US20140178638A1 - Floor lining insulation underlay with a slip-inhibiting surface configuration - Google Patents

Floor lining insulation underlay with a slip-inhibiting surface configuration Download PDF

Info

Publication number
US20140178638A1
US20140178638A1 US14/107,239 US201314107239A US2014178638A1 US 20140178638 A1 US20140178638 A1 US 20140178638A1 US 201314107239 A US201314107239 A US 201314107239A US 2014178638 A1 US2014178638 A1 US 2014178638A1
Authority
US
United States
Prior art keywords
underlay
insulation
floor lining
slip
floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/107,239
Inventor
Marco SEITNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Selit Daemmtechnik GmbH
Selit Na Holding GmbH
Original Assignee
Selit Daemmtechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47828319&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20140178638(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Selit Daemmtechnik GmbH filed Critical Selit Daemmtechnik GmbH
Publication of US20140178638A1 publication Critical patent/US20140178638A1/en
Assigned to SELIT NA-HOLDING GMBH reassignment SELIT NA-HOLDING GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SEITNER, MARCO
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/18Separately-laid insulating layers; Other additional insulating measures; Floating floors
    • E04F15/181Insulating layers integrally formed with the flooring or the flooring elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/10Flooring or floor layers composed of a number of similar elements of other materials, e.g. fibrous or chipped materials, organic plastics, magnesite tiles, hardboard, or with a top layer of other materials
    • E04F15/105Flooring or floor layers composed of a number of similar elements of other materials, e.g. fibrous or chipped materials, organic plastics, magnesite tiles, hardboard, or with a top layer of other materials of organic plastics with or without reinforcements or filling materials
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G27/00Floor fabrics; Fastenings therefor
    • A47G27/04Carpet fasteners; Carpet-expanding devices ; Laying carpeting; Tools therefor
    • A47G27/0406Laying rugs or mats
    • A47G27/0412Anti-skid layers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G27/00Floor fabrics; Fastenings therefor
    • A47G27/04Carpet fasteners; Carpet-expanding devices ; Laying carpeting; Tools therefor
    • A47G27/0437Laying carpeting, e.g. wall-to-wall carpeting
    • A47G27/0468Underlays; Undercarpets
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/18Separately-laid insulating layers; Other additional insulating measures; Floating floors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]

Definitions

  • One or more embodiments of the present invention relates to a floor lining insulation underlay with a slip-inhibiting surface configuration, as per the preamble of claim 1 .
  • FIG. 1 is a cross-section view of an insulation underlay on a flooring according to an embodiment.
  • the insulation underlay beneath a floor lining covering of said type has an additional task imparted to it aside from the actual insulation action, specifically a stabilizing function with regard to vertical and horizontal forces introduced into said floor linings.
  • the corresponding insulation underlays should, in order to prevent vertical weight-induced loads from leading to deformations in a vertical direction, be designed to exhibit greater pressure resistance than would be required for example in the case of floor linings such as parquet and laminate.
  • an adhesive connection to the insulation underlay is generally provided, because the floor lining segments adhesively bonded to the insulation underlay are secured against horizontal displacement.
  • Insulation underlays with a surface with an adhesive coating have the effect here of restricting the horizontal mobility of the floor lining segments laid on said insulation underlay, but simultaneously have the disadvantage that, as a result of said adhesive bond, the process of laying the floor lining segments is made considerably more difficult.
  • the inventive solution provides that the insulation underlay, which is generally composed of a foamed plastic, has a special surface coating directly applied to it, or alternatively a foil with said special surface coating is laminated onto the insulation underlay.
  • the central inventive feature in the case of this specially applied surface coating is that it increases the sliding friction coefficient or the sliding friction number ⁇ of the insulation underlay surface to a value greater than 0.5. This is however achieved without the surface imparting an adhesive effect as regards a connection between the floor lining segments and the insulation underlay in a vertical direction.
  • the increase of the sliding friction coefficient ⁇ is in this case such that the floor lining laid on the insulation underlay is secured against a vertical movement on the insulation underlay but, at the same time, it is still ensured that the individual floor lining segments can be slid to a limited extent during the process of laying them. Also, as a result of the fact that said surface coating is not sticky, it is ensured that the floor lining segments can be easily lifted from the insulation underlay at any time during the laying process, and thus corrections can be made at any time during the laying of the floor lining segments.
  • the result is thus a special surface configuration which, as a result of the increased sliding friction coefficient ⁇ , achieves the desired effect of securing the floor lining segments against a horizontal displacement, without having the abovementioned disadvantages of the adhesive surfaces such as are known in the prior art.
  • the surface configuration according to the invention of the novel insulation underlay has the effect that the floor surface above the insulation underlay can turn up as a result of its corresponding expansion, but in so doing does not remain adhered to the insulation underlay and can thus change its position with respect to the insulation underlay. That is to say the floor surface can, during the corresponding expansion and subsequent contraction, perform a slipping movement with regard to its position relative to the insulation underlay, wherein this is known under the technical term “stick-slip”. This is not possible in the case of adhesive bonding of the insulation underlay, and constitutes a further advantageous aspect of the invention.
  • the increase of the sliding friction coefficient or of the sliding friction number ⁇ of the surface of the insulation underlays to a value greater than 0.5 can be realized here according to the invention by means of two different surface configurations.
  • the first approach in this case provides a co-extruded polyurethane coating which has a rough or uneven surface. Said surface characteristics result firstly from the basic characteristics of the polyurethane that is used, but secondly also from the manufacturing process, for example from the cooling process during the production of the co-extruded polyurethane coating.
  • the increase of the sliding friction coefficient or sliding friction number ⁇ results in this case from said surface unevennesses and also from a certain elasticity of said surface, wherein said characteristics, in the interaction thereof, generate a slip-inhibiting characteristic, wherein this relates only to sliding friction and thus does not generate adhesive characteristics.
  • the second solution likewise provides a surface configuration which is composed in this case of an extruded polyethylene coating.
  • This is a mixture of an elastomer and of a polymer, wherein a further additive is added which prevents blocking of said material such that the material is not sticky.
  • the result of the connection of said materials is a polyethylene coating which duly has the desired dull surface and thus has a relatively high sliding friction number or a relatively high sliding friction coefficient ⁇ , but which at the same time is not sticky owing to the additive for preventing blocking.
  • said coatings are either applied directly to the surface of an insulation material during the production thereof or else are produced as a separate foil which is then laminated as a slip-inhibiting surface onto the insulation underlays that are used.

Abstract

A floor lining insulation underlay with a slip-inhibiting surface configuration used for floor linings which are produced in large-area form from individual floor lining segments. The floor lining insulation underlay comprising a special surface coating applied to the surface of the insulation underlay. The sliding friction coefficient μ of the surface coating is increased in relation to the actual surface of an insulation material of the insulation underlay to a value greater than 0.5.

Description

    FIELD
  • One or more embodiments of the present invention relates to a floor lining insulation underlay with a slip-inhibiting surface configuration, as per the preamble of claim 1.
  • BACKGROUND
  • When laying floor linings which are produced in large-area form from individual floor lining segments by means of plug-together connections, it must basically be ensured that said plug-together connections in the regions of the seams do not flex under the loads acting on the floor lining and thus form gaps between the floor lining segments.
  • Said problem arises in particular from the fact that, in general, such floors are laid in a floating fashion, that is to say said floors are not laid so as to bear with an accurate fit against the walls, but rather expansion gaps with respect to the walls are maintained such that subsequent stresses in the floor linings can be reliably prevented. This however conversely yields the problem that a certain expansion of the floor lining is desired in particular in a vertical direction, for which reason the plug-together connections between the individual floor lining segments must prevent said connections from flexing for example under weight-induced loading or else under horizontally acting shear forces, for example during the sliding of furniture and under the loading of seat rollers.
  • When laying floor linings such as parquet and laminate, it is generally not a problem for the corresponding plug-together connections to be dimensioned such that both vertical and also horizontal loading of the plug-together connection is possible without the connections flexing in the process. This is a greater problem in the case of floor linings which have considerably smaller thicknesses of, for example, only 3-6 mm, such as is the case with modern plastics linings with click-together or plug-together systems, for example vinyl design floors.
  • These are very thin floor linings which likewise have plug-together connections, wherein, owing to the thin nature of said floor linings, said plug-together connections are capable of withstanding only relatively low forces. It has proven to be a problem here that such floors can withstand both vertical and also horizontal loads less effectively than the thicker floor lining designs mentioned above.
  • BRIEF DESCRIPTION OF DRAWING
  • One or more embodiments are illustrated by way of example, and not by limitation, in the figures of the accompanying drawings, wherein elements having the same reference numeral designations represent like elements throughout and wherein:
  • FIG. 1 is a cross-section view of an insulation underlay on a flooring according to an embodiment.
  • DETAILED DESCRIPTION
  • Against this background, the insulation underlay beneath a floor lining covering of said type has an additional task imparted to it aside from the actual insulation action, specifically a stabilizing function with regard to vertical and horizontal forces introduced into said floor linings. As regards vertical loads on the floor linings, the corresponding insulation underlays should, in order to prevent vertical weight-induced loads from leading to deformations in a vertical direction, be designed to exhibit greater pressure resistance than would be required for example in the case of floor linings such as parquet and laminate.
  • To absorb the abovementioned horizontally acting shear forces which are relevant in particular for the plug-together connections between the elements for example of a thin vinyl floor, an adhesive connection to the insulation underlay is generally provided, because the floor lining segments adhesively bonded to the insulation underlay are secured against horizontal displacement. Insulation underlays with a surface with an adhesive coating have the effect here of restricting the horizontal mobility of the floor lining segments laid on said insulation underlay, but simultaneously have the disadvantage that, as a result of said adhesive bond, the process of laying the floor lining segments is made considerably more difficult.
  • In this way, it is no longer possible for the floor lining segments to be slid into the desired position on the insulation underlay, because said floor lining segments adhere to the surface of the insulation underlay. Furthermore, in the case of the insulation underlays with an adhesive surface used in the prior art, a corresponding protective foil must be removed from the adhesive layer on the insulation underlay, which constitutes an additional working step and also makes the production of the insulation underlays more expensive.
  • It is also a disadvantage that the position of a floor lining segment, once it has been laid on said sticky insulation underlay, can be corrected only with difficulty without damage being caused to the insulation underlay. Also, when the floor lining is walked on or when objects are placed on the floor lining, undesired side-effects can arise as a result of the alternating adhesion of the floor lining to, and re-detachment of the floor lining from, the insulation underlay.
  • Against this background, it is an object of one or more embodiments of the present invention to provide a floor lining insulation underlay with a slip-inhibiting surface configuration, which floor lining insulation underlay does not have an adhesive layer and nevertheless, by means of its surface configuration, counteracts a horizontal displacement of the floor lining on the insulation underlay.
  • This is achieved according to one or more embodiments of the invention by means of an insulation underlay as per the features of claim 1.
  • The further claims relate to advantageous refinements of the invention.
  • Here, the inventive solution provides that the insulation underlay, which is generally composed of a foamed plastic, has a special surface coating directly applied to it, or alternatively a foil with said special surface coating is laminated onto the insulation underlay.
  • The central inventive feature in the case of this specially applied surface coating is that it increases the sliding friction coefficient or the sliding friction number μ of the insulation underlay surface to a value greater than 0.5. This is however achieved without the surface imparting an adhesive effect as regards a connection between the floor lining segments and the insulation underlay in a vertical direction.
  • The increase of the sliding friction coefficient μ is in this case such that the floor lining laid on the insulation underlay is secured against a vertical movement on the insulation underlay but, at the same time, it is still ensured that the individual floor lining segments can be slid to a limited extent during the process of laying them. Also, as a result of the fact that said surface coating is not sticky, it is ensured that the floor lining segments can be easily lifted from the insulation underlay at any time during the laying process, and thus corrections can be made at any time during the laying of the floor lining segments.
  • In summary, the result is thus a special surface configuration which, as a result of the increased sliding friction coefficient μ, achieves the desired effect of securing the floor lining segments against a horizontal displacement, without having the abovementioned disadvantages of the adhesive surfaces such as are known in the prior art.
  • An additional positive effect can be seen in a specific physical problem of floor linings, specifically the expansion of the floor linings when they warm up, for example under the action of direct solar radiation. During such expansion processes, in the case of floor linings laid in a non-floating manner and to a certain extent also in the case of floor linings laid in a floating manner, a turning-up of the floor lining can occur, that is to say the floor lining lifts slightly. In the case of a conventional laying process with adhesive bonding to the insulation underlay, such lifting of the floor lining occurs with simultaneous lifting of the insulation underlay, whereby it is not possible for the floor lining to perform a compensation movement.
  • The surface configuration according to the invention of the novel insulation underlay has the effect that the floor surface above the insulation underlay can turn up as a result of its corresponding expansion, but in so doing does not remain adhered to the insulation underlay and can thus change its position with respect to the insulation underlay. That is to say the floor surface can, during the corresponding expansion and subsequent contraction, perform a slipping movement with regard to its position relative to the insulation underlay, wherein this is known under the technical term “stick-slip”. This is not possible in the case of adhesive bonding of the insulation underlay, and constitutes a further advantageous aspect of the invention.
  • The increase of the sliding friction coefficient or of the sliding friction number μ of the surface of the insulation underlays to a value greater than 0.5 can be realized here according to the invention by means of two different surface configurations. The first approach in this case provides a co-extruded polyurethane coating which has a rough or uneven surface. Said surface characteristics result firstly from the basic characteristics of the polyurethane that is used, but secondly also from the manufacturing process, for example from the cooling process during the production of the co-extruded polyurethane coating.
  • The increase of the sliding friction coefficient or sliding friction number μ results in this case from said surface unevennesses and also from a certain elasticity of said surface, wherein said characteristics, in the interaction thereof, generate a slip-inhibiting characteristic, wherein this relates only to sliding friction and thus does not generate adhesive characteristics.
  • The second solution likewise provides a surface configuration which is composed in this case of an extruded polyethylene coating. This is a mixture of an elastomer and of a polymer, wherein a further additive is added which prevents blocking of said material such that the material is not sticky. The result of the connection of said materials is a polyethylene coating which duly has the desired dull surface and thus has a relatively high sliding friction number or a relatively high sliding friction coefficient μ, but which at the same time is not sticky owing to the additive for preventing blocking.
  • According to the invention, said coatings are either applied directly to the surface of an insulation material during the production thereof or else are produced as a separate foil which is then laminated as a slip-inhibiting surface onto the insulation underlays that are used. This yields the advantage that said form of insulation underlay can be used without any further preparation, for example by removal of a covering foil.
  • During the laying process, it is possible at any time for a laid floor lining segment to be lifted from the insulation layer again, for example if said floor lining segment has been laid in an incorrect position. The crucial function here is that the increase of the sliding friction coefficient μ counteracts only a vertical displacement of the floor lining panels on said insulation underlay, but a lifting movement, for example in the event of the floor lining turning up when it warms up, is readily possible since there is no adhesive bond between the insulation underlay and the floor lining segments.

Claims (9)

1. A floor lining insulation underlay with a slip-inhibiting surface configuration used for floor linings which are produced in large-area form from individual floor lining segments, the floor lining insulation underlay comprising a special surface coating applied to the surface of the insulation underlay, the sliding friction coefficient μ of which surface coating is increased in relation to the actual surface of an insulation material of the insulation underlay to a value greater than 0.5.
2. The floor lining insulation underlay with a slip-inhibiting surface configuration as claimed in claim 1, wherein the surface coating is in the form of a co-extruded polyurethane coating which has a rough or uneven surface for the purpose of increasing the sliding friction coefficient μ.
3. The floor lining insulation underlay with a slip-inhibiting surface configuration as claimed in claim 2, wherein the rough or uneven surface characteristics arise from an interaction of the material basic characteristics of the polyurethane that is used with the manufacturing process of the cooling process during the production of the co-extruded polyurethane coating.
4. The floor lining insulation underlay with a slip-inhibiting surface configuration as claimed in claim 2, wherein the increase of the sliding friction coefficient of the surface coating is determined from the surface unevennesses and from the elasticity of said surface.
5. The floor lining insulation underlay with a slip-inhibiting surface configuration as claimed in claim 1, wherein the surface coating is in the form of an extruded polyethylene coating which has a dull surface and which thus has a relatively high sliding friction coefficient μ.
6. The floor lining insulation underlay with a slip-inhibiting surface configuration as claimed in claim 5, wherein the extruded polyethylene coating is composed at least of a mixture of an elastomer and a polymer and of a further material additive which prevents an adhesive action of the material by counteracting a blocking of said material.
7. The floor lining insulation underlay with a slip-inhibiting surface configuration as claimed in claim 1, the surface coating being either applied directly to the surface of the insulation material during the production thereof or being produced as a separate foil which is then laminated as a slip-inhibiting surface onto the insulation underlay.
8. The underlay as claimed in claim 1, wherein the special surface coating is applied to an upper surface of the insulation underlay.
9. The underlay as claimed in claim 1, wherein the special surface coating is applied to a surface of the insulation underlay facing a floor lining.
US14/107,239 2012-12-17 2013-12-16 Floor lining insulation underlay with a slip-inhibiting surface configuration Abandoned US20140178638A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202012012025 2012-12-17
DE202012012025U DE202012012025U1 (en) 2012-12-17 2012-12-17 Flooring insulation underlay with non-slip surface design

Publications (1)

Publication Number Publication Date
US20140178638A1 true US20140178638A1 (en) 2014-06-26

Family

ID=47828319

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/107,239 Abandoned US20140178638A1 (en) 2012-12-17 2013-12-16 Floor lining insulation underlay with a slip-inhibiting surface configuration

Country Status (3)

Country Link
US (1) US20140178638A1 (en)
EP (1) EP2743082A3 (en)
DE (1) DE202012012025U1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202014008903U1 (en) 2014-11-11 2014-12-01 Ralf Temme Versatile installation underlay for floating installation and bonding of top floor coverings on this underlay
DE202018003806U1 (en) 2018-08-17 2018-09-25 Ralf Temme Installation underlay for floating installation with one-sided adhesive coating
DE202018005086U1 (en) 2018-11-05 2018-12-21 Ralf Temme A single or multi-layered and versatile installation underlay for floor coverings

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6189279B1 (en) * 1999-02-12 2001-02-20 L&P Property Management Company Floating floor underlay
US6576577B1 (en) * 1998-12-03 2003-06-10 Foam Products Corporation Underlayment for floor coverings
US20080104914A1 (en) * 2001-01-15 2008-05-08 Alain Lemieux Resilient Floor Surface
US20080289289A1 (en) * 2005-08-09 2008-11-27 Wiercinski Robert A Skid Resistant Surfaces
US20110263174A1 (en) * 2010-04-08 2011-10-27 Michael Ketzer Novel composite materials, method for their production and their use for the flooring sector
WO2013082290A1 (en) * 2011-12-02 2013-06-06 Palziv Group Embossed polymer sheet

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4546024A (en) 1980-03-18 1985-10-08 Brown J Gale Modular-accessible-tiles providing accessibility to conductors and piping with improved sound isolation
DE8902119U1 (en) * 1989-02-22 1989-04-27 H. Brinkhaus Gmbh & Co Kg, 4410 Warendorf, De
NL191681C (en) 1992-10-29 1996-02-05 Estillon Bv Method of laying carpet, underlay therefor and method of manufacturing an underlay.
US6509084B2 (en) * 1994-07-28 2003-01-21 Custom Plastics Molding, Inc. Thermoplastic products having antislip surfaces
BR9404171A (en) 1994-10-20 1996-12-24 Ind E Comercio Textil Avanti L Self-adhesive coating sheet
CA2207789C (en) * 1994-12-13 2007-06-19 Dan Johansson Floor-laying
AU2797700A (en) 1999-05-18 2000-12-05 Witex Ag Sound-proofing device for floor coverings
DE10040803A1 (en) 2000-08-21 2002-03-14 Rudolf Breuninger Plastic anti-slip mat for floors or vehicle luggage compartment has an adhesive layer laminated to a plastic layer in contact with the floor
DE202004013126U1 (en) 2004-08-20 2004-10-14 Lott-Lacke Produktions- Und Handels Gmbh Non-slip material, to be laid under floor coverings, has a carrier of paper and the like with a non-slip coating applied to both sides
DK1854663T3 (en) 2006-04-19 2009-03-09 Polymer Tec Halbzeuge Gmbh Non-slip support for securing cargo and manufacturing thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6576577B1 (en) * 1998-12-03 2003-06-10 Foam Products Corporation Underlayment for floor coverings
US6189279B1 (en) * 1999-02-12 2001-02-20 L&P Property Management Company Floating floor underlay
US20080104914A1 (en) * 2001-01-15 2008-05-08 Alain Lemieux Resilient Floor Surface
US20080289289A1 (en) * 2005-08-09 2008-11-27 Wiercinski Robert A Skid Resistant Surfaces
US20110263174A1 (en) * 2010-04-08 2011-10-27 Michael Ketzer Novel composite materials, method for their production and their use for the flooring sector
WO2013082290A1 (en) * 2011-12-02 2013-06-06 Palziv Group Embossed polymer sheet

Also Published As

Publication number Publication date
EP2743082A2 (en) 2014-06-18
DE202012012025U1 (en) 2013-02-06
EP2743082A3 (en) 2015-09-30

Similar Documents

Publication Publication Date Title
US11486149B2 (en) Engineered waterproof plastic composite flooring and wall covering planks
US11186071B2 (en) Underlay mat for floor coverings
US20200224431A1 (en) Floor panel for forming a floor covering
EP3194684B1 (en) Thin decorative surface covering
US20180135313A1 (en) Dimensionally Stable Floor Panel
US20140178638A1 (en) Floor lining insulation underlay with a slip-inhibiting surface configuration
CN102448724B (en) Floor and the floating floor system being combined with described floor
US20230265660A1 (en) Roofing Systems With Improved Wind Performance of Roofing Tiles and Methods of Installing Thereof
US20160024803A1 (en) A waterproof deck flooring system without caulking
WO2013117553A2 (en) Tile
WO2014032373A1 (en) Pvc lock-free and glue-free anti-slip floor
KR102060215B1 (en) construction method of PVC flooring
CA3087086A1 (en) Underlay mat for floor coverings
US9358754B2 (en) Dimensionally stable product and process of fabricating a dimensionally stable product
GB2583620A (en) Flooring system

Legal Events

Date Code Title Description
AS Assignment

Owner name: SELIT NA-HOLDING GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SEITNER, MARCO;REEL/FRAME:040365/0695

Effective date: 20161102

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION