US20140192674A1 - Method and Node For Measuring Processing Power in a Node in a Communications Network - Google Patents

Method and Node For Measuring Processing Power in a Node in a Communications Network Download PDF

Info

Publication number
US20140192674A1
US20140192674A1 US14/240,054 US201114240054A US2014192674A1 US 20140192674 A1 US20140192674 A1 US 20140192674A1 US 201114240054 A US201114240054 A US 201114240054A US 2014192674 A1 US2014192674 A1 US 2014192674A1
Authority
US
United States
Prior art keywords
network node
load value
signaling load
node
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/240,054
Inventor
Hans Ronneke
Joakim Hallberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Assigned to TELEFONAKTIEBOLAGET L M ERICSSON (PUBL) reassignment TELEFONAKTIEBOLAGET L M ERICSSON (PUBL) ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HALLBERG, Joakim, RÖNNEKE, Hans
Publication of US20140192674A1 publication Critical patent/US20140192674A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/22Traffic simulation tools or models
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/06Generation of reports
    • H04L43/062Generation of reports related to network traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/14Interfaces between hierarchically different network devices between access point controllers and backbone network device

Definitions

  • Embodiments herein relate generally to a first network node and a method in the first network node. More particularly the embodiments herein relate to measuring processing power in a second network node in the communications network.
  • a typical communications network or system is a collection of User Equipments (UE), links and network nodes which together enable communication between the user equipments.
  • UE User Equipments
  • the communications network which also may be referred to as cellular network
  • the user equipments communicate via a Radio Access Network (RAN) to one or more core networks (CN).
  • RAN Radio Access Network
  • CN core networks
  • a user equipment is a mobile terminal by which a subscriber may access services offered by an operator's core network and services outside the operator's network to which the operator's RAN and CN provide access.
  • User equipments are enabled to communicate wirelessly in the cellular network.
  • the user equipments may be for example communication devices such as mobile telephones, cellular telephones, laptops with wireless capability, machine-to-machine devices, or embedded devices in other electronic equipment.
  • the user equipments may be portable, pocket-storable, hand-held, computer-comprised, or vehicle-mounted mobile devices, enabled to communicate voice and/or data, via the radio access network, with another entity, such as another user equipment or a server.
  • the communications network covers a geographical area which is divided into cell areas.
  • Each cell area is served by a base station, e.g. a Radio Base Station (RBS), which sometimes may be referred to as e.g. evolved Node B (eNB), eNodeB, NodeB, B node, or Base Transceiver Station (BTS), depending on the technology and terminology used.
  • RBS Radio Base Station
  • eNB evolved Node B
  • eNodeB evolved Node B
  • NodeB NodeB
  • BTS Base Transceiver Station
  • a cell is a geographical area where radio coverage is provided by the base station at a base station site.
  • Each cell is identified by an identity within the local radio area, which is broadcast in the cell.
  • the base stations communicate over the air interface operating on radio frequencies with the user equipments within range of the base stations
  • radio access network several base stations are typically connected, e.g. by landlines or microwave, to a Radio Network Controller (RNC), as in 3 rd Generation (3G), i.e. Wideband Code Division Multiple Access (WCDMA).
  • RNC Radio Network Controller
  • 3G 3 rd Generation
  • WCDMA Wideband Code Division Multiple Access
  • the radio network controller supervises and coordinates various activities of the plural base stations connected thereto.
  • 2G i.e. Global System for Mobile Communications
  • GSM Global System for Mobile Communications
  • BSC Base Station Controller
  • the network controllers are typically connected to one or more core networks.
  • Machine-to-Machine is a term referring to technologies that allow both wireless and wired systems to communicate with other devices of the same ability, for example computers, embedded processors, smart sensors, actuators and mobile devices may communicate with one another, take measurements and make decisions, often without human intervention.
  • Machine Type Communication MTC
  • M2M traffic is, for example, used in applications such as electricity meters, home alarms, signaling from vehicles, such as e.g. cars, trucks etc.
  • M2M communication will be applied in a long range of very different areas with completely different communication requirements and patterns.
  • Some electricity meter applications may for example connect and communicate just a few bytes of data only once a month, whereas other applications such as video surveillance may be constantly connected and transfer Gigabyte of data every hour.
  • Connecting M2M devices with such different communication patterns to the same infrastructure as is used for normal human-to-human (H2H) communication puts new challenges on the communication equipment.
  • 3GPP 3rd Generation Partnership Project
  • a service optimized for machine type communications is different from a service optimized for H2H communications.
  • Machine type communications is different from current mobile network communication services as it may involve:
  • M2M devices also referred to as MTC devices, that do not move, move infrequently, or move only within a certain region may be associated with a feature called “low mobility”.
  • a requirement for low mobility may be that the network operator may be able to change the frequency of mobility management procedures or simplify mobility management per M2M device.
  • Another requirement may be that the network operator may be able to define the frequency of location updates performed by the M2M device.
  • M2M devices that are expected to send or receive data infrequently, i.e. with long period between two data transmission may be associated with a feature called infrequent transmission. For the infrequent transmission, the network shall establish a resource only when transmission occurs.
  • One serious problem with connecting M2M devices with new communication patterns to the same infrastructure as is used for H2H communication is how the model for dimensioning of network nodes are currently designed.
  • the state-of-the-art is that the dimension of a communication node is often based on the number of served user equipments and/or the number connections the node may handle.
  • Another problem relating to connecting M2M devices with new communication patterns to the same infrastructure as is used for H2H communication is how the price model and licensing of network nodes are currently designed.
  • the price of a communication node is may also be based on the number of served user equipments and/or the number connections the node may handle. This is also naturally related to the Average Revenue Per User (ARPU) which is an important measure for operators.
  • ARPU Average Revenue Per User
  • the network equipment may also be referred to as a communication node or network node.
  • Memory resources in the network node are used to store certain parameters related to a user equipment that is registered in the node, i.e. the network, or related to a connection that is established in the node, i.e. in the network.
  • Processing resources are needed when the state of user equipments or connections are changed, e.g.
  • Processing resources are also needed for some other purposes, e.g. regularly checking the reachability of a user equipment/terminal, or notifying the user equipment or network of certain events such as that someone wants to communicate with it.
  • M2M devices to the same infrastructure as H2H user equipments are no “typical user equipment” for M2M. They are expected to span over a wide range of different communication behaviors. Optimization for M2M that is being done in 3GPP has made this span even larger. Therefore it becomes very difficult to use “traffic models” as a base for hardware dimensioning and therefore also for price/license models. A more flexible approach for dimensioning of network nodes is therefore required.
  • the hardware of a communication node that handles payload i.e. forwards IP packets
  • the hardware of a communication node that handles payload is also dimensioned based on its packet forwarding capacity measured in Packets Per Second (PPS), or simply its throughput capacity measured in Giga- or Terabit per second.
  • PPS Packets Per Second
  • a communication node may also be priced based on its packet forwarding capacity measured in Packets Per Second (PPS), or simply its throughput capacity measured in Giga- or Terabit per second.
  • PPS Packets Per Second
  • the hardware for payload handling is normally quite separate from the hardware resources described above, it may to a certain extent be dimensioned and priced separately.
  • An objective of embodiments herein is therefore to obviate at least one of the above disadvantages and to provide flexible dimensioning of a network node.
  • the objective is achieved by a method in a first network node for measuring processing power in a second network node in a communications network.
  • the first network node obtains a signaling load value associated with a procedure.
  • the procedure is triggered by a message.
  • the first network node measures the processing power of the second network node based on the obtained signaling load value.
  • the objective is achieved by a first network node for measuring processing power in a second network node in a communications network.
  • the first network node comprises an obtaining unit configured to obtain a signaling load value associated with a procedure.
  • the procedure is triggered by a message.
  • the second network node further comprises a measuring unit configured to measure the processing power of the second network node in the communications network based on the obtained signaling load value.
  • the signalling load value which is tied to the processing resource utilization in the second network node, and flexible dimensioning of the second network node is achieved, in addition to a way to measure the resource utilization in the second network node.
  • the embodiments herein provide an advantage of an easy and flexible way of measuring the true processing power capacity of a complex communication node with a large number of very different processing tasks.
  • the dimensioning model may accommodate different usage behaviors and usage patterns in a flexible way. It may for example be possible for low activity cost sensitive M2M applications to use 3GPP infrastructure as their communication means with a relatively smaller amount of processing power and infrastructure cost for the mobile operator. In some embodiments, this is also applicable to a price/license model of the second network node.
  • Another advantage is that the vendor is relieved from the responsibility of maintaining an adequate node dimensioning that fits any used traffic model. Instead that responsibility is shifted to the user of the node, e.g. the operator, who monitors utilization of the two resources separately and takes action, e.g. increases the network node capacity, when any one of the two resources reaches its capacity limit.
  • responsibility is shifted to the user of the node, e.g. the operator, who monitors utilization of the two resources separately and takes action, e.g. increases the network node capacity, when any one of the two resources reaches its capacity limit.
  • the vendor may more easily provide products or nodes that are dimensioned for different usages. For example a network node dimensioned and tailored for “low activity” M2M devices that may hold ten times more registered users or connections would be possible using the same dimensioning model, and also using the same pricing/licensing model. Since node dimensioning does not need to be based on a traffic model, and since the user of the node ensures himself that processing and memory resources both and independently are kept below the capacity limit, the vendor can offer a different or a tailored node configurations with fair pricing/licensing regardless of the network node configuration.
  • Another advantage is that the embodiments herein are usefulness for addressing the capacity problems related to smart phones.
  • FIG. 1 is a schematic block diagram illustrating embodiments of a communications network.
  • FIG. 2 is a combined schematic block diagram and flowchart depicting embodiments of a method.
  • FIG. 3 is a schematic block diagram illustrating embodiments of a communications network.
  • FIG. 4 is a schematic block diagram illustrating embodiments of a communications network.
  • FIG. 5 is a flow chart illustrating embodiments of a method.
  • FIG. 6 is a schematic block diagram illustrating embodiments of a first network node
  • FIG. 1 depicts a communications network 100 in which embodiments herein may be implemented.
  • the communications network 100 may in some embodiments apply to one or more radio access technologies such as for example LTE, LTE Advanced, WCDMA, GSM, or any other 3GPP radio access technology. It may also apply to other existing or future radio access technologies, e.g. Wireless Local Area Network (WLAN), Code Division Multiplexing Access (CDMA), or existing or future fixed access technologies.
  • WLAN Wireless Local Area Network
  • CDMA Code Division Multiplexing Access
  • the wireless communications network 100 comprises a first network node 105 .
  • the first network node 105 is a node which is normally integrated or embedded into another node. It may also be a stand alone node, but normally, the first network node 105 is an internal node of another node. Examples of such nodes will be described later.
  • the wireless communications network 100 further comprises a second network node 103 .
  • the second network node 103 may be any suitable type of network node capable of communicating with a fourth network node 101 and the first network node 105 .
  • the second network node 103 is the node in which the first network node 105 is integrated or embedded, as illustrated as alternative 1 in FIG. 1 .
  • the second network node 103 may be for example a Mobility Management Entity (MME), a Serving General Packet Radio Service Support Node, (SGSN), a Gateway General Packet Radio Service Support Node (GGSN), a Serving Gateway, (S-GW), a Packet Data Network Gateway, (P-GW), a Machine Type Communication Interworking Function node (MTC IWF), a Base Transceiver Station (BTS), a BSC, a NodeB, a RNC, an eNB and generally in any network node that handles signaling and keeps a user equipment/connection related state.
  • the fourth network node 101 which communicates with the second network node 103 may be a user equipment or any network node, which communicate and sends control signaling to/from the second network node 103 .
  • the user equipment 101 may be any suitable communication device or computational device with communication capabilities capable to communicate with a base station over a radio channel, for instance but not limited to mobile phone, smart phone, Personal Digital Assistant (PDA), laptop, MP3 player or portable DVD player, or similar media content devices, digital camera, electricity meters, home alarms, or even stationary devices such as a Personal Computer (PC).
  • a PC may also be connected via a mobile station as the end station of the broadcasted/multicasted media.
  • the user equipment 101 may also be an embedded communication device in e.g. electronic photo frames, cardiac surveillance equipment, intrusion or other surveillance equipment, weather data monitoring systems, vehicle, car or transport communication equipment, etc.
  • the communications network 100 may further comprise a third network node 107 , which may be a monitoring node such as for example an Operation Support System (OSS) node or an Operations & Maintenance (O&M) node.
  • the third network node 120 may be located in the mobile operator network or in another network e.g. at the node vendor.
  • the first network node 105 is integrated or embedded in the third network node 107 , as illustrated as alternative 2 in FIG. 1 .
  • the embodiments herein handle memory resources and processing resources of the 20 second network node 103 separately. This may also be relevant when it comes to pricing and licensing. This will also mean that traffic models will be less important for the design and hardware composition of nodes.
  • the existing measures i.e. registered users, e.g. Simultaneously Attached Users (SAU), and the number of connections, i.e. Packet Data Protocol (PDP) contexts/Packet Data Network (PDN) connections, are kept but tied more to the memory resource utilization in the second network node 103 .
  • SAU Simultaneously Attached Users
  • PDP Packet Data Protocol
  • PDN Packet Data Network
  • FIG. 2 The method for measuring processing power in the second network node 103 in the communications network 100 , according to some embodiments will now be described with reference to the combined signaling diagram and flowchart depicted in FIG. 2 and with reference to FIG. 1 , FIG. 3 and FIG. 4 depicting embodiments of the communications network 100 .
  • Alternative 1 of FIG. 1 is illustrated using a dotted square in FIG. 2
  • alternative 2 of FIG. 1 is illustrated using a dotted circle in FIG. 2 .
  • a user equipment 101 is used as an example for a fourth network node 101 .
  • the node may be any fourth network node 101 configured to communicate with the second network node 103 .
  • the second network node 103 may be for example an MME, or any of the node as described above.
  • the method comprises the following steps, which steps may as well be carried out in another suitable order than described below.
  • the user equipment 101 sends a message/signaling to the second network node 103 .
  • the message may be referred to as an ingress message.
  • the message is an attach message, a detach message, a Routing Area Update Request message etc. Further examples of types of messages are exemplified in table 2 and table 3 below.
  • a plurality of user equipments 101 sends messages/signaling to the second network node 103 .
  • the second network node 103 receives the message sent from the user equipment 101 .
  • the second network node 105 when the first network node 103 is integrated or embedded into the third network node 107 , the second network node 105 creates a log comprising all messages received from the user equipment 101 .
  • the log is an event log comprising historical data of received user equipment 101 messages.
  • the log is stored in a computer readable memory comprised in the second network node 105 .
  • the received message triggers execution of a procedure in the second network node 103 .
  • the execution of the procedure requires processing resources, or resources in general from it is initiated until it is finalized in the second network node 103 .
  • This may comprise processing resources, bandwidth resources on different interfaces, primary and secondary memory resources, and other physical or virtual resources such as e.g. identifiers, encryption keys, security certificates, IP addresses, etc., that may exist in limited amounts in the second network node 103 .
  • a message may trigger different procedures.
  • message 1 may trigger procedure A or procedure B.
  • a procedure may be a series of operations or calculations which have to be executed in the same manner in order to perform a task.
  • a procedure may be executed fully within one node, or parts of the procedure may be executed by other nodes. In the latter case the one node sends specific messages to these other nodes and normally receives responses after some time.
  • a procedure relates to measurement in the one node only without considering what happens in other nodes. However, measurements from different nodes may in some embodiments be aggregated before presented.
  • Step 204 a
  • This step corresponds to alternative 1 in FIG. 1 .
  • the first network node 105 when the first network node 105 is integrated or embedded in the second network node 103 , the first network node 105 detects that the second network node 103 has received a message from the user equipment 101 .
  • the second network node 103 when the first network node 105 is integrated or embedded in the third network node 107 , the second network node 103 sends the stored information about the received message to the first network node 105 .
  • the information about the received messages are in the form of single message information or in the form of multiple messages in the event log stored in a computer readable memory in the first network node 105 .
  • the first network node 105 obtains a signaling load value associated with the procedure triggered by the message.
  • the first network node 105 obtains the signaling load value from a table which is stored in a computer readable memory in the first network node 105 .
  • the table is used to translate all messages received at the second network node 103 that have any significant consumption of the processing power/resource in the second network node 103 , to an equivalent value called Signaling Load Value (SLV).
  • SLV Signaling Load Value
  • the signaling load value may also be referred to as Signaling Load Unit (SLU) or signaling equivalent units, and it is tied to the processing power/resource utilization in the second network node 103 .
  • SLU Signaling Load Unit
  • An example of a generic translation table is shown in table 1 below.
  • the left most column comprises different messages received at the second network node 103 .
  • the messages may be ingress messages.
  • An ingress message is an incoming message, while an egress message is an outgoing message.
  • the middle right column comprises the procedures associated with and triggered by the received messages.
  • Different messages and signaling processed by the second network node 103 may be compared and summarized based on the amount of processing power/resources they consume in the second network node 103 and hence forming a measure for the signaling load value.
  • the value in the right most column of table 1, the signaling load value have been set by the vendor of the second network node 103 or the operator of the second network node 103 , to correspond to how much processing power/resources, or power/resources in general, the specific procedure is estimated to consume in the second network node 103 from it is initiated until it is finalized.
  • the signaling load value is an instantaneous relative, i.e. normalized, value, i.e. the load generated by a procedure initiated by a certain message, and optionally with specific parameters or conditions, compared to one specific procedure, e.g. attach, that is used as a reference load.
  • the load may be estimated or measured. A factor may or may not be applied on each value.
  • procedures are compared not based on processing resources only, but to any second network node resources in general.
  • This may comprise processing resources, bandwidth resources on different interfaces, primary and secondary memory resources, and other physical or virtual resources such as e.g. identifiers, encryption keys, security certificates, IP addresses, etc., that may exist in limited amounts in the second network node 103 .
  • the same message in the Ingress Message column may trigger different procedures, e.g. see Procedure A & B above. Then additional information such as message parameters or some state information in the second network node 103 is required to determine which “procedure” is executed and hence which signaling load value shall be obtained.
  • One “procedure” may in itself generate several messages on different interfaces to and from other nodes before the procedure is considered finalized, but only the initiating message increases the total signaling load value.
  • the middle left column comprises the above mentioned parameter(s) or conditions.
  • the table comprises static values which are set beforehand or preconfigured.
  • the second network node 103 may be for example a MME node.
  • the MME 103 is responsible for control signaling to and from the user equipments 101 within its geographical service area.
  • Table 2 below shows an example of a table for translation of messages and procedures to normalized load for a MME node 103 .
  • Table 3 below shows an example of a table for translation of messages and procedures to normalized load where the second network node 103 is exemplified as an SGSN node 103 .
  • the values, messages and procedures are only examples. In principle all messages that initiate procedures that consume significant node processing resources would be comprised in the translation table.
  • the first network node 105 uses the table to find the signaling load value that corresponds to or matches the detected received message and triggered procedure.
  • the received message and triggered procedure may fulfill conditions or parameters set in the message, as shown in the middle left column of tables 1, 2 and 3 above.
  • the first network node 105 Each time the first network node 105 detects a message or receives information about historical messages that matches one of the rows in the translation table and optionally any specific parameter(s) or condition(s), it increases a parameter called total signaling load value for the second network node 103 with the value found in the rightmost column of tables 1, 2 and 3.
  • the total signaling load value may be referred to as the first total signaling load value.
  • the total signaling load value is:
  • the total signaling load value is read periodically, e.g. once per second, by a software function, method or script in the first network node 105 , and the difference between the new and the previous value is divided by the elapsed time.
  • the software function is illustrated in FIGS. 3 and 4 .
  • the total signaling load value for a time interval may be referred to as the second total signaling load value or a total signaling load value rate per time interval:
  • SecondTotalSignalingLoadValue ⁇ SignalingLoadValue ⁇ ⁇ ( t ⁇ ⁇ 2 ) - SignalingLoadValue ⁇ ⁇ ( t ⁇ ⁇ 1 ) t ⁇ ⁇ 2 - t ⁇ ⁇ 1 ,
  • t1 is the time when the previous value is measured and t2 is the time when the new value is measured.
  • the first network node 105 measures and/or monitors the number of signaling load value per user equipment 101 .
  • the measurement may be presented for a different time period than for the second network node total e.g. the signaling load per day for the user equipment 101 instead of signaling load per second for the second network node 103 in total.
  • the measurement may be done completely within the first network node 105 , outside the first network node 105 , e.g. based on event notifications, or a combination of the both. In some embodiments, it may be created in real time or as post processing from collected statistics.
  • the per user equipment signaling load value rate may be for one, several or all user equipments 101 in the network 100 .
  • the user equipments 101 may be grouped into different categories depending on what signaling load they generate in the second network node 103 /network 100 .
  • different categories may be user equipments 101 generating 0-1.9 SLV/day, 2.0-5.9 SLV/day, 6.0-20 SLV/day or 21 or more SLV/day.
  • Understanding what categories of user equipments 101 there are in a second network node 103 or network 100 may make network planning easier. For example, if and how much network capacity needs to be expanded if a contract of 10 million M2M devices of category 0-1.9 SLV/day is being negotiated.
  • parameters than signaling load value may be used in creating the categories, e.g. the amount of mobility signaling, e.g. to differentiate stationary devices, time of day when active, e.g. service requests during peak load hours or during low peak hours etc. These parameters may be extracted from the event information, e.g. messages/signals, that are the base for the SLV calculation method.
  • the total signaling load value may also be calculated per procedure executed in the second network node 103 .
  • the first network node 105 may determine or calculate a maximum signaling load value capacity of the second network node 103 if the number of received messages is increased until a maximum processing power capacity of the second network node 103 is reached, e.g. the CPU of the second network node 103 are at max capacity or any other suitable criteria.
  • the maximum signaling load value capacity is a measure of how much signaling load values the second network node 103 is able to handle per time interval, e.g. second, i.e. based on its amount of available processing power.
  • the first network node 105 measures processing power in the second network node 103 based on the signaling load value.
  • the measurement may be of processing power usage in the second network node 103 . It may be based on one signaling load value, the different alternatives of total signaling load value, the maximum signaling load value capacity etc. If the signaling load value comes close to, reaches or passes an upper limit, the second network node 103 capacity, i.e. processing power, needs to be increased e.g. to deploy more of the resource that is missing.
  • the first network node 105 determines or calculates a resource value based on the measured processing power. It may also be associated with the determined maximum signaling load value capacity of the second network node 103 .
  • the resource value may further be based on the different types total signaling load value described in step 206 .
  • the first network node 105 sends or communicates information about the signaling load value and the total signaling load value, both per second network node 103 , per user equipment 101 , per procedure and per time interval, or a combination of these, the processing power and the processing power usage to the third network node 107 .
  • the third network node 107 may be a monitoring node such as an OSS or other O&M node located at the operator.
  • the information may in addition be communicated to the vendor of the second network node 103 for statistical and/or licensing purposes.
  • a formula for a flexible dimensioning model may be expressed.
  • a flexible price/license model may also be expressed.
  • the existing measures i.e. registered users (SAU) and number of connections, are kept but tied more to the memory resource utilization in the second network node 103 .
  • the third network node 107 monitors, processes and presents the received information about the measurements of processing power and processing power usage from the first network node 105 .
  • the measurements may be unified measurements in case a plurality of messages of different types is received.
  • the total number of signaling load values in a second network node 103 may be measured and monitored at any given moment and statistics collected.
  • the owner and/or the vendor of the second network node 103 may use the measurements/statistics to verify that the signaling load value measured doesn't pass its upper limit. If the signaling load value passes its upper limit, the second network node 103 capacity, i.e. processing power, may need to be increased e.g. to deploy more of the resource that is missing.
  • a tool for fair pricing/licensing that may be flexible to also accommodate the wildly different communication patters for many M2M applications may be obtained.
  • the third network node 107 may receive its input data directly from the first network node 103 . This is also illustrated in FIG. 3 .
  • the second network node 103 creates, as mentioned above, an event log of messages and signaling load value events.
  • This log is provided to the first network node 105 , which may also be referred to as a post processing node.
  • the first network node 105 stores the received signaling load value events and performs post processing of the stored data. This is also illustrated in FIG. 4 .
  • the post processing may for example be beneficial when data from several or all nodes in the network 100 shall be monitored and presented or when the categorization needs to be more advanced e.g. comprising other parameters than signaling load value, e.g. mobility signaling, active time-of-day etc.
  • the price for a second network node 103 may be calculated using a model where the Signaling Load Value (SLV) affects the price independently from the Simultaneously Attached Users (SAU) for example using a base formula as this.
  • SLV Signaling Load Value
  • PDP Context/PDN Connections may replace SAU e.g. for GGSN/PGW.
  • MME second network node 103 exemplified as an MME
  • MME — 1 One MME 103 dimensioned for normal and smart phone usage, referred to as MME — 1
  • MME — 2 a second MME 103 dimensioned for a dominant portion of low activity M2M devices
  • FIG. 5 is a flowchart describing the present method in the first network node 105 for measuring processing power in a second network node 103 in the communications network 100 .
  • the measurement of processing power is a unified measurement valid for different types of messages. Unified refers to making or uniting something into one unit or a coherent whole.
  • the second network node 103 is a Mobility Management Entity, referred to as MME, a Serving General Packet Radio Service Support Node, referred to as SGSN, a Gateway General Packet Radio Service Support Node, referred to as GGSN, a Serving Gateway, referred to as S-GW, a Packet Data Network Gateway, referred to as P-GW, a Machine Type Communication Interworking Function node, referred to as MTC IWF and the third network node 107 is a monitoring node 107 .
  • the fourth network node 101 is a user equipment 101 or a fourth network node configured to communicate with the second network node 103 . The method comprises the steps to be performed by the first network node 105 :
  • This step corresponds to step 202 and 204 a in FIG. 2 .
  • the first network node 105 is comprised in the second network node 103 . In some embodiments, the first network node 105 detects receipt of a message from a fourth network node 101 .
  • the message may be of different types.
  • the received message fulfils a predetermined condition.
  • This step corresponds to step 203 in FIG. 2 .
  • the first network node 105 is comprised in the second network node 103 . In some embodiments, the first network node 105 executes the procedure triggered by the received message.
  • the procedure executed in the second network node 103 is decided by the received message together with one or more predetermined conditions and/or one or more parameters in the message.
  • This step corresponds to step 204 b in FIG. 2 . This step is performed instead of steps 501 and 502 .
  • the first network node 105 is comprised in a third network node 107 . In some embodiments, the first network node 105 receives information about the message from the second network node 103 . The message is sent from a fourth network node 101 to the second network node 103 .
  • This step corresponds to step 205 in FIG. 2 .
  • the first network node 105 obtains a signaling load value associated with a procedure.
  • the procedure is triggered by a message.
  • the signaling load value associated with the procedure is preconfigured in the first network node 105 .
  • the signaling load value is further associated with consumption of an amount of processing power/resources when the procedure is executed in the second network node 103 .
  • the signaling load value, information about the message, conditions and parameters associated with the procedure, and information about the signaling load value associated with the procedure is stored in a table in the first network node 105 . In some embodiments, the signaling load value is obtained from the table.
  • This step corresponds to step 206 in FIG. 2 .
  • the first network node 105 adds the obtained signaling load value to a first total signaling load value.
  • the first total signaling load value is per fourth network node 101 , per procedure executed in the second network node 103 , per time interval or any combination of these.
  • This step corresponds to step 207 in FIG. 2 .
  • the first network node 105 determines a maximum capacity of signaling load value of the second network node 103 by increasing a number of received messages until a maximum capacity of processing power of the second network node 103 is reached.
  • the maximum capacity of signaling load value may also be referred to as maximum signaling load value capacity.
  • This step corresponds to step 209 in FIG. 2 .
  • the first network node 105 determines a resource value associated with the determined maximum capacity of signaling load value of the second network node 103 .
  • This step corresponds to step 206 in FIG. 2 .
  • the first network node 105 determines a second total signaling load value per fourth network node 101 and per time period.
  • This step corresponds to step 206 in FIG. 2 . This step is performed after step 508 .
  • the first network node 105 establishes a category of fourth network node 101 based on the second total signaling load value.
  • the category of fourth network node 101 and the understanding of the number of fourth network nodes 101 of different categories in a network facilitate and/or enables network planning and dimensioning of the communications network 100 .
  • Step 510
  • This step corresponds to step 210 in FIG. 2 .
  • the first network node 105 sends information about the first total signaling value and the second total signaling load value to a third network node 107 .
  • This step corresponds to step 208 in FIG. 2 .
  • the first network node 105 measures the processing power of the second network node 103 based on the obtained signaling load value.
  • the measurement of the processing power in the second network node 103 is further based on the total signaling load value.
  • the message may be of different types.
  • the measurement of processing power based on the total signaling load values may therefore be a unified measurement of processing power. Unified indicates that the measurement of processing power is independent of the different types of messages, and that it is one measurement of all types of messages.
  • the measurement of the processing power of the second network node 103 is further based on the determined maximum capacity of signaling load value.
  • the first network node 105 comprises a first network node arrangement as shown in FIG. 6 .
  • the second network node 103 is a Mobility Management Entity, referred to as MME, a Serving General Packet Radio Service Support Node, referred to as SGSN, a Gateway General Packet Radio Service Support Node, referred to as GGSN, a Serving Gateway, referred to as S-GW, a Packet Data Network Gateway, referred to as P-GW, a Machine Type Communication Interworking Function node, referred to as MTC IWF and the third network node 107 is a monitoring node 107 .
  • the fourth network node 101 is a user equipment 101 or a fourth network node configured to communicate with the second network node 103 .
  • the first network node 105 comprises an obtaining unit 601 configured to obtain a signaling load value associated with a procedure.
  • the procedure is triggered by a message.
  • the signaling load value associated with the procedure is preconfigured in the first network node 105 .
  • the signaling load value is further associated with consumption of an amount of processing power/resources when the procedure is executed in the second network node 103 .
  • signaling load value, information about the message, conditions and parameters associated with the procedure and information about the signaling load value associated with the procedure is stored in a table in the first network node 105 .
  • the signaling load value is obtained from the table.
  • the first network node 105 further comprises a measuring unit 603 which is configured to measure of the processing power of the second network node 103 in the communications network 100 based on the obtained signaling load value. In some embodiments, the measuring unit 603 is further configured to measure the processing power in the second network node 103 further based on the first total signaling load value. In some embodiments, the measuring unit 603 is further configured to measure the processing power of the second network node 103 further based on the determined maximum capacity of signaling load value.
  • the first network node 105 comprises a detecting unit 605 configured to detect receipt of a message from a fourth network node 101 , and a processing unit 607 configured to execute the procedure triggered by the message.
  • the procedure executed in the second network node 103 is decided by a received message together with one or more predetermined conditions and/or one or more parameters in the message.
  • the processing unit 607 is further configured to add the obtained signaling load value to a first total signaling load value.
  • the total signaling load value is per fourth network node 101 , per procedure executed in the second network node 103 , per time interval, or a combination of these.
  • the processing unit 607 is further configured to determine a maximum signaling load value capacity of the second network node 103 by increasing a number of received messages until a maximum capacity of processing power of the second network node 103 is reached.
  • the processing unit 607 is further configured to determine a resource value associated with the determined maximum capacity of signaling load value of the second network node 103 .
  • the processing unit 607 is further configured to determine a second total signaling load value per fourth network node 101 and per time period and to establish a category of fourth network node 101 based on the second total signaling load value.
  • the category of fourth network node 101 enables network planning and dimensioning of the communications network 100 .
  • the first network node 105 comprises a receiving unit 610 configured to receive information about the message from the second network node 103 .
  • the message is sent from a fourth network node 101 to the second network node 103 .
  • the received message fulfils a predetermined condition
  • the first network node 105 further comprises a sending unit 612 configured to send information about the first total signaling value and the second total signaling load value to a third network node 107 .
  • the present mechanism for measuring processing power in a second network node 103 in a communications network 100 may be implemented through one or more processors, such as the processing unit 607 in the first network node arrangement depicted in FIG. 6 , together with computer program code for performing the functions of the embodiments herein.
  • the processor may be for example a Digital Signal Processor (DSP), Application Specific Integrated Circuit (ASIC) processor, Field-programmable gate array (FPGA) processor or micro processor.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-programmable gate array
  • the program code mentioned above may also be provided as a computer program product, for instance in the form of a data carrier carrying computer program code for performing the embodiments herein when being loaded into the first network node 105 .
  • One such carrier may be in the form of a CD ROM disc. It is however feasible with other data carriers such as a memory stick.
  • the computer program code may furthermore be provided as pure program code on a server and downloaded to the first network node

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The embodiments herein relate to a method in a first network node (105) for measuring processing power in a second network node (103) in a communications network (100). The first network node (105) obtains a signaling load value associated with a procedure, which procedure is triggered by a message. Based on the obtained signaling load value, the first network node (105) measures the processing power of the second network node (103).

Description

    TECHNICAL FIELD
  • Embodiments herein relate generally to a first network node and a method in the first network node. More particularly the embodiments herein relate to measuring processing power in a second network node in the communications network.
  • BACKGROUND
  • A typical communications network or system is a collection of User Equipments (UE), links and network nodes which together enable communication between the user equipments. In the communications network, which also may be referred to as cellular network, the user equipments, communicate via a Radio Access Network (RAN) to one or more core networks (CN).
  • A user equipment is a mobile terminal by which a subscriber may access services offered by an operator's core network and services outside the operator's network to which the operator's RAN and CN provide access. User equipments are enabled to communicate wirelessly in the cellular network. The user equipments may be for example communication devices such as mobile telephones, cellular telephones, laptops with wireless capability, machine-to-machine devices, or embedded devices in other electronic equipment. The user equipments may be portable, pocket-storable, hand-held, computer-comprised, or vehicle-mounted mobile devices, enabled to communicate voice and/or data, via the radio access network, with another entity, such as another user equipment or a server.
  • The communications network covers a geographical area which is divided into cell areas. Each cell area is served by a base station, e.g. a Radio Base Station (RBS), which sometimes may be referred to as e.g. evolved Node B (eNB), eNodeB, NodeB, B node, or Base Transceiver Station (BTS), depending on the technology and terminology used. A cell is a geographical area where radio coverage is provided by the base station at a base station site. Each cell is identified by an identity within the local radio area, which is broadcast in the cell. The base stations communicate over the air interface operating on radio frequencies with the user equipments within range of the base stations
  • In some versions of the radio access network, several base stations are typically connected, e.g. by landlines or microwave, to a Radio Network Controller (RNC), as in 3rd Generation (3G), i.e. Wideband Code Division Multiple Access (WCDMA). The radio network controller supervises and coordinates various activities of the plural base stations connected thereto. In 2nd Generation (2G), i.e. Global System for Mobile Communications (GSM), the base stations are connected to a Base Station Controller (BSC). The network controllers are typically connected to one or more core networks.
  • Machine-to-Machine (M2M) is a term referring to technologies that allow both wireless and wired systems to communicate with other devices of the same ability, for example computers, embedded processors, smart sensors, actuators and mobile devices may communicate with one another, take measurements and make decisions, often without human intervention. Machine Type Communication (MTC) may be seen as a form of data communication between entities that do not necessarily need human interaction. M2M traffic is, for example, used in applications such as electricity meters, home alarms, signaling from vehicles, such as e.g. cars, trucks etc.
  • There exists a clear industry consensus that mobile machine-to-machine communications will play an increasingly prominent role in carrier networks and Information Technology (IT) operations. It may be predicted that there will be 50 billion wirelessly connected devices by the year of 2020. These devices may be connected via GSM, High Speed Packet Access (HSPA) and Long Term Evolution (LTE), and will be used for both machine-to-machine applications and connected consumer devices.
  • It is commonly believed that M2M communication will be applied in a long range of very different areas with completely different communication requirements and patterns. Some electricity meter applications may for example connect and communicate just a few bytes of data only once a month, whereas other applications such as video surveillance may be constantly connected and transfer Gigabyte of data every hour. Connecting M2M devices with such different communication patterns to the same infrastructure as is used for normal human-to-human (H2H) communication puts new challenges on the communication equipment. New 3rd Generation Partnership Project (3GPP) requirements related to M2M communication have been specified to try to address some of these challenges. A service optimized for machine type communications is different from a service optimized for H2H communications. Machine type communications is different from current mobile network communication services as it may involve:
      • different market scenarios,
      • data communications,
      • lower costs and effort,
      • a potentially very large number of communicating user equipments with,
      • for many applications, little traffic per user equipment.
  • M2M devices, also referred to as MTC devices, that do not move, move infrequently, or move only within a certain region may be associated with a feature called “low mobility”. A requirement for low mobility may be that the network operator may be able to change the frequency of mobility management procedures or simplify mobility management per M2M device. Another requirement may be that the network operator may be able to define the frequency of location updates performed by the M2M device. M2M devices that are expected to send or receive data infrequently, i.e. with long period between two data transmission, may be associated with a feature called infrequent transmission. For the infrequent transmission, the network shall establish a resource only when transmission occurs.
  • One serious problem with connecting M2M devices with new communication patterns to the same infrastructure as is used for H2H communication is how the model for dimensioning of network nodes are currently designed. The state-of-the-art is that the dimension of a communication node is often based on the number of served user equipments and/or the number connections the node may handle. Another problem relating to connecting M2M devices with new communication patterns to the same infrastructure as is used for H2H communication is how the price model and licensing of network nodes are currently designed. The price of a communication node is may also be based on the number of served user equipments and/or the number connections the node may handle. This is also naturally related to the Average Revenue Per User (ARPU) which is an important measure for operators.
  • When looking closer at what resources user equipments and connections consume in the network, it is found that they consume two types of resources, memory resources and processing resources. The network equipment may also be referred to as a communication node or network node. Memory resources in the network node are used to store certain parameters related to a user equipment that is registered in the node, i.e. the network, or related to a connection that is established in the node, i.e. in the network. Processing resources are needed when the state of user equipments or connections are changed, e.g. registering a user equipment in the network/node or deregistering a user equipment, establishing a new connection or removing it, changing the state of a connection from idle to connected, or vice versa, or changing the current location of a registered user equipment etc. Processing resources are also needed for some other purposes, e.g. regularly checking the reachability of a user equipment/terminal, or notifying the user equipment or network of certain events such as that someone wants to communicate with it.
  • When dimensioning the hardware for a communication/network node, in general the amount of required memory resources and processing resources need to be decided. This is usually done by trying to define a “typical user equipment”. This is accomplished by a “traffic model”, which defines e.g. how many registrations/deregistrations a typical user equipment does per day, how many times per hour it initiates communication, how much the typical user equipment moves between different cells and mobility areas etc. Through the traffic model, the balance between memory and processing resources will be known, and hence the hardware may be properly dimensioned. When the hardware is dimensioned the price may be set based on the number of user equipments and/or connections that the node may serve. When a traffic model is used as a base for node dimensioning and pricing/licensing, there will be a certain balanced relation between memory and processing resources.
  • A problem with connecting M2M devices to the same infrastructure as H2H user equipments is that there is no “typical user equipment” for M2M. They are expected to span over a wide range of different communication behaviors. Optimization for M2M that is being done in 3GPP has made this span even larger. Therefore it becomes very difficult to use “traffic models” as a base for hardware dimensioning and therefore also for price/license models. A more flexible approach for dimensioning of network nodes is therefore required.
  • Some M2M areas, often with “low activity” communication patterns, are also expected to be cost sensitive. It is therefore important that the price/license models are flexible enough, so that they don't prohibit such M2M communication to use the 3GPP infrastructures.
  • The growing use of Smart Phones has to some extent also put requirements on changed or more flexible traffic models, but with the expected growth of M2M devices the problem is growing critical.
  • In addition to memory and processing resources, the hardware of a communication node that handles payload, i.e. forwards IP packets, is also dimensioned based on its packet forwarding capacity measured in Packets Per Second (PPS), or simply its throughput capacity measured in Giga- or Terabit per second. In some embodiments, a communication node may also be priced based on its packet forwarding capacity measured in Packets Per Second (PPS), or simply its throughput capacity measured in Giga- or Terabit per second. However, since the hardware for payload handling is normally quite separate from the hardware resources described above, it may to a certain extent be dimensioned and priced separately.
  • SUMMARY
  • An objective of embodiments herein is therefore to obviate at least one of the above disadvantages and to provide flexible dimensioning of a network node.
  • According to a first aspect, the objective is achieved by a method in a first network node for measuring processing power in a second network node in a communications network. The first network node obtains a signaling load value associated with a procedure. The procedure is triggered by a message. The first network node measures the processing power of the second network node based on the obtained signaling load value.
  • According to a second aspect, the objective is achieved by a first network node for measuring processing power in a second network node in a communications network. The first network node comprises an obtaining unit configured to obtain a signaling load value associated with a procedure. The procedure is triggered by a message. The second network node further comprises a measuring unit configured to measure the processing power of the second network node in the communications network based on the obtained signaling load value.
  • Thanks to the signalling load value, which is tied to the processing resource utilization in the second network node, and flexible dimensioning of the second network node is achieved, in addition to a way to measure the resource utilization in the second network node.
  • Embodiments herein afford many advantages, of which a non-exhaustive list of examples follows:
  • The embodiments herein provide an advantage of an easy and flexible way of measuring the true processing power capacity of a complex communication node with a large number of very different processing tasks.
  • By decoupling memory resources and processing resources, dimensioning flexibility may be achieved. The dimensioning model may accommodate different usage behaviors and usage patterns in a flexible way. It may for example be possible for low activity cost sensitive M2M applications to use 3GPP infrastructure as their communication means with a relatively smaller amount of processing power and infrastructure cost for the mobile operator. In some embodiments, this is also applicable to a price/license model of the second network node.
  • Another advantage is that the vendor is relieved from the responsibility of maintaining an adequate node dimensioning that fits any used traffic model. Instead that responsibility is shifted to the user of the node, e.g. the operator, who monitors utilization of the two resources separately and takes action, e.g. increases the network node capacity, when any one of the two resources reaches its capacity limit.
  • It is further an advantage that the vendor may more easily provide products or nodes that are dimensioned for different usages. For example a network node dimensioned and tailored for “low activity” M2M devices that may hold ten times more registered users or connections would be possible using the same dimensioning model, and also using the same pricing/licensing model. Since node dimensioning does not need to be based on a traffic model, and since the user of the node ensures himself that processing and memory resources both and independently are kept below the capacity limit, the vendor can offer a different or a tailored node configurations with fair pricing/licensing regardless of the network node configuration.
  • Another advantage is that the embodiments herein are usefulness for addressing the capacity problems related to smart phones.
  • The embodiments herein are not limited to the features and advantages mentioned above. A person skilled in the art will recognize additional features and advantages upon reading the following detailed description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The embodiments herein will now be further described in more detail in the following detailed description by reference to the appended drawings illustrating the embodiments and in which:
  • FIG. 1 is a schematic block diagram illustrating embodiments of a communications network.
  • FIG. 2 is a combined schematic block diagram and flowchart depicting embodiments of a method.
  • FIG. 3 is a schematic block diagram illustrating embodiments of a communications network.
  • FIG. 4 is a schematic block diagram illustrating embodiments of a communications network.
  • FIG. 5 is a flow chart illustrating embodiments of a method.
  • FIG. 6 is a schematic block diagram illustrating embodiments of a first network node
  • The drawings are not necessarily to scale and the dimensions of certain features may have been exaggerated for the sake of clarity. Emphasis is instead placed upon illustrating the principle of the embodiments herein.
  • DETAILED DESCRIPTION
  • FIG. 1 depicts a communications network 100 in which embodiments herein may be implemented. The communications network 100 may in some embodiments apply to one or more radio access technologies such as for example LTE, LTE Advanced, WCDMA, GSM, or any other 3GPP radio access technology. It may also apply to other existing or future radio access technologies, e.g. Wireless Local Area Network (WLAN), Code Division Multiplexing Access (CDMA), or existing or future fixed access technologies.
  • The wireless communications network 100 comprises a first network node 105. The first network node 105 is a node which is normally integrated or embedded into another node. It may also be a stand alone node, but normally, the first network node 105 is an internal node of another node. Examples of such nodes will be described later.
  • The wireless communications network 100 further comprises a second network node 103. The second network node 103 may be any suitable type of network node capable of communicating with a fourth network node 101 and the first network node 105. In some embodiments, the second network node 103 is the node in which the first network node 105 is integrated or embedded, as illustrated as alternative 1 in FIG. 1.
  • The second network node 103 may be for example a Mobility Management Entity (MME), a Serving General Packet Radio Service Support Node, (SGSN), a Gateway General Packet Radio Service Support Node (GGSN), a Serving Gateway, (S-GW), a Packet Data Network Gateway, (P-GW), a Machine Type Communication Interworking Function node (MTC IWF), a Base Transceiver Station (BTS), a BSC, a NodeB, a RNC, an eNB and generally in any network node that handles signaling and keeps a user equipment/connection related state. The fourth network node 101 which communicates with the second network node 103 may be a user equipment or any network node, which communicate and sends control signaling to/from the second network node 103.
  • The user equipment 101 may be any suitable communication device or computational device with communication capabilities capable to communicate with a base station over a radio channel, for instance but not limited to mobile phone, smart phone, Personal Digital Assistant (PDA), laptop, MP3 player or portable DVD player, or similar media content devices, digital camera, electricity meters, home alarms, or even stationary devices such as a Personal Computer (PC). A PC may also be connected via a mobile station as the end station of the broadcasted/multicasted media. The user equipment 101 may also be an embedded communication device in e.g. electronic photo frames, cardiac surveillance equipment, intrusion or other surveillance equipment, weather data monitoring systems, vehicle, car or transport communication equipment, etc.
  • The communications network 100 may further comprise a third network node 107, which may be a monitoring node such as for example an Operation Support System (OSS) node or an Operations & Maintenance (O&M) node. The third network node 120 may be located in the mobile operator network or in another network e.g. at the node vendor. In some embodiments, the first network node 105 is integrated or embedded in the third network node 107, as illustrated as alternative 2 in FIG. 1.
  • The embodiments herein handle memory resources and processing resources of the 20 second network node 103 separately. This may also be relevant when it comes to pricing and licensing. This will also mean that traffic models will be less important for the design and hardware composition of nodes.
  • The existing measures, i.e. registered users, e.g. Simultaneously Attached Users (SAU), and the number of connections, i.e. Packet Data Protocol (PDP) contexts/Packet Data Network (PDN) connections, are kept but tied more to the memory resource utilization in the second network node 103.
  • The signaling and method steps illustrated in FIG. 1 will be described in detail in relation to FIGS. 2 and 5 below.
  • The method for measuring processing power in the second network node 103 in the communications network 100, according to some embodiments will now be described with reference to the combined signaling diagram and flowchart depicted in FIG. 2 and with reference to FIG. 1, FIG. 3 and FIG. 4 depicting embodiments of the communications network 100. Alternative 1 of FIG. 1 is illustrated using a dotted square in FIG. 2, and alternative 2 of FIG. 1 is illustrated using a dotted circle in FIG. 2. In the following, a user equipment 101 is used as an example for a fourth network node 101. However, instead of a user equipment 101, the node may be any fourth network node 101 configured to communicate with the second network node 103. The second network node 103 may be for example an MME, or any of the node as described above. The method comprises the following steps, which steps may as well be carried out in another suitable order than described below.
  • Step 201
  • The user equipment 101 sends a message/signaling to the second network node 103. The message may be referred to as an ingress message. In some embodiments, the message is an attach message, a detach message, a Routing Area Update Request message etc. Further examples of types of messages are exemplified in table 2 and table 3 below.
  • In some embodiments, a plurality of user equipments 101 sends messages/signaling to the second network node 103.
  • Step 202
  • The second network node 103 receives the message sent from the user equipment 101.
  • In some embodiments, when the first network node 103 is integrated or embedded into the third network node 107, the second network node 105 creates a log comprising all messages received from the user equipment 101. The log is an event log comprising historical data of received user equipment 101 messages. The log is stored in a computer readable memory comprised in the second network node 105.
  • Step 203
  • The received message triggers execution of a procedure in the second network node 103. The execution of the procedure requires processing resources, or resources in general from it is initiated until it is finalized in the second network node 103. This may comprise processing resources, bandwidth resources on different interfaces, primary and secondary memory resources, and other physical or virtual resources such as e.g. identifiers, encryption keys, security certificates, IP addresses, etc., that may exist in limited amounts in the second network node 103.
  • In some embodiments, a message may trigger different procedures. For example, message 1 may trigger procedure A or procedure B.
  • A procedure may be a series of operations or calculations which have to be executed in the same manner in order to perform a task. A procedure may be executed fully within one node, or parts of the procedure may be executed by other nodes. In the latter case the one node sends specific messages to these other nodes and normally receives responses after some time. In the following, a procedure relates to measurement in the one node only without considering what happens in other nodes. However, measurements from different nodes may in some embodiments be aggregated before presented.
  • Step 204 a
  • This step corresponds to alternative 1 in FIG. 1.
  • As mentioned above, in some embodiments, when the first network node 105 is integrated or embedded in the second network node 103, the first network node 105 detects that the second network node 103 has received a message from the user equipment 101.
  • Step 204 b
  • This corresponds to alternative 2 in FIG. 1, and is an alternative step performed instead of step 204 a.
  • In some embodiments, when the first network node 105 is integrated or embedded in the third network node 107, the second network node 103 sends the stored information about the received message to the first network node 105. As mentioned above, the information about the received messages are in the form of single message information or in the form of multiple messages in the event log stored in a computer readable memory in the first network node 105.
  • Step 205
  • The first network node 105 obtains a signaling load value associated with the procedure triggered by the message.
  • The first network node 105 obtains the signaling load value from a table which is stored in a computer readable memory in the first network node 105. The table is used to translate all messages received at the second network node 103 that have any significant consumption of the processing power/resource in the second network node 103, to an equivalent value called Signaling Load Value (SLV). The signaling load value may also be referred to as Signaling Load Unit (SLU) or signaling equivalent units, and it is tied to the processing power/resource utilization in the second network node 103. An example of a generic translation table is shown in table 1 below.
  • TABLE 1
    Examples of translation of messages and procedures to normalized
    Signaling Load Values for a second communication node 103
    Parameter(s) or
    condition that Signaling
    Ingress distinguish Load
    Message procedure Procedure Value
    Message_1 Param X = nn Procedure A 1
    Message_1 Param X = mm Procedure B 0.8
    Message_2 Procedure C 0.2
    Message_3 Procedure D 1.5
    Message_4 Procedure E 0.1
    Message_5 Condition Y is fulfilled Procedure F 0.7
  • The left most column comprises different messages received at the second network node 103. The messages may be ingress messages. An ingress message is an incoming message, while an egress message is an outgoing message. The middle right column comprises the procedures associated with and triggered by the received messages. Different messages and signaling processed by the second network node 103 may be compared and summarized based on the amount of processing power/resources they consume in the second network node 103 and hence forming a measure for the signaling load value.
  • The value in the right most column of table 1, the signaling load value, have been set by the vendor of the second network node 103 or the operator of the second network node 103, to correspond to how much processing power/resources, or power/resources in general, the specific procedure is estimated to consume in the second network node 103 from it is initiated until it is finalized. The signaling load value is an instantaneous relative, i.e. normalized, value, i.e. the load generated by a procedure initiated by a certain message, and optionally with specific parameters or conditions, compared to one specific procedure, e.g. attach, that is used as a reference load. The load may be estimated or measured. A factor may or may not be applied on each value. In another embodiment, procedures are compared not based on processing resources only, but to any second network node resources in general. This may comprise processing resources, bandwidth resources on different interfaces, primary and secondary memory resources, and other physical or virtual resources such as e.g. identifiers, encryption keys, security certificates, IP addresses, etc., that may exist in limited amounts in the second network node 103.
  • Note, in some cases the same message in the Ingress Message column may trigger different procedures, e.g. see Procedure A & B above. Then additional information such as message parameters or some state information in the second network node 103 is required to determine which “procedure” is executed and hence which signaling load value shall be obtained. One “procedure” may in itself generate several messages on different interfaces to and from other nodes before the procedure is considered finalized, but only the initiating message increases the total signaling load value. The middle left column comprises the above mentioned parameter(s) or conditions. The table comprises static values which are set beforehand or preconfigured.
  • In some embodiments, the second network node 103 may be for example a MME node. The MME 103 is responsible for control signaling to and from the user equipments 101 within its geographical service area. Table 2 below shows an example of a table for translation of messages and procedures to normalized load for a MME node 103. Table 3 below shows an example of a table for translation of messages and procedures to normalized load where the second network node 103 is exemplified as an SGSN node 103. Note, the values, messages and procedures are only examples. In principle all messages that initiate procedures that consume significant node processing resources would be comprised in the translation table.
  • TABLE 2
    Examples of translation of messages and procedures to
    normalized Signaling Load Values in the MME node 103
    Parameter(s) or
    condition that Signaling
    distinguish Load
    Ingress Message procedure Procedure Values
    Attach request Initial Attach 1
    Detach request, UE-Initiated Detach, MME- 0.9
    Detach notification, Initiated Detach, SGSN-
    Cancel Location, or Initiated Detach with ISR
    MME implicit detach activated, or HSS-Initiated
    event Detach
    Tracking Area Update Tracking Area Update with 0.2
    Request or without S-GW change
    Context Request Tracking Area Update (old 0.6
    MME), RA Update with
    MME interaction with or
    without S-GW change
    Handover Required Intra-E-UTRAN S1-based 1.3
    Handover (source MME),
    E-UTRAN to UTRAN Inter
    RAT Handover,
    or E-UTRAN to GERAN
    Inter RAT Handover,
    Forward Relocation Intra-E-UTRAN S1-based 1.3
    Request Handover (target MME),
    UTRAN to E-UTRAN Inter
    RAT Handover, or
    GERAN to E-UTRAN Inter
    RAT Handover
    PDN Connectivity UE Requested PDN 0.5
    Request Connectivity
    PDN Disconnection UE or MME Requested 0.4
    Request, or MME PDN Disconnection
    internal PDN
    disconnection trigger
    Create Bearer Dedicated Bearer 0.3
    Request Activation
    Update Bearer For Insert Bearer Modification 0.2
    Request, Insert Subscriber Data, if
    Subscriber Data, or UE-AMBR or
    Request Bearer APN-AMBR is
    Resource changed
    Modification
    Delete Bearer Bearer Deactivation 0.2
    Request, or MME
    internal Dedicated
    Bearer Deactivation
    Service Request, or UE or Network Triggered 0.2
    Downlink Data Service Request
    Notification
    S1 UE Context S1 Release Procedures 0.1
    Release Request
  • TABLE 3
    Examples of translation of messages and procedures to
    normalized Signaling Load Values in the SGSN node 103
    Parameter(s) or
    condition that Signaling
    distinguish Load
    Ingress Message procedure Procedure Values
    Attach request GPRS Attach, Combined 1  
    GPRS/IMSI Attach
    Detach request MS-Initiated Detach or 0.8
    Network-Initiated Detach
    Routing Area Update Old RAI is served Intra SGSN Routing Area 0.1
    Request by the current Update, Combined Intra
    node and the SGSN LA/RA update, or
    MS/UE is not Periodic RA (and LA)
    PMM-Connected Update
    Routing Area Update Old RAI is served Inter SGSN Routing Area 0.7
    Request by a different Update, Combined Inter
    node and the SGSN LA/RA update
    MS/UE is not
    PMM-Connected
    Routing Area Update The MS/UE is in Inter-system Change 1.1
    Request or SGSN PMM-Connected (Intra-SGSN or Inter- (Note 1)
    Context Request state SGSN)
    Relocation Required Serving RNS Relocation 1.3
    or Forward Procedure, Combined (Note 1)
    Relocation Request Hard Handover and SRNS
    Relocation Procedure, and
    Combined Cell/URA
    Update and SRNS
    Relocation Procedure
    Enhanced Relocation Enhanced Serving RNS 0.3
    Complete Request Relocation
    PS Handover Target Cell Intra/Inter BSS and Intra 0.7
    Required Identifier is served SGSN PS Handover
    by the current Procedure
    SGSN
    PS Handover For ‘PS Handover Inter SGSN and Inter RAT 0.8
    Required or Forward Required’ only: PS Handover Procedure (Note 1)
    Relocation Request Target Cell
    Identifier is served
    by a different
    SGSN
    Activate PDP Context PDP Context Activation, 0.5
    Request, Activate Secondary PDP Context
    Secondary PDP Activation, Network
    Context Request, or Request PDP Context
    Initiate PDP Activation
    Activation Context
    Request
    Deactivate PDP Deactivation procedures 0.4
    Context Request,
    Delete PDP Context
    Request, or Delete
    Bearer Request
    Modify PDP Context Modification procedures 0.1
    Request, Update
    PDP Context
    Request or Update
    Bearer Request
    Service Request MS, UE or Network 0.2
    Initiated service Request
    RAB Release Release Procedures 0.1
    Release Request, or
    Iu Release Request
    Paging Request CS paging 0.1
    (Note 1) Signaling Load Values to be incremented in both target and source SGSN
  • The first network node 105 uses the table to find the signaling load value that corresponds to or matches the detected received message and triggered procedure. In some embodiments, the received message and triggered procedure may fulfill conditions or parameters set in the message, as shown in the middle left column of tables 1, 2 and 3 above.
  • Returning to FIG. 2.
  • Step 206
  • Each time the first network node 105 detects a message or receives information about historical messages that matches one of the rows in the translation table and optionally any specific parameter(s) or condition(s), it increases a parameter called total signaling load value for the second network node 103 with the value found in the rightmost column of tables 1, 2 and 3. The total signaling load value may be referred to as the first total signaling load value.
  • In the example of table 1, the total signaling load value is:

  • Total Signaling Load Value=SLV(message1)+SLV(message2)+SLV(message 3)+SLV(message4)+SLV(message5)=1+0.8+0.2+1.5+0.1+0.7=4.3
  • In order to get an instantaneous signaling load value, the total signaling load value is read periodically, e.g. once per second, by a software function, method or script in the first network node 105, and the difference between the new and the previous value is divided by the elapsed time. The software function is illustrated in FIGS. 3 and 4. The total signaling load value for a time interval may be referred to as the second total signaling load value or a total signaling load value rate per time interval:
  • SecondTotalSignalingLoadValue = SignalingLoadValue ( t 2 ) - SignalingLoadValue ( t 1 ) t 2 - t 1 ,
  • where t1 is the time when the previous value is measured and t2 is the time when the new value is measured.
  • In some embodiments, the first network node 105 measures and/or monitors the number of signaling load value per user equipment 101. When the signaling load value is measured per user equipment 101, the measurement may be presented for a different time period than for the second network node total e.g. the signaling load per day for the user equipment 101 instead of signaling load per second for the second network node 103 in total. The measurement may be done completely within the first network node 105, outside the first network node 105, e.g. based on event notifications, or a combination of the both. In some embodiments, it may be created in real time or as post processing from collected statistics.
  • The per user equipment signaling load value rate, may be for one, several or all user equipments 101 in the network 100. The user equipments 101 may be grouped into different categories depending on what signaling load they generate in the second network node 103/network 100. For example, different categories may be user equipments 101 generating 0-1.9 SLV/day, 2.0-5.9 SLV/day, 6.0-20 SLV/day or 21 or more SLV/day. Understanding what categories of user equipments 101 there are in a second network node 103 or network 100 may make network planning easier. For example, if and how much network capacity needs to be expanded if a contract of 10 million M2M devices of category 0-1.9 SLV/day is being negotiated.
  • Other parameters than signaling load value may be used in creating the categories, e.g. the amount of mobility signaling, e.g. to differentiate stationary devices, time of day when active, e.g. service requests during peak load hours or during low peak hours etc. These parameters may be extracted from the event information, e.g. messages/signals, that are the base for the SLV calculation method.
  • The total signaling load value may also be calculated per procedure executed in the second network node 103.
  • Step 207
  • The first network node 105 may determine or calculate a maximum signaling load value capacity of the second network node 103 if the number of received messages is increased until a maximum processing power capacity of the second network node 103 is reached, e.g. the CPU of the second network node 103 are at max capacity or any other suitable criteria. The maximum signaling load value capacity is a measure of how much signaling load values the second network node 103 is able to handle per time interval, e.g. second, i.e. based on its amount of available processing power.
  • Step 208
  • The first network node 105 measures processing power in the second network node 103 based on the signaling load value. The measurement may be of processing power usage in the second network node 103. It may be based on one signaling load value, the different alternatives of total signaling load value, the maximum signaling load value capacity etc. If the signaling load value comes close to, reaches or passes an upper limit, the second network node 103 capacity, i.e. processing power, needs to be increased e.g. to deploy more of the resource that is missing.
  • Step 209
  • The first network node 105 determines or calculates a resource value based on the measured processing power. It may also be associated with the determined maximum signaling load value capacity of the second network node 103. The resource value may further be based on the different types total signaling load value described in step 206.
  • Step 210
  • The first network node 105 sends or communicates information about the signaling load value and the total signaling load value, both per second network node 103, per user equipment 101, per procedure and per time interval, or a combination of these, the processing power and the processing power usage to the third network node 107. The third network node 107 may be a monitoring node such as an OSS or other O&M node located at the operator. The information may in addition be communicated to the vendor of the second network node 103 for statistical and/or licensing purposes.
  • Based on the separation of memory resources and processing resources, a formula for a flexible dimensioning model may be expressed. In some embodiments, a flexible price/license model may also be expressed.
  • The existing measures, i.e. registered users (SAU) and number of connections, are kept but tied more to the memory resource utilization in the second network node 103.
  • Step 211
  • The third network node 107 monitors, processes and presents the received information about the measurements of processing power and processing power usage from the first network node 105. The measurements may be unified measurements in case a plurality of messages of different types is received. The total number of signaling load values in a second network node 103 may be measured and monitored at any given moment and statistics collected. The owner and/or the vendor of the second network node 103 may use the measurements/statistics to verify that the signaling load value measured doesn't pass its upper limit. If the signaling load value passes its upper limit, the second network node 103 capacity, i.e. processing power, may need to be increased e.g. to deploy more of the resource that is missing. By this, a tool for fair pricing/licensing that may be flexible to also accommodate the wildly different communication patters for many M2M applications may be obtained.
  • When the first network node 105 is integrated in the second network node 103, illustrated as alternative 1 in FIG. 1, the third network node 107 may receive its input data directly from the first network node 103. This is also illustrated in FIG. 3.
  • When the first network node is integrated din the third network node 107, illustrated as alternative 2 in FIG. 1, the second network node 103 creates, as mentioned above, an event log of messages and signaling load value events. This log is provided to the first network node 105, which may also be referred to as a post processing node. The first network node 105 stores the received signaling load value events and performs post processing of the stored data. This is also illustrated in FIG. 4. The post processing may for example be beneficial when data from several or all nodes in the network 100 shall be monitored and presented or when the categorization needs to be more advanced e.g. comprising other parameters than signaling load value, e.g. mobility signaling, active time-of-day etc.
  • In some embodiments, the price for a second network node 103 may be calculated using a model where the Signaling Load Value (SLV) affects the price independently from the Simultaneously Attached Users (SAU) for example using a base formula as this. PDP Context/PDN Connections may replace SAU e.g. for GGSN/PGW.

  • Node Price=x*SAU+y*SLV/s+z*PPS
      • x may e.g. be measured in SEK/SAU
      • y may e.g. be measured in SEK/SLV/s
      • z may e.g. be measured in SEK/PPS
  • In a simplified example to illustrate the price model, using a second network node 103 exemplified as an MME, the prices of two different MME nodes 103 are calculated. One MME 103 dimensioned for normal and smart phone usage, referred to as MME 1, and a second MME 103 dimensioned for a dominant portion of low activity M2M devices, referred to as MME 2.
  • The following prices are used in the example: x=0.1 SEK/SAU, y=900 SEK/SLV/s, z=0.01 SEK/PPS. The following illustrative assumptions are made on the node dimensioning. Note that the values in these examples and assumptions are only explanatory and are not necessarily used in real products or deployments:
      • MME 1 103 is dimensioned for 1 M SAU, and MME 2 103 is dimensioned for 10 M SAU;
      • deduced from traffic models it is assumed that an attached normal/smart phone users need 0.001 SLV/s;
      • low activity M2M devices are optimized and generate less than one tenth of the signaling load of normal/smart phone users, i.e. 0.0001 SLV/s;
      • An MME 103 does not have any packet forwarding capacity;
  • The price for a “normal” MME 1 103 of 1 M SAU would then be:

  • Node Price MME 1=0.1*10E6+900*10E6*10E-3+0.01*0=1 MSEK
  • The price for “M2M tailored” MME 2 of 10 M SAU would then be:

  • Node Price MME 2=0.1*10E7+900*10E7*10E-4+0.01*0=1.9 MSEK
  • Note that an operator that buys an M2M tailored MME 103 of 10 M SAU as in the example above and uses it for solely normal/smart phone users, would still only be able to serve approximately 1 M SAU due to the limiting signaling capacity, i.e. SLV/s.
  • One particular use of the price model is a when the node price is solely based on SLV/s, i.e. x and z above are set to 0.
  • The method described above will now be described seen from the perspective of the first network node 105. FIG. 5 is a flowchart describing the present method in the first network node 105 for measuring processing power in a second network node 103 in the communications network 100. In some embodiments, the measurement of processing power is a unified measurement valid for different types of messages. Unified refers to making or uniting something into one unit or a coherent whole. In some embodiments, the second network node 103 is a Mobility Management Entity, referred to as MME, a Serving General Packet Radio Service Support Node, referred to as SGSN, a Gateway General Packet Radio Service Support Node, referred to as GGSN, a Serving Gateway, referred to as S-GW, a Packet Data Network Gateway, referred to as P-GW, a Machine Type Communication Interworking Function node, referred to as MTC IWF and the third network node 107 is a monitoring node 107. In some embodiments, the fourth network node 101 is a user equipment 101 or a fourth network node configured to communicate with the second network node 103. The method comprises the steps to be performed by the first network node 105:
  • Step 501
  • This step corresponds to step 202 and 204 a in FIG. 2.
  • In some embodiments, the first network node 105 is comprised in the second network node 103. In some embodiments, the first network node 105 detects receipt of a message from a fourth network node 101. The message may be of different types.
  • In some embodiments, the received message fulfils a predetermined condition.
  • Step 502
  • This step corresponds to step 203 in FIG. 2. This is a step which is performed after step 501.
  • In some embodiments, the first network node 105 is comprised in the second network node 103. In some embodiments, the first network node 105 executes the procedure triggered by the received message.
  • In some embodiments, the procedure executed in the second network node 103 is decided by the received message together with one or more predetermined conditions and/or one or more parameters in the message.
  • Step 503
  • This step corresponds to step 204 b in FIG. 2. This step is performed instead of steps 501 and 502.
  • In some embodiments, the first network node 105 is comprised in a third network node 107. In some embodiments, the first network node 105 receives information about the message from the second network node 103. The message is sent from a fourth network node 101 to the second network node 103.
  • Step 504
  • This step corresponds to step 205 in FIG. 2.
  • The first network node 105 obtains a signaling load value associated with a procedure. The procedure is triggered by a message.
  • In some embodiments, the signaling load value associated with the procedure is preconfigured in the first network node 105.
  • In some embodiments, the signaling load value is further associated with consumption of an amount of processing power/resources when the procedure is executed in the second network node 103.
  • In some embodiments, the signaling load value, information about the message, conditions and parameters associated with the procedure, and information about the signaling load value associated with the procedure is stored in a table in the first network node 105. In some embodiments, the signaling load value is obtained from the table.
  • Step 505
  • This step corresponds to step 206 in FIG. 2. In some embodiments, the first network node 105 adds the obtained signaling load value to a first total signaling load value.
  • In some embodiments, the first total signaling load value is per fourth network node 101, per procedure executed in the second network node 103, per time interval or any combination of these.
  • Step 506
  • This step corresponds to step 207 in FIG. 2.
  • In some embodiments, the first network node 105 determines a maximum capacity of signaling load value of the second network node 103 by increasing a number of received messages until a maximum capacity of processing power of the second network node 103 is reached. The maximum capacity of signaling load value may also be referred to as maximum signaling load value capacity.
  • Step 507
  • This step corresponds to step 209 in FIG. 2.
  • In some embodiments, the first network node 105 determines a resource value associated with the determined maximum capacity of signaling load value of the second network node 103.
  • Step 508
  • This step corresponds to step 206 in FIG. 2.
  • In some embodiments, the first network node 105 determines a second total signaling load value per fourth network node 101 and per time period.
  • Step 509
  • This step corresponds to step 206 in FIG. 2. This step is performed after step 508.
  • In some embodiments, the first network node 105 establishes a category of fourth network node 101 based on the second total signaling load value. The category of fourth network node 101 and the understanding of the number of fourth network nodes 101 of different categories in a network facilitate and/or enables network planning and dimensioning of the communications network 100.
  • Step 510
  • This step corresponds to step 210 in FIG. 2.
  • In some embodiments, the first network node 105 sends information about the first total signaling value and the second total signaling load value to a third network node 107.
  • Step 511
  • This step corresponds to step 208 in FIG. 2.
  • The first network node 105 measures the processing power of the second network node 103 based on the obtained signaling load value.
  • In some embodiments, the measurement of the processing power in the second network node 103 is further based on the total signaling load value. As mentioned above, the message may be of different types. The measurement of processing power based on the total signaling load values may therefore be a unified measurement of processing power. Unified indicates that the measurement of processing power is independent of the different types of messages, and that it is one measurement of all types of messages.
  • In some embodiments, the measurement of the processing power of the second network node 103 is further based on the determined maximum capacity of signaling load value.
  • To perform the method steps shown in FIG. 5 for measuring processing power in a second network node 103 in a communications network 100, the first network node 105 comprises a first network node arrangement as shown in FIG. 6. In some embodiments, the second network node 103 is a Mobility Management Entity, referred to as MME, a Serving General Packet Radio Service Support Node, referred to as SGSN, a Gateway General Packet Radio Service Support Node, referred to as GGSN, a Serving Gateway, referred to as S-GW, a Packet Data Network Gateway, referred to as P-GW, a Machine Type Communication Interworking Function node, referred to as MTC IWF and the third network node 107 is a monitoring node 107. In some embodiments, the fourth network node 101 is a user equipment 101 or a fourth network node configured to communicate with the second network node 103.
  • The first network node 105 comprises an obtaining unit 601 configured to obtain a signaling load value associated with a procedure. The procedure is triggered by a message. In some embodiments, the signaling load value associated with the procedure is preconfigured in the first network node 105. In some embodiments, the signaling load value is further associated with consumption of an amount of processing power/resources when the procedure is executed in the second network node 103. In some embodiments, signaling load value, information about the message, conditions and parameters associated with the procedure and information about the signaling load value associated with the procedure is stored in a table in the first network node 105. In some embodiments, the signaling load value is obtained from the table.
  • The first network node 105 further comprises a measuring unit 603 which is configured to measure of the processing power of the second network node 103 in the communications network 100 based on the obtained signaling load value. In some embodiments, the measuring unit 603 is further configured to measure the processing power in the second network node 103 further based on the first total signaling load value. In some embodiments, the measuring unit 603 is further configured to measure the processing power of the second network node 103 further based on the determined maximum capacity of signaling load value.
  • In some embodiments, where the first network node 105 is comprised in the second network node 103, the first network node 105 comprises a detecting unit 605 configured to detect receipt of a message from a fourth network node 101, and a processing unit 607 configured to execute the procedure triggered by the message. In some embodiments, the procedure executed in the second network node 103 is decided by a received message together with one or more predetermined conditions and/or one or more parameters in the message. In some embodiments, the processing unit 607 is further configured to add the obtained signaling load value to a first total signaling load value. In some embodiments, the total signaling load value is per fourth network node 101, per procedure executed in the second network node 103, per time interval, or a combination of these. In some embodiments, the processing unit 607 is further configured to determine a maximum signaling load value capacity of the second network node 103 by increasing a number of received messages until a maximum capacity of processing power of the second network node 103 is reached. In some embodiments, the processing unit 607 is further configured to determine a resource value associated with the determined maximum capacity of signaling load value of the second network node 103. In some embodiments, the processing unit 607 is further configured to determine a second total signaling load value per fourth network node 101 and per time period and to establish a category of fourth network node 101 based on the second total signaling load value. In some embodiments, the category of fourth network node 101 enables network planning and dimensioning of the communications network 100.
  • In some embodiments, where the first network node 105 is comprised in a third network node 107, the first network node 105 comprises a receiving unit 610 configured to receive information about the message from the second network node 103. The message is sent from a fourth network node 101 to the second network node 103. In some embodiments, the received message fulfils a predetermined condition
  • In some embodiments, the first network node 105 further comprises a sending unit 612 configured to send information about the first total signaling value and the second total signaling load value to a third network node 107.
  • The present mechanism for measuring processing power in a second network node 103 in a communications network 100 may be implemented through one or more processors, such as the processing unit 607 in the first network node arrangement depicted in FIG. 6, together with computer program code for performing the functions of the embodiments herein. The processor may be for example a Digital Signal Processor (DSP), Application Specific Integrated Circuit (ASIC) processor, Field-programmable gate array (FPGA) processor or micro processor. The program code mentioned above may also be provided as a computer program product, for instance in the form of a data carrier carrying computer program code for performing the embodiments herein when being loaded into the first network node 105. One such carrier may be in the form of a CD ROM disc. It is however feasible with other data carriers such as a memory stick. The computer program code may furthermore be provided as pure program code on a server and downloaded to the first network node 105 remotely.
  • The embodiments herein are not limited to the above described preferred embodiments. Various alternatives, modifications and equivalents may be used. Therefore, the above embodiments should not be taken as limiting the scope of the embodiments, which is defined by the appending claims.
  • It should be emphasized that the term “comprises/comprising” when used in this specification is taken to specify the presence of stated features, integers, steps or components, but does not preclude the presence or addition of one or more other features, integers, steps, components or groups thereof. It should also be noted that the words “a” or “an” preceding an element do not exclude the presence of a plurality of such elements.
  • It should also be emphasized that the steps of the methods defined in the appended claims may, without departing from the embodiments herein, be performed in another order than the order in which they appear in the claims.

Claims (28)

1. A method in a first network node (105) for measuring processing power in a second network node (103) in a communications network (100), the method comprising:
obtaining (205, 504) a signaling load value associated with a procedure, which procedure is triggered by a message; and
measuring (208, 511) the processing power of the second network node (103) based on the obtained signaling load value.
2. The method according to claim 1, wherein the first network node (105) is comprised in the second network node (103), and wherein the method further comprises:
detecting (202, 204 a, 501) receipt of the message from a fourth network node (101); and
executing (203, 502) the procedure triggered by the received message.
3. The method according to claim 1, wherein the first network node (105) is comprised in a third network node (107), and wherein the method further comprises:
receiving (204 b, 503) information about the message from the second network node (103); and which message is sent from a fourth network node (101) to the second network node (107).
4. The method according to any of the claims 1-3, further comprising:
adding (206, 505) the obtained signaling load value to a first total signaling load value; and
wherein the measuring (208, 511) the processing power in the second network node (103) is further based on the total signaling load value.
5. The method according to claim 4, wherein the first total signaling load value is at least one of per fourth network node (101), per procedure executed in the second network node (103) and per time interval.
6. The method according to any of the claims 1-5, further comprising:
determining (207, 506) a maximum capacity of signaling load value of the second network node (103) by increasing a number of received messages until a maximum capacity of processing power of the second network node (103) is reached; and
wherein the measuring (208, 511) the processing power of the second network node (103) is further based on the determined maximum capacity of signaling load value.
7. The method according to claim 6, further comprising:
determining (209, 507) a resource value associated with the determined maximum capacity of signaling load value of the second network node (103).
8. The method according to any of the claims 1-7, further comprising:
determining (206, 508) a second total signaling load value per fourth network node (101) and per time period; and
establishing (206, 509) a category of fourth network node (101) based on the second total signaling load value; and
wherein the category of fourth network node (101) enables network planning and dimensioning of the communications network (100).
9. The method according to any of the claims 1-8, further comprising:
sending (210, 510) information about the first total signaling value and the second total signaling load value to a third network node (107).
10. The method according to any of the claims 1-9, wherein the signaling load value associated with the procedure is preconfigured in the first network node (105).
11. The method according to any of the claims 1-10, wherein the received message fulfils a predetermined condition.
12. The method according to any of the claims 1-11, wherein the signaling load value is further associated with consumption of an amount of processing power when the procedure is executed in the second network node (103).
13. The method according to any of the claims 1-12, wherein information about the message, conditions and parameters associated with the procedure and information about the signaling load value associated with the procedure is stored in a table in the first network node (105), and wherein the signaling load value is obtained from the table.
14. The method according to any of the claims 1-13, wherein the second network node (103) is a Mobility Management Entity, referred to as MME, a Serving General Packet Radio Service Support Node, referred to as SGSN, a Gateway General Packet Radio Service Support Node, referred to as GGSN, a Serving Gateway, referred to as S-GW, a Packet Data Network Gateway, referred to as P-GW, a Machine Type Communication Interworking Function node, referred to as MTC IWF, wherein the third network node (107) is a monitoring node (107) and wherein the fourth network node (101) is a user equipment (101) or a fourth network node configured to communicate with the second network node (103).
15. A first network node (105) for measuring processing power in a second network node (103) in a communications network (100), the first network node (105) comprising:
an obtaining unit (601) configured to obtain a signaling load value associated with a procedure, which procedure is triggered by a message; and
a measuring unit (603) configured to measure the processing power of the second network node (103) in the communications network (100) based on the obtained signaling load value.
16. The first network node (105) according to claim 15, wherein the first network node (105) is comprised in the second network node (103), and wherein the first network node (105) further comprises:
a detecting unit (605) configured to detect receipt of the message from a fourth network node (101); and
a processing unit (607) configured to execute the procedure triggered by the message.
17. The first network node (105) according to claim 15, wherein the first network node (105) is comprised in a third network node (107), and wherein the first network node (105) further comprises:
a receiving unit (610) configured to receive information about the message from the second network node (103); and which message is sent from a fourth network node (101) to the second network node (103).
18. The first network node (105) according to any of the claims 15-17, wherein the processing unit (607) is further configured to add the obtained signaling load value to a first total signaling load value; and
wherein the measuring unit (603) is further configured to measure the processing power in the second network node (103) further based on the total signaling load value.
19. The first network node (105) according to claim 18, wherein the first total signaling load value is at least one of per fourth network node (101), per procedure executed in the second network node (103) and per time interval.
20. The first network node (105) according to any of the claims 15-19, wherein the processing unit (607) is further configured to determine a maximum capacity of signaling load value of the second network node (103) by increasing a number of received messages until a maximum capacity of processing power of the second network node (103) is reached; and wherein the measuring unit (603) is further configured to measure the processing power of the second network node (103) further based on the determined maximum capacity of signaling load value.
21. The first network node (105) according to claim 20, wherein the processing unit (607) is further configured to determine a resource value associated with the determined maximum capacity of signaling load value of the second network node (103).
22. The first network node (105) according to any of the claims 15-21, wherein the processing unit (607) is further configured to:
determine a second total signaling load value per fourth network node (101) and per time period; and to
establish a category of fourth network node (101) based on the second total signaling load value; and
wherein the category of fourth network node (101) enables network planning and dimensioning of the communications network (100).
23. The first network node (105) according to any of the claims 15-22, further comprising:
a sending unit (612) configured to send information about the first total signaling value and the second total signaling load value to a third network node (107).
24. The first network node (105) according to any of the claims 15-23, wherein the signaling load value associated with the procedure is preconfigured in the first network node (105).
25. The first network node (105) according to any of the claims 15-24, wherein the received message fulfils a predetermined condition.
26. The first network node (105) according to any of the claims 15-25, wherein the signaling load value is further associated with consumption of an amount of processing power when the procedure is executed in the second network node (103).
27. The first network node (105) according to any of the claims 15-26, wherein information about the message, conditions and parameters associated with the procedure and information about the signaling load value associated with the procedure is stored in a table in the first network node (105), and wherein the obtaining unit (601) is further configured to obtain the signaling load value from the table.
28. The first network node (105) according to any of the claims 15-27, wherein the second network node (103) is a Mobility Management Entity, referred to as MME, a Serving General Packet Radio Service Support Node, referred to as SGSN, a Gateway General Packet Radio Service Support Node, referred to as GGSN, a Serving Gateway, referred to as S-GW, a Packet Data Network Gateway, referred to as P-GW, a Machine Type Communication Interworking Function node, referred to as MTC IWF, wherein the third network node (107) is a monitoring node (107), and wherein the fourth network node (101) is a user equipment (101) or a fourth network node configured to communicate with the second network node (103).
US14/240,054 2011-08-30 2011-08-30 Method and Node For Measuring Processing Power in a Node in a Communications Network Abandoned US20140192674A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2011/064899 WO2013029661A1 (en) 2011-08-30 2011-08-30 A method and node for measuring processing power in a node in a communications network

Publications (1)

Publication Number Publication Date
US20140192674A1 true US20140192674A1 (en) 2014-07-10

Family

ID=47753132

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/240,054 Abandoned US20140192674A1 (en) 2011-08-30 2011-08-30 Method and Node For Measuring Processing Power in a Node in a Communications Network
US13/598,973 Active 2033-06-12 US9143948B2 (en) 2011-08-30 2012-08-30 Method and node for measuring processing power in a node in a communications network

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/598,973 Active 2033-06-12 US9143948B2 (en) 2011-08-30 2012-08-30 Method and node for measuring processing power in a node in a communications network

Country Status (5)

Country Link
US (2) US20140192674A1 (en)
EP (1) EP2752045B1 (en)
BR (1) BR112014001865B1 (en)
ES (1) ES2542614T3 (en)
WO (1) WO2013029661A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150058481A1 (en) * 2013-08-22 2015-02-26 Bruce D. Miller Method & apparatus for measuring power, bandwidth and monitoring the operation of a network infrastructure from another network infrastructure
WO2015174902A1 (en) * 2014-05-16 2015-11-19 Telefonaktiebolaget L M Ericsson (Publ) Methods and nodes of a wireless network for deciding on switching off of a network node

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011037508A1 (en) * 2009-09-24 2011-03-31 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for simulation of a system in a communications network
US20120040684A1 (en) * 2009-04-23 2012-02-16 Huawei Technologies Co., Ltd. Load Sharing Method, Device, and System

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006125456A1 (en) * 2005-05-24 2006-11-30 Telecom Italia, S.P.A. Method for dimensioning a data packets handler apparatus in a packet-switched mobile communications network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120040684A1 (en) * 2009-04-23 2012-02-16 Huawei Technologies Co., Ltd. Load Sharing Method, Device, and System
WO2011037508A1 (en) * 2009-09-24 2011-03-31 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for simulation of a system in a communications network

Also Published As

Publication number Publication date
BR112014001865A2 (en) 2017-02-21
US9143948B2 (en) 2015-09-22
EP2752045A1 (en) 2014-07-09
BR112014001865B1 (en) 2021-10-26
WO2013029661A1 (en) 2013-03-07
ES2542614T3 (en) 2015-08-07
EP2752045B1 (en) 2015-04-29
US20130058236A1 (en) 2013-03-07

Similar Documents

Publication Publication Date Title
US10841745B2 (en) Location reporting of user equipment in a cellular network environment
US8554216B2 (en) Devices for congestion control
ES2664755T3 (en) Use of a service quality prediction model in a target cell to trigger a transfer
US20120039175A1 (en) Enabling a distributed policy architecture with extended son (extended self organizing networks)
US20070280177A1 (en) Managing user profile information in a mobile telecommunications network
US20140274059A1 (en) Plmn selection at handover to a target shared location being shared between core network operators
EP2578013A1 (en) Network-based area positioning for capacity and coverage improvement
US9743327B2 (en) Managing radio traffic load
WO2012007029A1 (en) Dynamic optimization of radio network resources based on user equipment type smartphone
US9413666B2 (en) Reporting radio access network congestion information in a network sharing environment
EP3378254B1 (en) Network node, radio access node and methods performed therein
JP2019062535A (en) System, service platform, application server, and method
EP2914031B1 (en) determination of the real Tracking Area when dynamic TA lists or smart TA techniques are applied
US9591689B2 (en) System and method for detachment in wireless communication system
US9143948B2 (en) Method and node for measuring processing power in a node in a communications network
US9794840B1 (en) Systems and methods for determining access node candidates for handover of wireless devices
EP2989822B1 (en) Reducing location update signaling between network nodes of a mobile communication network
JP6642565B2 (en) Communication control device, communication system, communication control method, and program
US20230156579A1 (en) Detecting ue ping-ponging between different network nodes
CN104754632A (en) Method and device of reporting UE (user equipment) neighborhood position in wireless communication network
US11323841B2 (en) Methods and apparatuses for exposure of presence reporting area functionality
EP2664170B1 (en) Informing a mme about a hlr restart via the s6a interface
KR20150024689A (en) Method and apparatus for acquiring location information of user equipment based on event
US9301200B1 (en) Managing deployment of a radio access technology
EP3276988B1 (en) Communication system and method optimizing handover control

Legal Events

Date Code Title Description
AS Assignment

Owner name: TELEFONAKTIEBOLAGET L M ERICSSON (PUBL), SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROENNEKE, HANS;HALLBERG, JOAKIM;SIGNING DATES FROM 20110908 TO 20110912;REEL/FRAME:032522/0406

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION