US20140261390A1 - High temperature radiation-selective coating and related apparatus - Google Patents

High temperature radiation-selective coating and related apparatus Download PDF

Info

Publication number
US20140261390A1
US20140261390A1 US14/203,602 US201414203602A US2014261390A1 US 20140261390 A1 US20140261390 A1 US 20140261390A1 US 201414203602 A US201414203602 A US 201414203602A US 2014261390 A1 US2014261390 A1 US 2014261390A1
Authority
US
United States
Prior art keywords
solar
layer
selective coating
diffusion barrier
solar selective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/203,602
Inventor
Ophir Chernin
Christina Hildebrandt
Andreas Georg
Thomas Kroyer
Wolfgang Graf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BrightSource Industries Israel Ltd
Original Assignee
BrightSource Industries Israel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BrightSource Industries Israel Ltd filed Critical BrightSource Industries Israel Ltd
Priority to US14/203,602 priority Critical patent/US20140261390A1/en
Publication of US20140261390A1 publication Critical patent/US20140261390A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • F24J2/4652
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/30Auxiliary coatings, e.g. anti-reflective coatings
    • F24J2/48
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/225Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present disclosure relates generally to solar selective coatings, and, more particularly, to solar selective coatings for use in components of a solar tower system.
  • the present disclosure relates to a solar receiver with a wavelength selective coating comprising a first diffusion barrier layer, a metallic infrared (IR) reflective layer, a solar absorptive layer, an anti-reflective layer, and/or a hard coat protective layer.
  • a first diffusion barrier layer a metallic infrared (IR) reflective layer
  • a solar absorptive layer a solar absorptive layer
  • an anti-reflective layer and/or a hard coat protective layer.
  • Selective absorber coatings which are characterized by a high solar absorption coefficient and low thermal emission, can be used in solar thermal energy applications to convert captured solar radiation into usable heat.
  • Thin layer systems based on CERMET ceramic/metal mixture
  • Such layered systems can be produced by vapor deposition or sputtering.
  • the layer system may include any of the following layers: a metallic IR reflective layer, a solar absorptive layer, an anti-reflective layer and a hard coat protective layer.
  • the metallic IR reflective layer can include a metal that is highly reflective in the infrared range such as a noble metal or a refractory metal silicide.
  • the solar absorptive layer may include a CERMET.
  • the CERMET may include a metal, such as platinum, nickel, palladium, tungsten, chromium or molybdenum, which is embedded in an oxide, such as Al 2 O 3 or SiO 3 .
  • the anti-reflective layer may include a pure oxide, for example SiO 2 or Al 2 O 3 .
  • the solar selective coating may include an adhesive layer in order to provide good adhesion of the coating to the substrate.
  • the substrate may include a carbon steel, a low alloy steel, a high alloy steel, a stainless steel or a superalloy.
  • Operating temperatures greater than 600° C. may accelerate the diffusion processes within the absorptive layer and through the layers of the solar selective coating. These diffusion processes act negatively on the performance of the entire system. At extremely high temperatures, elements from the substrate may diffuse into the absorber coating which may cause a change in the layer's properties. For example, iron, manganese, molybdenum, chromium, or nickel may diffuse into the layer system.
  • more efficient selective coatings are provided that combine relatively high solar absorbance (e.g., greater than about 0.96) and relatively low thermal emittance (e.g., less than about 0.07 at 700° C.), and that are thermally stable above 600° C., ideally in outdoor conditions. This may allow for an increase in the solar fields operating efficiencies at operating temperatures of about 600° C. or greater.
  • a solar selective coating which may include the following layers in sequence: a first diffusion barrier layer, which includes at least one diffusion barrier material; a metallic IR reflective layer; a solar absorptive layer; and an anti-reflective layer.
  • the solar selective coating may have an absorptivity of at least 95% with respect to the AM 1.5 spectrum at long term operating temperatures of at least 600° C.
  • the solar absorptive layer may have a thickness of between approximately 80 nm and 120 nm.
  • the diffusion barrier material can include at least one selected from SiOx, SiN, TiO 2 , TiOx, a metal/AlOx CERMET and a metal/SiOx CERMET.
  • the solar selective coating may further include a second diffusion barrier layer adjacent to the first diffusion barrier layer.
  • One of the first and second diffusion barrier layers can include at least one selected from SiOx, SiN, TiO 2 and TiOx, while the other of the first and second diffusion barrier layers can include at least one selected from a metal/AlOx CERMET and a metal/SiOx CERMET.
  • the solar selective coating may further include a natural oxide layer of a substrate.
  • the substrate includes at least one of a carbon steel, a low alloy steel, a high alloy steel, a stainless steel, and a superalloy.
  • the IR reflective layer may include at least one of a noble metal and a refractory metal silicide.
  • the solar absorptive layer may be a CERMET layer.
  • the ceramic portion of the CERMET may include at least one of an aluminum oxide or a silicon oxide and the metal portion of the CERMET may include at least one of Pt, Ni, Pd, W, Cr or Mo.
  • the solar selective coating may further include a third diffusion barrier layer between the IR reflective layer and the solar absorptive layer.
  • the third diffusion barrier layer may include at least one selected from SiOx, SiN, TiO 2 and TiOx.
  • the solar selective coating may further include a hard coat protective layer.
  • the solar absorptive layer is a thick hard coat protective layer, and the solar absorptive layer may have a thickness greater than 120 nm.
  • a coated metal article which may include a metal layer comprising a carbon steel, a low alloy steel, a high alloy steel, a stainless steel, or a superalloy.
  • a solar selective coating can be provided over a surface of said metal layer.
  • the solar selective coating may include: (a) a first diffusion barrier layer, including at least one diffusion barrier material; (b) a metallic IR reflective layer; (c) a solar absorptive layer; (d) an anti-reflective layer; and (e) a hard coat protective layer.
  • the solar selective coating can have an absorptivity of at least 95% with respect to the AM 1.5 spectrum at long term operating temperatures of at least 600° C.
  • the metal layer can form a conduit and the solar selective coating is provided over an external surface of the conduit.
  • the external surface of the metal layer can be a polished surface.
  • the coated metal article includes a portion of a solar receiver.
  • Some embodiments relate to a solar thermal energy system including the abovementioned coated metal article.
  • FIG. 1A is a simplified diagram illustrating an elevation view of a solar thermal system with a single solar tower, according to embodiments of the disclosed subject matter.
  • FIG. 1B is a simplified diagram illustrating an elevation view of a solar thermal system with multiple solar towers, according to embodiments of the disclosed subject matter.
  • FIG. 2A is a simplified diagram illustrating a top view of pipes in a receiver of a solar tower, according to embodiments of the disclosed subject matter.
  • FIG. 2B is a simplified diagram illustrating an isometric view of the receiver pipes of FIG. 2A , according to embodiments of the disclosed subject matter.
  • FIG. 3A is a simplified diagram illustrating a cross-sectional view of one of the receiver pipes of FIG. 2A , according to embodiments of the disclosed subject matter.
  • FIGS. 3B-3C are simplified diagrams illustrating cross-sectional views of surface sections of the receiver pipe of FIG. 3A with different coatings, according to embodiments of the disclosed subject matter.
  • Insolation can be used by a solar thermal system to generate solar steam and/or for heating a fluid, such as a molten salt or a gas, which may subsequently be used in the production of electricity.
  • a solar thermal system employing a single solar tower is shown.
  • the system can include a solar tower 100 , which has a target 102 that receives reflected insolation 110 from a solar field 104 , which at least partially surrounds the solar tower 100 .
  • the solar tower 100 can have a height of, for example, at least 25 m.
  • the target 102 can be a solar energy receiver system, which can include, for example, an insolation receiving surface of one or more solar receivers configured to transmit heat energy of the insolation to a working fluid or heat transfer fluid flowing therethrough.
  • the target 102 may include one or more separate solar receivers (e.g., an evaporating solar receiver and a superheating solar receiver) arranged at the same or different heights or positions.
  • the solar field 104 can include a plurality of heliostats 106 , each of which is configured to direct insolation at the target 102 in the solar tower 100 .
  • Heliostats 106 within the solar field can adjust their orientation to track the sun 108 as it moves across the sky, thereby continuing to reflect insolation onto one or more aiming points associated with the target 102 .
  • the solar field 104 can include, for example, over 50,000 heliostats deployed in over an area of approximately 4 km 2 .
  • FIG. 1B shows a “multi-tower” version of a solar thermal system.
  • Each tower can have a respective target, which may include one or more solar receivers.
  • the first solar tower 100 A has a target 102 A thereon and is at least partially surrounded by solar field 104 for receiving reflected insolation therefrom.
  • a second solar tower 100 B has a target 102 B thereon and is at least partially surrounded by solar field 104 for receiving reflected insolation therefrom.
  • the solar receiver in one of the towers may be configured to produce steam from insolation (i.e., an evaporating solar receiver) while the solar receiver in another one of the towers may be configured to superheat the steam using insolation (i.e., a superheating solar receiver).
  • one or more of the solar towers may have both an evaporating solar receiver and a superheating solar receiver.
  • FIGS. 1A-1B A limited number of components have been illustrated in FIGS. 1A-1B for clarity and discussion. It should be appreciated that actual embodiments of a solar thermal system can include, for example, optical elements, control systems, sensors, pipelines, generators, and/or turbines.
  • the receiver in each solar tower can include one or more fluid conduits or pipes configured to convey a working fluid or heat transfer fluid at high temperatures and/or pressures.
  • the pipes can be configured to convey pressurized water and/or pressurized steam at temperatures in excess of 290° C. and pressures in excess of 160 bar.
  • FIGS. 2A-2B an exemplary configuration of a portion 200 of a solar receiver is shown.
  • Pipes 202 of the receiver portion 200 can be arranged in a single row following a particular geometric configuration, for example, in the shape of a circle, hexagon, or rectangle (as shown in FIG. 2A ), or in any other suitable configuration.
  • each pipe 202 can be arranged to receive insolation reflected by heliostats in the solar field onto the receiver.
  • the solar insolation can heat pipes 202 and thereby heat the fluid flowing therethrough for use in producing electricity or in other applications.
  • the native surface of the metal may be at least partially reflective to the solar radiation, thereby reducing the efficiency by which heat energy of the insolation is transferred to the fluid flowing through the pipes 202 .
  • the metal pipes 202 can thus be treated or painted to maximize or at least improve the solar absorption and lower thermal emission of the pipes 202 .
  • high-temperature operation of the solar thermal system for example, at temperatures in excess of 600° C.
  • environmental exposure for example, to a desert atmosphere where the solar thermal system is located
  • the metal article is a pipe 202 of a receiver 200 in a solar thermal system.
  • one or more of the coatings/treatments described herein may be applied to at least a portion of the exterior surface of pipe 202 , as shown in FIGS. 3A-3C .
  • FIGS. 3B-3C show a close-up cross-sectional view 312 of pipe 202 of FIG. 3A , illustrating solar selective absorber coatings with (as shown in FIG. 3B ) and without a top hard coat protective layer (as shown in FIG. 3C ) applied to the wall of pipe 202 .
  • the layers illustrated in figures have not been drawn to scale. Rather, the relative sizes of the layers have been exaggerated for illustration purposes.
  • Pipe 202 has a metal wall 314 separating an interior volume 311 of pipe 202 from the external environment.
  • Water and/or steam (or other heat transfer or working fluid), which may be preheated and/or pressurized, flows through the pipe interior volume.
  • An exterior surface side 316 of the metal wall 314 can receive reflected insolation from the field of heliostats, so as to heat the metal wall 314 and thereby the flowing water and/or steam.
  • the substrates to which the coating is applied may be selected from one of carbon steel, a low alloy steel, a high alloy steel, a stainless steel, and a superalloy.
  • the substrate may be planar, curved or tubular and may be employed as solar absorber tubes (e.g., pipe 202 ) for solar receivers.
  • the exterior surface side 316 of the pipe's metal wall 314 can optionally be pre-treated prior to application of any other layers.
  • the surface 316 can be subjected to grit-blasting or polishing.
  • Predominantly thin layer systems based on CERMET are used, which are produced by various deposition methods (e.g., CVD, PVD, electron-beam deposition, etc. . . . ) or sputtering.
  • the one or more coatings applied to the exterior surface 316 can improve absorption of solar insolation and/or protect the metal surface.
  • the substrate exterior surface 316 may be pre-treated.
  • the pre-treating may include polishing or grit-blasting the substrate surface. After pre-treating the surface may be cleaned to remove any residue from the surface of the substrate.
  • the substrate may then undergo heat treatment wherein a natural oxide layer may be formed on the substrate surface. The heat treatment may occur at temperatures of about 400° C., 500° C., 600° C., 650° C., 700° C. or 750° C.
  • the natural oxide layer may aid in preventing the diffusion of the substrate into the solar selective coating.
  • the layers of the solar selective absorber coating can be applied by at least any one of various suitable methods, such as but not limited to, a physical vapor deposition (PVD) method, a chemical vapor deposition (CVD) method, an electron beam (e-beam) method, and sputtering methods.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • e-beam electron beam
  • sputtering methods e.g., sputtering methods.
  • the solar selective coating may be applied on the substrate by itself or in combination with one or more surface treatments.
  • the metal article may be provided with a substrate surface treatment such as, but not limited to, grit blasting or polishing.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • Planar magnetron sputtering is a vacuum process used to deposit thin films.
  • the process provides a plate of material of which the coating is to be made (called the target) and uses powerful magnetron magnets arranged behind the target to create a magnetic trap for charged particles, in particular the electrons, in front of the target.
  • a negative voltage e.g., ⁇ 300V or more
  • a low-pressure gas e.g., argon at about 5 millitorr
  • the plasma consists of electrons and gas ions in a high-energy state. Argon ions (or other positively charged particles) are attracted to the target surface at high speed.
  • sputtering When the ions impact the target, atoms are knocked out of the target surface with enough energy to travel to and subsequently bond with the substrate. This process is referred to as sputtering.
  • the sputtered atoms from the target are not negatively or positively charged, so they can travel straight out of the magnetic trap.
  • the target surface also releases electrons, which are retained in the magnetic trap where their energy is used to produce more argon ions (or other positively charged particles). This means that the ions which are attracted to the target surface are constantly replenished, so that the magnetron can operate continually.
  • the magnetic field vastly improves the deposition rate by maintaining a higher density of ions, which makes the electron/gas molecule collision process much more efficient.
  • PVD may be classified based on the methods used to produce the vapor and the energy involved in the deposition and growth of the film.
  • the method may include evaporation and/or sputtering.
  • the thickness of the layers should be considered.
  • the solar selective coating can be applied to the external surface (or at least a portion thereof) of a pipe assembly of one or more pipes (e.g., pipe 202 ).
  • the coating can be provided at a thickness of between 450 nm-600 nm.
  • the solar selective absorber coating 320 is composed of the following layers in sequence from the outer surface 316 of the pipe 202 toward the exterior: a first diffusion barrier layer 321 , a second diffusion barrier layer 322 , a metallic IR reflective layer 323 , a solar absorptive layer 324 , an anti-reflective layer 325 , and a hard coat protective layer 326 .
  • Predominantly thin layer systems based on CERMET (ceramic-metal mixture) can be used, which are produced by vapor deposition or sputtering.
  • the first and/or second diffusion barrier layer may be a thin film layer. Thin film layers may be described as those layers which have a thickness of less than 100 nm.
  • the layers mentioned in this example may have compositions as described hereinbelow.
  • the solar selective absorber coating 330 is composed of the following layers in sequence from the outer surface 316 of the pipe 202 toward the exterior: a first diffusion barrier layer 321 , a second diffusion barrier layer 322 , a metallic IR reflective layer 323 , a solar absorptive layer 324 , and an anti-reflective layer 325 .
  • the solar absorptive layer may act as a thick hard coat layer, thereby providing protection to the coating as well as the substrate.
  • the solar selective coating may include a thick film layer as a diffusion barrier layer.
  • a thick film layer may be used instead of the combination of the first diffusion barrier layer 321 and the second diffusion barrier layer 322 .
  • the thick film diffusion barrier layer may include a SiC/SiN, an enamel, a ceramic-like mixture of Al 2 O 3 and SiO 2 , a thick metal layer (e.g., nickel), or a diamond hard coating.
  • the thickness of the thick film diffusion barrier layer may be greater than 100 nm.
  • FIGS. 3B-3C may also modified to include a third barrier diffusion layer (not shown) between the IR reflection layer (e.g., 323 ) and the solar absorptive layer (e.g., 324 ).
  • the third diffusion barrier layer may be one of SiOx, SiN, TiO 2 , TiOx, a metal/AlOx CERMET and a metal/SiOx CERMET.
  • elements from the substrate may diffuse into the solar selective coating, which may cause a change in the coating properties.
  • elements from the substrate may diffuse into the solar selective coating, which may cause a change in the coating properties.
  • iron, manganese, molybdenum, chromium, or nickel may diffuse into the layer system.
  • at least one diffusion barrier layer may be provided. The diffusion barrier layers prevent or reduce transport and diffusion processes which may include transport from the substrate as well as gas diffusion through the substrate in solar selective coatings.
  • a first diffusion barrier layer 321 may include at least one of SiOx, SiN, TiO 2 , TiOx, a metal/AlOx CERMET and a metal/SiOx CERMET.
  • the first diffusion barrier layer 321 may have a thickness of between 50 and 100 nm. In some embodiments, the first diffusion barrier layer 321 may have a thickness of between 50 and 80 nm.
  • the solar selective coating may include a second diffusion barrier layer 322 .
  • the second diffusion barrier layer 322 may be adjacent to the first diffusion barrier layer 321 .
  • the second diffusion barrier layer 322 may have a thickness of between 60 and 120 nm.
  • the second diffusion barrier layer may have a thickness of between 70 and 100 nm.
  • one of the first and second diffusion barrier layers may include at least one selected from SiOx, SiN, TiO 2 and TiOx, and the other of the first and second diffusion barrier layers includes at least one of a metal/AlOx CERMET and a metal/SiOx CERMET.
  • the metallic IR reflective layer 223 usually includes a metal that is highly reflective in the infrared range, such as silver, platinum, nickel, palladium, tungsten, chromium or molybdenum.
  • the IR reflective materials may include silicides, borides, carbides, and other suitable compounds of the refractory metals above.
  • IR reflective layer 323 may also include at least one noble metal selected from the group consisting of platinum, palladium, silver, rhodium, ruthenium, indium, gold, and osmium.
  • CERMETs are highly solar absorbing metal-dielectric composites containing fine metal particles in a dielectric or ceramic matrix, or a porous oxide impregnated with metal. As such, CERMETs may be used as a solar absorptive layer.
  • the solar absorptive layer 324 can include a metal, such as Pt, Ni, Pd, W, Cr or Mo, which is embedded in an oxide, such as Al 2 O 3 , SiO 2 .
  • the anti-reflective layer 325 may include a pure oxide, such as SiO 2 or Al 2 O 3 .
  • An anti-reflection coating (AR) coating is a dielectric coating applied to an optical surface to reduce the optical reflectivity of that surface in a certain wavelength range. Such properties may be achieved by introducing one or more additional optical interfaces so that the reflected waves from all the different interfaces largely cancel each other by destructive interference.
  • an antireflection coating designed for normal incidence i.e., perpendicular to the incident surface
  • n 1 ⁇ square root over (n o n s ) ⁇ , where n 1 is the refractive index of the thin layer, and n o and n s are the indices of the two media.
  • Such AR coatings can reduce the reflection for ordinary glass from about 4 percent per surface to around 2 percent.
  • Practical AR coatings rely on an intermediate layer not only for its direct reduction of reflection coefficient, but also to use the interference effect of a thin layer. If the layer's thickness is controlled precisely such that it is exactly one-quarter of the wavelength of the light (i.e., a quarter-wave coating), the reflections from the front and back sides of the thin layer will destructively interfere and cancel each other. This may significantly reduce the reflection from the surface such that most of the light is transmitted through.
  • Refractory metal oxide compounds e.g., HfO 2 , Ta 2 O 3 , TiO 2 Y 2 O 3 , and ZrO 2
  • Refractory metal oxide compounds can be used as the materials in the AR coating and absorbing layers because of their indices of refraction, their chemical, mechanical, and thermal stabilities, and their relatively high melting points.
  • Refractory metal or metalloid oxides e.g., SiO 2 , MgO, Al 2 O 3 , and Ta 2 O 5
  • fluorides e.g., AlF 2 , MgF 2 , and YF 3
  • nitrides e.g., TiN, TaN
  • oxynitride e.g., SiO X N Y and AlO X N
  • refractory and noble metals are used as an AR coating for their high melting points.
  • Refractory transition metals are those possessing high melting points and boiling points.
  • Hard coatings can be used for applications where high temperature stability and excellent wear resistance are required. Coatings of a few microns thickness may be used.
  • a hard coat protective layer e.g., layer 326 as shown in FIG. 3B , may include oxides, nitrides, carbides, borides or carbon. In some examples, the hard coat protective layer may include ZrN, TiN, AlTiN, CrN.
  • an article of manufacture can include a heat transfer member having a receiving surface, which has an absorptivity of at least 95% with respect to the AM 1.5 spectrum that is maintainable at temperatures of 600° C. for at least 1000 hours.
  • the article can include a solar receiver and/or a heat transfer member that is part of a solar receiver.
  • the heat transfer member can include a surface coating, e.g., a solar selective coating on the heat transfer member that defines properties of the receiving surface thereof.
  • the solar selective coating was prepared using the components listed in Table 1, each layer of the coating was added in the order listed in the table.
  • the solar selective coating was applied to a stainless steel substrate (Super 304H) which had been polished prior to the coating application.
  • the substrate was cut into small samples and heated to a temperature of 650° C. for 30 minutes in order to form a native oxide layer.
  • Each of the layers was applied to the substrate using a sputtering technique.
  • the coated substrate was stored at 650° C. for 1720 hours.
  • Example 1 The solar selective coating of Example 1 produced an absorptivity of ⁇ 95% with respect to the AM 1.5 spectrum and an emissivity of 36.7% at 650° C. It was also shown that there was practically no decrease in reflectivity in the IR-range and the solar absorptive layer remained stable with no diffusion of the substrate into the solar absorptive layer.
  • the solar selective coating was prepared using the components listed in Table 2, each layer of the coating was added in the order listed in the table.
  • the solar selective coating was applied to a stainless steel substrate (Super 304H) which had been polished prior to the coating application.
  • the substrate was cut into small samples and heated to a temperature of 650° C. for 30 minutes in order to form a native oxide layer.
  • Each of the layers was applied to the substrate using a sputtering technique.
  • the coated substrate was stored at 650° C. for 2000 hours.
  • Example 2 The solar selective coating of Example 2 produced an absorptivity of ⁇ 95% with respect to the AM 1.5 spectrum and an emissivity of 30% at 650° C. It was also shown that after 2000 hours at 650° C. there was a slight decrease in reflectivity in the IR-range and the solar absorptive layer remained stable with no diffusion of the substrate into the solar absorptive layer.

Abstract

A solar receiver includes a wavelength selective coating comprising a first diffusion barrier layer, a metallic IR reflective layer, a solar absorptive layer, an anti-reflective layer, and/or a hard coat protective layer. Selective absorber coatings, which are characterized by a high solar absorption coefficient and low thermal emission, can be used to convert captured solar radiation into usable heat. In embodiments, more efficient selective coatings are provided that combine relatively high solar absorbance (e.g., greater than about 0.96) with relatively low thermal emittance (e.g., less than about 0.07 at 700° C.), and that are thermally stable above 600° C., for example, in outdoor conditions. The use of such coatings in a solar field may allow for an increase in the operating efficiencies thereof at operating temperatures of about 600° C. or greater.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application claims the benefit of U.S. Provisional Application No. 61/779,773, filed Mar. 13, 2013, which is hereby incorporated by reference herein in its entirety.
  • FIELD
  • The present disclosure relates generally to solar selective coatings, and, more particularly, to solar selective coatings for use in components of a solar tower system.
  • SUMMARY
  • The present disclosure relates to a solar receiver with a wavelength selective coating comprising a first diffusion barrier layer, a metallic infrared (IR) reflective layer, a solar absorptive layer, an anti-reflective layer, and/or a hard coat protective layer.
  • Selective absorber coatings, which are characterized by a high solar absorption coefficient and low thermal emission, can be used in solar thermal energy applications to convert captured solar radiation into usable heat. Thin layer systems based on CERMET (ceramic/metal mixture) can be used. Such layered systems can be produced by vapor deposition or sputtering.
  • The layer system, starting from the substrate surface and progressing to the exterior of the coating, may include any of the following layers: a metallic IR reflective layer, a solar absorptive layer, an anti-reflective layer and a hard coat protective layer. The metallic IR reflective layer can include a metal that is highly reflective in the infrared range such as a noble metal or a refractory metal silicide. The solar absorptive layer may include a CERMET.
  • The CERMET may include a metal, such as platinum, nickel, palladium, tungsten, chromium or molybdenum, which is embedded in an oxide, such as Al2O3 or SiO3. The anti-reflective layer may include a pure oxide, for example SiO2 or Al2O3.
  • Additionally, the solar selective coating may include an adhesive layer in order to provide good adhesion of the coating to the substrate. In some embodiments, the substrate may include a carbon steel, a low alloy steel, a high alloy steel, a stainless steel or a superalloy.
  • Operating temperatures greater than 600° C. may accelerate the diffusion processes within the absorptive layer and through the layers of the solar selective coating. These diffusion processes act negatively on the performance of the entire system. At extremely high temperatures, elements from the substrate may diffuse into the absorber coating which may cause a change in the layer's properties. For example, iron, manganese, molybdenum, chromium, or nickel may diffuse into the layer system.
  • In embodiments of the disclosed subject matter, more efficient selective coatings are provided that combine relatively high solar absorbance (e.g., greater than about 0.96) and relatively low thermal emittance (e.g., less than about 0.07 at 700° C.), and that are thermally stable above 600° C., ideally in outdoor conditions. This may allow for an increase in the solar fields operating efficiencies at operating temperatures of about 600° C. or greater.
  • Some embodiments relate to a solar selective coating which may include the following layers in sequence: a first diffusion barrier layer, which includes at least one diffusion barrier material; a metallic IR reflective layer; a solar absorptive layer; and an anti-reflective layer. In one or more embodiments, the solar selective coating may have an absorptivity of at least 95% with respect to the AM 1.5 spectrum at long term operating temperatures of at least 600° C. The solar absorptive layer may have a thickness of between approximately 80 nm and 120 nm. The diffusion barrier material can include at least one selected from SiOx, SiN, TiO2, TiOx, a metal/AlOx CERMET and a metal/SiOx CERMET. The solar selective coating may further include a second diffusion barrier layer adjacent to the first diffusion barrier layer. One of the first and second diffusion barrier layers can include at least one selected from SiOx, SiN, TiO2 and TiOx, while the other of the first and second diffusion barrier layers can include at least one selected from a metal/AlOx CERMET and a metal/SiOx CERMET.
  • In some embodiments, the solar selective coating may further include a natural oxide layer of a substrate. The substrate includes at least one of a carbon steel, a low alloy steel, a high alloy steel, a stainless steel, and a superalloy.
  • The IR reflective layer may include at least one of a noble metal and a refractory metal silicide. The solar absorptive layer may be a CERMET layer. The ceramic portion of the CERMET may include at least one of an aluminum oxide or a silicon oxide and the metal portion of the CERMET may include at least one of Pt, Ni, Pd, W, Cr or Mo. In some embodiments, the solar selective coating may further include a third diffusion barrier layer between the IR reflective layer and the solar absorptive layer. The third diffusion barrier layer may include at least one selected from SiOx, SiN, TiO2 and TiOx. The solar selective coating may further include a hard coat protective layer. In some embodiments, the solar absorptive layer is a thick hard coat protective layer, and the solar absorptive layer may have a thickness greater than 120 nm.
  • Some embodiments relate to a coated metal article which may include a metal layer comprising a carbon steel, a low alloy steel, a high alloy steel, a stainless steel, or a superalloy. A solar selective coating can be provided over a surface of said metal layer. The solar selective coating may include: (a) a first diffusion barrier layer, including at least one diffusion barrier material; (b) a metallic IR reflective layer; (c) a solar absorptive layer; (d) an anti-reflective layer; and (e) a hard coat protective layer. The solar selective coating can have an absorptivity of at least 95% with respect to the AM 1.5 spectrum at long term operating temperatures of at least 600° C. The metal layer can form a conduit and the solar selective coating is provided over an external surface of the conduit. The external surface of the metal layer can be a polished surface.
  • In some embodiments, the coated metal article includes a portion of a solar receiver.
  • Some embodiments relate to a solar thermal energy system including the abovementioned coated metal article.
  • Objects and advantages of embodiments of the disclosed subject matter will become apparent from the following description when considered in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF DRAWINGS
  • Embodiments will hereinafter be described with reference to the accompanying drawings, which have not necessarily been drawn to scale. Where applicable, some features may not be illustrated to assist in the illustration and description of underlying features. Throughout the figures, like reference numerals denote like elements.
  • FIG. 1A is a simplified diagram illustrating an elevation view of a solar thermal system with a single solar tower, according to embodiments of the disclosed subject matter.
  • FIG. 1B is a simplified diagram illustrating an elevation view of a solar thermal system with multiple solar towers, according to embodiments of the disclosed subject matter.
  • FIG. 2A is a simplified diagram illustrating a top view of pipes in a receiver of a solar tower, according to embodiments of the disclosed subject matter.
  • FIG. 2B is a simplified diagram illustrating an isometric view of the receiver pipes of FIG. 2A, according to embodiments of the disclosed subject matter.
  • FIG. 3A is a simplified diagram illustrating a cross-sectional view of one of the receiver pipes of FIG. 2A, according to embodiments of the disclosed subject matter.
  • FIGS. 3B-3C are simplified diagrams illustrating cross-sectional views of surface sections of the receiver pipe of FIG. 3A with different coatings, according to embodiments of the disclosed subject matter.
  • DETAILED DESCRIPTION
  • Insolation can be used by a solar thermal system to generate solar steam and/or for heating a fluid, such as a molten salt or a gas, which may subsequently be used in the production of electricity. Referring to FIG. 1A, a solar thermal system employing a single solar tower is shown. The system can include a solar tower 100, which has a target 102 that receives reflected insolation 110 from a solar field 104, which at least partially surrounds the solar tower 100. The solar tower 100 can have a height of, for example, at least 25 m. The target 102 can be a solar energy receiver system, which can include, for example, an insolation receiving surface of one or more solar receivers configured to transmit heat energy of the insolation to a working fluid or heat transfer fluid flowing therethrough. The target 102 may include one or more separate solar receivers (e.g., an evaporating solar receiver and a superheating solar receiver) arranged at the same or different heights or positions. The solar field 104 can include a plurality of heliostats 106, each of which is configured to direct insolation at the target 102 in the solar tower 100. Heliostats 106 within the solar field can adjust their orientation to track the sun 108 as it moves across the sky, thereby continuing to reflect insolation onto one or more aiming points associated with the target 102. The solar field 104 can include, for example, over 50,000 heliostats deployed in over an area of approximately 4 km2.
  • FIG. 1B shows a “multi-tower” version of a solar thermal system. Each tower can have a respective target, which may include one or more solar receivers. The first solar tower 100A has a target 102A thereon and is at least partially surrounded by solar field 104 for receiving reflected insolation therefrom. Similarly, a second solar tower 100B has a target 102B thereon and is at least partially surrounded by solar field 104 for receiving reflected insolation therefrom. For example, the solar receiver in one of the towers may be configured to produce steam from insolation (i.e., an evaporating solar receiver) while the solar receiver in another one of the towers may be configured to superheat the steam using insolation (i.e., a superheating solar receiver). In another example, one or more of the solar towers may have both an evaporating solar receiver and a superheating solar receiver. A limited number of components have been illustrated in FIGS. 1A-1B for clarity and discussion. It should be appreciated that actual embodiments of a solar thermal system can include, for example, optical elements, control systems, sensors, pipelines, generators, and/or turbines.
  • The receiver in each solar tower can include one or more fluid conduits or pipes configured to convey a working fluid or heat transfer fluid at high temperatures and/or pressures. For example, the pipes can be configured to convey pressurized water and/or pressurized steam at temperatures in excess of 290° C. and pressures in excess of 160 bar. Referring to FIGS. 2A-2B, an exemplary configuration of a portion 200 of a solar receiver is shown. Pipes 202 of the receiver portion 200 can be arranged in a single row following a particular geometric configuration, for example, in the shape of a circle, hexagon, or rectangle (as shown in FIG. 2A), or in any other suitable configuration. At least a portion of the exterior surface of each pipe 202 can be arranged to receive insolation reflected by heliostats in the solar field onto the receiver. The solar insolation can heat pipes 202 and thereby heat the fluid flowing therethrough for use in producing electricity or in other applications.
  • When pipes 202 are constructed from metal, the native surface of the metal may be at least partially reflective to the solar radiation, thereby reducing the efficiency by which heat energy of the insolation is transferred to the fluid flowing through the pipes 202. The metal pipes 202 can thus be treated or painted to maximize or at least improve the solar absorption and lower thermal emission of the pipes 202. However, high-temperature operation of the solar thermal system (for example, at temperatures in excess of 600° C.) and environmental exposure (for example, to a desert atmosphere where the solar thermal system is located) may adversely affect the outer layers of the metal surface of the pipes 202, including any coating applied thereto.
  • In an embodiment, the metal article is a pipe 202 of a receiver 200 in a solar thermal system. For example, one or more of the coatings/treatments described herein may be applied to at least a portion of the exterior surface of pipe 202, as shown in FIGS. 3A-3C. FIGS. 3B-3C show a close-up cross-sectional view 312 of pipe 202 of FIG. 3A, illustrating solar selective absorber coatings with (as shown in FIG. 3B) and without a top hard coat protective layer (as shown in FIG. 3C) applied to the wall of pipe 202. It is noted that the layers illustrated in figures have not been drawn to scale. Rather, the relative sizes of the layers have been exaggerated for illustration purposes.
  • Pipe 202 has a metal wall 314 separating an interior volume 311 of pipe 202 from the external environment. Water and/or steam (or other heat transfer or working fluid), which may be preheated and/or pressurized, flows through the pipe interior volume. An exterior surface side 316 of the metal wall 314 can receive reflected insolation from the field of heliostats, so as to heat the metal wall 314 and thereby the flowing water and/or steam.
  • The substrates to which the coating is applied may be selected from one of carbon steel, a low alloy steel, a high alloy steel, a stainless steel, and a superalloy. The substrate may be planar, curved or tubular and may be employed as solar absorber tubes (e.g., pipe 202) for solar receivers.
  • The exterior surface side 316 of the pipe's metal wall 314 can optionally be pre-treated prior to application of any other layers. For example, the surface 316 can be subjected to grit-blasting or polishing. Predominantly thin layer systems based on CERMET (ceramic-metal mixture) are used, which are produced by various deposition methods (e.g., CVD, PVD, electron-beam deposition, etc. . . . ) or sputtering. The one or more coatings applied to the exterior surface 316 can improve absorption of solar insolation and/or protect the metal surface.
  • In some embodiments, the substrate exterior surface 316 may be pre-treated. For example, the pre-treating may include polishing or grit-blasting the substrate surface. After pre-treating the surface may be cleaned to remove any residue from the surface of the substrate. The substrate may then undergo heat treatment wherein a natural oxide layer may be formed on the substrate surface. The heat treatment may occur at temperatures of about 400° C., 500° C., 600° C., 650° C., 700° C. or 750° C. The natural oxide layer may aid in preventing the diffusion of the substrate into the solar selective coating.
  • In some embodiments, the layers of the solar selective absorber coating can be applied by at least any one of various suitable methods, such as but not limited to, a physical vapor deposition (PVD) method, a chemical vapor deposition (CVD) method, an electron beam (e-beam) method, and sputtering methods. The solar selective coating may be applied on the substrate by itself or in combination with one or more surface treatments. For example, the metal article may be provided with a substrate surface treatment such as, but not limited to, grit blasting or polishing.
  • There are a number of available processes which can be used to deposit coatings. The most common occur under vacuum and are classified as physical vapor deposition (PVD) and chemical vapor deposition (CVD). In PVD processes, the thin film condenses directly into the solid phase from the vapor. CVD relates to techniques where the growing film differs substantially in composition and properties from the components of the vapor phase.
  • Planar magnetron sputtering is a vacuum process used to deposit thin films. The process provides a plate of material of which the coating is to be made (called the target) and uses powerful magnetron magnets arranged behind the target to create a magnetic trap for charged particles, in particular the electrons, in front of the target. When the magnetron drive power supplies are turned and the target is held at a negative voltage (e.g., ˜−300V or more), across a low-pressure gas (e.g., argon at about 5 millitorr) a “plasma” is created. The plasma consists of electrons and gas ions in a high-energy state. Argon ions (or other positively charged particles) are attracted to the target surface at high speed. When the ions impact the target, atoms are knocked out of the target surface with enough energy to travel to and subsequently bond with the substrate. This process is referred to as sputtering. The sputtered atoms from the target are not negatively or positively charged, so they can travel straight out of the magnetic trap. In addition, the target surface also releases electrons, which are retained in the magnetic trap where their energy is used to produce more argon ions (or other positively charged particles). This means that the ions which are attracted to the target surface are constantly replenished, so that the magnetron can operate continually. The magnetic field vastly improves the deposition rate by maintaining a higher density of ions, which makes the electron/gas molecule collision process much more efficient.
  • PVD may be classified based on the methods used to produce the vapor and the energy involved in the deposition and growth of the film. In some examples, the method may include evaporation and/or sputtering.
  • In designing effective solar selective coatings, the thickness of the layers should be considered. For example, the solar selective coating can be applied to the external surface (or at least a portion thereof) of a pipe assembly of one or more pipes (e.g., pipe 202). For example, the coating can be provided at a thickness of between 450 nm-600 nm.
  • Solar selective coatings according to one or more embodiments of the disclosed subject matter can exhibit one or more of the following features:
      • (1) the solar selective coating has an absorptivity with respect to the AM 1.5 spectrum of greater than 95% at operating temperatures which may exceed 600° C.;
      • (2) the coating applied to a metal article (e.g., carbon steel, low alloy steel, high alloy steel, stainless steel, superalloy) has sufficient thermal durability (i.e., does not ablate over time) to withstand high temperatures (e.g., at least 550° C., 600° C., 650° C., or higher) over a sustained period of time (i.e., hundreds or thousands of consecutive hours under accelerated exposure conditions, for example, at least 1000 hours); and
      • (3) the solar selective coating is applied to the metal article at a thickness of between approximately 450 nm-600 nm.
  • In embodiments shown in FIG. 3B, the solar selective absorber coating 320 is composed of the following layers in sequence from the outer surface 316 of the pipe 202 toward the exterior: a first diffusion barrier layer 321, a second diffusion barrier layer 322, a metallic IR reflective layer 323, a solar absorptive layer 324, an anti-reflective layer 325, and a hard coat protective layer 326. Predominantly thin layer systems based on CERMET (ceramic-metal mixture) can be used, which are produced by vapor deposition or sputtering. The first and/or second diffusion barrier layer may be a thin film layer. Thin film layers may be described as those layers which have a thickness of less than 100 nm. The layers mentioned in this example may have compositions as described hereinbelow.
  • In embodiments shown in FIG. 3C, the solar selective absorber coating 330 is composed of the following layers in sequence from the outer surface 316 of the pipe 202 toward the exterior: a first diffusion barrier layer 321, a second diffusion barrier layer 322, a metallic IR reflective layer 323, a solar absorptive layer 324, and an anti-reflective layer 325. In this embodiment, the solar absorptive layer may act as a thick hard coat layer, thereby providing protection to the coating as well as the substrate.
  • In some embodiments, the solar selective coating may include a thick film layer as a diffusion barrier layer. A thick film layer may be used instead of the combination of the first diffusion barrier layer 321 and the second diffusion barrier layer 322. The thick film diffusion barrier layer may include a SiC/SiN, an enamel, a ceramic-like mixture of Al2O3 and SiO2, a thick metal layer (e.g., nickel), or a diamond hard coating. The thickness of the thick film diffusion barrier layer may be greater than 100 nm.
  • The embodiments of FIGS. 3B-3C, or variations thereof, may also modified to include a third barrier diffusion layer (not shown) between the IR reflection layer (e.g., 323) and the solar absorptive layer (e.g., 324). The third diffusion barrier layer may be one of SiOx, SiN, TiO2, TiOx, a metal/AlOx CERMET and a metal/SiOx CERMET.
  • At extremely high temperatures (e.g., between approximately 500° C. and 600° C., or higher, which may occur in solar thermal energy systems) elements from the substrate may diffuse into the solar selective coating, which may cause a change in the coating properties. For example, iron, manganese, molybdenum, chromium, or nickel may diffuse into the layer system. In order to prevent diffusion between the substrate and the absorber coating and its accompanying negative effects, at least one diffusion barrier layer may be provided. The diffusion barrier layers prevent or reduce transport and diffusion processes which may include transport from the substrate as well as gas diffusion through the substrate in solar selective coatings.
  • A first diffusion barrier layer 321 may include at least one of SiOx, SiN, TiO2, TiOx, a metal/AlOx CERMET and a metal/SiOx CERMET. The first diffusion barrier layer 321 may have a thickness of between 50 and 100 nm. In some embodiments, the first diffusion barrier layer 321 may have a thickness of between 50 and 80 nm.
  • The solar selective coating may include a second diffusion barrier layer 322. The second diffusion barrier layer 322 may be adjacent to the first diffusion barrier layer 321. The second diffusion barrier layer 322 may have a thickness of between 60 and 120 nm. In some embodiments, the second diffusion barrier layer may have a thickness of between 70 and 100 nm. In some embodiments, one of the first and second diffusion barrier layers may include at least one selected from SiOx, SiN, TiO2 and TiOx, and the other of the first and second diffusion barrier layers includes at least one of a metal/AlOx CERMET and a metal/SiOx CERMET.
  • The metallic IR reflective layer 223 usually includes a metal that is highly reflective in the infrared range, such as silver, platinum, nickel, palladium, tungsten, chromium or molybdenum. The IR reflective materials may include silicides, borides, carbides, and other suitable compounds of the refractory metals above. IR reflective layer 323 may also include at least one noble metal selected from the group consisting of platinum, palladium, silver, rhodium, ruthenium, indium, gold, and osmium.
  • CERMETs are highly solar absorbing metal-dielectric composites containing fine metal particles in a dielectric or ceramic matrix, or a porous oxide impregnated with metal. As such, CERMETs may be used as a solar absorptive layer. The solar absorptive layer 324 can include a metal, such as Pt, Ni, Pd, W, Cr or Mo, which is embedded in an oxide, such as Al2O3, SiO2.
  • The anti-reflective layer 325 may include a pure oxide, such as SiO2 or Al2O3. An anti-reflection coating (AR) coating is a dielectric coating applied to an optical surface to reduce the optical reflectivity of that surface in a certain wavelength range. Such properties may be achieved by introducing one or more additional optical interfaces so that the reflected waves from all the different interfaces largely cancel each other by destructive interference. In the simplest case, an antireflection coating designed for normal incidence (i.e., perpendicular to the incident surface) uses a single quarter-wave layer of a material, the refractive index of which is close to the geometric mean value of the refractive indices of the two adjacent media. By obtaining two reflections of equal magnitude from the two interfaces, the reflections cancel each other by destructive interference.
  • Reflection can be minimized when n1=√{square root over (nons)}, where n1 is the refractive index of the thin layer, and no and ns are the indices of the two media. Such AR coatings can reduce the reflection for ordinary glass from about 4 percent per surface to around 2 percent. Practical AR coatings rely on an intermediate layer not only for its direct reduction of reflection coefficient, but also to use the interference effect of a thin layer. If the layer's thickness is controlled precisely such that it is exactly one-quarter of the wavelength of the light (i.e., a quarter-wave coating), the reflections from the front and back sides of the thin layer will destructively interfere and cancel each other. This may significantly reduce the reflection from the surface such that most of the light is transmitted through.
  • Refractory metal oxide compounds (e.g., HfO2, Ta2O3, TiO2Y2O3, and ZrO2) can be used as the materials in the AR coating and absorbing layers because of their indices of refraction, their chemical, mechanical, and thermal stabilities, and their relatively high melting points. Refractory metal or metalloid oxides (e.g., SiO2, MgO, Al2O3, and Ta2O5), fluorides (e.g., AlF2, MgF2, and YF3), nitrides (e.g., TiN, TaN), and oxynitride (e.g., SiOXNY and AlOXN) compounds can also be used for AR coatings because of their low indices of refraction, and can also be used as a high-index of refraction material in both AR coating and absorbing layers.
  • In some embodiments, refractory and noble metals are used as an AR coating for their high melting points. Refractory transition metals are those possessing high melting points and boiling points.
  • Hard coatings can be used for applications where high temperature stability and excellent wear resistance are required. Coatings of a few microns thickness may be used. A hard coat protective layer, e.g., layer 326 as shown in FIG. 3B, may include oxides, nitrides, carbides, borides or carbon. In some examples, the hard coat protective layer may include ZrN, TiN, AlTiN, CrN.
  • In embodiments, an article of manufacture can include a heat transfer member having a receiving surface, which has an absorptivity of at least 95% with respect to the AM 1.5 spectrum that is maintainable at temperatures of 600° C. for at least 1000 hours. The article can include a solar receiver and/or a heat transfer member that is part of a solar receiver. The heat transfer member can include a surface coating, e.g., a solar selective coating on the heat transfer member that defines properties of the receiving surface thereof.
  • Example 1
  • The solar selective coating was prepared using the components listed in Table 1, each layer of the coating was added in the order listed in the table.
  • TABLE 1
    Layer Component Layer Thickness (nm)
    1st Diffusion Barrier Layer SiN 60 nm
    2nd Diffusion Barrier Layer AlOx—Pt 88.5 nm
    IR reflective layer Pt 240 nm
    3rd Diffusion Barrier Layer SiN 20 nm
    Solar Absorptive Layer AlOx—Pt 112 nm
    Anti-Reflective Layer SiOx 80 nm
  • The solar selective coating was applied to a stainless steel substrate (Super 304H) which had been polished prior to the coating application. The substrate was cut into small samples and heated to a temperature of 650° C. for 30 minutes in order to form a native oxide layer. Each of the layers was applied to the substrate using a sputtering technique. The coated substrate was stored at 650° C. for 1720 hours.
  • The solar selective coating of Example 1 produced an absorptivity of ˜95% with respect to the AM 1.5 spectrum and an emissivity of 36.7% at 650° C. It was also shown that there was practically no decrease in reflectivity in the IR-range and the solar absorptive layer remained stable with no diffusion of the substrate into the solar absorptive layer.
  • Example 2
  • The solar selective coating was prepared using the components listed in Table 2, each layer of the coating was added in the order listed in the table.
  • TABLE 2
    Layer Component Layer Thickness (nm)
    1st Diffusion Barrier Layer SiN 80 nm
    IR reflective layer Pt 240 nm
    3rd Diffusion Barrier Layer SiOx 20 nm
    Solar Absorptive Layer AlOx—Pt 80 nm
    Anti-Reflective Layer SiOx 100 nm
  • The solar selective coating was applied to a stainless steel substrate (Super 304H) which had been polished prior to the coating application. The substrate was cut into small samples and heated to a temperature of 650° C. for 30 minutes in order to form a native oxide layer. Each of the layers was applied to the substrate using a sputtering technique. The coated substrate was stored at 650° C. for 2000 hours.
  • The solar selective coating of Example 2 produced an absorptivity of ˜95% with respect to the AM 1.5 spectrum and an emissivity of 30% at 650° C. It was also shown that after 2000 hours at 650° C. there was a slight decrease in reflectivity in the IR-range and the solar absorptive layer remained stable with no diffusion of the substrate into the solar absorptive layer.
  • Although particular formulations have been discussed herein, other formulations can also be employed. Furthermore, the foregoing descriptions apply, in some cases, to examples generated in a laboratory, but these examples can be extended to production techniques. For example, where quantities and techniques apply to the laboratory examples, they should not be understood as limiting. In addition, although certain materials, chemicals, or components have been described herein, other materials, chemicals (elemental or compositions), or components are also possible according to one or more contemplated embodiments.
  • Features of the disclosed embodiments may be combined, rearranged, omitted, etc., within the scope of the present disclosure to produce additional embodiments. Furthermore, certain features may sometimes be used to advantage without a corresponding use of other features.
  • It is, thus, apparent that there is provided, in accordance with the present disclosure, high temperature radiation selective coatings and related apparatus. Many alternatives, modifications, and variations are enabled by the present disclosure. While specific embodiments have been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles. Accordingly, Applicants intend to embrace all such alternatives, modifications, equivalents, and variations that are within the spirit and scope of the present invention.

Claims (22)

1. A solar selective coating for use on a solar central tower, the coating comprising, in sequence:
a first diffusion barrier layer;
a metallic IR reflective layer;
a solar absorptive layer; and
an anti-reflective layer;
wherein said first diffusion barrier layer comprises at least one diffusion barrier material, and
the solar selective coating has an absorptivity of at least 95% with respect to the AM 1.5 spectrum at long term operating temperatures of at least 600° C.
2. The solar selective coating of claim 1, wherein the solar absorptive layer has a thickness of between approximately 80 nm and 120 nm.
3. The solar selective coating of claim 1, wherein the diffusion barrier material includes at least one selected from SiOx, SiN, TiO2, TiOx, a metal/AlOx CERMET and a metal/SiOx CERMET.
4. The solar selective coating of claim 1, further comprising a second diffusion barrier layer adjacent to the first diffusion barrier layer.
5. The solar selective coating of claim 4, wherein one of the first and second diffusion barrier layers includes at least one selected from SiOx, SiN, TiO2 and TiOx.
6. The solar selective coating of claim 5, wherein the other of the first and second diffusion barrier layers includes at least one selected from a metal/AlOx CERMET and a metal/SiOx CERMET.
7. The solar selective coating of claim 1, further comprising a natural oxide layer of a substrate on which the solar selective coating is disposed.
8. The solar selective coating of claim 7, wherein the substrate includes at least one of a carbon steel, a low alloy steel, a high alloy steel, a stainless steel, and a superalloy.
9. The solar selective coating of claim 1, wherein the IR reflective layer includes at least one of a noble metal and a refractory metal silicide.
10. The solar selective coating of claim 1, wherein the solar absorptive layer is a CERMET layer.
11. The solar selective coating of claim 10, wherein the ceramic portion of the CERMET includes at least one of an aluminum oxide or a silicon oxide and the metal portion of the CERMET includes at least one of Pt, Ni, Pd, W, Cr or Mo.
12. The solar selective coating of claim 4, further comprising a third diffusion barrier layer between the IR reflective layer and the solar absorptive layer.
13. The solar selective coating of claim 12, wherein the third diffusion barrier layer includes at least one selected from SiOx, SiN, TiO2 and TiOx.
14. The solar selective coating of claim 1, further comprising a hard coat protective layer.
15. The solar selective coating of claim 1, wherein the solar absorptive layer is a thick hard coat protective layer.
16. The solar selective coating of claim 1, wherein the solar absorptive layer has a thickness greater than 120 nm.
17. A coated metal article for use in a solar central tower, the coated metal article comprising:
a metal layer comprising carbon steel, low alloy steel, high alloy steel, stainless steel, or a superalloy; and
a solar selective coating provided over a surface of said metal layer, the solar selective coating comprising:
a first diffusion barrier layer;
a metallic IR reflective layer;
a solar absorptive layer;
an anti-reflective layer; and
a hard coat protective layer,
wherein said diffusion barrier layer comprises at least one diffusion barrier material, and the solar selective coating has an absorptivity of at least 95% with respect to the AM 1.5 spectrum at long term operating temperatures of at least 600° C.
18. The coated metal article of claim 17, wherein said metal layer forms a conduit and the solar selective coating is provided over an external surface of the conduit.
19. The coated metal article of claim 18, wherein the external surface of the metal layer is a polished surface.
20. The coated metal article of claim 17, wherein the coated metal article comprises a portion of a solar receiver of the solar central tower.
21. The coated metal article of claim 17, wherein the solar selective coating has an emissivity of less than about 0.07 at 700° C.
22. A solar thermal energy system comprising:
a coated metal article; and
at least one heliostat that reflects insolation onto the coated metal article,
wherein the coated metal article comprises:
a metal layer comprising carbon steel, low alloy steel, high alloy steel, stainless steel, or a superalloy; and
a solar selective coating provided over a surface of said metal layer, the solar selective coating comprising:
a first diffusion barrier layer;
a metallic IR reflective layer;
a solar absorptive layer;
an anti-reflective layer; and
a hard coat protective layer,
wherein said diffusion barrier layer comprises at least one diffusion barrier material, and the solar selective coating has an absorptivity of at least 95% with respect to the AM 1.5 spectrum at long term operating temperatures of at least 600° C.
US14/203,602 2013-03-13 2014-03-11 High temperature radiation-selective coating and related apparatus Abandoned US20140261390A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/203,602 US20140261390A1 (en) 2013-03-13 2014-03-11 High temperature radiation-selective coating and related apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361779773P 2013-03-13 2013-03-13
US14/203,602 US20140261390A1 (en) 2013-03-13 2014-03-11 High temperature radiation-selective coating and related apparatus

Publications (1)

Publication Number Publication Date
US20140261390A1 true US20140261390A1 (en) 2014-09-18

Family

ID=51501607

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/203,602 Abandoned US20140261390A1 (en) 2013-03-13 2014-03-11 High temperature radiation-selective coating and related apparatus

Country Status (2)

Country Link
US (1) US20140261390A1 (en)
CN (1) CN104048432A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150129913A1 (en) * 2013-11-11 2015-05-14 Lextar Electronics Corporation Electrode structure
WO2016063255A1 (en) * 2014-10-23 2016-04-28 Brightsource Industries (Israel) Ltd. High-temperature solar-absorptive coatings with high thermal conductivity and low emissivity, and methods for use thereof
WO2017130534A1 (en) * 2016-01-29 2017-08-03 株式会社豊田自動織機 Solar heat collection tube and production method therefor
JP2017133786A (en) * 2016-01-29 2017-08-03 株式会社豊田自動織機 Solar heat collection pipe
WO2017130536A1 (en) * 2016-01-29 2017-08-03 株式会社豊田自動織機 Solar heat collection tube
US20170336102A1 (en) * 2014-10-29 2017-11-23 University Of Houston System Enhanced Thermal Stability on Multi-Metal Filled Cermet Based Spectrally Selective Solar Absorbers
WO2018011319A1 (en) * 2016-07-15 2018-01-18 General Electric Technology Gmbh Metal-ceramic coating for heat exchanger tubes of a central solar receiver and methods of preparing the same
WO2018115565A1 (en) * 2016-12-22 2018-06-28 Consejo Superior De Investigaciones Científicas Selective solar coating
EP3527911A1 (en) 2018-02-16 2019-08-21 Cockerill Maintenance & Ingenierie S.A. High perfomance thermally-sprayed absorber coating
JP2020522454A (en) * 2017-07-25 2020-07-30 ケイシーシー、コーポレイションKcc Corporation Low emission glass
WO2022034332A1 (en) * 2020-08-14 2022-02-17 ODQA Renewable Energy Technologies Limited Solar receiver

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106653914B (en) * 2016-12-22 2018-11-13 浙江大学 A kind of ultra-thin sun light heater and preparation method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009049471B3 (en) * 2009-10-15 2011-04-07 Schott Solar Ag Radiation-selective absorber coating and absorber tube with radiation-selective absorber coating
CN102121757B (en) * 2010-01-28 2012-09-19 北京有色金属研究总院 Non-vacuum solar spectrum selective absorption coating and preparation method thereof
CN101922816B (en) * 2010-07-14 2012-07-18 北京航空航天大学 Solar selective absorbing coating and preparation method thereof
CN102534497A (en) * 2012-03-29 2012-07-04 德州金亨新能源有限公司 High temperature selective absorption coating based on stainless steel material and manufacture method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9240521B2 (en) * 2013-11-11 2016-01-19 Lextar Electronics Corporation Electrode structure and light emitting diode using the same
US20150129913A1 (en) * 2013-11-11 2015-05-14 Lextar Electronics Corporation Electrode structure
WO2016063255A1 (en) * 2014-10-23 2016-04-28 Brightsource Industries (Israel) Ltd. High-temperature solar-absorptive coatings with high thermal conductivity and low emissivity, and methods for use thereof
US20170336102A1 (en) * 2014-10-29 2017-11-23 University Of Houston System Enhanced Thermal Stability on Multi-Metal Filled Cermet Based Spectrally Selective Solar Absorbers
JPWO2017130534A1 (en) * 2016-01-29 2018-09-06 株式会社豊田自動織機 Solar heat collecting tube and manufacturing method thereof
WO2017130534A1 (en) * 2016-01-29 2017-08-03 株式会社豊田自動織機 Solar heat collection tube and production method therefor
JP2017133786A (en) * 2016-01-29 2017-08-03 株式会社豊田自動織機 Solar heat collection pipe
WO2017130536A1 (en) * 2016-01-29 2017-08-03 株式会社豊田自動織機 Solar heat collection tube
WO2017130535A1 (en) * 2016-01-29 2017-08-03 株式会社豊田自動織機 Solar heat collection tube
JPWO2017130536A1 (en) * 2016-01-29 2018-09-06 株式会社豊田自動織機 Solar collector tube
WO2018011319A1 (en) * 2016-07-15 2018-01-18 General Electric Technology Gmbh Metal-ceramic coating for heat exchanger tubes of a central solar receiver and methods of preparing the same
US10126021B2 (en) 2016-07-15 2018-11-13 General Electric Technology Gmbh Metal-ceramic coating for heat exchanger tubes of a central solar receiver and methods of preparing the same
WO2018115565A1 (en) * 2016-12-22 2018-06-28 Consejo Superior De Investigaciones Científicas Selective solar coating
JP2020522454A (en) * 2017-07-25 2020-07-30 ケイシーシー、コーポレイションKcc Corporation Low emission glass
EP3527911A1 (en) 2018-02-16 2019-08-21 Cockerill Maintenance & Ingenierie S.A. High perfomance thermally-sprayed absorber coating
WO2019158326A1 (en) 2018-02-16 2019-08-22 Cockerill Maintenance & Ingenierie S.A. High perfomance thermally-sprayed absorber coating
WO2022034332A1 (en) * 2020-08-14 2022-02-17 ODQA Renewable Energy Technologies Limited Solar receiver

Also Published As

Publication number Publication date
CN104048432A (en) 2014-09-17

Similar Documents

Publication Publication Date Title
US20140261390A1 (en) High temperature radiation-selective coating and related apparatus
US8893711B2 (en) High temperature solar selective coatings
US9803891B2 (en) Solar selective coating having high thermal stability and a process for the preparation thereof
CN101191677B (en) Radiation selective absorber coating, absorber pipe, and method of making same
ES2575746B1 (en) Selective solar structure with high temperature resistant self-cleaning
US9546801B2 (en) Solar-thermal conversion member, solar-thermal conversion device, and solar thermal power generation device comprising a β-FeSi2 phase material
EP2739581B1 (en) Heat receiver tube with a glass tube with infrared light reflective coating, method for manufacturing the glass tube, parabolic trough collector with the heat receiver tube and use of the parabolic trough collector
AU2011200307A1 (en) High efficiency solar thermal receiver
CN104755649B (en) For the method for optical selective coating and the associated materials of acquisition of the substrate for producing high-temperature receiver solar energy equipment
WO2011120595A1 (en) Front surface mirror for reflecting sunlight, method for manufacturing the mirror and use of the mirror
CN102721216A (en) High-temperature solar selective absorption coating
CN203274309U (en) Solar energy absorbing coating and arrangement of same on substrate
EP2995882B1 (en) Solar-thermal conversion member, solar-thermal conversion stack, solar-thermal conversion device, and solar-thermal power generating device
CN109341116A (en) A kind of Cr-Si-N-O solar selectively absorbing coating and preparation method thereof
CN106500374A (en) A kind of biphase composite solar absorber coatings and manufacture method
CN105929471B (en) A kind of low-cost solar film reflecting mirror material
EP3433546B1 (en) Solar selective coating
AU2011364489B2 (en) Heat receiver tube, method for manufacturing the heat receiver tube, parabolic trough collector with the receiver tube and use of the parabolic trough collector
CN102954611A (en) Medium-high temperature spectrum selective absorbing coating
WO2013178370A2 (en) Solar reciver tube wit low emissivity covering, method for manufacturing the solar receiver tube and use of the tube
CN102734966A (en) Tank type solar intermediate temperature selective absorption coating
Kondaiah et al. Fabrication of spectrally selective tandem stack of HfZrC/HfZrCN/HfZrON/HfZrO by reactive magnetron sputtering for CSP applications
EP2606289B1 (en) Heat receiver tube, method for manufacturing the heat receiver tube, parabolic trough collector with the receiver tube and use of the parabolic trough collector
CN102706018B (en) Solar energy medium/high temperature selective absorption coating
CN107208934B (en) Solar heat collecting tube, solar-thermal conversion device, and solar power generation device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION