US20140245475A1 - Cotton variety st 4946glb2 - Google Patents

Cotton variety st 4946glb2 Download PDF

Info

Publication number
US20140245475A1
US20140245475A1 US14/192,313 US201414192313A US2014245475A1 US 20140245475 A1 US20140245475 A1 US 20140245475A1 US 201414192313 A US201414192313 A US 201414192313A US 2014245475 A1 US2014245475 A1 US 2014245475A1
Authority
US
United States
Prior art keywords
plant
cotton
4946glb2
variety
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/192,313
Inventor
Michael Robinson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer CropScience LP
Original Assignee
Bayer CropScience LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer CropScience LP filed Critical Bayer CropScience LP
Priority to US14/192,313 priority Critical patent/US20140245475A1/en
Publication of US20140245475A1 publication Critical patent/US20140245475A1/en
Assigned to BAYER CROPSCIENCE LP reassignment BAYER CROPSCIENCE LP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROBINSON, MICHAEL
Priority to US15/219,322 priority patent/US9986701B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/60Malvaceae, e.g. cotton or hibiscus
    • A01H6/604Gossypium [cotton]
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/08Fruits
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/10Seeds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8281Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for bacterial resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8282Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8286Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8287Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
    • C12N15/8289Male sterility

Definitions

  • This invention relates to the field of plant breeding. More particularly, the invention relates to a variety of cotton designated as ST 4946GLB2, its essentially derived varieties and the hybrid varieties obtained by crossing ST 4946GLB2 as a parent line with plants of other varieties or parent lines.
  • Cotton is an important, fiber producing crop. Due to the importance of cotton to the textile industry, cotton breeders are increasingly seeking to obtain healthy, good yielding crops of excellent quality.
  • Cotton is commonly reproduced by self-pollination and fertilization. This type of sexual reproduction facilitates the preservation of plant and variety characteristics during breeding and seed production. The preservation of these characteristics is often important to plant breeders for producing cotton plants having desired traits.
  • Other methods of producing cotton plants having desired traits are also used and include methods such as genetic transformation via Agrobacterium infection or direct transfer by microparticle bombardment. Examples of such methods are disclosed, for example, in U.S. Pub. No. 20090049564, incorporated by reference herein in its entirety.
  • the breeder may breed a particular variety type.
  • a new variety may be tested in special comparative trials with other existing varieties in order to determine whether the new variety meets the required expectations.
  • the invention relates to seeds, plants, plant cells, parts of plants, cotton lint or fiber, and cotton textiles of cotton variety ST 4946GLB2 as well as to hybrid cotton plants and seeds obtained by repeatedly crossing plants of ST 4946GLB2 with other cotton plants.
  • the invention encompasses plants and plant varieties produced by the method of derivation or essential derivation from plants of ST 4946GLB2 and to plants of ST 4946GLB2 reproduced by vegetative methods, including but not limited to regeneration of embryogenic cells or tissue of ST 4946GLB2.
  • the invention also encompasses methods of producing cotton seeds that comprise crossing plants of cotton variety ST 4946GLB2 either with itself or with a second, distinct cotton plant.
  • F2 plants are observed during the growing season for health, growth vigor, plant type, plant structure, leaf type, stand ability, flowering, maturity, seed yield, boll type, boll distribution, boll size, fiber yield and fiber quality. Plants are then selected. The selected plants are harvested and the bolls analyzed for fiber characteristics and the seed cleaned and stored. This procedure is repeated in the following growing seasons, whereby the selection and testing units increase from individual plants in the F2, to multiple plant containing ‘lines’ (descending from one mother plant) in the F5 and the number of units decrease from approximately 2500 plants in the F2 to 20 lines in the F5 by selecting about 10-20% of the units in each selection cycle.
  • lines descending from one mother plant
  • the increased size of the units allows the selection and testing in replicated trials on more than one location with a different environment and a more extensive and accurate analysis of the fiber quality.
  • the lines or candidate varieties become genotypically more homozygous and phenotypically more homogeneous by selecting similar plant types within a line and by discarding the so called off-types from the very variable F2 generation on to the final F7 or F8 generation.
  • the plant breeder may decide to vary the procedure described above, such as by accelerating the process by testing a particular line earlier or retesting a line another year. He may also select plants for further crossing with existing parent plants or with other plants resulting from the current selection procedure.
  • the breeder may introduce a specific trait or traits into an existing valuable line or variety, while otherwise preserving the unique combination of characteristics of this line or variety.
  • the valuable parent is recurrently used to cross it at least two or three times with each resulting backcross F1, followed by selection of the recurrent parent plant type, until the phenotype of the resulting F1 is similar or almost identical to the phenotype of the recurrent parent with the addition of the expression of the desired trait or traits.
  • This method of recurrent backcrossing eventually results in an essentially derived variety, which is predominantly derived from the recurrent parent or initial variety. This method can therefore also be used to get as close as possible to the genetic composition of an existing successful variety.
  • the essentially derived variety retains a distinctive trait, which can be any phenotypic trait, with the intention to profit from the qualities of that successful initial variety.
  • the genetic conformity with the initial variety of the resulting essentially derived variety may vary between 90% and 100%.
  • such essentially derived variety may also be obtained by the selection from an initial variety of an induced or natural occurring mutant plant, or of an occurring variant (off-type) plant, or of a somaclonal variant plant, or by genetic transformation of regenerable plant tissue or embryogenic cell cultures of the said initial variety by methods well known to those skilled in the art, such as Agrobacterium -mediated transformation as described by Sakhanokho et al, (2004), Reynaerts et al. (2000), Umbeck et al. (1988) and others.
  • transgenic events transformed in this way are “LLCotton25,” USDA-APHIS petition 02-042-01p, “Cot 102,” USDA-APHIS petition 03-155-01p, and “281-24-236,” USDA-APHIS petition 03-036-01p combined with “3006-210-23,” USDA-APHIS petition 03-036-02p.
  • Information regarding these and other transgenic events referred to herein may be found at the U.S. Department of Agriculture's (USDA) Animal and Plant Health Inspection Service (APHIS) website.
  • An “Event” is defined as a (artificial) genetic locus that, as a result of genetic engineering, carries a foreign DNA comprising at least one copy of the gene(s) of interest.
  • Other methods of genetic transformation are well known in the art such as microprojectile bombardment. See, e.g., U.S. Publication No. 20090049564, which is incorporated by reference herein in its entirety.
  • the plants selected or transformed retain the unique combination of the characteristics of ST 4946GLB2, except for the characteristics (e.g., one, two, three, four or five characteristics) changed by the selection of the mutant or variant plant or by the addition of a desired trait via genetic transformation. Therefore, the product of essential derivation (i.e., an essentially derived variety), has the phenotypic characteristics of the initial variety, except for the characteristics that change as a result of the act of derivation. Plants of the essentially derived variety can be used to repeat the process of essential derivation. The result of this process is also a variety essentially derived from said initial variety.
  • ST 4946GLB2 progeny plants are produced by crossing plants of ST 4946GLB2 with other, different or distinct cotton plants, and further selfing or crossing these progeny plants with other, distinct plants and subsequent selection of derived progeny plants.
  • the process of crossing ST 4946GLB2 derived progeny plants with itself or other distinct cotton plants and the subsequent selection in the resulting progenies can be repeated up to 7 or 8 times in order to produce ST 4946GLB2 derived cotton plants.
  • ST 4946GLB2 cotton contains four, simply-inherited events (GHB614, LLCOTTON25, MON531 and MON15985, respectively).
  • the event GHB614 confers tolerance to glyphosate herbicides while the other event LLCOTTON25 confers tolerance to glufosinate-ammonium herbicides.
  • the events MON 531 (Cry1Ac) and MON 15985 (Cry2Ab) provide lepidopteran control. These two MON events were developed and licensed from Monsanto. A donor line containing the two MON events (MON531 and MON15985) and the LLCOTTON25 event was crossed with another donor line containing the event GHB614.
  • This F1 population donor parent was used to make the initial cross to the recurrent parent of ST 4946GLB2.
  • This cross was made inside a glasshouse located at the Bayer CropScience Research Station near Memphis, Tenn. Three subsequent backcrosses were made. Following a selfing generation in the glasshouse, several plants were selected in the field based on Cry 1Ac and Cry2Ab expression, tolerance to glyphosate herbicide, tolerance to glufosinate-ammonium herbicide, leaf hair, disease resistance, lint % and fiber quality. Following progeny row testing for yield, disease resistance and fiber quality, selected lines proceeded to be tested in replicated trials, over multiple sites. At the same time small seed increases were initiated for all lines.
  • ST 4946GLB2 is a blend of selected lines. ST 4946GLB2 has been observed for several generations of reproduction. During this seed increase period the variety was stable and uniform. No variants were observed.
  • ST 4946GLB2 has an indeterminate plant growth habit and has a strong, erect central stem. ST 4946GLB2 is most similar to FM 1944GLB2; however, it has a significantly higher lint yield but shorter fiber.
  • inventions are seeds, plants, plant cells and parts of plants of the cotton variety ST 4946GLB2. Representative seeds of this variety will be deposited under rule 37CFR 1.809, prior to issuance of a patent. Applicant will make a deposit of at least 2500 seeds of cotton variety ST 4946GLB2 disclosed herein with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, Va. 20110-2209 USA. The accession number for the deposit is ATCC Accession No. XXXXX. The seeds are deposited with the ATCC on date YYYYY.
  • Plants produced by growing such seeds are provided herein as embodiments of the invention. Also provided herein are pollen or ovules of these plants, as well as a cell or tissue culture of regenerable cells from such plants.
  • the invention provides for a cotton plant regenerated from such cell or tissue culture, wherein the regenerated plant has the morphological and physiological characteristics of cotton cultivar ST 4946GLB2 when grown in the same environmental conditions.
  • the invention provides methods of testing for a plant having the morphological and physiological characteristics of cotton cultivar ST 4946GLB2.
  • the testing for a plant having the morphological and physiological characteristics of cotton cultivar ST 4946GLB2 is performed in the same field, under the same conditions and in the presence of plants of ST 4946GLB2, e.g., plants grown from the seed deposited under Accession number XXXXX.
  • the present invention provides regenerable cells for use in tissue culture of cotton cultivar ST 4946GLB2.
  • the tissue culture will preferably be capable of regenerating plants having the physiological and morphological characteristics of the cotton cultivar ST 4946GLB2, and of regenerating plants having substantially the same genotype as the cotton plant of the present invention.
  • the regenerable cells in such tissue cultures will be from embryos, protoplasts, meristematic cells, callus, pollen, leaves, anthers, pistils, roots, root tips, flowers, seeds, pods or stems.
  • the present invention provides cotton plants regenerated from the tissue cultures of the invention.
  • Yet another aspect of the current invention is a cotton plant of the cotton variety ST 4946GLB2 comprising at least a first transgene, wherein the cotton plant is otherwise capable of expressing all the physiological and morphological characteristics of the cotton variety ST 4946GLB2.
  • a plant is provided that comprises a single locus conversion.
  • a single locus conversion may comprise a transgenic gene which has been introduced by genetic transformation into the cotton variety ST 4946GLB2 or a progenitor thereof.
  • a transgenic or non-transgenic single locus conversion can also be introduced by backcrossing, as is well known in the art.
  • the single locus conversion may comprise a dominant or recessive allele. The locus conversion may confer potentially any desired trait upon the plant as described herein.
  • Single locus conversions may be implemented by a plant breeding technique called backcrossing wherein essentially all of the desired morphological and physiological characteristics of a variety are recovered in addition to the characteristics conferred by the single locus transferred into the variety via the backcrossing technique.
  • a single locus may comprise one gene, or in the case of transgenic plants, one or more transgenes integrated into the host genome at a single site (locus).
  • the invention provides for a method of introducing a single locus conversion into cotton cultivar ST 4946GLB2 comprising: (a) crossing the ST 4946GLB2 plants, grown from seed deposited under Accession No. XXXX, with plants of another cotton line that comprise a desired single locus to produce F1 progeny plants; (b) selecting F1 progeny plants that have the single locus to produce selected F1 progeny plants; (c) crossing the selected F1 progeny plants with the ST 4946GLB2 plants to produce first backcross progeny plants; (d) selecting for first backcross progeny plants that have the desired single locus and the physiological and morphological characteristics of cotton cultivar ST 4946GLB2 when grown in the same environmental conditions, to produce selected first backcross progeny plants; and (e) repeating steps (c) and (d) one or more times (e.g.
  • Plants produced by this method have all of the physiological and morphological characteristics of ST 4946GLB2, except for the characteristics derived from the desired trait.
  • Another embodiment of the invention provides for a method of producing an essentially derived plant of cotton variety ST 4946GLB2 comprising introducing a transgene conferring the desired trait into the plant, resulting in a plant with the desired trait and all of the physiological and morphological characteristics of cotton variety ST 4946GLB2 when grown in the same environmental conditions.
  • the invention provides for a method of producing an essentially derived cotton plant from ST 4946GLB2 comprising genetically transforming a desired trait in regenerable cell or tissue culture from a plant produced by the invention, resulting in an essentially derived cotton plant that retains the expression of the phenotypic characteristics of cotton variety ST 4946GLB2, except for the characteristics changed by the introduction of the desired trait.
  • Desired traits described herein include modified cotton fiber characteristics, herbicide resistance, insect or pest resistance, disease resistance, including bacterial or fungal disease resistance, male sterility, modified carbohydrate metabolism and modified fatty acid metabolism. Such traits and genes conferring such traits are known in the art. See, e.g., US 20090049564, incorporated by reference herein in its entirety.
  • the invention also provides for methods wherein the desired trait is herbicide tolerance and the tolerance is linked to a herbicide such as glyphosate, glufosinate, sulfonylurea, dicamba, phenoxy proprionic acid, cyclohexanedione, triazine, benzonitrile, bromoxynil or imidazalinone.
  • a herbicide such as glyphosate, glufosinate, sulfonylurea, dicamba, phenoxy proprionic acid, cyclohexanedione, triazine, benzonitrile, bromoxynil or imidazalinone.
  • the desired trait is insect resistance conferred by a transgene encoding a Bacillus thuringiensis (Bt) endotoxin, a derivative thereof, or a synthetic polypeptide modeled thereon.
  • Bt Bacillus thuringiensis
  • Also included herein is a method of producing cotton seed, comprising the steps of using the plant grown from seed of cotton variety ST 4946GLB2, of which a representative seed sample will be deposited under Accession No. XXXXX, as a recurrent parent in crosses with other cotton plants different from ST 4946GLB2, and harvesting the resultant cotton seed.
  • Another embodiment of this invention relates to seeds, plants, plant cells and parts of plants of cotton varieties that are essentially derived from ST 4946GLB2, being essentially the same as this invention by expressing the unique combination of characteristics of ST 4946GLB2, including the herbicide and insect resistance of ST 4946GLB2, except for the characteristics (e.g., one, two, three, four, or five, characteristics) being different from the characteristics of ST 4946GLB2 as a result of the act of derivation.
  • Another embodiment of this invention is the reproduction of plants of ST 4946GLB2 by the method of tissue culture from any regenerable plant tissue obtained from plants of this invention. Plants reproduced by this method express the specific combination of characteristics of this invention and fall within its scope. During one of the steps of the reproduction process via tissue culture, somaclonal variant plants may occur. These plants can be selected as being distinct from this invention, but still fall within the scope of this invention as being essentially derived from this invention.
  • Another embodiment of the invention provides for a method of producing an inbred cotton plant derived from the cotton variety ST 4946GLB2 comprising: (a) preparing a progeny plant derived from cotton variety ST 4946GLB2, a representative sample of seed of said variety having been deposited under ATCC Accession No.
  • Another embodiment of this invention is the production of a hybrid variety, comprising repeatedly crossing plants of ST 4946GLB2 with plants of a different variety or varieties or with plants of a non-released line or lines.
  • three different types of hybrid varieties may be produced (see e.g., Chapter 18, “Hybrid Varieties” in Briggs and Knowles, supra):
  • the “single cross hybrid” produced by two different lines the “three way hybrid”, produced by three different lines such that first the single hybrid is produced by using two out of the three lines followed by crossing this single hybrid with the third line, and the “four way hybrid” produced by four different lines such that first two single hybrids are produced using the lines two by two, followed by crossing the two single hybrids so produced.
  • the invention also provides for cotton lint or fiber produced by the plants of the invention, plants reproduced from the invention, and plants essentially derived from the invention.
  • the final textile produced from the unique fiber of ST 4946GLB2 also falls within the scope of this invention.
  • the invention also provides for a method of producing a commodity plant product (e.g., lint, cotton seed oil) comprising obtaining a plant of the invention or a part thereof, and producing said commodity plant product therefrom.
  • a commodity plant product e.g., lint, cotton seed oil
  • Applicant will make a deposit of at least 2500 seeds of cotton variety ST 4946GLB2 disclosed herein with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, Va. 20110-2209 USA, on YYYYY under Accession No. XXXXX. Seed of cotton variety ST 4946GLB2 is located at the Bayer CropScience Maricopa Cotton Breeding Station, 880 N Power Road, Bap Avenue, Ariz. 85121. The lot number for this seed material is TQ2AR6176F. Access to this deposit will be available during the pendency of the application to the Commissioner of Patents and Trademarks and persons determined by the Commissioner to be entitled thereto upon request.
  • Allele Any of one or more alternative forms of a gene locus, all of which alleles relate to one trait or characteristic. In a diploid cell or organism, the two alleles of a given gene occupy corresponding loci on a pair of homologous chromosomes.
  • Backcrossing A process in which a breeder repeatedly crosses hybrid progeny, for example a first generation hybrid (F1), back to one of the parents of the hybrid progeny. Backcrossing can be used to introduce one or more single locus conversions from one genetic background into another.
  • F1 first generation hybrid
  • Cm to FFB Measure of centimeters to first fruiting branch.
  • Crossing The mating of two parent plants.
  • Desired Agronomic Characteristics Agronomic characteristics (which will vary from crop to crop and plant to plant) such as yield, maturity, pest resistance and lint percent which are desired in a commercially acceptable crop or plant.
  • improved agronomic characteristics for cotton include yield, maturity, fiber content and fiber qualities.
  • Diploid A cell or organism having two sets of chromosomes.
  • Disease Resistance The ability of plants to restrict the activities of a specified pest, such as an insect, fungus, virus, or bacterial.
  • Donor Parent The parent of a variety which contains the gene or trait of interest which is desired to be introduced into a second variety.
  • Emasculate The removal of plant male sex organs or the inactivation of the organs with a cytoplasmic or nuclear genetic factor conferring male sterility or a chemical agent.
  • a plant having essentially all the physiological and morphological characteristics means a plant having the physiological and morphological characteristics, except for the characteristics derived from the desired trait.
  • F 1 Hybrid The first generation progeny of the cross of two nonisogenic plants.
  • Fallout As used herein, the term “fallout” refers to the rating of how much cotton has fallen on the ground at harvest.
  • FB5 cm to FFN Measure of centimeters from main stem to first fruiting node at fruiting branch 5.
  • Fiber Span Length refers to the longest 2.5% of a bundle of fibers expressed in inches as measured by a digital fibergraph.
  • Fiber Characteristics refers to fiber qualities such as strength, fiber length, micronaire, fiber elongation, uniformity of fiber and amount of fiber.
  • Fiber Elongation Sometimes referred to as E1, refers to the elongation of the fiber at the point of breakage in the strength determination as measured by High Volume Instrumentation (HVI).
  • HVI High Volume Instrumentation
  • Fruiting Nodes The number of nodes on the main stem from which arise branches that bear fruit or boll in the first position.
  • Gin Turnout Refers to fraction of lint in a machine harvested sample of seed cotton (lint, seed, and trash).
  • Haploid A cell or organism having one set of the two sets of chromosomes in a diploid.
  • Length (Len) The fiber length in inches using an HVI.
  • Linkage A phenomenon wherein alleles on the same chromosome tend to segregate together more often than expected by chance if their transmission was independent.
  • Lint Index The weight of lint per seed in milligrams.
  • Lint Percent The percentage of the seed cotton that is lint, handpicked samples.
  • Lint Yield refers to the measure of the quantity of fiber produced on a given unit of land. Presented below in pounds of lint per acre.
  • Quantitative Trait Loci Quantitative trait loci (QTL) refer to genetic loci that control to some degree numerically representable traits that are usually continuously distributed.
  • Recurrent Parent The repeating parent (variety) in a backcross breeding program.
  • the recurrent parent is the variety into which a gene or trait is desired to be introduced.
  • Seed/boll Refers to the number of seeds per boll, handpicked samples.
  • Seedcotton/boll Refers to the weight of seedcotton per boll, handpicked samples.
  • Seedweight Refers to the weight of 100 seeds in grams.
  • Self-pollination The transfer of pollen from the anther to the stigma of the same plant or a plant of the same genotype.
  • Single Locus Converted (Conversion) Plant Plants which are developed by a plant breeding technique called backcrossing wherein essentially all of the desired morphological and physiological characteristics of a variety are recovered in addition to the characteristics conferred by the single locus transferred into the variety via the backcrossing technique.
  • a single locus may comprise one gene, or in the case of transgenic plants, one or more transgenes integrated into the host genome at a single site (locus).
  • Tissue Culture A composition comprising isolated cells of the same or a different type or a collection of such cells organized into parts of a plant.
  • Transgene A genetic locus comprising a sequence which has been introduced into the genome of a cotton plant by transformation.
  • Uniformity Ratio The proportion of uniform length fibers. The uniformity ratio is determined by dividing the 50% fiber span length by the 2.5% fiber span length.
  • Vegetative Nodes The number of nodes from the cotyledonary node to the first fruiting branch on the main stem of the plant.
  • ST 4946GLB2 has an indeterminate plant growth habit and has a strong, erect central stem. ST 4946GLB2 is most similar to FM 1944GLB2; however, it has a significantly higher lint yield but shorter fiber.
  • Data trials consisted of three replications of two-row plots in a Randomized Complete Block Design. Plots were 13 m long with approximately 210 plants per plot (stand counts were not recorded). Individual plots were mechanically harvested and weighed. A sample of seedcotton from each of two replications was ginned on Continental 10-saw gins and fiber samples were analyzed on an Uster 1000 HVI machine.
  • Leaf upper most, fully expanded leaf Type normal, sub-okra, okra, super-okra Normal Normal Pubescense absent, sparse, medium, dense Medium Sparse Nectaries present, absent Present Present Stem Pubescense glabrous, intermediate, hairy Intermediate Intermediate Glands (Gossypol) absent, sparse, normal, more than normal Leaf Normal Normal Stem Normal Normal Calyx lobe (normal is absent) Normal Normal Flower Petals cream, yellow Cream Cream Pollen cream, yellow Cream Cream Petal Spot present, absent Absent Absent Seed Seed Index g/100 seed fuzzy basis 11.45 10.85 Lint Index g lint/100 seeds 8.00 7.11 Boll Lint percent Gin Turnout, picked 0.398 0.404 Number of Seeds per Boll 29.44 38.

Abstract

The cotton variety ST 4946GLB2 is disclosed. The invention relates to seeds, plants, plant cells, plant tissue, harvested products and cotton lint as well as to hybrid cotton plants and seeds obtained by repeatedly crossing plants of variety ST 4946GLB2 with other plants. The invention also relates to plants and varieties produced by the method of essential derivation from plants of ST 4946GLB2 and to plants of ST 4946GLB2 reproduced by vegetative methods, including but not limited to tissue culture of regenerable cells or tissue from ST 4946GLB2.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of U.S. Provisional Application Ser. No. 61/769,964, filed Feb. 27, 2013, the contents of which are herein incorporated by reference in their entirety.
  • FIELD OF THE INVENTION
  • This invention relates to the field of plant breeding. More particularly, the invention relates to a variety of cotton designated as ST 4946GLB2, its essentially derived varieties and the hybrid varieties obtained by crossing ST 4946GLB2 as a parent line with plants of other varieties or parent lines.
  • BACKGROUND OF THE INVENTION
  • Cotton is an important, fiber producing crop. Due to the importance of cotton to the textile industry, cotton breeders are increasingly seeking to obtain healthy, good yielding crops of excellent quality.
  • Cotton is commonly reproduced by self-pollination and fertilization. This type of sexual reproduction facilitates the preservation of plant and variety characteristics during breeding and seed production. The preservation of these characteristics is often important to plant breeders for producing cotton plants having desired traits. Other methods of producing cotton plants having desired traits are also used and include methods such as genetic transformation via Agrobacterium infection or direct transfer by microparticle bombardment. Examples of such methods are disclosed, for example, in U.S. Pub. No. 20090049564, incorporated by reference herein in its entirety.
  • Due to the environment, the complexity of the structure of genes and location of a gene in the genome, among other factors, it is difficult to predict the phenotypic expression of a particular genotype. In addition, a plant breeder may only apply his skills on the phenotype and not, or in a very limited way, on the level of the genotype. As a result, a particular plant breeder cannot breed the same variety twice using the same parents and the same methodology. Thus, a newly bred variety is an unexpected result of the breeding process. Indeed, each variety contains a unique combination of characteristics.
  • By carefully choosing the breeding parents, the breeding and selection methods, the testing layout and testing locations, the breeder may breed a particular variety type. In addition, a new variety may be tested in special comparative trials with other existing varieties in order to determine whether the new variety meets the required expectations.
  • SUMMARY OF THE INVENTION
  • The invention relates to seeds, plants, plant cells, parts of plants, cotton lint or fiber, and cotton textiles of cotton variety ST 4946GLB2 as well as to hybrid cotton plants and seeds obtained by repeatedly crossing plants of ST 4946GLB2 with other cotton plants. The invention encompasses plants and plant varieties produced by the method of derivation or essential derivation from plants of ST 4946GLB2 and to plants of ST 4946GLB2 reproduced by vegetative methods, including but not limited to regeneration of embryogenic cells or tissue of ST 4946GLB2. The invention also encompasses methods of producing cotton seeds that comprise crossing plants of cotton variety ST 4946GLB2 either with itself or with a second, distinct cotton plant.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The invention has been obtained by a general breeding process comprising the steps outlined below. For reference, see chapter 11, “Breeding Self-Pollinated Crops by Hybridization and Pedigree Selection” in Briggs and Knowles (1967).
  • Parent plants, which have been selected for good agronomic and fiber quality traits are manually crossed in different combinations. The resulting F1 (Filial generation 1) plants are self fertilized and the resulting F2 generation plants, which show a large variability on account of optimal gene segregation, are planted in a selection field.
  • These F2 plants are observed during the growing season for health, growth vigor, plant type, plant structure, leaf type, stand ability, flowering, maturity, seed yield, boll type, boll distribution, boll size, fiber yield and fiber quality. Plants are then selected. The selected plants are harvested and the bolls analyzed for fiber characteristics and the seed cleaned and stored. This procedure is repeated in the following growing seasons, whereby the selection and testing units increase from individual plants in the F2, to multiple plant containing ‘lines’ (descending from one mother plant) in the F5 and the number of units decrease from approximately 2500 plants in the F2 to 20 lines in the F5 by selecting about 10-20% of the units in each selection cycle.
  • The increased size of the units, whereby more seed per unit is available, allows the selection and testing in replicated trials on more than one location with a different environment and a more extensive and accurate analysis of the fiber quality.
  • The lines or candidate varieties become genotypically more homozygous and phenotypically more homogeneous by selecting similar plant types within a line and by discarding the so called off-types from the very variable F2 generation on to the final F7 or F8 generation.
  • Depending on the intermediate results the plant breeder may decide to vary the procedure described above, such as by accelerating the process by testing a particular line earlier or retesting a line another year. He may also select plants for further crossing with existing parent plants or with other plants resulting from the current selection procedure.
  • By the method of recurrent backcrossing, as described by Briggs and Knowles, supra, in chapter 13, “The Backcross Method of Breeding”, the breeder may introduce a specific trait or traits into an existing valuable line or variety, while otherwise preserving the unique combination of characteristics of this line or variety. In this crossing method, the valuable parent is recurrently used to cross it at least two or three times with each resulting backcross F1, followed by selection of the recurrent parent plant type, until the phenotype of the resulting F1 is similar or almost identical to the phenotype of the recurrent parent with the addition of the expression of the desired trait or traits.
  • This method of recurrent backcrossing eventually results in an essentially derived variety, which is predominantly derived from the recurrent parent or initial variety. This method can therefore also be used to get as close as possible to the genetic composition of an existing successful variety. Thus, compared to the recurrent parent the essentially derived variety retains a distinctive trait, which can be any phenotypic trait, with the intention to profit from the qualities of that successful initial variety.
  • Depending on the number of backcrosses and the efficacy of the selection of the recurrent parent plant type and genotype, which can be supported by the use of molecular markers as described by P. Stam (2003), the genetic conformity with the initial variety of the resulting essentially derived variety may vary between 90% and 100%.
  • Other than recurrent backcrossing, as described herein, such essentially derived variety may also be obtained by the selection from an initial variety of an induced or natural occurring mutant plant, or of an occurring variant (off-type) plant, or of a somaclonal variant plant, or by genetic transformation of regenerable plant tissue or embryogenic cell cultures of the said initial variety by methods well known to those skilled in the art, such as Agrobacterium-mediated transformation as described by Sakhanokho et al, (2004), Reynaerts et al. (2000), Umbeck et al. (1988) and others. Examples of transgenic events transformed in this way are “LLCotton25,” USDA-APHIS petition 02-042-01p, “Cot 102,” USDA-APHIS petition 03-155-01p, and “281-24-236,” USDA-APHIS petition 03-036-01p combined with “3006-210-23,” USDA-APHIS petition 03-036-02p. Information regarding these and other transgenic events referred to herein may be found at the U.S. Department of Agriculture's (USDA) Animal and Plant Health Inspection Service (APHIS) website. An “Event” is defined as a (artificial) genetic locus that, as a result of genetic engineering, carries a foreign DNA comprising at least one copy of the gene(s) of interest. Other methods of genetic transformation are well known in the art such as microprojectile bombardment. See, e.g., U.S. Publication No. 20090049564, which is incorporated by reference herein in its entirety.
  • The plants selected or transformed retain the unique combination of the characteristics of ST 4946GLB2, except for the characteristics (e.g., one, two, three, four or five characteristics) changed by the selection of the mutant or variant plant or by the addition of a desired trait via genetic transformation. Therefore, the product of essential derivation (i.e., an essentially derived variety), has the phenotypic characteristics of the initial variety, except for the characteristics that change as a result of the act of derivation. Plants of the essentially derived variety can be used to repeat the process of essential derivation. The result of this process is also a variety essentially derived from said initial variety.
  • In one embodiment, ST 4946GLB2 progeny plants are produced by crossing plants of ST 4946GLB2 with other, different or distinct cotton plants, and further selfing or crossing these progeny plants with other, distinct plants and subsequent selection of derived progeny plants. The process of crossing ST 4946GLB2 derived progeny plants with itself or other distinct cotton plants and the subsequent selection in the resulting progenies can be repeated up to 7 or 8 times in order to produce ST 4946GLB2 derived cotton plants.
  • ST 4946GLB2 cotton contains four, simply-inherited events (GHB614, LLCOTTON25, MON531 and MON15985, respectively). The event GHB614 confers tolerance to glyphosate herbicides while the other event LLCOTTON25 confers tolerance to glufosinate-ammonium herbicides. The events MON 531 (Cry1Ac) and MON 15985 (Cry2Ab) provide lepidopteran control. These two MON events were developed and licensed from Monsanto. A donor line containing the two MON events (MON531 and MON15985) and the LLCOTTON25 event was crossed with another donor line containing the event GHB614. This F1 population donor parent was used to make the initial cross to the recurrent parent of ST 4946GLB2. This cross was made inside a glasshouse located at the Bayer CropScience Research Station near Memphis, Tenn. Three subsequent backcrosses were made. Following a selfing generation in the glasshouse, several plants were selected in the field based on Cry 1Ac and Cry2Ab expression, tolerance to glyphosate herbicide, tolerance to glufosinate-ammonium herbicide, leaf hair, disease resistance, lint % and fiber quality. Following progeny row testing for yield, disease resistance and fiber quality, selected lines proceeded to be tested in replicated trials, over multiple sites. At the same time small seed increases were initiated for all lines. ST 4946GLB2 is a blend of selected lines. ST 4946GLB2 has been observed for several generations of reproduction. During this seed increase period the variety was stable and uniform. No variants were observed.
  • ST 4946GLB2 has an indeterminate plant growth habit and has a strong, erect central stem. ST 4946GLB2 is most similar to FM 1944GLB2; however, it has a significantly higher lint yield but shorter fiber.
  • Provided herein as embodiments of the invention are seeds, plants, plant cells and parts of plants of the cotton variety ST 4946GLB2. Representative seeds of this variety will be deposited under rule 37CFR 1.809, prior to issuance of a patent. Applicant will make a deposit of at least 2500 seeds of cotton variety ST 4946GLB2 disclosed herein with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, Va. 20110-2209 USA. The accession number for the deposit is ATCC Accession No. XXXXX. The seeds are deposited with the ATCC on date YYYYY. Access to this deposit will be made available during the pendency of the application to the Commissioner of Patents and Trademarks and persons determined by the Commissioner to be entitled thereto upon request. The deposit will be maintained for a period of 30 years, or 5 years after the most recent request, or for the enforceable life of the patent, whichever is longer, and will be replaced if it becomes nonviable during that period. Applicant does not waive any rights granted under this patent or under the Plant Variety Protection Act (7 U.S.C. 2321 et seq.).
  • Plants produced by growing such seeds are provided herein as embodiments of the invention. Also provided herein are pollen or ovules of these plants, as well as a cell or tissue culture of regenerable cells from such plants. In another embodiment, the invention provides for a cotton plant regenerated from such cell or tissue culture, wherein the regenerated plant has the morphological and physiological characteristics of cotton cultivar ST 4946GLB2 when grown in the same environmental conditions. In yet another embodiment, the invention provides methods of testing for a plant having the morphological and physiological characteristics of cotton cultivar ST 4946GLB2. In one embodiment, the testing for a plant having the morphological and physiological characteristics of cotton cultivar ST 4946GLB2 is performed in the same field, under the same conditions and in the presence of plants of ST 4946GLB2, e.g., plants grown from the seed deposited under Accession number XXXXX.
  • In another embodiment, the present invention provides regenerable cells for use in tissue culture of cotton cultivar ST 4946GLB2. The tissue culture will preferably be capable of regenerating plants having the physiological and morphological characteristics of the cotton cultivar ST 4946GLB2, and of regenerating plants having substantially the same genotype as the cotton plant of the present invention. Preferably, the regenerable cells in such tissue cultures will be from embryos, protoplasts, meristematic cells, callus, pollen, leaves, anthers, pistils, roots, root tips, flowers, seeds, pods or stems. Still further, the present invention provides cotton plants regenerated from the tissue cultures of the invention.
  • Yet another aspect of the current invention is a cotton plant of the cotton variety ST 4946GLB2 comprising at least a first transgene, wherein the cotton plant is otherwise capable of expressing all the physiological and morphological characteristics of the cotton variety ST 4946GLB2. In particular embodiments of the invention, a plant is provided that comprises a single locus conversion. A single locus conversion may comprise a transgenic gene which has been introduced by genetic transformation into the cotton variety ST 4946GLB2 or a progenitor thereof. A transgenic or non-transgenic single locus conversion can also be introduced by backcrossing, as is well known in the art. In certain embodiments of the invention, the single locus conversion may comprise a dominant or recessive allele. The locus conversion may confer potentially any desired trait upon the plant as described herein.
  • Single locus conversions may be implemented by a plant breeding technique called backcrossing wherein essentially all of the desired morphological and physiological characteristics of a variety are recovered in addition to the characteristics conferred by the single locus transferred into the variety via the backcrossing technique. A single locus may comprise one gene, or in the case of transgenic plants, one or more transgenes integrated into the host genome at a single site (locus).
  • In a particular aspect, the invention provides for a method of introducing a single locus conversion into cotton cultivar ST 4946GLB2 comprising: (a) crossing the ST 4946GLB2 plants, grown from seed deposited under Accession No. XXXXX, with plants of another cotton line that comprise a desired single locus to produce F1 progeny plants; (b) selecting F1 progeny plants that have the single locus to produce selected F1 progeny plants; (c) crossing the selected F1 progeny plants with the ST 4946GLB2 plants to produce first backcross progeny plants; (d) selecting for first backcross progeny plants that have the desired single locus and the physiological and morphological characteristics of cotton cultivar ST 4946GLB2 when grown in the same environmental conditions, to produce selected first backcross progeny plants; and (e) repeating steps (c) and (d) one or more times (e.g. one, two, three, four, etc. times) in succession to produce selected third or higher backcross progeny plants that comprise the desired single locus and all of the physiological and morphological characteristics of cotton cultivar ST 4946GLB2 when grown in the same environmental conditions. Plants produced by this method have all of the physiological and morphological characteristics of ST 4946GLB2, except for the characteristics derived from the desired trait.
  • Another embodiment of the invention provides for a method of producing an essentially derived plant of cotton variety ST 4946GLB2 comprising introducing a transgene conferring the desired trait into the plant, resulting in a plant with the desired trait and all of the physiological and morphological characteristics of cotton variety ST 4946GLB2 when grown in the same environmental conditions. In another embodiment, the invention provides for a method of producing an essentially derived cotton plant from ST 4946GLB2 comprising genetically transforming a desired trait in regenerable cell or tissue culture from a plant produced by the invention, resulting in an essentially derived cotton plant that retains the expression of the phenotypic characteristics of cotton variety ST 4946GLB2, except for the characteristics changed by the introduction of the desired trait.
  • Desired traits described herein include modified cotton fiber characteristics, herbicide resistance, insect or pest resistance, disease resistance, including bacterial or fungal disease resistance, male sterility, modified carbohydrate metabolism and modified fatty acid metabolism. Such traits and genes conferring such traits are known in the art. See, e.g., US 20090049564, incorporated by reference herein in its entirety.
  • The invention also provides for methods wherein the desired trait is herbicide tolerance and the tolerance is linked to a herbicide such as glyphosate, glufosinate, sulfonylurea, dicamba, phenoxy proprionic acid, cyclohexanedione, triazine, benzonitrile, bromoxynil or imidazalinone.
  • In one embodiment, the desired trait is insect resistance conferred by a transgene encoding a Bacillus thuringiensis (Bt) endotoxin, a derivative thereof, or a synthetic polypeptide modeled thereon.
  • Also included herein is a method of producing cotton seed, comprising the steps of using the plant grown from seed of cotton variety ST 4946GLB2, of which a representative seed sample will be deposited under Accession No. XXXXX, as a recurrent parent in crosses with other cotton plants different from ST 4946GLB2, and harvesting the resultant cotton seed.
  • Another embodiment of this invention relates to seeds, plants, plant cells and parts of plants of cotton varieties that are essentially derived from ST 4946GLB2, being essentially the same as this invention by expressing the unique combination of characteristics of ST 4946GLB2, including the herbicide and insect resistance of ST 4946GLB2, except for the characteristics (e.g., one, two, three, four, or five, characteristics) being different from the characteristics of ST 4946GLB2 as a result of the act of derivation.
  • Another embodiment of this invention is the reproduction of plants of ST 4946GLB2 by the method of tissue culture from any regenerable plant tissue obtained from plants of this invention. Plants reproduced by this method express the specific combination of characteristics of this invention and fall within its scope. During one of the steps of the reproduction process via tissue culture, somaclonal variant plants may occur. These plants can be selected as being distinct from this invention, but still fall within the scope of this invention as being essentially derived from this invention.
  • Another embodiment of the invention provides for a method of producing an inbred cotton plant derived from the cotton variety ST 4946GLB2 comprising: (a) preparing a progeny plant derived from cotton variety ST 4946GLB2, a representative sample of seed of said variety having been deposited under ATCC Accession No. XXXXX, by crossing cotton variety ST 4946GLB2 with a cotton plant of a second variety; (b) crossing the progeny plant with itself or a second plant to produce a seed of a progeny plant of a subsequent generation; (c) growing a progeny plant of a subsequent generation from said seed and crossing the progeny plant of a subsequent generation with itself or a second plant; and (d) repeating steps (b) and (c) for an additional 3-10 generations with sufficient inbreeding to produce an inbred cotton plant derived from the cotton variety ST 4946GLB2.
  • Another embodiment of this invention is the production of a hybrid variety, comprising repeatedly crossing plants of ST 4946GLB2 with plants of a different variety or varieties or with plants of a non-released line or lines. In practice, three different types of hybrid varieties may be produced (see e.g., Chapter 18, “Hybrid Varieties” in Briggs and Knowles, supra):
  • The “single cross hybrid” produced by two different lines, the “three way hybrid”, produced by three different lines such that first the single hybrid is produced by using two out of the three lines followed by crossing this single hybrid with the third line, and the “four way hybrid” produced by four different lines such that first two single hybrids are produced using the lines two by two, followed by crossing the two single hybrids so produced.
  • Each single, three way or four way hybrid variety so produced and using ST 4946GLB2 as one of the parent lines contains an essential contribution of ST 4946GLB2 to the resulting hybrid variety and falls within the scope of this invention.
  • The invention also provides for cotton lint or fiber produced by the plants of the invention, plants reproduced from the invention, and plants essentially derived from the invention. The final textile produced from the unique fiber of ST 4946GLB2 also falls within the scope of this invention. The invention also provides for a method of producing a commodity plant product (e.g., lint, cotton seed oil) comprising obtaining a plant of the invention or a part thereof, and producing said commodity plant product therefrom.
  • The entire disclosure of each document cited herein (e.g., US patent publications, non-patent literature, etc.) is hereby incorporated by reference.
  • DEPOSIT INFORMATION
  • Applicant will make a deposit of at least 2500 seeds of cotton variety ST 4946GLB2 disclosed herein with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, Va. 20110-2209 USA, on YYYYY under Accession No. XXXXX. Seed of cotton variety ST 4946GLB2 is located at the Bayer CropScience Maricopa Cotton Breeding Station, 880 N Power Road, Bapschule, Ariz. 85121. The lot number for this seed material is TQ2AR6176F. Access to this deposit will be available during the pendency of the application to the Commissioner of Patents and Trademarks and persons determined by the Commissioner to be entitled thereto upon request. The deposit will be maintained for a period of 30 years, or 5 years after the most recent request, or for the enforceable life of the patent, whichever is longer, and will be replaced if it becomes nonviable during that period. Applicant does not waive any rights granted under this patent or under the Plant Variety Protection Act (7 U.S.C. 2321 et seq.).
  • DEFINITIONS
  • In the description and tables which follow, a number of terms are used. In order to provide a clear and consistent understanding of the specification and claims, the following definitions are provided:
  • A: When used in conjunction with the word “comprising” or other open language in the claims, the words “a” and “an” denote “one or more.”
  • Allele: Any of one or more alternative forms of a gene locus, all of which alleles relate to one trait or characteristic. In a diploid cell or organism, the two alleles of a given gene occupy corresponding loci on a pair of homologous chromosomes.
  • Backcrossing: A process in which a breeder repeatedly crosses hybrid progeny, for example a first generation hybrid (F1), back to one of the parents of the hybrid progeny. Backcrossing can be used to introduce one or more single locus conversions from one genetic background into another.
  • Cm to FFB: Measure of centimeters to first fruiting branch.
  • Crossing: The mating of two parent plants.
  • Cross-pollination: Fertilization by the union of two gametes from different plants.
  • Desired Agronomic Characteristics: Agronomic characteristics (which will vary from crop to crop and plant to plant) such as yield, maturity, pest resistance and lint percent which are desired in a commercially acceptable crop or plant. For example, improved agronomic characteristics for cotton include yield, maturity, fiber content and fiber qualities.
  • Diploid: A cell or organism having two sets of chromosomes.
  • Disease Resistance: The ability of plants to restrict the activities of a specified pest, such as an insect, fungus, virus, or bacterial.
  • Disease Tolerance: The ability of plants to endure a specified pest (such as an insect, fungus, virus or bacteria) or an adverse environmental condition and still perform and produce in spite of this disorder.
  • Donor Parent: The parent of a variety which contains the gene or trait of interest which is desired to be introduced into a second variety.
  • E1: Refers to elongation, a measure of fiber elasticity (high=more elastic).
  • Emasculate: The removal of plant male sex organs or the inactivation of the organs with a cytoplasmic or nuclear genetic factor conferring male sterility or a chemical agent.
  • Essentially all the physiological and morphological characteristics: A plant having essentially all the physiological and morphological characteristics means a plant having the physiological and morphological characteristics, except for the characteristics derived from the desired trait.
  • F1 Hybrid: The first generation progeny of the cross of two nonisogenic plants.
  • Fallout (Fo): As used herein, the term “fallout” refers to the rating of how much cotton has fallen on the ground at harvest.
  • FB5 cm to FFN: Measure of centimeters from main stem to first fruiting node at fruiting branch 5.
  • 2.5% Fiber Span Length: Refers to the longest 2.5% of a bundle of fibers expressed in inches as measured by a digital fibergraph.
  • Fiber Characteristics: Refers to fiber qualities such as strength, fiber length, micronaire, fiber elongation, uniformity of fiber and amount of fiber.
  • Fiber Elongation: Sometimes referred to as E1, refers to the elongation of the fiber at the point of breakage in the strength determination as measured by High Volume Instrumentation (HVI).
  • Fiber Span Length: The distance spanned by a specific percentage of fibers in a test specimen, where the initial starting point of the scanning in the test is considered 100 percent as measured by a digital fibergraph.
  • Fiber Strength (Str): Denotes the force required to break a bundle of fibers. Fiber strength is expressed in grams per tex on an HVI.
  • Fruiting Nodes: The number of nodes on the main stem from which arise branches that bear fruit or boll in the first position.
  • Genotype: The genetic constitution of a cell or organism.
  • Gin Turnout: Refers to fraction of lint in a machine harvested sample of seed cotton (lint, seed, and trash).
  • Haploid: A cell or organism having one set of the two sets of chromosomes in a diploid.
  • Length (Len): The fiber length in inches using an HVI.
  • Linkage: A phenomenon wherein alleles on the same chromosome tend to segregate together more often than expected by chance if their transmission was independent.
  • Lint Index: The weight of lint per seed in milligrams.
  • Lint Percent: The percentage of the seed cotton that is lint, handpicked samples.
  • Lint Yield: Refers to the measure of the quantity of fiber produced on a given unit of land. Presented below in pounds of lint per acre.
  • Lint/boll: As used herein, the term “lint/boll” is the weight of lint per boll.
  • Maturity Rating: A visual rating near harvest on the amount of open boils on the plant. The rating range is from 1 to 5, 1 being early and 5 being late.
  • Micronaire (Mic): Refers to a measure of fiber fineness (high=coarse fiber) as measured with an HVI machine. Within a cotton cultivar, micronaire is also a measure of maturity. Micronaire differences are governed by changes in perimeter or in cell wall thickness, or by changes in both. Within a variety, cotton perimeter is fairly consistent and maturity will cause a change in micronaire. Consequently, micronaire has a high correlation with maturity within a variety of cotton. Maturity is the degree of development of cell wall thickness.
  • Mr: Fiber maturity ratio.
  • Phenotype: The detectable characteristics of a cell or organism, which characteristics are the manifestation of gene expression.
  • Plant Height: The average height in meters of a group of plants.
  • Quantitative Trait Loci (QTL): Quantitative trait loci (QTL) refer to genetic loci that control to some degree numerically representable traits that are usually continuously distributed.
  • Recurrent Parent: The repeating parent (variety) in a backcross breeding program. The recurrent parent is the variety into which a gene or trait is desired to be introduced.
  • Regeneration: The development of a plant from tissue culture.
  • Seed/boll: Refers to the number of seeds per boll, handpicked samples.
  • Seedcotton/boll: Refers to the weight of seedcotton per boll, handpicked samples.
  • Seedweight: Refers to the weight of 100 seeds in grams.
  • Self-pollination: The transfer of pollen from the anther to the stigma of the same plant or a plant of the same genotype.
  • Single Locus Converted (Conversion) Plant: Plants which are developed by a plant breeding technique called backcrossing wherein essentially all of the desired morphological and physiological characteristics of a variety are recovered in addition to the characteristics conferred by the single locus transferred into the variety via the backcrossing technique. A single locus may comprise one gene, or in the case of transgenic plants, one or more transgenes integrated into the host genome at a single site (locus).
  • Stringout Rating: also sometimes referred to as “Storm Resistance” refers to a visual rating prior to harvest of the relative looseness of the seed cotton held in the boll structure on the plant. The rating values are from 1 to 5 (tight to loose in the boll).
  • Substantially Equivalent: A characteristic that, when compared, does not show a statistically significant difference (e.g., p=0.05) from the mean.
  • T1: A measure of fiber strength, grams per tex (high=stronger fiber).
  • Tissue Culture: A composition comprising isolated cells of the same or a different type or a collection of such cells organized into parts of a plant.
  • Transgene: A genetic locus comprising a sequence which has been introduced into the genome of a cotton plant by transformation.
  • Uniformity Ratio (Ur): The proportion of uniform length fibers. The uniformity ratio is determined by dividing the 50% fiber span length by the 2.5% fiber span length.
  • Vegetative Nodes: The number of nodes from the cotyledonary node to the first fruiting branch on the main stem of the plant.
  • CITED REFERENCES
    • Lawrence P. Burdett, “Cotton Variety 02T15,” U.S. Pub. No. 20090049564.
    • F. N. Briggs, and P. F Knowles, 1967:“Introduction to Plant Breeding”, Rheinhold Publishing Corporation.
    • H. F. Sakhanoko et al 2004:“Induction of Somatic embryogenesis and Plant Regeneration in Select Georgia and Pee Dee Cotton Lines”, Crop Science 44: 2199-2205.
    • Umbeck et al 1988: “Genetic engineering of cotton plants and lines”, Patent application number EP0290355.
    • Reynaerts et al 2000: “Improved method for Agrobacterium mediated transformation of cotton”, Patent application number WO 0071733.
    • P. Stam, 2003: “Marker-assisted introgression: speed at any cost?” Proceedings of the Eucarpia Meeting on Leafy Vegetable Genetics and Breeding, Noordwijkerhout, The Netherlands, 19-21 Mar. 2003. Eds. Th. J. L. van Hintum, A. Lebeda, D. Pink, J. W. Schut. P 117-124.
    • Trolinder et al. “Herbicide tolerant cotton plants having event EE-GH1.” U.S. Pat. No. 6,818,807 (2004).
    EXPERIMENTAL EXAMPLE Characterization of Cotton Variety ST 4946GLB2
  • ST 4946GLB2 has an indeterminate plant growth habit and has a strong, erect central stem. ST 4946GLB2 is most similar to FM 1944GLB2; however, it has a significantly higher lint yield but shorter fiber. Data trials consisted of three replications of two-row plots in a Randomized Complete Block Design. Plots were 13 m long with approximately 210 plants per plot (stand counts were not recorded). Individual plots were mechanically harvested and weighed. A sample of seedcotton from each of two replications was ginned on Continental 10-saw gins and fiber samples were analyzed on an Uster 1000 HVI machine.
  • TABLE 1
    Data from 2012 replicated testing in 2012 in Dawson County, TX.
    Entry Name N Yield Len
    ST4946GLB2 3 1249 1.12
    FM1944GLB2 3 864 1.15
    LSD(.05) 243 0.02
    CVErr 10.147 0.947
  • TABLE 2
    Data from 2012 replicated testing in 2012 in Newellton, LA.
    Entry Name N Yield Len
    ST4946GLB2 3 1863 1.15
    FM1944GLB2 3 1543 1.19
    LSD(.05) 60 0.02
    CVErr 1.543 0.427
  • TABLE 3
    Data from 2012 replicated testing in 2012 in Garza, TX
    Entry Name N Yield Len
    ST4946GLB2 3 1441 1.10
    FM1944GLB2 3 1289 1.17
    LSD(.05) 109 0.02
    CVErr 3.523 0.442
  • TABLE 1
    Characteristics of ST 4946GLB2
    Variety
    Description of characteristic Possible expression/note ST 4946GLB2 FM 944GLB2
    General Plant Type
    Plant Habit spreading, intermediate, compact Compact Intermediate
    Foliage sparse, intermediate, dense Intermediate Intermediate
    Stem Lodging lodging, intermediate, erect Erect Erect
    Fruiting Branch clustered, short, normal Normal Short
    Growth determinate, intermediate, Intermediate Intermediate
    indeterminate
    Leaf color greenish yellow, light green, medium Medium Green Medium Green
    green, dark green
    Boll Shape Length < Width, L = W, L > W Length > Width Length > Width
    Boll Breadth broadest at base, broadest at middle Middle Middle
    Maturity Days till maturity August 24 August 28
    Plant
    cm. to first Fruiting Branch from cotyledonary node 15.5 17.3
    No. of nodes to 1st Fruiting excluding cotyledonary node 5.0 6.2
    Branch
    Mature Plant Height in cm. cotyledonary node to terminal 96.1 100.4
    Leaf: upper most, fully
    expanded leaf
    Type normal, sub-okra, okra, super-okra Normal Normal
    Pubescense absent, sparse, medium, dense Medium Sparse
    Nectaries present, absent Present Present
    Stem Pubescense glabrous, intermediate, hairy Intermediate Intermediate
    Glands (Gossypol) absent, sparse, normal, more than
    normal
    Leaf Normal Normal
    Stem Normal Normal
    Calyx lobe (normal is absent) Normal Normal
    Flower
    Petals cream, yellow Cream Cream
    Pollen cream, yellow Cream Cream
    Petal Spot present, absent Absent Absent
    Seed
    Seed Index g/100 seed fuzzy basis 11.45 10.85
    Lint Index g lint/100 seeds 8.00 7.11
    Boll
    Lint percent
    Gin Turnout, picked 0.398 0.404
    Number of Seeds per Boll 29.44 38.38
    Grams Seed Cotton per Boll 3.37 3.08
    Number of Locules per Boll 4.3 4.4
    Boll Type storm proof, storm resistant, open Open Open
    Fiber Properties
    HVI method
    Length, inches, 2.5% SL 1.17 1.22
    Uniformity (%) 83.9 83.7
    Strength, T1 (g/tex) 31.0 31.4
    Elongation, E1 (%) 6.8 5.2
    Micronaire 4.49 4.43

Claims (17)

1. A seed of cotton variety ST 4946GLB2, wherein a representative seed of said variety was deposited under ATCC Accession No. XXXXX.
2. A plant, or a part thereof, produced by growing the seed of claim 1.
3. A plant, or a part thereof, obtained by vegetative reproduction from the plant, or a part thereof, of claim 2, said plant, or a part thereof, expressing all the phenotypic characteristics of cotton variety ST 4946GLB2, a sample of seed having been deposited under ATCC Accession No. XXXXX.
4. A process of vegetative reproduction of cotton variety ST 4946GLB2 comprising, culturing regenerable cells or tissue from ST 4946GLB2, a sample of seed having been deposited under ATCC Accession No. XXXXX.
5. A cell or tissue culture produced from the plant, or a part thereof, of claim 2.
6. A cotton plant regenerated from the cell or tissue culture of claim 5, said plant expressing all the phenotypic characteristics of ST 4946GLB2, a sample of seed having been deposited under ATCC Accession No. XXXXX.
7. A method of producing a Fl hybrid cotton seed, comprising the steps of crossing the plant of claim 2 with a different cotton plant and harvesting the resultant F1 hybrid cotton seed.
8. A F1 hybrid cotton seed produced by the method of claim 7.
9. A F1 hybrid cotton plant, or part thereof, produced by growing the hybrid seed of claim 8.
10. A plant obtained by the vegetative reproduction of the cotton plant of claim 9.
11. A method of producing a cotton seed comprising the steps of crossing the plant of claim 10 with a different cotton plant and harvesting the resultant cotton seed.
12. A method of introducing a desired trait into a cotton plant, the method comprising, transforming the plant of claim 2 with a transgene that confers the desired trait, wherein the transformed plant retains all the phenotypic characteristics of cotton variety ST 4946GLB2 and contains the desired trait.
13. The method of claim 12, wherein said desired trait is fiber quality, herbicide resistance, insect resistance, bacterial disease resistance or fungal disease resistance.
14. A method of introducing a desired trait into a cotton plant, the method comprising transforming the plant of claim 9 with a transgene that confers the desired trait, wherein the transformed plant retains all the phenotypic characteristics of cotton variety ST 4946GLB2 and contains the desired trait, seed of said variety having been deposited as ATCC Accession No. XXXXX.
15. A cotton plant produced by the method of claim 12.
16. A method of introducing a single locus conversion into cotton variety ST 4946GLB2 comprising:
(a) crossing a plant of variety ST 4946GLB2 with a second plant comprising a desired single locus to produce F1 progeny plants;
(b) selecting F1 progeny plants that have the single locus to produce selected F1 progeny plants;
(c) crossing the selected progeny plants with at least a first plant of variety ST 4946GLB2 to produce backcross progeny plants;
(d) selecting backcross progeny plants that have the single locus and all physiological and morphological characteristics of cotton variety ST 4946GLB2 to produce selected backcross progeny plants; and
(e) repeating steps (c) and (d) one or more times in succession to produce selected second or higher backcross progeny plants that comprise the single locus and otherwise comprise all of the physiological and morphological characteristics of cotton variety ST 4946GLB2 when grown in the same environmental conditions.
17. The method of claim 16, wherein the single locus confers a trait selected from the group consisting of male sterility; herbicide tolerance; insect or pest resistance; disease resistance; modified fatty acid metabolism; modified carbohydrate metabolism; and modified cotton fiber characteristics.
US14/192,313 2013-02-27 2014-02-27 Cotton variety st 4946glb2 Abandoned US20140245475A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/192,313 US20140245475A1 (en) 2013-02-27 2014-02-27 Cotton variety st 4946glb2
US15/219,322 US9986701B2 (en) 2013-02-27 2016-07-26 Cotton variety ST 4946GLB2

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361769964P 2013-02-27 2013-02-27
US14/192,313 US20140245475A1 (en) 2013-02-27 2014-02-27 Cotton variety st 4946glb2

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/219,322 Continuation US9986701B2 (en) 2013-02-27 2016-07-26 Cotton variety ST 4946GLB2

Publications (1)

Publication Number Publication Date
US20140245475A1 true US20140245475A1 (en) 2014-08-28

Family

ID=51389727

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/192,313 Abandoned US20140245475A1 (en) 2013-02-27 2014-02-27 Cotton variety st 4946glb2
US15/219,322 Active 2034-03-09 US9986701B2 (en) 2013-02-27 2016-07-26 Cotton variety ST 4946GLB2

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/219,322 Active 2034-03-09 US9986701B2 (en) 2013-02-27 2016-07-26 Cotton variety ST 4946GLB2

Country Status (1)

Country Link
US (2) US20140245475A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10827718B2 (en) * 2017-02-13 2020-11-10 Basf Agricultural Solutions Seed, Us Llc Cotton variety ST 5020GLT

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060191046A1 (en) * 2005-02-03 2006-08-24 Commonwealth Scientific And Industrial Research Organization Cotton variety FM 960B2R

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6943282B1 (en) 1983-09-26 2005-09-13 Mycogen Plant Science, Inc. Insect resistant plants
DE3587548T2 (en) 1984-12-28 1993-12-23 Plant Genetic Systems Nv Recombinant DNA that can be introduced into plant cells.
ES2018274T5 (en) 1986-03-11 1996-12-16 Plant Genetic Systems Nv VEGETABLE CELLS RESISTANT TO GLUTAMINE SYNTHETASE INHIBITORS, PREPARED BY GENETIC ENGINEERING.
US5004863B2 (en) 1986-12-03 2000-10-17 Agracetus Genetic engineering of cotton plants and lines
US6753463B1 (en) 1987-11-18 2004-06-22 Mycogen Corporation Transformed cotton plants
US5362865A (en) 1993-09-02 1994-11-08 Monsanto Company Enhanced expression in plants using non-translated leader sequences
US5659172A (en) 1995-06-21 1997-08-19 Opal Technologies Ltd. Reliable defect detection using multiple perspective scanning electron microscope images
US6489542B1 (en) 1998-11-04 2002-12-03 Monsanto Technology Llc Methods for transforming plants to express Cry2Ab δ-endotoxins targeted to the plastids
MXPA01011871A (en) 1999-05-19 2003-09-04 Aventis Cropscience Nv Improved method for agrobacterium.
EG26529A (en) 2001-06-11 2014-01-27 مونسانتو تكنولوجى ل ل سى Cotton event mon 15985 and compositions and methods for detection thereof
US6818807B2 (en) 2001-08-06 2004-11-16 Bayer Bioscience N.V. Herbicide tolerant cotton plants having event EE-GH1
WO2007017186A1 (en) 2005-08-08 2007-02-15 Bayer Bioscience N.V. Herbicide tolerant cotton plants and methods for identifying same
US7619144B2 (en) 2007-08-17 2009-11-17 Bayer Cropscience Ag Cotton variety 02T15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060191046A1 (en) * 2005-02-03 2006-08-24 Commonwealth Scientific And Industrial Research Organization Cotton variety FM 960B2R

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Jain (2001) Euphytica; Vol. 118; pp. 153-166. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10827718B2 (en) * 2017-02-13 2020-11-10 Basf Agricultural Solutions Seed, Us Llc Cotton variety ST 5020GLT

Also Published As

Publication number Publication date
US9986701B2 (en) 2018-06-05
US20160330924A1 (en) 2016-11-17

Similar Documents

Publication Publication Date Title
US9035135B2 (en) Cotton variety ST 4145LLB2
US20160219813A1 (en) Cotton variety st 4949glt
US9029655B2 (en) Cotton variety FM 9250GL
US10743509B2 (en) Cotton variety ST 6448GLB2
US11076548B2 (en) Cotton variety ST 5122GLT
US10238064B2 (en) Cotton variety ST 5115GLT
US9986701B2 (en) Cotton variety ST 4946GLB2
US9526219B2 (en) Cotton variety ST 5445LLB2
US9992941B2 (en) Cotton variety FM 2007GLT
US10015943B2 (en) Cotton variety ST 6182GLT
US9655315B2 (en) Cotton variety ST 5289GLT
US9451746B2 (en) Cotton variety FM 1944GLB2
US11284595B2 (en) Cotton variety FM 2398GLTP
US11213003B2 (en) Cotton variety ST 4550GLTP
US10827718B2 (en) Cotton variety ST 5020GLT
US10874082B2 (en) Cotton variety FM 1953GLTP
US10813337B2 (en) Cotton variety ST 5517GLTP
US10470428B2 (en) Cotton variety ST 5471GLTP
US20160219814A1 (en) Cotton variety st 4848glt
US9974259B2 (en) Cotton variety FM 1900GLT
US20120297499A1 (en) Cotton variety fm 2989glb2
US20150275227A1 (en) Cotton variety st 4747glb2
US20130276165A1 (en) Cotton variety fm 8270glb2

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAYER CROPSCIENCE LP, NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROBINSON, MICHAEL;REEL/FRAME:035605/0373

Effective date: 20150505

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE