US20140160929A1 - Airtime-based packet scheduling for wireless networks - Google Patents
Airtime-based packet scheduling for wireless networks Download PDFInfo
- Publication number
- US20140160929A1 US20140160929A1 US13/938,159 US201313938159A US2014160929A1 US 20140160929 A1 US20140160929 A1 US 20140160929A1 US 201313938159 A US201313938159 A US 201313938159A US 2014160929 A1 US2014160929 A1 US 2014160929A1
- Authority
- US
- United States
- Prior art keywords
- airtime
- network
- value
- quality
- packet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/24—Traffic characterised by specific attributes, e.g. priority or QoS
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/32—Flow control; Congestion control by discarding or delaying data units, e.g. packets or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/08—Testing, supervising or monitoring using real traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0205—Traffic management, e.g. flow control or congestion control at the air interface
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/535—Allocation or scheduling criteria for wireless resources based on resource usage policies
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/543—Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
Definitions
- Networking devices enable data communications between two or more devices, referred to generally as clients.
- Data communications may be conducted over wired and/or wireless network interfaces.
- data is partitioned into packets, which are then communicated via one or more networking devices to one or more destination clients.
- Networking devices may handle packets generated by and directed to large numbers of clients over the same interface.
- the bandwidth or data communications capacity of networking devices limits the amount of data or the rate of network packets passing through network devices. The limits on bandwidth are particularly acute in network devices including wireless network interfaces. If the bandwidth limit of a networking device is reached or exceeded by its client's network traffic, packets may be delayed or dropped. Depending on the type of data being communicated over the network, these traffic disruptions caused by reaching or exceeding bandwidth limit of a networking device may adversely affect the performance of applications on a client. For example, clients receiving voice or streaming video data may be adversely affected by even small delays or losses of packets.
- Quality of service allows network administrators to provide different priority for packets or other network data based on factors such as the associated client, user, client application, or data flow.
- QoS quality of service
- users, clients, or applications are assigned to different quality of service profiles.
- Each quality of service profile specifies a quality of service parameters to associated packets or other network data.
- Networking devices use the scheduling weights to prioritize packet traffic and potentially guarantee a minimum level of performance to some or all of the network data flows.
- wireless network interfaces support multiple wireless networking standards, such as IEEE 802.11a, 802.11b, 802.11g, and 802.11n.
- the clients using slower data rates such as clients using older standards or newer standards at lower data rates, for example due to lower signal strength or radio interference, will consume a disproportionate amount of airtime from the wireless network interface. As a result of this disproportionate airtime usage, the performance of other clients attempting to utilize faster data rates will be degraded substantially.
- An embodiment of the invention includes airtime usage as a factor in controlling network traffic flow to and from client devices via a wireless network interface.
- packets or other data received via a wired or wireless network interface and directed to a client device or received from a client via a wireless network interface are assigned to a quality of service profile.
- a cost value for communicating the packet or other data is determined at least in part based on an actual or estimated airtime usage for the packet to be communicated to or from the client via a wireless network interface. The cost value is used to allocate wireless network airtime to clients.
- the consumption of wireless network airtime may be varied dynamically based on operating conditions.
- the cost value may be based on factors including the actual or estimated airtime used to communicate the packet via the wireless network interface; whether the packet or other data is a retransmission of a previous packet or other data; and actual or estimated wireless network overhead.
- the cost value of a packet may also be different depending on whether the packet is being sent from a client device or to a client device.
- a token bucket scheduling system is used to allocate wireless network bandwidth based on received packets' cost values and token balances associated with quality of service profiles.
- packets or other data received from a client device via a wireless network interface may be dropped or discarded if a queue associated with a quality of service is full.
- FIG. 1 illustrates a method of scheduling downlink network traffic according to an embodiment of the invention
- FIG. 2 illustrates an example computer system suitable for implementing an embodiment of the invention.
- FIG. 1 illustrates a method 100 of scheduling downlink network traffic according to an embodiment of the invention.
- downlink network traffic refers to network traffic received by a network device via a wired or wireless network connection and directed to a client device via a wireless network connection.
- a packet or other type of network data is received by a network device.
- the packet is directed to a client device in direct or indirect communication with the network device via a wireless network connection.
- the network device may be adapted to communicate the packet directly to the client device via a wireless network connection or to one or more additional network devices via the wireless network connection, which in turn communicate the packet to the client device via a wired or wireless network connection.
- Step 110 determines a quality of service profile to be associated with the received packet.
- Embodiments of step 110 may assign a quality of service profile to packets based on the packet source, the packet destination, a user identity or user class associated with the packet source and/or packet destination, the contents or control data associated with a packet, a source or client application associated with a packet, and/or a data flow associated with the packet.
- the set of quality of service profiles may be specified by network administrators. As described in detail below, each quality of service profile is assigned a scheduling weight and a scheduling mode used to prioritize packets.
- a quality of service profile may include a per-user rate limit.
- Step 115 determines a token cost for the received packet based on factors including an estimated airtime for the packet and the quality of service profile.
- packets are assigned a cost value, referred to as a token cost.
- the token cost represents the relative amount of network performance consumed by communicating the associated packet towards the intended destination by the network device.
- Embodiments of step 115 take into account at least an estimated packet airtime to determine the token cost of the received packet.
- step 115 estimates the airtime to communicate the received packet from the network device to the client based on the airtime required by previous packets to the same client, similar clients, and/or clients assigned to the same quality of service profile. For example, a running average of the airtime consumed by one or more of the most-recently sent packets to the same client may be used to determine at least a portion of the estimated packet airtime for the currently received packet.
- the average airtime of recently sent packets is weighted or divided by their respective packet sizes to determine an average airtime consumed per data unit, such as average airtime consumed per byte.
- This average airtime consumed per data unit may then be scaled or weighted according the size of the received packet to determine at least a portion of the estimated airtime for the currently received packet. This enables the token cost of a packet to increase with the packet size, as larger packets consume more network bandwidth.
- an embodiment of step 115 may also include other factors in determining the token cost of a packet.
- the token cost or total estimated airtime may include an estimated airtime for transmitting a packet to the client, the actual, estimated, or prorated airtime used for retransmitting packets that were previously unsuccessfully transmitted, and/or some or all of the network overhead.
- Optional decision block 117 may determine if the packet is associated with a critical quality of service profile.
- users, user groups, and/or the types of applications associated with a packet may be assigned to a critical quality of service profile if any delay in forwarding the packet is unacceptable.
- packets from voice-over IP (VOIP) and live video applications may be assigned to a critical quality of service profile.
- VOIP voice-over IP
- step 130 may deduct the token cost of this critical packet from a token bucket associated with the application, user group, or individual user. This has the effect of potentially limiting the airtime of any future non-critical packets from the same application, user group, or user.
- Step 120 determines a token balance of a token bucket associated with the selected quality of service profile.
- each quality of service profile is associated with its own token bucket.
- a token bucket is a data structure including a token balance value.
- the token balance value represents the unused proportion of the network bandwidth assigned to a quality of service profile. Token costs and token balance values may be expressed in arbitrary units.
- the token balance value of each token bucket is periodically increased or incremented, representing additional network bandwidth allocated to the associated quality of service profile for a period of time.
- a scheduling weight associated with a quality of service profile is used to determine the rate or amount by which the token balance value of the token bucket is increased.
- the token balance value of a token bucket associated with a higher priority quality of service profile may be incremented more frequently and/or by larger amounts. This has the effect of allocating more network bandwidth to packets associated with the high priority quality of service profile.
- each token bucket has its token balance value incremented by the same amount and at the same frequency.
- the range of the token balance value of each token bucket may be limited between a maximum token balance value and/or a minimum token balance value.
- the token increment value, token balance incrementing rate, and the minimum and maximum token balance limits of each token bucket may be specified based on the associated quality of service profile and optionally one or more other quality of service profiles.
- the token increment value, token balance incrementing rate, the minimum and maximum token balance limits of each token bucket, or any other factor affecting the allocation of wireless networking airtime may be dynamically specified based on the performance of the wireless network interface.
- Decision block 125 compares the token cost of the received packet with the token balance value of the associated token bucket. If the token cost of the received packet is less than the token balance of the token bucket corresponding with the assigned quality of service profile, then method 100 proceeds to step 130 .
- Step 130 deducts the token cost from the token balance of the associated token bucket and forwards the packet to the client via the wireless network interface.
- the token balance reflects the relative proportion of the wireless network interface's bandwidth that has been used by the assigned quality of service profile.
- the packet may be communicated to the client device using any wireless networking standard or technique known in the art.
- the network device may communicate with multiple clients using different wireless networking standards or techniques, depending on the client capabilities and/or operating conditions.
- method 100 optionally proceeds back to step 105 to await the receipt of another packet directed to the same or a different client.
- step 130 deducts the token cost from the token balance value of the associated token bucket in two phases. First, step 130 deducts the token cost based at least partly on an estimated airtime for the received packet. Step 130 then forwards the packet to the client device via the wireless network interface. Additionally, step 130 monitors the transmission of this packet towards the client to determine its actual airtime usage. Step 130 then uses this actual airtime usage to determine a revised token cost for the received packet. Step 130 then subtracts the difference between the revised token cost and the original token cost of the packet from the token balance value of the token bucket. This adjustment may increase or decrease the token balance value of the token bucket, depending on whether the actual airtime usage of the packet is less than or greater than the estimated airtime, respectively.
- Step 135 queues the received packet associated with this quality of service profile until the token balance of its associated token bucket is increased. Following the increase of the token balance of the token bucket associated with the quality of service profile assigned to the received packet, an embodiment of method 100 proceeds back to step 120 . Steps 120 , 125 , and step 135 may be repeated one or more times until the token cost of the queued packet is less than the token balance of the token bucket. In an embodiment, while a packet is queued in step 135 , other packets may be received and processed according to method 100 .
- method 100 may also be applied to scheduling uplink network traffic from a client device to a network device via a wireless network interface.
- method 100 operates in a similar manner as described above. However, the actual airtime of the received uplink packet is already known, eliminating the need to use an estimated airtime to determine at least part of the token cost.
- a packet may be assigned to a critical quality of service profile if any delay in forwarding the packet is unacceptable.
- step 130 deducts the token cost of these packets from the token balance of the associated token bucket, similar to other packets associated with non-critical quality of service profiles.
- the token balance of a token bucket may become negative due to packets in critical quality of service profiles.
- a negative token balance will not block further communications of packets associated with critical quality of service profiles.
- other packets associated with the same token bucket such as packets for the same user, user group, and/or application, will be queued until the token balance of the token bucket increases.
- a token bucket may have a negative limit. When the token balance reaches the negative limit, packets associated with this token bucket may be dropped.
- method 100 uses token costs and token buckets for controlling network traffic based at least in part on airtime usage
- embodiments of the invention can include airtime usage as a factor controlling network traffic using any other network traffic shaping, bandwidth throttling, rate limiting, or quality of service technique known in the art.
- FIG. 2 illustrates an example computer system suitable for implementing an embodiment of the invention.
- FIG. 2 is a block diagram of a computer system 2000 , such as a personal computer or other digital device, suitable for practicing an embodiment of the invention.
- Embodiments of computer system 2000 may include dedicated networking devices, such as wireless access points, network switches, hubs, routers, hardware firewalls, network traffic optimizers and accelerators, network attached storage devices, and combinations thereof.
- Computer system 2000 includes a central processing unit (CPU) 2005 for running software applications and optionally an operating system.
- CPU 2005 may be comprised of one or more processing cores.
- Memory 2010 stores applications and data for use by the CPU 2005 . Examples of memory 2010 include dynamic and static random access memory.
- Storage 2015 provides non-volatile storage for applications and data and may include fixed or removable hard disk drives, flash memory devices, ROM memory, and CD-ROM, DVD-ROM, Blu-ray, HD-DVD, or other magnetic, optical, or solid state storage devices.
- Optional user input devices 2020 communicate user inputs from one or more users to the computer system 2000 , examples of which may include keyboards, mice, joysticks, digitizer tablets, touch pads, touch screens, still or video cameras, and/or microphones.
- user input devices may be omitted and computer system 2000 may present a user interface to a user over a network, for example using a web page or network management protocol and network management software applications.
- Computer system 2000 includes one or more network interfaces 2025 that allow computer system 2000 to communicate with other computer systems via an electronic communications network, and may include wired or wireless communication over local area networks and wide area networks such as the Internet.
- Computer system 2000 may support a variety of networking protocols at one or more levels of abstraction.
- Computer system may support networking protocols at one or more layers of the seven layer OSI network model.
- An embodiment of network interface 2025 includes one or more wireless network interfaces adapted to communicate with wireless clients and with other wireless networking devices using radio waves, for example using the 802.11 family of protocols, such as 802.11a, 802.11, 802.11g, and 802.11n.
- An embodiment of the computer system 2000 may also include a wired networking interface, such as one or more Ethernet connections to communicate with other networking devices via local or wide-area networks.
- computer system 2000 may be capable of receiving some or all of its required electrical power via the network interface 2025 , for example using a wired networking interface power over Ethernet system.
- the components of computer system 2000 including CPU 2005 , memory 2010 , data storage 2015 , user input devices 2020 , and network interface 2025 are connected via one or more data buses 2060 . Additionally, some or all of the components of computer system 2000 , including CPU 2005 , memory 2010 , data storage 2015 , user input devices 2020 , and network interface 2025 may be integrated together into one or more integrated circuits or integrated circuit packages. Furthermore, some or all of the components of computer system 2000 may be implemented as application specific integrated circuits (ASICS) and/or programmable logic.
- ASICS application specific integrated circuits
- a power supply 2030 provides electrical power to the computer system 2000 .
- Power supply 2030 may be adapted to draw electrical power from a connection with an electrical power distribution grid.
- power supply 2030 is connected with network interface 2025 to draw electrical power for computer system 2000 from one or more wired network connections using a network power standard, such as IEEE 802.3af.
- embodiments of the invention can be used with any number of network connections and may be added to any type of power supply in addition to the stacked network power supply illustrated above.
- combinations or sub-combinations of the above disclosed invention can be advantageously made.
- the block diagrams of the architecture and flow charts are grouped for ease of understanding. However it should be understood that combinations of blocks, additions of new blocks, re-arrangement of blocks, and the like are contemplated in alternative embodiments of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Description
- This application is a continuation of U.S. Ser. No. 12/356,886, filed Jan. 21, 2009, entitled “AIRTIME-BASED SCHEDULING,” is incorporated herein by reference.
- This application is related to the field of wireless networking devices, and in particular to systems and methods for controlling network traffic to and from clients. Networking devices enable data communications between two or more devices, referred to generally as clients. Data communications may be conducted over wired and/or wireless network interfaces. Typically, data is partitioned into packets, which are then communicated via one or more networking devices to one or more destination clients.
- Networking devices may handle packets generated by and directed to large numbers of clients over the same interface. The bandwidth or data communications capacity of networking devices limits the amount of data or the rate of network packets passing through network devices. The limits on bandwidth are particularly acute in network devices including wireless network interfaces. If the bandwidth limit of a networking device is reached or exceeded by its client's network traffic, packets may be delayed or dropped. Depending on the type of data being communicated over the network, these traffic disruptions caused by reaching or exceeding bandwidth limit of a networking device may adversely affect the performance of applications on a client. For example, clients receiving voice or streaming video data may be adversely affected by even small delays or losses of packets.
- Because of the limits on network device bandwidth, many network devices include quality of service (QoS) functionality. Quality of service functionality allows network administrators to provide different priority for packets or other network data based on factors such as the associated client, user, client application, or data flow. Typically, users, clients, or applications are assigned to different quality of service profiles. Each quality of service profile specifies a quality of service parameters to associated packets or other network data. Networking devices use the scheduling weights to prioritize packet traffic and potentially guarantee a minimum level of performance to some or all of the network data flows.
- However, typical quality of service functionality does not take into consideration performance issues unique to wireless network interfaces. For example, many wireless network interfaces support multiple wireless networking standards, such as IEEE 802.11a, 802.11b, 802.11g, and 802.11n. This allows the networking device to support legacy clients using slower (e.g. relatively low data-rate) standards, such as 802.11b, as well as newer clients capable of communicating via faster (e.g. relatively high data-rate) standards, such as 802.11n. When a networking device is operating in a mixed mode and communicating with clients via multiple standards, the clients using slower data rates, such as clients using older standards or newer standards at lower data rates, for example due to lower signal strength or radio interference, will consume a disproportionate amount of airtime from the wireless network interface. As a result of this disproportionate airtime usage, the performance of other clients attempting to utilize faster data rates will be degraded substantially.
- An embodiment of the invention includes airtime usage as a factor in controlling network traffic flow to and from client devices via a wireless network interface. In an embodiment, packets or other data received via a wired or wireless network interface and directed to a client device or received from a client via a wireless network interface are assigned to a quality of service profile. Additionally, a cost value for communicating the packet or other data is determined at least in part based on an actual or estimated airtime usage for the packet to be communicated to or from the client via a wireless network interface. The cost value is used to allocate wireless network airtime to clients. In a further embodiment, the consumption of wireless network airtime may be varied dynamically based on operating conditions.
- In an embodiment, the cost value may be based on factors including the actual or estimated airtime used to communicate the packet via the wireless network interface; whether the packet or other data is a retransmission of a previous packet or other data; and actual or estimated wireless network overhead. The cost value of a packet may also be different depending on whether the packet is being sent from a client device or to a client device.
- In an embodiment, a token bucket scheduling system is used to allocate wireless network bandwidth based on received packets' cost values and token balances associated with quality of service profiles. In a further embodiment, packets or other data received from a client device via a wireless network interface may be dropped or discarded if a queue associated with a quality of service is full.
- The invention will be described with reference to the drawings, in which:
-
FIG. 1 illustrates a method of scheduling downlink network traffic according to an embodiment of the invention; and -
FIG. 2 illustrates an example computer system suitable for implementing an embodiment of the invention. -
FIG. 1 illustrates amethod 100 of scheduling downlink network traffic according to an embodiment of the invention. In this application, downlink network traffic refers to network traffic received by a network device via a wired or wireless network connection and directed to a client device via a wireless network connection. Instep 105, a packet or other type of network data is received by a network device. In an embodiment, the packet is directed to a client device in direct or indirect communication with the network device via a wireless network connection. For example, the network device may be adapted to communicate the packet directly to the client device via a wireless network connection or to one or more additional network devices via the wireless network connection, which in turn communicate the packet to the client device via a wired or wireless network connection. -
Step 110 determines a quality of service profile to be associated with the received packet. Embodiments ofstep 110 may assign a quality of service profile to packets based on the packet source, the packet destination, a user identity or user class associated with the packet source and/or packet destination, the contents or control data associated with a packet, a source or client application associated with a packet, and/or a data flow associated with the packet. The set of quality of service profiles may be specified by network administrators. As described in detail below, each quality of service profile is assigned a scheduling weight and a scheduling mode used to prioritize packets. In further embodiments, a quality of service profile may include a per-user rate limit. -
Step 115 determines a token cost for the received packet based on factors including an estimated airtime for the packet and the quality of service profile. In an embodiment, packets are assigned a cost value, referred to as a token cost. The token cost represents the relative amount of network performance consumed by communicating the associated packet towards the intended destination by the network device. - Embodiments of
step 115 take into account at least an estimated packet airtime to determine the token cost of the received packet. In an embodiment,step 115 estimates the airtime to communicate the received packet from the network device to the client based on the airtime required by previous packets to the same client, similar clients, and/or clients assigned to the same quality of service profile. For example, a running average of the airtime consumed by one or more of the most-recently sent packets to the same client may be used to determine at least a portion of the estimated packet airtime for the currently received packet. - In a further embodiment, the average airtime of recently sent packets is weighted or divided by their respective packet sizes to determine an average airtime consumed per data unit, such as average airtime consumed per byte. This average airtime consumed per data unit may then be scaled or weighted according the size of the received packet to determine at least a portion of the estimated airtime for the currently received packet. This enables the token cost of a packet to increase with the packet size, as larger packets consume more network bandwidth.
- In addition to estimating the airtime consumed in transmitting the packet, an embodiment of
step 115 may also include other factors in determining the token cost of a packet. The token cost or total estimated airtime may include an estimated airtime for transmitting a packet to the client, the actual, estimated, or prorated airtime used for retransmitting packets that were previously unsuccessfully transmitted, and/or some or all of the network overhead. -
Optional decision block 117 may determine if the packet is associated with a critical quality of service profile. In an embodiment, users, user groups, and/or the types of applications associated with a packet may be assigned to a critical quality of service profile if any delay in forwarding the packet is unacceptable. For example, packets from voice-over IP (VOIP) and live video applications may be assigned to a critical quality of service profile. If a packet is associated with a critical quality of service profile,method 100 proceeds directly fromdecision block 117 tostep 130 to forward the packet to its destination. However, as described in detail below,step 130 may deduct the token cost of this critical packet from a token bucket associated with the application, user group, or individual user. This has the effect of potentially limiting the airtime of any future non-critical packets from the same application, user group, or user. - Step 120 determines a token balance of a token bucket associated with the selected quality of service profile. In an embodiment, each quality of service profile is associated with its own token bucket. A token bucket is a data structure including a token balance value. The token balance value represents the unused proportion of the network bandwidth assigned to a quality of service profile. Token costs and token balance values may be expressed in arbitrary units.
- In an embodiment, the token balance value of each token bucket is periodically increased or incremented, representing additional network bandwidth allocated to the associated quality of service profile for a period of time. In an embodiment, a scheduling weight associated with a quality of service profile is used to determine the rate or amount by which the token balance value of the token bucket is increased. For example, the token balance value of a token bucket associated with a higher priority quality of service profile may be incremented more frequently and/or by larger amounts. This has the effect of allocating more network bandwidth to packets associated with the high priority quality of service profile. In an alternate embodiment, each token bucket has its token balance value incremented by the same amount and at the same frequency.
- In further embodiments, the range of the token balance value of each token bucket may be limited between a maximum token balance value and/or a minimum token balance value. The token increment value, token balance incrementing rate, and the minimum and maximum token balance limits of each token bucket may be specified based on the associated quality of service profile and optionally one or more other quality of service profiles. In a further embodiment, the token increment value, token balance incrementing rate, the minimum and maximum token balance limits of each token bucket, or any other factor affecting the allocation of wireless networking airtime may be dynamically specified based on the performance of the wireless network interface.
-
Decision block 125 compares the token cost of the received packet with the token balance value of the associated token bucket. If the token cost of the received packet is less than the token balance of the token bucket corresponding with the assigned quality of service profile, thenmethod 100 proceeds to step 130. - Step 130 deducts the token cost from the token balance of the associated token bucket and forwards the packet to the client via the wireless network interface. By deducting the token cost from the token balance of the token bucket, the token balance reflects the relative proportion of the wireless network interface's bandwidth that has been used by the assigned quality of service profile. The packet may be communicated to the client device using any wireless networking standard or technique known in the art. In a further embodiment, the network device may communicate with multiple clients using different wireless networking standards or techniques, depending on the client capabilities and/or operating conditions. Following
step 130,method 100 optionally proceeds back to step 105 to await the receipt of another packet directed to the same or a different client. - In a further embodiment,
step 130 deducts the token cost from the token balance value of the associated token bucket in two phases. First,step 130 deducts the token cost based at least partly on an estimated airtime for the received packet. Step 130 then forwards the packet to the client device via the wireless network interface. Additionally, step 130 monitors the transmission of this packet towards the client to determine its actual airtime usage. Step 130 then uses this actual airtime usage to determine a revised token cost for the received packet. Step 130 then subtracts the difference between the revised token cost and the original token cost of the packet from the token balance value of the token bucket. This adjustment may increase or decrease the token balance value of the token bucket, depending on whether the actual airtime usage of the packet is less than or greater than the estimated airtime, respectively. - Returning to decision block 125, if the token cost of the received packet is greater than the token balance of the token bucket corresponding with the assigned quality of service profile, then
method 100 proceeds to step 135. Step 135 queues the received packet associated with this quality of service profile until the token balance of its associated token bucket is increased. Following the increase of the token balance of the token bucket associated with the quality of service profile assigned to the received packet, an embodiment ofmethod 100 proceeds back tostep 120.Steps step 135, other packets may be received and processed according tomethod 100. - Although described with reference to downlink network traffic from a network device to a client device, embodiments of
method 100 may also be applied to scheduling uplink network traffic from a client device to a network device via a wireless network interface. In this embodiment,method 100 operates in a similar manner as described above. However, the actual airtime of the received uplink packet is already known, eliminating the need to use an estimated airtime to determine at least part of the token cost. - As described above, a packet may be assigned to a critical quality of service profile if any delay in forwarding the packet is unacceptable. In an embodiment,
step 130 deducts the token cost of these packets from the token balance of the associated token bucket, similar to other packets associated with non-critical quality of service profiles. However, because packets assigned to critical quality of service profiles bypasssteps - Although
method 100 uses token costs and token buckets for controlling network traffic based at least in part on airtime usage, embodiments of the invention can include airtime usage as a factor controlling network traffic using any other network traffic shaping, bandwidth throttling, rate limiting, or quality of service technique known in the art. -
FIG. 2 illustrates an example computer system suitable for implementing an embodiment of the invention.FIG. 2 is a block diagram of acomputer system 2000, such as a personal computer or other digital device, suitable for practicing an embodiment of the invention. Embodiments ofcomputer system 2000 may include dedicated networking devices, such as wireless access points, network switches, hubs, routers, hardware firewalls, network traffic optimizers and accelerators, network attached storage devices, and combinations thereof. -
Computer system 2000 includes a central processing unit (CPU) 2005 for running software applications and optionally an operating system.CPU 2005 may be comprised of one or more processing cores.Memory 2010 stores applications and data for use by theCPU 2005. Examples ofmemory 2010 include dynamic and static random access memory.Storage 2015 provides non-volatile storage for applications and data and may include fixed or removable hard disk drives, flash memory devices, ROM memory, and CD-ROM, DVD-ROM, Blu-ray, HD-DVD, or other magnetic, optical, or solid state storage devices. - Optional user input devices 2020 communicate user inputs from one or more users to the
computer system 2000, examples of which may include keyboards, mice, joysticks, digitizer tablets, touch pads, touch screens, still or video cameras, and/or microphones. In an embodiment, user input devices may be omitted andcomputer system 2000 may present a user interface to a user over a network, for example using a web page or network management protocol and network management software applications. -
Computer system 2000 includes one ormore network interfaces 2025 that allowcomputer system 2000 to communicate with other computer systems via an electronic communications network, and may include wired or wireless communication over local area networks and wide area networks such as the Internet.Computer system 2000 may support a variety of networking protocols at one or more levels of abstraction. For example, computer system may support networking protocols at one or more layers of the seven layer OSI network model. An embodiment ofnetwork interface 2025 includes one or more wireless network interfaces adapted to communicate with wireless clients and with other wireless networking devices using radio waves, for example using the 802.11 family of protocols, such as 802.11a, 802.11, 802.11g, and 802.11n. - An embodiment of the
computer system 2000 may also include a wired networking interface, such as one or more Ethernet connections to communicate with other networking devices via local or wide-area networks. In a further embodiment,computer system 2000 may be capable of receiving some or all of its required electrical power via thenetwork interface 2025, for example using a wired networking interface power over Ethernet system. - The components of
computer system 2000, includingCPU 2005,memory 2010,data storage 2015, user input devices 2020, andnetwork interface 2025 are connected via one ormore data buses 2060. Additionally, some or all of the components ofcomputer system 2000, includingCPU 2005,memory 2010,data storage 2015, user input devices 2020, andnetwork interface 2025 may be integrated together into one or more integrated circuits or integrated circuit packages. Furthermore, some or all of the components ofcomputer system 2000 may be implemented as application specific integrated circuits (ASICS) and/or programmable logic. - A power supply 2030 provides electrical power to the
computer system 2000. Power supply 2030 may be adapted to draw electrical power from a connection with an electrical power distribution grid. In an embodiment, power supply 2030 is connected withnetwork interface 2025 to draw electrical power forcomputer system 2000 from one or more wired network connections using a network power standard, such as IEEE 802.3af. - Further embodiments can be envisioned to one of ordinary skill in the art after reading the attached documents. For example, embodiments of the invention can be used with any number of network connections and may be added to any type of power supply in addition to the stacked network power supply illustrated above. In other embodiments, combinations or sub-combinations of the above disclosed invention can be advantageously made. The block diagrams of the architecture and flow charts are grouped for ease of understanding. However it should be understood that combinations of blocks, additions of new blocks, re-arrangement of blocks, and the like are contemplated in alternative embodiments of the present invention.
- The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense. It will, however, be evident that various modifications and changes may be made thereunto without departing from the broader spirit and scope of the invention as set forth in the claims.
Claims (19)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/938,159 US8730931B1 (en) | 2009-01-21 | 2013-07-09 | Airtime-based packet scheduling for wireless networks |
US14/250,294 US9572135B2 (en) | 2009-01-21 | 2014-04-10 | Airtime-based packet scheduling for wireless networks |
US15/243,720 US9867167B2 (en) | 2009-01-21 | 2016-08-22 | Airtime-based packet scheduling for wireless networks |
US15/865,027 US10219254B2 (en) | 2009-01-21 | 2018-01-08 | Airtime-based packet scheduling for wireless networks |
US16/286,577 US10772081B2 (en) | 2009-01-21 | 2019-02-26 | Airtime-based packet scheduling for wireless networks |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/356,886 US8483194B1 (en) | 2009-01-21 | 2009-01-21 | Airtime-based scheduling |
US13/938,159 US8730931B1 (en) | 2009-01-21 | 2013-07-09 | Airtime-based packet scheduling for wireless networks |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/356,886 Continuation US8483194B1 (en) | 2009-01-21 | 2009-01-21 | Airtime-based scheduling |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/250,294 Continuation US9572135B2 (en) | 2009-01-21 | 2014-04-10 | Airtime-based packet scheduling for wireless networks |
Publications (2)
Publication Number | Publication Date |
---|---|
US8730931B1 US8730931B1 (en) | 2014-05-20 |
US20140160929A1 true US20140160929A1 (en) | 2014-06-12 |
Family
ID=48701450
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/356,886 Active US8483194B1 (en) | 2009-01-21 | 2009-01-21 | Airtime-based scheduling |
US13/938,159 Active US8730931B1 (en) | 2009-01-21 | 2013-07-09 | Airtime-based packet scheduling for wireless networks |
US14/250,294 Active US9572135B2 (en) | 2009-01-21 | 2014-04-10 | Airtime-based packet scheduling for wireless networks |
US15/243,720 Active US9867167B2 (en) | 2009-01-21 | 2016-08-22 | Airtime-based packet scheduling for wireless networks |
US15/865,027 Active US10219254B2 (en) | 2009-01-21 | 2018-01-08 | Airtime-based packet scheduling for wireless networks |
US16/286,577 Active US10772081B2 (en) | 2009-01-21 | 2019-02-26 | Airtime-based packet scheduling for wireless networks |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/356,886 Active US8483194B1 (en) | 2009-01-21 | 2009-01-21 | Airtime-based scheduling |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/250,294 Active US9572135B2 (en) | 2009-01-21 | 2014-04-10 | Airtime-based packet scheduling for wireless networks |
US15/243,720 Active US9867167B2 (en) | 2009-01-21 | 2016-08-22 | Airtime-based packet scheduling for wireless networks |
US15/865,027 Active US10219254B2 (en) | 2009-01-21 | 2018-01-08 | Airtime-based packet scheduling for wireless networks |
US16/286,577 Active US10772081B2 (en) | 2009-01-21 | 2019-02-26 | Airtime-based packet scheduling for wireless networks |
Country Status (1)
Country | Link |
---|---|
US (6) | US8483194B1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160026535A1 (en) * | 2014-07-25 | 2016-01-28 | Netapp, Inc. | Techniques for dynamically controlling resources based on service level objectives |
TWI572168B (en) * | 2014-12-19 | 2017-02-21 | 聯發科技股份有限公司 | Wireless device and method for setting packet de-queue scheduling of packet queue device |
US10432536B1 (en) * | 2017-12-11 | 2019-10-01 | Xilinx, Inc. | Systems and methods for policing streams in a network |
US11290387B2 (en) | 2020-03-30 | 2022-03-29 | Semiconductor Components Industries, Llc | Out of order packet scheduler |
US11711312B2 (en) | 2020-03-30 | 2023-07-25 | Maxlinear, Inc. | Out of order packet scheduler |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110138434A1 (en) * | 2009-12-09 | 2011-06-09 | General Instrument Corporation | System and method for a digital tv converter with iptv capabilities |
US8959218B2 (en) * | 2010-06-21 | 2015-02-17 | Cox Communications, Inc. | Secure dynamic quality of service using packetcable multimedia |
US8953453B1 (en) * | 2011-12-15 | 2015-02-10 | Amazon Technologies, Inc. | System and method for throttling service requests using work-based tokens |
US8914497B1 (en) | 2011-12-15 | 2014-12-16 | Amazon Technologies, Inc. | System and method for throttling service requests having non-uniform workloads |
US9712453B1 (en) * | 2012-03-26 | 2017-07-18 | Amazon Technologies, Inc. | Adaptive throttling for shared resources |
WO2014141026A1 (en) | 2013-03-13 | 2014-09-18 | Celeno Communications (Israel) Ltd. | Airtime-aware scheduling for wireless local-area network |
US11086898B2 (en) | 2013-03-13 | 2021-08-10 | Amazon Technologies, Inc. | Token-based admission control for replicated writes |
US9313190B2 (en) | 2014-02-07 | 2016-04-12 | Bank Of America Corporation | Shutting down access to all user accounts |
US9223951B2 (en) | 2014-02-07 | 2015-12-29 | Bank Of America Corporation | User authentication based on other applications |
US9305149B2 (en) * | 2014-02-07 | 2016-04-05 | Bank Of America Corporation | Sorting mobile banking functions into authentication buckets |
US9286450B2 (en) | 2014-02-07 | 2016-03-15 | Bank Of America Corporation | Self-selected user access based on specific authentication types |
US9208301B2 (en) | 2014-02-07 | 2015-12-08 | Bank Of America Corporation | Determining user authentication requirements based on the current location of the user in comparison to the users's normal boundary of location |
US9647999B2 (en) | 2014-02-07 | 2017-05-09 | Bank Of America Corporation | Authentication level of function bucket based on circumstances |
US9965606B2 (en) | 2014-02-07 | 2018-05-08 | Bank Of America Corporation | Determining user authentication based on user/device interaction |
US10200509B1 (en) | 2014-09-16 | 2019-02-05 | Juniper Networks, Inc. | Relative airtime fairness in a wireless network |
US9860317B1 (en) | 2015-04-30 | 2018-01-02 | Amazon Technologies, Inc. | Throughput throttling for distributed file storage services with varying connection characteristics |
US9641539B1 (en) | 2015-10-30 | 2017-05-02 | Bank Of America Corporation | Passive based security escalation to shut off of application based on rules event triggering |
US9729536B2 (en) | 2015-10-30 | 2017-08-08 | Bank Of America Corporation | Tiered identification federated authentication network system |
US9820148B2 (en) | 2015-10-30 | 2017-11-14 | Bank Of America Corporation | Permanently affixed un-decryptable identifier associated with mobile device |
US10021565B2 (en) | 2015-10-30 | 2018-07-10 | Bank Of America Corporation | Integrated full and partial shutdown application programming interface |
US9432999B1 (en) * | 2015-11-19 | 2016-08-30 | Uwatec Sárl | Optimization of airtime among Wi-Fi clients connected to an access point |
US11259352B2 (en) | 2016-09-26 | 2022-02-22 | The Trustees Of Columbia University In The City Of New York | Systems, methods, and media for providing multi-homing |
US10687341B2 (en) * | 2016-09-26 | 2020-06-16 | The Trustees Of Columbia University In The City Of New York | Systems, methods, and media for scheduling traffic of a communication session between an application on a WiFi network and another device |
US11297634B2 (en) | 2016-09-26 | 2022-04-05 | The Trustees Of Columbia University In The City Of New York | Systems, methods, and media for scheduling traffic of a communication session between an application on a WiFi network and another device |
US10165480B1 (en) | 2017-06-23 | 2018-12-25 | Hewlett Packard Enterprise Development Lp | Selectively deauthenticating a client device managed by a controller associated with multi-zones |
US10917353B2 (en) * | 2018-02-28 | 2021-02-09 | Microsoft Technology Licensing, Llc | Network traffic flow logging in distributed computing systems |
JP7206920B2 (en) * | 2019-01-08 | 2023-01-18 | 富士フイルムビジネスイノベーション株式会社 | Information processing device and program |
CN111510394B (en) * | 2019-01-31 | 2022-04-12 | 华为技术有限公司 | Message scheduling method, related equipment and computer storage medium |
CN112152933B (en) * | 2019-06-27 | 2023-03-10 | 华为技术有限公司 | Method and device for sending flow |
EP4193632A4 (en) * | 2020-08-10 | 2024-05-15 | ARRIS Enterprises LLC | Managing air time fairness of client devices in a wireless network |
CN114448903A (en) * | 2020-10-20 | 2022-05-06 | 华为技术有限公司 | Message processing method, device and communication equipment |
Family Cites Families (253)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5726984A (en) | 1989-01-31 | 1998-03-10 | Norand Corporation | Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones |
US5280630A (en) | 1992-01-21 | 1994-01-18 | Motorola, Inc. | Method and apparatus for dynamic channel allocation |
US5956643A (en) | 1994-01-13 | 1999-09-21 | Lucent Technologies Inc. | Apparatus and method for adaptive dynamic channel assignment in wireless communication networks |
AU2595595A (en) | 1994-05-19 | 1995-12-18 | Airnet Communications Corporation | System for dynamically allocating channels among base stations in a wireless communication system |
US6112092A (en) | 1996-04-18 | 2000-08-29 | Lucent Technologies Inc. | Self-configurable channel assignment system and method |
US6473623B1 (en) | 1996-04-18 | 2002-10-29 | At&T Wireless Services, Inc. | Method for self-calibration of a wireless communication system |
US6061799A (en) | 1997-10-31 | 2000-05-09 | International Business Machines Corp. | Removable media for password based authentication in a distributed system |
US6119011A (en) | 1998-03-05 | 2000-09-12 | Lucent Technologies Inc. | Cost-function-based dynamic channel assignment for a cellular system |
US6154655A (en) | 1998-03-05 | 2000-11-28 | Lucent Technologies Inc. | Flexible channel allocation for a cellular system based on a hybrid measurement-based dynamic channel assignment and a reuse-distance criterion algorithm |
US6233222B1 (en) | 1998-03-06 | 2001-05-15 | Telefonaktiebolaget Lm Ericsson | Telecommunications inter-exchange congestion control |
US6201792B1 (en) | 1998-05-14 | 2001-03-13 | 3Com Corporation | Backpressure responsive multicast queue |
US20060062192A1 (en) * | 1998-06-26 | 2006-03-23 | Payne William A Iii | Method for wireless access system supporting multiple frame types |
US6535509B2 (en) | 1998-09-28 | 2003-03-18 | Infolibria, Inc. | Tagging for demultiplexing in a network traffic server |
US6636498B1 (en) | 1999-01-08 | 2003-10-21 | Cisco Technology, Inc. | Mobile IP mobile router |
US6229795B1 (en) * | 1999-01-13 | 2001-05-08 | Qualcomm Incorporated | System for allocating resources in a communication system |
US6549782B2 (en) | 1999-03-31 | 2003-04-15 | Siemens Information And Communication Networks, Inc. | Radio communications systems |
US6628623B1 (en) | 1999-05-24 | 2003-09-30 | 3Com Corporation | Methods and systems for determining switch connection topology on ethernet LANs |
US6473413B1 (en) | 1999-06-22 | 2002-10-29 | Institute For Information Industry | Method for inter-IP-domain roaming across wireless networks |
US7085241B1 (en) | 1999-07-19 | 2006-08-01 | British Telecommunications Public Limited Company | Method of controlling routing of packets to a mobile node in a telecommunications network |
US8085813B2 (en) | 1999-10-28 | 2011-12-27 | Lightwaves Systems, Inc. | Method for routing data packets using an IP address based on geo position |
US6519461B1 (en) | 1999-10-29 | 2003-02-11 | Telefonaktiebolaget Lm Ericsson (Publ) | Channel-type switching from a common channel to a dedicated channel based on common channel load |
US20020021689A1 (en) | 1999-12-30 | 2002-02-21 | Robbins Barry R. | Method and apparatus for transparent internet mobility management |
US20050259682A1 (en) | 2000-02-03 | 2005-11-24 | Yuval Yosef | Broadcast system |
US6865393B1 (en) | 2000-03-03 | 2005-03-08 | Motorola, Inc. | Method and system for excess resource distribution in a communication system |
US7130629B1 (en) | 2000-03-08 | 2006-10-31 | Cisco Technology, Inc. | Enabling services for multiple sessions using a single mobile node |
US6845091B2 (en) | 2000-03-16 | 2005-01-18 | Sri International | Mobile ad hoc extensions for the internet |
US7327683B2 (en) | 2000-03-16 | 2008-02-05 | Sri International | Method and apparatus for disseminating topology information and for discovering new neighboring nodes |
TWI222012B (en) | 2000-04-13 | 2004-10-11 | Ibm | Method and system for network processor scheduling outputs using disconnect/reconnect flow queues |
TW484283B (en) | 2000-08-11 | 2002-04-21 | Ind Tech Res Inst | Dynamic scheduling scheduler framework and method for mobile communication |
US6628938B1 (en) | 2000-08-14 | 2003-09-30 | Koninklijke Philips Electronics N.V. | Wireless system, a method of selecting an application while receiving application specific messages and user location method using user location awareness |
US7336613B2 (en) | 2000-10-17 | 2008-02-26 | Avaya Technology Corp. | Method and apparatus for the assessment and optimization of network traffic |
AU2001295809A1 (en) | 2000-10-26 | 2002-05-06 | British Telecommunications Plc | Telecommunications routing |
US7058709B2 (en) | 2000-11-14 | 2006-06-06 | International Business Machines Corporation | Enabling surveillance of network connected device |
US7126937B2 (en) | 2000-12-26 | 2006-10-24 | Bluesocket, Inc. | Methods and systems for clock synchronization across wireless networks |
US8219620B2 (en) | 2001-02-20 | 2012-07-10 | Mcafee, Inc. | Unwanted e-mail filtering system including voting feedback |
AU2002306608B2 (en) * | 2001-02-26 | 2007-08-23 | 4Thpass Inc. | Method and system for transmission-based billing of applications |
US7085224B1 (en) | 2001-06-14 | 2006-08-01 | Cisco Technology, Inc. | Method and apparatus for fast failure detection in switched LAN networks |
US6920506B2 (en) | 2001-06-28 | 2005-07-19 | Canon Information Systems, Inc. | Discovery and management of network printers |
US7181530B1 (en) | 2001-07-27 | 2007-02-20 | Cisco Technology, Inc. | Rogue AP detection |
WO2003029916A2 (en) | 2001-09-28 | 2003-04-10 | Bluesocket, Inc. | Method and system for managing data traffic in wireless networks |
US20040064467A1 (en) * | 2001-10-18 | 2004-04-01 | Tero Kola | Method for scheduling of packet data and a packet data scheduler |
US20030084104A1 (en) | 2001-10-31 | 2003-05-01 | Krimo Salem | System and method for remote storage and retrieval of data |
US20030104814A1 (en) | 2001-11-30 | 2003-06-05 | Docomo Communications Laboratories Usa | Low latency mobile initiated tunneling handoff |
KR100464447B1 (en) * | 2001-12-11 | 2005-01-03 | 삼성전자주식회사 | Method and apparatus for scheduling data packets according to quality of service in mobile telecommunication system |
KR100547852B1 (en) * | 2002-01-09 | 2006-02-01 | 삼성전자주식회사 | Method for admitting call in mobile communication system |
US20030145091A1 (en) | 2002-01-28 | 2003-07-31 | Telefonaktiebolaget L M Ericsson | Access terminal profile in a data cellular network |
CA2419767C (en) * | 2002-02-25 | 2011-01-04 | Olsonet Communications Corporation | Method for routing ad-hoc signals |
US7369489B1 (en) * | 2002-03-12 | 2008-05-06 | Cisco Technology, Inc. | Unbiased token bucket |
BR0215667A (en) | 2002-03-27 | 2006-06-06 | Ibm | wireless access point program method, device, and products |
GB0207454D0 (en) | 2002-03-28 | 2002-05-08 | British Telecomm | Method of data transfer in mobile and fixed telecommunications systems |
US20040054774A1 (en) | 2002-05-04 | 2004-03-18 | Instant802 Networks Inc. | Using wireless network access points for monitoring radio spectrum traffic and interference |
ATE399418T1 (en) | 2002-06-20 | 2008-07-15 | Ericsson Telefon Ab L M | DEVICE AND METHOD FOR ALLOCATING RESOURCES |
US7366894B1 (en) | 2002-06-25 | 2008-04-29 | Cisco Technology, Inc. | Method and apparatus for dynamically securing voice and other delay-sensitive network traffic |
US7593356B1 (en) | 2002-06-25 | 2009-09-22 | Cisco Systems, Inc. | Method and system for dynamically assigning channels across multiple access elements in a wireless LAN |
US7965842B2 (en) | 2002-06-28 | 2011-06-21 | Wavelink Corporation | System and method for detecting unauthorized wireless access points |
US7164667B2 (en) | 2002-06-28 | 2007-01-16 | Belair Networks Inc. | Integrated wireless distribution and mesh backhaul networks |
BRPI0215749B1 (en) | 2002-07-15 | 2015-12-29 | Nokia Siemens Networks Gmbh | resident agent optimization for static mpls mobile ip handling (multiprotocol tag switching). |
US20040192312A1 (en) * | 2002-07-16 | 2004-09-30 | Jia-Ru Li | Communication system for voice and data with wireless TCP server |
US6993039B2 (en) | 2002-07-22 | 2006-01-31 | Utstarcom, Inc. | System and method for GRE heartbeats |
US20040022222A1 (en) | 2002-07-31 | 2004-02-05 | Allister Clisham | Wireless metropolitan area network system and method |
US8254346B2 (en) | 2002-09-17 | 2012-08-28 | Broadcom Corporation | Communication system and method for discovering end-points that utilize a link layer connection in a wired/wireless local area network |
US6957067B1 (en) | 2002-09-24 | 2005-10-18 | Aruba Networks | System and method for monitoring and enforcing policy within a wireless network |
US7599323B2 (en) | 2002-10-17 | 2009-10-06 | Alcatel-Lucent Usa Inc. | Multi-interface mobility client |
US7647427B1 (en) | 2002-10-18 | 2010-01-12 | Foundry Networks, Inc. | Redundancy support for network address translation (NAT) |
US7420952B2 (en) | 2002-10-28 | 2008-09-02 | Mesh Dynamics, Inc. | High performance wireless networks using distributed control |
US6832074B2 (en) | 2002-11-04 | 2004-12-14 | Telcordia Technologies, Inc. | Method and system for real time cellular network configuration |
US7224697B2 (en) | 2002-11-04 | 2007-05-29 | Agere Systems Inc. | Dynamic channel selector and method of selecting a channel in a wireless local area network |
US7350077B2 (en) | 2002-11-26 | 2008-03-25 | Cisco Technology, Inc. | 802.11 using a compressed reassociation exchange to facilitate fast handoff |
EP1429497B1 (en) | 2002-12-09 | 2016-03-02 | Alcatel Lucent | Method of relaying traffic from a source to a targeted destination in a communications network and corresponding equipment |
JP4315910B2 (en) * | 2003-01-23 | 2009-08-19 | 富士通株式会社 | COMMUNICATION RESOURCE MANAGEMENT DEVICE AND CONTROL CHANNEL ALLOCATION METHOD |
US7174170B2 (en) | 2003-02-12 | 2007-02-06 | Nortel Networks Limited | Self-selection of radio frequency channels to reduce co-channel and adjacent channel interference in a wireless distributed network |
US20040162037A1 (en) | 2003-02-18 | 2004-08-19 | Eran Shpak | Multi-channel WLAN transceiver with antenna diversity |
US20040236939A1 (en) | 2003-02-20 | 2004-11-25 | Docomo Communications Laboratories Usa, Inc. | Wireless network handoff key |
CA2516732A1 (en) | 2003-02-24 | 2004-09-10 | Autocell Laboratories, Inc. | Wireless network architecture |
US20070078663A1 (en) | 2003-03-03 | 2007-04-05 | Grace Ryan T | Method and instrument for proposing marriage to an individual |
US7562384B1 (en) | 2003-03-07 | 2009-07-14 | Cisco Technology, Inc. | Method and apparatus for providing a secure name resolution service for network devices |
US7634252B2 (en) | 2003-03-07 | 2009-12-15 | Computer Assocaites Think, Inc. | Mobility management in wireless networks |
US20040196977A1 (en) | 2003-04-02 | 2004-10-07 | Johnson Bruce L. | Conveying wireless encryption keys upon client device connecting to network in non-wireless manner |
US7346338B1 (en) | 2003-04-04 | 2008-03-18 | Airespace, Inc. | Wireless network system including integrated rogue access point detection |
US20040255028A1 (en) | 2003-05-30 | 2004-12-16 | Lucent Technologies Inc. | Functional decomposition of a router to support virtual private network (VPN) services |
JP3880549B2 (en) | 2003-06-16 | 2007-02-14 | 松下電器産業株式会社 | Mobile terminal device and handoff method thereof |
US7649866B2 (en) | 2003-06-24 | 2010-01-19 | Tropos Networks, Inc. | Method of subnet roaming within a network |
US7453840B1 (en) | 2003-06-30 | 2008-11-18 | Cisco Systems, Inc. | Containment of rogue systems in wireless network environments |
US7079552B2 (en) | 2003-09-09 | 2006-07-18 | Harris Corporation | Mobile ad hoc network (MANET) with quality-of-service (QoS) protocol hierarchy and related methods |
KR100566210B1 (en) | 2003-09-22 | 2006-03-29 | 삼성전자주식회사 | Apparatus and method for allocating channel in a wireless communication system |
US7664032B2 (en) | 2003-11-10 | 2010-02-16 | Oki Electric Industry Co., Ltd. | Communication terminal and communication network |
KR20060115876A (en) | 2003-11-18 | 2006-11-10 | 에어 브로드밴드 커뮤니케이션스, 인코포레이티드 | Dhcp pool sharing mechanism in mobile environment |
US7856209B1 (en) | 2003-12-08 | 2010-12-21 | Airtight Networks, Inc. | Method and system for location estimation in wireless networks |
US7002943B2 (en) | 2003-12-08 | 2006-02-21 | Airtight Networks, Inc. | Method and system for monitoring a selected region of an airspace associated with local area networks of computing devices |
US7656822B1 (en) | 2003-12-22 | 2010-02-02 | Sun Microsystems, Inc. | Method and apparatus for decentralized device and service description and discovery |
US7949342B2 (en) | 2004-01-08 | 2011-05-24 | Interdigital Technology Corporation | Radio resource management in wireless local area networks |
US7057566B2 (en) | 2004-01-20 | 2006-06-06 | Cisco Technology, Inc. | Flexible multichannel WLAN access point architecture |
US7440434B2 (en) | 2004-02-11 | 2008-10-21 | Airtight Networks, Inc. | Method and system for detecting wireless access devices operably coupled to computer local area networks and related methods |
US7339914B2 (en) | 2004-02-11 | 2008-03-04 | Airtight Networks, Inc. | Automated sniffer apparatus and method for monitoring computer systems for unauthorized access |
US7216365B2 (en) | 2004-02-11 | 2007-05-08 | Airtight Networks, Inc. | Automated sniffer apparatus and method for wireless local area network security |
US7843907B1 (en) | 2004-02-13 | 2010-11-30 | Habanero Holdings, Inc. | Storage gateway target for fabric-backplane enterprise servers |
JP4394988B2 (en) | 2004-03-19 | 2010-01-06 | 富士通株式会社 | Packet read control method and apparatus |
US7418264B2 (en) | 2004-05-07 | 2008-08-26 | Lg Electronics Inc. | Performing handover by deferring IP address establishment |
CN101411156B (en) | 2004-05-12 | 2011-04-20 | 阿尔卡特朗讯 | Automated containment of network intruder |
US20050265288A1 (en) | 2004-05-27 | 2005-12-01 | Jiewen Liu | Apparatus and method capable of automatic allocation of operating channels in a wireless network |
US7519945B2 (en) | 2004-06-17 | 2009-04-14 | International Business Machines Corporation | System and method for supporting data driving a software process using objects of arbitrary data types |
JP2006054849A (en) | 2004-07-13 | 2006-02-23 | Iwatsu Electric Co Ltd | Method of automatic channel decision and automatic channel allocation system for access point |
US8285855B2 (en) | 2004-08-02 | 2012-10-09 | Microsoft Corporation | System, method and user interface for network status reporting |
WO2006029131A2 (en) | 2004-09-07 | 2006-03-16 | Meshnetworks, Inc. | System and method for routing data between different types of nodes in a wireless network |
US7512379B2 (en) | 2004-10-29 | 2009-03-31 | Hien Nguyen | Wireless access point (AP) automatic channel selection |
TWI268083B (en) | 2004-11-17 | 2006-12-01 | Draytek Corp | Method used by an access point of a wireless LAN and related apparatus |
US7711361B2 (en) | 2004-11-24 | 2010-05-04 | Azalea Networks | Method and system for distributed roaming services for mobile users on wireless mesh networks |
US20060117018A1 (en) | 2004-11-30 | 2006-06-01 | Microsoft Corporation | Method and system for caching remote files locally |
WO2006068595A1 (en) | 2004-12-22 | 2006-06-29 | Xelerated Ab | A method for reducing buffer capacity in a pipeline processor |
US20060140123A1 (en) | 2004-12-29 | 2006-06-29 | Intel Corporation | Methods and apparatus for distributing link-state information associated with a wireless mesh network |
US7626967B2 (en) | 2005-01-05 | 2009-12-01 | Intel Corporation | Methods and apparatus for providing a transparent bridge associated with a wireless mesh network |
WO2006086553A2 (en) | 2005-02-09 | 2006-08-17 | Sinett Corporation | Queuing and scheduling architecture for a unified access device supporting wired and wireless clients |
US7370362B2 (en) | 2005-03-03 | 2008-05-06 | Cisco Technology, Inc. | Method and apparatus for locating rogue access point switch ports in a wireless network |
US7706789B2 (en) | 2005-03-31 | 2010-04-27 | Intel Corporation | Techniques to manage roaming |
US8532304B2 (en) | 2005-04-04 | 2013-09-10 | Nokia Corporation | Administration of wireless local area networks |
US7729325B2 (en) | 2005-04-05 | 2010-06-01 | Toshiba America Research, Inc. | Beamforming and distributed opportunistic scheduling in wireless networks |
US7463607B2 (en) | 2005-04-15 | 2008-12-09 | Intel Corporation | Apparatus, system and method capable of pre-allocating and communicating IP address information during wireless communication |
US7499409B2 (en) | 2005-04-29 | 2009-03-03 | Tropos Networks, Inc. | Wireless mesh network verification |
WO2006120533A2 (en) | 2005-05-06 | 2006-11-16 | Nokia Corporation | Mechanism to enable discovery of link/network features in wlan networks |
WO2006129287A1 (en) | 2005-06-03 | 2006-12-07 | Koninklijke Philips Electronics N.V. | Method and devices for wireless network access management |
KR100677596B1 (en) | 2005-06-11 | 2007-02-02 | 삼성전자주식회사 | Method and Device for allocating a channel to wireless interface |
JP4364165B2 (en) * | 2005-06-17 | 2009-11-11 | 株式会社東芝 | Wireless communication device |
CN101199219B (en) | 2005-06-21 | 2013-06-05 | 摩托罗拉移动公司 | Method and apparatus to facilitate communications using surrogate and care-of internet protocol addresses |
CN101199215B (en) | 2005-06-21 | 2012-11-14 | 摩托罗拉移动公司 | System and method for paging and location update in a network |
US20060294246A1 (en) | 2005-06-23 | 2006-12-28 | Cisco Technology, Inc. | Element designations for network optimization |
US7392017B2 (en) | 2005-06-30 | 2008-06-24 | Google Inc. | Assessing wireless network quality |
US9008613B2 (en) | 2005-07-06 | 2015-04-14 | Qualcomm Incorporated | Connection and data application billing |
US7787361B2 (en) | 2005-07-29 | 2010-08-31 | Cisco Technology, Inc. | Hybrid distance vector protocol for wireless mesh networks |
KR100678151B1 (en) | 2005-08-01 | 2007-02-02 | 삼성전자주식회사 | Method and system for servicing roaming in mobile communication system |
US7835743B2 (en) | 2005-08-03 | 2010-11-16 | Toshiba America Research, Inc. | Seamless network interface selection, handoff and management in multi-IP network interface mobile devices |
US20070049323A1 (en) | 2005-08-25 | 2007-03-01 | Research In Motion Limited | Rogue access point detection and restriction |
US20070077937A1 (en) * | 2005-08-26 | 2007-04-05 | Ramakrishnan Kajamalai G | Method and system for performing call admission control in a communication system |
US20070093208A1 (en) | 2005-09-30 | 2007-04-26 | Arati Manjeshwar | Method and system for providing interference avoidance and network coexistence in wireless systems |
US8874477B2 (en) | 2005-10-04 | 2014-10-28 | Steven Mark Hoffberg | Multifactorial optimization system and method |
RU2008113172A (en) | 2005-10-07 | 2009-10-10 | Самсунг Электроникс Ко., Лтд. (KR) | METHOD AND DEVICE FOR COMMUNICATION OF USER EQUIPMENT USING THE PROTOCOL INTERNET ADDRESS IN THE MOBILE COMMUNICATION SYSTEM |
US20070082656A1 (en) | 2005-10-11 | 2007-04-12 | Cisco Technology, Inc. | Method and system for filtered pre-authentication and roaming |
US20070091859A1 (en) | 2005-10-26 | 2007-04-26 | Aseem Sethi | System and method for association of mobile units with an access point |
US20070115847A1 (en) * | 2005-11-18 | 2007-05-24 | Strutt Guenael J | Method and apparatus to estimate link performance in a packetized communication network |
US7787627B2 (en) | 2005-11-30 | 2010-08-31 | Intel Corporation | Methods and apparatus for providing a key management system for wireless communication networks |
US7843832B2 (en) * | 2005-12-08 | 2010-11-30 | Electronics And Telecommunications Research Institute | Dynamic bandwidth allocation apparatus and method |
JP4558639B2 (en) | 2005-12-16 | 2010-10-06 | 富士通株式会社 | Wireless LAN device and communication mode switching method |
KR100739781B1 (en) | 2005-12-27 | 2007-07-13 | 삼성전자주식회사 | Method and apparatus for transmitting message to each of wireless device groups |
US8018900B2 (en) | 2005-12-30 | 2011-09-13 | Hewlett-Packard Company | Seamless roaming across wireless subnets using source address forwarding |
US8130648B2 (en) | 2006-01-04 | 2012-03-06 | Broadcom Corporation | Hierarchical queue shaping |
US20070156804A1 (en) | 2006-01-05 | 2007-07-05 | Fuze Networks | System and method for a virtual mobile network supporting dynamic personal virtual mobile network with multimedia service orchestration |
US8064948B2 (en) | 2006-01-09 | 2011-11-22 | Cisco Technology, Inc. | Seamless roaming for dual-mode WiMax/WiFi stations |
US7809009B2 (en) | 2006-02-21 | 2010-10-05 | Cisco Technology, Inc. | Pipelined packet switching and queuing architecture |
US9100874B2 (en) | 2006-03-05 | 2015-08-04 | Toshiba America Research, Inc. | Quality of service provisioning through adaptable and network regulated channel access parameters |
WO2007108816A1 (en) | 2006-03-22 | 2007-09-27 | Nortel Networks Limited | Automated network congestion and trouble locator and corrector |
US7921185B2 (en) | 2006-03-29 | 2011-04-05 | Dell Products L.P. | System and method for managing switch and information handling system SAS protocol communication |
CN101064672A (en) | 2006-04-24 | 2007-10-31 | 华为技术有限公司 | Access equipment and its bandwidth control means |
US7788703B2 (en) | 2006-04-24 | 2010-08-31 | Ruckus Wireless, Inc. | Dynamic authentication in secured wireless networks |
US7786885B2 (en) | 2006-04-25 | 2010-08-31 | Hrl Laboratories, Llc | Event localization within a distributed sensor array |
US8040795B2 (en) | 2006-05-10 | 2011-10-18 | Cisco Technology, Inc. | Backup path convergence in the APS environment |
US20070280481A1 (en) | 2006-06-06 | 2007-12-06 | Eastlake Donald E | Method and apparatus for multiple pre-shared key authorization |
WO2007147756A1 (en) * | 2006-06-22 | 2007-12-27 | Xelerated Ab | A processor and a method for a processor |
EP2034684B1 (en) | 2006-06-23 | 2014-06-04 | NEC Corporation | Wireless communication apparatus and method for switching modulation schemes thereof |
US7804806B2 (en) | 2006-06-30 | 2010-09-28 | Symbol Technologies, Inc. | Techniques for peer wireless switch discovery within a mobility domain |
US20080022392A1 (en) | 2006-07-05 | 2008-01-24 | Cisco Technology, Inc. | Resolution of attribute overlap on authentication, authorization, and accounting servers |
US7620370B2 (en) | 2006-07-13 | 2009-11-17 | Designart Networks Ltd | Mobile broadband wireless access point network with wireless backhaul |
US7599290B2 (en) | 2006-08-11 | 2009-10-06 | Latitude Broadband, Inc. | Methods and systems for providing quality of service in packet-based core transport networks |
KR100766586B1 (en) | 2006-08-16 | 2007-10-12 | 포스데이타 주식회사 | Element management system in wireless telecommunication network |
EP2052499B1 (en) | 2006-08-18 | 2016-11-02 | Wifi Rail, Inc. | System and method of wirelessly communicating with mobile devices |
US7499547B2 (en) | 2006-09-07 | 2009-03-03 | Motorola, Inc. | Security authentication and key management within an infrastructure based wireless multi-hop network |
JP4705542B2 (en) | 2006-09-28 | 2011-06-22 | 富士通株式会社 | Best effort bandwidth allocation method and apparatus |
JP4805081B2 (en) * | 2006-09-29 | 2011-11-02 | 富士通株式会社 | Wireless relay device, wireless relay method, and wireless relay program |
JP4840073B2 (en) | 2006-10-18 | 2011-12-21 | 日本電気株式会社 | Mobile communication system, base station apparatus, and uplink packet retransmission count estimation method |
US8069483B1 (en) | 2006-10-19 | 2011-11-29 | The United States States of America as represented by the Director of the National Security Agency | Device for and method of wireless intrusion detection |
JP4714661B2 (en) * | 2006-10-20 | 2011-06-29 | 富士通株式会社 | BAND CONTROL SYSTEM, BAND CONTROL METHOD, AND BAND CONTROL PROGRAM |
US8520673B2 (en) | 2006-10-23 | 2013-08-27 | Telcordia Technologies, Inc. | Method and communication device for routing unicast and multicast messages in an ad-hoc wireless network |
US20080107027A1 (en) | 2006-11-02 | 2008-05-08 | Nortel Networks Limited | Engineered paths in a link state protocol controlled Ethernet network |
US7630314B2 (en) | 2006-12-05 | 2009-12-08 | Latitue Broadband, Inc. | Methods and systems for dynamic bandwidth management for quality of service in IP Core and access networks |
US8374622B2 (en) | 2006-12-13 | 2013-02-12 | Hewlett-Packard Development Company, L.P. | Call admission control for Wi-Fi |
US7855963B2 (en) * | 2006-12-21 | 2010-12-21 | Aruba Networks, Inc. | Capacity estimation and proportional sharing of varying capacity channels |
US8189460B2 (en) * | 2006-12-28 | 2012-05-29 | Cisco Technology, Inc. | Method and system for providing congestion management within a virtual talk group |
US7826358B2 (en) | 2006-12-29 | 2010-11-02 | Ellacoya Networks, Inc. | Hierarchical virtual queuing |
US7742442B2 (en) | 2007-01-11 | 2010-06-22 | Motorola, Inc. | Changing access point (AP) device type based on connectivity to a network |
EP2109986A2 (en) | 2007-02-05 | 2009-10-21 | Bandspeed, Inc. | Approach for mitigating the effects of rogue wireless access points |
US8379559B2 (en) | 2007-02-07 | 2013-02-19 | Marvell World Trade Ltd. | Wireless multicast proxy |
US7983703B2 (en) | 2007-02-22 | 2011-07-19 | Stmicroelectronics, Inc. | Prioritized common subframe to provide better service to the overlapping areas in a community |
US8036241B2 (en) | 2007-03-09 | 2011-10-11 | Samsung Electronics Co., Ltd. | Method and system for contention resolution in telecommunication networks |
US8274983B2 (en) | 2007-03-13 | 2012-09-25 | Alcatel Lucent | Low-impact call connection request denial |
US8295188B2 (en) | 2007-03-30 | 2012-10-23 | Extreme Networks, Inc. | VoIP security |
GB2448347A (en) | 2007-04-12 | 2008-10-15 | Xancom Ltd | Converting Multicast packets into Unicast packets within a network device. |
US10075376B2 (en) | 2007-04-18 | 2018-09-11 | Waav Inc. | Mobile network operating method |
US8422491B2 (en) | 2007-04-18 | 2013-04-16 | Waav Inc. | Mobile network configuration and method |
US8948046B2 (en) | 2007-04-27 | 2015-02-03 | Aerohive Networks, Inc. | Routing method and system for a wireless network |
CN101072116B (en) | 2007-04-28 | 2011-07-20 | 华为技术有限公司 | Service selecting method, device, system and client end application server |
US20080273520A1 (en) | 2007-05-04 | 2008-11-06 | Samsung Electronics Co. Ltd. | NETWORK ARCHITECTURE FOR DYNAMICALLY SETTING END-TO-END QUALITY OF SERVICE (QoS) IN A BROADBAND WIRELESS COMMUNICATION SYSTEM |
US8081610B2 (en) | 2007-05-09 | 2011-12-20 | Vlad Stirbu | Modifying remote service discovery based on presence |
US8132232B2 (en) | 2007-07-12 | 2012-03-06 | Hewlett-Packard Development Company, L.P. | Controlling access privileges in a wireless domain |
US8159962B2 (en) | 2007-07-27 | 2012-04-17 | General Instrument Corporation | Method and apparatus for optimizing home network interface selection in home networking applications |
US7961725B2 (en) | 2007-07-31 | 2011-06-14 | Symbol Technologies, Inc. | Enterprise network architecture for implementing a virtual private network for wireless users by mapping wireless LANs to IP tunnels |
US20110004913A1 (en) | 2007-07-31 | 2011-01-06 | Symbol Technologies, Inc. | Architecture for seamless enforcement of security policies when roaming across ip subnets in ieee 802.11 wireless networks |
US8667151B2 (en) | 2007-08-09 | 2014-03-04 | Alcatel Lucent | Bootstrapping method for setting up a security association |
US8086179B2 (en) | 2007-09-24 | 2011-12-27 | Qualcomm Incorporated | Mobility management of multiple clusters within a wireless communications network |
US8861514B1 (en) * | 2007-09-27 | 2014-10-14 | Marvell International Ltd. | Method and apparatus for egress jitter pacer |
US8478265B2 (en) | 2007-09-28 | 2013-07-02 | Symbol Technologies, Inc. | System and method for adaptive/predictive location-based roaming optimization |
US8553612B2 (en) | 2007-10-05 | 2013-10-08 | St-Ericsson Sa | Coexistence of wireless personal area network and wireless local area network |
US7929537B2 (en) | 2007-10-12 | 2011-04-19 | Alcatel-Lucent Usa Inc. | Methods for access control in femto systems |
US8750125B2 (en) * | 2007-10-19 | 2014-06-10 | Telefonaktiebolaget L M Ericsson (Publ) | Method and arrangement for scheduling data packets in a communication network system |
US8054802B2 (en) | 2007-10-29 | 2011-11-08 | Alcatel Lucent | Hand-off trigger at access technology borders |
US7827270B2 (en) | 2007-10-31 | 2010-11-02 | Cisco Technology, Inc. | Mobility service clustering using network service segments |
US7970894B1 (en) | 2007-11-15 | 2011-06-28 | Airtight Networks, Inc. | Method and system for monitoring of wireless devices in local area computer networks |
US20090144740A1 (en) * | 2007-11-30 | 2009-06-04 | Lucent Technologies Inc. | Application-based enhancement to inter-user priority services for public safety market |
US20090141692A1 (en) | 2007-11-30 | 2009-06-04 | Mika Kasslin | Optimized ad hoc networking |
US8521856B2 (en) | 2007-12-29 | 2013-08-27 | Cisco Technology, Inc. | Dynamic network configuration |
US8830921B2 (en) | 2008-01-24 | 2014-09-09 | Firetide, Inc. | Channel assignment for wireless access networks |
US8208919B2 (en) | 2008-02-06 | 2012-06-26 | Cellco Partnership | Route optimization using network enforced, mobile implemented policy |
US8654735B2 (en) | 2008-02-20 | 2014-02-18 | Nokia Corporation | IP mobility multihoming |
US8463880B2 (en) | 2008-03-24 | 2013-06-11 | Hewlett-Packard Development Company, L.P. | Method and system for removing a tunnel between portal points |
US8320329B2 (en) | 2008-03-24 | 2012-11-27 | Cisco Technology, Inc. | Policy for a roaming terminal based on a home internet protocol (IP) address |
US9313720B2 (en) | 2008-03-27 | 2016-04-12 | Qualcomm Incorporated | Power efficient small base station scanning and acquisition |
WO2009141016A1 (en) | 2008-05-20 | 2009-11-26 | Telefonaktiebolaget Lm Ericsson (Publ) | Partitioning entity and method for partitioning capacity |
TWI482460B (en) | 2008-05-30 | 2015-04-21 | Marvell Int Ltd | A network processor unit and a method for a network processor unit |
US7792046B2 (en) | 2008-06-05 | 2010-09-07 | Vss Monitoring, Inc. | Ethernet switch-based network monitoring system and methods |
US8249606B1 (en) | 2008-07-30 | 2012-08-21 | Optimi Corporation | Frequency planning optimization for mobile communications |
US8467295B2 (en) | 2008-08-21 | 2013-06-18 | Contextream Ltd. | System and methods for distributed quality of service enforcement |
US8838827B2 (en) | 2008-08-26 | 2014-09-16 | Red Hat, Inc. | Locating a provisioning server |
US8238298B2 (en) | 2008-08-29 | 2012-08-07 | Trapeze Networks, Inc. | Picking an optimal channel for an access point in a wireless network |
US8059546B2 (en) | 2008-09-05 | 2011-11-15 | Cisco Technology, Inc. | Traffic flow scheduling techniques implemented on bonded channels of a shared access cable network |
US8707291B2 (en) | 2008-10-31 | 2014-04-22 | Echostar Technologies L.L.C. | Firmware recovery of wireless devices |
US20100112540A1 (en) | 2008-11-03 | 2010-05-06 | Digital Millennial Consulting Llc | System and method of education utilizing mobile devices |
US8898474B2 (en) | 2008-11-04 | 2014-11-25 | Microsoft Corporation | Support of multiple pre-shared keys in access point |
US20100195585A1 (en) | 2009-02-04 | 2010-08-05 | Qualcomm Incorporated | Methods and systems for scheduling among nodes for a data slot in wireless communication networks |
WO2010096029A1 (en) | 2009-02-18 | 2010-08-26 | Thomson Licensing | Distributed channel selection method for wireless networks |
KR101543803B1 (en) | 2009-04-14 | 2015-08-12 | 엘지전자 주식회사 | Method and apparatus of processing multicast frame |
US8619549B2 (en) | 2009-05-14 | 2013-12-31 | Avaya Inc. | Location based load balancing of wireless access points and wireless switches |
CA2667820C (en) | 2009-05-29 | 2013-10-01 | Research In Motion Limited | Signal quality determination methods and apparatus suitable for use in wlan-to-wwan transitioning |
US8265039B2 (en) | 2009-06-05 | 2012-09-11 | Qualcomm Incorporated | Apparatus and method for improved idle state handoff |
US8705488B2 (en) | 2009-06-17 | 2014-04-22 | Electronics And Telecommunications Research Institute | Method for supporting idle mode in wireless local area network system |
US20100325720A1 (en) | 2009-06-23 | 2010-12-23 | Craig Stephen Etchegoyen | System and Method for Monitoring Attempted Network Intrusions |
US8131847B2 (en) | 2009-08-12 | 2012-03-06 | Cellco Partnership | Mechanism to detect restricted access via internet hotspot |
US8478820B2 (en) | 2009-08-26 | 2013-07-02 | Qualcomm Incorporated | Methods and systems for service discovery management in peer-to-peer networks |
US9119070B2 (en) | 2009-08-31 | 2015-08-25 | Verizon Patent And Licensing Inc. | Method and system for detecting unauthorized wireless devices |
US8243671B2 (en) | 2009-09-10 | 2012-08-14 | Cisco Technology, Inc. | Distributed channel assignment |
US8594006B2 (en) | 2010-01-27 | 2013-11-26 | Qualcomm Incorporated | Setting up a multicast group communication session within a wireless communications system |
US9262306B2 (en) | 2010-01-27 | 2016-02-16 | Hewlett Packard Enterprise Development Lp | Software application testing |
US8358661B2 (en) | 2010-04-20 | 2013-01-22 | International Business Machines Corporation | Remote adapter configuration |
WO2012006190A1 (en) | 2010-06-29 | 2012-01-12 | Huawei Technologies Co., Ltd. | Delegate gateways and proxy for target hosts in large layer 2 and address resolution with duplicated internet protocol addresses |
GB201011034D0 (en) | 2010-06-30 | 2010-08-18 | British Telecomm | Access network |
US8824448B1 (en) | 2010-07-30 | 2014-09-02 | Avaya Inc. | Method for enhancing redundancy in a wireless system using location attributes |
US20120290650A1 (en) | 2011-05-11 | 2012-11-15 | Futurewei Technologies, Inc. | System and Method for Peer to Peer Communications in Cellular Communications Systems |
US8879549B2 (en) | 2011-06-28 | 2014-11-04 | Brocade Communications Systems, Inc. | Clearing forwarding entries dynamically and ensuring consistency of tables across ethernet fabric switch |
US9401861B2 (en) | 2011-06-28 | 2016-07-26 | Brocade Communications Systems, Inc. | Scalable MAC address distribution in an Ethernet fabric switch |
US8885641B2 (en) | 2011-06-30 | 2014-11-11 | Brocade Communication Systems, Inc. | Efficient trill forwarding |
US8599744B2 (en) | 2011-07-27 | 2013-12-03 | Cisco Technology, Inc. | Transmit power control maximizing coverage at a minimum interference |
JP2013055496A (en) | 2011-09-02 | 2013-03-21 | Fujitsu Ltd | Portable terminal device, communication system, communication program and control method |
US8839013B2 (en) | 2011-09-30 | 2014-09-16 | Hewlett-Packard Development Company, L.P. | Method of reducing power consumption in a network |
US8953453B1 (en) | 2011-12-15 | 2015-02-10 | Amazon Technologies, Inc. | System and method for throttling service requests using work-based tokens |
US8918660B2 (en) | 2012-02-28 | 2014-12-23 | Hewlett-Packard Development Company, L.P. | Power sourcing network port reset |
US9119130B2 (en) | 2012-03-23 | 2015-08-25 | Cisco Technology, Inc. | Proactive link-estimation in reactive routing networks |
US9456031B2 (en) | 2013-10-30 | 2016-09-27 | Aruba Networks, Inc. | Network device workload balancing |
-
2009
- 2009-01-21 US US12/356,886 patent/US8483194B1/en active Active
-
2013
- 2013-07-09 US US13/938,159 patent/US8730931B1/en active Active
-
2014
- 2014-04-10 US US14/250,294 patent/US9572135B2/en active Active
-
2016
- 2016-08-22 US US15/243,720 patent/US9867167B2/en active Active
-
2018
- 2018-01-08 US US15/865,027 patent/US10219254B2/en active Active
-
2019
- 2019-02-26 US US16/286,577 patent/US10772081B2/en active Active
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160026535A1 (en) * | 2014-07-25 | 2016-01-28 | Netapp, Inc. | Techniques for dynamically controlling resources based on service level objectives |
US9983958B2 (en) * | 2014-07-25 | 2018-05-29 | Netapp, Inc. | Techniques for dynamically controlling resources based on service level objectives |
TWI572168B (en) * | 2014-12-19 | 2017-02-21 | 聯發科技股份有限公司 | Wireless device and method for setting packet de-queue scheduling of packet queue device |
US9756651B2 (en) | 2014-12-19 | 2017-09-05 | Mediatek Inc. | Wireless device and method for setting packet de-queue scheduling of packet queue device based on airtime quota allocation |
US10432536B1 (en) * | 2017-12-11 | 2019-10-01 | Xilinx, Inc. | Systems and methods for policing streams in a network |
US11290387B2 (en) | 2020-03-30 | 2022-03-29 | Semiconductor Components Industries, Llc | Out of order packet scheduler |
US11711312B2 (en) | 2020-03-30 | 2023-07-25 | Maxlinear, Inc. | Out of order packet scheduler |
Also Published As
Publication number | Publication date |
---|---|
US8483194B1 (en) | 2013-07-09 |
US10772081B2 (en) | 2020-09-08 |
US9867167B2 (en) | 2018-01-09 |
US20160359751A1 (en) | 2016-12-08 |
US8730931B1 (en) | 2014-05-20 |
US20140219128A1 (en) | 2014-08-07 |
US20190261339A1 (en) | 2019-08-22 |
US9572135B2 (en) | 2017-02-14 |
US20180152934A1 (en) | 2018-05-31 |
US10219254B2 (en) | 2019-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10772081B2 (en) | Airtime-based packet scheduling for wireless networks | |
US8681614B1 (en) | Quality of service for inbound network traffic flows | |
US11316795B2 (en) | Network flow control method and network device | |
US8259566B2 (en) | Adaptive quality of service policy for dynamic networks | |
US9008089B2 (en) | Multicast to unicast conversion technique | |
EP2310946B1 (en) | Dynamic setting of optimal buffer sizes in ip networks | |
US9007901B2 (en) | Method and apparatus providing flow control using on-off signals in high delay networks | |
WO2009074095A1 (en) | A method, system and apparatus for adjusting users' quality of service | |
CN107835133B (en) | Stream priority control method based on multi-attribute decision | |
US20100111056A1 (en) | Recalculating airtime quota in wlan to use up bandwidth | |
WO2014139434A1 (en) | System and method for compressing data associated with a buffer | |
US11115857B2 (en) | Bandwidth sentinel | |
US10412006B2 (en) | Bandwith sentinel | |
Li et al. | Providing flow-based proportional differentiated services in class-based DiffServ routers | |
Rhee et al. | A wireless fair scheduling algorithm for 1/spl times/EV-DO system | |
WO2021254475A1 (en) | Method and apparatus for scheduling queue | |
Lau et al. | Optimizing the performance of OpenFlow Protocol over QUIC | |
US8804521B1 (en) | Quality of service for inbound network traffic flows during slow-start phases | |
Heusse et al. | Least attained recent service for packet scheduling over access links | |
Umadevi et al. | A modeling and analysis of delay sensitive scheduling in wireless network | |
CN118740752A (en) | Flow control method and device | |
Wei et al. | Users/applications based QoS system under Linux | |
Lazar et al. | IMPLEMENTATION ISSUES FOR A VIDEO STREAMING SERVER IN IEEE 802.11 E WLANS. | |
Secchi et al. | Scheduling TCP-friendly flows over a satellite network | |
Rayanchu et al. | Lottery Scheduling for Flexible and Fine-grained Bandwidth Management in Wireless LANs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AEROHIVE NETWORKS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WU, PETER;REDDY, SREEKANTH;ZENG, JIANLIN;AND OTHERS;REEL/FRAME:030783/0022 Effective date: 20090119 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551) Year of fee payment: 4 |
|
AS | Assignment |
Owner name: BANK OF MONTREAL, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:EXTREME NETWORKS, INC.;AEROHIVE NETWORKS, INC.;REEL/FRAME:050023/0001 Effective date: 20190809 |
|
AS | Assignment |
Owner name: EXTREME NETWORKS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AEROHIVE NETWORKS, INC.;REEL/FRAME:052473/0843 Effective date: 20200130 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
AS | Assignment |
Owner name: BANK OF MONTREAL, NEW YORK Free format text: AMENDED SECURITY AGREEMENT;ASSIGNORS:EXTREME NETWORKS, INC.;AEROHIVE NETWORKS, INC.;REEL/FRAME:064782/0971 Effective date: 20230818 |