US20140190128A1 - Methods for Improving the Flowability of Asphalt Particles - Google Patents

Methods for Improving the Flowability of Asphalt Particles Download PDF

Info

Publication number
US20140190128A1
US20140190128A1 US14/240,014 US201214240014A US2014190128A1 US 20140190128 A1 US20140190128 A1 US 20140190128A1 US 201214240014 A US201214240014 A US 201214240014A US 2014190128 A1 US2014190128 A1 US 2014190128A1
Authority
US
United States
Prior art keywords
asphalt
particles
silica
asphalt particles
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/240,014
Inventor
Mathew M. Samuel
Deepak Khatri
Roger Keese
Robert Williams
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger Technology Corp
Original Assignee
Schlumberger Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Technology Corp filed Critical Schlumberger Technology Corp
Priority to US14/240,014 priority Critical patent/US20140190128A1/en
Publication of US20140190128A1 publication Critical patent/US20140190128A1/en
Assigned to SCHLUMBERGER TECHNOLOGY CORPORATION reassignment SCHLUMBERGER TECHNOLOGY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WILLIAMS, ROBERT, SAMUEL, MATHEW M., KHATRI, DEEPAK, KEESE, ROGER
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10CWORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
    • C10C3/00Working-up pitch, asphalt, bitumen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/30Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic using agents to prevent the granules sticking together; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/124Treatment for improving the free-flowing characteristics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L95/00Compositions of bituminous materials, e.g. asphalt, tar, pitch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2555/00Characteristics of bituminous mixtures
    • C08L2555/40Mixtures based upon bitumen or asphalt containing functional additives
    • C08L2555/50Inorganic non-macromolecular ingredients
    • C08L2555/52Aggregate, e.g. crushed stone, sand, gravel or cement

Definitions

  • Asphalt has a low specific gravity, making it useful as an extender for reducing the density of cement slurries.
  • Asphalt particles may also be used to control lost circulation in subterranean wells.
  • wellbore fluids such as drilling muds and cement slurries are pumped into a wellbore
  • the asphalt particles may enter voids in the subterranean-well formation through which wellbore fluids escape, and form a seal that limits further egress of wellbore fluid from the wellbore into the formation.
  • asphaltite minerals such as unitaite have been used in wellbore fluids.
  • Unitaite is mined in underground shafts and resembles shiny black obsidian.
  • Ground unitaite particles are also hard and free flowing; thus, engineers have little difficulty transporting them or incorporating them into dry blends of cement or drilling-fluid solids.
  • hard asphalt particles are cohesive and tend to agglomerate. Upon storage, the particles form cakes that are difficult to break up. In addition, during dry blending operations, the particles do not readily disperse and distribute themselves evenly throughout the blend. It would therefore be desirable to develop means by which the agglomerative tendency of hard asphalt may be suppressed.
  • embodiments relate to methods for improving the flowability of asphalt particles, the methods comprising providing asphalt particles with a penetration grade below about 20; and mixing with at least one further compound comprising Portland cement, calcium aluminate cement, fly ash, blast furnace slag, lime/silica blends, silica, ground limestone, cement kiln dust, chemically bonded phosphate ceramics, zeolites, geopolymers, cellulose, starch, calcium carbonate, colloidal silica, aluminosilicates, and combinations thereof.
  • at least one further compound comprising Portland cement, calcium aluminate cement, fly ash, blast furnace slag, lime/silica blends, silica, ground limestone, cement kiln dust, chemically bonded phosphate ceramics, zeolites, geopolymers, cellulose, starch, calcium carbonate, colloidal silica, aluminosilicates, and combinations thereof.
  • embodiments relate to methods for storing asphalt particles, the methods comprising providing asphalt particles with a penetration grade below about 20; and mixing the particles with at least one further compound comprising Portland cement, calcium aluminate cement, fly ash, blast furnace slag, lime/silica blends, silica, ground limestone, cement kiln dust, chemically bonded phosphate ceramics, zeolites, geopolymers, cellulose, starch, calcium carbonate, colloidal silica, aluminosilicates, and combinations thereof; and placing the blend in a storage container.
  • at least one further compound comprising Portland cement, calcium aluminate cement, fly ash, blast furnace slag, lime/silica blends, silica, ground limestone, cement kiln dust, chemically bonded phosphate ceramics, zeolites, geopolymers, cellulose, starch, calcium carbonate, colloidal silica, aluminosilicates, and combinations thereof.
  • embodiments relate to methods for transporting asphalt particles, the methods comprising providing asphalt particles with a penetration grade below about 20; mixing the particles with at least one further compound comprising Portland cement, calcium aluminate cement, fly ash, blast furnace slag, lime/silica blends, silica, ground limestone, cement kiln dust, chemically bonded phosphate ceramics, zeolites, geopolymers, cellulose, starch, calcium carbonate, colloidal silica, aluminosilicates, and combinations thereof; placing the blend in a transport container; and transporting the blend from a first location to a second location.
  • at least one further compound comprising Portland cement, calcium aluminate cement, fly ash, blast furnace slag, lime/silica blends, silica, ground limestone, cement kiln dust, chemically bonded phosphate ceramics, zeolites, geopolymers, cellulose, starch, calcium carbonate, colloidal silica, aluminosilicates, and combinations thereof.
  • compositions of the present disclosure are described herein as comprising certain materials, it should be understood that the composition could optionally comprise two or more chemically different materials. In addition, the composition can also comprise some components other than the ones already cited.
  • the Applicants have determined that the agglomerative tendency of hard asphalt particles may be suppressed by blending one or more materials with the particles.
  • the materials may include (but would not be limited to) Portland cement, calcium aluminate cement, fly ash, blast furnace slag, lime/silica blends, silica, ground limestone, cement kiln dust, chemically bonded phosphate ceramics, zeolites, geopolymers, cellulose, starch, calcium carbonate, colloidal silica, aluminosilicates, or combinations thereof Such materials act as anti-caking agents in this disclosure.
  • the hard asphalts particles may be blended with Portland cement, fly ash, blast furnace slag, lime/silica blends, silica, ground limestone or combinations thereof.
  • Embodiments relate to methods for improving the flowability of asphalt particles.
  • Asphalt particles provided may have a penetration grade below about 20,or below about 10.
  • the penetration grade of asphalt is determined by using a needle penetrometer, according to ASTM method D5—“Penetration of Bituminous Materials.”
  • the method consists of subjecting an asphalt sample to a 100-g load for 5 seconds with a standard needle.
  • the depth of needle penetration is measured in units of 0.1 mm and reported in penetration units. For example, if the needle penetrates 8 mm, the asphalt penetration value is 80.
  • the particles are mixed with an anti-caking agent.
  • the anti-caking agent concentration may be between about 0.1% and 10.0% by weight of asphalt particles, it may be between about 1.0% and 6.0% by weight of asphalt particles, and it may be between about 3.0% and 5.0% by weight of asphalt particles.
  • the hard asphalt particles may be smaller than about 2500 ⁇ m. For example, less than 2 weight percent of the particles are larger than about 2400 ⁇ m, and less than about 5 weight percent of the particles are smaller than about 105 ⁇ m. Furthermore, the specific gravity of the asphalt particles may be between about 0.95 and 1.15, or between about 1.0 and 1.1. The melting point of the hard asphalt may be higher than about 99° C.
  • Embodiments relate to methods for storing asphalt particles.
  • Asphalt particles provided may have a penetration grade below about 20, or below about 10.
  • the particles are mixed with an anti-caking agent, and the resulting blend is placed in a storage container.
  • the temperature of the storage container may be maintained at a level below about 90° C.
  • the anti-caking agent concentration may be between about 0.1% and 10.0% by weight of asphalt particles, it may be between about 1.0% and 6.0% by weight of asphalt particles, or it may be between about 3.0% and 5.0% by weight of asphalt particles.
  • the hard asphalt particles may be smaller than about 2500 ⁇ m. For example, less than 2 weight percent of the particles are larger than about 2400 ⁇ m, and less than about 5 weight percent of the particles are smaller than about 105 ⁇ m. Furthermore, the specific gravity of the asphalt particles may be between about 0.95 and 1.15, or between about 1.0 and 1.1. The melting point of the hard asphalt may be higher than about 99° C.
  • Embodiments relate to methods for transporting asphalt particles.
  • Asphalt particles provided may have a penetration grade below about 20, or below about 10.
  • the particles are mixed with an anti-caking agent, the resulting blend is placed in a transport container, and the blend is transported from a first location to a second location.
  • the container may be a vessel suitable for transporting the blend on roads, rail, by air or by sea.
  • transporting the blend may comprise pneumatic transfer from one vessel to another.
  • the temperature of the transport container may be maintained at a level below about 90° C.
  • the anti-caking agent concentration may be between about 0.1% and 10.0% by weight of asphalt particles, or between about 1.0% and 6.0% by weight of asphalt particles, or between about 3.0% and 5.0% by weight of asphalt particles.
  • the hard asphalt particles may be smaller than about 2500 ⁇ m. For example, less than 2 weight percent of the particles are larger than about 2400 ⁇ m, and less than about 5 weight percent of the particles are smaller than about 105 ⁇ m. Furthermore, the specific gravity of the asphalt particles may be between about 0.95 and 1.15, or between about 1.0 and 1.1. The melting point of the hard asphalt may be higher than about 99° C.
  • 500 g of hard asphalt were ground to a particle size distribution wherein less than 2 wt % of the particles were larger than about 2400 ⁇ m, and less than 5 wt % of the particles were smaller than about 100 ⁇ m.
  • the asphalt was “Special Hard Asphalt,” available from Gulf States Asphalt Company, South Houston, Tex., USA.
  • the ground asphalt sample was split into two 250-g portions. One portion was placed in a plastic cup such that the depth of the sample in the cup was about 1.6 cm. The other portion was mixed with an anti-caking agent composed of Portland cement. The anti-caking agent concentration was 5 percent by weight of asphalt particles. The treated portion was placed in another plastic cup, again such that the depth of the sample in the cup was about 1.6 cm. Stainless steel lids were placed on top of the samples such that the asphalt particles were subjected to a 7.6-kPa load.
  • Both cups were placed in an oven at a temperature of 43° C. The samples remained in the oven for 7 days. After the samples were removed from the oven, the untreated asphalt particles were observed to have agglomerated into a cohesive cake that was difficult to disperse with a spatula. It was not free flowing. On the other hand, the asphalt sample treated with the anti-caking agent was free flowing and could be easily poured from the beaker.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Civil Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Road Paving Structures (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The flowability of asphalt particles may be improved by mixing the particles with comprises further compound comprises Portland cement, calcium aluminate cement, fly ash, blast furnace slag, lime/silica blends, silica, ground limestone, cement kiln dust, chemically bonded phosphate ceramics, zeolites, geopolymers, cellulose, starch, calcium carbonate, colloidal silica, aluminosilicates, and combinations thereof. Treating the asphalt particles with at least one of these compounds inhibits caking during storage and enhances transportability.

Description

    BACKGROUND
  • The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
  • This disclosure relates to methods for improving the flowability of solid asphalt particles. Asphalt has a low specific gravity, making it useful as an extender for reducing the density of cement slurries. Asphalt particles may also be used to control lost circulation in subterranean wells. When wellbore fluids such as drilling muds and cement slurries are pumped into a wellbore, the asphalt particles may enter voids in the subterranean-well formation through which wellbore fluids escape, and form a seal that limits further egress of wellbore fluid from the wellbore into the formation.
  • For many years, asphaltite minerals such as unitaite have been used in wellbore fluids. Unitaite is mined in underground shafts and resembles shiny black obsidian. Ground unitaite particles are also hard and free flowing; thus, engineers have little difficulty transporting them or incorporating them into dry blends of cement or drilling-fluid solids.
  • At present, most unitaite is produced from one principal deposit in the Unitah Basin of Utah, in the United States. This geographic limitation impedes the worldwide use of unitaite. As a result, alternate materials have been identified. One example that is commercially available around the world is hard asphalt. Hard asphalt has a specific gravity similar to that of unitaite, and it can be ground into fine particles.
  • Unlike unitaite, hard asphalt particles are cohesive and tend to agglomerate. Upon storage, the particles form cakes that are difficult to break up. In addition, during dry blending operations, the particles do not readily disperse and distribute themselves evenly throughout the blend. It would therefore be desirable to develop means by which the agglomerative tendency of hard asphalt may be suppressed.
  • SUMMARY
  • In an aspect, embodiments relate to methods for improving the flowability of asphalt particles, the methods comprising providing asphalt particles with a penetration grade below about 20; and mixing with at least one further compound comprising Portland cement, calcium aluminate cement, fly ash, blast furnace slag, lime/silica blends, silica, ground limestone, cement kiln dust, chemically bonded phosphate ceramics, zeolites, geopolymers, cellulose, starch, calcium carbonate, colloidal silica, aluminosilicates, and combinations thereof.
  • In a further aspect, embodiments relate to methods for storing asphalt particles, the methods comprising providing asphalt particles with a penetration grade below about 20; and mixing the particles with at least one further compound comprising Portland cement, calcium aluminate cement, fly ash, blast furnace slag, lime/silica blends, silica, ground limestone, cement kiln dust, chemically bonded phosphate ceramics, zeolites, geopolymers, cellulose, starch, calcium carbonate, colloidal silica, aluminosilicates, and combinations thereof; and placing the blend in a storage container.
  • In yet a further aspect, embodiments relate to methods for transporting asphalt particles, the methods comprising providing asphalt particles with a penetration grade below about 20; mixing the particles with at least one further compound comprising Portland cement, calcium aluminate cement, fly ash, blast furnace slag, lime/silica blends, silica, ground limestone, cement kiln dust, chemically bonded phosphate ceramics, zeolites, geopolymers, cellulose, starch, calcium carbonate, colloidal silica, aluminosilicates, and combinations thereof; placing the blend in a transport container; and transporting the blend from a first location to a second location.
  • DETAILED DESCRIPTION
  • At the outset, it should be noted that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developer's specific goals, such as compliance with system related and business related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time consuming but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure. The description and examples are presented solely for the purpose of illustrating the preferred embodiments and should not be construed as a limitation to the scope and applicability of the disclosed embodiments. While the compositions of the present disclosure are described herein as comprising certain materials, it should be understood that the composition could optionally comprise two or more chemically different materials. In addition, the composition can also comprise some components other than the ones already cited.
  • The Applicants have determined that the agglomerative tendency of hard asphalt particles may be suppressed by blending one or more materials with the particles. The materials may include (but would not be limited to) Portland cement, calcium aluminate cement, fly ash, blast furnace slag, lime/silica blends, silica, ground limestone, cement kiln dust, chemically bonded phosphate ceramics, zeolites, geopolymers, cellulose, starch, calcium carbonate, colloidal silica, aluminosilicates, or combinations thereof Such materials act as anti-caking agents in this disclosure. The hard asphalts particles may be blended with Portland cement, fly ash, blast furnace slag, lime/silica blends, silica, ground limestone or combinations thereof.
  • Embodiments relate to methods for improving the flowability of asphalt particles. Asphalt particles provided may have a penetration grade below about 20,or below about 10. The penetration grade of asphalt is determined by using a needle penetrometer, according to ASTM method D5—“Penetration of Bituminous Materials.” The method consists of subjecting an asphalt sample to a 100-g load for 5 seconds with a standard needle. The depth of needle penetration is measured in units of 0.1 mm and reported in penetration units. For example, if the needle penetrates 8 mm, the asphalt penetration value is 80.
  • The particles are mixed with an anti-caking agent. The anti-caking agent concentration may be between about 0.1% and 10.0% by weight of asphalt particles, it may be between about 1.0% and 6.0% by weight of asphalt particles, and it may be between about 3.0% and 5.0% by weight of asphalt particles.
  • For use in wellbore fluids, the hard asphalt particles may be smaller than about 2500 μm. For example, less than 2 weight percent of the particles are larger than about 2400 μm, and less than about 5 weight percent of the particles are smaller than about 105 μm. Furthermore, the specific gravity of the asphalt particles may be between about 0.95 and 1.15, or between about 1.0 and 1.1. The melting point of the hard asphalt may be higher than about 99° C.
  • Embodiments relate to methods for storing asphalt particles. Asphalt particles provided may have a penetration grade below about 20, or below about 10. The particles are mixed with an anti-caking agent, and the resulting blend is placed in a storage container. The temperature of the storage container may be maintained at a level below about 90° C.
  • The anti-caking agent concentration may be between about 0.1% and 10.0% by weight of asphalt particles, it may be between about 1.0% and 6.0% by weight of asphalt particles, or it may be between about 3.0% and 5.0% by weight of asphalt particles.
  • For use in wellbore fluids, the hard asphalt particles may be smaller than about 2500 μm. For example, less than 2 weight percent of the particles are larger than about 2400 μm, and less than about 5 weight percent of the particles are smaller than about 105 μm. Furthermore, the specific gravity of the asphalt particles may be between about 0.95 and 1.15, or between about 1.0 and 1.1. The melting point of the hard asphalt may be higher than about 99° C.
  • Embodiments relate to methods for transporting asphalt particles. Asphalt particles provided may have a penetration grade below about 20, or below about 10. The particles are mixed with an anti-caking agent, the resulting blend is placed in a transport container, and the blend is transported from a first location to a second location. The container may be a vessel suitable for transporting the blend on roads, rail, by air or by sea. Alternatively, transporting the blend may comprise pneumatic transfer from one vessel to another. The temperature of the transport container may be maintained at a level below about 90° C.
  • The anti-caking agent concentration may be between about 0.1% and 10.0% by weight of asphalt particles, or between about 1.0% and 6.0% by weight of asphalt particles, or between about 3.0% and 5.0% by weight of asphalt particles.
  • For use in wellbore fluids, the hard asphalt particles may be smaller than about 2500 μm. For example, less than 2 weight percent of the particles are larger than about 2400 μm, and less than about 5 weight percent of the particles are smaller than about 105 μm. Furthermore, the specific gravity of the asphalt particles may be between about 0.95 and 1.15, or between about 1.0 and 1.1. The melting point of the hard asphalt may be higher than about 99° C.
  • EXAMPLE
  • The following example serves to further illustrate the disclosure.
  • 500 g of hard asphalt were ground to a particle size distribution wherein less than 2 wt % of the particles were larger than about 2400 μm, and less than 5 wt % of the particles were smaller than about 100 μm. The asphalt was “Special Hard Asphalt,” available from Gulf States Asphalt Company, South Houston, Tex., USA.
  • The ground asphalt sample was split into two 250-g portions. One portion was placed in a plastic cup such that the depth of the sample in the cup was about 1.6 cm. The other portion was mixed with an anti-caking agent composed of Portland cement. The anti-caking agent concentration was 5 percent by weight of asphalt particles. The treated portion was placed in another plastic cup, again such that the depth of the sample in the cup was about 1.6 cm. Stainless steel lids were placed on top of the samples such that the asphalt particles were subjected to a 7.6-kPa load.
  • Both cups were placed in an oven at a temperature of 43° C. The samples remained in the oven for 7 days. After the samples were removed from the oven, the untreated asphalt particles were observed to have agglomerated into a cohesive cake that was difficult to disperse with a spatula. It was not free flowing. On the other hand, the asphalt sample treated with the anti-caking agent was free flowing and could be easily poured from the beaker.
  • Although only a few example embodiments have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the example embodiments without materially departing from this invention. Accordingly, all such modifications are intended to be included within the scope of this disclosure as defined in the following claims.

Claims (20)

1. A method for improving the flowability of asphalt particles, comprising:
(i) providing asphalt particles with a penetration grade below about 20; and
(ii) mixing with at least one further compound comprising Portland cement, calcium aluminate cement, fly ash, blast furnace slag, lime/silica blends, silica, ground limestone, cement kiln dust, chemically bonded phosphate ceramics, zeolites, geopolymers, cellulose, starch, calcium carbonate, colloidal silica, aluminosilicates, and combinations thereof.
2. The method of claim 1, wherein the asphalt melting point is higher than about 99° C.
3. The method of claim 1, wherein the size of the asphalt particles is smaller than about 2500 μm.
4. The method of claim 1, wherein the specific gravity of the asphalt is between about 0.95 and 1.15.
5. The method of claim 1, wherein the further compound comprises hard asphalt particles is blended with Portland cement, fly ash, blast furnace slag, lime/silica blends, silica, ground limestone or combinations thereof
6. The method of claim 1, wherein the anti-caking agent concentration is between about 0.1% and 10.0% by weight of asphalt particles.
7. A method for storing asphalt particles, comprising:
(i) providing asphalt particles with a penetration grade below about 20;
(ii) mixing the particles with at least one further compound comprising Portland cement, calcium aluminate cement, fly ash, blast furnace slag, lime/silica blends, silica, ground limestone, cement kiln dust, chemically bonded phosphate ceramics, zeolites, geopolymers, cellulose, starch, calcium carbonate, colloidal silica, aluminosilicates, and combinations thereof; and
(iii) placing the blend in a storage container.
8. The method of claim 7, wherein the asphalt melting point is higher than about 99° C.
9. The method of claim 7, wherein the size of the asphalt particles is smaller than about 2500 μm.
10. The method of claim 7, wherein the specific gravity of the asphalt is between about 0.95 and 1.15.
11. The method of claim 7, wherein the further compound comprises hard asphalt particles is blended with Portland cement, fly ash, blast furnace slag, lime/silica blends, silica, ground limestone or combinations thereof
12. The method of claim 7, wherein the anti-caking agent concentration is between about 0.1% and 10.0% by weight of asphalt particles
13. The method of claim 7, wherein the temperature in the storage container is held below about 99° C.
14. A method for transporting asphalt particles, comprising:
(i) providing asphalt particles with a penetration grade below about 20;
(ii) mixing the particles with at least one further compound comprising Portland cement, calcium aluminate cement, fly ash, blast furnace slag, lime/silica blends, silica, ground limestone, cement kiln dust, chemically bonded phosphate ceramics, zeolites, geopolymers, cellulose, starch, calcium carbonate, colloidal silica, aluminosilicates, and combinations thereof;
(iii) placing the blend in a transport container; and
(iv) transporting the blend from a first location to a second location.
15. The method of claim 14, wherein the asphalt melting point is higher than about 99° C.
16. The method of claim 14, wherein the size of the asphalt particles is smaller than about 2500 μm.
17. The method of claim 14, wherein the specific gravity of the asphalt is between about 0.95 and 1.15.
18. The method of claim 14, wherein the further compound comprises hard asphalt particles is blended with Portland cement, fly ash, blast furnace slag, lime/silica blends, silica, ground limestone or combinations thereof
19. The method of claim 14, wherein the anti-caking agent concentration is between about 0.1% and 10.0% by weight of asphalt particles.
20. The method of claim 14, wherein the temperature in the transport container is held below about 99° C.
US14/240,014 2011-09-22 2012-09-19 Methods for Improving the Flowability of Asphalt Particles Abandoned US20140190128A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/240,014 US20140190128A1 (en) 2011-09-22 2012-09-19 Methods for Improving the Flowability of Asphalt Particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161537893P 2011-09-22 2011-09-22
US14/240,014 US20140190128A1 (en) 2011-09-22 2012-09-19 Methods for Improving the Flowability of Asphalt Particles
PCT/EP2012/068402 WO2013041551A1 (en) 2011-09-22 2012-09-19 Methods for improving the flowability of asphalt particles

Publications (1)

Publication Number Publication Date
US20140190128A1 true US20140190128A1 (en) 2014-07-10

Family

ID=46881060

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/240,014 Abandoned US20140190128A1 (en) 2011-09-22 2012-09-19 Methods for Improving the Flowability of Asphalt Particles

Country Status (2)

Country Link
US (1) US20140190128A1 (en)
WO (1) WO2013041551A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10202558B1 (en) * 2013-02-08 2019-02-12 Vrc Technology, Llc Gasification feedstock treatment methods and apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3013234B1 (en) * 2013-11-18 2016-10-28 Ifp Energies Now ZEOLITHE SHAPED BY EXTRUSION AND PASTILLAGE WITH A HYDRAULIC BINDER HAVING IMPROVED MECHANICAL PROPERTIES AND PROCESS FOR PREPARING THE SAME
CN103897412B (en) * 2014-03-21 2016-03-09 苏州宇希新材料科技有限公司 A kind of asphalt modifier composite nano-powder material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3305474A (en) * 1962-03-26 1967-02-21 Texaco Inc Method of preparing finely-divided asphaltic material
US6440205B1 (en) * 2000-05-23 2002-08-27 Rock Binders, Inc. Paving binders and manufacturing methods
US20030211313A1 (en) * 2002-05-08 2003-11-13 Isao Tasaki Road repairing material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3235483A (en) * 1963-04-24 1966-02-15 Texaco Inc Method of granulating asphaltic materials
NL7306868A (en) * 1973-05-17 1974-11-19

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3305474A (en) * 1962-03-26 1967-02-21 Texaco Inc Method of preparing finely-divided asphaltic material
US6440205B1 (en) * 2000-05-23 2002-08-27 Rock Binders, Inc. Paving binders and manufacturing methods
US20030211313A1 (en) * 2002-05-08 2003-11-13 Isao Tasaki Road repairing material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Powder Technology Inc's "Particle Size/Mesh Conversion Chart". April 14 2013. http://www.powdertechnologyinc.com/Particle-Size-Mesh-Conversion-Chart/ *
Pozzolana Hydraulic Cement Definition from Britannica Encyclopedia. Accessed 05/29/2017. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10202558B1 (en) * 2013-02-08 2019-02-12 Vrc Technology, Llc Gasification feedstock treatment methods and apparatus

Also Published As

Publication number Publication date
WO2013041551A1 (en) 2013-03-28

Similar Documents

Publication Publication Date Title
KR101233006B1 (en) Polyphosphate modifier for warm asphalt applications
Dhir et al. Cleaned oil-drill cuttings for use as filler in bituminous mixtures
BRPI0920186B1 (en) DUST CONTROL COMPOSITION AND MOISTURE REHABILITATION LIMITATION
CN106882944A (en) A kind of salt marsh soil consolidator
US20140190128A1 (en) Methods for Improving the Flowability of Asphalt Particles
Anburuvel et al. Characteristic evaluation of geopolymer based lateritic soil stabilization enriched with eggshell ash and rice husk ash for road construction: An experimental investigation
CN106554765A (en) A kind of oil-well cement is without chlorine anti-channeling early strength agent and preparation method and application
Ochepo et al. Effect of oil contamination on lime stabilized soil
Ekpo et al. Response of two lateritic soils to cement kiln dust-periwinkle shell ash blends as road sub-base materials
CN109626914A (en) A kind of material and preparation method of hard rock tunnel water proof type single shell lining
Obianigwe et al. Soil stabilization for road construction: comparative analysis of a three-prong approach
Talib et al. Highly organic soil stabilization by using sugarcane bagasse ash (SCBA)
US11174185B2 (en) Methods and systems for multi-stage encapsulation of wastes and production thereof into aggregate products
US10570681B2 (en) Method and composition for stabilization of drill cuttings
Nnochiri et al. Geotechnical characteristics of lateritic soil stabilized with sawdust ash-lime mixtures
US11066881B2 (en) Method and composition for stabilization of drill cuttings
Ayininuola et al. Bone ash impact on soil shear strength
CN106336860A (en) High temperature resistant anticorrosion oil well cement material, preparation method and application thereof
Gupta et al. Evaluation of cement kiln dust stabilized heavy metals contaminated expansive soil–a laboratory study
SE436753B (en) GJUTASFALTBLANDNING
RU2426708C1 (en) Construction material
Edeh et al. Rice husk ash stabilization of reclaimed asphalt pavement using cement as additive
Gupta et al. Geotechnical behaviour of fine sand mixed with pond ash and lime
Azhar et al. Solidification behavior of fine-grained dredged marine soils: strength improvement
Sitepu et al. Behaviour of Mixed Expansive Soil and Additive Minerals as Subgrade Layer

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCHLUMBERGER TECHNOLOGY CORPORATION, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAMUEL, MATHEW M.;KHATRI, DEEPAK;KEESE, ROGER;AND OTHERS;SIGNING DATES FROM 20140221 TO 20141203;REEL/FRAME:034443/0853

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION