 2019-03-12 Carefusion 303, Inc. Pump segment placement
US10832495B2 (en) 2014-04-18 2020-11-10 Carefusion 303, Inc. Remote maintenance of medical devices
US11167081B2 (en) 2016-06-16 2021-11-09 Smiths Medical Asd, Inc. Assemblies and methods for infusion pump system administration sets
US10648564B2 (en) 2016-12-30 2020-05-12 Baxter International Inc. Infusion pump door seal for vertical intravenous tubes
US10758669B2 (en) 2016-12-30 2020-09-01 Baxter International Inc. Anti-occlusion intravenous tube port
US11739841B2 (en) 2016-12-30 2023-08-29 Baxter International Inc. Infusion pump door seal for vertical intravenous tubes
US12036385B2 (en) 2016-12-30 2024-07-16 Baxter International Inc. Anti-occlusion intravenous tube port
US11801342B2 (en) 2017-07-19 2023-10-31 Smiths Medical Asd, Inc. Housing arrangements for infusion pumps
USD975835S1 (en) 2017-07-26 2023-01-17 Smiths Medical Asd, Inc. Infusion set

Similar Documents

Publication Publication Date Title
US10226571B2 (en) Pump segment placement
US20140271247A1 (en) Infusion pump configured to engage a sensor with tubing
US9468714B2 (en) Memory and identification associated with IV set
US20140271246A1 (en) Cooperation of platen and pump cassette for pump device
US11786650B2 (en) Assemblies and methods for infusion pump system administration sets
US9968739B2 (en) Rotary valve for a disposable infusion set
US5755691A (en) Medical infusion pumps
US8469933B2 (en) Pump activated pinch clamp
US10363360B2 (en) Pump cassettes with slider and infusion pump systems
US11752255B2 (en) Pump systems with positioning features
JP7438112B2 (en) Infusion pump system and method for administration set
US11896796B2 (en) Disposable intravenous (IV) set with flow control valve
WO2014159466A1 (en) Disposable infusion set
CN219814892U (en) Intravenous tubing fitting and intravenous system
JP2019502448A (en) Valve device for enteral supply set having multiple fluid sources
WO2011119425A2 (en) Pump activated pinch clamp
KR101794925B1 (en) Drug injection controller
US20240316260A1 (en) Cradle for an infusion pump
US20240318469A1 (en) Lockbox for an ambulatory infusion pump
NZ749240B2 (en) Assemblies and methods for infusion pump system administration sets

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION