US20140168819A1 - Hard disk having a squeeze air bearing for rotating a disk - Google Patents
Hard disk having a squeeze air bearing for rotating a disk Download PDFInfo
- Publication number
- US20140168819A1 US20140168819A1 US13/720,778 US201213720778A US2014168819A1 US 20140168819 A1 US20140168819 A1 US 20140168819A1 US 201213720778 A US201213720778 A US 201213720778A US 2014168819 A1 US2014168819 A1 US 2014168819A1
- Authority
- US
- United States
- Prior art keywords
- disk
- rim
- bearing
- squeeze
- hdd
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/48—Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
- G11B5/58—Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
- G11B5/60—Fluid-dynamic spacing of heads from record-carriers
- G11B5/6005—Specially adapted for spacing from a rotating disc using a fluid cushion
- G11B5/6082—Design of the air bearing surface
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B19/00—Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
- G11B19/20—Driving; Starting; Stopping; Control thereof
- G11B19/2009—Turntables, hubs and motors for disk drives; Mounting of motors in the drive
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B25/00—Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing, e.g. dictating apparatus; Combinations of such apparatus
- G11B25/04—Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing, e.g. dictating apparatus; Combinations of such apparatus using flat record carriers, e.g. disc, card
- G11B25/043—Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing, e.g. dictating apparatus; Combinations of such apparatus using flat record carriers, e.g. disc, card using rotating discs
Definitions
- Embodiments of the invention relate to an ultrathin disk motor and integral bearing, for use in a hard disk drive (HDD).
- HDD hard disk drive
- a hard-disk drive is a non-volatile storage device that is housed in a protective enclosure and stores digitally encoded data on one or more circular disks having magnetic surfaces. Historically, when an HDD is in operation, each magnetic-recording disk is rapidly rotated by a spindle motor system. Data is read from and written to a magnetic-recording disk using a read/write head transducer (also referred to as a “read/write head” or simply “head”) which is positioned over a specific location of a disk by an actuator.
- a read/write head transducer also referred to as a “read/write head” or simply “head”
- a read/write head uses a magnetic field to read data from and write data to the surface of a magnetic-recording disk.
- a magnetic dipole field decreases rapidly with distance from a magnetic pole, the distance between a read/write head, which is housed in a slider, and the surface of a magnetic-recording disk must be tightly controlled.
- Suspensions have a spring-like quality which biases or urges the air bearing surface (ABS) of the slider against the disk to enable the creation of the air bearing film between the slider and disk surface.
- An actuator relies in part on the suspension's force on the slider and on the aerodynamic characteristics of the slider ABS to provide the proper distance between the read/write head and the surface of the magnetic-recording disk (the “flying height”) while the magnetic-recording disk rotates. A slider therefore is said to “fly” over the surface of the magnetic-recording disk.
- FDB fluid dynamic bearings
- use of FDBs within HDDs presents some challenges.
- FDBs typically provide too little tilt stiffness because the journal bearing span is constrained by the overall HDD thickness, with 5 mm (thick) HDDs being the current trend toward thinner and thinner drives.
- Current approaches to gaining more tilt stiffness in FDB designs include variations of the FDB groove parameters, such as the depth, land-groove ratio, and clearance.
- FDB axial bearing span which is becoming more and more at odds with the trend toward thinner HDDs.
- other common problems with the use of FDBs in HDDs include oil loss through evaporation and atomization, oil contamination, cavitation, temperature-sensitive torque, and shock sensitivity (e.g., splashing).
- Embodiments of the invention are directed at an ultrathin motor and integral bearing for supporting and/or rotating the disks in a hard-disk drive (HDD).
- a squeeze (i.e., air) bearing supports and drives the disk at the rim instead of the hub, providing for increased tilt stiffness.
- the squeeze bearing whose effect is based on relative normal motion between two bodies, is arranged adjacent to the rim of the disk it is affecting to provide a bearing normal force, and/or a propulsive force, at the disk rim.
- the squeeze bearing comprises multiple cantilevered arms with one end fixed to a support ring assembly and the other end (the “pad”) having one or more vibrational element which, when vibrating, provides the bearing force, otherwise known as lift.
- each vibrational element comprises one or more piezoelectric (PZT) elements.
- At least one of the vibrational elements corresponding to a pad is configured at an angle to the disk rim, generally in the plane of the disk.
- each angled vibrational element when vibrating, provides a tangential propulsive force, otherwise known as thrust, to the disk rim.
- This tangential force can be utilized to rotate, or spin, the disk for HDD operational purposes. Therefore, such a squeeze bearing can provide an integrated solution for bearing and rotating the disk(s) of an HDD, thereby eliminating the need for a centrally located disk spindle motor system.
- Embodiments discussed in the Summary of Embodiments of the Invention section are not meant to suggest, describe, or teach all the embodiments discussed herein.
- embodiments of the invention may contain additional or different features than those discussed in this section.
- FIG. 1 is a plan view of a prior art hard disk drive (HDD);
- FIG. 2 is a plan view of a squeeze air bearing for use in an HDD, including a blowup view of a portion of the bearing, according to an embodiment of the invention
- FIG. 3A is a diagram illustrating a first embodiment of a squeeze bearing vibrational element at a disk rim, according to an embodiment of the invention
- FIG. 3B is a diagram illustrating a second, alternative embodiment of a squeeze bearing vibrational element at a disk rim, according to an embodiment of the invention
- FIG. 4 is a diagram generally illustrating a concept of disk thrust using a tilted pad squeeze bearing as a disk actuator, according to an embodiment of the invention.
- FIG. 5 is a flow diagram illustrating a method for operating a disk in a hard disk drive device, according to an embodiment of the invention.
- a squeeze air bearing supports and drives the disk at the rim instead of the hub, providing for increased tilt stiffness and eliminating the need for a disk spindle motor system.
- FIG. 1 is a plan view of a prior art HDD.
- FIG. 1 illustrates the functional arrangement of components of the HDD including a slider 110 b that includes a magnetic-reading/recording head 110 a .
- slider 110 b and head 110 a may be referred to as a head slider.
- the HDD 100 includes at least one head gimbal assembly (HGA) 110 including the head 110 a , a lead suspension 110 c attached to the head 110 a , and a load beam 110 d attached to the lead suspension 110 c , all supporting the slider 110 b which includes the head 110 a at a distal end of the slider 110 b .
- HGA head gimbal assembly
- the slider 110 b is attached at the distal end of the load beam 110 d to a gimbal portion of the load beam 110 d .
- the HDD 100 also includes at least one magnetic-recording disk 120 rotatably mounted on a spindle 124 and a drive motor attached to the spindle 124 for rotating the disk 120 .
- the head 110 a includes a write element and a read element for respectively writing and reading information stored on the disk 120 of the HDD 100 .
- the disk 120 or a plurality (not shown) of disks may be affixed to the spindle 124 with a disk clamp 128 .
- the HDD 100 further includes an arm 132 attached to the HGA 110 , a carriage 134 , a voice-coil motor (VCM) that includes an armature 136 including a voice coil 140 attached to the carriage 134 ; and a stator 144 including a voice-coil magnet (not shown).
- VCM voice-coil motor
- the armature 136 of the VCM is attached to the carriage 134 and is configured to move the arm 132 and the HGA 110 to access portions of the disk 120 being mounted on a pivot-shaft 148 with an interposed pivot-bearing assembly 152 .
- electrical signals for example, current to the voice coil 140 of the VCM, write signal to and read signal from the head 110 a , are provided by a flexible cable 156 .
- Interconnection between the flexible cable 156 and the head 110 a may be provided by an arm-electronics (AE) module 160 , which may have an on-board pre-amplifier for the read signal, as well as other read-channel and write-channel electronic components.
- the flexible cable 156 is coupled to an electrical-connector block 164 , which provides electrical communication through electrical feedthroughs (not shown) provided by an HDD housing 168 .
- the HDD housing 168 also referred to as a casting, depending upon whether the HDD housing is cast, in conjunction with an HDD cover (not shown) provides a sealed, protective enclosure for the information storage components of the HDD 100 .
- other electronic components including a disk controller and servo electronics including a digital-signal processor (DSP), provide electrical signals to the drive motor, the voice coil 140 of the VCM and the head 110 a of the HGA 110 .
- the electrical signal provided to the drive motor enables the drive motor to spin providing a torque to the spindle 124 which is in turn transmitted to the disk 120 that is affixed to the spindle 124 by the disk clamp 128 ; as a result, the disk 120 spins in a direction 172 .
- DSP digital-signal processor
- the spinning disk 120 acts as one of the surfaces of a self-acting air-bearing on which the air-bearing surface (ABS) of the slider 110 b rides so that the slider 110 b flies above the surface of the disk 120 without making contact with a thin magnetic-recording medium of the disk 120 in which information is recorded.
- the electrical signal provided to the voice coil 140 of the VCM enables the head 110 a of the HGA 110 to access a track 176 on which information is recorded.
- the armature 136 of the VCM swings through an arc 180 which enables the HGA 110 attached to the armature 136 by the arm 132 to access various tracks on the disk 120 .
- Information is stored on the disk 120 in a plurality of concentric tracks (not shown) arranged in sectors on the disk 120 , for example, sector 184 .
- each track is composed of a plurality of sectored track portions, for example, sectored track portion 188 .
- Each sectored track portion 188 is composed of recorded data and a header containing a servo-burst-signal pattern, for example, an ABCD-servo-burst-signal pattern, information that identifies the track 176 , and error correction code information.
- the read element of the head 110 a of the HGA 110 reads the servo-burst-signal pattern which provides a position-error-signal (PES) to the servo electronics, which controls the electrical signal provided to the voice coil 140 of the VCM, enabling the head 110 a to follow the track 176 .
- PES position-error-signal
- the head 110 a Upon finding the track 176 and identifying a particular sectored track portion 188 , the head 110 a either reads data from the track 176 or writes data to the track 176 depending on instructions received by the disk controller from an external agent, for example, a microprocessor of a computer system.
- an external agent for example, a microprocessor of a computer system.
- FIG. 2 is a plan view of an HDD according to an embodiment of the invention. Most of the components of HDD 200 are the same or similar to the components of HDD 100 ( FIG. 1 ), so these components are depicted similarly in both FIG. 1 and FIG. 2 . Further, the same or similar components are not described again in reference to FIG. 2 . Rather, reference is made to FIG. 1 for the descriptions of these same or similar components.
- HDD 200 includes a squeeze bearing 202 for supporting and/or rotatably driving the at least one magnetic-recording disk 120 .
- the squeeze bearing 202 is utilized to support the magnetic-recording disk 120 instead of the spindle 124 supporting the disk 120 .
- squeeze bearing 202 may augment the disk bearing function provided by spindle 124 and, therefore, coexist with spindle 124 in HDD 200 .
- squeeze bearing 202 may be utilized to solely provide the disk bearing function, thereby eliminating the need for the spindle 124 for the bearing function and eliminating the need for a disk clamp 128 for clamping the disk(s) onto the spindle.
- the squeeze bearing 202 is utilized to drive the rotation of, or spin, magnetic-recording disk 120 instead of the drive motor associated with spindle 124 . Therefore, squeeze bearing 202 may be configured to provide both the disk bearing function (i.e., also referred to as levitation, or lift) and the disk driving function (i.e., also referred to as tangential force, or thrust), thereby eliminating the need for the spindle 124 altogether.
- the thrust force is applied to a relatively small diameter disk, such as a 3 cm diameter disk.
- FIG. 2 includes an exploded view 202 a of a portion of squeeze bearing 202 , in relation to the rim or edge of disk 120 .
- Squeeze bearing 202 comprises multiple arms 204 coupled to a support ring 208 .
- Each of the arms 204 has a corresponding pad 206 which may be, or may house, a vibrational element 210 .
- each vibrational element 210 of squeeze bearing 202 comprises one or more piezoelectric element.
- Embodiments of the invention relate to the use of a squeeze bearing in an HDD to support and/or drive the rotation of the one or more disks.
- Squeeze bearings are a type of gas bearing which, in this instance, utilize the gas (usually air) within an HDD for the operational effect of the bearing.
- a squeeze bearing generates a pressure based on the squeeze film effect of a squeeze motion, i.e., the compressible film characteristics caused by oscillating relative normal motion between surfaces.
- the squeeze film effect and attempts at practical applications thereof has been studied for quite some time.
- E. O. J. Salbu provided a basic account of the principle of squeeze film bearing in published “Compressible Squeeze Films and Squeeze Bearings” (J.
- FIG. 3A is a diagram illustrating a first embodiment of a squeeze bearing vibrational element at a disk rim, according to an embodiment of the invention.
- FIG. 3B is a diagram illustrating a second, alternative embodiment of a squeeze bearing vibrational element at a disk rim, according to an embodiment of the invention.
- the squeeze film effect of a squeeze bearing is a characteristic caused by relative normal motion between surfaces
- each of FIGS. 3A and 3B illustrates how vibrational elements are arranged in relation to a corresponding disk, to provide radial and axial support to the disk.
- FIG. 3A illustrates a vibrational element 302 (e.g., vibrational element 210 of FIG. 2 ) having a plurality of piezoelectric elements 304 a , 304 b , 304 c arranged in close proximity to the rim of a disk 306 .
- each vibrational element 210 is configured on a pad 206 of an arm 204 of squeeze bearing 202 (the pad 206 and arm 204 are omitted from FIG. 3 for clarity purposes).
- each of the piezoelectric elements 304 a , 304 b , 304 c is substantially parallel to a corresponding surface of disk 306 . That is, piezoelectric element 304 a is substantially parallel to disk surface 308 a , piezoelectric element 304 b is substantially parallel to disk surface 308 b , and piezoelectric element 304 c is substantially parallel to disk surface 308 c . Therefore, when the piezoelectric elements 304 a , 304 b , 304 c are driven to vibrate they generate a force substantially normal to the corresponding disk surfaces, which generates the squeeze film effect of squeeze bearing 202 ( FIG. 2 ).
- FIG. 3B illustrates a vibrational element 312 (e.g., vibrational element 210 of FIG. 2 ) having a plurality of piezoelectric elements 314 a , 314 b arranged in close proximity to the rim of a disk 316 .
- each vibrational element 210 is configured on a pad 206 of an arm 204 of squeeze bearing 202 (the pad 206 and arm 204 are omitted from FIG. 3 for clarity purposes).
- Each of the piezoelectric elements 314 a , 314 b is substantially parallel to a corresponding surface of disk 316 . That is, piezoelectric element 314 a is substantially parallel to chamfered disk surface 318 a and piezoelectric element 314 b is substantially parallel to chamfered disk surface 318 b . Therefore, when the piezoelectric elements 314 a , 314 b are driven to vibrate they generate a force substantially normal to the corresponding disk surfaces, which generates the squeeze film effect of squeeze bearing 202 ( FIG. 2 ).
- the pad 206 ( FIG. 2 ) is configured so that when the disk velocity is zero, i.e., the disk is not rotating, the outer edge of the disk is mechanically supported by the pad 206 . Stated otherwise, the outer edge of the disk rests lightly within the structure of each pad 206 when the disk is not rotating, effectively “clamping” the disk circumferentially.
- This disk support mechanism replaces the spindle and disk clamp mechanism typically found in prior HDD designs, thereby eliminating the problems typical of disk clamp designs, such as disk waviness due to non-uniform clamping forces. It is known that non-uniform clamping forces are a major source of repeatable run-out (RRO) in HDDs.
- RRO repeatable run-out
- FIG. 4 is a diagram generally illustrating a concept of disk thrust using a tilted pad squeeze bearing as a disk actuator, according to an embodiment of the invention.
- the view depicted in FIG. 4 is akin to a plan view representing a portion of disk rim 402 (“unwrapped” into a planar surface) and a portion of a squeeze bearing pad 404 , with the intention of describing the interaction therebetween.
- FIGS. 3A and 3B were illustrated and described in this context.
- the pad 206 ( FIG. 2 ) and thus the vibrational element 210 ( FIG. 2 ) is tilted a bit (e.g., on the order of a few hundreds of micro-radians) in relation to the disk 120 ( FIG. 2 ) rim and generally in the plane of the disk (i.e., the pad has a small pitch angle relative to the disk rim).
- the vibrational element 210 is not parallel with the disk 120 rim and, consequently, the interacting forces are not exactly normal. As a result, an additional thrust force is generated and applied to the disk 120 rim.
- the face of pad 404 is at an angle ⁇ to the face of disk rim 402 , and at a minimum clearance height h 0 .
- Vibration or oscillation of one or more vibrational element of pad 404 is shown as force f, up and down in the Y-direction.
- the squeeze film effect of the squeeze bearing is still in effect with the tilted squeeze bearing pad 404 , and the angle of attack ⁇ of pad 404 relative to disk rim 402 enables production of a tangential force on the disk rim 402 , thereby driving the disk to rotate in direction 406 .
- a squeeze bearing as a disk actuator
- approximately 47 vibrational elements could be arranged along the full perimeter of the disk.
- an average of 0.128 N/m tangential force (thrust) could be generated for each 2 mm pad.
- the squeeze bearing exerts 0.12 W of power, which could rotate the disk at over 6.3 krpm.
- FIG. 5 is a flow diagram illustrating a method for operating a disk in a hard disk drive device, according to an embodiment of the invention.
- a static disk of an HDD is mechanically supported with a squeeze bearing arranged around at least a portion of the circumference of said disk.
- disk 120 ( FIG. 2 ) of HDD 200 ( FIG. 2 ) is supported by squeeze bearing 202 ( FIG. 2 ) when the disk 120 is not rotating.
- disk surface 308 c ( FIG. 3A ) of disk 306 ( FIG. 3A ) may be in contact with and thereby supported by piezoelectric element 304 c ( FIG. 3A ) or, similarly, disk surface 318 b ( FIG. 3B ) of disk 316 ( FIG. 3B ) may be in contact with and thereby supported by piezoelectric element 314 b ( FIG. 3B ).
- one or more vibrational element of the squeeze bearing is oscillated to generate a force perpendicular to and applied to the disk to bear the disk away from the static mechanical support.
- piezoelectric elements 304 a , 304 b , 304 c are electrically driven to oscillate, or vibrate, in a motion substantially normal to respective disk surfaces 308 a , 308 b , 308 c ( FIG. 3A ) or, similarly, piezoelectric elements 314 a , 314 b ( FIG. 3B ) are electrically driven to oscillate, or vibrate, in a motion substantially normal to respective disk surfaces 318 a and 318 b ( FIG. 3B ).
- these oscillations enable the squeeze-film effect which generates a bearing or levitating force to support the respective disk 306 ( FIG. 3A ) or 316 ( FIG. 3B ).
- one or more angled vibrational element of the squeeze bearing is oscillated to generate a force tangential to and applied to the disk to rotate the disk to allow a head slider to access portions of the disk.
- piezoelectric elements 304 a , 304 b , 304 c FIG. 3A
- piezoelectric elements 304 a , 304 b , 304 c FIG. 3A
- piezoelectric elements 314 a , 314 b FIG.
- the pitch angle of the squeeze bearing pad relative to the disk rim can also be varied during operation, i.e., while it is being oscillated.
- This type of motion of the squeeze bearing combines a heave and pitch motion (similar to a bird's wings when flying), which provides more thrust than with a constant pitch angle.
Landscapes
- Moving Of Heads (AREA)
Abstract
Description
- Embodiments of the invention relate to an ultrathin disk motor and integral bearing, for use in a hard disk drive (HDD).
- A hard-disk drive (HDD) is a non-volatile storage device that is housed in a protective enclosure and stores digitally encoded data on one or more circular disks having magnetic surfaces. Historically, when an HDD is in operation, each magnetic-recording disk is rapidly rotated by a spindle motor system. Data is read from and written to a magnetic-recording disk using a read/write head transducer (also referred to as a “read/write head” or simply “head”) which is positioned over a specific location of a disk by an actuator.
- A read/write head uses a magnetic field to read data from and write data to the surface of a magnetic-recording disk. As a magnetic dipole field decreases rapidly with distance from a magnetic pole, the distance between a read/write head, which is housed in a slider, and the surface of a magnetic-recording disk must be tightly controlled. Suspensions have a spring-like quality which biases or urges the air bearing surface (ABS) of the slider against the disk to enable the creation of the air bearing film between the slider and disk surface. An actuator relies in part on the suspension's force on the slider and on the aerodynamic characteristics of the slider ABS to provide the proper distance between the read/write head and the surface of the magnetic-recording disk (the “flying height”) while the magnetic-recording disk rotates. A slider therefore is said to “fly” over the surface of the magnetic-recording disk.
- As noted, historically HDDs included a spindle motor system, with fluid dynamic bearings (FDB) being a common and important component of such systems. However, use of FDBs within HDDs presents some challenges. For example, FDBs typically provide too little tilt stiffness because the journal bearing span is constrained by the overall HDD thickness, with 5 mm (thick) HDDs being the current trend toward thinner and thinner drives. Current approaches to gaining more tilt stiffness in FDB designs include variations of the FDB groove parameters, such as the depth, land-groove ratio, and clearance. However, what is really needed for FDB designs is FDB axial bearing span, which is becoming more and more at odds with the trend toward thinner HDDs. Additionally, other common problems with the use of FDBs in HDDs include oil loss through evaporation and atomization, oil contamination, cavitation, temperature-sensitive torque, and shock sensitivity (e.g., splashing).
- Embodiments of the invention are directed at an ultrathin motor and integral bearing for supporting and/or rotating the disks in a hard-disk drive (HDD). In particular, a squeeze (i.e., air) bearing supports and drives the disk at the rim instead of the hub, providing for increased tilt stiffness.
- In embodiments, the squeeze bearing, whose effect is based on relative normal motion between two bodies, is arranged adjacent to the rim of the disk it is affecting to provide a bearing normal force, and/or a propulsive force, at the disk rim. The squeeze bearing comprises multiple cantilevered arms with one end fixed to a support ring assembly and the other end (the “pad”) having one or more vibrational element which, when vibrating, provides the bearing force, otherwise known as lift. In one embodiment, each vibrational element comprises one or more piezoelectric (PZT) elements.
- In embodiments, at least one of the vibrational elements corresponding to a pad is configured at an angle to the disk rim, generally in the plane of the disk. Thus, each angled vibrational element, when vibrating, provides a tangential propulsive force, otherwise known as thrust, to the disk rim. This tangential force can be utilized to rotate, or spin, the disk for HDD operational purposes. Therefore, such a squeeze bearing can provide an integrated solution for bearing and rotating the disk(s) of an HDD, thereby eliminating the need for a centrally located disk spindle motor system.
- Embodiments discussed in the Summary of Embodiments of the Invention section are not meant to suggest, describe, or teach all the embodiments discussed herein. Thus, embodiments of the invention may contain additional or different features than those discussed in this section.
- Embodiments of the invention are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
-
FIG. 1 is a plan view of a prior art hard disk drive (HDD); -
FIG. 2 is a plan view of a squeeze air bearing for use in an HDD, including a blowup view of a portion of the bearing, according to an embodiment of the invention; -
FIG. 3A is a diagram illustrating a first embodiment of a squeeze bearing vibrational element at a disk rim, according to an embodiment of the invention; -
FIG. 3B is a diagram illustrating a second, alternative embodiment of a squeeze bearing vibrational element at a disk rim, according to an embodiment of the invention; -
FIG. 4 is a diagram generally illustrating a concept of disk thrust using a tilted pad squeeze bearing as a disk actuator, according to an embodiment of the invention; and -
FIG. 5 is a flow diagram illustrating a method for operating a disk in a hard disk drive device, according to an embodiment of the invention. - Approaches to an ultrathin motor and integral bearing for supporting and/or rotating the disks in a hard-disk drive (HDD) are described. In particular, a squeeze air bearing supports and drives the disk at the rim instead of the hub, providing for increased tilt stiffness and eliminating the need for a disk spindle motor system.
- In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the embodiments of the invention described herein. It will be apparent, however, that the embodiments of the invention described herein may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to avoid unnecessarily obscuring the embodiments of the invention described herein.
-
FIG. 1 is a plan view of a prior art HDD.FIG. 1 illustrates the functional arrangement of components of the HDD including aslider 110 b that includes a magnetic-reading/recording head 110 a. Collectively,slider 110 b andhead 110 a may be referred to as a head slider. TheHDD 100 includes at least one head gimbal assembly (HGA) 110 including thehead 110 a, alead suspension 110 c attached to thehead 110 a, and aload beam 110 d attached to thelead suspension 110 c, all supporting theslider 110 b which includes thehead 110 a at a distal end of theslider 110 b. Theslider 110 b is attached at the distal end of theload beam 110 d to a gimbal portion of theload beam 110 d. The HDD 100 also includes at least one magnetic-recording disk 120 rotatably mounted on aspindle 124 and a drive motor attached to thespindle 124 for rotating thedisk 120. - The
head 110 a includes a write element and a read element for respectively writing and reading information stored on thedisk 120 of theHDD 100. Thedisk 120 or a plurality (not shown) of disks may be affixed to thespindle 124 with adisk clamp 128. The HDD 100 further includes anarm 132 attached to the HGA 110, acarriage 134, a voice-coil motor (VCM) that includes anarmature 136 including avoice coil 140 attached to thecarriage 134; and astator 144 including a voice-coil magnet (not shown). Thearmature 136 of the VCM is attached to thecarriage 134 and is configured to move thearm 132 and the HGA 110 to access portions of thedisk 120 being mounted on a pivot-shaft 148 with an interposed pivot-bearingassembly 152. - With further reference to
FIG. 1 , electrical signals, for example, current to thevoice coil 140 of the VCM, write signal to and read signal from thehead 110 a, are provided by aflexible cable 156. Interconnection between theflexible cable 156 and thehead 110 a may be provided by an arm-electronics (AE)module 160, which may have an on-board pre-amplifier for the read signal, as well as other read-channel and write-channel electronic components. Theflexible cable 156 is coupled to an electrical-connector block 164, which provides electrical communication through electrical feedthroughs (not shown) provided by anHDD housing 168. TheHDD housing 168, also referred to as a casting, depending upon whether the HDD housing is cast, in conjunction with an HDD cover (not shown) provides a sealed, protective enclosure for the information storage components of theHDD 100. - With further reference to
FIG. 1 , other electronic components, including a disk controller and servo electronics including a digital-signal processor (DSP), provide electrical signals to the drive motor, thevoice coil 140 of the VCM and thehead 110 a of the HGA 110. The electrical signal provided to the drive motor enables the drive motor to spin providing a torque to thespindle 124 which is in turn transmitted to thedisk 120 that is affixed to thespindle 124 by thedisk clamp 128; as a result, thedisk 120 spins in adirection 172. Thespinning disk 120 acts as one of the surfaces of a self-acting air-bearing on which the air-bearing surface (ABS) of theslider 110 b rides so that theslider 110 b flies above the surface of thedisk 120 without making contact with a thin magnetic-recording medium of thedisk 120 in which information is recorded. The electrical signal provided to thevoice coil 140 of the VCM enables thehead 110 a of the HGA 110 to access atrack 176 on which information is recorded. Thus, thearmature 136 of the VCM swings through anarc 180 which enables the HGA 110 attached to thearmature 136 by thearm 132 to access various tracks on thedisk 120. Information is stored on thedisk 120 in a plurality of concentric tracks (not shown) arranged in sectors on thedisk 120, for example,sector 184. - Correspondingly, each track is composed of a plurality of sectored track portions, for example,
sectored track portion 188. Eachsectored track portion 188 is composed of recorded data and a header containing a servo-burst-signal pattern, for example, an ABCD-servo-burst-signal pattern, information that identifies thetrack 176, and error correction code information. In accessing thetrack 176, the read element of thehead 110 a of theHGA 110 reads the servo-burst-signal pattern which provides a position-error-signal (PES) to the servo electronics, which controls the electrical signal provided to thevoice coil 140 of the VCM, enabling thehead 110 a to follow thetrack 176. Upon finding thetrack 176 and identifying a particularsectored track portion 188, thehead 110 a either reads data from thetrack 176 or writes data to thetrack 176 depending on instructions received by the disk controller from an external agent, for example, a microprocessor of a computer system. - Embodiments of the invention apply a squeeze air bearing (or simply “squeeze bearing”) for use as a motor and/or integral bearing for the disk(s) in a hard-disk drive (HDD).
FIG. 2 is a plan view of an HDD according to an embodiment of the invention. Most of the components ofHDD 200 are the same or similar to the components of HDD 100 (FIG. 1 ), so these components are depicted similarly in bothFIG. 1 andFIG. 2 . Further, the same or similar components are not described again in reference toFIG. 2 . Rather, reference is made toFIG. 1 for the descriptions of these same or similar components. - There is one significant difference between the configuration of HDD 100 (
FIG. 1 ) andHDD 200. By contrast,HDD 200 includes a squeeze bearing 202 for supporting and/or rotatably driving the at least one magnetic-recording disk 120. - According to one embodiment, the squeeze bearing 202 is utilized to support the magnetic-
recording disk 120 instead of thespindle 124 supporting thedisk 120. In this embodiment, squeeze bearing 202 may augment the disk bearing function provided byspindle 124 and, therefore, coexist withspindle 124 inHDD 200. Alternatively, squeeze bearing 202 may be utilized to solely provide the disk bearing function, thereby eliminating the need for thespindle 124 for the bearing function and eliminating the need for adisk clamp 128 for clamping the disk(s) onto the spindle. - According to one embodiment, the squeeze bearing 202 is utilized to drive the rotation of, or spin, magnetic-
recording disk 120 instead of the drive motor associated withspindle 124. Therefore, squeeze bearing 202 may be configured to provide both the disk bearing function (i.e., also referred to as levitation, or lift) and the disk driving function (i.e., also referred to as tangential force, or thrust), thereby eliminating the need for thespindle 124 altogether. According to one embodiment, the thrust force is applied to a relatively small diameter disk, such as a 3 cm diameter disk. -
FIG. 2 includes an exploded view 202 a of a portion of squeeze bearing 202, in relation to the rim or edge ofdisk 120. Squeeze bearing 202 comprisesmultiple arms 204 coupled to asupport ring 208. Each of thearms 204 has acorresponding pad 206 which may be, or may house, avibrational element 210. According to an embodiment, eachvibrational element 210 of squeeze bearing 202 comprises one or more piezoelectric element. - Embodiments of the invention relate to the use of a squeeze bearing in an HDD to support and/or drive the rotation of the one or more disks. Squeeze bearings are a type of gas bearing which, in this instance, utilize the gas (usually air) within an HDD for the operational effect of the bearing. A squeeze bearing generates a pressure based on the squeeze film effect of a squeeze motion, i.e., the compressible film characteristics caused by oscillating relative normal motion between surfaces. The squeeze film effect and attempts at practical applications thereof has been studied for quite some time. For example, E. O. J. Salbu provided a basic account of the principle of squeeze film bearing in published “Compressible Squeeze Films and Squeeze Bearings” (J. Basic Engineering, June 1964, Volume 86, Issue 2, 355-364); the subject matter of which is incorporated by reference for all purposes as if fully set forth herein. Additionally, the present inventor discusses an application of squeeze bearings to HDD sliders in published “Squeeze Bearing Levitated Sliders for Magnetic Storage” (Tribology and Mechanics of Magnetic Storage Systems, STLE, Park Ridge, Ill., Vol. IV, SP-22, (1987), pp. 26-32); the subject matter of which is incorporated by reference for all purposes as if fully set forth herein, and in which it is explained that squeeze bearings are based on thin gas layers that are cyclically compressed and expanded in an isothermal manner.
-
FIG. 3A is a diagram illustrating a first embodiment of a squeeze bearing vibrational element at a disk rim, according to an embodiment of the invention.FIG. 3B is a diagram illustrating a second, alternative embodiment of a squeeze bearing vibrational element at a disk rim, according to an embodiment of the invention. As the squeeze film effect of a squeeze bearing is a characteristic caused by relative normal motion between surfaces, each ofFIGS. 3A and 3B illustrates how vibrational elements are arranged in relation to a corresponding disk, to provide radial and axial support to the disk. -
FIG. 3A illustrates a vibrational element 302 (e.g.,vibrational element 210 ofFIG. 2 ) having a plurality of piezoelectric elements 304 a, 304 b, 304 c arranged in close proximity to the rim of adisk 306. As discussed in reference toFIG. 2 , eachvibrational element 210 is configured on apad 206 of anarm 204 of squeeze bearing 202 (thepad 206 andarm 204 are omitted fromFIG. 3 for clarity purposes). - Returning to
FIG. 3A , each of the piezoelectric elements 304 a, 304 b, 304 c is substantially parallel to a corresponding surface ofdisk 306. That is, piezoelectric element 304 a is substantially parallel to disk surface 308 a, piezoelectric element 304 b is substantially parallel to disk surface 308 b, and piezoelectric element 304 c is substantially parallel to disk surface 308 c. Therefore, when the piezoelectric elements 304 a, 304 b, 304 c are driven to vibrate they generate a force substantially normal to the corresponding disk surfaces, which generates the squeeze film effect of squeeze bearing 202 (FIG. 2 ). -
FIG. 3B illustrates a vibrational element 312 (e.g.,vibrational element 210 ofFIG. 2 ) having a plurality of piezoelectric elements 314 a, 314 b arranged in close proximity to the rim of adisk 316. Again as withFIG. 3A , and as discussed in reference toFIG. 2 , eachvibrational element 210 is configured on apad 206 of anarm 204 of squeeze bearing 202 (thepad 206 andarm 204 are omitted fromFIG. 3 for clarity purposes). - Each of the piezoelectric elements 314 a, 314 b is substantially parallel to a corresponding surface of
disk 316. That is, piezoelectric element 314 a is substantially parallel to chamfered disk surface 318 a and piezoelectric element 314 b is substantially parallel to chamfered disk surface 318 b. Therefore, when the piezoelectric elements 314 a, 314 b are driven to vibrate they generate a force substantially normal to the corresponding disk surfaces, which generates the squeeze film effect of squeeze bearing 202 (FIG. 2 ). - In both the configuration of
FIG. 3A and the configuration ofFIG. 3B , the pad 206 (FIG. 2 ) is configured so that when the disk velocity is zero, i.e., the disk is not rotating, the outer edge of the disk is mechanically supported by thepad 206. Stated otherwise, the outer edge of the disk rests lightly within the structure of eachpad 206 when the disk is not rotating, effectively “clamping” the disk circumferentially. This disk support mechanism replaces the spindle and disk clamp mechanism typically found in prior HDD designs, thereby eliminating the problems typical of disk clamp designs, such as disk waviness due to non-uniform clamping forces. It is known that non-uniform clamping forces are a major source of repeatable run-out (RRO) in HDDs. -
FIG. 4 is a diagram generally illustrating a concept of disk thrust using a tilted pad squeeze bearing as a disk actuator, according to an embodiment of the invention. The view depicted inFIG. 4 is akin to a plan view representing a portion of disk rim 402 (“unwrapped” into a planar surface) and a portion of asqueeze bearing pad 404, with the intention of describing the interaction therebetween. - As described, use of squeeze bearing for disk levitation purposes is based on relative normal motion between surfaces and
FIGS. 3A and 3B were illustrated and described in this context. However, according to an embodiment, the pad 206 (FIG. 2 ) and thus the vibrational element 210 (FIG. 2 ) is tilted a bit (e.g., on the order of a few hundreds of micro-radians) in relation to the disk 120 (FIG. 2 ) rim and generally in the plane of the disk (i.e., the pad has a small pitch angle relative to the disk rim). Thus, thevibrational element 210 is not parallel with thedisk 120 rim and, consequently, the interacting forces are not exactly normal. As a result, an additional thrust force is generated and applied to thedisk 120 rim. - In reference to
FIG. 4 , the face ofpad 404 is at an angle α to the face ofdisk rim 402, and at a minimum clearance height h0. Vibration or oscillation of one or more vibrational element ofpad 404 is shown as force f, up and down in the Y-direction. The squeeze film effect of the squeeze bearing is still in effect with the tiltedsqueeze bearing pad 404, and the angle of attack α ofpad 404 relative todisk rim 402 enables production of a tangential force on thedisk rim 402, thereby driving the disk to rotate indirection 406. - For a non-limiting example of the use of a squeeze bearing as a disk actuator, on a 3 cm diameter disk, approximately 47 vibrational elements could be arranged along the full perimeter of the disk. At a vibration frequency of 100 kHz and an amplitude of 4 microns, an average of 0.128 N/m tangential force (thrust) could be generated for each 2 mm pad. With the thrust per unit perimeter length of 0.128 N/m, the squeeze bearing exerts 0.12 W of power, which could rotate the disk at over 6.3 krpm.
-
FIG. 5 is a flow diagram illustrating a method for operating a disk in a hard disk drive device, according to an embodiment of the invention. - At
block 502, a static disk of an HDD is mechanically supported with a squeeze bearing arranged around at least a portion of the circumference of said disk. For example, disk 120 (FIG. 2 ) of HDD 200 (FIG. 2 ) is supported by squeeze bearing 202 (FIG. 2 ) when thedisk 120 is not rotating. For example, disk surface 308 c (FIG. 3A ) of disk 306 (FIG. 3A ) may be in contact with and thereby supported by piezoelectric element 304 c (FIG. 3A ) or, similarly, disk surface 318 b (FIG. 3B ) of disk 316 (FIG. 3B ) may be in contact with and thereby supported by piezoelectric element 314 b (FIG. 3B ). - At
block 504, one or more vibrational element of the squeeze bearing is oscillated to generate a force perpendicular to and applied to the disk to bear the disk away from the static mechanical support. For example, piezoelectric elements 304 a, 304 b, 304 c (FIG. 3A ) are electrically driven to oscillate, or vibrate, in a motion substantially normal to respective disk surfaces 308 a, 308 b, 308 c (FIG. 3A ) or, similarly, piezoelectric elements 314 a, 314 b (FIG. 3B ) are electrically driven to oscillate, or vibrate, in a motion substantially normal to respective disk surfaces 318 a and 318 b (FIG. 3B ). As explained elsewhere herein, these oscillations enable the squeeze-film effect which generates a bearing or levitating force to support the respective disk 306 (FIG. 3A ) or 316 (FIG. 3B ). - At
block 506, one or more angled vibrational element of the squeeze bearing is oscillated to generate a force tangential to and applied to the disk to rotate the disk to allow a head slider to access portions of the disk. For example, piezoelectric elements 304 a, 304 b, 304 c (FIG. 3A ), if at a pitch angle to respective disk surfaces 308 a, 308 b, 308 c (FIG. 3A ), are electrically driven to oscillate, or vibrate, in a non-normal motion to respective disk surfaces 308 a, 308 b, 308 c (FIG. 3A ). For another example, piezoelectric elements 314 a, 314 b (FIG. 3B ), if at a pitch angle to respective disk surfaces 318 a and 318 b (FIG. 3B ), are electrically driven to oscillate, or vibrate, in a non-normal motion to respective disk surfaces 318 a and 318 b (FIG. 3B ). As explained elsewhere herein, these oscillations enable the squeeze-film effect which generates a tangential or thrust force to rotatably move the respective disk 306 (FIG. 3A ) or 316 (FIG. 3B ), whereby the head slider (110 a and 110 b ofFIG. 2 ) can access the disk to read from and/or write to the disk. - In addition to the purely up/down motion of the tilted squeeze bearing, the pitch angle of the squeeze bearing pad relative to the disk rim can also be varied during operation, i.e., while it is being oscillated. This type of motion of the squeeze bearing combines a heave and pitch motion (similar to a bird's wings when flying), which provides more thrust than with a constant pitch angle.
- In the foregoing specification, embodiments of the invention have been described with reference to numerous specific details that may vary from implementation to implementation. Thus, the sole and exclusive indicator of what is the invention, and is intended by the applicants to be the invention, is the set of claims that issue from this application, in the specific form in which such claims issue, including any subsequent correction. Any definitions expressly set forth herein for terms contained in such claims shall govern the meaning of such terms as used in the claims. Hence, no limitation, element, property, feature, advantage or attribute that is not expressly recited in a claim should limit the scope of such claim in any way. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/720,778 US8773814B1 (en) | 2012-12-19 | 2012-12-19 | Hard disk having a squeeze air bearing for rotating a disk |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/720,778 US8773814B1 (en) | 2012-12-19 | 2012-12-19 | Hard disk having a squeeze air bearing for rotating a disk |
Publications (2)
Publication Number | Publication Date |
---|---|
US20140168819A1 true US20140168819A1 (en) | 2014-06-19 |
US8773814B1 US8773814B1 (en) | 2014-07-08 |
Family
ID=50930595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/720,778 Expired - Fee Related US8773814B1 (en) | 2012-12-19 | 2012-12-19 | Hard disk having a squeeze air bearing for rotating a disk |
Country Status (1)
Country | Link |
---|---|
US (1) | US8773814B1 (en) |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3351393A (en) | 1963-07-10 | 1967-11-07 | United Aircraft Corp | Piezoelectric oscillating bearing |
US3339421A (en) | 1963-11-14 | 1967-09-05 | Lear Siegler Inc | Dynamic gas film supported inertial instrument |
US3471205A (en) | 1966-07-05 | 1969-10-07 | Bendix Corp | Squeeze film bearings |
US4666315A (en) | 1981-06-12 | 1987-05-19 | International Business Machines Corporation | Planar and cylindrical oscillating pneumatodynamic bearings |
US4533186A (en) | 1983-02-28 | 1985-08-06 | International Business Machines Corporation | Cylindrical type squeeze bearing systems with bearing and driving elements attached in areas of maximum deflection |
US6078468A (en) * | 1997-05-01 | 2000-06-20 | Fiske; Orlo James | Data storage and/or retrieval methods and apparatuses and components thereof |
US6900962B1 (en) * | 1997-09-05 | 2005-05-31 | Seagate Technology Llc | High performance standard configuration disc drive having smaller-than-standard discs |
US6588932B2 (en) * | 2000-10-20 | 2003-07-08 | International Business Machines Corporation | Air bearing between a first and second object |
JP4053752B2 (en) * | 2001-09-25 | 2008-02-27 | 株式会社日立グローバルストレージテクノロジーズ | Recording device |
US6975484B2 (en) | 2001-12-20 | 2005-12-13 | Seagate Technology Llc | Selectively stiff FDB bearing for better servo write |
US6949852B2 (en) | 2002-06-12 | 2005-09-27 | Seagate Technology Llc | Low profile thrust journal plate fluid dynamic bearing motor |
US6900567B2 (en) | 2002-10-09 | 2005-05-31 | Seagate Technology Llc | Corner thrust-journal fluid dynamic bearing |
SG112865A1 (en) * | 2002-12-10 | 2005-07-28 | Sony Corp | Mems based motor |
US7781929B1 (en) | 2004-12-02 | 2010-08-24 | Seagate Technology Llc | Shaped fluid dynamic bearing for a hard disk drive |
JP4994639B2 (en) * | 2005-11-01 | 2012-08-08 | オリンパス株式会社 | Optical aperture device |
JP2007252167A (en) * | 2006-03-20 | 2007-09-27 | Matsushita Electric Ind Co Ltd | Disk drive motor and information recording/reproducing device |
US7820601B2 (en) | 2006-07-28 | 2010-10-26 | Hitachi Global Storage Technologies Netherlands, B.V. | System and method for improving lubrication in a fluid dynamic bearing |
US8157447B2 (en) | 2008-04-13 | 2012-04-17 | Seagate Technology Llc | Groove configuration for a fluid dynamic bearing |
-
2012
- 2012-12-19 US US13/720,778 patent/US8773814B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US8773814B1 (en) | 2014-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8547664B1 (en) | Disk drive actuator pivot bearing having an adsorptive element within | |
US8416534B1 (en) | Disk drive with asymmetric tolerance ring | |
US10186286B2 (en) | Techniques for reducing dynamic coupling of system modes in a dual actuator hard disk drive | |
US10276194B2 (en) | Split-shaft pivot with interface spacer for a dual-actuator hard disk drive | |
US10186287B2 (en) | Split-shaft pivot for a dual-actuator hard disk drive | |
US6947260B2 (en) | System and method of damping vibration on coil supports in high performance disk drives with rotary actuators | |
US8164860B1 (en) | Servo write robust and good altitude performance ABS | |
US8199426B2 (en) | Method and system for providing hard disk shrouds with aerodynamic fences for suppressing flow induced disk excitation | |
JP2007265542A (en) | Clamp ring and disk device having the same | |
JP2008047165A (en) | Disk unit | |
US7136261B2 (en) | Aerodynamically shaped load beam having reduced windage and reduced off-track PES | |
US9361932B2 (en) | Fluid dynamic bearing groove configuration | |
US6815850B2 (en) | Flux leakage barrier in fluid bearing for disk drive | |
US7903377B2 (en) | System, method, and apparatus for an independent flexible cable damper for reducing flexible cable fatigue in a hard disk drive | |
JP2008010063A (en) | Disk drive device and head assembly used therefor | |
US8773814B1 (en) | Hard disk having a squeeze air bearing for rotating a disk | |
KR100416616B1 (en) | Hard disk drive having a disk locking device | |
US8189291B2 (en) | Conical fluid dynamic bearings having improved stiffness for use in hard-disk drives | |
US7652843B2 (en) | Completely circumferential motor bracket shroud for motor hub flange outside diameter for hard disk drive | |
US20050254166A1 (en) | System, method, and apparatus for distributing stress with one or more cavities in a disk clamp for disk drive applications | |
US7164554B2 (en) | Disk drive with hub and apparatus for prevention of lubrication migration for lubricated clamp fasteners in disk drive applications | |
US8929025B2 (en) | Clamping device for a rotatable component of a machine including a balance hole configured to confine a counterweight | |
US20240161776A1 (en) | Rotating electromagnet for removable disk clamp | |
JP2009140560A (en) | Storage device and displacement control circuit | |
US20070052311A1 (en) | Motor having dynamic pressure bearing and disc drive having the motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HGST NETHERLANDS B.V., NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HENDRIKS, FERDINAND;REEL/FRAME:029504/0445 Effective date: 20121219 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
AS | Assignment |
Owner name: WESTERN DIGITAL TECHNOLOGIES, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HGST NETHERLANDS B.V.;REEL/FRAME:040829/0516 Effective date: 20160831 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551) Year of fee payment: 4 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS AGENT, ILLINOIS Free format text: SECURITY INTEREST;ASSIGNOR:WESTERN DIGITAL TECHNOLOGIES, INC.;REEL/FRAME:052915/0566 Effective date: 20200113 |
|
AS | Assignment |
Owner name: WESTERN DIGITAL TECHNOLOGIES, INC., CALIFORNIA Free format text: RELEASE OF SECURITY INTEREST AT REEL 052915 FRAME 0566;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:059127/0001 Effective date: 20220203 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20220708 |