US20140233527A1 - Wireless sound transmission system and method - Google Patents

Wireless sound transmission system and method Download PDF

Info

Publication number
US20140233527A1
US20140233527A1 US14/237,220 US201114237220A US2014233527A1 US 20140233527 A1 US20140233527 A1 US 20140233527A1 US 201114237220 A US201114237220 A US 201114237220A US 2014233527 A1 US2014233527 A1 US 2014233527A1
Authority
US
United States
Prior art keywords
audio
transmission
control data
listening
synchronized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/237,220
Inventor
Stephan Gehring
Amre El-Hoiydi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sonova Holding AG
Original Assignee
Phonak AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phonak AG filed Critical Phonak AG
Assigned to PHONAK AG reassignment PHONAK AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GEHRING, STEPHAN, EL-HOIYDI, AMRE
Publication of US20140233527A1 publication Critical patent/US20140233527A1/en
Assigned to SONOVA AG reassignment SONOVA AG CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: PHONAK AG
Assigned to SONOVA AG reassignment SONOVA AG CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT APPL. NO. 13/115,151 PREVIOUSLY RECORDED AT REEL: 036377 FRAME: 0528. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME. Assignors: PHONAK AG
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1694Allocation of channels in TDM/TDMA networks, e.g. distributed multiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/55Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using an external connection, either wireless or wired
    • H04R25/554Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using an external connection, either wireless or wired using a wireless connection, e.g. between microphone and amplifier or using Tcoils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/10Details of earpieces, attachments therefor, earphones or monophonic headphones covered by H04R1/10 but not provided for in any of its subgroups
    • H04R2201/107Monophonic and stereophonic headphones with microphone for two-way hands free communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/55Communication between hearing aids and external devices via a network for data exchange
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2420/00Details of connection covered by H04R, not provided for in its groups
    • H04R2420/07Applications of wireless loudspeakers or wireless microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/01Aspects of volume control, not necessarily automatic, in sound systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/407Circuits for combining signals of a plurality of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/55Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using an external connection, either wireless or wired
    • H04R25/552Binaural
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/55Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using an external connection, either wireless or wired
    • H04R25/558Remote control, e.g. of amplification, frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R27/00Public address systems
    • H04R27/02Amplifying systems for the deaf
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/15Aspects of sound capture and related signal processing for recording or reproduction

Definitions

  • the invention relates to a system and a method for providing sound to at least one user, wherein audio signals from an audio signal source, such as a microphone for capturing a speaker's voice, are transmitted via a wireless link to a receiver unit, such as an audio receiver for a hearing aid, from where the audio signals are supplied to means for stimulating the hearing of the user, such as a hearing aid loudspeaker.
  • an audio signal source such as a microphone for capturing a speaker's voice
  • a receiver unit such as an audio receiver for a hearing aid
  • Wireless networking devices have a finite communication range which is limited by the output power of the transmitting device, the signal attenuation in the wireless channel and the sensitivity of the receiving device.
  • the limitations can be regulatory restrictions (maximum allowed output power), technical constraints (size of transmitting and receiving antennas, electrical power consumed by transmitting device or receiving device), or the physical environment (e.g., obstructing walls).
  • wireless links are not necessarily symmetric.
  • a link from node 1 to a node 2 does not imply a link in the reverse direction.
  • the reasons for such asymmetry can be technical (such as differences (tolerances) in receiver sensitivity between the two nodes or deliberate transmission power reduction in order to conserve battery power), due to the environment in which the nodes operate, or due to the device construction itself (in case of simple transmit-only devices).
  • a wireless network suitable for hearing instruments may be an inductive link connecting a right-ear hearing instrument and a left-ear hearing instrument with each other and with accessory devices (typically body-worn) comprising a microphone and/or acting as an interface to external devices, such as a phone or mobile phone.
  • accessory devices typically body-worn comprising a microphone and/or acting as an interface to external devices, such as a phone or mobile phone.
  • Another type of wireless network for hearing instruments uses an electromagnetic (i.e., far-field) link for connecting remote accessory devices, such as a wireless microphone, to an ear-level receiver device.
  • electromagnetic i.e., far-field
  • such remote wireless microphones are used by teachers teaching hearing impaired persons in a classroom (wherein the audio signals captured by the wireless microphone of the teacher are transmitted to a plurality of receiver units worn by the hearing impaired persons listening to the teacher) or in cases where several persons are speaking to a hearing impaired person (for example, in a professional meeting, wherein each speaker is provided with a wireless microphone and with the receiver units of the hearing impaired person receiving audio signals from all wireless microphones).
  • Another example is audio tour guiding, wherein the guide uses a wireless microphone.
  • the transmission unit is designed as an assistive listening device.
  • the transmission unit may include a wireless microphone for capturing ambient sound, in particular from a speaker close to the user, and/or a gateway to an external audio device, such as a mobile phone; here the transmission unit usually only serves to supply wireless audio signals to the receiver unit(s) worn by the user.
  • U.S. Patent Application Publication 2005/0195996 A1 and corresponding U.S. Pat. No. 8,019,386 B2 relate to a hearing assistance system comprising a plurality of wireless microphones worn by different speakers and a receiver unit worn at a loop around a listener's neck, with the sound being generated by a headphone connected to the receiver unit, wherein the audio signals are transmitted from the microphones to the receiver unit by using a spread spectrum digital signals.
  • the receiver unit controls the transmission of data, and it also controls the pre-amplification gain level applied in each transmission unit by sending respective control signals via the wireless link.
  • International Patent Application Publication WO 2008/098590 A1 relates to a hearing assistance system comprising a transmission unit having at least two spaced apart microphones, wherein a separate audio signal channel is dedicated to each microphone, and wherein at least one of the two receiver units worn by the user at the two ears is able to receive both channels and to perform audio signal processing at ear level, such as acoustic beam forming, by taking into account both channels.
  • TDMA time division multiple access
  • central or distributed network management wherein one of the devices acts as a master and determines the time slots during which each network device may transmit data and communicates this transmission schedule to the participating devices.
  • a device entering the network must first register with the network master and can subsequently request reservation of time slots to transmit its data to recipient devices, i.e., a device is allowed to transmit only once it has synchronized with the network.
  • the master transmits the necessary information to the synchronized devices.
  • Another example of a wireless network suitable for audio signal transmission is the BLUETOOTH® standard.
  • U.S. Patent Application Publication 2010/0158292 A1 and corresponding U.S. Pat. No. 8,194,902 B2 relate to a wireless network comprising a binaural hearing aid and other components, like a mobile phone, wherein a TDMA structure is used in a frequency hopping scheme, and wherein, during acquisition/synchronization, the frequency hopping scheme has a reduced number of frequency channels and the new device activates its receiver at a rate different from the frame rate of the network until synchronization data is received from the master device, whereupon the frame timing of the new device is synchronized to the frame timing of the network.
  • each device that wants to send a message to a network member has to synchronize to the network first, and therefore, has to receive messages from at least one of the network members, namely the master device.
  • This imposes certain restrictions on such a device and also requires a certain time before a message can be sent, namely the time needed for synchronizing to the network.
  • this object is achieved by a method and a system as described herein.
  • the invention is beneficial in that, by providing at least one slot in each TDMA frame structure, such as in each superframe or each frame, during which none of the synchronized network members is allowed to transmit data while at least one of the synchronized network members listens, with control data being transmitted from an external control device which is not a synchronized network member according to a sequence pattern selected according to the duration and periodicity of the listening slot(s) in order to be received by the at least one of the synchronized network members, external control devices may send control data to at least one of the synchronized network members with minimal interference to (i.e., interruption of) the network, without the need to become a synchronized network member.
  • the external control device thus may be designed as a transmit-only device, and the time and resources necessary for synchronization of such external device can be saved.
  • audio data is to be understood as designating not only data representing an audio signal but also data relating to audio processing, such as gain, filter or program settings in an audio device, information regarding an acoustic scene, information regarding direction, quality or other characteristics of a sound source, firmware data or the like which may change the audio signal processing capabilities in an audio device, or any other data which has an impact on the audio processing path in an audio device.
  • TDMA frame structure is to be understood as including any periodicity above the slot level, such as what is known in the art as “TDMA frame” or “TDMA superframe”.
  • FIG. 1 is a schematic view of audio components which can be used with a system according to the invention
  • FIGS. 2 to 4 are schematic views of a use of various examples of a system according to the invention.
  • FIG. 5 is a schematic view of another example of a system according to the invention.
  • FIG. 6 is a block diagram of an example of a transmission unit to be used with the invention.
  • FIG. 7 is a block diagram of an example of a receiver unit to be used with the invention.
  • FIG. 8 shows a schematic example of the TDMA frame scheme of a digital link implemented in a system of the invention
  • FIG. 9 shows an example of the TDMA frame scheme of FIG. 8 together with an example of the transmission from an external control unit
  • FIG. 10 is a view like FIG. 9 , wherein an alternative example of the TDMA frame scheme is shown;
  • FIG. 11 shows an example of the TDMA frame scheme of a system according to the invention using a frequency hopping scheme
  • FIG. 12 shows an example of the TDMA frame scheme of FIG. 11 together with the transmission signals of an external control device
  • FIG. 13 is a view like FIG. 12 , wherein an alternative embodiment of the TDMA frame scheme is shown.
  • FIG. 14 is a block diagram of another example of a transmission unit to be used with the invention.
  • the present invention relates to a system for providing hearing assistance to at least one user, wherein audio signals are transmitted, by using a transmission unit comprising a digital transmitter, from an audio signal source via a wireless digital link to at least one receiver unit, from where the audio signals are supplied to means for stimulating the hearing of the user, typically a loudspeaker, but including any other type of stimulation, such as a cochlear implant electrode or an implantable electromechanical actuator coupled to an ossicle or directly to the cochlea.
  • a transmission unit comprising a digital transmitter, from an audio signal source via a wireless digital link to at least one receiver unit, from where the audio signals are supplied to means for stimulating the hearing of the user, typically a loudspeaker, but including any other type of stimulation, such as a cochlear implant electrode or an implantable electromechanical actuator coupled to an ossicle or directly to the cochlea.
  • the invention is not restricted to a particular kind of the wireless link.
  • the invention may be applied to an inductive link (magnetic near-field coupling between the antennas), as it may be used in hearing instrument body area networks (wherein hearing devices and accessories of hearing devices are worn on the user's body and/or are manually handled as hand-held devices by the user), or an electromagnetic (far-field) link, as it may used in networks of a plurality of hearing instruments worn by several users, including wireless microphones.
  • other kinds of data such as control data, may be transmitted via the wireless link, i.e., the network.
  • the invention can be used also with infra-red links.
  • the device used on the transmission side may be, for example, a wireless microphone used by a speaker in a room for an audience; an audio transmitter having an integrated or a cable-connected microphone which are used by teachers in a classroom for hearing-impaired pupils/students; an acoustic alarm system, like a door bell, a fire alarm or a baby monitor; an audio or video player; a television device; a telephone device; a gateway to audio sources like a mobile phone, music player, etc.
  • the transmission devices include mobile (e.g., body-worn) devices as well as fixed devices.
  • the devices on the receiver side include headphones, all kinds of hearing aids, ear pieces, such as for prompting devices in studio applications or for covert communication systems, and loudspeaker systems.
  • the receiver devices may be for hearing-impaired persons or for normal-hearing persons.
  • a gateway could be used which relays audio signal received via a digital link to another device comprising the stimulation means.
  • the system may include a plurality of devices on the transmission side and a plurality of devices on the receiver side, for implementing a network topology, usually in a master-slave configuration (however, also distributed (decentralized) network control is an option).
  • the transmission unit may comprise or may be connected to a microphone for capturing audio signals, which is typically worn by a user, with the voice of the user being transmitted via the wireless audio link to the receiver unit.
  • the transmission may comprises an interface for receiving audio signals from external audio devices, such as a phone, a mobile phone, a music player, a TV set or a HiFi-set, via a wireless (e.g., BLUETOOTH®) or plug-in connection (a schematic example of such system is shown FIG. 5 ).
  • a wireless e.g., BLUETOOTH®
  • plug-in connection a schematic example of such system is shown FIG. 5 ).
  • the receiver unit typically is connected to a hearing aid via an audio shoe or is integrated within a hearing aid.
  • the wireless link between the transmission unit(s) and the receiver unit(s) may be an inductive link (magnetic near-field coupling between the antennas) or an electromagnetic (far-field) link.
  • control data may be transmitted between the transmission unit and the receiver unit.
  • control data may include, for example, volume control or a query regarding the status of the receiver unit or the device connected to the receiver unit (for example, battery state and parameter settings).
  • control data transmission may be taken up by a third device, e.g., a remote control or status read-out device.
  • FIG. 2 a typical use case is shown schematically, wherein a body-worn transmission unit 10 comprising a microphone 17 is used by a teacher 11 in a classroom for transmitting audio signals corresponding to the teacher's voice via a digital link 12 to a plurality of receiver units 14 , which are integrated within or connected to hearing aids 16 worn by hearing-impaired pupils/students 13 .
  • the digital link 12 is also used to exchange control data between the transmission unit 10 and the receiver units 14 .
  • the transmission unit 10 is used in a broadcast mode, i.e., the same signals are sent to all receiver units 14 .
  • FIG. 3 Another typical use case is shown in FIG. 3 , wherein a transmission unit 10 having an integrated microphone is used by a hearing-impaired person 13 wearing receiver units 14 connected to or integrated within a hearing aid 16 for capturing the voice of a person 11 speaking to the person 13 .
  • the captured audio signals are transmitted via the digital link 12 to the receiver units 14 .
  • FIG. 4 A modification of the use case of FIG. 3 is shown in FIG. 4 , wherein the transmission unit 10 is used as a relay for relaying audio signals received from a remote transmission unit 110 to the receiver units 14 of the hearing-impaired person 13 .
  • the remote transmission unit 110 is worn by a speaker 11 and comprises a microphone for capturing the voice of the speaker 11 , thereby acting as a companion microphone.
  • the receiver units 14 could be designed as a neck-worn device comprising a transmitter for transmitting the received audio signals via an inductive link to an ear-worn device, such as a hearing aid.
  • the transmission units 10 , 110 may comprise an audio input for a connection to an audio device, such as a mobile phone, a FM radio, a music player, a telephone or a TV device, as an external audio signal source.
  • an audio device such as a mobile phone, a FM radio, a music player, a telephone or a TV device, as an external audio signal source.
  • the microphone then may be omitted.
  • the transmission unit 10 usually comprises an audio signal processing unit (not shown in FIGS. 2 to 4 ) for processing the audio signals captured by the microphone or received from an external audio signal source prior to being transmitted.
  • an audio signal processing unit (not shown in FIGS. 2 to 4 ) for processing the audio signals captured by the microphone or received from an external audio signal source prior to being transmitted.
  • the link 12 is an electromagnetic (far-field) link.
  • a transmission unit 210 which comprises a wireless interface (e.g., BLUETOOTH®) for receiving audio signals via wireless (e.g., BLUETOOTH®) link 37 from external audio devices such as a TV set 31 or a mobile phone 33 and a plug-in interface for receiving audio signals via a wired connection 39 from external audio devices such as a music player 35 and which transmits the audio signals received from the external audio devices 31 , 33 , 35 as stereo or mono signals via a wireless inductive link 212 to receiver units (not shown) which are integrated within a right ear hearing aid 16 and a left ear hearing aid 16 .
  • a wireless interface e.g., BLUETOOTH®
  • the hearing aids 16 may be designed to a exchange audio signals and/or control signals via the inductive link 212 in order to a realize a binaural system.
  • the transmission unit 210 typically is worn on the body of the user of the hearing aids 16 , for example, on a neck loop. If the transmission unit 210 is designed as a mere audio streaming device, it does not comprise a microphone.
  • the transmission unit 210 comprises several inputs, for example, at least one digital interface, such as a USB port 220 , for data exchange, and some analog audio inputs, such as a Europlug input 222 , an audio jack input 224 and a microphone input 226 .
  • the signals from the analog inputs 222 , 224 , 226 are converted to digital signals and are processed in a audio processing unit 228 prior to being supplied to a BLUETOOTH® communication subsystem 230 and to a magnetic induction (MI) communication subsystem 232 .
  • MI magnetic induction
  • the BLUETOOTH® communication subsystem 230 may transmit the audio data to external devices having a BLUETOOTH® interface, such as the mobile phone 33 , and may receive audio data from such external devices, such as the mobile phone 33 and the TV set 31 .
  • the MI communication subsystem 232 is provided for transmitting audio data supplied by the audio signal processing unit 228 and by the BLUETOOTH® communication subsystem 230 via the link 212 to the hearing aids 16 .
  • the link is bidirectional, i.e., audio and data may also be sent from the hearing aids to the accessory device, for example, to use the hearing aid as a wireless headset, where the hearing aid microphones are used to capture the patient's voice and to send corresponding audio back to the accessory device and on to the mobile phone.
  • the unit 210 also comprises a user interface 234 , a system controller 236 , and a power management unit 238 , with the system controller 236 controlling operation of the unit 210 , in particular with regard to the BLUETOOTH® communication subsystem 230 and the MI communication subsystem 232 .
  • the MI communication subsystem 232 which is shown in more detail at the bottom of FIG. 14 , comprises a data/audio interface 240 for communication with the audio signal processing unit 228 , the BLUETOOTH® communication subsystem 230 and the system controller 234 , an audio and data stream processor 242 for compressing/decompressing audio signals and managing/aligning meta data (real time data) with audio, a data processor 244 for treating control data, such as remote control commands, and a system controller 246 .
  • the system controller 246 is for implementing the MI protocol and thus controls the MI communication and the MI communication subsystem 232 in general.
  • the MI communication subsystem 232 also includes an MAC accelerator 248 and an MI radio 250 .
  • the MAC accelerator 248 is a component for treating the real-time aspects of the MI communication subsystem 232 , in particular the timing of transmission and receipt within the TDMA system and control of the MI radio 250 .
  • the MI radio is for converting the digital signals supplied by the MAC accelerator 248 into analog transmission signals and vice versa.
  • the hearing 16 is provided with a MI communication subsystem 232 of the type used in the unit 210 in order to exchange audio and control data with the typical hearing aid components (indicated as block 252 in FIG. 14 ) via the interface 240 .
  • FIG. 6 A block diagram of another example of a transmission unit 10 is shown in FIG. 6 , which comprises a microphone arrangement 17 for capturing audio signals from the respective speaker's 11 voice, an audio signal processing unit 20 for processing the captured audio signals, a digital transmitter 28 and an antenna 30 for transmitting the processed audio signals as an audio stream consisting of audio data packets.
  • One function of the audio signal processing unit 20 is to compress the audio data using an appropriate audio codec, as it is known in the art.
  • the compressed audio stream is transmitted via a digital audio link 12 established between the transmission units 10 and the receiver unit 14 , which link also serves to exchange control data packets between the transmission unit 10 and the receiver unit 14 .
  • the transmission units 10 may include additional components, such as a voice activity detector (VAD) 24 .
  • the audio signal processing unit 20 and such additional components may be implemented by a digital signal processor (DSP) indicated at 22 .
  • the transmission units 10 also may comprise a microcontroller 26 acting on the DSP 22 and the transmitter 28 .
  • the microcontroller 26 may be omitted in case that the DSP 22 is able to take over the function of the microcontroller 26 .
  • the microphone arrangement 17 comprises at least two spaced-apart microphones 17 A, 17 B, the audio signals of which may be used in the audio signal processing unit 20 for acoustic beam forming in order to provide the microphone arrangement 17 with a directional characteristic.
  • the VAD 24 uses the audio signals from the microphone arrangement 17 as an input in order to determine the times when the person 11 using the respective transmission unit 10 is speaking.
  • the VAD 24 may provide a corresponding control output signal to the microcontroller 26 in order to have, for example, the transmitter 28 sleep during times when no voice is detected and to wake up the transmitter 28 during times when voice activity is detected.
  • a control command corresponding to the output signal of the VAD 24 may be generated and transmitted via the wireless link 12 in order to mute the receiver units 14 or saving power when the user 11 of the transmission unit 10 does not speak.
  • a unit 32 is provided which serves to generate a digital signal comprising the audio signals from the processing unit 20 and the control data generated by the VAD 24 , which digital signal is supplied to the transmitter 28 .
  • the transmission unit 10 may comprise an ambient noise estimation unit (not shown in FIG. 6 ) which serves to estimate the ambient noise level and which generates a corresponding output signal which may be supplied to the unit 32 for being transmitted via the wireless link 12 .
  • an ambient noise estimation unit (not shown in FIG. 6 ) which serves to estimate the ambient noise level and which generates a corresponding output signal which may be supplied to the unit 32 for being transmitted via the wireless link 12 .
  • the transmission unit 10 also may comprise inputs for audio signals supplied by external audio sources 33 , 35 , such as a plug-in interface 36 and/or a wireless interface 41 , such as a BLUETOOTH® interface.
  • external audio sources 33 , 35 may be, for example, a phone, a mobile phone, a music player, a computer or a TV set.
  • interfaces 36 , 41 a plurality of audio signal input channels to the transmission unit 10 are realized.
  • the transmission units 10 may be adapted to be worn by the respective speaker 11 below the speaker's neck, for example, as a lapel microphone or as a shirt collar microphone.
  • This type of transmission unit 10 is typically used when the wireless audio link is implemented as an electromagnetic (far-field) link 12 .
  • the transmission unit 210 When the wireless audio link is implemented as an inductive link 212 , the transmission unit 210 , by contrast, is worn by the user of the receiver unit 14 /hearing aid 16 , for example below the user's neck. In some cases, the microphone arrangement 17 and the VAD 24 of the example of FIG. 6 then may be omitted.
  • FIG. 7 An example of a digital ear-level receiver unit 14 is shown in FIG. 7 , according to which the antenna arrangement 38 is connected to a digital transceiver 61 including a demodulator 58 and a buffer 59 .
  • the signals transmitted via the digital link 12 are received by the antenna 38 and are demodulated in the digital radio receivers 61 .
  • the demodulated signals are supplied via the buffer 59 to a DSP 74 acting as processing unit which separates the signals into the audio signals and the control data and which is provided for advanced processing, e.g., equalization, of the audio signals according to the information provided by the control data.
  • a DSP 74 acting as processing unit which separates the signals into the audio signals and the control data and which is provided for advanced processing, e.g., equalization, of the audio signals according to the information provided by the control data.
  • the processed audio signals after digital-to-analog conversion, are supplied to a variable gain amplifier 62 which serves to amplify the audio signals by applying a gain controlled by the control data received via the digital link 12 .
  • the amplified audio signals are supplied to a hearing aid 64 .
  • the audio signals may be supplied as digital signals to the hearing aid.
  • the receiver unit 14 also includes a memory 76 for the DSP 74 .
  • the receiver unit 14 may include a power amplifier 78 which may be controlled by a manual volume control 80 and which supplies power amplified audio signals to a loudspeaker 82 which may be an ear-worn element integrated within or connected to the receiver unit 14 .
  • Volume control also could be done remotely from the transmission unit 10 by transmitting corresponding control commands to the receiver unit 14 .
  • receiver unit may be a neck-worn device having a transmitter 84 for transmitting the received signals via with an magnetic induction link 86 (analog or digital) to the hearing aid 64 (as indicated by dotted lines in FIG. 7 ).
  • transmitter 84 for transmitting the received signals via with an magnetic induction link 86 (analog or digital) to the hearing aid 64 (as indicated by dotted lines in FIG. 7 ).
  • the role of the microcontroller 24 could also be taken over by the DSP 22 .
  • signal transmission could be limited to a pure audio signal, without adding control and command data.
  • FIG. 8 a schematic example of a TDMA structure of the inductive wireless audio link 212 of a system like the one shown in FIG. 5 is shown, wherein certain slots of each TDMA frame are attributed to one of the members of the synchronized network 200 (in the example shown in FIG. 8 , the synchronized network members are the transmission units 210 , the right-ear hearing aid 16 R and the left-ear hearing aid 16 L).
  • the synchronized network members are the transmission units 210 , the right-ear hearing aid 16 R and the left-ear hearing aid 16 L.
  • the first slot is attributed to the transmission unit 210 for data transmission to the right-ear hearing aid 16 R
  • a second slot is attributed to the transmission unit 210 for transmission of data to the left-ear hearing aid 16 L
  • a third slot is attributed to the right-ear hearing aid 16 R for transmitting data to the left-ear hearing aid 16 L.
  • One of the synchronized network members may act as a master which attributes the TDMA slots to the other members, wherein each network member has to synchronize with the master.
  • a distributed control configuration is conceivable.
  • all network members transmit (and listen) at a single frequency, which preferably is 10.6 MHz.
  • the wireless link 212 may employ Binary Frequency Shift Keying (BFSK), Quadrature Phase Shift Keying (QPSK) or pulse-count modulation (PCTM) with 8 Phase Shift Keying (8PSK).
  • BFSK Binary Frequency Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • PCTM pulse-count modulation
  • the data transmitted from the transmission unit 210 to the hearing aid 16 R, 16 L will be mainly audio data received from the external audio devices 31 , 33 , 35 , with the transmission unit 210 thereby acting as a streamer. Also, the hearing aids 16 R, 16 L may transmit audio data in order to realize a binaural system.
  • Each frame also includes at least one slot 100 , during which none of the synchronized network members is allowed to transmit data while at least one, preferably all, of the synchronized network members listen.
  • Such listening slot 100 is used to allow an external control device 101 (for example, a remote control) to transmit control data (i.e., any data that is not audio data) to at least one of the synchronized network members, while the external control device 101 is not a synchronized network member.
  • the control data is transmitted according to a sequence pattern selected according to the duration and periodicity of the listening slot(s) 100 .
  • the external control device 101 does not wait for any response from the synchronized network members.
  • FIGS. 9 and 10 two examples are illustrated of how the sequence pattern of the control data transmission can be selected according to the duration of the listening slots 100 .
  • the control data is contained in a control data block 102 which is transmitted as immediate repetitions during a control data period, wherein the duration of the listening slot 100 is at least twice the length of the control data block 102 (or stated the other way round, the length of the control data block is not more than half of the length of the listening slot 100 ).
  • the duration of the control data period is at least the length of the periodicity of the listening slots (indicated in FIG. 9 by “t delta ”), with the periodicity of the listening slots corresponding to the length of the frames.
  • the external control device 101 represents a node which cannot synchronize its transmission clock to that of the synchronized network members, i.e., the nodes in the network, for example, because the external control device 101 is not in the range of the network 200 in the sense that the signals transmitted by the network members are too weak to be received or because it does not have a receiver suitable for receiving such signals of the synchronized network 200 .
  • the listening slot 100 is at the same offset in every frame relative to the beginning of the frame, and a listening slot can be present in every frame of only in every n-th frame.
  • the maximum time between successive listening slots 100 (t delta ) determines the maximum delay a message from the external device 101 takes to reach a synchronized network member.
  • FIGS. 9 and 10 While in FIGS. 9 and 10 only a single listening slot per frame is shown, it is to be understood that several listening slots may be present in each frame.
  • the slots may be evenly or unevenly spaced within the frame, with t delta determining the maximum delay of receiving control data from an unsynchronized device.
  • the external device 101 is aware that the listening slots 100 exist, but, since it is not synchronized to the network clock, it does not know when the listening slots 100 actually occur. As a consequence, the external device 101 sends the message 102 for the duration of at least the listening slot periodicity t delta . Since the duration of the listening slots 100 is at least twice the maximum length of the message 102 , the message block 102 always fits entirely within one of the listening slots 100 , irrespective of when the external device 100 starts sending the message 102 for the first time.
  • the synchronized network members which listen during the respective listening slot 100 during which the external device 101 transmits one copy of the message 102 will receive the message 102 .
  • the synchronized network members may receive the same message 102 multiple times, and thus, have to be designed to tolerate and handle duplicates (for example, by detecting and ignoring duplicates as is known in the art).
  • the length of the TDMA slots, the length of the message 102 and clock tolerances i.e., clock precision
  • FIG. 10 An alternative example of the transmission sequence pattern from the external device 101 is shown in FIG. 10 , wherein, rather than continuously repeating transmission of the message 102 , transmission of the copies of the message 102 is spread apart.
  • the duration of the listening slot 100 is at least the length of the control data block 102 , i.e., the message 102 (or, stated otherwise, the length of the message 102 is less than the duration of the listening slot 100 ).
  • the repetition periodicity (“gap between transmissions” in FIG.
  • the time period between the beginning of the first copy of the message 102 and the beginning of the transmission of the second copy of the message 102 is at least the length of the periodicity of the listening slots (i.e., t delta ) plus the length of the listening slot 100 minus the length of the message 102 .
  • t delta the length of the periodicity of the listening slots
  • transmission of the messages 102 has a smaller impact on communication within the network 200 , since the external device 101 sends at most one message 102 per frame and therefore does not interfere with multiple consecutive audio data packets in a single frame, thus resulting in shorter audio interruption.
  • this is achieved at the cost of potentially longer delay necessary to feed a message 102 into the network 200 : since the shift is the difference of the duration of the listening slot and the duration of the message 102 , it may take t delta *(t delta /duration of listening slot ⁇ duration of message), before a message 102 transmitted by the external device 101 falls into one of the listening slots 100 .
  • the external device 101 is paired with the network 200 so that the synchronized network members only recognize control data/commands sent from specific, i.e., paired, external devices 101 , while ignoring commands from other devices outside the network 200 .
  • the method of the present invention may be used for controlling the network 200 via remote control commands from a non-synchronized remote control, with the external device 101 acting as such remote control.
  • the message 102 typically is for making the transmission unit 210 at least temporarily cease the transmission of audio data via the wireless network link 212 (and/or to make other synchronized network members, such as the hearing aids 16 R, 16 L, to at least temporarily cease data transmission).
  • the external device 101 may transmit another message which makes the network members reestablish their transmission activities. In between the message to silence the network and the message to reestablish network communication another, larger message may be transmitted from the external device 101 without interfering with the internal network communication, since anyway no internal network communication takes place after the request to silence the network has been received.
  • a message 102 representing a request to silence the network 200 can be very short, and thus, the listening slot 100 can be similarly short, thereby introducing very little disturbance of the internal communication within the network 200 and not wasting a lot of network bandwidth for control data.
  • FIGS. 11 to 13 examples of the TDMA frame structure suitable for embodiments of the invention are shown wherein the wireless network link is an electromagnetic link 12 .
  • Typical carrier frequencies for the digital link 12 are 865 MHz, 915 MHz and 2.45 GHz, wherein the latter band is preferred.
  • Examples of the digital modulation scheme are PSK/FSK, ASK or combined amplitude and phase modulations such as QAM, and variations thereof (for example, GFSK).
  • the preferred codec used for encoding the audio data is sub-band ADPCM (Adaptive Differential Pulse-Code Modulation).
  • data transmission occurs in the form of TDMA (Time Division Multiple Access) frames comprising a plurality (for example, 10) of time slots, wherein in each slot one data packet may be transmitted (alternatively, several data packets may be sent during a slot).
  • TDMA Time Division Multiple Access
  • FIG. 11 an example is shown wherein the TDMA frame has a length of 4 ms and is divided into 10 time slots of 400 ⁇ s, with each data packet having a length of 160 ⁇ s.
  • a slow frequency hopping scheme is used, wherein each slot is transmitted at a different frequency according to a frequency hopping sequence calculated by a given algorithm in the same manner by the transmitter unit 10 and the receiver units 14 , wherein the frequency sequence is a pseudo-random sequence depending on the number of the present TDMA frame (sequence number), a constant odd number defining the hopping sequence (hopping sequence ID) and the frequency of the last slot of the previous frame.
  • the first slot of each TDMA frame may be allocated to the periodic transmission of a beacon packet which contains the sequence number numbering the TDMA frame and other data necessary for synchronizing the network, such as information relevant for the audio stream, such as description of the encoding format, description of the audio content, gain parameter, surrounding noise level, etc., information relevant for multi-talker network operation, and optionally control data for all or a specific one of the receiver units.
  • At least some of the other slots are allocated to the transmission of audio data packets, wherein each audio data packet usually is repeated at least once, typically in subsequent slots.
  • each audio data packet usually is repeated at least once, typically in subsequent slots.
  • three subsequent slots are used for three-fold transmission of a single audio data packet.
  • the master device does not expect any acknowledgement from the slaves devices (receiver units), i.e., repetition of the audio data packets is done in any case, irrespective of whether the receiver unit has correctly received the first audio data packet or not.
  • the receiver units usually are not individually addressed by sending a device ID, i.e., the same signals are sent to all receiver units (broadcast mode).
  • the beacon packet and the response data may be multiplexed on the same slot.
  • the receiver unit When the receiver unit has correctly received already the first transmission of a certain audio data packet, it stops listening to the second and third transmission of the same audio data packet.
  • a listening slot 100 is provided during which there is no data transmission within the synchronized network members.
  • the listening slots 100 are reserved for controlling data traffic at one of a number of predefined public frequencies (channels), with external control devices transmitting at one of these public frequencies and with the synchronized network members listening, during the listening slots 100 , at these public frequencies. For example, the network members may listen subsequently at all of the public frequencies during the listening slots 100 .
  • each control data block/message 102 is transmitted in continuous repetition by the external control device 101 at all public frequencies in a cyclic manner, with the transmission of the control data block 102 being repeated with a short transmission period, wherein each synchronized network member listens at a single one of the public frequencies during each listening slot 100 , with each synchronized network member listening at a different one of the public frequencies during subsequent listening slots in order to address all of the public frequencies.
  • Such frequency change of the listening slots may be cyclic or random.
  • the duration of each listening slot 100 is at least the number of public frequencies times the length of the transmission period of the control data block 102 plus the length of the control data block 102 , with the external control device 101 not waiting for any response from the synchronized network members.
  • control message transmission latency can be minimized, since the duration of the listening slot guarantees that at least one control data packet 102 is transmitted at the correct frequency within the listening slot 100 , irrespective of the specific one of the public frequencies at which the synchronized network member listens during that listening slot 100 .
  • the transmissions from the external device 101 have to be interleaved with periods where the external device 101 waits for potential responses. While the simplest approach would be to have a response listening window after every transmission from the external device 101 , a more optimized approach is to have a single response listening window after transmission has occurred at all of the public frequencies (i.e., in the example of FIG. 13 , after three transmissions).
  • Each control data block is subsequently transmitted from the external control device 101 at all public frequencies, with the transmission of the control data block being repeated with a transmission period and with a response listening slot of the external control device being provided every time when the control data block has been transmitted at all of the public frequencies before the next control data transmission cycle is started, wherein the duration of the listening slot of the synchronized network members is at least in a number of public frequencies times the length of the transmission period of the control data block plus the length of the control data block plus the length of the response listening slot of the external control device.
  • the listening slot 100 When selecting the length of the listening slot 100 , one has to optimize the system either with regard to unidirectional communication from the external device 101 or for bidirectional communication with the external device 101 . For example, when the listening period 100 is optimized for unidirectional communication, the transmission delay in case of bidirectional communication will be increased, since the probability for receiving the message 102 within the listening slot 100 will be less than 100%. On the other hand, if the listening slot 100 is optimized for bidirectional communication, there will be some power consumption penalty in the case of unidirectional communication.
  • the listening slot periodicity i.e., the time interval from the beginning of one listening slot to the beginning of the next listening slot
  • the listening slot periodicity may be constant or it may be randomized. Since the external device is not synchronized to the network members and since the messages are transmitted from the external device as a compact train of repetitions, it is guaranteed that already the first listening period will be successful in receiving the message.
  • not more than three public frequencies (channels) are used, which may correspond to the low mid and high part of the 2,400 GHz to 2,483 GHz band.
  • channels For transmission of the audio signals between the synchronized network members for example 40 channels may be used.
  • modulation may be used in the invention, such as Amplitude Shift Keying (ASK) with M modulation stages; Phase Shift Keying like BPSK, QPSK, 8-PSK or M-ary PSK; Frequency Shift Keying like BFSK, M-ary FSK, OFDM, CPFSK with two frequencies; Quadrature Amplitude Modulation (QAM), Spread Spectrum like DSSS (direct sequence spread spectrum) or FHSS (frequency hopping spread spectrum); and Pragmatic Trellis Code Modulation (PTCM).
  • ASK Amplitude Shift Keying
  • Phase Shift Keying like BPSK, QPSK, 8-PSK or M-ary PSK
  • Frequency Shift Keying like BFSK, M-ary FSK, OFDM, CPFSK with two frequencies
  • Quadrature Amplitude Modulation (QAM) Spread Spectrum like DSSS (direct sequence spread spectrum) or FHSS (frequency hopping spread spectrum)
  • PTCM Pragmatic Trellis Code Modulation
  • control data may be transmitted within the TDMA frame structures via the wireless link, i.e., the network
  • the wireless link i.e., the network
  • the invention as far as the transmission of control of a not-synchronized control device to a synchronized network member is concerned, is not restricted to the type of data exchanged within the network (examples of other types of data are web browsing data, video data and file transfer data).
  • the frames may have a structure corresponding to a combination of TDMA and FDMA, as used, for example in telephone networks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Stereophonic System (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method for providing sound to at least one user, in which audio signals are captured and transformed into audio data that is transmitted to at least one receiver unit; audio signals are generated from the received audio data and the hearing of the user(s) stimulated thereby; wherein the audio data is transmitted as audio data packets in separate slots of a TDMA frame structure, wherein the transmission unit and the receiver unit(s) are synchronized to form a wireless network, wherein each TDMA frame structure has at least one listening slot during which the synchronized network members do not transmit data and at least one network members listens, and wherein control data is transmitted from an external control device according to a sequence pattern selected according to the duration and periodicity of the listening slot(s) to be received by the at least one synchronized network member during said listening slot(s).

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The invention relates to a system and a method for providing sound to at least one user, wherein audio signals from an audio signal source, such as a microphone for capturing a speaker's voice, are transmitted via a wireless link to a receiver unit, such as an audio receiver for a hearing aid, from where the audio signals are supplied to means for stimulating the hearing of the user, such as a hearing aid loudspeaker.
  • 2. Description of Related Art
  • Wireless networking devices have a finite communication range which is limited by the output power of the transmitting device, the signal attenuation in the wireless channel and the sensitivity of the receiving device. The limitations can be regulatory restrictions (maximum allowed output power), technical constraints (size of transmitting and receiving antennas, electrical power consumed by transmitting device or receiving device), or the physical environment (e.g., obstructing walls).
  • Furthermore, wireless links are not necessarily symmetric. A link from node 1 to a node 2 does not imply a link in the reverse direction. The reasons for such asymmetry can be technical (such as differences (tolerances) in receiver sensitivity between the two nodes or deliberate transmission power reduction in order to conserve battery power), due to the environment in which the nodes operate, or due to the device construction itself (in case of simple transmit-only devices).
  • A wireless network suitable for hearing instruments may be an inductive link connecting a right-ear hearing instrument and a left-ear hearing instrument with each other and with accessory devices (typically body-worn) comprising a microphone and/or acting as an interface to external devices, such as a phone or mobile phone.
  • Another type of wireless network for hearing instruments uses an electromagnetic (i.e., far-field) link for connecting remote accessory devices, such as a wireless microphone, to an ear-level receiver device.
  • Typically, such remote wireless microphones are used by teachers teaching hearing impaired persons in a classroom (wherein the audio signals captured by the wireless microphone of the teacher are transmitted to a plurality of receiver units worn by the hearing impaired persons listening to the teacher) or in cases where several persons are speaking to a hearing impaired person (for example, in a professional meeting, wherein each speaker is provided with a wireless microphone and with the receiver units of the hearing impaired person receiving audio signals from all wireless microphones). Another example is audio tour guiding, wherein the guide uses a wireless microphone.
  • Another typical application of wireless audio systems is the case in which the transmission unit is designed as an assistive listening device. In this case, the transmission unit may include a wireless microphone for capturing ambient sound, in particular from a speaker close to the user, and/or a gateway to an external audio device, such as a mobile phone; here the transmission unit usually only serves to supply wireless audio signals to the receiver unit(s) worn by the user.
  • U.S. Patent Application Publication 2005/0195996 A1 and corresponding U.S. Pat. No. 8,019,386 B2 relate to a hearing assistance system comprising a plurality of wireless microphones worn by different speakers and a receiver unit worn at a loop around a listener's neck, with the sound being generated by a headphone connected to the receiver unit, wherein the audio signals are transmitted from the microphones to the receiver unit by using a spread spectrum digital signals. The receiver unit controls the transmission of data, and it also controls the pre-amplification gain level applied in each transmission unit by sending respective control signals via the wireless link.
  • International Patent Application Publication WO 2008/098590 A1 relates to a hearing assistance system comprising a transmission unit having at least two spaced apart microphones, wherein a separate audio signal channel is dedicated to each microphone, and wherein at least one of the two receiver units worn by the user at the two ears is able to receive both channels and to perform audio signal processing at ear level, such as acoustic beam forming, by taking into account both channels.
  • One option to implement a wireless network for hearing instruments is to use a time division multiple access (TDMA) scheme with central or distributed network management, wherein one of the devices acts as a master and determines the time slots during which each network device may transmit data and communicates this transmission schedule to the participating devices. A device entering the network must first register with the network master and can subsequently request reservation of time slots to transmit its data to recipient devices, i.e., a device is allowed to transmit only once it has synchronized with the network. In case that the network uses a frequency hopping scheme, the master transmits the necessary information to the synchronized devices.
  • An example of a wireless network for hearing devices is described in U.S. Patent Application Publication 2010/0166209 A1 and corresponding U.S. Pat. No. 8,150,057 B2, wherein audio signals are transmitted from a plurality of wireless microphones worn by various speakers via the wireless network to a receiver unit worn by a listener. Each of the transmission devices has certain dedicated slots in the TDMA scheme for transmitting the audio signals captured by the microphone to the receiver unit.
  • Another example of a wireless network suitable for audio signal transmission is the BLUETOOTH® standard.
  • U.S. Patent Application Publication 2010/0158292 A1 and corresponding U.S. Pat. No. 8,194,902 B2 relate to a wireless network comprising a binaural hearing aid and other components, like a mobile phone, wherein a TDMA structure is used in a frequency hopping scheme, and wherein, during acquisition/synchronization, the frequency hopping scheme has a reduced number of frequency channels and the new device activates its receiver at a rate different from the frame rate of the network until synchronization data is received from the master device, whereupon the frame timing of the new device is synchronized to the frame timing of the network.
  • In the above-discussed systems, only members of the network, i.e., nodes which are synchronized to the network clock of the master device, are allowed to send messages to other nodes in the network. Thus, each device that wants to send a message to a network member has to synchronize to the network first, and therefore, has to receive messages from at least one of the network members, namely the master device. This imposes certain restrictions on such a device and also requires a certain time before a message can be sent, namely the time needed for synchronizing to the network.
  • SUMMARY OF THE INVENTION
  • It is an object of the invention to provide for a wireless sound transmission system and method, which allows the transmission of control data in a particularly simple manner.
  • According to the invention, this object is achieved by a method and a system as described herein.
  • The invention is beneficial in that, by providing at least one slot in each TDMA frame structure, such as in each superframe or each frame, during which none of the synchronized network members is allowed to transmit data while at least one of the synchronized network members listens, with control data being transmitted from an external control device which is not a synchronized network member according to a sequence pattern selected according to the duration and periodicity of the listening slot(s) in order to be received by the at least one of the synchronized network members, external control devices may send control data to at least one of the synchronized network members with minimal interference to (i.e., interruption of) the network, without the need to become a synchronized network member. In particular, the external control device thus may be designed as a transmit-only device, and the time and resources necessary for synchronization of such external device can be saved.
  • Hereinafter, the term “audio data” is to be understood as designating not only data representing an audio signal but also data relating to audio processing, such as gain, filter or program settings in an audio device, information regarding an acoustic scene, information regarding direction, quality or other characteristics of a sound source, firmware data or the like which may change the audio signal processing capabilities in an audio device, or any other data which has an impact on the audio processing path in an audio device.
  • Hereinafter, the term “TDMA frame structure” is to be understood as including any periodicity above the slot level, such as what is known in the art as “TDMA frame” or “TDMA superframe”.
  • Hereinafter, examples of the invention will be described in detail with reference to the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic view of audio components which can be used with a system according to the invention;
  • FIGS. 2 to 4 are schematic views of a use of various examples of a system according to the invention;
  • FIG. 5 is a schematic view of another example of a system according to the invention;
  • FIG. 6 is a block diagram of an example of a transmission unit to be used with the invention;
  • FIG. 7 is a block diagram of an example of a receiver unit to be used with the invention;
  • FIG. 8 shows a schematic example of the TDMA frame scheme of a digital link implemented in a system of the invention;
  • FIG. 9 shows an example of the TDMA frame scheme of FIG. 8 together with an example of the transmission from an external control unit;
  • FIG. 10 is a view like FIG. 9, wherein an alternative example of the TDMA frame scheme is shown;
  • FIG. 11 shows an example of the TDMA frame scheme of a system according to the invention using a frequency hopping scheme;
  • FIG. 12 shows an example of the TDMA frame scheme of FIG. 11 together with the transmission signals of an external control device;
  • FIG. 13 is a view like FIG. 12, wherein an alternative embodiment of the TDMA frame scheme is shown; and
  • FIG. 14 is a block diagram of another example of a transmission unit to be used with the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention relates to a system for providing hearing assistance to at least one user, wherein audio signals are transmitted, by using a transmission unit comprising a digital transmitter, from an audio signal source via a wireless digital link to at least one receiver unit, from where the audio signals are supplied to means for stimulating the hearing of the user, typically a loudspeaker, but including any other type of stimulation, such as a cochlear implant electrode or an implantable electromechanical actuator coupled to an ossicle or directly to the cochlea.
  • The invention is not restricted to a particular kind of the wireless link. For example, the invention may be applied to an inductive link (magnetic near-field coupling between the antennas), as it may be used in hearing instrument body area networks (wherein hearing devices and accessories of hearing devices are worn on the user's body and/or are manually handled as hand-held devices by the user), or an electromagnetic (far-field) link, as it may used in networks of a plurality of hearing instruments worn by several users, including wireless microphones. Also, in addition to audio data, other kinds of data, such as control data, may be transmitted via the wireless link, i.e., the network. The invention can be used also with infra-red links.
  • As shown in FIG. 1, the device used on the transmission side may be, for example, a wireless microphone used by a speaker in a room for an audience; an audio transmitter having an integrated or a cable-connected microphone which are used by teachers in a classroom for hearing-impaired pupils/students; an acoustic alarm system, like a door bell, a fire alarm or a baby monitor; an audio or video player; a television device; a telephone device; a gateway to audio sources like a mobile phone, music player, etc. The transmission devices include mobile (e.g., body-worn) devices as well as fixed devices. The devices on the receiver side include headphones, all kinds of hearing aids, ear pieces, such as for prompting devices in studio applications or for covert communication systems, and loudspeaker systems. The receiver devices may be for hearing-impaired persons or for normal-hearing persons. Also on the receiver side a gateway could be used which relays audio signal received via a digital link to another device comprising the stimulation means.
  • The system may include a plurality of devices on the transmission side and a plurality of devices on the receiver side, for implementing a network topology, usually in a master-slave configuration (however, also distributed (decentralized) network control is an option).
  • The transmission unit may comprise or may be connected to a microphone for capturing audio signals, which is typically worn by a user, with the voice of the user being transmitted via the wireless audio link to the receiver unit. Alternatively or in addition, the transmission may comprises an interface for receiving audio signals from external audio devices, such as a phone, a mobile phone, a music player, a TV set or a HiFi-set, via a wireless (e.g., BLUETOOTH®) or plug-in connection (a schematic example of such system is shown FIG. 5).
  • The receiver unit typically is connected to a hearing aid via an audio shoe or is integrated within a hearing aid.
  • The wireless link between the transmission unit(s) and the receiver unit(s) may be an inductive link (magnetic near-field coupling between the antennas) or an electromagnetic (far-field) link.
  • In addition to the audio signals, control data may be transmitted between the transmission unit and the receiver unit. Such control data may include, for example, volume control or a query regarding the status of the receiver unit or the device connected to the receiver unit (for example, battery state and parameter settings). Alternatively, such control data transmission may be taken up by a third device, e.g., a remote control or status read-out device.
  • In FIG. 2, a typical use case is shown schematically, wherein a body-worn transmission unit 10 comprising a microphone 17 is used by a teacher 11 in a classroom for transmitting audio signals corresponding to the teacher's voice via a digital link 12 to a plurality of receiver units 14, which are integrated within or connected to hearing aids 16 worn by hearing-impaired pupils/students 13. The digital link 12 is also used to exchange control data between the transmission unit 10 and the receiver units 14. Typically, the transmission unit 10 is used in a broadcast mode, i.e., the same signals are sent to all receiver units 14.
  • Another typical use case is shown in FIG. 3, wherein a transmission unit 10 having an integrated microphone is used by a hearing-impaired person 13 wearing receiver units 14 connected to or integrated within a hearing aid 16 for capturing the voice of a person 11 speaking to the person 13. The captured audio signals are transmitted via the digital link 12 to the receiver units 14.
  • A modification of the use case of FIG. 3 is shown in FIG. 4, wherein the transmission unit 10 is used as a relay for relaying audio signals received from a remote transmission unit 110 to the receiver units 14 of the hearing-impaired person 13. The remote transmission unit 110 is worn by a speaker 11 and comprises a microphone for capturing the voice of the speaker 11, thereby acting as a companion microphone.
  • According to a variant of the embodiments shown in FIGS. 2 to 4 the receiver units 14 could be designed as a neck-worn device comprising a transmitter for transmitting the received audio signals via an inductive link to an ear-worn device, such as a hearing aid.
  • The transmission units 10, 110 may comprise an audio input for a connection to an audio device, such as a mobile phone, a FM radio, a music player, a telephone or a TV device, as an external audio signal source. In some cases, the microphone then may be omitted.
  • In each of such use cases, the transmission unit 10 usually comprises an audio signal processing unit (not shown in FIGS. 2 to 4) for processing the audio signals captured by the microphone or received from an external audio signal source prior to being transmitted.
  • In the embodiments of FIGS. 2 to 4, the link 12 is an electromagnetic (far-field) link.
  • In FIG. 5, a schematic example of a system is shown, including a transmission unit 210 which comprises a wireless interface (e.g., BLUETOOTH®) for receiving audio signals via wireless (e.g., BLUETOOTH®) link 37 from external audio devices such as a TV set 31 or a mobile phone 33 and a plug-in interface for receiving audio signals via a wired connection 39 from external audio devices such as a music player 35 and which transmits the audio signals received from the external audio devices 31, 33, 35 as stereo or mono signals via a wireless inductive link 212 to receiver units (not shown) which are integrated within a right ear hearing aid 16 and a left ear hearing aid 16. The hearing aids 16 may be designed to a exchange audio signals and/or control signals via the inductive link 212 in order to a realize a binaural system. The transmission unit 210 typically is worn on the body of the user of the hearing aids 16, for example, on a neck loop. If the transmission unit 210 is designed as a mere audio streaming device, it does not comprise a microphone.
  • A block diagram of an example of such transmission unit 210 is shown in FIG. 14. The transmission unit 210 comprises several inputs, for example, at least one digital interface, such as a USB port 220, for data exchange, and some analog audio inputs, such as a Europlug input 222, an audio jack input 224 and a microphone input 226. The signals from the analog inputs 222, 224, 226 are converted to digital signals and are processed in a audio processing unit 228 prior to being supplied to a BLUETOOTH® communication subsystem 230 and to a magnetic induction (MI) communication subsystem 232. The BLUETOOTH® communication subsystem 230 may transmit the audio data to external devices having a BLUETOOTH® interface, such as the mobile phone 33, and may receive audio data from such external devices, such as the mobile phone 33 and the TV set 31. The MI communication subsystem 232 is provided for transmitting audio data supplied by the audio signal processing unit 228 and by the BLUETOOTH® communication subsystem 230 via the link 212 to the hearing aids 16. However, the link is bidirectional, i.e., audio and data may also be sent from the hearing aids to the accessory device, for example, to use the hearing aid as a wireless headset, where the hearing aid microphones are used to capture the patient's voice and to send corresponding audio back to the accessory device and on to the mobile phone. There may further audio data and control data exchange between the BLUETOOTH® communication subsystem 230 and the MI communication subsystem 232. The unit 210 also comprises a user interface 234, a system controller 236, and a power management unit 238, with the system controller 236 controlling operation of the unit 210, in particular with regard to the BLUETOOTH® communication subsystem 230 and the MI communication subsystem 232.
  • The MI communication subsystem 232, which is shown in more detail at the bottom of FIG. 14, comprises a data/audio interface 240 for communication with the audio signal processing unit 228, the BLUETOOTH® communication subsystem 230 and the system controller 234, an audio and data stream processor 242 for compressing/decompressing audio signals and managing/aligning meta data (real time data) with audio, a data processor 244 for treating control data, such as remote control commands, and a system controller 246. The system controller 246 is for implementing the MI protocol and thus controls the MI communication and the MI communication subsystem 232 in general. The MI communication subsystem 232 also includes an MAC accelerator 248 and an MI radio 250. The MAC accelerator 248 is a component for treating the real-time aspects of the MI communication subsystem 232, in particular the timing of transmission and receipt within the TDMA system and control of the MI radio 250. The MI radio is for converting the digital signals supplied by the MAC accelerator 248 into analog transmission signals and vice versa.
  • Also the hearing 16 is provided with a MI communication subsystem 232 of the type used in the unit 210 in order to exchange audio and control data with the typical hearing aid components (indicated as block 252 in FIG. 14) via the interface 240.
  • A block diagram of another example of a transmission unit 10 is shown in FIG. 6, which comprises a microphone arrangement 17 for capturing audio signals from the respective speaker's 11 voice, an audio signal processing unit 20 for processing the captured audio signals, a digital transmitter 28 and an antenna 30 for transmitting the processed audio signals as an audio stream consisting of audio data packets. One function of the audio signal processing unit 20 is to compress the audio data using an appropriate audio codec, as it is known in the art. The compressed audio stream is transmitted via a digital audio link 12 established between the transmission units 10 and the receiver unit 14, which link also serves to exchange control data packets between the transmission unit 10 and the receiver unit 14.
  • The transmission units 10 may include additional components, such as a voice activity detector (VAD) 24. The audio signal processing unit 20 and such additional components may be implemented by a digital signal processor (DSP) indicated at 22. In addition, the transmission units 10 also may comprise a microcontroller 26 acting on the DSP 22 and the transmitter 28. The microcontroller 26 may be omitted in case that the DSP 22 is able to take over the function of the microcontroller 26. Preferably, the microphone arrangement 17 comprises at least two spaced- apart microphones 17A, 17B, the audio signals of which may be used in the audio signal processing unit 20 for acoustic beam forming in order to provide the microphone arrangement 17 with a directional characteristic.
  • The VAD 24 uses the audio signals from the microphone arrangement 17 as an input in order to determine the times when the person 11 using the respective transmission unit 10 is speaking. The VAD 24 may provide a corresponding control output signal to the microcontroller 26 in order to have, for example, the transmitter 28 sleep during times when no voice is detected and to wake up the transmitter 28 during times when voice activity is detected. In addition, a control command corresponding to the output signal of the VAD 24 may be generated and transmitted via the wireless link 12 in order to mute the receiver units 14 or saving power when the user 11 of the transmission unit 10 does not speak. To this end, a unit 32 is provided which serves to generate a digital signal comprising the audio signals from the processing unit 20 and the control data generated by the VAD 24, which digital signal is supplied to the transmitter 28.
  • In addition to the VAD 24, the transmission unit 10 may comprise an ambient noise estimation unit (not shown in FIG. 6) which serves to estimate the ambient noise level and which generates a corresponding output signal which may be supplied to the unit 32 for being transmitted via the wireless link 12.
  • The transmission unit 10 also may comprise inputs for audio signals supplied by external audio sources 33, 35, such as a plug-in interface 36 and/or a wireless interface 41, such as a BLUETOOTH® interface. Such external audio sources 33, 35 may be, for example, a phone, a mobile phone, a music player, a computer or a TV set. In particular, by providing such interfaces 36, 41 a plurality of audio signal input channels to the transmission unit 10 are realized.
  • According to one embodiment, the transmission units 10 may be adapted to be worn by the respective speaker 11 below the speaker's neck, for example, as a lapel microphone or as a shirt collar microphone. This type of transmission unit 10 is typically used when the wireless audio link is implemented as an electromagnetic (far-field) link 12.
  • When the wireless audio link is implemented as an inductive link 212, the transmission unit 210, by contrast, is worn by the user of the receiver unit 14/hearing aid 16, for example below the user's neck. In some cases, the microphone arrangement 17 and the VAD 24 of the example of FIG. 6 then may be omitted.
  • An example of a digital ear-level receiver unit 14 is shown in FIG. 7, according to which the antenna arrangement 38 is connected to a digital transceiver 61 including a demodulator 58 and a buffer 59. The signals transmitted via the digital link 12 are received by the antenna 38 and are demodulated in the digital radio receivers 61. The demodulated signals are supplied via the buffer 59 to a DSP 74 acting as processing unit which separates the signals into the audio signals and the control data and which is provided for advanced processing, e.g., equalization, of the audio signals according to the information provided by the control data. The processed audio signals, after digital-to-analog conversion, are supplied to a variable gain amplifier 62 which serves to amplify the audio signals by applying a gain controlled by the control data received via the digital link 12. The amplified audio signals are supplied to a hearing aid 64. Alternatively, the audio signals may be supplied as digital signals to the hearing aid. The receiver unit 14 also includes a memory 76 for the DSP 74.
  • Rather than supplying the audio signals amplified by the variable gain amplifier 62 to the audio input of a hearing aid 64, the receiver unit 14 may include a power amplifier 78 which may be controlled by a manual volume control 80 and which supplies power amplified audio signals to a loudspeaker 82 which may be an ear-worn element integrated within or connected to the receiver unit 14. Volume control also could be done remotely from the transmission unit 10 by transmitting corresponding control commands to the receiver unit 14.
  • Another alternative implementation of the receiver unit may be a neck-worn device having a transmitter 84 for transmitting the received signals via with an magnetic induction link 86 (analog or digital) to the hearing aid 64 (as indicated by dotted lines in FIG. 7).
  • In general, the role of the microcontroller 24 could also be taken over by the DSP 22. Also, signal transmission could be limited to a pure audio signal, without adding control and command data.
  • In FIG. 8 a schematic example of a TDMA structure of the inductive wireless audio link 212 of a system like the one shown in FIG. 5 is shown, wherein certain slots of each TDMA frame are attributed to one of the members of the synchronized network 200 (in the example shown in FIG. 8, the synchronized network members are the transmission units 210, the right-ear hearing aid 16R and the left-ear hearing aid 16L). In the example shown in FIG. 8, the first slot (or group of slots) is attributed to the transmission unit 210 for data transmission to the right-ear hearing aid 16R, a second slot (or group of slots) is attributed to the transmission unit 210 for transmission of data to the left-ear hearing aid 16L, and a third slot (or group of slots) is attributed to the right-ear hearing aid 16R for transmitting data to the left-ear hearing aid 16L. One of the synchronized network members may act as a master which attributes the TDMA slots to the other members, wherein each network member has to synchronize with the master. However, also a distributed control configuration is conceivable.
  • Preferably, all network members transmit (and listen) at a single frequency, which preferably is 10.6 MHz. Preferably, the wireless link 212 may employ Binary Frequency Shift Keying (BFSK), Quadrature Phase Shift Keying (QPSK) or pulse-count modulation (PCTM) with 8 Phase Shift Keying (8PSK).
  • The data transmitted from the transmission unit 210 to the hearing aid 16R, 16L will be mainly audio data received from the external audio devices 31, 33, 35, with the transmission unit 210 thereby acting as a streamer. Also, the hearing aids 16R, 16L may transmit audio data in order to realize a binaural system.
  • Each frame also includes at least one slot 100, during which none of the synchronized network members is allowed to transmit data while at least one, preferably all, of the synchronized network members listen. Such listening slot 100 is used to allow an external control device 101 (for example, a remote control) to transmit control data (i.e., any data that is not audio data) to at least one of the synchronized network members, while the external control device 101 is not a synchronized network member. The control data is transmitted according to a sequence pattern selected according to the duration and periodicity of the listening slot(s) 100. Preferably, the external control device 101 does not wait for any response from the synchronized network members.
  • In FIGS. 9 and 10, two examples are illustrated of how the sequence pattern of the control data transmission can be selected according to the duration of the listening slots 100.
  • In the example shown in FIG. 9, the control data is contained in a control data block 102 which is transmitted as immediate repetitions during a control data period, wherein the duration of the listening slot 100 is at least twice the length of the control data block 102 (or stated the other way round, the length of the control data block is not more than half of the length of the listening slot 100). Preferably, the duration of the control data period is at least the length of the periodicity of the listening slots (indicated in FIG. 9 by “tdelta”), with the periodicity of the listening slots corresponding to the length of the frames.
  • The external control device 101 represents a node which cannot synchronize its transmission clock to that of the synchronized network members, i.e., the nodes in the network, for example, because the external control device 101 is not in the range of the network 200 in the sense that the signals transmitted by the network members are too weak to be received or because it does not have a receiver suitable for receiving such signals of the synchronized network 200. The listening slot 100 is at the same offset in every frame relative to the beginning of the frame, and a listening slot can be present in every frame of only in every n-th frame. The maximum time between successive listening slots 100 (tdelta) determines the maximum delay a message from the external device 101 takes to reach a synchronized network member.
  • While in FIGS. 9 and 10 only a single listening slot per frame is shown, it is to be understood that several listening slots may be present in each frame. The slots may be evenly or unevenly spaced within the frame, with tdelta determining the maximum delay of receiving control data from an unsynchronized device.
  • The external device 101 is aware that the listening slots 100 exist, but, since it is not synchronized to the network clock, it does not know when the listening slots 100 actually occur. As a consequence, the external device 101 sends the message 102 for the duration of at least the listening slot periodicity tdelta. Since the duration of the listening slots 100 is at least twice the maximum length of the message 102, the message block 102 always fits entirely within one of the listening slots 100, irrespective of when the external device 100 starts sending the message 102 for the first time.
  • Those of the synchronized network members which listen during the respective listening slot 100 during which the external device 101 transmits one copy of the message 102 will receive the message 102. Depending on the number of times the message 102 is repeated by the external device 101 and on the length of the listening slot relative to the length of the control data message, the synchronized network members may receive the same message 102 multiple times, and thus, have to be designed to tolerate and handle duplicates (for example, by detecting and ignoring duplicates as is known in the art).
  • In the calculation of the transmission duration of the external device 101, the length of the TDMA slots, the length of the message 102 and clock tolerances (i.e., clock precision) have to be taken into account.
  • It is noted that, since the transmission power of the external device 101 has to be such that the messages 102 can reach the network 200, transmissions within the network 200 during the transmission of the message 102 from the external device 101 are likely to be interfered with, and therefore, may not be received by the intended recipients. However, this period typically will be short and will only temporarily impede communication within the network.
  • An alternative example of the transmission sequence pattern from the external device 101 is shown in FIG. 10, wherein, rather than continuously repeating transmission of the message 102, transmission of the copies of the message 102 is spread apart. The duration of the listening slot 100 is at least the length of the control data block 102, i.e., the message 102 (or, stated otherwise, the length of the message 102 is less than the duration of the listening slot 100). The repetition periodicity (“gap between transmissions” in FIG. 10), i.e., the time period between the beginning of the first copy of the message 102 and the beginning of the transmission of the second copy of the message 102, is at least the length of the periodicity of the listening slots (i.e., tdelta) plus the length of the listening slot 100 minus the length of the message 102. Such selection of the transmission sequence pattern causes a shift of successive transmissions between frames, so that the message 102 will eventually fall into one of the listening slots 100 and thus can be received by the synchronized network members.
  • It is noted that, in this embodiment, transmission of the messages 102 has a smaller impact on communication within the network 200, since the external device 101 sends at most one message 102 per frame and therefore does not interfere with multiple consecutive audio data packets in a single frame, thus resulting in shorter audio interruption. However, this is achieved at the cost of potentially longer delay necessary to feed a message 102 into the network 200: since the shift is the difference of the duration of the listening slot and the duration of the message 102, it may take tdelta*(tdelta/duration of listening slot−duration of message), before a message 102 transmitted by the external device 101 falls into one of the listening slots 100.
  • Preferably, in all embodiments, the external device 101 is paired with the network 200 so that the synchronized network members only recognize control data/commands sent from specific, i.e., paired, external devices 101, while ignoring commands from other devices outside the network 200.
  • Typically, the method of the present invention may be used for controlling the network 200 via remote control commands from a non-synchronized remote control, with the external device 101 acting as such remote control. In this case, the message 102 typically is for making the transmission unit 210 at least temporarily cease the transmission of audio data via the wireless network link 212 (and/or to make other synchronized network members, such as the hearing aids 16R, 16L, to at least temporarily cease data transmission). After the network members have complied with such request from the external device 101, the external device 101 may transmit another message which makes the network members reestablish their transmission activities. In between the message to silence the network and the message to reestablish network communication another, larger message may be transmitted from the external device 101 without interfering with the internal network communication, since anyway no internal network communication takes place after the request to silence the network has been received.
  • A message 102 representing a request to silence the network 200 can be very short, and thus, the listening slot 100 can be similarly short, thereby introducing very little disturbance of the internal communication within the network 200 and not wasting a lot of network bandwidth for control data.
  • In FIGS. 11 to 13, examples of the TDMA frame structure suitable for embodiments of the invention are shown wherein the wireless network link is an electromagnetic link 12.
  • Typical carrier frequencies for the digital link 12 are 865 MHz, 915 MHz and 2.45 GHz, wherein the latter band is preferred. Examples of the digital modulation scheme are PSK/FSK, ASK or combined amplitude and phase modulations such as QAM, and variations thereof (for example, GFSK).
  • The preferred codec used for encoding the audio data is sub-band ADPCM (Adaptive Differential Pulse-Code Modulation).
  • Preferably, data transmission occurs in the form of TDMA (Time Division Multiple Access) frames comprising a plurality (for example, 10) of time slots, wherein in each slot one data packet may be transmitted (alternatively, several data packets may be sent during a slot). In FIG. 11, an example is shown wherein the TDMA frame has a length of 4 ms and is divided into 10 time slots of 400 μs, with each data packet having a length of 160 μs.
  • Preferably, a slow frequency hopping scheme is used, wherein each slot is transmitted at a different frequency according to a frequency hopping sequence calculated by a given algorithm in the same manner by the transmitter unit 10 and the receiver units 14, wherein the frequency sequence is a pseudo-random sequence depending on the number of the present TDMA frame (sequence number), a constant odd number defining the hopping sequence (hopping sequence ID) and the frequency of the last slot of the previous frame.
  • The first slot of each TDMA frame may be allocated to the periodic transmission of a beacon packet which contains the sequence number numbering the TDMA frame and other data necessary for synchronizing the network, such as information relevant for the audio stream, such as description of the encoding format, description of the audio content, gain parameter, surrounding noise level, etc., information relevant for multi-talker network operation, and optionally control data for all or a specific one of the receiver units.
  • At least some of the other slots are allocated to the transmission of audio data packets, wherein each audio data packet usually is repeated at least once, typically in subsequent slots. In the example shown in FIG. 11, three subsequent slots are used for three-fold transmission of a single audio data packet. The master device does not expect any acknowledgement from the slaves devices (receiver units), i.e., repetition of the audio data packets is done in any case, irrespective of whether the receiver unit has correctly received the first audio data packet or not. Also, the receiver units usually are not individually addressed by sending a device ID, i.e., the same signals are sent to all receiver units (broadcast mode).
  • Rather than allocating separate slots to the beacon packet and the response of the slaves, the beacon packet and the response data may be multiplexed on the same slot.
  • When the receiver unit has correctly received already the first transmission of a certain audio data packet, it stops listening to the second and third transmission of the same audio data packet.
  • In each TDMA frame or in every n-th TDMA frame a listening slot 100 is provided during which there is no data transmission within the synchronized network members.
  • The listening slots 100 are reserved for controlling data traffic at one of a number of predefined public frequencies (channels), with external control devices transmitting at one of these public frequencies and with the synchronized network members listening, during the listening slots 100, at these public frequencies. For example, the network members may listen subsequently at all of the public frequencies during the listening slots 100.
  • According to one embodiment, each control data block/message 102 is transmitted in continuous repetition by the external control device 101 at all public frequencies in a cyclic manner, with the transmission of the control data block 102 being repeated with a short transmission period, wherein each synchronized network member listens at a single one of the public frequencies during each listening slot 100, with each synchronized network member listening at a different one of the public frequencies during subsequent listening slots in order to address all of the public frequencies. Such frequency change of the listening slots may be cyclic or random.
  • In the examples of FIGS. 12 and 13 there are three public frequencies corresponding to channels 14, 42 and 70.
  • In the example of FIG. 12, the duration of each listening slot 100 is at least the number of public frequencies times the length of the transmission period of the control data block 102 plus the length of the control data block 102, with the external control device 101 not waiting for any response from the synchronized network members.
  • Thus, the control message transmission latency can be minimized, since the duration of the listening slot guarantees that at least one control data packet 102 is transmitted at the correct frequency within the listening slot 100, irrespective of the specific one of the public frequencies at which the synchronized network member listens during that listening slot 100.
  • In case that bidirectional control message transmission is required, the transmissions from the external device 101 have to be interleaved with periods where the external device 101 waits for potential responses. While the simplest approach would be to have a response listening window after every transmission from the external device 101, a more optimized approach is to have a single response listening window after transmission has occurred at all of the public frequencies (i.e., in the example of FIG. 13, after three transmissions). Each control data block is subsequently transmitted from the external control device 101 at all public frequencies, with the transmission of the control data block being repeated with a transmission period and with a response listening slot of the external control device being provided every time when the control data block has been transmitted at all of the public frequencies before the next control data transmission cycle is started, wherein the duration of the listening slot of the synchronized network members is at least in a number of public frequencies times the length of the transmission period of the control data block plus the length of the control data block plus the length of the response listening slot of the external control device.
  • When selecting the length of the listening slot 100, one has to optimize the system either with regard to unidirectional communication from the external device 101 or for bidirectional communication with the external device 101. For example, when the listening period 100 is optimized for unidirectional communication, the transmission delay in case of bidirectional communication will be increased, since the probability for receiving the message 102 within the listening slot 100 will be less than 100%. On the other hand, if the listening slot 100 is optimized for bidirectional communication, there will be some power consumption penalty in the case of unidirectional communication.
  • With regard to the listening slot periodicity (i.e., the time interval from the beginning of one listening slot to the beginning of the next listening slot) there is a trade-off between the average power consumption of the listening activity and the latency for the transmission of the message 102. In principle, the listening slot periodicity may be constant or it may be randomized. Since the external device is not synchronized to the network members and since the messages are transmitted from the external device as a compact train of repetitions, it is guaranteed that already the first listening period will be successful in receiving the message.
  • Preferably, not more than three public frequencies (channels) are used, which may correspond to the low mid and high part of the 2,400 GHz to 2,483 GHz band. For transmission of the audio signals between the synchronized network members for example 40 channels may be used.
  • In general, all kinds of modulation may be used in the invention, such as Amplitude Shift Keying (ASK) with M modulation stages; Phase Shift Keying like BPSK, QPSK, 8-PSK or M-ary PSK; Frequency Shift Keying like BFSK, M-ary FSK, OFDM, CPFSK with two frequencies; Quadrature Amplitude Modulation (QAM), Spread Spectrum like DSSS (direct sequence spread spectrum) or FHSS (frequency hopping spread spectrum); and Pragmatic Trellis Code Modulation (PTCM).
  • As already mentioned above, in addition to audio data usually other kinds of data, such as control data, may be transmitted within the TDMA frame structures via the wireless link, i.e., the network, since the invention, as far as the transmission of control of a not-synchronized control device to a synchronized network member is concerned, is not restricted to the type of data exchanged within the network (examples of other types of data are web browsing data, video data and file transfer data).
  • Also, the frames, rather than having a pure TDMA structure, may have a structure corresponding to a combination of TDMA and FDMA, as used, for example in telephone networks.

Claims (25)

What is claimed is:
1. A method for providing sound to at least one user (13), comprising:
capturing audio signals and transforming the audio signals into audio data,
transmitting audio data, by applying a digital modulation scheme, via a digital wireless link (12, 212) from a transmission unit (10, 110, 210) to at least one receiver unit (14);
generating audio signals from the received audio data; and
stimulating the hearing of the user(s) according to audio signals supplied from the receiver unit;
wherein the audio data is transmitted as audio data packets in separate slots of a TDMA frame structure, wherein the transmission unit and the receiver unit(s) are synchronized to form a wireless network (200) comprising at least the transmission unit and the receiver unit(s) as synchronized network members, wherein each of said TDMA frame structure comprises at least one listening slot (100) during which none of the synchronized network members is allowed to transmit data while at least one of the synchronized network members listens, and wherein control data (102) is transmitted from an external control device (101), which is not a synchronized network member, according to a sequence pattern selected according to the duration and periodicity (tdelta) of the listening slot(s) in order to be received by the at least one of the synchronized network members during said listening slot(s).
2. The method of claim 1, wherein the external control device (101) does not wait for any response from the synchronized network members (10, 14, 110, 210).
3. The method of claim 2, wherein the synchronized network members (14, 210) and the external control device (101) transmit at a single frequency via an inductive link forming said wireless link, with said network forming a hearing instrument body area network.
4. The method of claim 3, wherein said transmission frequency is 10.6 MHz
5. The method of claim 3, wherein the wireless link (212) employs one of BFSK, QPSK and PTCM modulation.
6. The method of claim 3, wherein the control data is contained in a control data block (102) which is transmitted as immediate repetitions during a control data period, and wherein the duration of the listening slot (100) is at least twice the length of the control data block.
7. The method of claim 6, wherein the duration of the control data period is at least the length of the periodicity of the listening slots (100).
8. The method of claim 3, wherein the control data is contained in a control data block (102) which is transmitted as repetitions having a repetition periodicity, wherein the duration of the listening slot(s) (100) is at least the length of the control data block, and wherein the duration of the repetition periodicity is about the length of the periodicity of the listening slots plus the length of the listening slot minus the length of the control data block.
9. The method of claim 3, wherein the external control device (101) is paired with the synchronized network members (14, 210).
10. The method of claim 3, wherein the transmission unit (210) comprises a microphone arrangement for capturing the audio signals from ambient sound and is worn by the user (13) of the receiver units (14).
11. The method of claim 10, wherein two of the receiver units (14) are provided, each receiver unit forming part of a hearing aid (16A, 16B) of a binaural system, wherein at least one of the hearing aids is for transmitting audio data or control data to the other hearing aid via said wireless network (200).
12. The method of claim 3, wherein the control data (102) serves to make the transmission unit (210) at least temporarily cease the transmission of audio data.
13. The method of claim 1, wherein each audio data packet is transmitted at a different frequency according to a frequency hopping sequence, wherein the TDMA frame structure is structured for unidirectional broadcast transmission of the audio data packets, without individually addressing the receiver unit(s), and wherein the external control device (101) transmits at at least one frequency selected from a number of predefined public frequencies, with the synchronized network members (10, 14, 110) listening during the listening slots (100) subsequently at all of the public frequencies.
14. The method of claim 13, wherein the wireless link (12) and the transmission of the external control device (101) employ electromagnetic (far-field) transmission.
15. The method of claim 3, wherein each control data block (102) is subsequently transmitted by the external control device (101) at all public frequencies in a cyclic manner, with the transmission of the control data block being repeated with a transmission period.
16. The method of claim 15, wherein each synchronized network member (10, 143, 110) listens at a single one of the public frequencies during each listening slot (100), which frequency is selected in a cyclic manner or in a random manner in order to address all of the public frequencies.
17. The method of claim 16, wherein the duration of the listening slot (100) is at least the number of public frequencies times the length of transmission period of the control data block (102) plus the length of the control data block, and wherein the external control device (101) does not wait for any response from the synchronized network members.
18. The method of claim 16, wherein each control data block (102) is subsequently transmitted by the external control device (101) at all public frequencies, with the transmission of the control data block being repeated with a transmission period, and with a response listening slot of the external control device being provided every time when the control data block has been transmitted at all of the public frequencies before the next control data transmission cycle is started, wherein the duration of the listening slot (100) of the synchronized network members (10, 14, 110) is at least the number of public frequencies times the length of transmission period of the control data block plus the length of the control data block plus the length of the response listening slot of the external control device.
19. The method of claim 13, wherein there are not more than three public frequencies.
20. The method of claim 13, wherein the transmission unit (10, 110) comprises a microphone arrangement (17) for capturing the voice of a person (11) other than the user (13) of the receiver unit(s) (14), wherein the transmission unit is worn by said person.
21. The method of claim 1, wherein the transmission unit (10, 110, 210) is supplied with audio signals from an external audio device (31, 33, 35) via a wireless connection (37) or via a plug-in connection (39).
22. The method of claim 21, wherein the external audio device is a phone, a mobile phone (33), a music player (35), a TV set (31) or a HiFi-set.
23. The method of claim 1, wherein the receiver units (14) are worn at ear-level.
24. The method of claim 23, wherein each receiver unit (14) is connected to or integrated within a hearing aid (16, 16A, 16B).
25. A system for providing sound to at least one user (13), comprising:
at least one audio signal source (17, 31, 33, 35) for providing audio signals;
a transmission unit (10, 110, 210) comprising a digital transmitter for applying a digital modulation scheme and transmitting audio data generated from the audio signals via a digital wireless link (12, 212);
at least one receiver unit (14) for reception of audio data from the transmission unit via the digital link, comprising at least one digital receiver and means for generating audio signals from the audio data;
means for stimulating the hearing of the user(s) according to audio signals supplied from the receiver unit;
an external control device (101);
wherein the transmission unit is adapted to transmit the audio data as audio data packets in separate slots of a TDMA frame structure, wherein the transmission unit and the receiver unit(s) are adapted to be synchronized to form a wireless network (200) comprising at least the transmission unit and the receiver unit(s) as synchronized network members, wherein each of said TDMA frame structures comprises at least one listening slot (100) during which none of the synchronized network members is allowed to transmit data while at least one of the synchronized network members listens, and wherein said external control device is adapted to transmit control data (102), while not being a synchronized network member, according to a sequence pattern selected according to the duration and periodicity (tdelta) of the listening slot(s) in order to be received by the at least one of the synchronized network members during said listening slot(s).
US14/237,220 2011-08-09 2011-08-09 Wireless sound transmission system and method Abandoned US20140233527A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2011/063708 WO2013020588A1 (en) 2011-08-09 2011-08-09 Wireless sound transmission system and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/063708 A-371-Of-International WO2013020588A1 (en) 2011-08-09 2011-08-09 Wireless sound transmission system and method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/708,253 Continuation US10084560B2 (en) 2011-08-09 2017-09-19 Wireless sound transmission system and method

Publications (1)

Publication Number Publication Date
US20140233527A1 true US20140233527A1 (en) 2014-08-21

Family

ID=44630231

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/237,220 Abandoned US20140233527A1 (en) 2011-08-09 2011-08-09 Wireless sound transmission system and method
US15/708,253 Active US10084560B2 (en) 2011-08-09 2017-09-19 Wireless sound transmission system and method

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/708,253 Active US10084560B2 (en) 2011-08-09 2017-09-19 Wireless sound transmission system and method

Country Status (5)

Country Link
US (2) US20140233527A1 (en)
EP (1) EP2742702B1 (en)
CN (1) CN103718570B (en)
DK (1) DK2742702T3 (en)
WO (1) WO2013020588A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150270887A1 (en) * 2014-02-27 2015-09-24 Panasonic Intellectual Property Management Co., Ltd. Wireless communication system and communication device
US20150339257A1 (en) * 2012-05-31 2015-11-26 Phonak Ag System and method for master-slave data transmission based on a flexible serial bus for use in hearing devices
US20160165333A1 (en) * 2014-12-05 2016-06-09 Silicon Laboratories Inc. Bi-Directional Communications in a Wearable Monitor
CN105721981A (en) * 2015-05-28 2016-06-29 Tcl通力电子(惠州)有限公司 Earphone working method and earphone
US20170295573A1 (en) * 2016-04-08 2017-10-12 Oticon A/S Multiple transmission network
US20180352434A1 (en) * 2017-06-05 2018-12-06 Renesas Electronics Corporation Wireless communication system, beacon device, information processing terminal, and beacon device authentication method
US20190132839A1 (en) * 2017-10-31 2019-05-02 Tionesta, Llc Communication protocol overlay
USRE47716E1 (en) * 2010-02-12 2019-11-05 Sonova Ag Wireless sound transmission system and method
US20190363751A1 (en) * 2016-11-16 2019-11-28 Shenzhen Neotecway Electronic Technology Co., Ltd M-Ary Direct Sequence Spread Spectrum Communication Method
US11102565B1 (en) 2020-04-09 2021-08-24 Tap Sound System Low latency Bluetooth earbuds
US11297635B2 (en) * 2017-08-11 2022-04-05 Jrd Communication (Shenzhen) Ltd Slot bundling
EP3195620B1 (en) * 2014-09-19 2024-05-01 Cochlear Limited Configuration of hearing prosthesis sound processor based on control signal characterization of audio

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9143872B2 (en) * 2012-02-28 2015-09-22 Cochlear Limited Wireless streaming link break-in
CN103533510A (en) * 2013-10-28 2014-01-22 深圳市冠标科技发展有限公司 Single-channel multi-channel audio output wireless conference system
WO2014114818A2 (en) * 2014-05-28 2014-07-31 Phonak Ag Hearing assistance system and method
US9225527B1 (en) 2014-08-29 2015-12-29 Coban Technologies, Inc. Hidden plug-in storage drive for data integrity
US9307317B2 (en) 2014-08-29 2016-04-05 Coban Technologies, Inc. Wireless programmable microphone apparatus and system for integrated surveillance system devices
DE102015208948A1 (en) * 2015-05-13 2016-11-17 Sivantos Pte. Ltd. A method for transmitting digital data packets from a transmitter to a receiver located in a mobile device
US10165171B2 (en) 2016-01-22 2018-12-25 Coban Technologies, Inc. Systems, apparatuses, and methods for controlling audiovisual apparatuses
US10789840B2 (en) 2016-05-09 2020-09-29 Coban Technologies, Inc. Systems, apparatuses and methods for detecting driving behavior and triggering actions based on detected driving behavior
US10370102B2 (en) 2016-05-09 2019-08-06 Coban Technologies, Inc. Systems, apparatuses and methods for unmanned aerial vehicle
US10152858B2 (en) 2016-05-09 2018-12-11 Coban Technologies, Inc. Systems, apparatuses and methods for triggering actions based on data capture and characterization
CN106210951A (en) * 2016-08-15 2016-12-07 广东欧珀移动通信有限公司 The adaptation method of a kind of bluetooth earphone, device and terminal
CN114158023A (en) * 2017-08-14 2022-03-08 索诺瓦公司 Audio stream detection
US10624032B2 (en) 2017-12-18 2020-04-14 Intricon Corporation Synchronizing asynchronous dual-stack radio events for hearing device applications
US10292031B1 (en) * 2018-01-30 2019-05-14 Nxp B.V. Wireless network device
EP3462750A1 (en) * 2018-02-21 2019-04-03 Oticon A/s Fixation element of telecoil in hearing aid
DK3883276T3 (en) 2018-08-07 2023-07-10 Gn Hearing As A SOUND REPRODUCTION SYSTEM
WO2023144641A1 (en) * 2022-01-28 2023-08-03 Cochlear Limited Transmission of signal information to an implantable medical device
WO2024089500A1 (en) * 2022-10-25 2024-05-02 Cochlear Limited Signal processing for multi-device systems
DK202270521A1 (en) * 2022-10-28 2024-06-21 Widex As Hearing aid system and method for configuring such

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5790527A (en) * 1994-12-20 1998-08-04 Research Triangle Park Trunked radio frequency communication system for accommodating both frequency and time division based RF communications
US20020193945A1 (en) * 2000-01-14 2002-12-19 Tan Khai Pang Communication apparatus
US20110150249A1 (en) * 2009-12-17 2011-06-23 Bjarne Klemmensen Assistive listening system adapted for using dect
US20120311409A1 (en) * 2008-12-22 2012-12-06 Gn Resound A/S Error correction scheme in a hearing system wireless network
US8401470B2 (en) * 2007-06-27 2013-03-19 Nxp B.V. Transmitter with adjustable transmit level for magnetic link

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09509033A (en) * 1994-12-01 1997-09-09 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Communications system
WO2005086801A2 (en) 2004-03-05 2005-09-22 Etymotic Research, Inc. Companion microphone system and method
ATE510418T1 (en) 2007-02-14 2011-06-15 Phonak Ag WIRELESS COMMUNICATIONS SYSTEM AND METHOD
WO2007132023A2 (en) * 2007-07-31 2007-11-22 Phonak Ag Hearing system network with shared transmission capacity and corresponding method for operating a hearing system
US20090298420A1 (en) * 2008-05-27 2009-12-03 Sony Ericsson Mobile Communications Ab Apparatus and methods for time synchronization of wireless audio data streams
US8194902B2 (en) 2008-12-22 2012-06-05 Gn Resound A/S Wireless network protocol for a hearing system
US8150057B2 (en) * 2008-12-31 2012-04-03 Etymotic Research, Inc. Companion microphone system and method
US20120310395A1 (en) * 2010-02-12 2012-12-06 Phonak Ag Wireless sound transmission system and method using improved frequency hopping and power saving mode
US9093056B2 (en) * 2011-09-13 2015-07-28 Northwestern University Audio separation system and method
US9531501B2 (en) * 2011-10-25 2016-12-27 Apple Inc. Data transfer between electronic devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5790527A (en) * 1994-12-20 1998-08-04 Research Triangle Park Trunked radio frequency communication system for accommodating both frequency and time division based RF communications
US20020193945A1 (en) * 2000-01-14 2002-12-19 Tan Khai Pang Communication apparatus
US8401470B2 (en) * 2007-06-27 2013-03-19 Nxp B.V. Transmitter with adjustable transmit level for magnetic link
US20120311409A1 (en) * 2008-12-22 2012-12-06 Gn Resound A/S Error correction scheme in a hearing system wireless network
US20110150249A1 (en) * 2009-12-17 2011-06-23 Bjarne Klemmensen Assistive listening system adapted for using dect

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE47716E1 (en) * 2010-02-12 2019-11-05 Sonova Ag Wireless sound transmission system and method
US20150339257A1 (en) * 2012-05-31 2015-11-26 Phonak Ag System and method for master-slave data transmission based on a flexible serial bus for use in hearing devices
US9710419B2 (en) * 2012-05-31 2017-07-18 Sonova Ag System and method for master-slave data transmission based on a flexible serial bus for use in hearing devices
US20150270887A1 (en) * 2014-02-27 2015-09-24 Panasonic Intellectual Property Management Co., Ltd. Wireless communication system and communication device
US9401734B2 (en) * 2014-02-27 2016-07-26 Panasonic Intellectual Property Management Co., Ltd. Wireless communication system and communication device
EP3195620B1 (en) * 2014-09-19 2024-05-01 Cochlear Limited Configuration of hearing prosthesis sound processor based on control signal characterization of audio
US20160165333A1 (en) * 2014-12-05 2016-06-09 Silicon Laboratories Inc. Bi-Directional Communications in a Wearable Monitor
US9942848B2 (en) * 2014-12-05 2018-04-10 Silicon Laboratories Inc. Bi-directional communications in a wearable monitor
CN105721981A (en) * 2015-05-28 2016-06-29 Tcl通力电子(惠州)有限公司 Earphone working method and earphone
US20170295573A1 (en) * 2016-04-08 2017-10-12 Oticon A/S Multiple transmission network
US11051296B2 (en) * 2016-04-08 2021-06-29 Oticon A/S Multiple transmission network
US10651888B2 (en) * 2016-11-16 2020-05-12 Shenzhen Neotecway Electronic Technology Co., Ltd M-ary direct sequence spread spectrum communication method
US20190363751A1 (en) * 2016-11-16 2019-11-28 Shenzhen Neotecway Electronic Technology Co., Ltd M-Ary Direct Sequence Spread Spectrum Communication Method
US20180352434A1 (en) * 2017-06-05 2018-12-06 Renesas Electronics Corporation Wireless communication system, beacon device, information processing terminal, and beacon device authentication method
US11297635B2 (en) * 2017-08-11 2022-04-05 Jrd Communication (Shenzhen) Ltd Slot bundling
US10939430B2 (en) * 2017-10-31 2021-03-02 Cth Lending Company, Llc Communication protocol overlay
US10945262B2 (en) * 2017-10-31 2021-03-09 Cth Lending Company, Llc Communication protocol overlay
US20190132839A1 (en) * 2017-10-31 2019-05-02 Tionesta, Llc Communication protocol overlay
US11102565B1 (en) 2020-04-09 2021-08-24 Tap Sound System Low latency Bluetooth earbuds

Also Published As

Publication number Publication date
CN103718570B (en) 2016-09-07
CN103718570A (en) 2014-04-09
EP2742702B1 (en) 2016-10-05
WO2013020588A1 (en) 2013-02-14
DK2742702T3 (en) 2016-12-12
US10084560B2 (en) 2018-09-25
US20180006752A1 (en) 2018-01-04
EP2742702A1 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
US10084560B2 (en) Wireless sound transmission system and method
US9504076B2 (en) Pairing method for establishing a wireless audio network
US9826321B2 (en) Wireless sound transmission system and method
CA2788389C (en) Wireless sound transmission system and method
US20120310395A1 (en) Wireless sound transmission system and method using improved frequency hopping and power saving mode
US9247355B2 (en) Wireless sound transmission system and method
US9668070B2 (en) Wireless sound transmission system and method
WO2011098142A1 (en) Wireless hearing assistance system and method
US10694301B2 (en) Audio transmission system

Legal Events

Date Code Title Description
AS Assignment

Owner name: PHONAK AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GEHRING, STEPHAN;EL-HOIYDI, AMRE;SIGNING DATES FROM 20140415 TO 20140423;REEL/FRAME:032747/0439

AS Assignment

Owner name: SONOVA AG, SWITZERLAND

Free format text: CHANGE OF NAME;ASSIGNOR:PHONAK AG;REEL/FRAME:036377/0528

Effective date: 20150710

AS Assignment

Owner name: SONOVA AG, SWITZERLAND

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT APPL. NO. 13/115,151 PREVIOUSLY RECORDED AT REEL: 036377 FRAME: 0528. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME;ASSIGNOR:PHONAK AG;REEL/FRAME:036561/0837

Effective date: 20150710

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE