US20140209283A1 - Heat dissipation apparatus for expansion base - Google Patents

Heat dissipation apparatus for expansion base Download PDF

Info

Publication number
US20140209283A1
US20140209283A1 US14/050,551 US201314050551A US2014209283A1 US 20140209283 A1 US20140209283 A1 US 20140209283A1 US 201314050551 A US201314050551 A US 201314050551A US 2014209283 A1 US2014209283 A1 US 2014209283A1
Authority
US
United States
Prior art keywords
air
air inlet
air outlet
heat dissipation
portable device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/050,551
Inventor
Chih-Hang Chao
Wei-Cheng Cheng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hon Hai Precision Industry Co Ltd
Original Assignee
Hon Hai Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Precision Industry Co Ltd filed Critical Hon Hai Precision Industry Co Ltd
Assigned to HON HAI PRECISION INDUSTRY CO., LTD. reassignment HON HAI PRECISION INDUSTRY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHAO, CHIH-HANG, CHENG, Wei-cheng
Publication of US20140209283A1 publication Critical patent/US20140209283A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/203Cooling means for portable computers, e.g. for laptops

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)

Abstract

A heat dissipation apparatus includes an expansion base, an air duct, a fan, a heat sink, and a portable device. A number of air inlet slots is defined in the expansion base. A first air inlet opening and a number of diagonal air outlet slots are defined in the air duct. A third air inlet opening and a third air outlet opening are defined in the portable device. The fan generates airflow through the portable device in such a manner that airflow flows from the expansion base outside is sucked into and blown out of the air duct via a first airflow passage. The portable device guides airflow in and out of the portable device via a second airflow passage.

Description

    BACKGROUND
  • 1. Technical Field
  • The present disclosure relates to a heat dissipation apparatus for an expansion base in portable devices.
  • 2. Description of Related Art
  • Panel computers include expansion bases to insert expansion cards. However, panel computers generate large amounts of heat when connected to expansion bases, which may be a hazard and cause a reduction in the life of the panel computers.
  • Therefore, there is a need for improvement in the art.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Many aspects of the embodiments can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the embodiments. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
  • FIG. 1 is an isometric, exploded view of an embodiment of a heat dissipation apparatus for an expansion base.
  • FIG. 2 is an enlarged view of a circled portion II of FIG. 1.
  • FIG. 3 is an assembled view of the heat dissipation apparatus for an expansion base of FIG. 1.
  • FIG. 4 is a cross-sectional view of the heat dissipation apparatus for an expansion base of FIG. 3, taken along line IV-IV.
  • DETAILED DESCRIPTION
  • The disclosure is illustrated by way of example and not by way of limitation in the figures of the accompanying drawings in which like references indicate similar elements. It should be noted that references to “an” or “one” embodiment in this disclosure are not necessarily to the same embodiment, and such references mean “at least one.”
  • FIGS. 1 and 2 show a heat dissipation apparatus, which includes an expansion base 10, an air duct 20, a fan 30, and a portable device 40.
  • The expansion base 10 includes a base body 11. A plurality of air inlet slots 12 is defined in one side of the base body 11. A first inserting slot 13 and a second inserting slot 14 are defined in a top of the base body 11. The first inserting slot 13 is substantially parallel to the second inserting slot 14.
  • The air duct 20 includes a duct body 21. A first air inlet opening 22 is defined in a bottom of the duct body 21. A plurality of air outlet slots 23 is diagonally defined in a top of the duct body 21. A first air inlet channel defined by the first air inlet opening 22 is substantially parallel to a first air outlet channel defined by the plurality of air outlet slots 23. The first air inlet opening 22 communicates with the plurality of air outlet slots 23. In this embodiment, a length of the first inserting slot 13 is less than a length of the second inserting slot 14. A length of the first inserting slot 13 is substantially equal to a length of the duct body 21, and a width of the first inserting slot 13 is substantially equal to a thickness of the duct body 21. A length of the second inserting slot 14 is substantially equal to a length of the portable device 40, and a width of the second inserting slot 14 is substantially equal to a thickness of the portable device 40.
  • The fan 30 includes a shell 31 and a rotatable fan blade module 32. A second air inlet opening 311 is defined in one side of the shell 31. The shell 31 further defines a second air outlet opening 312 in a top of the shell 31. The second air inlet opening 311 allows air to flow into the fan 30 along a first direction, which is in line with a rotating axle of the fan blade module 32. The second air outlet opening 312 allows air to flow out of the fan 30 along a second direction, which is substantially perpendicular to the first direction. In this embodiment, a length of the second air outlet opening 312 is substantially equal to a length of the plurality of air outlet slots 23.
  • The portable device 40 includes a main body 41 and a cover plate 42. The cover plate 42 is mounted on the main body 41. A plurality of third air inlet openings 43 is defined in one side of the main body 41. A plurality of third air outlet openings 44 is defined in a top of the main body 41. A second air inlet channel defined by the plurality of third air inlet openings 43 is substantially perpendicular to a second air outlet channel defined by the plurality of third air outlet openings 44. The plurality of third air inlet openings 43 communicates with the plurality of third air outlet openings 44. A first heat dissipation element 411 and a second heat dissipation element 412 are mounted on the main body 41. A heat sink 413 is mounted on the first heat dissipation element 411 and the second heat dissipation element 412 for transmitting heat. In this embodiment, the first heat dissipation element 411 is a CPU, and the second heat dissipation element 412 is a power control unit.
  • FIGS. 1 to 3 show that in assembly, the fan 30 is fixed in the duct body 21 of the air duct 20, such that the second air outlet opening 312 of the fan 30 is aligned with the plurality of air outlet slots 23 of the duct body 21. The duct body 21 is received in the first inserting slot 13, such that the first air inlet opening 22 of the air duct 20 communicates with an inside of the first inserting slot 13. The heat sink 413 is mounted on the first heat dissipation element 411 and the second heat dissipation element 412. The cover plate 42 is mounted on the main body 41 to cover the first heat dissipation element 411, the second heat dissipation element 412, and the heat sink 413. The portable device 40 is received in the second inserting slot 14. The cover plate 42 of the portable device 40 abuts against the duct body 21. The plurality of air outlet slots 23 face the cover plate 42.
  • FIG. 4 shows that in operation, the first heat dissipation element 411 and the second heat dissipation element 412 generate large amounts of heat when the portable device 40 is powered on. The heat generated by the first heat dissipation element 411 and the second heat dissipation element 412 is transmitted to the heat sink 413. A first amount of air from outside the expansion base 10 enters the portable device 40 via the plurality of third air inlet openings 43 or the plurality of third air outlet openings 44. The first amount of air displaces some heat accumulated in the heat sink 413. The heated first amount of air then exits from the portable device 40 through the plurality of third air outlet openings 44 or the plurality of third air inlet openings 43. A second amount of air from outside the expansion base 10 is sucked into the fan 30 via the plurality of air inlet slots 12 and the second air inlet opening 311. A speed of the second amount of air is increased when passing through the fan 30. The second amount of air is blown out of the fan 30 through the second air outlet opening 312 toward the plurality of air outlet slots 23 of the air duct 20. The second amount of air is diagonally blown out of the air duct 20 through the plurality of air outlet slots 23. The second amount of air is blown toward the cover plate 42 of the portable device 40 to remove heat accumulated on the cover plate 42. Therefore, a temperature of the portable device 40 is further decreased.
  • In this embodiment, the duct body 21 of the air duct 20 is made of heat-conducting material. The heat accumulated on the cover plate 42 of the portable device 40 is partially transmitted to the duct body 21. The second amount of air passes through the duct body 21 and removes the heat accumulated on the duct body 21. Therefore, the three described modes of heat dissipation significantly improve a heat dissipation efficiency of the heat dissipation apparatus.
  • Using a software application called ICEPAK to simulate the efficiency of the heat dissipation apparatus, the following results of an embodiment shown below were obtained. The simulated conditions were set as follows: a power dissipation of the first heat dissipation element 411 is 2 watts (W). A power dissipation of a memory of the portable device 40 is 1.5 W. A power dissipation of the second heat dissipation element 412 is 0.6 W. The fan 30 has a dimension of 92 millimeters (mm)×92 mm×25 mm (length×width×height). A maximum air flow rate of the fan 30 is 35.32 cubic feet per minute (cfm). A rated speed of the fan 30 is 2000 revolutions per minute (rpm). A maximum static pressure of the fan 30 is 0.084 inch-H2O.
  • The simulation according to the set conditions shows that when using the heat dissipation apparatus of the disclosure, a maximum temperature of the cover plate 42 of the portable device 40 is 45 degrees Celsius, a maximum temperature of the first heat dissipation element 411 is 46 degrees Celsius, a maximum temperature of the memory is 45.3 degrees Celsius, and a maximum temperature of the second heat dissipation element 412 is 48.2 degrees Celsius. In contrast, when using another heat dissipation apparatus, the back of the portable device 40 has a maximum temperature of 45.9 degrees Celsius, the first heat dissipation element 411 has a maximum temperature of 100.4 degrees Celsius, the memory has a maximum temperature of 100.7 degrees Celsius, and the second heat dissipation element 412 has a maximum temperature of 101.7 degrees Celsius. As can be seen, when using the heat dissipation apparatus of the disclosure, the maximum temperature of the portable device 40 is largely decreased, and heat dissipation efficiency is improved.
  • Even though numerous characteristics and advantages of the present disclosure have been set forth in the foregoing description, together with details of the structure and function of the disclosure, the disclosure is illustrative only, and changes may be made in detail, especially in the matters of shape, size, and the arrangement of parts within the principles of the disclosure to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.

Claims (16)

What is claimed is:
1. A heat dissipation apparatus, comprising:
an expansion base comprising a base body, an air inlet slot defined at one side of the base body; a first inserting slot and a second inserting slot defined at a top of the base body;
an air duct inserted in the first inserting slot, the air duct comprising a duct body, a first air inlet opening defined at a bottom of the duct body, a plurality of air outlet slots defined diagonally across a top of the duct body;
a fan fixed in the duct body; and
a portable device configured to be inserted in the second inserting slot, a third air inlet opening and a third air outlet opening defined in the portable device, a first heat dissipation element and a second heat dissipation element mounted on the portable device, and a heat sink mounted on the first heat dissipation element and the second heat dissipation element; wherein a first airflow passage is defined between the air inlet slot, the fan, the first air inlet opening, the air duct, and the plurality of air outlet slots; the fan is adapted to generate airflow through the portable device so that airflow flows from the expansion base outside is sucked into and blown out of the air duct via the first airflow passage; a second airflow passage is defined between the third air inlet opening, the heat sink, and the third air outlet opening; the portable device is configured to guide airflow in and out of the portable device via the second airflow passage.
2. The heat dissipation apparatus of claim 1, wherein the fan comprises a shell and a rotatable fan blade module; a second air inlet opening is defined at one side of the shell; and a second air outlet opening is defined at a top of the shell.
3. The heat dissipation apparatus of claim 2, wherein the second air inlet opening allows air to flow in a first direction which is in line with a rotating axle of the fan blade module; and the second air outlet opening allows air to flow in a second direction which is substantially perpendicularly to the first direction.
4. The heat dissipation apparatus of claim 3, wherein a length of the second air outlet opening is equal to a length of the plurality of air outlet slots.
5. The heat dissipation apparatus of claim 4, wherein the portable device comprises a main body; the third air inlet opening is defined at one side of the main body; and the third air outlet opening is defined at a top of the main body.
6. The heat dissipation apparatus of claim 5, wherein the air duct further comprises a first air inlet channel defined by the first air inlet opening and a first air outlet channel defined by the plurality of air outlet slots, the first air inlet channel being substantially parallel to the first air outlet channel; the portable device further comprises a second air inlet channel defined by the third air inlet opening and a second air outlet channel defined by the third air outlet opening, the second air inlet channel being substantially perpendicularly to the second air outlet channel.
7. The heat dissipation apparatus of claim 5, wherein the first air inlet opening is communicated with the plurality of air outlet slots; and the third air inlet opening is communicated with the third air outlet opening.
8. The heat dissipation apparatus of claim 7, wherein a length of the first inserting slot is less than a length of the second inserting slot; a length of the first inserting slot is equal to a length of the duct body; a width of the first inserting slot is equal to a thickness of the duct body; a length of the second inserting slot is equal to a length of the portable device; and a width of the second inserting slot is equal to a thickness of the portable device.
9. A heat dissipation apparatus, comprising:
an expansion base defining an air inlet slot at one side of the expansion base, a first inserting slot and a second inserting slot being defined at a top of the expansion base;
an air duct inserted in the first inserting slot, the air duct defining a first air inlet opening at a bottom of the air duct and a plurality of air outlet slots diagonally across a top of the air duct;
a fan fixed in the duct body, a second air inlet opening and a second air outlet opening being defined in the fan; and
a portable device configured to be inserted in the second inserting slot, a third air inlet opening and a third air outlet opening defined in the portable device, a first heat dissipation element and a second heat dissipation element mounted on the portable device, and a heat sink mounted on the first heat dissipation element and the second heat dissipation element; wherein a first airflow passage is defined between the air inlet slot, the second air inlet opening, the fan, the second air outlet opening, the first air inlet opening, the air duct, and the plurality of air outlet slots; the fan is configured to generate airflow through the portable device so that airflow flows from the expansion base outside is sucked into and blown out of the air duct via the first airflow passage; a second airflow passage is defined between the third air inlet opening, the heat sink, and the third air outlet opening; the portable device is configured to guide airflow in and out of the portable device via the second airflow passage.
10. The heat dissipation apparatus of claim 9, wherein the fan comprises a shell and a rotatable fan blade module; the second air inlet opening is defined at one side of the shell; and the second air outlet opening is defined at a top of the shell.
11. The heat dissipation apparatus of claim 10, wherein the second air inlet opening allows air to flow in a first direction which is in line with a rotating axle of the fan blade module; and the second air outlet opening allows air to flow in a second direction which is substantially perpendicularly to the first direction.
12. The heat dissipation apparatus of claim 11, wherein a length of the second air outlet opening is equal to a length of the plurality of air outlet slots.
13. The heat dissipation apparatus of claim 12, wherein the portable device comprises a main body; the third air inlet opening is defined at one side of the main body; and the third air outlet opening is defined at a top of the main body.
14. The heat dissipation apparatus of claim 13, wherein the air duct further comprises a first air inlet channel defined by the first air inlet opening and a first air outlet channel defined by the plurality of air outlet slots, the first air inlet channel being substantially parallel to the first air outlet channel; the portable device further comprises a second air inlet channel defined by the third air inlet opening and a second air outlet channel defined by the third air outlet opening, the second air inlet channel being substantially perpendicularly to the second air outlet channel.
15. The heat dissipation apparatus of claim 13, wherein the first air inlet opening is communicated with the plurality of air outlet slots; and the third air inlet opening is communicated with the third air outlet opening.
16. The heat dissipation apparatus of claim 15, wherein a length of the first inserting slot is less than a length of the second inserting slot; a length of the first inserting slot is equal to a length of the duct body; a width of the first inserting slot is equal to a thickness of the duct body; a length of the second inserting slot is equal to a length of the portable device; and a width of the second inserting slot is equal to a thickness of the portable device.
US14/050,551 2013-01-29 2013-10-10 Heat dissipation apparatus for expansion base Abandoned US20140209283A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW102103378 2013-01-29
TW102103378A TW201431478A (en) 2013-01-29 2013-01-29 Heat dissipating apparatus for extending base

Publications (1)

Publication Number Publication Date
US20140209283A1 true US20140209283A1 (en) 2014-07-31

Family

ID=51221665

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/050,551 Abandoned US20140209283A1 (en) 2013-01-29 2013-10-10 Heat dissipation apparatus for expansion base

Country Status (2)

Country Link
US (1) US20140209283A1 (en)
TW (1) TW201431478A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107148202A (en) * 2017-07-14 2017-09-08 河南森源电气股份有限公司 A kind of inverter cabin heat dissipation wind channel device and inverter cabin

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6626233B1 (en) * 2002-01-03 2003-09-30 Thermal Corp. Bi-level heat sink
US20100046169A1 (en) * 2008-08-25 2010-02-25 Jennifer Hu Heat Dissipation Device Having Sound Output Function
US20100134977A1 (en) * 2008-01-11 2010-06-03 Su-Ben Chang Portable heat dissipation device with cross flow fan
US20100134976A1 (en) * 2008-12-03 2010-06-03 Cheng-Ping Kuo Heat dissipating pad structure for notebook computer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6626233B1 (en) * 2002-01-03 2003-09-30 Thermal Corp. Bi-level heat sink
US20100134977A1 (en) * 2008-01-11 2010-06-03 Su-Ben Chang Portable heat dissipation device with cross flow fan
US20100046169A1 (en) * 2008-08-25 2010-02-25 Jennifer Hu Heat Dissipation Device Having Sound Output Function
US20100134976A1 (en) * 2008-12-03 2010-06-03 Cheng-Ping Kuo Heat dissipating pad structure for notebook computer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107148202A (en) * 2017-07-14 2017-09-08 河南森源电气股份有限公司 A kind of inverter cabin heat dissipation wind channel device and inverter cabin

Also Published As

Publication number Publication date
TW201431478A (en) 2014-08-01

Similar Documents

Publication Publication Date Title
US8248783B2 (en) Heat dissipation system
US8659891B2 (en) Heat dissipation system
US8848363B2 (en) Heat dissipation system
US8300405B2 (en) Airflow duct
US8593806B2 (en) Heat dissipation system
US8251642B2 (en) Centrifugal fan
US20100071875A1 (en) Heat dissipation device and centrifugal fan thereof
TW201220033A (en) Electronic apparatus
JP5725039B2 (en) Cooling unit, electronic device and guide member
US20120044634A1 (en) Heat dissipation apparatus
US20140036439A1 (en) Electronic device
US20140036433A1 (en) Airflow guiding member and electronic device having the airflow guiding member
US20170094835A1 (en) Thermal flow assembly including integrated fan
US20120057301A1 (en) Heat dissipation apparatus and electronic device incorporating same
US8737060B2 (en) Computer system with airflow guiding duct
CN201590960U (en) Shell of electronic device
US20120120595A1 (en) Computer system with airflow guiding duct
US20120188716A1 (en) Heat dissipation system
US20140209282A1 (en) Heat dissipation apparatus for expansion base
US20140187141A1 (en) Heat dissipation apparatus for expansion base
US20140209283A1 (en) Heat dissipation apparatus for expansion base
US20150049435A1 (en) Electronic device
TW201325418A (en) Electronic device
US9226429B2 (en) Electronic device with heat dissipation apparatus
US20130148284A1 (en) Electronic device with air duct

Legal Events

Date Code Title Description
AS Assignment

Owner name: HON HAI PRECISION INDUSTRY CO., LTD., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHAO, CHIH-HANG;CHENG, WEI-CHENG;REEL/FRAME:031380/0136

Effective date: 20131008

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION