US20140155355A1 - Mao-b inhibitors useful for treating obesity - Google Patents

Mao-b inhibitors useful for treating obesity Download PDF

Info

Publication number
US20140155355A1
US20140155355A1 US13/872,658 US201313872658A US2014155355A1 US 20140155355 A1 US20140155355 A1 US 20140155355A1 US 201313872658 A US201313872658 A US 201313872658A US 2014155355 A1 US2014155355 A1 US 2014155355A1
Authority
US
United States
Prior art keywords
och
conh
chco
nhch
nhso
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/872,658
Inventor
John Francis McElroy
Robert J. Chorvat
Rajagopalan Parthasarathi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jenrin Discovery LLC
Original Assignee
Jenrin Discovery LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jenrin Discovery LLC filed Critical Jenrin Discovery LLC
Priority to US13/872,658 priority Critical patent/US20140155355A1/en
Assigned to JENRIN DISCOVERY, INC. reassignment JENRIN DISCOVERY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MCELROY, JOHN F, CHORVAT, ROBERT J
Publication of US20140155355A1 publication Critical patent/US20140155355A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/062Organo-phosphoranes without P-C bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/02Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C217/48Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being unsaturated and containing rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/78Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C217/80Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/06Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton
    • C07C229/10Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings
    • C07C229/12Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings to carbon atoms of acyclic carbon skeletons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/30Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and unsaturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/34Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/34Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton containing six-membered aromatic rings
    • C07C229/36Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton containing six-membered aromatic rings with at least one amino group and one carboxyl group bound to the same carbon atom of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/40Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino groups bound to carbon atoms of at least one six-membered aromatic ring and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/42Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino groups bound to carbon atoms of at least one six-membered aromatic ring and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton with carboxyl groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by saturated carbon chains
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C235/06Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C235/12Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/28Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton
    • C07C237/30Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton having the nitrogen atom of the carboxamide group bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/58Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/13Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon skeleton
    • C07C309/14Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon skeleton containing amino groups bound to the carbon skeleton
    • C07C309/15Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon skeleton containing amino groups bound to the carbon skeleton the nitrogen atom of at least one of the amino groups being part of any of the groups, X being a hetero atom, Y being any atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/01Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms
    • C07C311/02Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C311/08Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atom of at least one of the sulfonamide groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/01Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms
    • C07C311/12Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing rings
    • C07C311/13Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing rings the carbon skeleton containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/78Benzoic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se)
    • C07F9/3804Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se) not used, see subgroups
    • C07F9/3808Acyclic saturated acids which can have further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se)
    • C07F9/3804Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se) not used, see subgroups
    • C07F9/3826Acyclic unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se)
    • C07F9/40Esters thereof
    • C07F9/4003Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4006Esters of acyclic acids which can have further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se)
    • C07F9/40Esters thereof
    • C07F9/4003Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4015Esters of acyclic unsaturated acids

Definitions

  • the present invention provides compounds and pharmaceutical compositions thereof and methods of using the same for treating obesity, diabetes, and/or cardiometabolic disorders (e.g., hypertension, dyslipidemias, high blood pressure, and insulin resistance).
  • obesity, diabetes, and/or cardiometabolic disorders e.g., hypertension, dyslipidemias, high blood pressure, and insulin resistance.
  • L-Selegiline is a monoamine oxidase (MAO) inhibitor that was developed for the treatment of neurological disorders and is primarily used to treat Parkinson's disease.
  • MAO is an enzyme responsible for metabolizing biogenic monoamines including serotonin, dopamine, histamine, and phenylethylamine.
  • CNS central nervous system
  • MAO inhibitors and their analogues increase the concentration of monoamines present within the brain synapses. This enhances monoamine-mediated neurotransmission, effectively treating neurological disorders such as Parkinson's disease and depression.
  • MAO enzymes are also located in a number of peripheral (non-CNS) tissues, including adipose tissue, muscle, and liver. The function of MAO enzymes in these tissues has not been established. Currently, the only approved clinical use of L-selegiline and other MAO inhibitors is for the treatment of neurological disorders such as Parkinson's disease and depression.
  • Obesity is associated with an increase in the overall amount of adipose tissue (i.e., body fat), especially adipose tissue localized in the abdominal area. Obesity has reached epidemic proportions in the United States. The prevalence of obesity has steadily increased over the years among all racial and ethnic groups. According to the United States Surgeon General, 61% of the adult population and 14% of children are obese or overweight. Forty four million Americans are obese, with an additional eighty million deemed medically overweight. Obesity is responsible for more than 300,000 deaths annually, and will soon overtake tobacco usage as the primary cause of preventable death in the United States.
  • Obesity is a chronic disease that contributes directly to numerous dangerous co-morbidities, including type 2 diabetes, cardiovascular disease, inflammatory diseases, premature aging, and some forms of cancer.
  • Type 2 diabetes a serious and life-threatening disorder with growing prevalence in both adult and childhood populations, is currently the 7 th leading cause of death in the United States. Since more than 80% of patients with type 2 diabetes are overweight, obesity is the greatest risk factor for developing type 2 diabetes. Increasing clinical evidence indicates that the best way to control type 2 diabetes is to reduce weight.
  • CNS appetite suppressants such as sibutramine
  • gut lipase inhibitors such as orlistat.
  • CNS appetite suppressants reduce eating behavior through activation of the ‘satiety center’ in the brain and/or by inhibition of the ‘hunger center’ in the brain.
  • Gut lipase inhibitors reduce the absorption of dietary fat from the gastrointestinal (GI) tract.
  • sibutramine and orlistat work through very different mechanisms, they share in common the same overall goal of reducing body weight secondary to reducing the amount of calories that reach the systemic circulation.
  • these indirect therapies produce only a modest initial weight loss (approximately 5% compared to placebo) that is usually not maintained. After one or two years of treatment, most patients return to or exceed their starting weight.
  • most approved anti-obesity therapeutics produce undesirable and often dangerous side effects that can complicate treatment and interfere with a patient's quality of life.
  • MAO-B inhibitors such as selegiline have been clinically useful in the treatment of CNS disorders. They have now unexpectedly been discovered to also have anti-obesity activity. Even more surprising is that the anti-obesity activity effects of MAO-B inhibitors are mediated via a peripheral (i.e., non-CNS) mechanism.
  • This new discovery provides a novel approach for the treatment of obesity. Moreover, if the CNS effects of these compounds can be reduced, their peripherally mediated anti-obesity properties should provide therapeutic agents with greater safety. It has, as a result, become highly desirable to find MAO-B inhibitors with limited or no CNS effects. Compounds of this sort are expected to be useful in treating obesity and the variety of co-morbidities to which it contributes.
  • the present invention provides novel MAO-B inhibitors or stereoisomers or pharmaceutically acceptable salts that are useful to treat obesity, diabetes, and/or cardiometabolic disorders (e.g., hypertension, dyslipidemias, high blood pressure, and insulin resistance).
  • obesity, diabetes, and/or cardiometabolic disorders e.g., hypertension, dyslipidemias, high blood pressure, and insulin resistance.
  • the present invention provides novel pharmaceutical compositions, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of at least one of the compounds of the present invention or a stereoisomer or pharmaceutically acceptable salt thereof.
  • the present invention provides novel methods for treating obesity, diabetes, and/or cardiometabolic disorders (e.g., hypertension, dyslipidemias, high blood pressure, and insulin resistance), comprising: administering to a patient in need thereof a therapeutically effective amount of at least one of the compounds of the present invention or a stereoisomer or pharmaceutically acceptable salt thereof.
  • obesity, diabetes, and/or cardiometabolic disorders e.g., hypertension, dyslipidemias, high blood pressure, and insulin resistance
  • the present invention provides novel methods for treating CNS disorders, comprising: administering to a patient in need thereof a therapeutically effective amount of at least one of the compounds of the present invention or a stereoisomer or pharmaceutically acceptable salt thereof.
  • the present invention provides processes for preparing novel compounds.
  • the present invention provides novel compounds or stereoisomers or pharmaceutically acceptable salts for use in therapy.
  • the present invention provides the use of novel compounds for the manufacture of a medicament for the treatment of obesity, diabetes, and/or cardiometabolic disorders.
  • the present invention provides the use of novel compounds for the manufacture of a medicament for the treatment of CNS disorders.
  • the present invention is based on the unexpected finding that an MAO-B inhibitor is capable of reducing the amount of adipose tissue (i.e., body fat) in a warm-blooded mammal. This finding was unexpected because body fat can be reduced despite little, if any, concomitant reduction in food intake.
  • adipose tissue i.e., body fat
  • the present invention provides novel compound A or a stereoisomer or pharmaceutically acceptable salt thereof:
  • Y is O or H 2 and R, R 1 , R 2 , X, X 1 , and Z are all independently selected from H, C 1-6 alkyl, and a group capable of reducing or limiting the CNS activity of compound A; and,
  • R, R 1 , R 2 , X, X 1 , and Z is other than H.
  • the present invention provides a novel compound of formula I or II, or a stereoisomer or a pharmaceutically acceptable salt thereof:
  • R at each occurrence, is independently selected from H, C 1-6 alkyl, C 2-6 alkenyl, and C 2-6 alkynyl;
  • R 1 is selected from H, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, (CH 2 ) m CO 2 R, C 2-6 alkenyl-CO 2 R, CH 2 CH(NHAc)CO 2 R, CH 2 CH(NHR)CO 2 R, and, (CH 2 ) n PO(OR) 2 ;
  • R 2 is selected from H, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, (CH 2 ) m CO 2 R, C 2-6 alkenyl-CO 2 R, (CH 2 ) n CON(R) 2 , (CH 2 ) n PO(OR) 2 , and (CH 2 ) n -tetrazole;
  • X and X 1 are independently selected from H, OR, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, halogen, CF 3 , nitro, N(R) 2 , (CH 2 ) m -tetrazole, (CH 2 ) m CO 2 R, (CH 2 ) m CONR 2 , (CH 2 ) m CN, O(CH 2 ) n CN, O(CH 2 ) n -tetrazole, O(CH 2 ) b CO 2 R, O(CH 2 ) n CON(R) 2 , O—C 2-6 alkenyl-CO 2 R, O(CH 2 ) n PO(OR) 2 , NR—C 2-4 alkenyl, NRSO 2 CH 3 , NR(CH 2 ) n CO 2 R, NR(CH 2 ) n CON(R) 2 , NR—C 2-4 alkenyl-CO 2 R, NR(
  • R 3 is selected from H, C 1-6 alkyl, and aryl-C 1-6 alkyl-;
  • X 2 is independently selected from H, OR, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, halogen, CF 3 , nitro, —CN, C(O)NR 2 , NRSO 2 CH 3 , and SO 2 N(R)C 1-4 alkyl;
  • a ⁇ at each occurrence, is a counterion
  • Y is selected from O and H 2 ;
  • Z is selected from H, OR, O(CH 2 ) n CO 2 R, O(CH 2 ) n CONH 2 , OCH 2 CHMCONRCH 2 CO 2 R, OCH 2 CH(NHC(O)CH 3 )CO 2 R, OCH 2 CH(NHR)CO 2 R, O(CH 2 ) n PO(OR) 2 , O(CH 2 ) n SO 2 OR, O(CH 2 ) n -tetrazole, O—C 2-6 alkenyl, O(CH 2 ) n -aryl, OCH 2 CH 2 CONRCH(OR)CO 2 R, OCH 2 CH 2 CONRC(R) 2 CH 2 SO 2 OR, NRR, NR(CH 2 )CO 2 R, NR(CH 2 ) n CONH 2 , NRCH 2 CHMCONRCH 2 CO 2 R, NRSO 2 R, NRCH 2 CH(NHC(O)CH 3 )CO 2 R, NRCH 2 CH(NHR)CO 2 R,
  • Z 1 is selected from H, OR, O(CH 2 ) n CO 2 R, O(CH 2 ) n CONH 2 , OCH 2 CHMCONRCH 2 CO 2 R, OCH 2 CH(NHC(O)CH 3 )CO 2 R, OCH 2 CH(NHR)CO 2 R, O(CH 2 ) n PO(OR) 2 , O(CH 2 ) n SO 2 OR, O—C 2-6 alkenyl, O(CH 2 ) n -aryl, NR(CH 2 ) n -aryl, OCH 2 CH 2 CONRCH(OR)CO 2 R, OCH 2 CH 2 CONRC(R) 2 CH 2 SO 2 OR, and NRCO(CH 2 ) n CO 2 R, wherein aryl is substituted with 1-2 X 2 ;
  • Z 1 is selected from OR, NRR, NR(CH 2 ) n CONH 2 , NR—C 2-6 alkyl O(CH 2 ) n -aryl, and NR(CH 2 ) n -aryl, wherein aryl is substituted with 1-2 X 2 ;
  • M is selected from H, C 1-6 alkyl, C 3-8 cycloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, 5-12 membered heteroaryl consisting of carbon atoms and from 1-4 heteroatoms selected from N, O, and S, (CH 2 ) n -aryl, and (CH 2 ) n -5-12 membered heteroaryl consisting of carbon atoms and from 1-4 heteroatoms selected from N, O, and S, wherein aryl and heteroaryl are substituted with 1-2 X 2 ;
  • Q is selected from O ⁇ , C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, (CH 2 ) n -aryl, and (CH 2 ) n -5-12 membered heteroaryl consisting of carbon atoms and from 1-4 heteroatoms selected from N, O, and S, wherein aryl and heteroaryl are substituted with 1-2 X 2 ;
  • n is selected from 0, 1, 2, 3, and 4;
  • n is selected from 1, 2, 3, and 4;
  • p is selected from 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11;
  • At least one of X and X 1 is other than H, alkyl, alkoxy, hydroxy, and halo.
  • the compounds of the present invention have no more than one acid functionality.
  • the present invention provides a novel compound of formula Ia, or a stereoisomer or a pharmaceutically acceptable salt thereof:
  • R at each occurrence, is independently selected from H and C 1-4 alkyl
  • R 1 is selected from H and C 1-4 alkyl
  • X and X 1 are independently selected from H, OR, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, halogen, CF 3 , nitro, O(CH 2 ) n CON(R) 2 , O—C 2-4 alkenyl, N(R) 2 , (CH 2 ) m CONR 2 , (CH 2 ) m CN, NRSO 2 CH 3 , NRCO(CH 2 ) n CON(R) 2 , SO 2 NRCH 3 , CH 2 N(C 1-4 alkyl) 2 , CH 2 -aryl, CH 2 -heteroaryl, O(CH 2 ) n -aryl, O(CH 2 ) n -heteroaryl, NR(CH 2 ) n -aryl, NR(CH 2 ) n -heteroaryl, O(CH 2 ) n -aryl-(CH 2 ) n -aryl,
  • R 3 is selected from H, C 1-4 alkyl, and aryl-C 1-4 alkyl-;
  • X 2 is independently selected from H, OR, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, halogen, CF 3 , nitro, —CN, C(O)NR 2 , NRSO 2 CH 3 , and SO 2 N(R)C 1-4 alkyl; and,
  • X and X 1 is other than H, alkyl, alkoxy, hydroxy, and halo.
  • the present invention provides a novel compound of formula Ia, or a stereoisomer or a pharmaceutically acceptable salt thereof, wherein:
  • one of X and X 1 is H and the other selected from C 2-4 alkenyl, C 2-4 alkynyl, CF 3 , nitro, O(CH 2 ) n CON(R) 2 , O—C 2-4 alkenyl, N(R) 2 , (CH 2 ) m CONR 2 , (CH 2 ) m CN, NRCO(CH 2 ) n CON(R) 2 , NRSO 2 CH 3 , SO 2 NRCH 3 , CH 2 N(C 1-4 alkyl) 2 , CH 2 -aryl, CH 2 -heteroaryl, O(CH 2 ) n -aryl, O(CH 2 ) n -heteroaryl, NR(CH 2 ) n -aryl, NR(CH 2 ) n -heteroaryl, O(CH 2 ) n -aryl-(CH 2 ) n -heteroaryl, O(CH 2 ) n
  • the present invention provides a novel compound of formula Ib, or a stereoisomer or a pharmaceutically acceptable salt thereof:
  • R at each occurrence, is independently selected from H and C 1-4 alkyl
  • R 1 is selected from (CH 2 ) m CO 2 R, C 2-4 alkenyl-CO 2 R, CH 2 CH(NHAc)CO 2 R, CH 2 CH(NHR)CO 2 R, and, (CH 2 ) n PO(OR) 2 ;
  • X and X 1 are independently selected from H, OR, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, halogen, CF 3 , nitro, O(CH 2 ) n CON(R) 2 , O—C 2-4 alkenyl, N(R) 2 , (CH 2 ) m CONR 2 , (CH 2 ) m CN, NRCO(CH 2 ) n CON(R) 2 , NRSO 2 CH 3 , SO 2 NRCH 3 , CH 2 N(C 1-4 alkyl) 2 , CH 2 -aryl, CH 2 -heteroaryl, O(CH 2 ) n -aryl, O(CH 2 ) n -heteroaryl, NR(CH 2 ) n -aryl, NR(CH 2 ) n -heteroaryl, O(CH 2 ) n -aryl-heteroaryl, NR(CH 2 )
  • R 3 is selected from H, C 1-4 alkyl, and aryl-C 1-4 alkyl-;
  • X 2 is independently selected from H, OR, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, halogen, CF 3 , nitro, —CN, C(O)NR 2 , NRSO 2 CH 3 , and SO 2 N(R)C 1-4 alkyl;
  • M is selected from H, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, (CH 2 ) n -aryl, and (CH 2 ) n -5-10 membered heteroaryl consisting of carbon atoms and from 1-4 heteroatoms selected from N, O, and S, wherein aryl and heteroaryl are substituted with 1-2 X 2 ; and,
  • R is other than H and CH 3 , and/or
  • At least one of X and X 1 is other than H, alkyl, alkoxy, hydroxy, and halo.
  • the present invention provides a novel compound of formula Ib, or a stereoisomer or a pharmaceutically acceptable salt thereof, wherein:
  • one of X and X 1 is H and the other selected from C 2-4 alkenyl, C 2-4 alkynyl, CF 3 , nitro, O(CH 2 ) n CON(R) 2 , O—C 2-4 alkenyl, N(R) 2 , (CH 2 ) m CONR 2 , (CH 2 ) m CN, NRCO(CH 2 ) n CON(R) 2 , NRSO 2 CH 3 , SO 2 NRCH 3 , CH 2 N(C 1-4 alkyl) 2 , CH 2 -aryl, CH 2 -heteroaryl, O(CH 2 ) n -aryl, O(CH 2 ) n -heteroaryl, NR(CH 2 ) n -aryl, NR(CH 2 ) n -heteroaryl, O(CH 2 ) n -aryl-(CH 2 ) n -heteroaryl, O(CH 2 ) n
  • the present invention provides a novel compound of formula Ic, or a stereoisomer or a pharmaceutically acceptable salt thereof:
  • R at each occurrence, is independently selected from H and C 1-4 alkyl
  • R 1 is selected from H and C 1-4 alkyl
  • X and X 1 are independently selected from H, OR, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, halogen, CF 3 , nitro, O(CH 2 ) n CON(R) 2 , O—C 2-4 alkenyl, N(R) 2 , (CH 2 ) m CONR 2 , (CH 2 ) m CN, NRCO(CH 2 ) n CON(R) 2 , NRSO 2 CH 3 , SO 2 NRCH 3 , CH 2 N(C 1-4 alkyl) 2 , CH 2 -aryl, CH 2 -heteroaryl, O(CH 2 ) n -aryl, O(CH 2 ) n -heteroaryl, NR(CH 2 ) n -aryl, NR(CH 2 ) n -heteroaryl, O(CH 2 ) n -aryl-heteroaryl, NR(CH 2 )
  • R 3 is selected from H, C 1-4 alkyl, and aryl-C 1-4 alkyl-;
  • X 2 is independently selected from H, OR, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, halogen, CF 3 , nitro, —CN, C(O)NR 2 , NRSO 2 CH 3 , and SO 2 N(R)C 1-4 alkyl;
  • a ⁇ is selected from Cl ⁇ and Br ⁇ ;
  • Z is selected from O(CH 2 ) n CO 2 R, O(CH 2 ) n CONH 2 , O(CH 2 ) n PO(OR) 2 , O(CH 2 ) n SO 2 OR, O(CH 2 ) n -tetrazole, NR(CH 2 ) n CO 2 R, NR(CH 2 ) n CONH 2 , NRCH 2 CHMCONRCH 2 CO 2 R, NRSO 2 R, NR(CH 2 ) n PO(OR) 2 , NR(CH 2 ) n SO 2 OR, NR(CH 2 ) n -tetrazole, NRCO(CH 2 ) n CO 2 R, O(CH 2 ) n -phenyl-CO 2 R, O(CH 2 ) n -phenyl-tetrazole, O(CH 2 ) n -phenyl-CON(R) 2 , O(CH 2 ) n -phenyl-PO 3
  • M is selected from H, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, (CH 2 ) n -aryl, and (CH 2 ) n -5-10 membered heteroaryl consisting of carbon atoms and from 1-4 heteroatoms selected from N, O, and S, wherein aryl and heteroaryl are substituted with 1-2 X 2 ; and,
  • X and X 1 is other than H, alkyl, alkoxy, hydroxy, and halo.
  • the present invention provides a novel compound of formula Ic, or a stereoisomer or a pharmaceutically acceptable salt thereof, wherein:
  • one of X and X 1 is H and the other selected from C 2-4 alkenyl, C 2-4 alkynyl, CF 3 , nitro, O(CH 2 ) n CON(R) 2 , O—C 2-4 alkenyl, N(R) 2 , (CH 2 ) m CONR 2 , (CH 2 ) m CN, NRCO(CH 2 ) n CON(R) 2 , NRSO 2 CH 3 , SO 2 NRCH 3 , CH 2 N(C 1-4 alkyl) 2 , CH 2 -aryl, CH 2 -heteroaryl, O(CH 2 ) n -aryl, O(CH 2 ) n -heteroaryl, NR(CH 2 ) n -aryl, NR(CH 2 ) n -heteroaryl, O(CH 2 ) n -aryl-(CH 2 ) n -heteroaryl, O(CH 2 ) n
  • the present invention provides a novel compound of formula Ic, or a stereoisomer or a pharmaceutically acceptable salt thereof:
  • R at each occurrence, is independently selected from H and C 1-4 alkyl
  • R 1 is selected from H, C 1-4 alkyl, (CH 2 ) m CO 2 R, C 2-4 alkenyl-CO 2 R, CH 2 CH(NHAc)CO 2 R, CH 2 CH(NHR)CO 2 R, and, (CH 2 ) n PO(OR) 2 ;
  • X and X 1 are independently selected from H, OR, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, halogen, CF 3 , nitro, N(R) 2 , (CH 2 ) m -tetrazole, (CH 2 ) m CO 2 R, (CH 2 ) m CONR 2 , (CH 2 ) m CN, O(CH 2 ) n CN, O(CH 2 ) n -tetrazole, O(CH 2 ) n CO 2 R, O(CH 2 ) n CON(R) 2 , O—C 2-4 alkenyl-CO 2 R, O(CH 2 ) n PO(OR) 2 , NR—C 2-4 alkenyl, NRSO 2 CH 3 , NR(CH 2 ) n CO 2 R, NR(CH 2 ) n CON(R) 2 , NR—C 2-4 alkenyl-CO 2 R, NR(
  • R 3 is selected from H, C 1-4 alkyl, and aryl-C 1-4 alkyl-;
  • X 2 is independently selected from H, OR, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, halogen, CF 3 , nitro, —CN, C(O)NR 2 , NRSO 2 CH 3 , and SO 2 N(R)C 1-4 alkyl;
  • a ⁇ is selected from Cl ⁇ and Br ⁇ ;
  • Z is selected from H, OH, halogen, CF 3 , C 1-4 alkoxy, O—C 2-4 alkenyl, O(CH 2 ) n CONH 2 , OCH 2 -aryl, NRR, NR—C 2-4 alkenyl, NR(CH 2 ) n CONH 2 , NR(CH 2 ) n -aryl, and NRCO(CH 2 ) n CO 2 R, wherein aryl is substituted with 1-2 X 2 ;
  • M is selected from H, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, (CH 2 ) n -aryl, and (CH 2 ) n -5-10 membered heteroaryl consisting of carbon atoms and from 1-4 heteroatoms selected from N, O, and S; and, wherein aryl and heteroaryl are substituted with 1-2 X 2 ; and,
  • R is other than H and CH 3 ,
  • At least one of X and X 1 is other than H, alkyl, alkoxy, hydroxy, and halo.
  • the present invention provides a novel compound of formula Ic, or a stereoisomer or a pharmaceutically acceptable salt thereof, wherein:
  • one of X and X 1 is H and the other selected from C 2-4 alkenyl, C 2-4 alkynyl, CF 3 , nitro, N(R) 2 , (CH 2 ) m -tetrazole, (CH 2 ) m CO 2 R, (CH 2 ) m CONR 2 , (CH 2 ) m CN, O(CH 2 ) n CN, O(CH 2 ) n -tetrazole, O(CH 2 ) n CO 2 R, O(CH 2 ) n CON(R) 2 , O—C 2-4 alkenyl-CO 2 R, O(CH 2 ) n PO(OR) 2 , NR—C 2-4 alkenyl, NRSO 2 CH 3 , NR(CH 2 ) n CO 2 R, NR(CH 2 ) n CON(R) 2 , NR—C 2-4 alkenyl-CO 2 R, NR(CH 2 ) n PO(OR)
  • the present invention provides a novel compound of formula Ic, or a stereoisomer or a pharmaceutically acceptable salt thereof:
  • R at each occurrence, is independently selected from H and C 1-4 alkyl
  • R 1 is selected from H and C 1-4 alkyl
  • X and X 1 are independently selected from H, OR, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, halogen, CF 3 , nitro, O(CH 2 ) n CON(R) 2 , O—C 2-4 alkenyl, N(R) 2 , (CH 2 ) m CONR 2 , (CH 2 ) m CN, NRCO(CH 2 ) n CON(R) 2 , NRSO 2 CH 3 , SO 2 NRCH 3 , CH 2 N(C 1-4 alkyl) 2 , CH 2 -aryl, CH 2 -heteroaryl, O(CH 2 ) n -aryl, O(CH 2 ) n -heteroaryl, NR(CH 2 ) n -aryl, NR(CH 2 ) n -heteroaryl, O(CH 2 ) n -aryl-heteroaryl, NR(CH 2 )
  • R 3 is selected from H, C 1-4 alkyl, and aryl-C 1-4 alkyl-;
  • X 2 is independently selected from H, OR, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, halogen, CF 3 , nitro, —CN, C(O)NR 2 , NRSO 2 CH 3 , and SO 2 N(R)C 1-4 alkyl; and,
  • Z is selected from H, OH, C 1-4 alkoxy, O—C 2-4 alkenyl, O(CH 2 ) n CONH 2 , OCH 2 -aryl, NRR, NR—C 2-4 alkenyl, NR(CH 2 ) n CONH 2 , and NRCH 2 -aryl, wherein aryl is substituted with 1-2 X 2 ; and,
  • X and X 1 is other than H, alkyl, alkoxy, hydroxy, and halo.
  • the present invention provides a novel compound of formula Ic, or a stereoisomer or a pharmaceutically acceptable salt thereof, wherein:
  • one of X and X 1 is H and the other selected from C 2-4 alkenyl, C 2-4 alkynyl, CF 3 , nitro, O(CH 2 ) n CON(R) 2 , O—C 2-4 alkenyl, N(R) 2 , (CH 2 ) m CONR 2 , (CH 2 ) m CN, NRCO(CH 2 ) n CON(R) 2 , NRSO 2 CH 3 , SO 2 NRCH 3 , CH 2 N(C 1-4 alkyl) 2 , CH 2 -aryl, CH 2 -heteroaryl, O(CH 2 ) n -aryl, O(CH 2 ) n -heteroaryl, NR(CH 2 ) n -aryl, NR(CH 2 ) n -heteroaryl, O(CH 2 ) n -aryl-(CH 2 ) n -heteroaryl, O(CH 2 ) n
  • the present invention provides a novel compound of formula IIa, or a stereoisomer or a pharmaceutically acceptable salt thereof:
  • R at each occurrence, is independently selected from H and C 1-6 alkyl
  • R 1 is selected from H and C 1-4 alkyl
  • R 2 is selected from H and C 1-4 alkyl
  • X and X 1 are independently selected from H, OR, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, halogen, CF 3 , nitro, O(CH 2 ) n CON(R) 2 , O—C 2-4 alkenyl, (CH 2 ) m CONR 2 , (CH 2 ) m CN, NRCO(CH 2 ) n CON(R) 2 , NRSO 2 CH 3 , SO 2 NRCH 3 , CH 2 -aryl, CH 2 -heteroaryl, O(CH 2 ) n -aryl, O(CH 2 ) n -heteroaryl, NR(CH 2 ) n -aryl, NR(CH 2 ) n -heteroaryl, O(CH 2 ) n -aryl-(CH 2 ) n -heteroaryl, O(CH 2 ) n -aryl-(CH 2 )
  • R 3 is selected from H, C 1-4 alkyl, and aryl-C 1-4 alkyl-;
  • X 2 is independently selected from H, OR, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, halogen, CF 3 , nitro, —CN, C(O)NR 2 , NRSO 2 CH 3 , and SO 2 N(R)C 1-4 alkyl;
  • Y is selected from 0 and H 2 ;
  • Z 1 is selected from H and OR;
  • Z 1 is selected from NRR, NR(CH 2 ) n CONH 2 , NR—C 2-4 alkenyl, and NR(CH 2 ) n -aryl, wherein aryl is substituted with 1-2 X 2 ;
  • Q is selected from O ⁇ , C 1-4 alkyl, C 3-4 alkenyl, and C 3-4 alkynyl; and,
  • a ⁇ is present and is selected from Cl and Br;
  • At least one of X and X 1 is other than H, alkyl, alkoxy, hydroxy, and halo.
  • the present invention provides a novel compound of formula IIa, or a stereoisomer or a pharmaceutically acceptable salt thereof, wherein:
  • one of X and X 1 is H and the other selected from C 2-4 alkenyl, C 2-4 alkynyl, CF 3 , nitro, O(CH 2 ) n CON(R) 2 , O—C 2-4 alkenyl, (CH 2 ) m CONR 2 , (CH 2 ) m CN, NRCO(CH 2 ) n CON(R) 2 , NRSO 2 CH 3 , SO 2 NRCH 3 , CH 2 -aryl, CH 2 -heteroaryl, O(CH 2 ) n -aryl, O(CH 2 ) n -heteroaryl, NR(CH 2 ) n -aryl, NR(CH 2 ) n -heteroaryl, O(CH 2 ) n -aryl-(CH 2 ) m CON(R) 2 , O(CH 2 ) n -aryl-O(CH 2 ) n CON(R) 2 , O(
  • the present invention provides novel pharmaceutical compositions, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of the present invention or a stereoisomer or pharmaceutically acceptable salt thereof.
  • the present invention provides a novel method for treating a disease, comprising: administering to a patient in need thereof a therapeutically effective amount of a compound of the present invention or a stereoisomer or pharmaceutically acceptable salt thereof, wherein the disease is selected from obesity, diabetes, cardiometabolic disorders, and a combination thereof.
  • the cardiometabolic disorder is selected from hypertension, dyslipidemias (e.g., undesirable blood lipid levels, elevated cholesterol levels, and lowered LDL levels), high blood pressure, and insulin resistance.
  • dyslipidemias e.g., undesirable blood lipid levels, elevated cholesterol levels, and lowered LDL levels
  • high blood pressure e.g., high blood pressure
  • insulin resistance e.g., insulin resistance
  • the present invention provides a novel method for treating a co-morbidity of obesity, comprising: administering to a patient in need thereof a therapeutically effective amount of a compound of the present invention or a stereoisomer or pharmaceutically acceptable salt thereof.
  • the present invention provides a novel method for treating a co-morbidity of obesity, comprising: administering to a patient in need thereof a therapeutically effective amount of a compound of the present invention or a stereoisomer or pharmaceutically acceptable salt thereof.
  • the co-morbidity is selected from diabetes, Metabolic Syndrome, dementia, and heart disease.
  • the co-morbidity is selected from hypertension; gallbladder disease; gastrointestinal disorders; menstrual irregularities; degenerative arthritis; venous statis ulcers; pulmonary hypoventilation syndrome; sleep apnea; snoring; coronary artery disease; arterial sclerotic disease; pseudotumor cerebri; accident proneness; increased risks with surgeries; osteoarthritis; high cholesterol; and, increased incidence of malignancies of the ovaries, cervix, uterus, breasts, prostrate, and gallbladder.
  • the present invention provides a novel method for treating a CNS disorder, comprising: administering to a patient in need thereof a therapeutically effective amount of a compound of the present invention or a stereoisomer or pharmaceutically acceptable salt thereof.
  • the CNS disorder is selected from acute and chronic neurological disorders, cognitive disorders, and memory deficits.
  • these disorders include chronic or traumatic degenerative processes of the nervous system, which include Alzheimer's disease, other types of dementia, minimal cognitive impairment, and Parkinson's disease.
  • Other examples of CNS disorders include psychiatric diseases, which include depression, anxiety, panic attack, social phobia, schizophrenia, and anorexia.
  • Further examples of CNS disorders include withdrawal syndromes induced by alcohol, nicotine and other addictive drugs.
  • Additional examples of CNS disorders include neuropathic pain and neuroinflamatory diseases (e.g., multiple sclerosis).
  • the present invention also provides a method of preventing or reversing the deposition of adipose tissue in a mammal by the administration of a MAO-B inhibitor.
  • a MAO-B inhibitor By preventing or reversing the deposition of adipose tissue, MAO-B inhibitors are expected to reduce the incidence or severity of obesity, thereby reducing the incidence or severity of associated co-morbidities.
  • the present invention provides a compound of the present invention for use in therapy.
  • the present invention provides the use of compounds of the present invention for the manufacture of a medicament for the treatment of obesity, diabetes, cardiometabolic disorders, and a combination thereof.
  • the present invention provides the use of novel compounds for the manufacture of a medicament for the treatment of CNS disorders.
  • the compounds herein described may have asymmetric centers, geometric centers (e.g., double bond), or both. All chiral, diastereomeric, racemic forms and all geometric isomeric forms of a structure are intended, unless the specific stereochemistry or isomeric form is specifically indicated.
  • Compounds of the present invention containing an asymmetrically substituted atom may be isolated in optically active or racemic forms. It is well known in the art how to prepare optically active forms, such as by resolution of racemic forms, by synthesis from optically active starting materials, or through use of chiral auxiliaries.
  • Geometric isomers of olefins, C ⁇ N double bonds, or other types of double bonds may be present in the compounds described herein, and all such stable isomers are included in the present invention.
  • cis and trans geometric isomers of the compounds of the present invention may also exist and may be isolated as a mixture of isomers or as separated isomeric forms. All processes used to prepare compounds of the present invention and intermediates made therein are considered to be part of the present invention. All tautomers of shown or described compounds are also considered to be part of the present invention.
  • the present invention includes all isotopes of atoms occurring in the present compounds.
  • Isotopes include those atoms having the same atomic number but different mass numbers.
  • isotopes of hydrogen include tritium and deuterium.
  • isotopes of carbon include C-13 and C-14.
  • Examples of the molecular weight of the compounds of the present invention include (a) less than about 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, or 1000 grams per mole; (b) less than about 950 grams per mole; (c) less than about 850 grams per mole; and, (d) less than about 750 grams per mole.
  • Alkyl includes both branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms.
  • C 1-6 alkyl for example, includes C 1 , C 2 , C 3 , C 4 , C 5 , and C 6 alkyl groups.
  • alkyl include methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, t-butyl, n-pentyl, and s-pentyl.
  • Alkenyl includes the specified number of hydrocarbon atoms in either straight or branched configuration with one or more unsaturated carbon-carbon bonds that may occur in any stable point along the chain, such as ethenyl and propenyl.
  • C 2-6 alkenyl includes C 2 , C 3 , C 4 , C 5 , and C 6 alkenyl groups.
  • Alkynyl includes the specified number of hydrocarbon atoms in either straight or branched configuration with one or more triple carbon-carbon bonds that may occur in any stable point along the chain, such as ethynyl and propynyl.
  • C 2-6 Alkynyl includes C 2 , C 3 , C 4 , C 5 , and C 6 alkynyl groups.
  • Cycloalkyl includes the specified number of hydrocarbon atoms in a saturated ring, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl.
  • C 3-8 cycloalkyl includes C 3 , C 4 , C 5 , C 6 , C 7 , and C 8 cycloalkyl groups.
  • Alkoxy represents an alkyl group as defined above with the indicated number of hydrocarbon atoms attached through an oxygen bridge.
  • C 1-6 alkoxy includes C 1 , C 2 , C 3 , C 4 , C 5 , and C 6 alkoxy groups. Examples of alkoxy include methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, s-butoxy, t-butoxy, n-pentoxy, and s-pentoxy.
  • Halo or “halogen” refers to fluoro, chloro, bromo, and iodo.
  • Counterion is used to represent a small, negatively charged species, such as chloride, bromide, hydroxide, acetate, and sulfate.
  • Aryl refers to any stable 6, 7, 8, 9, 10, 11, 12, or 13 membered monocyclic, bicyclic, or tricyclic ring, wherein at least one ring, if more than one is present, is aromatic.
  • aryl include fluorenyl, phenyl, naphthyl, indanyl, adamantyl, and tetrahydronaphthyl.
  • Heteroaryl refers to any stable 5, 6, 7, 8, 9, 10, 11, or 12 membered monocyclic, bicyclic, or tricyclic heterocyclic ring that is aromatic, and which consists of carbon atoms and 1, 2, 3, or 4 heteroatoms independently selected from the group consisting of N, O, and S. If the heteroaryl group is bicyclic or tricyclic, then at least one of the two or three rings must contain a heteroatom, though both or all three may each contain one or more heteroatoms. If the heteroaryl group is bicyclic or tricyclic, then only one of the rings must be aromatic.
  • the N group may be N, NH, or N-substituent, depending on the chosen ring and if substituents are recited.
  • the nitrogen and sulfur heteroatoms may optionally be oxidized (e.g., S, S(O), S(O) 2 , and N—O).
  • the heteroaryl ring may be attached to its pendant group at any heteroatom or carbon atom that results in a stable structure.
  • the heteroaryl rings described herein may be substituted on carbon or on a nitrogen atom if the resulting compound is stable.
  • heteroaryl includes acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzoxazolinyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl, 4aH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H,6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b]tetrahydrofuran, furanyl, furazanyl, imidazolyl, 1H-indazolyl, indolenyl, indolinyl, indolizinyl, indolyl, 3
  • Preventing the deposition of adipose tissue covers methods of treating wherein the levels of adipose tissue of a subject remain about the same as prior to being treated in accordance with the present invention (i.e., its pre-administration level) or not more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10% greater than pre-administration level (particularly when the subject is pre-disposed to increasing adipose tissue levels).
  • Reversing the deposition of adipose tissue covers methods of treating wherein the levels of adipose tissue of a subject are lower than those prior to being treated in accordance with the present invention (i.e., its pre-administration level).
  • levels of adipose tissue of a subject are lower than those prior to being treated in accordance with the present invention (i.e., its pre-administration level).
  • Examples of lower include 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20% or more lower than pre-administration level.
  • Mammal and patient covers warm blooded mammals that are typically under medical care (e.g., humans and domesticated animals). Examples of mammals include (a) feline, canine, equine, bovine, and human and (b) human.
  • Treating covers the treatment of a disease-state in a mammal, and includes: (a) preventing the disease-state from occurring in a mammal, in particular, when such mammal is predisposed to the disease-state but has not yet been diagnosed as having it; (b) inhibiting the disease-state, e.g., arresting it development; and/or (c) relieving the disease-state, e.g., causing regression of the disease state until a desired endpoint is reached. Treating also includes the amelioration of a symptom of a disease (e.g., lessen the pain or discomfort), wherein such amelioration may or may not be directly affecting the disease (e.g., cause, transmission, expression, etc.).
  • a symptom of a disease e.g., lessen the pain or discomfort
  • “Pharmaceutically acceptable salts” refer to derivatives of the disclosed compounds wherein the parent compound is modified by making acid or base salts thereof.
  • Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like.
  • the pharmaceutically acceptable salts include the conventional non-toxic salts or the quaternary ammonium salts of the parent compound formed, for example, from non-toxic inorganic or organic acids.
  • such conventional non-toxic salts include, but are not limited to, those derived from inorganic and organic acids selected from 1,2-ethanedisulfonic, 2-acetoxybenzoic, 2-hydroxyethanesulfonic, acetic, ascorbic, benzenesulfonic, benzoic, bicarbonic, carbonic, citric, edetic, ethane disulfonic, ethane sulfonic, fumaric, glucoheptonic, gluconic, glutamic, glycolic, glycollyarsanilic, hexylresorcinic, hydrabamic, hydrobromic, hydrochloric, hydroiodide, hydroxymaleic, hydroxynaphthoic, isethionic, lactic, lactobionic, lauryl sulfonic, maleic, malic, mandelic, methanesulfonic, napsylic, nitric, oxalic, pamoic, pantothenic,
  • the pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound that contains a basic or acidic moiety by conventional chemical methods.
  • such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, non-aqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred.
  • Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 18th ed., Mack Publishing Company, Easton, Pa., 1990, p 1445, the disclosure of which is hereby incorporated by reference.
  • “Therapeutically effective amount” includes an amount of a compound of the present invention that is effective when administered alone or in combination to treat obesity or another indication listed herein. “Therapeutically effective amount” also includes an amount of the combination of compounds claimed that is effective to treat the desired indication.
  • the combination of compounds is preferably a synergistic combination. Synergy, as described, for example, by Chou and Talalay, Adv. Enzyme Regul. 1984, 22:27-55, occurs when the effect of the compounds when administered in combination is greater than the additive effect of the compounds when administered alone as a single agent. In general, a synergistic effect is most clearly demonstrated at sub-optimal concentrations of the compounds. Synergy can be in terms of lower cytotoxicity, increased effect, or some other beneficial effect of the combination compared with the individual components.
  • Obesity is defined as having a body mass index (BMI) of 30 or above.
  • the index is a measure of an individual's body weight relative to height.
  • BMI is calculated by dividing body weight (in kilograms) by height (in meters) squared.
  • Normal and healthy body weight is defined as having a BMI between 20 and 24.9.
  • Overweight is defined as having a BMI of 25 or above. Obesity has reached epidemic proportions in the U.S., with 44 million obese Americans, and an additional eighty million deemed medically overweight.
  • Obesity is a disease characterized as a condition resulting from the excess accumulation of adipose tissue, especially adipose tissue localized in the abdominal area. It is desirable to treat overweight or obese patients by reducing their amount of adipose tissue, and thereby reducing their overall body weight to within the normal range for their sex and height. In this way, their risk for co-morbidities such as diabetes and cardiovascular disease will be reduced. It is also desirable to prevent normal weight individuals from accumulating additional, excess adipose tissue, effectively maintaining their body weights at a BMI ⁇ 25, and preventing the development of co-morbidities. It is also desirable to control obesity, effectively preventing overweight and obese individuals from accumulating additional, excess adipose tissue, reducing the risk of further exacerbating their co-morbidities.
  • MAO-A and MAO-B There exist two forms of MAO, designated MAO-A and MAO-B. The two forms differ with respect to substrate and inhibitor specificities and amino acid number and sequence.
  • a preferred substrate for MAO-B is beta-phenylethylamine.
  • a preferred substrate for MAO-A is serotonin.
  • Some MAO inhibitors show selectivity for MAO-A or for MAO-B, whereas other MAO inhibitors show little, if any selectivity.
  • the MAO inhibitor clorgyline preferentially inhibits MAO-A
  • the MAO inhibitor L-selegiline preferentially inhibits MAO-B
  • the MAO inhibitor iproniazid is non-selective (i.e., has a similar affinity for both).
  • selectivity examples include a compound having about 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, or more fold higher affinity for one form of MAO than for the other form.
  • selectivity of a compound may vary from species to species or from tissue to tissue. In the context of the present invention, it is desirable to inhibit MAO-B activity in vivo in a mammal.
  • selectivity and affinity are based on the in vivo activity of the MAO inhibitor and the mammalian species to which it is being or to be administered.
  • selectivity of a MAO-B inhibitor of the present invention include (a) at least a 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, to 100-fold greater affinity for MAO-B than MAO-A in the mammalian species (e.g., human) to be treated and (b) at least 100-fold greater affinity for MAO-B than MAO-A in the mammalian species (e.g., human) to be treated.
  • Some of the compounds of the present invention have been designed to have reduced CNS exposure by virtue of their inability or limited ability to penetrate the blood-brain barrier (e.g., quaternary salts or acid substituents) or by their participation in active transport systems, thus reducing centrally mediated side-effects, a potential problem with many anti-obesity agents.
  • the blood-brain barrier e.g., quaternary salts or acid substituents
  • CNS disorders e.g., Parkinson's disease, depression, and Alzheimer's disease.
  • MAO enzymes are also located in a number of peripheral (non-CNS) tissues, including adipose tissue, muscle and liver.
  • non-CNS disorders e.g., obesity, diabetes, and/or cardiometabolic disorders
  • MAO inhibitors intended to enter the CNS from the systemic circulation in order to treat psychiatric and neurological diseases also have access to MAO in peripheral tissues, including adipose tissue, liver, and muscle.
  • an MAO inhibitor useful for treating non-CNS disorders may have some access to the CNS from the systemic circulation.
  • BBB blood-brain barrier
  • P-Glycoproteins P-gp
  • P-gp P-Glycoproteins
  • the typical opioid drug loperamide clinically used as an antidiarrheal, is actively removed from the brain by P-gp, thus explaining its lack of opiate-like CNS effects.
  • Another example is domperidone, a dopamine receptor blocker that participates in the P-gp transport (J Clin Invest. 97, 2517 (1996)).
  • dopamine receptor blockers that cross the BBB can be used to treat schizophrenia
  • the readily-eliminated domperidone can be used to prevent emesis, without the likelihood of producing adverse CNS effects.
  • agents possessing structural characteristics that retard or prevent BBB penetration or contribute to participation in active elimination processes have been identified in various classes of therapeutics. These include antihistamines (Drug Metab. Dispos. 31, 312 (2003)), beta-adrenergic receptor antagonists (B-blockers)(Eur. J. Clin. Pharmacol. 28, Suppl: 21-3 (1985); Br. J. Clin. Pharmacol., 11 (6), 549-553 (1981)), non-nucleoside reverse transcriptase inhibitors (NNRTIs)(J. Pharm Sci., 88(10) 950-954 (1999)), and opioid antagonists. This latter group has been tested in relation to their activity in the GI tract.
  • peripherally selective opioid antagonists are described in various US patents as being useful in the treatment of non-CNS pathologies in mammals, in particular those of the GI tract (see U.S. Pat. No. 5,260,542; U.S. Pat. No. 5,434,171; U.S. Pat. No. 5,159,081; and U.S. Pat. No. 5,270,238).
  • non-brain penetrant compounds can be prepared through the creation of a charge within the molecule.
  • the addition of a methyl group to the tertiary amine functionality of the drugs scopolamine or atropine unlike the parent molecules, prevents their passage across the BBB through the presence of a positive charge.
  • the new molecules methyl-scopolamine and methyl-atropine
  • these drugs can also be used to treat peripheral diseases, without the concern of adverse CNS effects.
  • the quaternary ammonium compound methylnaltrexone is also used for the prevention and/or treatment of opioid and non-opioid induced side effects associated with opioid administration.
  • MAO-B inhibitors such as selegiline have been useful in the treatment of CNS disorders.
  • the unexpected discovery that the anti-obesity activity mediated by these agents is mediated by a non-CNS mechanism may make it desirable that the compounds of the present invention be peripherally restricted, i.e., have an inability or limited ability to cross the BBB or be readily eliminated from the brain through active transport systems, when a non-CNS disorder is to be treated. It may be desirable for the compounds of the present invention to be peripherally restricted, which in turn will result in no or very limited CNS effects. Compounds that provide peripherally mediated anti-obesity properties should result in therapeutic agents with greater safety, as previously demonstrated in earlier classes of peripherally restricted agents.
  • the compounds of the present invention when administered in a therapeutically effective amount, have no or very limited CNS effects. It can also be desirable that the lack of CNS effects is a result of the compounds of the present invention having minimal brain concentrations when administered in therapeutically effective amounts.
  • minimal brain concentrations means levels that are too low to be therapeutically effective for the treatment of a CNS indication or too low to cause significant or measurable deleterious or undesired side effects. It is noted that CNS activity is desirable when seeking to treat a CNS disorder.
  • Compound A is Selegiline when Y is O and R, R 1 , R 2 , X, X 1 , and Z are all H. Selegiline is a drug that crosses the BBB and is indicated for the treatment of Parkinson's disease.
  • one of R, R 1 , R 2 , X, X 1 , and Z is a group capable of reducing or limiting the CNS activity of compound A. This reduced or limited CNS activity occurs via at least one of R, R 1 , R 2 , X, X 1 , and Z being a group that either limits compound A's ability to cross the BBB relative to that of Selegiline or enables it to be actively removed at a rate greater than that of Selegiline.
  • Examples of brain levels of compound A include levels that are (a) from 50, 55, 60, 65, 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, to 100% lower than Selegiline, when administered at the same dosage; (b) from 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, to 100% lower than Selegiline, when administered at the same dosage; and, (c) from 98, 99, to 100% lower than Selegiline, when administered at the same dosage.
  • Most methods of treating obesity are dependent on a significant reduction in energy intake, either by a decrease in food intake (e.g., sibutramine) or by inhibition of fat absorption (e.g., orlistat).
  • adipose tissue it can be desirable for adipose tissue to be significantly reduced in the absence of a significant reduction in food intake.
  • the weight loss comes from the treatment with an MAO-B inhibitor, largely independent of appetite and food intake.
  • Examples of the level of food intake during adipose tissue loss include (a) food intake is maintained, increased or about 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20% below the normal range of the subject prior to being treated in accordance with the present invention (i.e., its pre-administration level); (b) food intake is maintained, increased, or about 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15% below its pre-administration level; (c) food intake is maintained, increased or about 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10% below its pre-administration level; and (d) food intake level is maintained, increased or about 0, 1, 2, 3, 4, or 5% below its pre-administration level.
  • loss of adipose tissue can be accompanied by a concomitant loss of lean muscle mass. This is particularly evident in cancer patients who show a wasting of all body tissue components, including adipose tissue and lean muscle mass. In the present invention, however, it can be desirable for body fat to be significantly reduced in the absence of a significant reduction in lean body mass. Adipose tissue loss comes from treatment with an MAO-B inhibitor, independent of a significant change in lean body mass.
  • Examples of the level of lean body mass during adipose tissue loss include (a) lean body mass is maintained, increased, or is no more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30% below the normal range of the subject prior to being treated in accordance with the present invention (i.e., its pre-administration level); (b) lean body mass is maintained, increased, or is no more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15% below pre-administration levels; (c) lean body mass is maintained, increased, or is no more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10% below pre-administration levels; and (d) lean body mass is maintained, increased, or is no more than about 1, 2, 3, 4, or 5% below pre-administration levels.
  • loss of adipose tissue can be accompanied by a concomitant loss of water mass. This is particularly evident with diet regimens that promote dehydration.
  • it can be desirable for body fat to be significantly reduced in the absence of a significant reduction in water mass.
  • adipose tissue loss comes from treatment with an MAO-B inhibitor, independent of a significant change in water mass.
  • Examples of the level of water mass during adipose tissue loss include (a) water mass is maintained, increased, or is no more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30% below the normal range of the subject prior to being treated in accordance with the present invention (i.e., its pre-administration level); (b) water mass is maintained, increased, or is no more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15% below pre-administration levels; (c) water mass is maintained, increased, or is no more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10% below pre-administration levels; and (d) water mass is maintained, increased, or is no more than about 1, 2, 3, 4, or 5% below pre-administration levels.
  • Sibutramine and orlistat are currently marketed for use in the treatment of obesity. These two compounds achieve weight loss through entirely different mechanisms. Sibutramine, a CNS appetite suppressant, inhibits the neuronal reuptake of serotonin and noradrenaline. Orlistat inhibits gut lipase enzymes that are responsible for breaking down ingested fat.
  • MAO-B inhibitors The mechanism of action of MAO-B inhibitors is believed to be entirely different from appetite suppressants, gut lipase inhibitors, and other agents with similar indications (e.g., serotonin agonists, leptin, and fatty acid synthase inhibitors).
  • Co-administration of a MAO-B inhibitor together with one or more other agents that are useful for treating the indications described above is expected to be beneficial, by producing, for example, either additive or synergistic effects.
  • additional agents include an appetite suppressant and a lipase inhibitor.
  • the present invention provides a method of treating obesity, diabetes, and/or cardiometabolic disorders, comprising administering a therapeutically effective amount of a compound of the present invention and a second component selected from an appetite suppressant (e.g., sibutramine, phentermine, fenfluramine) and a gut lipase inhibitor (e.g., orlistat).
  • an appetite suppressant e.g., sibutramine, phentermine, fenfluramine
  • a gut lipase inhibitor e.g., orlistat
  • MAO-B inhibitors are expected to promote weight loss without appreciably reducing caloric intake.
  • Co-administration of an MAO-B inhibitor together with an appetite suppressant is expected to produce either additive or synergistic effects on weight loss.
  • co-administration of an MAO-B inhibitor together with a lipase inhibitor is expected to produce either additive or synergistic effects on weight loss.
  • Venous blood from healthy subjects was collected between 8 and 8.30 a.m. after an overnight fast into EDTA-containing vacutainer tubes (11.6 mg EDTA/ml blood). After centrifugation of the blood at 250 ⁇ g for 15 minutes at 20° C., the supernatant platelet-rich plasma (PRP) was collected and the number of platelets in PRP counted with a cell counter (MOIAB, Hilden, Germany). 2 ml of PRP was spun at 1500 ⁇ g for 10 min to yield a platelet pellet. The pellet was washed three times with ice-cold saline, resuspended in 2 ml Soerensen phoshate buffer, pH 7.4 and stored at ⁇ 18° C. for one day.
  • PRP supernatant platelet-rich plasma
  • Fresh PRP or frozen platelet suspension (100 ⁇ L) was generally preincubated for 10 min in the absence or presence of drugs at 37° C. in 100 uL of 0.9% NaCl solution or phosphate buffer pH 7.4, respectively, at 37° C. 50 ⁇ L of 2-phenylethylamine-[ethyl-1-14C]hydrochloride (P EA) solution (specific activity 56 Ci/mol, Amersham) was then added in a final concentration of 5 ⁇ M, and the incubation was continued for 30 min. The reaction was terminated by the addition of 50 ⁇ L of 4M HClO 4 .
  • P EA 2-phenylethylamine-[ethyl-1-14C]hydrochloride
  • reaction product of MAO phenylacetaldehyde
  • Product formation was linear with time for at least 60 min with appropriate platelet numbers. Blank values were obtained by including 2 mM pargyline in the incubation mixtures. All assays were performed in duplicate.
  • cDNA's encoding human MAO-B can be transiently transfected into EBNA cells using the procedure described by E.-J. Schlaeger and K. Christensen (Transient Gene Expression in Mammalian Cells Grown in Serum-free Suspension Culture; Cytotechnology, 15: 1-13, 1998). After transfection, cells are homogeneized by means of a Polytron homogeneiser in 20 mM Tris HCl buffer, pH 8.0, containing 0.5 mM EGTA and 0.5 mM phenylmethanesulfonyl fluoride.
  • Cell membranes are obtained by centrifugation at 45,000 ⁇ g and, after two rinsing steps with 20 mM Tris HCl buffer, pH 8.0, containing 0.5 mM EGTA, membranes are eventually re-suspended in buffer and aliquots stored at ⁇ 80° C. until use.
  • MAO-B enzymatic activity can be assayed using a spectrophotometric assay adapted from the method described by M. Zhou and N. Panchuk-Voloshina (A One-Step Fluorometric Method for the Continuous Measurement of Monoamine Oxidase Activity, Analytical Biochemistry, 253: 169-174, 1997). Briefly, membrane aliquots are incubated in 0.1 M potassium phosphate buffer, pH 7.4, for 30 min at 37° C. with or without various concentrations of the compounds.
  • the enzymatic reaction is started by the addition of the MAO substrate tyramine together with 1 U/ml horse-radish peroxidase (Roche Biochemicals) and 80 ⁇ M N-acetyl-3,7,-dihydroxyphenoxazine (Amplex Red, Molecular Probes).
  • the samples are further incubated for 30 min at 37° C. in a final volume of 200 ⁇ l and absorbance is determined at a wavelength of 570 nm using a SpectraMax plate reader (Molecular Devices). Background (non-specific) absorbance is determined in the presence of 10 ⁇ M L-deprenyl for MAO-B.
  • IC 50 values are determined from inhibition curves obtained using nine inhibitor concentrations in duplicate, by fitting data to a four parameter logistic equation.
  • Compounds of the present invention are expected to be MAO-B inhibitors. Representative compounds have been tested, as measured in the assay described herein, and have been shown to be active as their IC 50 values were found to be in the range of ⁇ 10 ⁇ M. Compounds of the present invention are considered to be MAO-B inhibitors if they have an IC 50 value less than or equal to 10 ⁇ M.
  • Additional examples of desirable activity levels of MAO-B inhibitors useful in the present invention include (a) an IC 50 value of 1 ⁇ M or lower, (b) an IC 50 value of 0.1 ⁇ M or lower, (c) an IC 50 value of 0.01 ⁇ M or lower, (d) an IC 50 value of 0.004 ⁇ M or lower, and (e) an IC 50 value of 0.0004 ⁇ M or lower.
  • MAO-B inhibitor(s) can be administered enterally, parenterally, orally, and transdermally.
  • routes of administering the compounds of the present invention may vary significantly. In addition to other oral administrations, sustained release compositions may be favored.
  • routes include injections (e.g., intravenous, intramuscular, and intraperitoneal); subcutaneous; subdermal implants; buccal, sublingual, topical (e.g., a dermal patch), rectal, vaginal, and intranasal administrations.
  • Bioerodible, non-bioerodible, biodegradable, and non-biodegradable systems of administration may also be used.
  • the main active ingredient can be mixed with a pharmaceutical vehicle, examples of which include silica, starch, lactose, magnesium stearate, and talc.
  • the tablets can be coated with sucrose or another appropriate substance or they can be treated so as to have a sustained or delayed activity and so as to release a predetermined amount of active ingredient continuously.
  • Gelatin capsules can be obtained by mixing the active ingredient with a diluent and incorporating the resulting mixture into soft or hard gelatin capsules.
  • a syrup or elixir can contain the active ingredient in conjunction with a sweetener, which is preferably calorie-free, an antiseptic (e.g., methylparaben and/or propylparaben), a flavoring, and an appropriate color.
  • a sweetener which is preferably calorie-free, an antiseptic (e.g., methylparaben and/or propylparaben), a flavoring, and an appropriate color.
  • Water-dispersible powders or granules can contain the active ingredient mixed with dispersants or wetting agents or with suspending agents such as polyvinylpyrrolidone, as well as with sweeteners or taste correctors. Rectal administration can be effected using suppositories, which are prepared with binders melting at the rectal temperature (e.g., cocoa butter and/or polyethylene glycols).
  • Parenteral administration can be effected using aqueous suspensions, isotonic saline solutions, or injectable sterile solutions, which contain pharmacologically compatible dispersants and/or wetting agents (e.g., propylene glycol and/or polyethylene glycol).
  • the active ingredient can also be formulated as microcapsules or microspheres, optionally with one or more carriers or additives.
  • the active ingredient can also be presented in the form of a complex with a cyclodextrin, for example ⁇ -, ⁇ -, or ⁇ -cyclodextrin, 2-hydroxypropyl- ⁇ -cyclodextrin, and/or methyl- ⁇ -cyclodextrin.
  • the dose of the MAO-B inhibitor administered daily will vary on an individual basis and to some extent may be determined by the severity of the disease being treated (e.g., obesity).
  • the dose of the MAO-B inhibitor will also vary depending on the MAO-B inhibitor administered.
  • An example of a range of dosages of an MAO-B inhibitor is about from 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 76, 80, 85, 90, 95, to 100 mg/kg of mammal body weight.
  • the MAO-B inhibitor can be administered in a single dose or in a number of smaller doses over a period of time.
  • the length of time during which the MAO-B inhibitor is administered varies on an individual basis, and can continue until the desired results are achieved (i.e., reduction of body fat, or prevention of a gain in body fat). Therapy could, therefore, last from 1 day to weeks, months, or even years depending upon the subject being treated, the desired results, and how quickly the subject responds to treatment in accordance with the present invention.
  • a possible example of a tablet of the present invention is as follows.
  • a possible example of a capsule of the present invention is as follows.
  • the active ingredient has a suitable particle size.
  • the crystalline lactose and the microcrystalline cellulose are homogeneously mixed with one another, sieved, and thereafter the talc and magnesium stearate are admixed. The final mixture is filled into hard gelatin capsules of suitable size.
  • a possible example of an injection solution of the present invention is as follows.
  • the compounds of the present invention can be prepared in a number of ways known to one skilled in the art of organic synthesis.
  • the compounds of the present invention can be synthesized using the methods described below, together with synthetic methods known in the art of synthetic organic chemistry, or by variations thereon as appreciated by those skilled in the art. Preferred methods include, but are not limited to, those described below.
  • the reactions are performed in a solvent appropriate to the reagents and materials employed and suitable for the transformations being effected. It will be understood by those skilled in the art of organic synthesis that the functionality present on the molecule should be consistent with the transformations proposed. This will sometimes require a judgment to modify the order of the synthetic steps or to select one particular process scheme over another in order to obtain a desired compound of the invention.
  • Scheme 1 provides access to one of a series of compounds that are part of the present invention.
  • An amino acid ester such as phenylalanine (X ⁇ H) or O-benzyltyrosine (X ⁇ O-benzyl)
  • X ⁇ H phenylalanine
  • O-benzyltyrosine X ⁇ O-benzyl
  • step a alkylation of the amino ester with propargyl bromide in DMF at about 50° C. in the presence potassium carbonate should give the monopropargyl amino ester which can be converted to the des-methyl acid of the compound described in step e, below.
  • the tertiary amino ester When the secondary amine is treated with propargyl bromide in DMF in the presence of potassium carbonate at about 50° C., the tertiary amino ester will be produced (step b). Hydrolysis of the ester using aqueous LiOH solution in a co-solvent should afford the desired amino acid (step c). If the tertiary amino ester has a benzyloxy group on its phenyl ring, the benzyl group can be removed using trifluoroacetic acid (step d) prior to hydrolysis of the ester (step e).
  • the primary alcohol will be produced (step f).
  • Deprotonation of the alcohol with sodium hydride followed by alkylation with ethyl bromopropionate will afford the amino alkoxyester (step g).
  • Treatment of this ester as in step c will yield the tertiary amino acid (step h).
  • the tertiary amino alkoxyester has a benzyloxy group on its phenyl ring, the benzyl group can be removed using trifluoroacetic acid prior to hydrolysis of the ester.
  • Scheme 2 illustrates how one could make substituted propargyl compounds of the present invention.
  • a starting propargyl amine can be deprotonated with n-butyl lithium at low temperature in a solvent such as THF, and the resulting anion alkylated with methylchloroformate or ethyl bromoacetate to afford an aminoester (step a).
  • Hydrolysis of the ester using aqueous LiOH in a co-solvent can afford an amino acid (step b).
  • the tertiary amino ester has a benzyloxy group on its phenyl ring, the benzyl group can be removed using trifluoroacetic acid prior to hydrolysis of the ester.
  • Scheme 3 shows how to prepare hydroxy-phenyl and substituted hydroxy-phenyl compounds of the present invention.
  • a starting p-hydroxyphenethylamine can be treated with sodium hydride and the resulting phenoxide anion can be alkylated with ethyl bromoacetate to provide an ester (step a).
  • the carboxylic acid can then be formed by the previously described hydrolysis (step b). If the alkoxide anion was alkylated with 1,3-dibromopropane, then a bromoalkylether should be produced (step c). This halide, in turn, could be treated with trimethyl amine to give the propyloxytrimethyl ammonium salt (step d).
  • step e Treatment of the hydroxyphenyl compound with formalin and dimethyl amine followed by further reaction with acetic anhydride and concentrated hydrochloric acid should yield the intermediate chloromethylated phenol (step e). Subsequent reaction with excess trimethylamine should afford the trimethylammonium salt (step f).
  • Scheme 4 describes the synthesis of optionally substituted benzyloxy compounds.
  • This reaction scheme as well as the procedures found in J. Org. Chem. 1991, 56, 2395 can also be utilized to prepare substituted-biphenylmethyl analogs of this and the anilino compounds of Scheme 5 by utilizing commercially available 4′-bromomethyl-biphenyl-2-carbonitrile, or for unsubstituted compounds commercially available 4-phenylbenzyl bromide, to alkylate the phenol of Scheme 4 and the anilines of Scheme 5, respectively.
  • step a Treatment of the phenol with an optionally substituted benzyl bromide in a solvent such as acetone in the presence of a base such as potassium carbonate upon heating should afford the benzyl ether (step a). If the substituent on the benzyloxy group is an ester or a carbon-chain linked ester, the acid can be produced via hydrolysis using lithium hydroxide in aqueous THF (step b).
  • the alkylation product (step c) can be treated with 30% hydrogen peroxide and potassium carbonate in DMSO to produce the amides (step d).
  • Scheme 5 describes the general synthesis of achiral compounds starting from substituted phenylacetones. If one uses commercially available 4-nitophenyl acetone, an anilino compound of step e that can also be used as a starting material for the reactions of Scheme 4, can be produced.
  • an anilino compound of step e that can also be used as a starting material for the reactions of Scheme 4
  • DCE dichloroethane
  • acetic acid at 25-30° C.
  • step a Alkylation of the amine using formalin and sodium triacetoxyborohydride in DCE and HOAc at about 30° C. will provide the tertary amine (step b).
  • step c Reduction of the nitro group using Fe and ammonium formate in methanol at reflux will afford the anilino compound that has also been debenzylated (step c).
  • Treatment of this aniline with benzaldehydes in the presence of triacetoxyborohydride in DCE and HOAc will yield benzylated anilines with optionally selected substituents that can be used further for the transformations described in Scheme 4 (step e).
  • reaction of this aniline with methanesulfonyl chloride in the presence of a base will provide the sulfonamide derivative (step f).
  • reaction of this aniline with acid chlorides such as ethyl malonyl chloride or 3-cyanobenzenesulfonyl chloride will produce the acetanilide or the sulfonamide, respectively.
  • Scheme 6 describes how one can form quarternary ammonium salts or N-oxides of the present invention.
  • a starting tertiary propargyl amine is treated with an alkyl halide such as propoargyl bromide in a solvent such as methanol or ethanol the quaternary ammonium salt can result (step a).
  • a tertiary propargyl amine treated with an oxidizing agent such as 2-phenylsulfonyl-3-phenyloxaziridine (Davis reagent) in the presence of potassium carbonate in methylene chloride should give the amine N-oxides (step b).
  • Scheme 7 illustrates a route to another series of compounds that are part of the present invention.
  • An amino acid ester optionally substituted on the aromatic ring, can be N-alkylated using formalin and sodium cyanoborohydride under slightly acidic conditions to provide an N-methylated ester (step a).
  • the secondary amine can then be alkylated with propargyl bromide to give a tertiary amino ester (step b). If the tertiary amino ester is reduced with lithium aluminum hydride (LAH), the primary alcohol should be produced (step c). Deprotonation of the alcohol with sodium hydride followed by alkylation with benzyl bromide should afford the amino benzyl ether (step d).
  • LAH lithium aluminum hydride
  • the previously described amino alcohol (Scheme 1, step f) can be oxidized to the aldehyde using the Dess-Martin periodinane [1,1,1-tris(acetyloxy)-1,1-dihydro-1,2-benziodoxol-3-(1H)-one] in wet dichlormethane at about room temperature (step a).
  • step a Treatment of the amino aldehyde with aqueous ammonia in the presence of sodium cyanoborohydride or with hydroxylamine followed by lithium aluminum hydride reduction should give the primary amine (step b).
  • Reaction of the primary amine with methane sulfonyl chloride will afford the sulfonamide derivative (step c).
  • the primary amine can also be reacted with ethyl 4-bromocrotonate in DMF in the presence of potassium carbonate to give the diaminoester (step d). Subsequent hydrolysis using lithium hydroxide in aqueous THF solution will provide the diamino acid (step e). The primary amine can also be treated with ethyl malonyl chloride in the presence of pyridine to give the amide ester (step f). Subsequent treatment with lithium hydroxide in aqueous THF solution will provide the acid (step g).
  • Scheme 9 shows the synthesis of chiral analogs of selegiline starting from L-tyrosine methyl ester.
  • Treatment of the ester with di-t-butyl-dicarbonate (t-Boc anhydride) in methanol in the presence of triethylamine at 40-50° C. will provide the N-t-BOC-protected ester (step a).
  • the phenol can be alkylated with benzyl bromide or a substituted version thereof, in acetone at 50-60° C. for about 4 hours to yield the O-benzyl ether analogs (step b).
  • step c The t-BOC group will then be removed with TFA in methylene chloride at room temperature for 18-20 hours (step c), and the ester can be reduced with LAH at about 60 degrees C. for 6-8 hours to afford the alcohol (step d). Protection of the amine with t-Boc anhydride in methanol in the presence of triethylamine at 40-50° C. provides the N-t-BOC-protected ester (step e). The alcohol can be converted to the iodide with iodine in the presence of triphenylphosphine and imidazole in dichloromethane at about 40-50° C. for 4-6 hours (step f).
  • Reduction of the iodide is carried out using sodium borohydride in DMSO at about 90° C. for about 1 hour (step g). Removal of the t-BOC group with TFA in methylene chloride at room temperature for about 15-20 hours will give the amine (step h), and reductive amination using formalin, sodium triacetoxyborohydride, HOAc in dichloromethane for about 24 hours will afford the methylated amine (step i). Subsequent alkylation with propargyl bromide in the presence of potassium carbonate in acetone for about 20 hours will produce the teriary amine (step j).
  • Bn is benzyl or benzyl optionally substituted with substituents that are compatible with LAH reduction.
  • the product of step j (unsubstituted benzyl) can be de-benzylated with TFA, and the resulting phenol can be re-alkylated with benzyl halides containing various substituents on the phenyl ring.
  • hydroxy-selegiline can be coupled with a polyethylene glycol (PEG), with one protected hydroxyl group (e.g., with a t-butyldimethylsilyl (TBDMS), alkyl, benzyl or aralkyl group), under Mitsunobu conditions using diethylazodicarboxylate (DEAD) and triphenylphosphine in a solvent (e.g., THF) to produce phenolethers (step a).
  • PEG polyethylene glycol
  • TDMS t-butyldimethylsilyl
  • DEAD diethylazodicarboxylate
  • THF triphenylphosphine
  • the compounds with a terminal alkyl or aryl-alkyl group can be quaternized with an alkyl or propargyl halide in a variety of solvents (e.g., ether, ethanol, or toluene) to produce the quaternary ammonium salts (step b).
  • solvents e.g., ether, ethanol, or toluene
  • the TBDMS-protected PEG pendants can be treated with tetrabutylammonium fluoride in THF to give the PEG pendants with terminal hydroxyl groups (step c).
  • These alcohols can also be converted to the quaternary salts as described above (step d).
  • the various mono-terminally substituted PEG-halides can be prepared by procedures described in Nuclear Medicine and Biology, 32, 799 (2005) or are commercially available.
  • a hydroxyphenylacetic acid ester can be coupled with a halo-polyethylene glycol (PEG), optionally terminally substituted (e.g., TBDMS, alkyl, benzyl, or aryl-alkyl group), in DMF in the presence of potassium carbonate at about 100° C. with stirring for 12-16 hours to afford the PEG ether ester (step a).
  • PEG halo-polyethylene glycol
  • TBDMS halo-polyethylene glycol
  • alkyl benzyl, or aryl-alkyl group
  • the compounds with a terminal alkyl or aryl-alkyl group can be quaternized with alkyl or propargyl halides in a variety of solvents such as ether, ethanol, or toluene to produce the quaternary ammonium salts (step f).
  • the TBDMS-protected PEG pendants can be treated with tetrabutylammonium fluoride in THF to give the PEG pendants with terminal hydroxyl groups (step g).
  • These alcohols can also be converted to the quaternary salts as described above (step h).
  • One stereoisomer of a compound of the present invention may be a more potent MAO-B inhibitor than its counterpart(s).
  • stereoisomers are included in the present invention. Some of these stereoisomers are shown below in Scheme 12.
  • separation of the racemic material can be achieved by HPLC using a chiral column or by a resolution using a resolving agent such as described in Wilen, S. H. Tables of Resolving Agents and Optical Resolutions 1972, 308 or using enantiomerically pure acids and bases.
  • a chiral compound of the present invention may also be directly synthesized using a chiral catalyst or a chiral ligand, e.g., Jacobsen, E. Acc. Chem. Res. 2000, 33, 421-431 or using other enantio- and diastereo-selective reactions and reagents known to one skilled in the art of asymmetric synthesis.
  • Tables A and B below describe examples of the present invention that have been prepared. The examples can be prepared according to the methods of the scheme numbers provided for each example.
  • the number in the parentheses indicates the substituent's position on phenyl ring in the X group.
  • Tables I-Xb show representative examples of the compounds of the present invention. Each example in each table represents an individual species of the present invention.
  • OCH 3 H OCH 2 CH ⁇ CH 2 CH 2 CH ⁇ CHCO 2 H 472.
  • OCH 3 H OCH 2 CH ⁇ CH 2 CH 2 CH ⁇ CHCO 2 H 473.
  • OCH 3 H OCH 2 CH ⁇ CH 2 CH 2 CH 2 P—O(OCH 2 CH 3 ) 2 474.
  • OCH 3 H OCH 2 CH ⁇ CH 2 CH 2 CH 2 P—O(OH) 2 475.
  • OCH 2 CH ⁇ CH 2 H OCH 2 CH ⁇ CH 2 CO 2 CH 2 CH 3 476.
  • OCH 2 CH ⁇ CH 2 H OCH 2 CH ⁇ CH 2 CO 2 H 477.
  • OCH 2 CH ⁇ CH 2 H OCH 2 CH ⁇ CH 2 CH 2 CO 2 CH 2 CH 3 478.
  • OCH 2 CH ⁇ CH 2 H OCH 2 CH ⁇ CH 2 CH 2 CO 2 H 479.
  • OCH 2 CH ⁇ CH 2 H OCH 2 CH ⁇ CH 2 CH 2 CH 2 CO 2 CH 2 CH 3 480.
  • OCH 2 CH ⁇ CH 2 H OCH 2 CH ⁇ CH 2 CH 2 CH 2 CO 2 H 481.
  • OCH 2 CH ⁇ CH 2 H OCH 2 CH ⁇ CH 2 CH 2 CH ⁇ CHCO 2 H 482.
  • OCH 2 CH ⁇ CH 2 H OCH 2 CH ⁇ CH 2 CH 2 CH ⁇ CHCO 2 H 483.
  • OCH 2 CH ⁇ CH 2 H OCH 2 CH ⁇ CH 2 CH 2 CH 2 P—O(OH) 2 485.
  • OCH 2 C 6 H 5 H OCH 2 CH ⁇ CH 2 CO 2 CH 2 CH 3 486.
  • OCH 2 C 6 H 5 H OCH 2 CH ⁇ CH 2 CH 2 CO 2 CH 2 CH 3 488.
  • OCH 2 C 6 H 5 H OCH 2 CH ⁇ CH 2 CH 2 CH 2 CO 2 CH 2 CH 3 490.
  • OCH 2 C 6 H 5 H OCH 2 CH ⁇ CH 2 CH 2 CH 2 CO 2 H 491.
  • OCH 2 C 6 H 5 H OCH 2 CH ⁇ CH 2 CH 2 CH ⁇ CHCO 2 H 493.
  • OCH 3 H OCH 2 CONH 2 CH 2 CH 2 P—O(OH) 2 629.
  • OCH 2 C 6 H 4 —Cl O ⁇ H (2, 3, or 4) 141.
  • OCH 2 C 6 H 4 —Cl CH 3 CH 3 (2, 3, or 4) 142.
  • OCH 2 C 6 H 4 —Cl CH 2 CH ⁇ CH 2 CH 3 (2, 3, or 4) 143.
  • OCH 2 C 6 H 4 —Cl CH 2 C ⁇ CH CH 3 (2, 3, or 4) 144.
  • OCH 2 C 6 H 4 OCH 3 CH 3 H (2, 3, or 4) 146.
  • OCH 2 C 6 H 4 OCH 3 CH 2 CH ⁇ CH 2 H (2, 3, or 4) 147.
  • OCH 2 C 6 H 4 OCH 3 CH 2 C ⁇ CH H (2, 3, or 4) 148. OCH 2 C 6 H 4 OCH 3 O ⁇ H (2, 3, or 4) 149. OCH 2 C 6 H 4 OCH 3 CH 3 CH 3 (2, 3, or 4) 150. OCH 2 C 6 H 4 OCH 3 CH 2 CH ⁇ CH 2 CH 3 (2, 3, or 4) 151. OCH 2 C 6 H 4 OCH 3 CH 2 C ⁇ CH CH 3 (2, 3, or 4) 152. OCH 2 C 6 H 4 OCH 3 O ⁇ CH 3 (2, 3, or 4) 153. OCH 2 C 6 H 4 C 6 H 5 CH 3 H 154. OCH 2 C 6 H 4 C 6 H 5 CH 2 CH ⁇ CH 2 H 155.
  • OCH 2 C 6 H 3 (CONH 2 ) 2 (3,5) CH 3 39. OCH 2 C 6 H 4 —NO 2 (2, 3, or 4) H 40. OCH 2 C 6 H 4 —NO 2 (2, 3, or 4) CH 3 41. OCH 2 C 6 H 4 —CF 3 (2, 3, or 4) H 42. OCH 2 C 6 H 4 —CF 3 (2, 3, or 4) CH 3 43. OCH 2 C 6 H 4 —CH 3 (2, 3, or 4) H 44. OCH 2 C 6 H 4 —CH 3 (2, 3, or 4) CH 3 45. OCH 2 C 6 H 4 —NHSO 2 CH 3 (2, 3, or 4) H 46. OCH 2 C 6 H 4 —NHSO 2 CH 3 (2, 3, or 4) CH 3 47.
  • OCH 2 C 6 H 3 (CONH 2 ) 2 (3, 5) H 38. OCH 2 C 6 H 3 (CONH 2 ) 2 (3, 5) CH 3 39. OCH 2 C 6 H 4 —NO 2 (2, 3, or 4) H 40. OCH 2 C 6 H 4 —NO 2 (2, 3, or 4) CH 3 41. OCH 2 C 6 H 4 —CF 3 (2, 3, or 4) H 42. OCH 2 C 6 H 4 —CF 3 (2, 3, or 4) CH 3 43. OCH 2 C 6 H 4 —CH 3 (2, 3, or 4) H 44. OCH 2 C 6 H 4 —CH 3 (2, 3, or 4) CH 3 45. OCH 2 C 6 H 4 —NHSO 2 CH 3 (2, 3, or 4) H 46.
  • OCH 2 C 6 H 4 C 6 H 4 CN (2, 3, or 4) CH 3 49.
  • NHCH 2 C 6 H 4 OCH 2 CN (2, 3, or 4) H 22. NHCH 2 C 6 H 4 OCH 2 CN (2, 3, or 4) CH 3 23. NHCH 2 C 6 H 4 OCH 2 CONH 2 (2, 3, or 4) H 24. NHCH 2 C 6 H 4 OCH 2 CONH 2 (2, 3, or 4) CH 3 25. NHCH 2 C 6 H 3 (CN) 2 (3, 5) H 26. NHCH 2 C 6 H 3 (CN) 2 (3, 5) CH 3 27. NHCH 2 C 6 H 3 (CONH 2 ) 2 (3, 5) H 28. NHCH 2 C 6 H 3 (CONH 2 ) 2 (3, 5) CH 3 29.
  • NHCH 2 C 6 H 4 OCH 2 CN (2, 3, or 4) H 22. NHCH 2 C 6 H 4 OCH 2 CN (2, 3, or 4) CH 3 23. NHCH 2 C 6 H 4 OCH 2 CONH 2 (2, 3, or 4) H 24. NHCH 2 C 6 H 4 OCH 2 CONH 2 (2, 3, or 4) CH 3 25. NHCH 2 C 6 H 3 (CN) 2 (3, 5) H 26. NHCH 2 C 6 H 3 (CN) 2 (3, 5) CH 3 27. NHCH 2 C 6 H 3 (CONH 2 ) 2 (3, 5) H 28. NHCH 2 C 6 H 3 (CONH 2 ) 2 (3, 5) CH 3 29.

Abstract

The invention provides novel compounds of formulae I and II:
Figure US20140155355A1-20140605-C00001
that are monoamine oxidase-B inhibitors, which can be useful in treating obesity, diabetes, and/or cardiometabolic disorders (e.g., hypertension, dyslipidemias, high blood pressure, and insulin resistance).

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the priority benefit of U.S. Provisional Application No. 60/696,067 filed Jul. 1, 2005, now pending, which is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention provides compounds and pharmaceutical compositions thereof and methods of using the same for treating obesity, diabetes, and/or cardiometabolic disorders (e.g., hypertension, dyslipidemias, high blood pressure, and insulin resistance).
  • BACKGROUND OF THE INVENTION
  • L-Selegiline is a monoamine oxidase (MAO) inhibitor that was developed for the treatment of neurological disorders and is primarily used to treat Parkinson's disease. MAO is an enzyme responsible for metabolizing biogenic monoamines including serotonin, dopamine, histamine, and phenylethylamine. By inhibiting MAO located in the central nervous system (CNS), MAO inhibitors and their analogues increase the concentration of monoamines present within the brain synapses. This enhances monoamine-mediated neurotransmission, effectively treating neurological disorders such as Parkinson's disease and depression.
  • MAO enzymes are also located in a number of peripheral (non-CNS) tissues, including adipose tissue, muscle, and liver. The function of MAO enzymes in these tissues has not been established. Currently, the only approved clinical use of L-selegiline and other MAO inhibitors is for the treatment of neurological disorders such as Parkinson's disease and depression.
  • Obesity is associated with an increase in the overall amount of adipose tissue (i.e., body fat), especially adipose tissue localized in the abdominal area. Obesity has reached epidemic proportions in the United States. The prevalence of obesity has steadily increased over the years among all racial and ethnic groups. According to the United States Surgeon General, 61% of the adult population and 14% of children are obese or overweight. Forty four million Americans are obese, with an additional eighty million deemed medically overweight. Obesity is responsible for more than 300,000 deaths annually, and will soon overtake tobacco usage as the primary cause of preventable death in the United States. Obesity is a chronic disease that contributes directly to numerous dangerous co-morbidities, including type 2 diabetes, cardiovascular disease, inflammatory diseases, premature aging, and some forms of cancer. Type 2 diabetes, a serious and life-threatening disorder with growing prevalence in both adult and childhood populations, is currently the 7th leading cause of death in the United States. Since more than 80% of patients with type 2 diabetes are overweight, obesity is the greatest risk factor for developing type 2 diabetes. Increasing clinical evidence indicates that the best way to control type 2 diabetes is to reduce weight.
  • The most popular over-the counter drugs for the treatment of obesity, phenylpropanolamine and ephedrine, and the most popular prescription drug, fenfluramine, were removed from the marketplace as a result of safety concerns. Drugs currently approved for the long-term treatment of obesity fall into two categories: (a) CNS appetite suppressants such as sibutramine and (b) gut lipase inhibitors such as orlistat. CNS appetite suppressants reduce eating behavior through activation of the ‘satiety center’ in the brain and/or by inhibition of the ‘hunger center’ in the brain. Gut lipase inhibitors reduce the absorption of dietary fat from the gastrointestinal (GI) tract. Although sibutramine and orlistat work through very different mechanisms, they share in common the same overall goal of reducing body weight secondary to reducing the amount of calories that reach the systemic circulation. Unfortunately, these indirect therapies produce only a modest initial weight loss (approximately 5% compared to placebo) that is usually not maintained. After one or two years of treatment, most patients return to or exceed their starting weight. In addition, most approved anti-obesity therapeutics produce undesirable and often dangerous side effects that can complicate treatment and interfere with a patient's quality of life.
  • The lack of therapeutic effectiveness, coupled with the spiraling obesity epidemic, positions the ‘treatment of obesity’ as one of the largest and most urgent unmet medical needs. There is, therefore, a real and continuing need for the development of improved medications that treat obesity.
  • MAO-B inhibitors such as selegiline have been clinically useful in the treatment of CNS disorders. They have now unexpectedly been discovered to also have anti-obesity activity. Even more surprising is that the anti-obesity activity effects of MAO-B inhibitors are mediated via a peripheral (i.e., non-CNS) mechanism. This new discovery provides a novel approach for the treatment of obesity. Moreover, if the CNS effects of these compounds can be reduced, their peripherally mediated anti-obesity properties should provide therapeutic agents with greater safety. It has, as a result, become highly desirable to find MAO-B inhibitors with limited or no CNS effects. Compounds of this sort are expected to be useful in treating obesity and the variety of co-morbidities to which it contributes.
  • SUMMARY OF THE INVENTION
  • Accordingly, in an aspect, the present invention provides novel MAO-B inhibitors or stereoisomers or pharmaceutically acceptable salts that are useful to treat obesity, diabetes, and/or cardiometabolic disorders (e.g., hypertension, dyslipidemias, high blood pressure, and insulin resistance).
  • In another aspect, the present invention provides novel pharmaceutical compositions, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of at least one of the compounds of the present invention or a stereoisomer or pharmaceutically acceptable salt thereof.
  • In another aspect, the present invention provides novel methods for treating obesity, diabetes, and/or cardiometabolic disorders (e.g., hypertension, dyslipidemias, high blood pressure, and insulin resistance), comprising: administering to a patient in need thereof a therapeutically effective amount of at least one of the compounds of the present invention or a stereoisomer or pharmaceutically acceptable salt thereof.
  • In another aspect, the present invention provides novel methods for treating CNS disorders, comprising: administering to a patient in need thereof a therapeutically effective amount of at least one of the compounds of the present invention or a stereoisomer or pharmaceutically acceptable salt thereof.
  • In another aspect, the present invention provides processes for preparing novel compounds.
  • In another aspect, the present invention provides novel compounds or stereoisomers or pharmaceutically acceptable salts for use in therapy.
  • In another aspect, the present invention provides the use of novel compounds for the manufacture of a medicament for the treatment of obesity, diabetes, and/or cardiometabolic disorders.
  • In another aspect, the present invention provides the use of novel compounds for the manufacture of a medicament for the treatment of CNS disorders.
  • These and other objects, which will become apparent during the following detailed description, have been achieved by the inventors' discovery that the presently claimed compounds or stereoisomers or pharmaceutically acceptable salts thereof are expected to be effective MAO-B inhibitors.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention is based on the unexpected finding that an MAO-B inhibitor is capable of reducing the amount of adipose tissue (i.e., body fat) in a warm-blooded mammal. This finding was unexpected because body fat can be reduced despite little, if any, concomitant reduction in food intake.
  • [1] In an embodiment, the present invention provides novel compound A or a stereoisomer or pharmaceutically acceptable salt thereof:
  • Figure US20140155355A1-20140605-C00002
  • wherein: Y is O or H2 and R, R1, R2, X, X1, and Z are all independently selected from H, C1-6 alkyl, and a group capable of reducing or limiting the CNS activity of compound A; and,
  • provided that at least one of R, R1, R2, X, X1, and Z is other than H.
  • [2] In another embodiment, the present invention provides a novel compound of formula I or II, or a stereoisomer or a pharmaceutically acceptable salt thereof:
  • Figure US20140155355A1-20140605-C00003
  • wherein:
  • R, at each occurrence, is independently selected from H, C1-6 alkyl, C2-6 alkenyl, and C2-6 alkynyl;
  • R1 is selected from H, C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, (CH2)mCO2R, C2-6 alkenyl-CO2R, CH2CH(NHAc)CO2R, CH2CH(NHR)CO2R, and, (CH2)nPO(OR)2;
  • R2 is selected from H, C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, (CH2)mCO2R, C2-6 alkenyl-CO2R, (CH2)nCON(R)2, (CH2)nPO(OR)2, and (CH2)n-tetrazole;
  • X and X1 are independently selected from H, OR, C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, halogen, CF3, nitro, N(R)2, (CH2)m-tetrazole, (CH2)mCO2R, (CH2)mCONR2, (CH2)mCN, O(CH2)nCN, O(CH2)n-tetrazole, O(CH2)bCO2R, O(CH2)nCON(R)2, O—C2-6 alkenyl-CO2R, O(CH2)nPO(OR)2, NR—C2-4 alkenyl, NRSO2CH3, NR(CH2)nCO2R, NR(CH2)nCON(R)2, NR—C2-4 alkenyl-CO2R, NR(CH2)nPO(OR)2, NR(CH2)nSO2OR, NR(CH2)n-tetrazole, NRCO(CH2)nCO2R, NRCO(CH2)nCON(R)2, SO2NRCH3, OCH2CHMCONRCH2CO2R, CH2-aryl, O(CH2)nPO(OR)2, O(CH2)nSO2OR, (CH2)nN+(R)3A, OCH2(CH2)nN+(R)3A, O(CH2)n-biphenyl, O(CH2)n-biphenyl-(CH2)mCO2R, O(CH2)n-biphenyl-(CH2)mtetrazole, O(CH2)n-biphenyl-(CH2)mCN, O(CH2)n-biphenyl-(CH2)mCON(R)2, NR(CH2)n-biphenyl, NR(CH2)n-biphenyl-(CH2)mCO2R, NR(CH2)n-biphenyl-(CH2)mtetrazole, NR(CH2)n-biphenyl-(CH2)mCN, NR(CH2)n-biphenyl-(CH2)mCON(R)2, O(CH2)n-aryl, O(CH2)n-heteroaryl, NR(CH2)n-aryl, NR(CH2)n-heteroaryl, O(CH2)n-aryl(CH2)mCO2R, O(CH2)n-aryl-C2-6 alkenyl-CO2R, O(CH2)n-aryl(CH2)m-tetrazole, O(CH2)n-aryl(CH2)mCN, O(CH2)n-aryl(CH2)mCON(R)2, O(CH2)n-aryl(CH2)m—PO(OR)2, O(CH2)n-aryl-O(CH2)nCO2R, O(CH2)n-aryl-O—C2-6 alkenyl-CO2R, O(CH2)n-arylO(CH2)n-tetrazole, O(CH2)n-arylO(CH2)nCN, O(CH2)n-arylO(CH2)nCON(R)2, O(CH2)n-arylO(CH2)n—PO(OR)2, O(CH2)n-aryl-NR(CH2)nCO2R, O(CH2)n-aryl-NRC2-6 alkenyl-CO2R, O(CH2)n-aryl-NR(CH2)n-tetrazole, O(CH2)n-aryl-NR(CH2)CN, O(CH2)n-aryl-NR(CH2)nCON(R)2, O(CH2)n-aryl-NR(CH2)n—PO(OR)2, NR(CH2)n-aryl(CH2)mCO2R, NR(CH2)n-aryl-C2-6 alkenyl-CO2R, NR(CH2)n-aryl(CH2)m-tetrazole, NR(CH2)n-aryl(CH2)mCN, NR(CH2)n-aryl(CH2)mCON(R)2, NR(CH2)n-aryl(CH2)m—PO(OR)2, NR(CH2)n-aryl-NR(CH2)nCO2R, NR(CH2)n-aryl-NR—C2-6 alkenyl-CO2R, NR(CH2)n-aryl-NR(CH2)n-tetrazole, NR(CH2)n-aryl-NR(CH2)nCN, NR(CH2)n-aryl-NR(CH2)nCON(R)2, NR(CH2)n-aryl-NR(CH2)nPO(OR)2, NR(CH2)n-arylO(CH2)nCO2R, NR(CH2)n-aryl-O—C2-6 alkenyl-CO2R, NR(CH2)n-aryl-O(CH2)n-tetrazole, NR(CH2)n-arylO(CH2)nCN, NR(CH2)n-aryl-O(CH2)nCON(R)2, NR(CH2)n-arylO(CH2)nPO(OR)2, O(CH2)n-heteroaryl(CH2)mCO2R, O(CH2)n-heteroaryl-C2-6 alkenyl-CO2R, O(CH2)n-heteroaryl(CH2)m-tetrazole, O(CH2)n-heteroaryl-(CH2)mCN, O(CH2)n-heteroaryl(CH2)mCON(R)2, O(CH2)n-heteroaryl(CH2)m—PO(OR)2, O(CH2)n-heteroaryl-O(CH2)nCO2R, O(CH2)n-heteroaryl-O—C2-6 alkenyl-CO2R, O(CH2)n-heteroarylO(CH2)n-tetrazole, O(CH2)n-heteroaryl O(CH2)nCN, O(CH2)n-heteroarylO(CH2)nCON(R)2, O(CH2)n-heteroarylO(CH2)n—PO(OR)2, O(CH2)n-heteroaryl-NR(CH2)nCO2R, O(CH2)n-heteroaryl-NR—C2-6 alkenyl-CO2R, O(CH2)n-heteroaryl-NR(CH2)n-tetrazole, O(CH2)n-heteroaryl-NR(CH2)nCN, O(CH2)n-heteroaryl-NR(CH2)nCON(R)2, O(CH2)n-heteroaryl-NR(CH2)n—PO(OR)2, NR(CH2)n-heteroaryl(CH2)mCO2R, NR(CH2)n-heteroaryl-C2-6 alkenyl-CO2R, NR(CH2)n-heteroaryl(CH2)m-tetrazole, NR(CH2)n-heteroaryl(CH2)mCN, NR(CH2)n-heteroaryl(CH2)mCON(R)2, NR(CH2)n-heteroaryl(CH2)mPO(OR)2, NR(CH2)n-heteroaryl-NR(CH2)nCO2R, NR(CH2)n-heteroaryl-NR—C2-6 alkenyl-CO2R, NR(CH2)n-heteroaryl-NR(CH2)n-tetrazole, NR(CH2)n heteroaryl-NR(CH2)nCN, NR(CH2)n-heteroaryl-NR(CH2)CON(R)2, NR(CH2)n-heteroaryl-NR(CH2)nPO(OR)2, NR(CH2)n-heteroaryl-O(CH2)nCO2R, NR(CH2)n-heteroaryl-O—C2-6 alkenyl-CO2R, NR(CH2)n-heteroaryl-O(CH2)n-tetrazole, NR(CH2)n-heteroaryl-O(CH2)nCN, NR(CH2)n-heteroaryl-O(CH2)nCON(R)2, NR(CH2)n-heteroarylO(CH2)nPO(OR)2, and O(CH2CH2O)pCH2CH2OR3, where heteroaryl is a 5-12 membered ring system consisting of carbon atoms and from 1-4 heteroatoms selected from N, O, and S, and wherein aryl, biphenyl, and heteroaryl are substituted with 1-2 X2 and tetrazole is substituted with 0-1 R;
  • R3 is selected from H, C1-6 alkyl, and aryl-C1-6 alkyl-;
  • X2, at each occurrence, is independently selected from H, OR, C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, halogen, CF3, nitro, —CN, C(O)NR2, NRSO2CH3, and SO2N(R)C1-4alkyl;
  • A, at each occurrence, is a counterion;
  • Y is selected from O and H2;
  • Z is selected from H, OR, O(CH2)nCO2R, O(CH2)nCONH2, OCH2CHMCONRCH2CO2R, OCH2CH(NHC(O)CH3)CO2R, OCH2CH(NHR)CO2R, O(CH2)nPO(OR)2, O(CH2)nSO2OR, O(CH2)n-tetrazole, O—C2-6 alkenyl, O(CH2)n-aryl, OCH2CH2CONRCH(OR)CO2R, OCH2CH2CONRC(R)2CH2SO2OR, NRR, NR(CH2)CO2R, NR(CH2)nCONH2, NRCH2CHMCONRCH2CO2R, NRSO2R, NRCH2CH(NHC(O)CH3)CO2R, NRCH2CH(NHR)CO2R, NR(CH2)nPO(OR)2, NR(CH2)nSO2OR, NR(CH2)n-tetrazole, NR—C2-6 alkenyl, NR(CH2)n-aryl, NRCH2CH2CONRCH(OR)CO2R, NRCH2CH2CONRC(R)2CH2SO2OR, and NRCO(CH2)nCO2R, O(CH2)n-aryl-CO2R, O(CH2)n-aryl-tetrazole, O(CH2)n-aryl-CON(R)2, O(CH2)n-aryl-PO(OR)2, NR(CH2)n-aryl-CO2R, NR(CH2)n-aryl-tetrazole, NR(CH2)n-aryl-CON(R)2, and NR(CH2)n-aryl-PO(OR)2, wherein aryl is substituted with 1-2 X2 and tetrazole is substituted with 0-1 R;
  • when Y is H2, Z1 is selected from H, OR, O(CH2)nCO2R, O(CH2)nCONH2, OCH2CHMCONRCH2CO2R, OCH2CH(NHC(O)CH3)CO2R, OCH2CH(NHR)CO2R, O(CH2)nPO(OR)2, O(CH2)nSO2OR, O—C2-6 alkenyl, O(CH2)n-aryl, NR(CH2)n-aryl, OCH2CH2CONRCH(OR)CO2R, OCH2CH2CONRC(R)2CH2SO2OR, and NRCO(CH2)nCO2R, wherein aryl is substituted with 1-2 X2;
  • when Y is O, Z1 is selected from OR, NRR, NR(CH2)nCONH2, NR—C2-6 alkyl O(CH2)n-aryl, and NR(CH2)n-aryl, wherein aryl is substituted with 1-2 X2;
  • M is selected from H, C1-6 alkyl, C3-8 cycloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, 5-12 membered heteroaryl consisting of carbon atoms and from 1-4 heteroatoms selected from N, O, and S, (CH2)n-aryl, and (CH2)n-5-12 membered heteroaryl consisting of carbon atoms and from 1-4 heteroatoms selected from N, O, and S, wherein aryl and heteroaryl are substituted with 1-2 X2;
  • Q is selected from O, C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, (CH2)n-aryl, and (CH2)n-5-12 membered heteroaryl consisting of carbon atoms and from 1-4 heteroatoms selected from N, O, and S, wherein aryl and heteroaryl are substituted with 1-2 X2;
  • provided that when Q is other than O, then A is present;
  • m is selected from 0, 1, 2, 3, and 4;
  • n is selected from 1, 2, 3, and 4;
  • p is selected from 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11; and,
  • provided that in formula I:
      • (a) R is other than H and CH3,
      • (b) C(═Y)Z is other than CH3; and/or
      • (c) at least one of R1, R2, X, and X1 is other than H;
  • further provided that at least one of X and X1 is other than H, alkyl, alkoxy, hydroxy, and halo.
  • In another variant, the compounds of the present invention have no more than one acid functionality.
  • [3] In another embodiment, the present invention provides a novel compound of formula Ia, or a stereoisomer or a pharmaceutically acceptable salt thereof:
  • Figure US20140155355A1-20140605-C00004
  • wherein:
  • R, at each occurrence, is independently selected from H and C1-4 alkyl;
  • R1 is selected from H and C1-4 alkyl;
  • X and X1 are independently selected from H, OR, C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, halogen, CF3, nitro, O(CH2)nCON(R)2, O—C2-4 alkenyl, N(R)2, (CH2)mCONR2, (CH2)mCN, NRSO2CH3, NRCO(CH2)nCON(R)2, SO2NRCH3, CH2N(C1-4 alkyl)2, CH2-aryl, CH2-heteroaryl, O(CH2)n-aryl, O(CH2)n-heteroaryl, NR(CH2)n-aryl, NR(CH2)n-heteroaryl, O(CH2)n-aryl-(CH2)mCON(R)2, O(CH2)n-aryl-O(CH2)nCON(R)2, O(CH2)n-aryl-NR(CH2)nCON(R)2, O(CH2)n-heteroaryl-(CH2)mCON(R)2, O(CH2)n-heteroaryl-O(CH2)nCON(R)2, O(CH2)n-heteroaryl-NR(CH2)nCON(R)2, NR(CH2)n-aryl-(CH2)mCON(R)2, NR(CH2)n-aryl-O(CH2)nCON(R)2, NR(CH2)n-aryl-NR(CH2)nCON(R)2, NR(CH2)n-heteroaryl-O(CH2)nCON(R)2, NR(CH2)n-heteroaryl-(CH2)mCON(R)2, NR(CH2)n-heteroaryl-NR(CH2)nCON(R)2, O(CH2)n-biphenyl, O(CH2)n-biphenyl-CN, O(CH2)n-biphenyl-CON(R)2, NR(CH2)n-biphenyl, NR(CH2)n-biphenyl-CN, and NR(CH2)n-biphenyl-CONH2, and O(CH2CH2O)pCH2CH2OR3, where heteroaryl is a 5-10 membered ring system consisting of carbon atoms and from 1-4 heteroatoms selected from N, O, and S; and wherein aryl, biphenyl, and heteroaryl are substituted with 1-2 X2,
  • R3 is selected from H, C1-4 alkyl, and aryl-C1-4 alkyl-;
  • X2, at each occurrence, is independently selected from H, OR, C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, halogen, CF3, nitro, —CN, C(O)NR2, NRSO2CH3, and SO2N(R)C1-4alkyl; and,
  • provided that at least one of X and X1 is other than H, alkyl, alkoxy, hydroxy, and halo.
  • [3a] In another embodiment, the present invention provides a novel compound of formula Ia, or a stereoisomer or a pharmaceutically acceptable salt thereof, wherein:
  • one of X and X1 is H and the other selected from C2-4 alkenyl, C2-4 alkynyl, CF3, nitro, O(CH2)nCON(R)2, O—C2-4 alkenyl, N(R)2, (CH2)mCONR2, (CH2)mCN, NRCO(CH2)nCON(R)2, NRSO2CH3, SO2NRCH3, CH2N(C1-4 alkyl)2, CH2-aryl, CH2-heteroaryl, O(CH2)n-aryl, O(CH2)n-heteroaryl, NR(CH2)n-aryl, NR(CH2)n-heteroaryl, O(CH2)n-aryl-(CH2)mCON(R)2, O(CH2)n-aryl-O(CH2)nCON(R)2, O(CH2)n-aryl-NR(CH2)nCON(R)2, O(CH2)n-heteroaryl-(CH2)mCON(R)2, O(CH2)n-heteroaryl-O(CH2)nCON(R)2, O(CH2)n-heteroaryl-NR(CH2)mCON(R)2, NR(CH2)n-aryl-(CH2)mCON(R)2, NR(CH2)n-aryl-O(CH2)CON(R)2, NR(CH2)n-aryl-NR(CH2)mCON(R)2, NR(CH2)n-heteroaryl-O(CH2)nCON(R)2, NR(CH2)n-heteroaryl-(CH2)mCON(R)2, NR(CH2)n-heteroaryl-NR(CH2)nCON(R)2, O(CH2)n-biphenyl, O(CH2)n-biphenyl-CN, O(CH2)n-biphenyl-CON(R)2, NR(CH2)n-biphenyl, NR(CH2)n-biphenyl-CN, and NR(CH2)n-biphenyl-CONH2, and O(CH2CH2O)pCH2CH2OR3, where heteroaryl is a 5-10 membered ring system consisting of carbon atoms and from 1-4 heteroatoms selected from N, O, and S; and wherein aryl, biphenyl, and heteroaryl are substituted with 1-2 X2.
  • [4] In another embodiment, the present invention provides a novel compound of formula Ib, or a stereoisomer or a pharmaceutically acceptable salt thereof:
  • Figure US20140155355A1-20140605-C00005
  • wherein:
  • R, at each occurrence, is independently selected from H and C1-4 alkyl;
  • R1 is selected from (CH2)mCO2R, C2-4 alkenyl-CO2R, CH2CH(NHAc)CO2R, CH2CH(NHR)CO2R, and, (CH2)nPO(OR)2;
  • X and X1 are independently selected from H, OR, C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, halogen, CF3, nitro, O(CH2)nCON(R)2, O—C2-4 alkenyl, N(R)2, (CH2)mCONR2, (CH2)mCN, NRCO(CH2)nCON(R)2, NRSO2CH3, SO2NRCH3, CH2N(C1-4 alkyl)2, CH2-aryl, CH2-heteroaryl, O(CH2)n-aryl, O(CH2)n-heteroaryl, NR(CH2)n-aryl, NR(CH2)n-heteroaryl, O(CH2)n-aryl-(CH2)mCON(R)2, O(CH2)n-aryl-O(CH2)nCON(R)2, O(CH2)n-aryl-NR(CH2)nCON(R)2, O(CH2)n-heteroaryl-(CH2)mCON(R)2, O(CH2)n-heteroaryl-O(CH2)nCON(R)2, O(CH2)n-heteroaryl-NR(CH2)CON(R)2, NR(CH2)n-aryl-(CH2)mCON(R)2, NR(CH2)n-aryl-O(CH2)nCON(R)2, NR(CH2)n-aryl-NR(CH2)nCON(R)2, NR(CH2)n-heteroaryl-O(CH2)nCON(R)2, NR(CH2)n-heteroaryl-(CH2)mCON(R)2, NR(CH2)n-heteroaryl-NR(CH2)nCON(R)2, O(CH2)n-biphenyl, O(CH2)n-biphenyl-CN, O(CH2)n-biphenyl-CONH2, NR(CH2)n-biphenyl, NR(CH2)n-biphenyl-CN, NR(CH2)n-biphenyl-CONH2, and O(CH2CH2O)pCH2CH2OR3, where heteroaryl is a 5-10 membered ring system consisting of carbon atoms and from 1-4 heteroatoms selected from N, O, and S, and wherein aryl, biphenyl, and heteroaryl are substituted with 1-2 X2;
  • R3 is selected from H, C1-4 alkyl, and aryl-C1-4 alkyl-;
  • X2, at each occurrence, is independently selected from H, OR, C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, halogen, CF3, nitro, —CN, C(O)NR2, NRSO2CH3, and SO2N(R)C1-4alkyl;
  • M is selected from H, C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, (CH2)n-aryl, and (CH2)n-5-10 membered heteroaryl consisting of carbon atoms and from 1-4 heteroatoms selected from N, O, and S, wherein aryl and heteroaryl are substituted with 1-2 X2; and,
  • provided that in formula Ib:
  • (a) R is other than H and CH3, and/or
  • (b) at least one of R1, X, and X1 is other than H;
  • further provided that at least one of X and X1 is other than H, alkyl, alkoxy, hydroxy, and halo.
  • [4a] In another embodiment, the present invention provides a novel compound of formula Ib, or a stereoisomer or a pharmaceutically acceptable salt thereof, wherein:
  • one of X and X1 is H and the other selected from C2-4 alkenyl, C2-4 alkynyl, CF3, nitro, O(CH2)nCON(R)2, O—C2-4 alkenyl, N(R)2, (CH2)mCONR2, (CH2)mCN, NRCO(CH2)nCON(R)2, NRSO2CH3, SO2NRCH3, CH2N(C1-4 alkyl)2, CH2-aryl, CH2-heteroaryl, O(CH2)n-aryl, O(CH2)n-heteroaryl, NR(CH2)n-aryl, NR(CH2)n-heteroaryl, O(CH2)n-aryl-(CH2)mCON(R)2, O(CH2)n-aryl-O(CH2)nCON(R)2, O(CH2)n-aryl-NR(CH2)nCON(R)2, O(CH2)n-heteroaryl-(CH2)mCON(R)2, O(CH2)n-heteroaryl-O(CH2)nCON(R)2, O(CH2)n-heteroaryl-NR(CH2)nCON(R)2, NR(CH2)n-aryl-(CH2)mCON(R)2, NR(CH2)n-aryl-O(CH2)nCON(R)2, NR(CH2)n-aryl-NR(CH2)nCON(R)2, NR(CH2)n-heteroaryl-O(CH2)nCON(R)2, NR(CH2)n-heteroaryl-(CH2)mCON(R)2, NR(CH2)n-heteroaryl-NR(CH2)nCON(R)2, O(CH2)n-biphenyl, O(CH2)n-biphenyl-CN, O(CH2)n-biphenyl-CONH2, NR(CH2)n-biphenyl, NR(CH2)n-biphenyl-CN, NR(CH2)n-biphenyl-CONH2, and O(CH2CH2O)pCH2CH2OR3, where heteroaryl is a 5-10 membered ring system consisting of carbon atoms and from 1-4 heteroatoms selected from N, O, and S, and wherein aryl, biphenyl, and heteroaryl are substituted with 1-2 X2.
  • [5] In another embodiment, the present invention provides a novel compound of formula Ic, or a stereoisomer or a pharmaceutically acceptable salt thereof:
  • Figure US20140155355A1-20140605-C00006
  • wherein:
  • R, at each occurrence, is independently selected from H and C1-4 alkyl;
  • R1 is selected from H and C1-4 alkyl;
  • X and X1 are independently selected from H, OR, C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, halogen, CF3, nitro, O(CH2)nCON(R)2, O—C2-4 alkenyl, N(R)2, (CH2)mCONR2, (CH2)mCN, NRCO(CH2)nCON(R)2, NRSO2CH3, SO2NRCH3, CH2N(C1-4 alkyl)2, CH2-aryl, CH2-heteroaryl, O(CH2)n-aryl, O(CH2)n-heteroaryl, NR(CH2)n-aryl, NR(CH2)n-heteroaryl, O(CH2)n-aryl-(CH2)mCON(R)2, O(CH2)n-aryl-O(CH2)nCON(R)2, O(CH2)n-aryl-NR(CH2)nCON(R)2, O(CH2)n-heteroaryl-(CH2)mCON(R)2, O(CH2)n-heteroaryl-O(CH2)nCON(R)2, O(CH2)n-heteroaryl-NR(CH2)nCON(R)2, NR(CH2)n-aryl-(CH2)mCON(R)2, NR(CH2)n-aryl-O(CH2)nCON(R)2, NR(CH2)n-aryl-NR(CH2)nCON(R)2, NR(CH2)n-heteroaryl-O(CH2)nCON(R)2, NR(CH2)n-heteroaryl-(CH2)mCON(R)2, NR(CH2)n-heteroaryl-NR(CH2)nCON(R)2, O(CH2)n-biphenyl, O(CH2)n-biphenyl-CN, O(CH2)n-biphenyl-CONH2, NR(CH2)n-biphenyl, NR(CH2)n-biphenyl-CN, NR(CH2)n-biphenyl-CONH2, and O(CH2CH2O)pCH2CH2OR3, where heteroaryl is a 5-10 membered ring system consisting of carbon atoms and from 1-4 heteroatoms selected from N, O, and S, and wherein aryl, biphenyl, and heteroaryl are substituted with 1-2 X2;
  • R3 is selected from H, C1-4 alkyl, and aryl-C1-4 alkyl-;
  • X2, at each occurrence, is independently selected from H, OR, C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, halogen, CF3, nitro, —CN, C(O)NR2, NRSO2CH3, and SO2N(R)C1-4alkyl;
  • A is selected from Cl and Br;
  • Z is selected from O(CH2)nCO2R, O(CH2)nCONH2, O(CH2)nPO(OR)2, O(CH2)nSO2OR, O(CH2)n-tetrazole, NR(CH2)nCO2R, NR(CH2)nCONH2, NRCH2CHMCONRCH2CO2R, NRSO2R, NR(CH2)nPO(OR)2, NR(CH2)nSO2OR, NR(CH2)n-tetrazole, NRCO(CH2)nCO2R, O(CH2)n-phenyl-CO2R, O(CH2)n-phenyl-tetrazole, O(CH2)n-phenyl-CON(R)2, O(CH2)n-phenyl-PO3(R)2, NR(CH2)n-phenyl-CO2R, NR(CH2)n-phenyl-tetrazole, NR(CH2)n-phenyl-CON(R)2, and NR(CH2)n-phenyl-PO3(R)2, wherein phenyl is substituted with 1-2 X2 and tetrazole is substituted with 0-1 R; and,
  • M is selected from H, C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, (CH2)n-aryl, and (CH2)n-5-10 membered heteroaryl consisting of carbon atoms and from 1-4 heteroatoms selected from N, O, and S, wherein aryl and heteroaryl are substituted with 1-2 X2; and,
  • provided that at least one of X and X1 is other than H, alkyl, alkoxy, hydroxy, and halo.
  • [5a] In another embodiment, the present invention provides a novel compound of formula Ic, or a stereoisomer or a pharmaceutically acceptable salt thereof, wherein:
  • one of X and X1 is H and the other selected from C2-4 alkenyl, C2-4 alkynyl, CF3, nitro, O(CH2)nCON(R)2, O—C2-4 alkenyl, N(R)2, (CH2)mCONR2, (CH2)mCN, NRCO(CH2)nCON(R)2, NRSO2CH3, SO2NRCH3, CH2N(C1-4 alkyl)2, CH2-aryl, CH2-heteroaryl, O(CH2)n-aryl, O(CH2)n-heteroaryl, NR(CH2)n-aryl, NR(CH2)n-heteroaryl, O(CH2)n-aryl-(CH2)mCON(R)2, O(CH2)n-aryl-O(CH2)nCON(R)2, O(CH2)n-aryl-NR(CH2)nCON(R)2, O(CH2)n-heteroaryl-(CH2)mCON(R)2, O(CH2)n-heteroaryl-O(CH2)nCON(R)2, O(CH2)n-heteroaryl-NR(CH2)mCON(R)2, NR(CH2)n-aryl-(CH2)mCON(R)2, NR(CH2)n-aryl-O(CH2)nCON(R)2, NR(CH2)n-aryl-NR(CH2)nCON(R)2, NR(CH2)n-heteroaryl-O(CH2)nCON(R)2, NR(CH2)n-heteroaryl-(CH2)mCON(R)2, NR(CH2)n-heteroaryl-NR(CH2)nCON(R)2, O(CH2)n-biphenyl, O(CH2)n-biphenyl-CN, O(CH2)n-biphenyl-CONH2, NR(CH2)n-biphenyl, NR(CH2)n-biphenyl-CN, NR(CH2)n-biphenyl-CONH2, and O(CH2CH2O)pCH2CH2OR3, where heteroaryl is a 5-10 membered ring system consisting of carbon atoms and from 1-4 heteroatoms selected from N, O, and S, and wherein aryl, biphenyl, and heteroaryl are substituted with 1-2 X2.
  • [6] In another embodiment, the present invention provides a novel compound of formula Ic, or a stereoisomer or a pharmaceutically acceptable salt thereof:
  • Figure US20140155355A1-20140605-C00007
  • wherein:
  • R, at each occurrence, is independently selected from H and C1-4 alkyl;
  • R1 is selected from H, C1-4 alkyl, (CH2)mCO2R, C2-4 alkenyl-CO2R, CH2CH(NHAc)CO2R, CH2CH(NHR)CO2R, and, (CH2)nPO(OR)2;
  • X and X1 are independently selected from H, OR, C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, halogen, CF3, nitro, N(R)2, (CH2)m-tetrazole, (CH2)mCO2R, (CH2)mCONR2, (CH2)mCN, O(CH2)nCN, O(CH2)n-tetrazole, O(CH2)nCO2R, O(CH2)nCON(R)2, O—C2-4 alkenyl-CO2R, O(CH2)nPO(OR)2, NR—C2-4 alkenyl, NRSO2CH3, NR(CH2)nCO2R, NR(CH2)nCON(R)2, NR—C2-4 alkenyl-CO2R, NR(CH2)nPO(OR)2, NR(CH2)nSO2OR, NR(CH2)n-tetrazole, NRCO(CH2)nCO2R, NRCO(CH2)nCON(R)2, SO2NRCH3, OCH2CHMCONRCH2CO2R, CH2-aryl, O(CH2)nPO(OR)2, O(CH2)nSO2OR, (CH2)nN+(R)3A, OCH2(CH2)nN+(R)3A, O(CH2)n-biphenyl, O(CH2)n-biphenyl-(CH2)mCO2R, O(CH2)n-biphenyl-(CH2)mtetrazole, O(CH2)n-biphenyl-(CH2)mCN, O(CH2)n-biphenyl-(CH2)mCON(R)2, NR(CH2)n-biphenyl, NR(CH2)n-biphenyl-(CH2)mCO2R, NR(CH2)n-biphenyl-(CH2)mtetrazole, NR(CH2)n-biphenyl-(CH2)mCN, NR(CH2)n-biphenyl-(CH2)mCON(R)2, O(CH2)n-aryl, O(CH2)n-heteroaryl, NR(CH2)n-aryl, NR(CH2)n-heteroaryl, O(CH2)n-aryl(CH2)mCO2R, O(CH2)n-aryl-C2-4 alkenyl-CO2R, O(CH2)n-aryl(CH2)m-tetrazole, O(CH2)n-aryl(CH2)mCN, O(CH2)n-aryl(CH2)mCON(R)2, O(CH2)n-aryl(CH2)m—PO(OR)2, O(CH2)n-aryl-O(CH2)nCO2R, O(CH2)n-aryl-O—C2-4 alkenyl-CO2R, O(CH2)n-arylO(CH2)n-tetrazole, O(CH2)n-arylO(CH2)nCN, O(CH2)n-arylO(CH2)nCON(R)2, O(CH2)n-arylO(CH2)n—PO(OR)2, O(CH2)n-aryl-NR(CH2)nCO2R, O(CH2)n-aryl-NRC2-4 alkenyl-CO2R, O(CH2)n-aryl-NR(CH2)n-tetrazole, O(CH2)n-aryl-NR(CH2)nCN, O(CH2)n-aryl-NR(CH2)nCON(R)2, O(CH2)n-aryl-NR(CH2)n—PO(OR)2, NR(CH2)n-aryl(CH2)mCO2R, NR(CH2)n-aryl-C2-4 alkenyl-CO2R, NR(CH2)n-aryl(CH2)m-tetrazole, NR(CH2)n-aryl(CH2)mCN, NR(CH2)n-aryl(CH2)mCON(R)2, NR(CH2)n-aryl(CH2)m—PO(OR)2, NR(CH2)n-aryl-NR(CH2)nCO2R, NR(CH2)n-aryl-NR—C2-4 alkenyl-CO2R, NR(CH2)n-aryl-NR(CH2)n-tetrazole, NR(CH2)n-aryl-NR(CH2)nCN, NR(CH2)n-aryl-NR(CH2)nCON(R)2, NR(CH2)n-aryl-NR(CH2)nPO(OR)2, NR(CH2)n-arylO(CH2)nCO2R, NR(CH2)n-aryl-O—C2-4 alkenyl-CO2R, NR(CH2)n-aryl-O(CH2)n-tetrazole, NR(CH2)n-arylO(CH2)nCN, NR(CH2)n-aryl-O(CH2)nCON(R)2, NR(CH2)n-arylO(CH2)nPO(OR)2, O(CH2)n-heteroaryl(CH2)mCO2R, O(CH2)n-heteroaryl-C2-4 alkenyl-CO2R, O(CH2)n-heteroaryl(CH2)m-tetrazole, O(CH2)n-heteroaryl-(CH2)mCN, O(CH2)n-heteroaryl(CH2)mCON(R)2, O(CH2)n-heteroaryl(CH2)n—PO(OR)2, O(CH2)n-heteroaryl-O(CH2)mCO2R, O(CH2)n-heteroaryl-O—C2-4 alkenyl-CO2R, O(CH2)n-heteroarylO(CH2)n-tetrazole, O(CH2)n-heteroaryl O(CH2)nCN, O(CH2)n-heteroarylO(CH2)nCON(R)2, O(CH2)n-heteroarylO(CH2)n—PO(OR)2, O(CH2)n-heteroaryl-NR(CH2)nCO2R, O(CH2)n-heteroaryl-NR—C2-4 alkenyl-CO2R, O(CH2)n-heteroaryl-NR(CH2)n-tetrazole, O(CH2)n-heteroaryl-NR(CH2)nCN, O(CH2)n-heteroaryl-NR(CH2)nCON(R)2, O(CH2)n-heteroaryl-NR(CH2)n—PO(OR)2, NR(CH2)n-heteroaryl(CH2)mCO2R, NR(CH2)n-heteroaryl-C2-4 alkenyl-CO2R, NR(CH2)n-heteroaryl(CH2)m-tetrazole, NR(CH2)n-heteroaryl(CH2)mCN, NR(CH2)n-heteroaryl(CH2)mCON(R)2, NR(CH2)n-heteroaryl(CH2)m—PO(OR)2, NR(CH2)n-heteroaryl-NR(CH2)nCO2R, NR(CH2)n-heteroaryl-NR—C2-4 alkenyl-CO2R, NR(CH2)n-heteroaryl-NR(CH2)n-tetrazole, NR(CH2)n heteroaryl-NR(CH2)nCN, NR(CH2)n-heteroaryl-NR(CH2)nCON(R)2, NR(CH2)n-heteroaryl-NR(CH2)nPO(OR)2, NR(CH2)n-heteroaryl-O(CH2)nCO2R, NR(CH2)n-heteroaryl-O—C2-4 alkenyl-CO2R, NR(CH2)n-heteroaryl-O(CH2)n-tetrazole, NR(CH2)n-heteroaryl-O(CH2)nCN, NR(CH2)n-heteroaryl-O(CH2)nCON(R)2, NR(CH2)n-heteroarylO(CH2)nPO(OR)2, and O(CH2CH2O)pCH2CH2OR3, where heteroaryl is a 5-12 membered ring system consisting of carbon atoms and from 1-4 heteroatoms selected from N, O, and S, and wherein aryl, biphenyl, and heteroaryl are substituted with 1-2 X2 and tetrazole is substituted with 0-1 R;
  • R3 is selected from H, C1-4 alkyl, and aryl-C1-4 alkyl-;
  • X2, at each occurrence, is independently selected from H, OR, C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, halogen, CF3, nitro, —CN, C(O)NR2, NRSO2CH3, and SO2N(R)C1-4alkyl;
  • A, at each occurrence, is selected from Cl and Br;
  • Z is selected from H, OH, halogen, CF3, C1-4 alkoxy, O—C2-4 alkenyl, O(CH2)nCONH2, OCH2-aryl, NRR, NR—C2-4 alkenyl, NR(CH2)nCONH2, NR(CH2)n-aryl, and NRCO(CH2)nCO2R, wherein aryl is substituted with 1-2 X2;
  • M is selected from H, C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, (CH2)n-aryl, and (CH2)n-5-10 membered heteroaryl consisting of carbon atoms and from 1-4 heteroatoms selected from N, O, and S; and, wherein aryl and heteroaryl are substituted with 1-2 X2; and,
  • provided that in formula Ic:
  • (a) R is other than H and CH3,
  • (b) Z is other than H; and/or
  • (c) at least one of R1, X, and X1 is other than H;
  • further provided that at least one of X and X1 is other than H, alkyl, alkoxy, hydroxy, and halo.
  • [6a] In another embodiment, the present invention provides a novel compound of formula Ic, or a stereoisomer or a pharmaceutically acceptable salt thereof, wherein:
  • one of X and X1 is H and the other selected from C2-4 alkenyl, C2-4 alkynyl, CF3, nitro, N(R)2, (CH2)m-tetrazole, (CH2)mCO2R, (CH2)mCONR2, (CH2)mCN, O(CH2)nCN, O(CH2)n-tetrazole, O(CH2)nCO2R, O(CH2)nCON(R)2, O—C2-4 alkenyl-CO2R, O(CH2)nPO(OR)2, NR—C2-4 alkenyl, NRSO2CH3, NR(CH2)nCO2R, NR(CH2)nCON(R)2, NR—C2-4 alkenyl-CO2R, NR(CH2)nPO(OR)2, NR(CH2)nSO2OR, NR(CH2)n-tetrazole, NRCO(CH2)nCO2R, NRCO(CH2)nCON(R)2, SO2NRCH3, OCH2CHMCONRCH2CO2R, CH2-aryl, O(CH2)nPO(OR)2, O(CH2)nSO2OR, (CH2)nN+(CH3)3A, OCH2(CH2)nN+(CH3)3A, O(CH2)n-biphenyl, O(CH2)n-biphenyl-(CH2)mCO2R, O(CH2)n-biphenyl-(CH2)mtetrazole, O(CH2)n-biphenyl-(CH2)mCN, O(CH2)n-biphenyl-(CH2)mCON(R)2, NR(CH2)n-biphenyl, NR(CH2)n-biphenyl-(CH2)mCO2R, NR(CH2)n-biphenyl-(CH2)mtetrazole, NR(CH2)n-biphenyl-(CH2)mCN, NR(CH2)n-biphenyl-(CH2)mCON(R)2, O(CH2)n-aryl, O(CH2)n-heteroaryl, NR(CH2)n-aryl, NR(CH2)n-heteroaryl, O(CH2)n-aryl(CH2)mCO2R, O(CH2)n-aryl-C2-4 alkenyl-CO2R, O(CH2)n-aryl(CH2)m-tetrazole, O(CH2)n-aryl(CH2)mCN, O(CH2)n-aryl(CH2)mCON(R)2, O(CH2)n-aryl(CH2)m—PO(OR)2, O(CH2)n-aryl-O(CH2)nCO2R, O(CH2)n-aryl-O—C2-4 alkenyl-CO2R, O(CH2)n-arylO(CH2)n-tetrazole, O(CH2)n-arylO(CH2)nCN, O(CH2)n-arylO(CH2)nCON(R)2, O(CH2)n-arylO(CH2)n—PO(OR)2, O(CH2)n-aryl-NR(CH2)nCO2R, O(CH2)n-aryl-NRC2-4 alkenyl-CO2R, O(CH2)n-aryl-NR(CH2)n-tetrazole, O(CH2)n-aryl-NR(CH2)nCN, O(CH2)n-aryl-NR(CH2)nCON(R)2, O(CH2)n-aryl-NR(CH2)n—PO(OR)2, NR(CH2)n-aryl(CH2)mCO2R, NR(CH2)n-aryl-C2-4 alkenyl-CO2R, NR(CH2)n-aryl(CH2)m-tetrazole, NR(CH2)n-aryl(CH2)mCN, NR(CH2)n-aryl(CH2)mCON(R)2, NR(CH2)n-aryl(CH2)m—PO(OR)2, NR(CH2)n-aryl-NR(CH2)nCO2R, NR(CH2)n-aryl-NR—C2-4 alkenyl-CO2R, NR(CH2)n-aryl-NR(CH2)n-tetrazole, NR(CH2)n-aryl-NR(CH2)nCN, NR(CH2)n-aryl-NR(CH2)nCON(R)2, NR(CH2)n-aryl-NR(CH2)nPO(OR)2, NR(CH2)n-arylO(CH2)nCO2R, NR(CH2)n-aryl-O—C2-4 alkenyl-CO2R, NR(CH2)n-aryl-O(CH2)n-tetrazole, NR(CH2)n-arylO(CH2)nCN, NR(CH2)n-aryl-O(CH2)nCON(R)2, NR(CH2)n-arylO(CH2)nPO(OR)2, O(CH2)n-heteroaryl(CH2)mCO2R, O(CH2)nheteroaryl-C2-4 alkenyl-CO2R, O(CH2)n-heteroaryl(CH2)m-tetrazole, O(CH2)n-heteroaryl-(CH2)mCN, O(CH2)n-heteroaryl(CH2)mCON(R)2, O(CH2)n-heteroaryl(CH2)m—PO(OR)2, O(CH2)n-heteroaryl-O(CH2)nCO2R, O(CH2)n-heteroaryl-O—C2-4 alkenyl-CO2R, O(CH2)n-heteroarylO(CH2)n-tetrazole, O(CH2)n-heteroaryl O(CH2)nCN, O(CH2)n-heteroarylO(CH2)nCON(R)2, O(CH2)n-heteroarylO(CH2)n—PO(OR)2, O(CH2)n-heteroaryl-NR(CH2)nCO2R, O(CH2)n-heteroaryl-NR—C2-4 alkenyl-CO2R, O(CH2)n-heteroaryl-NR(CH2)n-tetrazole, O(CH2)n-heteroaryl-NR(CH2)nCN, O(CH2)n-heteroaryl-NR(CH2)nCON(R)2, O(CH2)n-heteroaryl-NR(CH2)n—PO(OR)2, NR(CH2)n-heteroaryl(CH2)mCO2R, NR(CH2)n-heteroaryl-C2-4 alkenyl-CO2R, NR(CH2)n-heteroaryl(CH2)m-tetrazole, NR(CH2)n-heteroaryl(CH2)mCN, NR(CH2)n-heteroaryl(CH2)mCON(R)2, NR(CH2)n-heteroaryl(CH2)m—PO(OR)2, NR(CH2)n-heteroaryl-NR(CH2)nCO2R, NR(CH2)n-heteroaryl-NR—C2-4 alkenyl-CO2R, NR(CH2)n-heteroaryl-NR(CH2)n-tetrazole, NR(CH2)n-heteroaryl-NR(CH2)nCN, NR(CH2)n-heteroaryl-NR(CH2)nCON(R)2, NR(CH2)n-heteroaryl-NR(CH2)nPO(OR)2, NR(CH2)n-heteroaryl-O(CH2)nCO2R, NR(CH2)n-heteroaryl-O—C2-4 alkenyl-CO2R, NR(CH2)n-heteroaryl-O(CH2)n-tetrazole, NR(CH2)n-heteroaryl-O(CH2)nCN, NR(CH2)n-heteroaryl-O(CH2)nCON(R)2, NR(CH2)n-heteroarylO(CH2)nPO(OR)2, and O(CH2CH2O)pCH2CH2OR3, where heteroaryl is a 5-12 membered ring system consisting of carbon atoms and from 1-4 heteroatoms selected from N, O, and S, and wherein aryl, biphenyl, and heteroaryl are substituted with 1-2 X2 and tetrazole is substituted with 0-1 R.
  • [7] In another embodiment, the present invention provides a novel compound of formula Ic, or a stereoisomer or a pharmaceutically acceptable salt thereof:
  • Figure US20140155355A1-20140605-C00008
  • wherein:
  • R, at each occurrence, is independently selected from H and C1-4 alkyl;
  • R1 is selected from H and C1-4 alkyl;
  • X and X1 are independently selected from H, OR, C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, halogen, CF3, nitro, O(CH2)nCON(R)2, O—C2-4 alkenyl, N(R)2, (CH2)mCONR2, (CH2)mCN, NRCO(CH2)nCON(R)2, NRSO2CH3, SO2NRCH3, CH2N(C1-4 alkyl)2, CH2-aryl, CH2-heteroaryl, O(CH2)n-aryl, O(CH2)n-heteroaryl, NR(CH2)n-aryl, NR(CH2)n-heteroaryl, O(CH2)n-aryl-(CH2)mCON(R)2, O(CH2)n-aryl-O(CH2)nCON(R)2, O(CH2)n-aryl-NR(CH2)nCON(R)2, O(CH2)n-heteroaryl-(CH2)mCON(R)2, O(CH2)n-heteroaryl-O(CH2)nCON(R)2, O(CH2)n-heteroaryl-NR(CH2)nCON(R)2, NR(CH2)n-aryl-(CH2)mCON(R)2, NR(CH2)n-aryl-O(CH2)nCON(R)2, NR(CH2)n-aryl-NR(CH2)nCON(R)2, NR(CH2)n-heteroaryl-O(CH2)nCON(R)2, NR(CH2)n-heteroaryl-(CH2)mCON(R)2, NR(CH2)n-heteroaryl-NR(CH2)nCON(R)2, O(CH2)n-biphenyl, O(CH2)n-biphenyl-CN, O(CH2)n-biphenyl-CONH2, NR(CH2)n-biphenyl, NR(CH2)n-biphenyl-CN, NR(CH2)n-biphenyl-CONH2, and O(CH2CH2O)pCH2CH2OR3, where heteroaryl is a 5-10 membered ring system consisting of carbon atoms and from 1-4 heteroatoms selected from N, O, and S, and wherein aryl, biphenyl, and heteroaryl are substituted with 1-2 X2;
  • R3 is selected from H, C1-4 alkyl, and aryl-C1-4 alkyl-;
  • X2, at each occurrence, is independently selected from H, OR, C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, halogen, CF3, nitro, —CN, C(O)NR2, NRSO2CH3, and SO2N(R)C1-4alkyl; and,
  • Z is selected from H, OH, C1-4 alkoxy, O—C2-4 alkenyl, O(CH2)nCONH2, OCH2-aryl, NRR, NR—C2-4 alkenyl, NR(CH2)nCONH2, and NRCH2-aryl, wherein aryl is substituted with 1-2 X2; and,
  • provided that at least one of X and X1 is other than H, alkyl, alkoxy, hydroxy, and halo.
  • [7a] In another embodiment, the present invention provides a novel compound of formula Ic, or a stereoisomer or a pharmaceutically acceptable salt thereof, wherein:
  • one of X and X1 is H and the other selected from C2-4 alkenyl, C2-4 alkynyl, CF3, nitro, O(CH2)nCON(R)2, O—C2-4 alkenyl, N(R)2, (CH2)mCONR2, (CH2)mCN, NRCO(CH2)nCON(R)2, NRSO2CH3, SO2NRCH3, CH2N(C1-4 alkyl)2, CH2-aryl, CH2-heteroaryl, O(CH2)n-aryl, O(CH2)n-heteroaryl, NR(CH2)n-aryl, NR(CH2)n-heteroaryl, O(CH2)n-aryl-(CH2)mCON(R)2, O(CH2)n-aryl-O(CH2)nCON(R)2, O(CH2)n-aryl-NR(CH2)nCON(R)2, O(CH2)n-heteroaryl-(CH2)mCON(R)2, O(CH2)n-heteroaryl-O(CH2)nCON(R)2, O(CH2)n-heteroaryl-NR(CH2)nCON(R)2, NR(CH2)n-aryl-(CH2)mCON(R)2, NR(CH2)n-aryl-O(CH2)nCON(R)2, NR(CH2)n-aryl-NR(CH2)nCON(R)2, NR(CH2)n-heteroaryl-O(CH2)nCON(R)2, NR(CH2)n-heteroaryl-(CH2)mCON(R)2, NR(CH2)n-heteroaryl-NR(CH2)nCON(R)2, O(CH2)n-biphenyl, O(CH2)n-biphenyl-CN, O(CH2)n-biphenyl-CONH2, NR(CH2)n-biphenyl, NR(CH2)n-biphenyl-CN, NR(CH2)n-biphenyl-CONH2, and O(CH2CH2O)pCH2CH2OR3, where heteroaryl is a 5-10 membered ring system consisting of carbon atoms and from 1-4 heteroatoms selected from N, O, and S, and wherein aryl, biphenyl, and heteroaryl are substituted with 1-2 X2.
  • [8] In another embodiment, the present invention provides a novel compound of formula IIa, or a stereoisomer or a pharmaceutically acceptable salt thereof:
  • Figure US20140155355A1-20140605-C00009
  • wherein:
  • R, at each occurrence, is independently selected from H and C1-6 alkyl;
  • R1 is selected from H and C1-4 alkyl;
  • R2 is selected from H and C1-4 alkyl;
  • X and X1 are independently selected from H, OR, C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, halogen, CF3, nitro, O(CH2)nCON(R)2, O—C2-4 alkenyl, (CH2)mCONR2, (CH2)mCN, NRCO(CH2)nCON(R)2, NRSO2CH3, SO2NRCH3, CH2-aryl, CH2-heteroaryl, O(CH2)n-aryl, O(CH2)n-heteroaryl, NR(CH2)n-aryl, NR(CH2)n-heteroaryl, O(CH2)n-aryl-(CH2)mCON(R)2, O(CH2)n-aryl-O(CH2)nCON(R)2, O(CH2)n-aryl; O(CH2)n-heteroaryl-(CH2)mCON(R)2, O(CH2)n-heteroaryl-O(CH2)nCON(R)2, O(CH2)n-biphenyl, O(CH2)n-biphenyl-CN, O(CH2)n-biphenyl-CONH2, NR(CH2)n-biphenyl, NR(CH2)n-biphenyl-CN, and NR(CH2)n-biphenyl-CONH2, and O(CH2CH2O)pCH2CH2OR3, where heteroaryl is a 5-10 membered ring system consisting of carbon atoms and from 1-4 heteroatoms selected from N, O, and S, and wherein aryl, biphenyl, and heteroaryl are substituted with 1-2 X2;
  • R3 is selected from H, C1-4 alkyl, and aryl-C1-4 alkyl-;
  • X2, at each occurrence, is independently selected from H, OR, C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, halogen, CF3, nitro, —CN, C(O)NR2, NRSO2CH3, and SO2N(R)C1-4alkyl;
  • Y is selected from 0 and H2;
  • when Y is H2, Z1 is selected from H and OR;
  • when Y is O, Z1 is selected from NRR, NR(CH2)nCONH2, NR—C2-4 alkenyl, and NR(CH2)n-aryl, wherein aryl is substituted with 1-2 X2;
  • Q is selected from O, C1-4 alkyl, C3-4 alkenyl, and C3-4 alkynyl; and,
  • provided that when Q is other than O, A is present and is selected from Cl and Br;
  • further provided that at least one of X and X1 is other than H, alkyl, alkoxy, hydroxy, and halo.
  • [8a] In another embodiment, the present invention provides a novel compound of formula IIa, or a stereoisomer or a pharmaceutically acceptable salt thereof, wherein:
  • one of X and X1 is H and the other selected from C2-4 alkenyl, C2-4 alkynyl, CF3, nitro, O(CH2)nCON(R)2, O—C2-4 alkenyl, (CH2)mCONR2, (CH2)mCN, NRCO(CH2)nCON(R)2, NRSO2CH3, SO2NRCH3, CH2-aryl, CH2-heteroaryl, O(CH2)n-aryl, O(CH2)n-heteroaryl, NR(CH2)n-aryl, NR(CH2)n-heteroaryl, O(CH2)n-aryl-(CH2)mCON(R)2, O(CH2)n-aryl-O(CH2)nCON(R)2, O(CH2)n-aryl, O(CH2)n-heteroaryl-(CH2)mCON(R)2, O(CH2)n-heteroaryl-O(CH2)nCON(R)2, O(CH2)n-biphenyl, O(CH2)n-biphenyl-CN, O(CH2)n-biphenyl-CONH2, NR(CH2)n-biphenyl, NR(CH2)n-biphenyl-CN, and NR(CH2)n-biphenyl-CONH2, and O(CH2CH2O)pCH2CH2OR3, where heteroaryl is a 5-10 membered ring system consisting of carbon atoms and from 1-4 heteroatoms selected from N, O, and S, and wherein aryl, biphenyl, and heteroaryl are substituted with 1-2 X2.
  • In another embodiment, the present invention provides novel pharmaceutical compositions, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of the present invention or a stereoisomer or pharmaceutically acceptable salt thereof.
  • In another embodiment, the present invention provides a novel method for treating a disease, comprising: administering to a patient in need thereof a therapeutically effective amount of a compound of the present invention or a stereoisomer or pharmaceutically acceptable salt thereof, wherein the disease is selected from obesity, diabetes, cardiometabolic disorders, and a combination thereof.
  • In another embodiment, the cardiometabolic disorder is selected from hypertension, dyslipidemias (e.g., undesirable blood lipid levels, elevated cholesterol levels, and lowered LDL levels), high blood pressure, and insulin resistance.
  • In another embodiment, the present invention provides a novel method for treating a co-morbidity of obesity, comprising: administering to a patient in need thereof a therapeutically effective amount of a compound of the present invention or a stereoisomer or pharmaceutically acceptable salt thereof.
  • In another embodiment, the present invention provides a novel method for treating a co-morbidity of obesity, comprising: administering to a patient in need thereof a therapeutically effective amount of a compound of the present invention or a stereoisomer or pharmaceutically acceptable salt thereof.
  • In another embodiment, the co-morbidity is selected from diabetes, Metabolic Syndrome, dementia, and heart disease.
  • In another embodiment, the co-morbidity is selected from hypertension; gallbladder disease; gastrointestinal disorders; menstrual irregularities; degenerative arthritis; venous statis ulcers; pulmonary hypoventilation syndrome; sleep apnea; snoring; coronary artery disease; arterial sclerotic disease; pseudotumor cerebri; accident proneness; increased risks with surgeries; osteoarthritis; high cholesterol; and, increased incidence of malignancies of the ovaries, cervix, uterus, breasts, prostrate, and gallbladder.
  • In another embodiment, the present invention provides a novel method for treating a CNS disorder, comprising: administering to a patient in need thereof a therapeutically effective amount of a compound of the present invention or a stereoisomer or pharmaceutically acceptable salt thereof.
  • In another embodiment, the CNS disorder is selected from acute and chronic neurological disorders, cognitive disorders, and memory deficits. Examples of these disorders include chronic or traumatic degenerative processes of the nervous system, which include Alzheimer's disease, other types of dementia, minimal cognitive impairment, and Parkinson's disease. Other examples of CNS disorders include psychiatric diseases, which include depression, anxiety, panic attack, social phobia, schizophrenia, and anorexia. Further examples of CNS disorders include withdrawal syndromes induced by alcohol, nicotine and other addictive drugs. Additional examples of CNS disorders include neuropathic pain and neuroinflamatory diseases (e.g., multiple sclerosis).
  • In another embodiment, the present invention also provides a method of preventing or reversing the deposition of adipose tissue in a mammal by the administration of a MAO-B inhibitor. By preventing or reversing the deposition of adipose tissue, MAO-B inhibitors are expected to reduce the incidence or severity of obesity, thereby reducing the incidence or severity of associated co-morbidities.
  • In another embodiment, the present invention provides a compound of the present invention for use in therapy.
  • In another embodiment, the present invention provides the use of compounds of the present invention for the manufacture of a medicament for the treatment of obesity, diabetes, cardiometabolic disorders, and a combination thereof.
  • In another embodiment, the present invention provides the use of novel compounds for the manufacture of a medicament for the treatment of CNS disorders.
  • The present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof. This invention encompasses all combinations of preferred aspects of the invention noted herein. It is understood that any and all embodiments of the present invention may be taken in conjunction with any other embodiment or embodiments to describe additional more preferred embodiments. It is also to be understood that each individual element of the preferred embodiments is intended to be taken individually as its own independent preferred embodiment. Furthermore, any element of an embodiment is meant to be combined with any and all other elements from any embodiment to describe an additional embodiment.
  • DEFINITIONS
  • The examples provided in the definitions present in this application are non-inclusive unless otherwise stated. They include but are not limited to the recited examples.
  • The compounds herein described may have asymmetric centers, geometric centers (e.g., double bond), or both. All chiral, diastereomeric, racemic forms and all geometric isomeric forms of a structure are intended, unless the specific stereochemistry or isomeric form is specifically indicated. Compounds of the present invention containing an asymmetrically substituted atom may be isolated in optically active or racemic forms. It is well known in the art how to prepare optically active forms, such as by resolution of racemic forms, by synthesis from optically active starting materials, or through use of chiral auxiliaries. Geometric isomers of olefins, C═N double bonds, or other types of double bonds may be present in the compounds described herein, and all such stable isomers are included in the present invention. Specifically, cis and trans geometric isomers of the compounds of the present invention may also exist and may be isolated as a mixture of isomers or as separated isomeric forms. All processes used to prepare compounds of the present invention and intermediates made therein are considered to be part of the present invention. All tautomers of shown or described compounds are also considered to be part of the present invention.
  • The present invention includes all isotopes of atoms occurring in the present compounds. Isotopes include those atoms having the same atomic number but different mass numbers. By way of general example and without limitation, isotopes of hydrogen include tritium and deuterium. Isotopes of carbon include C-13 and C-14.
  • Examples of the molecular weight of the compounds of the present invention include (a) less than about 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, or 1000 grams per mole; (b) less than about 950 grams per mole; (c) less than about 850 grams per mole; and, (d) less than about 750 grams per mole.
  • “Alkyl” includes both branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms. C1-6 alkyl, for example, includes C1, C2, C3, C4, C5, and C6 alkyl groups. Examples of alkyl include methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, t-butyl, n-pentyl, and s-pentyl.
  • “Alkenyl” includes the specified number of hydrocarbon atoms in either straight or branched configuration with one or more unsaturated carbon-carbon bonds that may occur in any stable point along the chain, such as ethenyl and propenyl. C2-6 alkenyl includes C2, C3, C4, C5, and C6 alkenyl groups.
  • “Alkynyl” includes the specified number of hydrocarbon atoms in either straight or branched configuration with one or more triple carbon-carbon bonds that may occur in any stable point along the chain, such as ethynyl and propynyl. C2-6 Alkynyl includes C2, C3, C4, C5, and C6 alkynyl groups.
  • “Cycloalkyl” includes the specified number of hydrocarbon atoms in a saturated ring, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. C3-8 cycloalkyl includes C3, C4, C5, C6, C7, and C8 cycloalkyl groups.
  • “Alkoxy” represents an alkyl group as defined above with the indicated number of hydrocarbon atoms attached through an oxygen bridge. C1-6 alkoxy, includes C1, C2, C3, C4, C5, and C6 alkoxy groups. Examples of alkoxy include methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, s-butoxy, t-butoxy, n-pentoxy, and s-pentoxy.
  • “Halo” or “halogen” refers to fluoro, chloro, bromo, and iodo.
  • “Counterion” is used to represent a small, negatively charged species, such as chloride, bromide, hydroxide, acetate, and sulfate.
  • “Aryl” refers to any stable 6, 7, 8, 9, 10, 11, 12, or 13 membered monocyclic, bicyclic, or tricyclic ring, wherein at least one ring, if more than one is present, is aromatic. Examples of aryl include fluorenyl, phenyl, naphthyl, indanyl, adamantyl, and tetrahydronaphthyl.
  • “Heteroaryl” refers to any stable 5, 6, 7, 8, 9, 10, 11, or 12 membered monocyclic, bicyclic, or tricyclic heterocyclic ring that is aromatic, and which consists of carbon atoms and 1, 2, 3, or 4 heteroatoms independently selected from the group consisting of N, O, and S. If the heteroaryl group is bicyclic or tricyclic, then at least one of the two or three rings must contain a heteroatom, though both or all three may each contain one or more heteroatoms. If the heteroaryl group is bicyclic or tricyclic, then only one of the rings must be aromatic. The N group may be N, NH, or N-substituent, depending on the chosen ring and if substituents are recited. The nitrogen and sulfur heteroatoms may optionally be oxidized (e.g., S, S(O), S(O)2, and N—O). The heteroaryl ring may be attached to its pendant group at any heteroatom or carbon atom that results in a stable structure. The heteroaryl rings described herein may be substituted on carbon or on a nitrogen atom if the resulting compound is stable.
  • Examples of heteroaryl includes acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzoxazolinyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl, 4aH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H,6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b]tetrahydrofuran, furanyl, furazanyl, imidazolyl, 1H-indazolyl, indolenyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isatinoyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, naphthyridinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, oxazolidinyl, oxazolyl, oxindolyl, pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathinyl, phenoxazinyl, phthalazinyl, pteridinyl, pyranyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridooxazole, pyridoimidazole, pyridothiazole, pyridinyl, pyridyl, pyrimidinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrazolyl, 6H-1,2,5-thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, thiazolyl, thienyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thiophenyl, triazinyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl, and xanthenyl.
  • Preventing the deposition of adipose tissue covers methods of treating wherein the levels of adipose tissue of a subject remain about the same as prior to being treated in accordance with the present invention (i.e., its pre-administration level) or not more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10% greater than pre-administration level (particularly when the subject is pre-disposed to increasing adipose tissue levels).
  • Reversing the deposition of adipose tissue covers methods of treating wherein the levels of adipose tissue of a subject are lower than those prior to being treated in accordance with the present invention (i.e., its pre-administration level). Examples of lower include 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20% or more lower than pre-administration level.
  • Mammal and patient covers warm blooded mammals that are typically under medical care (e.g., humans and domesticated animals). Examples of mammals include (a) feline, canine, equine, bovine, and human and (b) human.
  • “Treating” or “treatment” covers the treatment of a disease-state in a mammal, and includes: (a) preventing the disease-state from occurring in a mammal, in particular, when such mammal is predisposed to the disease-state but has not yet been diagnosed as having it; (b) inhibiting the disease-state, e.g., arresting it development; and/or (c) relieving the disease-state, e.g., causing regression of the disease state until a desired endpoint is reached. Treating also includes the amelioration of a symptom of a disease (e.g., lessen the pain or discomfort), wherein such amelioration may or may not be directly affecting the disease (e.g., cause, transmission, expression, etc.).
  • “Pharmaceutically acceptable salts” refer to derivatives of the disclosed compounds wherein the parent compound is modified by making acid or base salts thereof. Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like. The pharmaceutically acceptable salts include the conventional non-toxic salts or the quaternary ammonium salts of the parent compound formed, for example, from non-toxic inorganic or organic acids. For example, such conventional non-toxic salts include, but are not limited to, those derived from inorganic and organic acids selected from 1,2-ethanedisulfonic, 2-acetoxybenzoic, 2-hydroxyethanesulfonic, acetic, ascorbic, benzenesulfonic, benzoic, bicarbonic, carbonic, citric, edetic, ethane disulfonic, ethane sulfonic, fumaric, glucoheptonic, gluconic, glutamic, glycolic, glycollyarsanilic, hexylresorcinic, hydrabamic, hydrobromic, hydrochloric, hydroiodide, hydroxymaleic, hydroxynaphthoic, isethionic, lactic, lactobionic, lauryl sulfonic, maleic, malic, mandelic, methanesulfonic, napsylic, nitric, oxalic, pamoic, pantothenic, phenylacetic, phosphoric, polygalacturonic, propionic, salicyclic, stearic, subacetic, succinic, sulfamic, sulfanilic, sulfuric, tannic, tartaric, and toluenesulfonic.
  • The pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound that contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, non-aqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 18th ed., Mack Publishing Company, Easton, Pa., 1990, p 1445, the disclosure of which is hereby incorporated by reference.
  • “Therapeutically effective amount” includes an amount of a compound of the present invention that is effective when administered alone or in combination to treat obesity or another indication listed herein. “Therapeutically effective amount” also includes an amount of the combination of compounds claimed that is effective to treat the desired indication. The combination of compounds is preferably a synergistic combination. Synergy, as described, for example, by Chou and Talalay, Adv. Enzyme Regul. 1984, 22:27-55, occurs when the effect of the compounds when administered in combination is greater than the additive effect of the compounds when administered alone as a single agent. In general, a synergistic effect is most clearly demonstrated at sub-optimal concentrations of the compounds. Synergy can be in terms of lower cytotoxicity, increased effect, or some other beneficial effect of the combination compared with the individual components.
  • Utility
  • Obesity is defined as having a body mass index (BMI) of 30 or above. The index is a measure of an individual's body weight relative to height. BMI is calculated by dividing body weight (in kilograms) by height (in meters) squared. Normal and healthy body weight is defined as having a BMI between 20 and 24.9. Overweight is defined as having a BMI of 25 or above. Obesity has reached epidemic proportions in the U.S., with 44 million obese Americans, and an additional eighty million deemed medically overweight.
  • Obesity is a disease characterized as a condition resulting from the excess accumulation of adipose tissue, especially adipose tissue localized in the abdominal area. It is desirable to treat overweight or obese patients by reducing their amount of adipose tissue, and thereby reducing their overall body weight to within the normal range for their sex and height. In this way, their risk for co-morbidities such as diabetes and cardiovascular disease will be reduced. It is also desirable to prevent normal weight individuals from accumulating additional, excess adipose tissue, effectively maintaining their body weights at a BMI<25, and preventing the development of co-morbidities. It is also desirable to control obesity, effectively preventing overweight and obese individuals from accumulating additional, excess adipose tissue, reducing the risk of further exacerbating their co-morbidities.
  • There exist two forms of MAO, designated MAO-A and MAO-B. The two forms differ with respect to substrate and inhibitor specificities and amino acid number and sequence. A preferred substrate for MAO-B is beta-phenylethylamine. In contrast, a preferred substrate for MAO-A is serotonin. Some MAO inhibitors show selectivity for MAO-A or for MAO-B, whereas other MAO inhibitors show little, if any selectivity. For example, the MAO inhibitor clorgyline preferentially inhibits MAO-A; the MAO inhibitor L-selegiline preferentially inhibits MAO-B; and, the MAO inhibitor iproniazid is non-selective (i.e., has a similar affinity for both). Examples of selectivity include a compound having about 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, or more fold higher affinity for one form of MAO than for the other form. One of ordinary skill in the art recognizes that there can be some difficulty in classifying MAO inhibitors. Some compounds may selectively inhibit one form of MAO in vitro and then lose their selectivity in vivo. Also, selectivity of a compound may vary from species to species or from tissue to tissue. In the context of the present invention, it is desirable to inhibit MAO-B activity in vivo in a mammal. Thus, selectivity and affinity are based on the in vivo activity of the MAO inhibitor and the mammalian species to which it is being or to be administered. Examples of the selectivity of a MAO-B inhibitor of the present invention include (a) at least a 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, to 100-fold greater affinity for MAO-B than MAO-A in the mammalian species (e.g., human) to be treated and (b) at least 100-fold greater affinity for MAO-B than MAO-A in the mammalian species (e.g., human) to be treated.
  • Some of the compounds of the present invention have been designed to have reduced CNS exposure by virtue of their inability or limited ability to penetrate the blood-brain barrier (e.g., quaternary salts or acid substituents) or by their participation in active transport systems, thus reducing centrally mediated side-effects, a potential problem with many anti-obesity agents.
  • Other compounds of the present invention are expected to penetrate the blood-brain barrier and therefore also be useful to treat CNS disorders (e.g., Parkinson's disease, depression, and Alzheimer's disease).
  • MAO enzymes are also located in a number of peripheral (non-CNS) tissues, including adipose tissue, muscle and liver. In order to treat non-CNS disorders (e.g., obesity, diabetes, and/or cardiometabolic disorders), it is necessary to administer enough of a drug sufficient to inhibit MAO in peripheral tissues. MAO inhibitors in use today to treat various psychiatric and neurological diseases, regardless of route of administration, enter the CNS from the systemic circulation. While present in the systemic circulation, such drugs have access to peripheral tissues, including adipose tissue, liver, and muscle. One of skill in the art recognizes that MAO inhibitors intended to enter the CNS from the systemic circulation in order to treat psychiatric and neurological diseases also have access to MAO in peripheral tissues, including adipose tissue, liver, and muscle. Thus, an MAO inhibitor useful for treating non-CNS disorders may have some access to the CNS from the systemic circulation.
  • Drugs enter the CNS from the systemic circulation by crossing the blood-brain barrier (BBB). The BBB is a highly specialized ‘gate-keeper’ that protects the brain by preventing the entry of many potentially harmful substances into the CNS from the systemic circulation. Much is known about the BBB, and of the physical-chemical properties required for compounds transported across it.
  • Drugs that do not cross the BBB into the CNS or that are readily eliminated through transport mechanisms (J Clin Invest. 97, 2517 (1996)) are known in the literature and have low CNS activity due to their inability to develop brain levels necessary for pharmacological action. The BBB has at least one mechanism to remove drugs prior to their accumulation in the CNS. P-Glycoproteins (P-gp) localized in plasma membrane of the BBB can influence the brain penetration and pharmacological activity of many drugs through translocation across membranes. The lack of accumulation into the brain by some drugs can be explained by their active removal from the brain by P-gp residing in the BBB. For example, the typical opioid drug loperamide, clinically used as an antidiarrheal, is actively removed from the brain by P-gp, thus explaining its lack of opiate-like CNS effects. Another example is domperidone, a dopamine receptor blocker that participates in the P-gp transport (J Clin Invest. 97, 2517 (1996)). Whereas dopamine receptor blockers that cross the BBB can be used to treat schizophrenia, the readily-eliminated domperidone can be used to prevent emesis, without the likelihood of producing adverse CNS effects.
  • In addition to the above compounds, agents possessing structural characteristics that retard or prevent BBB penetration or contribute to participation in active elimination processes have been identified in various classes of therapeutics. These include antihistamines (Drug Metab. Dispos. 31, 312 (2003)), beta-adrenergic receptor antagonists (B-blockers)(Eur. J. Clin. Pharmacol. 28, Suppl: 21-3 (1985); Br. J. Clin. Pharmacol., 11 (6), 549-553 (1981)), non-nucleoside reverse transcriptase inhibitors (NNRTIs)(J. Pharm Sci., 88(10) 950-954 (1999)), and opioid antagonists. This latter group has been tested in relation to their activity in the GI tract. These peripherally selective opioid antagonists are described in various US patents as being useful in the treatment of non-CNS pathologies in mammals, in particular those of the GI tract (see U.S. Pat. No. 5,260,542; U.S. Pat. No. 5,434,171; U.S. Pat. No. 5,159,081; and U.S. Pat. No. 5,270,238).
  • Other types of non-brain penetrant compounds can be prepared through the creation of a charge within the molecule. Thus, the addition of a methyl group to the tertiary amine functionality of the drugs scopolamine or atropine, unlike the parent molecules, prevents their passage across the BBB through the presence of a positive charge. However, the new molecules (methyl-scopolamine and methyl-atropine) retain their full anticholinergic pharmacological properties. As such, these drugs can also be used to treat peripheral diseases, without the concern of adverse CNS effects. The quaternary ammonium compound methylnaltrexone is also used for the prevention and/or treatment of opioid and non-opioid induced side effects associated with opioid administration.
  • MAO-B inhibitors such as selegiline have been useful in the treatment of CNS disorders. The unexpected discovery that the anti-obesity activity mediated by these agents is mediated by a non-CNS mechanism may make it desirable that the compounds of the present invention be peripherally restricted, i.e., have an inability or limited ability to cross the BBB or be readily eliminated from the brain through active transport systems, when a non-CNS disorder is to be treated. It may be desirable for the compounds of the present invention to be peripherally restricted, which in turn will result in no or very limited CNS effects. Compounds that provide peripherally mediated anti-obesity properties should result in therapeutic agents with greater safety, as previously demonstrated in earlier classes of peripherally restricted agents. It can be desirable that the compounds of the present invention, when administered in a therapeutically effective amount, have no or very limited CNS effects. It can also be desirable that the lack of CNS effects is a result of the compounds of the present invention having minimal brain concentrations when administered in therapeutically effective amounts. In this context, minimal brain concentrations means levels that are too low to be therapeutically effective for the treatment of a CNS indication or too low to cause significant or measurable deleterious or undesired side effects. It is noted that CNS activity is desirable when seeking to treat a CNS disorder.
  • Compound A is Selegiline when Y is O and R, R1, R2, X, X1, and Z are all H. Selegiline is a drug that crosses the BBB and is indicated for the treatment of Parkinson's disease. In compound A, one of R, R1, R2, X, X1, and Z is a group capable of reducing or limiting the CNS activity of compound A. This reduced or limited CNS activity occurs via at least one of R, R1, R2, X, X1, and Z being a group that either limits compound A's ability to cross the BBB relative to that of Selegiline or enables it to be actively removed at a rate greater than that of Selegiline. Examples of brain levels of compound A include levels that are (a) from 50, 55, 60, 65, 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, to 100% lower than Selegiline, when administered at the same dosage; (b) from 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, to 100% lower than Selegiline, when administered at the same dosage; and, (c) from 98, 99, to 100% lower than Selegiline, when administered at the same dosage.
  • Most methods of treating obesity are dependent on a significant reduction in energy intake, either by a decrease in food intake (e.g., sibutramine) or by inhibition of fat absorption (e.g., orlistat). In the present invention, it can be desirable for adipose tissue to be significantly reduced in the absence of a significant reduction in food intake. The weight loss, as a result of the present invention, comes from the treatment with an MAO-B inhibitor, largely independent of appetite and food intake. Examples of the level of food intake during adipose tissue loss include (a) food intake is maintained, increased or about 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20% below the normal range of the subject prior to being treated in accordance with the present invention (i.e., its pre-administration level); (b) food intake is maintained, increased, or about 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15% below its pre-administration level; (c) food intake is maintained, increased or about 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10% below its pre-administration level; and (d) food intake level is maintained, increased or about 0, 1, 2, 3, 4, or 5% below its pre-administration level.
  • In some cases, loss of adipose tissue can be accompanied by a concomitant loss of lean muscle mass. This is particularly evident in cancer patients who show a wasting of all body tissue components, including adipose tissue and lean muscle mass. In the present invention, however, it can be desirable for body fat to be significantly reduced in the absence of a significant reduction in lean body mass. Adipose tissue loss comes from treatment with an MAO-B inhibitor, independent of a significant change in lean body mass. Examples of the level of lean body mass during adipose tissue loss include (a) lean body mass is maintained, increased, or is no more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30% below the normal range of the subject prior to being treated in accordance with the present invention (i.e., its pre-administration level); (b) lean body mass is maintained, increased, or is no more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15% below pre-administration levels; (c) lean body mass is maintained, increased, or is no more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10% below pre-administration levels; and (d) lean body mass is maintained, increased, or is no more than about 1, 2, 3, 4, or 5% below pre-administration levels.
  • In some cases, loss of adipose tissue can be accompanied by a concomitant loss of water mass. This is particularly evident with diet regimens that promote dehydration. In the present invention, it can be desirable for body fat to be significantly reduced in the absence of a significant reduction in water mass. In other words, adipose tissue loss comes from treatment with an MAO-B inhibitor, independent of a significant change in water mass. Examples of the level of water mass during adipose tissue loss include (a) water mass is maintained, increased, or is no more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30% below the normal range of the subject prior to being treated in accordance with the present invention (i.e., its pre-administration level); (b) water mass is maintained, increased, or is no more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15% below pre-administration levels; (c) water mass is maintained, increased, or is no more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10% below pre-administration levels; and (d) water mass is maintained, increased, or is no more than about 1, 2, 3, 4, or 5% below pre-administration levels.
  • Sibutramine and orlistat are currently marketed for use in the treatment of obesity. These two compounds achieve weight loss through entirely different mechanisms. Sibutramine, a CNS appetite suppressant, inhibits the neuronal reuptake of serotonin and noradrenaline. Orlistat inhibits gut lipase enzymes that are responsible for breaking down ingested fat.
  • The mechanism of action of MAO-B inhibitors is believed to be entirely different from appetite suppressants, gut lipase inhibitors, and other agents with similar indications (e.g., serotonin agonists, leptin, and fatty acid synthase inhibitors). Co-administration of a MAO-B inhibitor together with one or more other agents that are useful for treating the indications described above (e.g., obesity, diabetes, cardiometabolic disorders, and a combination thereof) is expected to be beneficial, by producing, for example, either additive or synergistic effects. Examples of additional agents include an appetite suppressant and a lipase inhibitor. Therefore, the present invention provides a method of treating obesity, diabetes, and/or cardiometabolic disorders, comprising administering a therapeutically effective amount of a compound of the present invention and a second component selected from an appetite suppressant (e.g., sibutramine, phentermine, fenfluramine) and a gut lipase inhibitor (e.g., orlistat).
  • MAO-B inhibitors are expected to promote weight loss without appreciably reducing caloric intake. Co-administration of an MAO-B inhibitor together with an appetite suppressant is expected to produce either additive or synergistic effects on weight loss. Similarly, co-administration of an MAO-B inhibitor together with a lipase inhibitor is expected to produce either additive or synergistic effects on weight loss.
  • The ability of compounds to inhibit MAOs can be determined using the method of R. Uebelhack et al., Pharmacopsychiatry 31, 187-192 (1988)(as described below).
  • Preparation of platelet-rich plasma and platelets. Venous blood from healthy subjects was collected between 8 and 8.30 a.m. after an overnight fast into EDTA-containing vacutainer tubes (11.6 mg EDTA/ml blood). After centrifugation of the blood at 250×g for 15 minutes at 20° C., the supernatant platelet-rich plasma (PRP) was collected and the number of platelets in PRP counted with a cell counter (MOIAB, Hilden, Germany). 2 ml of PRP was spun at 1500×g for 10 min to yield a platelet pellet. The pellet was washed three times with ice-cold saline, resuspended in 2 ml Soerensen phoshate buffer, pH 7.4 and stored at −18° C. for one day.
  • MA0 assay. Fresh PRP or frozen platelet suspension (100 μL) was generally preincubated for 10 min in the absence or presence of drugs at 37° C. in 100 uL of 0.9% NaCl solution or phosphate buffer pH 7.4, respectively, at 37° C. 50 μL of 2-phenylethylamine-[ethyl-1-14C]hydrochloride (P EA) solution (specific activity 56 Ci/mol, Amersham) was then added in a final concentration of 5 μM, and the incubation was continued for 30 min. The reaction was terminated by the addition of 50 μL of 4M HClO4. The reaction product of MAO, phenylacetaldehyde, was extracted into 2 mL of n-hexane. An aliquot of the organic phase was added to scintillator cocktail and the radioactivity was determined using a liquid scintillation counter. Product formation was linear with time for at least 60 min with appropriate platelet numbers. Blank values were obtained by including 2 mM pargyline in the incubation mixtures. All assays were performed in duplicate.
  • The ability of compounds to inhibit MAO activity can also be determined using the following method. cDNA's encoding human MAO-B can be transiently transfected into EBNA cells using the procedure described by E.-J. Schlaeger and K. Christensen (Transient Gene Expression in Mammalian Cells Grown in Serum-free Suspension Culture; Cytotechnology, 15: 1-13, 1998). After transfection, cells are homogeneized by means of a Polytron homogeneiser in 20 mM Tris HCl buffer, pH 8.0, containing 0.5 mM EGTA and 0.5 mM phenylmethanesulfonyl fluoride. Cell membranes are obtained by centrifugation at 45,000×g and, after two rinsing steps with 20 mM Tris HCl buffer, pH 8.0, containing 0.5 mM EGTA, membranes are eventually re-suspended in buffer and aliquots stored at −80° C. until use.
  • MAO-B enzymatic activity can be assayed using a spectrophotometric assay adapted from the method described by M. Zhou and N. Panchuk-Voloshina (A One-Step Fluorometric Method for the Continuous Measurement of Monoamine Oxidase Activity, Analytical Biochemistry, 253: 169-174, 1997). Briefly, membrane aliquots are incubated in 0.1 M potassium phosphate buffer, pH 7.4, for 30 min at 37° C. with or without various concentrations of the compounds. After incubation, the enzymatic reaction is started by the addition of the MAO substrate tyramine together with 1 U/ml horse-radish peroxidase (Roche Biochemicals) and 80 μM N-acetyl-3,7,-dihydroxyphenoxazine (Amplex Red, Molecular Probes). The samples are further incubated for 30 min at 37° C. in a final volume of 200 μl and absorbance is determined at a wavelength of 570 nm using a SpectraMax plate reader (Molecular Devices). Background (non-specific) absorbance is determined in the presence of 10 μM L-deprenyl for MAO-B. IC50 values are determined from inhibition curves obtained using nine inhibitor concentrations in duplicate, by fitting data to a four parameter logistic equation.
  • Compounds of the present invention are expected to be MAO-B inhibitors. Representative compounds have been tested, as measured in the assay described herein, and have been shown to be active as their IC50 values were found to be in the range of <10 μM. Compounds of the present invention are considered to be MAO-B inhibitors if they have an IC50 value less than or equal to 10 μM. Additional examples of desirable activity levels of MAO-B inhibitors useful in the present invention include (a) an IC50 value of 1 μM or lower, (b) an IC50 value of 0.1 μM or lower, (c) an IC50 value of 0.01 μM or lower, (d) an IC50 value of 0.004 μM or lower, and (e) an IC50 value of 0.0004 μM or lower.
  • In the present invention, MAO-B inhibitor(s) can be administered enterally, parenterally, orally, and transdermally. One skilled in this art is aware that the routes of administering the compounds of the present invention may vary significantly. In addition to other oral administrations, sustained release compositions may be favored. Other examples of routes include injections (e.g., intravenous, intramuscular, and intraperitoneal); subcutaneous; subdermal implants; buccal, sublingual, topical (e.g., a dermal patch), rectal, vaginal, and intranasal administrations. Bioerodible, non-bioerodible, biodegradable, and non-biodegradable systems of administration may also be used.
  • If a solid composition in the form of tablets is prepared, the main active ingredient can be mixed with a pharmaceutical vehicle, examples of which include silica, starch, lactose, magnesium stearate, and talc. The tablets can be coated with sucrose or another appropriate substance or they can be treated so as to have a sustained or delayed activity and so as to release a predetermined amount of active ingredient continuously. Gelatin capsules can be obtained by mixing the active ingredient with a diluent and incorporating the resulting mixture into soft or hard gelatin capsules. A syrup or elixir can contain the active ingredient in conjunction with a sweetener, which is preferably calorie-free, an antiseptic (e.g., methylparaben and/or propylparaben), a flavoring, and an appropriate color. Water-dispersible powders or granules can contain the active ingredient mixed with dispersants or wetting agents or with suspending agents such as polyvinylpyrrolidone, as well as with sweeteners or taste correctors. Rectal administration can be effected using suppositories, which are prepared with binders melting at the rectal temperature (e.g., cocoa butter and/or polyethylene glycols). Parenteral administration can be effected using aqueous suspensions, isotonic saline solutions, or injectable sterile solutions, which contain pharmacologically compatible dispersants and/or wetting agents (e.g., propylene glycol and/or polyethylene glycol). The active ingredient can also be formulated as microcapsules or microspheres, optionally with one or more carriers or additives. The active ingredient can also be presented in the form of a complex with a cyclodextrin, for example α-, β-, or γ-cyclodextrin, 2-hydroxypropyl-β-cyclodextrin, and/or methyl-β-cyclodextrin.
  • The dose of the MAO-B inhibitor administered daily will vary on an individual basis and to some extent may be determined by the severity of the disease being treated (e.g., obesity). The dose of the MAO-B inhibitor will also vary depending on the MAO-B inhibitor administered. An example of a range of dosages of an MAO-B inhibitor is about from 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 76, 80, 85, 90, 95, to 100 mg/kg of mammal body weight. The MAO-B inhibitor can be administered in a single dose or in a number of smaller doses over a period of time. The length of time during which the MAO-B inhibitor is administered varies on an individual basis, and can continue until the desired results are achieved (i.e., reduction of body fat, or prevention of a gain in body fat). Therapy could, therefore, last from 1 day to weeks, months, or even years depending upon the subject being treated, the desired results, and how quickly the subject responds to treatment in accordance with the present invention.
  • A possible example of a tablet of the present invention is as follows.
  • Ingredient mg/Tablet
    Active ingredient 100
    Powdered lactose 95
    White corn starch 35
    Polyvinylpyrrolidone 8
    Na carboxymethylstarch 10
    Magnesium stearate 2
    Tablet weight 250
  • A possible example of a capsule of the present invention is as follows.
  • Ingredient mg/Tablet
    Active ingredient 50
    Crystalline lactose 60
    Microcrystalline cellulose 34
    Talc 5
    Magnesium stearate 1
    Capsule fill weight 150
  • In the above capsule, the active ingredient has a suitable particle size. The crystalline lactose and the microcrystalline cellulose are homogeneously mixed with one another, sieved, and thereafter the talc and magnesium stearate are admixed. The final mixture is filled into hard gelatin capsules of suitable size.
  • A possible example of an injection solution of the present invention is as follows.
  • Ingredient mg/Tablet
    Active substance 1.0 mg
    1N HCl 20.0 μl
    acetic acid 0.5 mg
    NaCl 8.0 mg
    Phenol 10.0 mg
    1N NaOH q.s. ad pH 5
    H2O q.s. ad 1 mL
  • SYNTHESIS
  • The compounds of the present invention can be prepared in a number of ways known to one skilled in the art of organic synthesis. The compounds of the present invention can be synthesized using the methods described below, together with synthetic methods known in the art of synthetic organic chemistry, or by variations thereon as appreciated by those skilled in the art. Preferred methods include, but are not limited to, those described below. The reactions are performed in a solvent appropriate to the reagents and materials employed and suitable for the transformations being effected. It will be understood by those skilled in the art of organic synthesis that the functionality present on the molecule should be consistent with the transformations proposed. This will sometimes require a judgment to modify the order of the synthetic steps or to select one particular process scheme over another in order to obtain a desired compound of the invention. It will also be recognized that another major consideration in the planning of any synthetic route in this field is the judicious choice of the protecting group used for protection of the reactive functional groups present in the compounds described in this invention. An authoritative account describing the many alternatives to the trained practitioner is Greene and Wuts (Protective Groups In Organic Synthesis, Wiley and Sons, 1991). All references cited herein are hereby incorporated in their entirety herein by reference.
  • Figure US20140155355A1-20140605-C00010
  • Scheme 1 provides access to one of a series of compounds that are part of the present invention. An amino acid ester, such as phenylalanine (X═H) or O-benzyltyrosine (X═O-benzyl), can be N-alkylated using formalin and sodium cyanoborohydride in the presence of acetic acid to provide an N-methylated ester (step a). Alternatively, alkylation of the amino ester with propargyl bromide in DMF at about 50° C. in the presence potassium carbonate should give the monopropargyl amino ester which can be converted to the des-methyl acid of the compound described in step e, below. When the secondary amine is treated with propargyl bromide in DMF in the presence of potassium carbonate at about 50° C., the tertiary amino ester will be produced (step b). Hydrolysis of the ester using aqueous LiOH solution in a co-solvent should afford the desired amino acid (step c). If the tertiary amino ester has a benzyloxy group on its phenyl ring, the benzyl group can be removed using trifluoroacetic acid (step d) prior to hydrolysis of the ester (step e).
  • Alternatively, if the tertiary amino ester is reduced with lithium aluminum hydride (LAH), the primary alcohol will be produced (step f). Deprotonation of the alcohol with sodium hydride followed by alkylation with ethyl bromopropionate will afford the amino alkoxyester (step g). Treatment of this ester as in step c will yield the tertiary amino acid (step h). If the tertiary amino alkoxyester has a benzyloxy group on its phenyl ring, the benzyl group can be removed using trifluoroacetic acid prior to hydrolysis of the ester.
  • Figure US20140155355A1-20140605-C00011
  • Scheme 2 illustrates how one could make substituted propargyl compounds of the present invention. A starting propargyl amine can be deprotonated with n-butyl lithium at low temperature in a solvent such as THF, and the resulting anion alkylated with methylchloroformate or ethyl bromoacetate to afford an aminoester (step a). Hydrolysis of the ester using aqueous LiOH in a co-solvent can afford an amino acid (step b). Alternatively, if the tertiary amino ester has a benzyloxy group on its phenyl ring, the benzyl group can be removed using trifluoroacetic acid prior to hydrolysis of the ester.
  • Figure US20140155355A1-20140605-C00012
  • Scheme 3 shows how to prepare hydroxy-phenyl and substituted hydroxy-phenyl compounds of the present invention. A starting p-hydroxyphenethylamine can be treated with sodium hydride and the resulting phenoxide anion can be alkylated with ethyl bromoacetate to provide an ester (step a). The carboxylic acid can then be formed by the previously described hydrolysis (step b). If the alkoxide anion was alkylated with 1,3-dibromopropane, then a bromoalkylether should be produced (step c). This halide, in turn, could be treated with trimethyl amine to give the propyloxytrimethyl ammonium salt (step d). Treatment of the hydroxyphenyl compound with formalin and dimethyl amine followed by further reaction with acetic anhydride and concentrated hydrochloric acid should yield the intermediate chloromethylated phenol (step e). Subsequent reaction with excess trimethylamine should afford the trimethylammonium salt (step f).
  • Figure US20140155355A1-20140605-C00013
  • Scheme 4 describes the synthesis of optionally substituted benzyloxy compounds. This reaction scheme as well as the procedures found in J. Org. Chem. 1991, 56, 2395 can also be utilized to prepare substituted-biphenylmethyl analogs of this and the anilino compounds of Scheme 5 by utilizing commercially available 4′-bromomethyl-biphenyl-2-carbonitrile, or for unsubstituted compounds commercially available 4-phenylbenzyl bromide, to alkylate the phenol of Scheme 4 and the anilines of Scheme 5, respectively. Treatment of the phenol with an optionally substituted benzyl bromide in a solvent such as acetone in the presence of a base such as potassium carbonate upon heating should afford the benzyl ether (step a). If the substituent on the benzyloxy group is an ester or a carbon-chain linked ester, the acid can be produced via hydrolysis using lithium hydroxide in aqueous THF (step b). If the benzyl bromide contains a nitrile substituent or a alkyl-chain linked substituent with a nitrile group or an oxyalkyl-chain linked substituent with a nitrile group, the alkylation product (step c) can be treated with 30% hydrogen peroxide and potassium carbonate in DMSO to produce the amides (step d). Alternatively, if these nitriles are reacted with sodium azide in the presence of zinc chloride in aqueous solution or treated with trialkyltin chloride and sodium azide in refluxing toluene or xylene, followed by removal of the triakyl tin group with anhydrous HCl in THF/toluene, the tetrazoles should be formed (step e).
  • Figure US20140155355A1-20140605-C00014
  • Scheme 5 describes the general synthesis of achiral compounds starting from substituted phenylacetones. If one uses commercially available 4-nitophenyl acetone, an anilino compound of step e that can also be used as a starting material for the reactions of Scheme 4, can be produced. Treatment of a nitro-phenyl acetone with benzylamine in the presence of sodium triacetoxyborohydride in dichloroethane (DCE) and acetic acid at 25-30° C. will yield the secondary amine (step a). Alkylation of the amine using formalin and sodium triacetoxyborohydride in DCE and HOAc at about 30° C. will provide the tertary amine (step b). Reduction of the nitro group using Fe and ammonium formate in methanol at reflux will afford the anilino compound that has also been debenzylated (step c). Alkylation of the secondary amine with propargylbromide in the presence of potassium carbonate in acetonitrile at room temperature can give the tertiary amine (step d). Treatment of this aniline with benzaldehydes in the presence of triacetoxyborohydride in DCE and HOAc will yield benzylated anilines with optionally selected substituents that can be used further for the transformations described in Scheme 4 (step e). Reaction of this aniline with methanesulfonyl chloride in the presence of a base will provide the sulfonamide derivative (step f). In addition, reaction of this aniline with acid chlorides such as ethyl malonyl chloride or 3-cyanobenzenesulfonyl chloride will produce the acetanilide or the sulfonamide, respectively.
  • Figure US20140155355A1-20140605-C00015
  • Scheme 6 describes how one can form quarternary ammonium salts or N-oxides of the present invention. When a starting tertiary propargyl amine is treated with an alkyl halide such as propoargyl bromide in a solvent such as methanol or ethanol the quaternary ammonium salt can result (step a). Alternatively, a tertiary propargyl amine treated with an oxidizing agent such as 2-phenylsulfonyl-3-phenyloxaziridine (Davis reagent) in the presence of potassium carbonate in methylene chloride should give the amine N-oxides (step b).
  • Figure US20140155355A1-20140605-C00016
  • Scheme 7 illustrates a route to another series of compounds that are part of the present invention. An amino acid ester, optionally substituted on the aromatic ring, can be N-alkylated using formalin and sodium cyanoborohydride under slightly acidic conditions to provide an N-methylated ester (step a). The secondary amine can then be alkylated with propargyl bromide to give a tertiary amino ester (step b). If the tertiary amino ester is reduced with lithium aluminum hydride (LAH), the primary alcohol should be produced (step c). Deprotonation of the alcohol with sodium hydride followed by alkylation with benzyl bromide should afford the amino benzyl ether (step d). Treatment of this ether with butyl lithium followed by ethyl bromoacetate should produce the acetylenic ester (step e). Hydrolysis of the ester using aqueous LiOH in a co-solvent will afford an amino acid (step f). The benzyl group can be removed using trifluoroacetic acid to give the amino acid alcohol (step g).
  • Figure US20140155355A1-20140605-C00017
  • As shown in Scheme 8, the previously described amino alcohol (Scheme 1, step f) can be oxidized to the aldehyde using the Dess-Martin periodinane [1,1,1-tris(acetyloxy)-1,1-dihydro-1,2-benziodoxol-3-(1H)-one] in wet dichlormethane at about room temperature (step a). Treatment of the amino aldehyde with aqueous ammonia in the presence of sodium cyanoborohydride or with hydroxylamine followed by lithium aluminum hydride reduction should give the primary amine (step b). Reaction of the primary amine with methane sulfonyl chloride will afford the sulfonamide derivative (step c). The primary amine can also be reacted with ethyl 4-bromocrotonate in DMF in the presence of potassium carbonate to give the diaminoester (step d). Subsequent hydrolysis using lithium hydroxide in aqueous THF solution will provide the diamino acid (step e). The primary amine can also be treated with ethyl malonyl chloride in the presence of pyridine to give the amide ester (step f). Subsequent treatment with lithium hydroxide in aqueous THF solution will provide the acid (step g).
  • Figure US20140155355A1-20140605-C00018
  • Scheme 9 shows the synthesis of chiral analogs of selegiline starting from L-tyrosine methyl ester. Treatment of the ester with di-t-butyl-dicarbonate (t-Boc anhydride) in methanol in the presence of triethylamine at 40-50° C. will provide the N-t-BOC-protected ester (step a). The phenol can be alkylated with benzyl bromide or a substituted version thereof, in acetone at 50-60° C. for about 4 hours to yield the O-benzyl ether analogs (step b). The t-BOC group will then be removed with TFA in methylene chloride at room temperature for 18-20 hours (step c), and the ester can be reduced with LAH at about 60 degrees C. for 6-8 hours to afford the alcohol (step d). Protection of the amine with t-Boc anhydride in methanol in the presence of triethylamine at 40-50° C. provides the N-t-BOC-protected ester (step e). The alcohol can be converted to the iodide with iodine in the presence of triphenylphosphine and imidazole in dichloromethane at about 40-50° C. for 4-6 hours (step f). Reduction of the iodide is carried out using sodium borohydride in DMSO at about 90° C. for about 1 hour (step g). Removal of the t-BOC group with TFA in methylene chloride at room temperature for about 15-20 hours will give the amine (step h), and reductive amination using formalin, sodium triacetoxyborohydride, HOAc in dichloromethane for about 24 hours will afford the methylated amine (step i). Subsequent alkylation with propargyl bromide in the presence of potassium carbonate in acetone for about 20 hours will produce the teriary amine (step j). In Scheme 9, Bn is benzyl or benzyl optionally substituted with substituents that are compatible with LAH reduction. To produce substituted benzyl compounds with groups that are not compatible with LAH reduction, the product of step j (unsubstituted benzyl) can be de-benzylated with TFA, and the resulting phenol can be re-alkylated with benzyl halides containing various substituents on the phenyl ring.
  • Figure US20140155355A1-20140605-C00019
  • As shown in Scheme 10, hydroxy-selegiline can be coupled with a polyethylene glycol (PEG), with one protected hydroxyl group (e.g., with a t-butyldimethylsilyl (TBDMS), alkyl, benzyl or aralkyl group), under Mitsunobu conditions using diethylazodicarboxylate (DEAD) and triphenylphosphine in a solvent (e.g., THF) to produce phenolethers (step a). The compounds with a terminal alkyl or aryl-alkyl group can be quaternized with an alkyl or propargyl halide in a variety of solvents (e.g., ether, ethanol, or toluene) to produce the quaternary ammonium salts (step b). The TBDMS-protected PEG pendants can be treated with tetrabutylammonium fluoride in THF to give the PEG pendants with terminal hydroxyl groups (step c). These alcohols can also be converted to the quaternary salts as described above (step d). The various mono-terminally substituted PEG-halides can be prepared by procedures described in Nuclear Medicine and Biology, 32, 799 (2005) or are commercially available.
  • Figure US20140155355A1-20140605-C00020
  • Alternatively, as shown in Scheme 11, a hydroxyphenylacetic acid ester can be coupled with a halo-polyethylene glycol (PEG), optionally terminally substituted (e.g., TBDMS, alkyl, benzyl, or aryl-alkyl group), in DMF in the presence of potassium carbonate at about 100° C. with stirring for 12-16 hours to afford the PEG ether ester (step a). After hydrolysis of the ester with lithium hydroxide in aqueous THF, the resultant acid can converted to the acid chloride upon heating in oxalyl chloride (step b). Treatment of the acid chloride with 2,2-dimethyl-1,3-dioxane-4,6-dione (Meldrum's acid) should produce the acylated anhydride (step c), and subsequent hydrolysis in aqueous acetic acid will provide the methyl ketone (step d). Reductive amination of the ketone with methylpropargylamine in the presence of sodium triacetoxyborohydride in dichloroethane and acetic acid should afford the amine (step e). The compounds with a terminal alkyl or aryl-alkyl group can be quaternized with alkyl or propargyl halides in a variety of solvents such as ether, ethanol, or toluene to produce the quaternary ammonium salts (step f). The TBDMS-protected PEG pendants can be treated with tetrabutylammonium fluoride in THF to give the PEG pendants with terminal hydroxyl groups (step g). These alcohols can also be converted to the quaternary salts as described above (step h).
  • One stereoisomer of a compound of the present invention may be a more potent MAO-B inhibitor than its counterpart(s). Thus, stereoisomers are included in the present invention. Some of these stereoisomers are shown below in Scheme 12. When required, separation of the racemic material can be achieved by HPLC using a chiral column or by a resolution using a resolving agent such as described in Wilen, S. H. Tables of Resolving Agents and Optical Resolutions 1972, 308 or using enantiomerically pure acids and bases. A chiral compound of the present invention may also be directly synthesized using a chiral catalyst or a chiral ligand, e.g., Jacobsen, E. Acc. Chem. Res. 2000, 33, 421-431 or using other enantio- and diastereo-selective reactions and reagents known to one skilled in the art of asymmetric synthesis.
  • Figure US20140155355A1-20140605-C00021
  • Other features of the invention will become apparent in the course of the following descriptions of exemplary embodiments that are given for illustration of the invention and are not intended to be limiting thereof.
  • EXAMPLES
  • Tables A and B below describe examples of the present invention that have been prepared. The examples can be prepared according to the methods of the scheme numbers provided for each example.
  • For X, the number in the parentheses indicates the substituent's position on phenyl ring in the X group.
  • TABLE A
    Figure US20140155355A1-20140605-C00022
    Ex # X Y Z NMR (Solvent) Scheme
     1 OCH2C6H5 H2 H (CDCl3) 4, 9
    CH3: 0.97 (d)
    C≡CH: 2.25 (m)
    PhCH: 2.35 (m)
    NCH3: 2.43 (s)
    PhCH: 2.96 (m)
    NCH: 3.01 (m)
    NCH2: 3.44 (m)
    PhCH2O:
    5.04 (s)
    aromatic H's
    6.89-7.44
     2 OCH2C6H4—CO2CH3 (3) H2 H (CDCl3) 4
    CH3: 0.98 (d)
    C≡CH: 2.27 (m)
    PhCH: 2.36 (m)
    NCH3: 2.44 (s)
    PhCH: 2.93 (m)
    NCH: 3.00 (m)
    NCH2: 3.45 (q)
    OCH3: 3.93 (s)
    PhCH2O:
    5.08 (s)
    aromatic H's
    6.89-8.11
     3 OCH2C6H4—CONH2 (4) H2 H (CDCl3) 4
    CH3: 1.00 (d)
    C≡CH: 2.17 (m)
    PhCH: 2.30 (m)
    NCH3: 2.47 (s)
    PhCH: 3.00 (m)
    NCH: 3.00 (m)
    NCH2: 3.48 (m)
    OCH3: 3.92 (s)
    PhCH2O:
    5.11 (s)
    aromatic H's
    6.89, 7.10,
    7.52, 7.84 d's
     4 OCH2C6H4—CONH2 (3) H2 H (CD3OD) 4
    CH3: 0.98 (d)
    PhCH: 2.34 (m)
    NCH3: 2.41 (s)
    C≡CH: 2.70 (m)
    PhCH: 3.00 (m)
    NCH: 3.00 (m)
    NCH2: 3.45 (m)
    PhCH2O:
    5.12 (s)
    aromatic H's
    6.93-7.97
    5 OCH2CH═CH—CO2CH2CH3 H2 H (CDCl3) 3
    CH3: 0.96 (d)
    ester-CH3:
    1.30 (t)
    C≡CH: 2.25 (m)
    PhCH: 2.35 (m)
    NCH3: 2.42 (s)
    PhCH: 2.95 (m)
    NCH: 2.99 (m)
    NCH2: 3.43 (q)
    OCH2: 4.22 (q)
    OCH2vinyl:
    4.68 (m)
    CH═: 6.19 (dt)
    CH═: 7.06 (dt)
    C6H4: 6.83,
    7.09 (dd)
     6 OCH2C6H5 O OCH3 (CDCl3) 1
    N—CH3 = N—H in C≡CH: 2.17
    structure at top (m)
    of table PhCH2: 2.93
    (dq)
    NCH2: 3.39 (dq)
    OCH3: 3.67 (s)
    NCH: 3.70 (m)
    PhCH2O:
    5.03 (s)
    aromatic H's
    6.89-7.40
     7 OCH2C6H4—OCH2CONH2 (3) H2 H (CD3OD) 4
    CH3: 0.96 (d)
    PhCH: 2.35 (m)
    NCH3: 2.42 (s)
    C≡CH: 2.70 (m)
    PhCH: 2.99 (m)
    NCH2: 3.46 (m)
    PhCH2CO:
    3.54 (s)
    PhCH2O:
    5.05 (s)
    aromatic H's
    6.90-7.41
     8 OCH2C6H4—CH2CONH2 (3) H2 H (CDCl3) 4
    CH3: 0.96 (d)
    PhCH: 2.33 (m)
    NCH3: 2.40 (s)
    C≡CH: 2.70 (m)
    PhCH: 3.00 (m)
    NCH2: 3.48 (m)
    OCH2CO:
    4.50 (s)
    PhCH2O:
    5.04 (s)
    aromatic H's
    6.90-7.33
     9 H H2 OH (CDCl3) 1
    C≡CH: 2.28 (m)
    NCH3: 2.42 (s)
    NCH, PhCH:
    3.09 (m)
    NCH2, 3.38 (m)
    CH2O: 3.43 (d)
    aromatic H's
    7.15-7.30
    10 OCH2C6H5 H2 OH (CDCl3) 1
    C≡CH: 2.30 (m)
    PhCH: 2.35 (t)
    NCH3: 2.45 (s)
    PhCH: 3.01 (m)
    NCH: 3.04 (m)
    NCH2, 3.40 (m)
    CH2O: 3.47 (d)
    PhCH2O:
    5.04 (s)
    aromatic H's
    6.89-7.44
    11 OCH2C6H5 O OCH3 (CDCl3) 1
    C≡CH: 2.27 (m)
    NCH3: 2.46 (s)
    PhCH2: 2.97 (d)
    NCH2: 3.50 (dq)
    OCH3: 3.57 (s)
    NCH: 3.58 (m)
    PhCH2O:
    5.03 (s)
    aromatic H's
    6.88-7.41
    12 NO2 H2 H (CDCl3) 5
    CH3: 1.00 (d)
    C≡CH: 2.26 (m)
    PhCH: 2.58 (m)
    NCH3: 2.41 (s)
    PhCH: 3.05 (m)
    NCH: 3.05 (m)
    NCH2: 3.42 (q)
    aromatic H's:
    7.34, 7.36,
    8.14, 8.16
    13 OCH2C6H4CH3 (3) H2 H (CDCl3) 4, 9
    CH3: 0.97 (d)
    C≡CH: 2.24 (m)
    PhCH: 2.36 (m)
    PhCH3: 2.37 (s)
    NCH3: 2.42 (s)
    PhCH: 2.97 (m)
    NCH: 3.05 (m)
    NCH2: 3.43 (q)
    PhCH2O:
    5.00 (s)
    aromatic H's:
    6.89-7.29
    14 OCH2C6H4CF3 (3) H2 H (CDCl3) 4, 9
    CH3: 0.99 (d)
    C≡CH: 2.27 (m)
    PhCh: 2.38 (m)
    NCH3: 2.45 (s)
    PhCH: 2.97 (m)
    NCH: 3.00 (m)
    NCH2: 3.47 (q)
    PhCH2O:
    5.09 (s)
    aromatic H's:
    6.89-7.63
    15 OCH2C6H4CH3 (4) H2 H (CDCl3) 4, 9
    CH3: 0.96 (d)
    C≡CH: 2.24 (m)
    PhCH: 2.35 (m)
    PhCH3: 2.36 (s)
    NCH3: 2.42 (s)
    PhCH: 2.95 (m)
    NCH: 2.97 (m)
    NCH2: 3.42 (q)
    PhCH2O:
    4.99 (s)
    aromatic H's:
    6.88-7.32
    16 OCH2C6H4CN (3) H2 H (CDCl3) 4, 9
    CH3: 0.97 (d)
    C≡CH: 2.26 (m)
    PhCH: 2.38 (m)
    NCH3: 2.43 (s)
    PhCH: 2.97 (m)
    NCH: 2.99 (m)
    NCH2: 3.44 (q)
    PhCH2O:
    5.07 (s)
    aromatic H's:
    6.87-7.65
    17 NHCH2C6H4CN (4) H2 H (CDCl3) 5
    CH3: 0.97 (d)
    C≡CH: 2.22 (m)
    PhCH: 2.27 (m)
    NCH3: 2.39 (s)
    PhCH: 2.86 (m)
    NCH: 2.91 (m)
    NCH2: 3.40 (q)
    PhCH2N:
    4.39 (s)
    aromatic H's:
    6.50 (d),
    6.97 (d),
    7.47 (d),
    7.60 (d)
    18 NHCH2C6H4OH (4) H2 H (CDCl3) 5
    CH3: 0.96 (d)
    C≡CH: 2.24 (m)
    PhCH: 2.27 (m)
    NCH3: 2.42 (s)
    PhCH: 2.86 (m)
    NCH: 2.91 (m)
    NCH2: 3.43 (q)
    PhCH2N:
    4.21 (s)
    aromatic H's:
    6.57 (d),
    6.80 (d),
    6.97 (d),
    7.23 (d)
    19 NHCH2C6H4OH (3) H2 H (CDCl3) 5
    CH3: 0.95 (d)
    C≡CH: 2.23 (m)
    PhCH: 2.28 (m)
    NCH3: 2.41 (s)
    PhCH: 2.89 (m)
    NCH: 2.92 (m)
    NCH2: 3.42 (q)
    PhCH2N:
    4.26 (s)
    aromatic H's:
    6.53-7.20
  • TABLE B
    Figure US20140155355A1-20140605-C00023
    Ex
    # X R Q NMR (Solvent) Scheme
    1 H CH3 CH2C≡CH (CD3OD) 6
    CH3 (d) 1.40
    NCH3 (s) 3.30
    CH (m) 4.20
    NCH2 (m) 4.70
    C6H5: 7.33-7.44
    2 OCH2C6H5 CH3 CH2C≡CH (CD3OD) 6
    CH3: 1.34 (d)
    PhCH: 2.74 (t)
    NCH3: 3.25 (s)
    C≡CH: 3.30 (m)
    PhCH: 3.43 (d)
    CH: 4.07 (m)
    NCH2: 4.64 (m)
    PhCH2O: 5.08 (s)
    C6H4: 7.00, 7.21
    (dd), C6H5: 7.30-7.44
    3 OCH2C6H5 CH3 CH3 (CD3OD) 6
    CH3: 1.30 (d)
    PhCH: 2.67 (t)
    NCH3: 3.22 (s)
    C≡CH: 3.30 (m)
    PhCH: 3.40 (d)
    CH: 3.90 (m)
    NCH2: 4.51 (q)
    PhCH2O: 5.07 (s)
    C6H4: 7.99, 7.21 (dd)
    C6H5: 7.27-7.43
  • Tables I-Xb show representative examples of the compounds of the present invention. Each example in each table represents an individual species of the present invention.
  • TABLE I
    Figure US20140155355A1-20140605-C00024
    Ex. # X X1 R R1
     1 H H CH3 H
     2 H H H H
     3 H H CH3 CH3
     4 H H H CH3
     5 OH H CH3 H
     6 OH H H H
     7 OH H CH3 CH3
     8 OH H H CH3
     9 OCH3 H CH3 H
    10 OCH3 H H H
    11 OCH3 H CH3 CH3
    12 OCH3 H H CH3
    13 OCH2C6H5 H CH3 H
    14 OCH2C6H5 H H H
    15 OCH2C6H5 H CH3 CH3
    16 OCH2C6H5 H H CH3
    17 OCH2CH2C6H5 H CH3 H
    18 OCH2CH2C6H5 H H H
    19 OCH2CH2C6H5 H CH3 CH3
    20 OCH2CH2C6H5 H H CH3
    21 OCH2CH═CH2 H CH3 H
    22 OCH2CH═CH2 H H H
    23 OCH2CH═CH2 H CH3 CH3
    24 OCH2CH═CH2 H H CH3
    25 OCH2CONH2 H CH3 H
    26 OCH2CONH2 H H H
    27 OCH2CONH2 H CH3 CH3
    28 OCH2CONH2 H H CH3
    29 Cl H CH3 H
    30 Cl H H H
    31 Cl H CH3 CH3
    32 Cl H H CH3
    33 NO2 H CH3 H
    34 NO2 H H H
    35 NO2 H CH3 CH3
    36 NO2 H H CH3
    37 NH2 H CH3 H
    38 NH2 H H H
    39 NH2 H CH3 CH3
    40 NH2 H H CH3
    41 NHSO2CH3 H CH3 H
    42 NHSO2CH3 H H H
    43 NHSO2CH3 H CH3 CH3
    44 NHSO2CH3 H H CH3
    45 OH CH2N(CH3)2 CH3 H
    46 OH CH2N(CH3)2 H H
    47 OH CH2N(CH3)2 CH3 CH3
    48 OH CH2N(CH3)2 H CH3
    49 OH CH2N+(CH3)3Cl CH3 H
    50 OH CH2N+(CH3)3Cl H H
    51 OH CH2N+(CH3)3Cl CH3 CH3
    52 OH CH2N+(CH3)3Cl H CH3
    53 OCH3 CH2N(CH3)2 CH3 H
    54 OCH3 CH2N(CH3)2 H H
    55 OCH3 CH2N(CH3)2 CH3 CH3
    56 OCH3 CH2N(CH3)2 H CH3
    57 OCH3 CH2N+(CH3)3Cl CH3 H
    58 OCH3 CH2N+(CH3)3Cl H H
    59 OCH3 CH2N+(CH3)3Cl CH3 CH3
    60 OCH3 CH2N+(CH3)3Cl H CH3
  • TABLE II
    Figure US20140155355A1-20140605-C00025
    Ex. # X X1 R1
     1 H H CO2CH2CH3
     2 H H CO2H
     3 OH H CO2CH2CH3
     4 OH H CO2H
     5 OCH3 H CO2CH2CH3
     6 OCH3 H CO2H
     7 OCH2CH═CH2 H CO2CH2CH3
     8 OCH2CH═CH2 H CO2H
     9 OCH2C6H5 H CO2CH2CH3
     10 OCH2C6H5 H CO2H
     11 OCH2CH2C6H5 H CO2CH2CH3
     12 OCH2CH2C6H5 H CO2H
     13 OCH2CONH2 H CO2CH2CH3
     14 OCH2CONH2 H CO2H
     15 Cl H CO2CH2CH3
     16 Cl H CO2H
     17 NO2 H CO2CH2CH3
     18 NO2 H CO2H
     19 NH2 H CO2CH2CH3
     20 NH2 H CO2H
     21 NHSO2CH3 H CO2CH2CH3
     22 NHSO2CH3 H CO2H
     23 OH CH2N(CH3)2 CO2CH2CH3
     24 OH CH2N(CH3)2 CO2H
     25 OCH3 CH2N(CH3)2 CO2CH2CH3
     26 OCH3 CH2N(CH3)2 CO2H
     27 OCH2C6H5 CH2N(CH3)2 CO2CH2CH3
     28 OCH2C6H5 CH2N(CH3)2 CO2H
     29 OH CH2N+(CH3)3 Cl CO2CH2CH3
     30 OH CH2N+(CH3)3 Cl CO2H
     31 OCH3 CH2N+(CH3)3 Cl CO2CH2CH3
     32 OCH3 CH2N+(CH3)3 Cl CO2H
     33 OCH2C6H5 CH2N+(CH3)3 Cl CO2CH2CH3
     34 OCH2C6H5 CH2N+(CH3)3 Cl CO2H
     35 H H CH2CO2CH2CH3
     36 H H CH2CO2H
     37 OH H CH2CO2CH2CH3
     38 OH H CH2CO2H
     39 OCH3 H CH2CO2CH2CH3
     40 OCH3 H CH2CO2H
     41 OCH2CH═CH2 H CH2CO2CH2CH3
     42 OCH2CH═CH2 H CH2CO2H
     43 OCH2C6H5 H CH2CO2CH2CH3
     44 OCH2C6H5 H CH2CO2H
     45 OCH2CH2C6H5 H CH2CO2CH2CH3
     46 OCH2CH2C6H5 H CH2CO2H
     47 OCH2CONH2 H CH2CO2CH2CH3
     48 OCH2CONH2 H CH2CO2H
     49 Cl H CH2CO2CH2CH3
     50 Cl H CH2CO2H
     51 NO2 H CH2CO2CH2CH3
     52 NO2 H CH2CO2H
     53 NH2 H CH2CO2CH2CH3
     54 NH2 H CH2CO2H
     55 NHSO2CH3 H CH2CO2CH2CH3
     56 NHSO2CH3 H CH2CO2H
     57 OH CH2N(CH3)2 CH2CO2CH2CH3
     58 OH CH2N(CH3)2 CH2CO2H
     59 OCH3 CH2N(CH3)2 CH2CO2CH2CH3
     60 OCH3 CH2N(CH3)2 CH2CO2H
     61 OCH2C6H5 CH2N(CH3)2 CH2CO2CH2CH3
     62 OCH2C6H5 CH2N(CH3)2 CH2CO2H
     63 OH CH2N+(CH3)3 Cl CH2CO2CH2CH3
     64 OH CH2N+(CH3)3 Cl CH2CO2H
     65 OCH3 CH2N+(CH3)3 Cl CH2CO2CH2CH3
     66 OCH3 CH2N+(CH3)3 Cl CH2CO2H
     67 OCH2C6H5 CH2N+(CH3)3 Cl CH2CO2CH2CH3
     68 OCH2C6H5 CH2N+(CH3)3 Cl CH2CO2H
     69 H H CH2CH2CO2CH2CH3
     70 H H CH2CH2CO2H
     71 OH H CH2CH2CO2CH2CH3
     72 OH H CH2CH2CO2H
     73 OCH3 H CH2CH2CO2CH2CH3
     74 OCH3 H CH2CH2CO2H
     75 OCH2CH═CH2 H CH2CH2CO2CH2CH3
     76 OCH2CH═CH2 H CH2CH2CO2H
     77 OCH2C6H5 H CH2CH2CO2CH2CH3
     78 OCH2C6H5 H CH2CH2CO2H
     79 OCH2CH2C6H5 H CH2CH2CO2CH2CH3
     80 OCH2CH2C6H5 H CH2CH2CO2H
     81 OCH2CONH2 H CH2CH2CO2CH2CH3
     82 OCH2CONH2 H CH2CH2CO2H
     83 Cl H CH2CH2CO2CH2CH3
     84 Cl H CH2CH2CO2H
     85 NO2 H CH2CH2CO2CH2CH3
     86 NO2 H CH2CH2CO2H
     87 NH2 H CH2CH2CO2CH2CH3
     88 NH2 H CH2CH2CO2H
     89 NHSO2CH3 H CH2CH2CO2CH2CH3
     90 NHSO2CH3 H CH2CH2CO2H
     91 OH CH2N(CH3)2 CH2CH2CO2CH2CH3
     92 OH CH2N(CH3)2 CH2CH2CO2H
     93 OCH3 CH2N(CH3)2 CH2CH2CO2CH2CH3
     94 OCH3 CH2N(CH3)2 CH2CH2CO2H
     95 OCH2C6H5 CH2N(CH3)2 CH2CH2CO2CH2CH3
     96 OCH2C6H5 CH2N(CH3)2 CH2CH2CO2H
     97 OH CH2N+(CH3)3 Cl CH2CH2CO2CH2CH3
     98 OH CH2N+(CH3)3 Cl CH2CH2CO2H
     99 OCH3 CH2N+(CH3)3 Cl CH2CH2CO2CH2CH3
    100 OCH3 CH2N+(CH3)3 Cl CH2CH2CO2H
    101 OCH2C6H5 CH2N+(CH3)3 Cl CH2CH2CO2CH2CH3
    102 OCH2C6H5 CH2N+(CH3)3 Cl CH2CH2CO2H
    103 H H CH2CH═CHCO2CH2CH3
    104 H H CH2CH═CHCO2H
    105 OH H CH2CH═CHCO2CH2CH3
    106 OH H CH2CH═CHCO2H
    107 OCH3 H CH2CH═CHCO2CH2CH3
    108 OCH3 H CH2CH═CHCO2H
    109 OCH2CH═CH2 H CH2CH═CHCO2CH2CH3
    110 OCH2CH═CH2 H CH2CH═CHCO2H
    111 OCH2C6H5 H CH2CH═CHCO2CH2CH3
    112 OCH2C6H5 H CH2CH═CHCO2H
    113 OCH2CH2C6H5 H CH2CH═CHCO2CH2CH3
    114 OCH2CH2C6H5 H CH2CH═CHCO2H
    115 OCH2CONH2 H CH2CH═CHCO2CH2CH3
    116 OCH2CONH2 H CH2CH═CHCO2H
    117 Cl H CH2CH═CHCO2CH2CH3
    118 Cl H CH2CH═CHCO2H
    119 NO2 H CH2CH═CHCO2CH2CH3
    120 NO2 H CH2CH═CHCO2H
    121 NH2 H CH2CH═CHCO2CH2CH3
    122 NH2 H CH2CH═CHCO2H
    123 NHSO2CH3 H CH2CH═CHCO2CH2CH3
    124 NHSO2CH3 H CH2CH═CHCO2H
    125 OH CH2N(CH3)2 CH2CH═CHCO2CH2CH3
    126 OH CH2N(CH3)2 CH2CH═CHCO2H
    127 OCH3 CH2N(CH3)2 CH2CH═CHCO2CH2CH3
    128 OCH3 CH2N(CH3)2 CH2CH═CHCO2H
    129 OCH2C6H5 CH2N(CH3)2 CH2CH═CHCO2CH2CH3
    130 OCH2C6H5 CH2N(CH3)2 CH2CH═CHCO2H
    131 OH CH2N+(CH3)3 Cl CH2CH═CHCO2CH2CH3
    132 OH CH2N+(CH3)3 Cl CH2CH═CHCO2H
    133 OCH3 CH2N+(CH3)3 Cl CH2CH═CHCO2CH2CH3
    134 OCH3 CH2N+(CH3)3 Cl CH2CH═CHCO2H
    135 OCH2C6H5 CH2N+(CH3)3 Cl CH2CH═CHCO2CH2CH3
    136 OCH2C6H5 CH2N+(CH3)3 Cl CH2CH═CHCO2H
    137 H H CH2CH2PO(OCH2CH3)2
    138 H H CH2CH2PO(OH)2
    139 OH H CH2CH2PO(OCH2CH3)2
    140 OH H CH2CH2PO(OH)2
    141 OCH3 H CH2CH2PO(OCH2CH3)2
    142 OCH3 H CH2CH2PO(OH)2
    143 OCH2CH═CH2 H CH2CH2PO(OCH2CH3)2
    144 OCH2CH═CH2 H CH2CH2PO(OH)2
    145 OCH2C6H5 H CH2CH2PO(OCH2CH3)2
    146 OCH2C6H5 H CH2CH2PO(OH)2
    147 OCH2CH2C6H5 H CH2CH2PO(OCH2CH3)2
    148 OCH2CH2C6H5 H CH2CH2PO(OH)2
    149 OCH2CONH2 H CH2CH2PO(OCH2CH3)2
    150 OCH2CONH2 H CH2CH2PO(OH)2
    151 Cl H CH2CH2PO(OCH2CH3)2
    152 Cl H CH2CH2PO(OH)2
    153 NO2 H CH2CH2PO(OCH2CH3)2
    154 NO2 H CH2CH2PO(OH)2
    155 NH2 H CH2CH2PO(OCH2CH3)2
    156 NH2 H CH2CH2PO(OH)2
    157 NHSO2CH3 H CH2CH2PO(OCH2CH3)2
    158 NHSO2CH3 H CH2CH2PO(OH)2
    159 OH CH2N(CH3)2 CH2CH2PO(OCH2CH3)2
    160 OH CH2N(CH3)2 CH2CH2PO(OH)2
    161 OCH3 CH2N(CH3)2 CH2CH2PO(OCH2CH3)2
    162 OCH3 CH2N(CH3)2 CH2CH2PO(OH)2
    163 OCH2C6H5 CH2N(CH3)2 CH2CH2PO(OCH2CH3)2
    164 OCH2C6H5 CH2N(CH3)2 CH2CH2PO(OH)2
    165 OH CH2N+(CH3)3 Cl CH2CH2PO(OCH2CH3)2
    166 OH CH2N+(CH3)3 Cl CH2CH2PO(OH)2
    167 OCH3 CH2N+(CH3)3 Cl CH2CH2PO(OCH2CH3)2
    168 OCH3 CH2N+(CH3)3 Cl CH2CH2PO(OH)2
    169 OCH2C6H5 CH2N+(CH3)3 Cl CH2CH2PO(OCH2CH3)2
    170 OCH2C6H5 CH2N+(CH3)3 Cl CH2CH2PO(OH)2
  • TABLE IIIa
    Figure US20140155355A1-20140605-C00026
    Ex. # X X1 Z1 R1
     1 H H CH2CO2CH2CH3 H
     2 H H CH2CO2H H
     3 H H CH2CO2CH2CH3 CH3
     4 H H CH2CO2H CH3
     5 OH H CH2CO2CH2CH3 H
     6 OH H CH2CO2H H
     7 OH H CH2CO2CH2CH3 CH3
     8 OH H CH2CO2H CH3
     9 OCH3 H CH2CO2CH2CH3 H
     10 OCH3 H CH2CO2H H
     11 OCH3 H CH2CO2CH2CH3 CH3
     12 OCH3 H CH2CO2H CH3
     13 OCH2C6H5 H CH2CO2CH2CH3 H
     14 OCH2C6H5 H CH2CO2H H
     15 OCH2C6H5 H CH2CO2CH2CH3 CH3
     16 OCH2C6H5 H CH2CO2H CH3
     17 OCH2CH2C6H5 H CH2CO2CH2CH3 H
     18 OCH2CH2C6H5 H CH2CO2H H
     19 OCH2CH2C6H5 H CH2CO2CH2CH3 CH3
     20 OCH2CH2C6H5 H CH2CO2H CH3
     21 OCH2CH═CH2 H CH2CO2CH2CH3 H
     22 OCH2CH═CH2 H CH2CO2H H
     23 OCH2CH═CH2 H CH2CO2CH2CH3 CH3
     24 OCH2CH═CH2 H CH2CO2H CH3
     25 OCH2CONH2 H CH2CO2CH2CH3 H
     26 OCH2CONH2 H CH2CO2H H
     27 OCH2CONH2 H CH2CO2CH2CH3 CH3
     28 OCH2CONH2 H CH2CO2H CH3
     29 Cl H CH2CO2CH2CH3 H
     30 Cl H CH2CO2H H
     31 Cl H CH2CO2CH2CH3 CH3
     32 Cl H CH2CO2H CH3
     33 NO2 H CH2CO2CH2CH3 H
     34 NO2 H CH2CO2H H
     35 NO2 H CH2CO2CH2CH3 CH3
     36 NO2 H CH2CO2H CH3
     37 NH2 H CH2CO2CH2CH3 H
     38 NH2 H CH2CO2H H
     39 NH2 H CH2CO2CH2CH3 CH3
     40 NH2 H CH2CO2H CH3
     41 NHSO2CH3 H CH2CO2CH2CH3 H
     42 NHSO2CH3 H CH2CO2H H
     43 NHSO2CH3 H CH2CO2CH2CH3 CH3
     44 NHSO2CH3 H CH2CO2H CH3
     45 OH CH2N(CH3)2 CH2CO2CH2CH3 H
     46 OH CH2N(CH3)2 CH2CO2H H
     47 OH CH2N(CH3)2 CH2CO2CH2CH3 CH3
     48 OH CH2N(CH3)2 CH2CO2H CH3
     49 OH CH2N+(CH3)3Cl CH2CO2CH2CH3 H
     50 OH CH2N+(CH3)3Cl CH2CO2H H
     51 OH CH2N+(CH3)3Cl CH2CO2CH2CH3 CH3
     52 OH CH2N+(CH3)3Cl CH2CO2H CH3
     53 OCH3 CH2N(CH3)2 CH2CO2CH2CH3 H
     54 OCH3 CH2N(CH3)2 CH2CO2H H
     55 OCH3 CH2N(CH3)2 CH2CO2CH2CH3 CH3
     56 OCH3 CH2N(CH3)2 CH2CO2H CH3
     57 OCH3 CH2N+(CH3)3Cl CH2CO2CH2CH3 H
     58 OCH3 CH2N+(CH3)3Cl CH2CO2H H
     59 OCH3 CH2N+(CH3)3Cl CH2CO2CH2CH3 CH3
     60 OCH3 CH2N+(CH3)3Cl CH2CO2H CH3
     61 H H CH2CH2CO2CH2CH3 H
     62 H H CH2CH2CO2H H
     63 H H CH2CH2CO2CH2CH3 CH3
     64 H H CH2CH2CO2H CH3
     65 OH H CH2CH2CO2CH2CH3 H
     66 OH H CH2CH2CO2H H
     67 OH H CH2CH2CO2CH2CH3 CH3
     68 OH H CH2CH2CO2H CH3
     69 OCH3 H CH2CH2CO2CH2CH3 H
     70 OCH3 H CH2CH2CO2H H
     71 OCH3 H CH2CH2CO2CH2CH3 CH3
     72 OCH3 H CH2CH2CO2H CH3
     73 OCH2C6H5 H CH2CH2CO2CH2CH3 H
     74 OCH2C6H5 H CH2CH2CO2H H
     75 OCH2C6H5 H CH2CH2CO2CH2CH3 CH3
     76 OCH2C6H5 H CH2CH2CO2H CH3
     77 OCH2CH2C6H5 H CH2CH2CO2CH2CH3 H
     78 OCH2CH2C6H5 H CH2CH2CO2H H
     79 OCH2CH2C6H5 H CH2CH2CO2CH2CH3 CH3
     80 OCH2CH2C6H5 H CH2CH2CO2H CH3
     81 OCH2CH═CH2 H CH2CH2CO2CH2CH3 H
     82 OCH2CH═CH2 H CH2CH2CO2H H
     83 OCH2CH═CH2 H CH2CH2CO2CH2CH3 CH3
     84 OCH2CH═CH2 H CH2CH2CO2H CH3
     85 OCH2CONH2 H CH2CH2CO2CH2CH3 H
     86 OCH2CONH2 H CH2CH2CO2H H
     87 OCH2CONH2 H CH2CH2CO2CH2CH3 CH3
     88 OCH2CONH2 H CH2CH2CO2H CH3
     89 Cl H CH2CH2CO2CH2CH3 H
     90 Cl H CH2CH2CO2H H
     91 Cl H CH2CH2CO2CH2CH3 CH3
     92 Cl H CH2CH2CO2H CH3
     93 NO2 H CH2CH2CO2CH2CH3 H
     94 NO2 H CH2CH2CO2H H
     95 NO2 H CH2CH2CO2CH2CH3 CH3
     96 NO2 H CH2CH2CO2H CH3
     97 NH2 H CH2CH2CO2CH2CH3 H
     98 NH2 H CH2CH2CO2H H
     99 NH2 H CH2CH2CO2CH2CH3 CH3
    100 NH2 H CH2CH2CO2H CH3
    101 NHSO2CH3 H CH2CH2CO2CH2CH3 H
    102 NHSO2CH3 H CH2CH2CO2H H
    103 NHSO2CH3 H CH2CH2CO2CH2CH3 CH3
    104 NHSO2CH3 H CH2CH2CO2H CH3
    105 OH CH2N(CH3)2 CH2CH2CO2CH2CH3 H
    106 OH CH2N(CH3)2 CH2CH2CO2H H
    107 OH CH2N(CH3)2 CH2CH2CO2CH2CH3 CH3
    108 OH CH2N(CH3)2 CH2CH2CO2H CH3
    109 OH CH2N+(CH3)3Cl CH2CH2CO2CH2CH3 H
    110 OH CH2N+(CH3)3Cl CH2CH2CO2H H
    111 OH CH2N+(CH3)3Cl CH2CH2CO2CH2CH3 CH3
    112 OH CH2N+(CH3)3Cl CH2CH2CO2H CH3
    113 OCH3 CH2N(CH3)2 CH2CH2CO2CH2CH3 H
    114 OCH3 CH2N(CH3)2 CH2CH2CO2H H
    115 OCH3 CH2N(CH3)2 CH2CH2CO2CH2CH3 CH3
    116 OCH3 CH2N(CH3)2 CH2CH2CO2H CH3
    117 OCH3 CH2N+(CH3)3Cl CH2CH2CO2CH2CH3 H
    1118  OCH3 CH2N+(CH3)3Cl CH2CH2CO2H H
    119 OCH3 CH2N+(CH3)3Cl CH2CH2CO2CH2CH3 CH3
    120 OCH3 CH2N+(CH3)3Cl CH2CH2CO2H CH3
    121 H H CH2CH2PO—(OCH2CH3)2 H
    122 H H CH2CH2PO—(OH)2 H
    123 H H CH2CH2PO—(OCH2CH3)2 CH3
    124 H H CH2CH2PO—(OH)2 CH3
    125 OH H CH2CH2PO—(OCH2CH3)2 H
    126 OH H CH2CH2PO—(OH)2 H
    127 OH H CH2CH2PO—(OCH2CH3)2 CH3
    128 OH H CH2CH2PO—(OH)2 CH3
    129 OCH3 H CH2CH2PO—(OCH2CH3)2 H
    130 OCH3 H CH2CH2PO—(OH)2 H
    131 OCH3 H CH2CH2PO—(OCH2CH3)2 CH3
    132 OCH3 H CH2CH2PO—(OH)2 CH3
    133 OCH2C6H5 H CH2CH2PO—(OCH2CH3)2 H
    134 OCH2C6H5 H CH2CH2PO—(OH)2 H
    135 OCH2C6H5 H CH2CH2PO—(OCH2CH3)2 CH3
    136 OCH2C6H5 H CH2CH2PO—(OH)2 CH3
    137 OCH2CH2C6H5 H CH2CH2PO—(OCH2CH3)2 H
    138 OCH2CH2C6H5 H CH2CH2PO—(OH)2 H
    139 OCH2CH2C6H5 H CH2CH2PO—(OCH2CH3)2 CH3
    140 OCH2CH2C6H5 H CH2CH2PO—(OH)2 CH3
    141 OCH2CH═CH2 H CH2CH2PO—(OCH2CH3)2 H
    142 OCH2CH═CH2 H CH2CH2PO—(OH)2 H
    143 OCH2CH═CH2 H CH2CH2PO—(OCH2CH3)2 CH3
    144 OCH2CH═CH2 H CH2CH2PO—(OH)2 CH3
    145 OCH2CONH2 H CH2CH2PO—(OCH2CH3)2 H
    146 OCH2CONH2 H CH2CH2PO—(OH)2 H
    147 OCH2CONH2 H CH2CH2PO—(OCH2CH3)2 CH3
    148 OCH2CONH2 H CH2CH2PO—(OH)2 CH3
    149 Cl H CH2CH2PO—(OCH2CH3)2 H
    150 Cl H CH2CH2PO—(OH)2 H
    151 Cl H CH2CH2PO—(OCH2CH3)2 CH3
    152 Cl H CH2CH2PO—(OH)2 CH3
    153 NO2 H CH2CH2PO—(OCH2CH3)2 H
    154 NO2 H CH2CH2PO—(OH)2 H
    155 NO2 H CH2CH2PO—(OCH2CH3)2 CH3
    156 NO2 H CH2CH2PO—(OH)2 CH3
    157 NH2 H CH2CH2PO—(OCH2CH3)2 H
    158 NH2 H CH2CH2PO—(OH)2 H
    159 NH2 H CH2CH2PO—(OCH2CH3)2 CH3
    160 NH2 H CH2CH2PO—(OH)2 CH3
    161 NHSO2CH3 H CH2CH2PO—(OCH2CH3)2 H
    162 NHSO2CH3 H CH2CH2PO—(OH)2 H
    163 NHSO2CH3 H CH2CH2PO—(OCH2CH3)2 CH3
    164 NHSO2CH3 H CH2CH2PO—(OH)2 CH3
    165 OH CH2N(CH3)2 CH2CH2PO—(OCH2CH3)2 H
    166 OH CH2N(CH3)2 CH2CH2PO—(OH)2 H
    167 OH CH2N(CH3)2 CH2CH2PO—(OCH2CH3)2 CH3
    168 OH CH2N(CH3)2 CH2CH2PO—(OH)2 CH3
    169 OH CH2N+(CH3)3Cl CH2CH2PO—(OCH2CH3)2 H
    170 OH CH2N+(CH3)3Cl CH2CH2PO—(OH)2 H
    171 OH CH2N+(CH3)3Cl CH2CH2PO—(OCH2CH3)2 CH3
    172 OH CH2N+(CH3)3Cl CH2CH2PO—(OH)2 CH3
    173 OCH3 CH2N(CH3)2 CH2CH2PO—(OCH2CH3)2 H
    174 OCH3 CH2N(CH3)2 CH2CH2PO—(OH)2 H
    175 OCH3 CH2N(CH3)2 CH2CH2PO—(OCH2CH3)2 CH3
    176 OCH3 CH2N(CH3)2 CH2CH2PO—(OH)2 CH3
    177 OCH3 CH2N+(CH3)3Cl CH2CH2PO—(OCH2CH3)2 H
    178 OCH3 CH2N+(CH3)3Cl CH2CH2PO—(OH)2 H
    179 OCH3 CH2N+(CH3)3Cl CH2CH2PO—(OCH2CH3)2 CH3
    180 OCH3 CH2N+(CH3)3Cl CH2CH2PO—(OH)2 CH3
    181 H H CH2CH2CONH—CH(OH)CO2H H
    182 H H CH2CH2CONH—CH(OH)CO2H CH3
    183 OH H CH2CH2CONH—CH(OH)CO2H H
    184 OH H CH2CH2CONH—CH(OH)CO2H CH3
    185 OCH3 H CH2CH2CONH—CH(OH)CO2H H
    186 OCH3 H CH2CH2CONH—CH(OH)CO2H CH3
    187 OCH2C6H5 H CH2CH2CONH—CH(OH)CO2H H
    188 OCH2C6H5 H CH2CH2CONH—CH(OH)CO2H CH3
    189 OCH2CH2C6H5 H CH2CH2CONH—CH(OH)CO2H H
    190 OCH2CH2C6H5 H CH2CH2CONH—CH(OH)CO2H CH3
    191 OCH2CH═CH2 H CH2CH2CONH—CH(OH)CO2H H
    192 OCH2CH═CH2 H CH2CH2CONH—CH(OH)CO2H CH3
    193 OCH2CONH2 H CH2CH2CONH—CH(OH)CO2H H
    194 OCH2CONH2 H CH2CH2CONH—CH(OH)CO2H CH3
    195 Cl H CH2CH2CONH—CH(OH)CO2H H
    196 Cl H CH2CH2CONH—CH(OH)CO2H CH3
    197 NO2 H CH2CH2CONH—CH(OH)CO2H H
    198 NO2 H CH2CH2CONH—CH(OH)CO2H CH3
    199 NH2 H CH2CH2CONH—CH(OH)CO2H H
    200 NH2 H CH2CH2CONH—CH(OH)CO2H CH3
    201 NHSO2CH3 H CH2CH2CONH—CH(OH)CO2H H
    202 NHSO2CH3 H CH2CH2CONH—CH(OH)CO2H CH3
    203 OH CH2N(CH3)2 CH2CH2CONH—CH(OH)CO2H H
    204 OH CH2N(CH3)2 CH2CH2CONH—CH(OH)CO2H CH3
    205 OH CH2N+(CH3)3Cl CH2CH2CONH—CH(OH)CO2H H
    206 OH CH2N+(CH3)3Cl CH2CH2CONH—CH(OH)CO2H CH3
    207 OCH3 CH2N(CH3)2 CH2CH2CONH—CH(OH)CO2H H
    208 OCH3 CH2N(CH3)2 CH2CH2CONH—CH(OH)CO2H CH3
    209 OCH3 CH2N+(CH3)3Cl CH2CH2CONH—CH(OH)CO2H H
    210 OCH3 CH2N+(CH3)3Cl CH2CH2CONH—CH(OH)CO2H CH3
    211 H H CH2CH2CONH—C(CH3)2CH2SO3H H
    212 H H CH2CH2CONH—C(CH3)2CH2SO3H CH3
    213 OH H CH2CH2CONH—C(CH3)2CH2SO3H H
    214 OH H CH2CH2CONH—C(CH3)2CH2SO3H CH3
    215 OCH3 H CH2CH2CONH—C(CH3)2CH2SO3H H
    216 OCH3 H CH2CH2CONH—C(CH3)2CH2SO3H CH3
    217 OCH2C6H5 H CH2CH2CONH—C(CH3)2CH2SO3H H
    218 OCH2C6H5 H CH2CH2CONH—C(CH3)2CH2SO3H CH3
    219 OCH2CH2C6H5 H CH2CH2CONH—C(CH3)2CH2SO3H H
    220 OCH2CH2C6H5 H CH2CH2CONH—C(CH3)2CH2SO3H CH3
    221 OCH2CH═CH2 H CH2CH2CONH—C(CH3)2CH2SO3H H
    222 OCH2CH═CH2 H CH2CH2CONH—C(CH3)2CH2SO3H CH3
    223 OCH2CONH2 H CH2CH2CONH—C(CH3)2CH2SO3H H
    224 OCH2CONH2 H CH2CH2CONH—C(CH3)2CH2SO3H CH3
    225 Cl H CH2CH2CONH—C(CH3)2CH2SO3H H
    226 Cl H CH2CH2CONH—C(CH3)2CH2SO3H CH3
    227 NO2 H CH2CH2CONH—C(CH3)2CH2SO3H H
    228 NO2 H CH2CH2CONH—C(CH3)2CH2SO3H CH3
    229 NH2 H CH2CH2CONH—C(CH3)2CH2SO3H H
    230 NH2 H CH2CH2CONH—C(CH3)2CH2SO3H CH3
    231 NHSO2CH3 H CH2CH2CONH—C(CH3)2CH2SO3H H
    232 NHSO2CH3 H CH2CH2CONH—C(CH3)2CH2SO3H CH3
    233 OH CH2N(CH3)2 CH2CH2CONH—C(CH3)2CH2SO3H H
    234 OH CH2N(CH3)2 CH2CH2CONH—C(CH3)2CH2SO3H CH3
    235 OH CH2N+(CH3)3Cl CH2CH2CONH—C(CH3)2CH2SO3H H
    236 OH CH2N+(CH3)3Cl CH2CH2CONH—C(CH3)2CH2SO3H CH3
    237 OCH3 CH2N(CH3)2 CH2CH2CONH—C(CH3)2CH2SO3H H
    238 OCH3 CH2N(CH3)2 CH2CH2CONH—C(CH3)2CH2SO3H CH3
    239 OCH3 CH2N+(CH3)3Cl CH2CH2CONH—C(CH3)2CH2SO3H H
    240 OCH3 CH2N+(CH3)3Cl CH2CH2CONH—C(CH3)2CH2SO3H CH3
    241 H H CH2-tetrazole H
    242 OH H CH2-tetrazole H
    243 OCH3 H CH2-tetrazole H
    244 OCH2C6H5 H CH2-tetrazole H
    245 Cl H CH2-tetrazole H
    246 CH3 H CH2-tetrazole H
    247 H H CH2-tetrazole CH3
    248 OH H CH2-tetrazole CH3
    249 OCH3 H CH2-tetrazole CH3
    250 OCH2C6H5 H CH2-tetrazole CH3
    251 Cl H CH2-tetrazole CH3
    252 CH3 H CH2-tetrazole CH3
  • TABLE IIIb
    Figure US20140155355A1-20140605-C00027
    Ex. # X X1 Z1 R1
    1 H H CH2CO2CH2CH3 H
    2 H H CH2CO2H H
    3 H H CH2CO2CH2CH3 CH3
    4 H H CH2CO2H CH3
    5 OH H CH2CO2CH2CH3 H
    6 OH H CH2CO2H H
    7 OH H CH2CO2CH2CH3 CH3
    8 OH H CH2CO2H CH3
    9 OCH3 H CH2CO2CH2CH3 H
    10 OCH3 H CH2CO2H H
    11 OCH3 H CH2CO2CH2CH3 CH3
    12 OCH3 H CH2CO2H CH3
    13 OCH2C6H5 H CH2CO2CH2CH3 H
    14 OCH2C6H5 H CH2CO2H H
    15 OCH2C6H5 H CH2CO2CH2CH3 CH3
    16 OCH2C6H5 H CH2CO2H CH3
    17 OCH2CH2C6H5 H CH2CO2CH2CH3 H
    18 OCH2CH2C6H5 H CH2CO2H H
    19 OCH2CH2C6H5 H CH2CO2CH2CH3 CH3
    20 OCH2CH2C6H5 H CH2CO2H CH3
    21 OCH2CH═CH2 H CH2CO2CH2CH3 H
    22 OCH2CH═CH2 H CH2CO2H H
    23 OCH2CH═CH2 H CH2CO2CH2CH3 CH3
    24 OCH2CH═CH2 H CH2CO2H CH3
    25 OCH2CONH2 H CH2CO2CH2CH3 H
    26 OCH2CONH2 H CH2CO2H H
    27 OCH2CONH2 H CH2CO2CH2CH3 CH3
    28 OCH2CONH2 H CH2CO2H CH3
    29 Cl H CH2CO2CH2CH3 H
    30 Cl H CH2CO2H H
    31 Cl H CH2CO2CH2CH3 CH3
    32 Cl H CH2CO2H CH3
    33 NO2 H CH2CO2CH2CH3 H
    34 NO2 H CH2CO2H H
    35 NO2 H CH2CO2CH2CH3 CH3
    36 NO2 H CH2CO2H CH3
    37 H H CH2CH2CO2CH2CH3 H
    38 H H CH2CH2CO2H H
    39 H H CH2CH2CO2CH2CH3 CH3
    40 H H CH2CH2CO2H CH3
    41 OH H CH2CH2CO2CH2CH3 H
    42 OH H CH2CH2CO2H H
    43 OH H CH2CH2CO2CH2CH3 CH3
    44 OH H CH2CH2CO2H CH3
    45 OCH3 H CH2CH2CO2CH2CH3 H
    46 OCH3 H CH2CH2CO2H H
    47 OCH3 H CH2CH2CO2CH2CH3 CH3
    48 OCH3 H CH2CH2CO2H CH3
    49 OCH2C6H5 H CH2CH2CO2CH2CH3 H
    50 OCH2C6H5 H CH2CH2CO2H H
    51 OCH2C6H5 H CH2CH2CO2CH2CH3 CH3
    52 OCH2C6H5 H CH2CH2CO2H CH3
    53 OCH2CH2C6H5 H CH2CH2CO2CH2CH3 H
    54 OCH2CH2C6H5 H CH2CH2CO2H H
    55 OCH2CH2C6H5 H CH2CH2CO2CH2CH3 CH3
    56 OCH2CH2C6H5 H CH2CH2CO2H CH3
    57 OCH2CH═CH2 H CH2CH2CO2CH2CH3 H
    58 OCH2CH═CH2 H CH2CH2CO2H H
    59 OCH2CH═CH2 H CH2CH2CO2CH2CH3 CH3
    60 OCH2CH═CH2 H CH2CH2CO2H CH3
    61 OCH2CONH2 H CH2CH2CO2CH2CH3 H
    62 OCH2CONH2 H CH2CH2CO2H H
    63 OCH2CONH2 H CH2CH2CO2CH2CH3 CH3
    64 OCH2CONH2 H CH2CH2CO2H CH3
    65 Cl H CH2CH2CO2CH2CH3 H
    66 Cl H CH2CH2CO2H H
    67 Cl H CH2CH2CO2CH2CH3 CH3
    68 Cl H CH2CH2CO2H CH3
    69 NO2 H CH2CH2CO2CH2CH3 H
    70 NO2 H CH2CH2CO2H H
    71 NO2 H CH2CH2CO2CH2CH3 CH3
    72 NO2 H CH2CH2CO2H CH3
    73 H H CH2CH2PO—(OCH2CH3)2 H
    74 H H CH2CH2PO—(OH)2 H
    75 H H CH2CH2PO—(OCH2CH3)2 CH3
    76 H H CH2CH2PO—(OH)2 CH3
    77 OH H CH2CH2PO—(OCH2CH3)2 H
    78 OH H CH2CH2PO—(OH)2 H
    79 OH H CH2CH2PO—(OCH2CH3)2 CH3
    80 OH H CH2CH2PO—(OH)2 CH3
    81 OCH3 H CH2CH2PO—(OCH2CH3)2 H
    82 OCH3 H CH2CH2PO—(OH)2 H
    83 OCH3 H CH2CH2PO—(OCH2CH3)2 CH3
    84 OCH3 H CH2CH2PO—(OH)2 CH3
    85 OCH2C6H5 H CH2CH2PO—(OCH2CH3)2 H
    86 OCH2C6H5 H CH2CH2PO—(OH)2 H
    87 OCH2C6H5 H CH2CH2PO—(OCH2CH3)2 CH3
    88 OCH2C6H5 H CH2CH2PO—(OH)2 CH3
    89 OCH2CH2C6H5 H CH2CH2PO—(OCH2CH3)2 H
    90 OCH2CH2C6H5 H CH2CH2PO—(OH)2 H
    91 OCH2CH2C6H5 H CH2CH2PO—(OCH2CH3)2 CH3
    92 OCH2CH2C6H5 H CH2CH2PO—(OH)2 CH3
    93 OCH2CH═CH2 H CH2CH2PO—(OCH2CH3)2 H
    94 OCH2CH═CH2 H CH2CH2PO—(OH)2 H
    95 OCH2CH═CH2 H CH2CH2PO—(OCH2CH3)2 CH3
    96 OCH2CH═CH2 H CH2CH2PO—(OH)2 CH3
    97 OCH2CONH2 H CH2CH2PO—(OCH2CH3)2 H
    98 OCH2CONH2 H CH2CH2PO—(OH)2 H
    99 OCH2CONH2 H CH2CH2PO—(OCH2CH3)2 CH3
    100 OCH2CONH2 H CH2CH2PO—(OH)2 CH3
    101 Cl H CH2CH2PO—(OCH2CH3)2 H
    102 Cl H CH2CH2PO—(OH)2 H
    103 Cl H CH2CH2PO—(OCH2CH3)2 CH3
    104 Cl H CH2CH2PO—(OH)2 CH3
    105 NO2 H CH2CH2PO—(OCH2CH3)2 H
    106 NO2 H CH2CH2PO—(OH)2 H
    107 NO2 H CH2CH2PO—(OCH2CH3)2 CH3
    108 NO2 H CH2CH2PO—(OH)2 CH3
    109 H H CH2CH2CONH—CH(OH)CO2H H
    110 H H CH2CH2CONH—CH(OH)CO2H CH3
    111 OH H CH2CH2CONH—CH(OH)CO2H H
    112 OH H CH2CH2CONH—CH(OH)CO2H CH3
    113 OCH3 H CH2CH2CONH—CH(OH)CO2H H
    114 OCH3 H CH2CH2CONH—CH(OH)CO2H CH3
    115 OCH2C6H5 H CH2CH2CONH—CH(OH)CO2H H
    116 OCH2C6H5 H CH2CH2CONH—CH(OH)CO2H CH3
    117 OCH2CH2C6H5 H CH2CH2CONH—CH(OH)CO2H H
    118 OCH2CH2C6H5 H CH2CH2CONH—CH(OH)CO2H CH3
    119 OCH2CH═CH2 H CH2CH2CONH—CH(OH)CO2H H
    120 OCH2CH═CH2 H CH2CH2CONH—CH(OH)CO2H CH3
    121 OCH2CONH2 H CH2CH2CONH—CH(OH)CO2H H
    122 OCH2CONH2 H CH2CH2CONH—CH(OH)CO2H CH3
    123 Cl H CH2CH2CONH—CH(OH)CO2H H
    124 Cl H CH2CH2CONH—CH(OH)CO2H CH3
    125 NO2 H CH2CH2CONH—CH(OH)CO2H H
    126 NO2 H CH2CH2CONH—CH(OH)CO2H CH3
    127 H H CH2CH2CONH—C(CH3)2CH2SO3H H
    128 H H CH2CH2CONH—C(CH3)2CH2SO3H CH3
    129 OH H CH2CH2CONH—C(CH3)2CH2SO3H H
    130 OH H CH2CH2CONH—C(CH3)2CH2SO3H CH3
    131 OCH3 H CH2CH2CONH—C(CH3)2CH2SO3H H
    132 OCH3 H CH2CH2CONH—C(CH3)2CH2SO3H CH3
    133 OCH2C6H5 H CH2CH2CONH—C(CH3)2CH2SO3H H
    134 OCH2C6H5 H CH2CH2CONH—C(CH3)2CH2SO3H CH3
    135 OCH2CH2C6H5 H CH2CH2CONH—C(CH3)2CH2SO3H H
    136 OCH2CH2C6H5 H CH2CH2CONH—C(CH3)2CH2SO3H CH3
    137 OCH2CH═CH2 H CH2CH2CONH—C(CH3)2CH2SO3H H
    138 OCH2CH═CH2 H CH2CH2CONH—C(CH3)2CH2SO3H CH3
    139 OCH2CONH2 H CH2CH2CONH—C(CH3)2CH2SO3H H
    140 OCH2CONH2 H CH2CH2CONH—C(CH3)2CH2SO3H CH3
    141 Cl H CH2CH2CONH—C(CH3)2CH2SO3H H
    142 Cl H CH2CH2CONH—C(CH3)2CH2SO3H CH3
    143 NO2 H CH2CH2CONH—C(CH3)2CH2SO3H H
    144 NO2 H CH2CH2CONH—C(CH3)2CH2SO3H CH3
  • TABLE IVa
    Figure US20140155355A1-20140605-C00028
    Ex. # X Z R1
    1 OCH2CO2CH2CH3 H H
    2 OCH2CO2H H H
    3 OCH2CO2CH2CH3 H CH3
    4 OCH2CO2H H CH3
    5 OCH2CH2CO2CH2CH3 H H
    6 OCH2CH2CO2H H H
    7 OCH2CH2CO2CH2CH3 H CH3
    8 OCH2CH2CO2H H CH3
    9 OCH2CH2PO(OCH2CH3)2 H H
    10 OCH2CH2PO(OH)2 H H
    11 OCH2CH2PO(OCH2CH3)2 H CH3
    12 OCH2CH2PO(OH)2 H CH3
    13 OCH2CH═CHCO2CH2CH3 H H
    14 OCH2CH═CHCO2H H H
    15 OCH2CH═CHCO2CH2CH3 H CH3
    16 OCH2CH═CHCO2H H CH3
    17 OCH2C6H4CO2CH2CH3(2, 3 or 4) H H
    18 OCH2C6H4CO2H (2, 3 or 4) H H
    19 OCH2C6H4CO2CH2CH3(2, 3 or 4) H CH3
    20 OCH2C6H4CO2H (2, 3 or 4) H CH3
    21 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) H H
    22 OCH2C6H4CH2CO2H (2, 3 or 4) H H
    23 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) H CH3
    24 OCH2C6H4CH2CO2H (2, 3 or 4) H CH3
    25 OCH2CO2CH2CH3 OH H
    26 OCH2CO2H OH H
    27 OCH2CO2CH2CH3 OH CH3
    28 OCH2CO2H OH CH3
    29 OCH2CH2CO2CH2CH3 OH H
    30 OCH2CH2CO2H OH H
    31 OCH2CH2CO2CH2CH3 OH CH3
    32 OCH2CH2CO2H OH CH3
    33 OCH2CH2PO(OCH2CH3)2 OH H
    34 OCH2CH2PO(OH)2 OH H
    35 OCH2CH2PO(OCH2CH3)2 OH CH3
    36 OCH2CH2PO(OH)2 OH CH3
    37 OCH2CH═CHCO2CH2CH3 OH H
    38 OCH2CH═CHCO2H OH H
    39 OCH2CH═CHCO2CH2CH3 OH CH3
    40 OCH2CH═CHCO2H OH CH3
    41 OCH2C6H4CO2CH2CH3(2, 3 or 4) OH H
    42 OCH2C6H4CO2H (2, 3 or 4) OH H
    43 OCH2C6H4CO2CH2CH3(2, 3 or 4) OH CH3
    44 OCH2C6H4CO2H (2, 3 or 4) OH CH3
    45 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) OH H
    46 OCH2C6H4CH2CO2H (2, 3 or 4) OH H
    47 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) OH CH3
    48 OCH2C6H4CH2CO2H (2, 3 or 4) OH CH3
    49 OCH2CO2CH2CH3 OCH3 H
    50 OCH2CO2H OCH3 H
    51 OCH2CO2CH2CH3 OCH3 CH3
    52 OCH2CO2H OCH3 CH3
    53 OCH2CH2CO2CH2CH3 OCH3 H
    54 OCH2CH2CO2H OCH3 H
    55 OCH2CH2CO2CH2CH3 OCH3 CH3
    56 OCH2CH2CO2H OCH3 CH3
    57 OCH2CH2PO(OCH2CH3)2 OCH3 H
    58 OCH2CH2PO(OH)2 OCH3 H
    59 OCH2CH2PO(OCH2CH3)2 OCH3 CH3
    60 OCH2CH2PO(OH)2 OCH3 CH3
    61 OCH2CH═CHCO2CH2CH3 OCH3 H
    62 OCH2CH═CHCO2H OCH3 H
    63 OCH2CH═CHCO2CH2CH3 OCH3 CH3
    64 OCH2CH═CHCO2H OCH3 CH3
    65 OCH2C6H4CO2CH2CH3(2, 3 or 4) OCH3 H
    66 OCH2C6H4CO2H (2, 3 or 4) OCH3 H
    67 OCH2C6H4CO2CH2CH3(2, 3 or 4) OCH3 CH3
    68 OCH2C6H4CO2H (2, 3 or 4) OCH3 CH3
    69 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) OCH3 H
    70 OCH2C6H4CH2CO2H (2, 3 or 4) OCH3 H
    71 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) OCH3 CH3
    72 OCH2C6H4CH2CO2H (2, 3 or 4) OCH3 CH3
    73 OCH2CO2CH2CH3 OCH2CH═CH2 H
    74 OCH2CO2H OCH2CH═CH2 H
    75 OCH2CO2CH2CH3 OCH2CH═CH2 CH3
    76 OCH2CO2H OCH2CH═CH2 CH3
    77 OCH2CH2CO2CH2CH3 OCH2CH═CH2 H
    78 OCH2CH2CO2H OCH2CH═CH2 H
    79 OCH2CH2CO2CH2CH3 OCH2CH═CH2 CH3
    80 OCH2CH2CO2H OCH2CH═CH2 CH3
    81 OCH2CH2PO(OCH2CH3)2 OCH2CH═CH2 H
    82 OCH2CH2PO(OH)2 OCH2CH═CH2 H
    83 OCH2CH2PO(OCH2CH3)2 OCH2CH═CH2 CH3
    84 OCH2CH2PO(OH)2 OCH2CH═CH2 CH3
    85 OCH2CH═CHCO2CH2CH3 OCH2CH═CH2 H
    86 OCH2CH═CHCO2H OCH2CH═CH2 H
    87 OCH2CH═CHCO2CH2CH3 OCH2CH═CH2 CH3
    88 OCH2CH═CHCO2H OCH2CH═CH2 CH3
    89 OCH2C6H4CO2CH2CH3(2, 3 or 4) OCH2CH═CH2 H
    90 OCH2C6H4CO2H (2, 3 or 4) OCH2CH═CH2 H
    91 OCH2C6H4CO2CH2CH3(2, 3 or 4) OCH2CH═CH2 CH3
    92 OCH2C6H4CO2H (2, 3 or 4) OCH2CH═CH2 CH3
    93 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) OCH2CH═CH2 H
    94 OCH2C6H4CH2CO2H (2, 3 or 4) OCH2CH═CH2 H
    95 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) OCH2CH═CH2 CH3
    96 OCH2C6H4CH2CO2H (2, 3 or 4) OCH2CH═CH2 CH3
    97 OCH2CO2CH2CH3 OCH2C6CH5 H
    98 OCH2CO2H OCH2C6CH5 H
    99 OCH2CO2CH2CH3 OCH2C6CH5 CH3
    100 OCH2CO2H OCH2C6CH5 CH3
    101 OCH2CH2CO2CH2CH3 OCH2C6CH5 H
    102 OCH2CH2CO2H OCH2C6CH5 H
    103 OCH2CH2CO2CH2CH3 OCH2C6CH5 CH3
    104 OCH2CH2CO2H OCH2C6CH5 CH3
    105 OCH2CH2PO(OCH2CH3)2 OCH2C6CH5 H
    106 OCH2CH2PO(OH)2 OCH2C6CH5 H
    107 OCH2CH2PO(OCH2CH3)2 OCH2C6CH5 CH3
    108 OCH2CH2PO(OH)2 OCH2C6CH5 CH3
    109 OCH2CH═CHCO2CH2CH3 OCH2C6CH5 H
    110 OCH2CH═CHCO2H OCH2C6CH5 H
    111 OCH2CH═CHCO2CH2CH3 OCH2C6CH5 CH3
    112 OCH2CH═CHCO2H OCH2C6CH5 CH3
    113 OCH2CO2CH2CH3 OCH2CONH2 H
    114 OCH2CO2H OCH2CONH2 H
    115 OCH2CO2CH2CH3 OCH2CONH2 CH3
    116 OCH2CO2H OCH2CONH2 CH3
    117 OCH2CH2CO2CH2CH3 OCH2CONH2 H
    118 OCH2CH2CO2H OCH2CONH2 H
    119 OCH2CH2CO2CH2CH3 OCH2CONH2 CH3
    120 OCH2CH2CO2H OCH2CONH2 CH3
    121 OCH2CH2PO(OCH2CH3)2 OCH2CONH2 H
    122 OCH2CH2PO(OH)2 OCH2CONH2 H
    123 OCH2CH2PO(OCH2CH3)2 OCH2CONH2 CH3
    124 OCH2CH2PO(OH)2 OCH2CONH2 CH3
    125 OCH2CH═CHCO2CH2CH3 OCH2CONH2 H
    126 OCH2CH═CHCO2H OCH2CONH2 H
    127 OCH2CH═CHCO2CH2CH3 OCH2CONH2 CH3
    128 OCH2CH═CHCO2H OCH2CONH2 CH3
    129 OCH2-tetrazole H H
    130 OCH2-tetrazole H CH3
    131 OCH2-tetrazole OH H
    132 OCH2-tetrazole OH CH3
    133 OCH2-tetrazole OCH3 H
    134 OCH2-tetrazole OCH3 CH3
    135 OCH2-tetrazole OCH2CH═CH2 H
    136 OCH2-tetrazole OCH2CH═CH2 CH3
    137 OCH2-tetrazole OCH2C6CH5 H
    138 OCH2-tetrazole OCH2C6CH5 CH3
    139 CH2-tetrazole H H
    140 CH2-tetrazole H CH3
    141 CH2-tetrazole OH H
    142 CH2-tetrazole OH CH3
    143 CH2-tetrazole OCH3 H
    144 CH2-tetrazole OCH3 CH3
    145 CH2-tetrazole OCH2CH═CH2 H
    146 CH2-tetrazole OCH2CH═CH2 CH3
    147 CH2-tetrazole OCH2C6CH5 H
    148 CH2-tetrazole OCH2C6CH5 CH3
    149 CH2CH2-tetrazole H H
    150 CH2CH2-tetrazole H CH3
    151 CH2CH2-tetrazole OH H
    152 CH2CH2-tetrazole OH CH3
    153 CH2CH2-tetrazole OCH3 H
    154 CH2CH2-tetrazole OCH3 CH3
    155 CH2CH2-tetrazole OCH2CH═CH2 H
    156 CH2CH2-tetrazole OCH2CH═CH2 CH3
    157 CH2CH2-tetrazole OCH2C6CH5 H
    158 CH2CH2-tetrazole OCH2C6CH5 CH3
    159 OCH2CH2—N+(CH3)3 X- H H
    160 OCH2CH2—N+(CH3)3 X- H CH3
    161 OCH2CH2—N+(CH3)3 X- OCH3 H
    162 OCH2CH2—N+(CH3)3 X- OCH3 CH3
    163 OCH2CH2—N+(CH3)3 X- OCH2CH═CH2 H
    164 OCH2CH2—N+(CH3)3 X- OCH2CH═CH2 CH3
    165 OCH2CH2—N+(CH3)3 X- OCH2C6CH5 H
    166 OCH2CH2—N+(CH3)3 X- OCH2C6CH5 CH3
  • TABLE IVb
    Figure US20140155355A1-20140605-C00029
    Ex. # X Z R1
    1 OCH2CO2CH2CH3 H H
    2 OCH2CO2H H H
    3 OCH2CO2CH2CH3 H CH3
    4 OCH2CO2H H CH3
    5 OCH2CH2CO2CH2CH3 H H
    6 OCH2CH2CO2H H H
    7 OCH2CH2CO2CH2CH3 H CH3
    8 OCH2CH2CO2H H CH3
    9 OCH2CH2PO(OCH2CH3)2 H H
    10 OCH2CH2PO(OH)2 H H
    11 OCH2CH2PO(OCH2CH3)2 H CH3
    12 OCH2CH2PO(OH)2 H CH3
    13 OCH2CH═CHCO2CH2CH3 H H
    14 OCH2CH═CHCO2H H H
    15 OCH2CH═CHCO2CH2CH3 H CH3
    16 OCH2CH═CHCO2H H CH3
    17 OCH2C6H4CO2CH2CH3(2, 3 or 4) H H
    18 OCH2C6H4CO2H (2, 3 or 4) H H
    19 OCH2C6H4CO2CH2CH3(2, 3 or 4) H CH3
    20 OCH2C6H4CO2H (2, 3 or 4) H CH3
    21 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) H H
    22 OCH2C6H4CH2CO2H (2, 3 or 4) H H
    23 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) H CH3
    24 OCH2C6H4CH2CO2H (2, 3 or 4) H CH3
    25 OCH2CO2CH2CH3 OH H
    26 OCH2CO2H OH H
    27 OCH2CO2CH2CH3 OH CH3
    28 OCH2CO2H OH CH3
    29 OCH2CH2CO2CH2CH3 OH H
    30 OCH2CH2CO2H OH H
    31 OCH2CH2CO2CH2CH3 OH CH3
    32 OCH2CH2CO2H OH CH3
    33 OCH2CH2PO(OCH2CH3)2 OH H
    34 OCH2CH2PO(OH)2 OH H
    35 OCH2CH2PO(OCH2CH3)2 OH CH3
    36 OCH2CH2PO(OH)2 OH CH3
    37 OCH2CH═CHCO2CH2CH3 OH H
    38 OCH2CH═CHCO2H OH H
    39 OCH2CH═CHCO2CH2CH3 OH CH3
    40 OCH2CH═CHCO2H OH CH3
    41 OCH2C6H4CO2CH2CH3(2, 3 or 4) OH H
    42 OCH2C6H4CO2H (2, 3 or 4) OH H
    43 OCH2C6H4CO2CH2CH3(2, 3 or 4) OH CH3
    44 OCH2C6H4CO2H (2, 3 or 4) OH CH3
    45 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) OH H
    46 OCH2C6H4CH2CO2H (2, 3 or 4) OH H
    47 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) OH CH3
    48 OCH2C6H4CH2CO2H (2, 3 or 4) OH CH3
    49 OCH2CO2CH2CH3 OCH3 H
    50 OCH2CO2H OCH3 H
    51 OCH2CO2CH2CH3 OCH3 CH3
    52 OCH2CO2H OCH3 CH3
    53 OCH2CH2CO2CH2CH3 OCH3 H
    54 OCH2CH2CO2H OCH3 H
    55 OCH2CH2CO2CH2CH3 OCH3 CH3
    56 OCH2CH2CO2H OCH3 CH3
    57 OCH2CH2PO(OCH2CH3)2 OCH3 H
    58 OCH2CH2PO(OH)2 OCH3 H
    59 OCH2CH2PO(OCH2CH3)2 OCH3 CH3
    60 OCH2CH2PO(OH)2 OCH3 CH3
    61 OCH2CH═CHCO2CH2CH3 OCH3 H
    62 OCH2CH═CHCO2H OCH3 H
    63 OCH2CH═CHCO2CH2CH3 OCH3 CH3
    64 OCH2CH═CHCO2H OCH3 CH3
    65 OCH2C6H4CO2CH2CH3(2, 3 or 4) OCH3 H
    66 OCH2C6H4CO2H (2, 3 or 4) OCH3 H
    67 OCH2C6H4CO2CH2CH3(2, 3 or 4) OCH3 CH3
    68 OCH2C6H4CO2H (2, 3 or 4) OCH3 CH3
    69 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) OCH3 H
    70 OCH2C6H4CH2CO2H (2, 3 or 4) OCH3 H
    71 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) OCH3 CH3
    72 OCH2C6H4CH2CO2H (2, 3 or 4) OCH3 CH3
    73 OCH2CO2CH2CH3 OCH2CH═CH2 H
    74 OCH2CO2H OCH2CH═CH2 H
    75 OCH2CO2CH2CH3 OCH2CH═CH2 CH3
    76 OCH2CO2H OCH2CH═CH2 CH3
    77 OCH2CH2CO2CH2CH3 OCH2CH═CH2 H
    78 OCH2CH2CO2H OCH2CH═CH2 H
    79 OCH2CH2CO2CH2CH3 OCH2CH═CH2 CH3
    80 OCH2CH2CO2H OCH2CH═CH2 CH3
    81 OCH2CH2PO(OCH2CH3)2 OCH2CH═CH2 H
    82 OCH2CH2PO(OH)2 OCH2CH═CH2 H
    83 OCH2CH2PO(OCH2CH3)2 OCH2CH═CH2 CH3
    84 OCH2CH2PO(OH)2 OCH2CH═CH2 CH3
    85 OCH2CH═CHCO2CH2CH3 OCH2CH═CH2 H
    86 OCH2CH═CHCO2H OCH2CH═CH2 H
    87 OCH2CH═CHCO2CH2CH3 OCH2CH═CH2 CH3
    88 OCH2CH═CHCO2H OCH2CH═CH2 CH3
    89 OCH2C6H4CO2CH2CH3(2, 3 or 4) OCH2CH═CH2 H
    90 OCH2C6H4CO2H (2, 3 or 4) OCH2CH═CH2 H
    91 OCH2C6H4CO2CH2CH3(2, 3 or 4) OCH2CH═CH2 CH3
    92 OCH2C6H4CO2H (2, 3 or 4) OCH2CH═CH2 CH3
    93 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) OCH2CH═CH2 H
    94 OCH2C6H4CH2CO2H (2, 3 or 4) OCH2CH═CH2 H
    95 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) OCH2CH═CH2 CH3
    96 OCH2C6H4CH2CO2H (2, 3 or 4) OCH2CH═CH2 CH3
    97 OCH2CO2CH2CH3 OCH2C6CH5 H
    98 OCH2CO2H OCH2C6CH5 H
    99 OCH2CO2CH2CH3 OCH2C6CH5 CH3
    100 OCH2CO2H OCH2C6CH5 CH3
    101 OCH2CO2CH2CH3 OCH2C6CH5 H
    102 OCH2CO2H OCH2C6CH5 H
    103 OCH2CH2CO2CH2CH3 OCH2C6CH5 CH3
    104 OCH2CH2CO2H OCH2C6CH5 CH3
    105 OCH2CH2PO(OCH2CH3)2 OCH2C6CH5 H
    106 OCH2CH2PO(OH)2 OCH2C6CH5 H
    107 OCH2CH2PO(OCH2CH3)2 OCH2C6CH5 CH3
    108 OCH2CH2PO(OH)2 OCH2C6CH5 CH3
    109 OCH2CH═CHCO2CH2CH3 OCH2C6CH5 H
    110 OCH2CH═CHCO2H OCH2C6CH5 H
    111 OCH2CH═CHCO2CH2CH3 OCH2C6CH5 CH3
    112 OCH2CH═CHCO2H OCH2C6CH5 CH3
    113 OCH2CO2CH2CH3 OCH2CONH2 H
    114 OCH2CO2H OCH2CONH2 H
    115 OCH2CO2CH2CH3 OCH2CONH2 CH3
    116 OCH2CO2H OCH2CONH2 CH3
    117 OCH2CH2CO2CH2CH3 OCH2CONH2 H
    118 OCH2CH2CO2H OCH2CONH2 H
    119 OCH2CH2CO2CH2CH3 OCH2CONH2 CH3
    120 OCH2CH2CO2H OCH2CONH2 CH3
    121 OCH2CH2PO(OCH2CH3)2 OCH2CONH2 H
    122 OCH2CH2PO(OH)2 OCH2CONH2 H
    123 OCH2CH2PO(OCH2CH3)2 OCH2CONH2 CH3
    124 OCH2CH2PO(OH)2 OCH2CONH2 CH3
    125 OCH2CH═CHCO2CH2CH3 OCH2CONH2 H
    126 OCH2CH═CHCO2H OCH2CONH2 H
    127 OCH2CH═CHCO2CH2CH3 OCH2CONH2 CH3
    128 OCH2CH═CHCO2H OCH2CONH2 CH3
    129 OCH2-tetrazole H H
    130 OCH2-tetrazole H CH3
    131 OCH2-tetrazole OH H
    132 OCH2-tetrazole OH CH3
    133 OCH2-tetrazole OCH3 H
    134 OCH2-tetrazole OCH3 CH3
    135 OCH2-tetrazole OCH2CH═CH2 H
    136 OCH2-tetrazole OCH2CH═CH2 CH3
    137 OCH2-tetrazole OCH2C6CH5 H
    138 OCH2-tetrazole OCH2C6CH5 CH3
    139 CH2-tetrazole H H
    140 CH2-tetrazole H CH3
    141 CH2-tetrazole OH H
    142 CH2-tetrazole OH CH3
    143 CH2-tetrazole OCH3 H
    144 CH2-tetrazole OCH3 CH3
    145 CH2-tetrazole OCH2CH═CH2 H
    146 CH2-tetrazole OCH2CH═CH2 CH3
    147 CH2-tetrazole OCH2C6CH5 H
    148 CH2-tetrazole OCH2C6CH5 CH3
    149 CH2CH2-tetrazole H H
    140 CH2CH2-tetrazole H CH3
    151 CH2CH2-tetrazole OH H
    152 CH2CH2-tetrazole OH CH3
    153 CH2CH2-tetrazole OCH3 H
    154 CH2CH2-tetrazole OCH3 CH3
    155 CH2CH2-tetrazole OCH2CH═CH2 H
    156 CH2CH2-tetrazole OCH2CH═CH2 CH3
    157 CH2CH2-tetrazole OCH2C6CH5 H
    158 CH2CH2-tetrazole OCH2C6CH5 CH3
    159 OCH2CH2—N+(CH3)3 X- H H
    160 OCH2CH2—N+(CH3)3 X- H CH3
    161 OCH2CH2—N+(CH3)3 X- OCH3 H
    162 OCH2CH2—N+(CH3)3 X- OCH3 CH3
    163 OCH2CH2—N+(CH3)3 X- OCH2CH═CH2 H
    164 OCH2CH2—N+(CH3)3 X- OCH2CH═CH2 CH3
    165 OCH2CH2—N+(CH3)3 X- OCH2C6CH5 H
    166 OCH2CH2—N+(CH3)3 X- OCH2C6CH5 CH3
  • TABLE IVc
    Figure US20140155355A1-20140605-C00030
    Ex. # X Z R1
    1 OCH2CO2H N(CH3)2 H
    2 OCH2CO2CH2CH3 N(CH3)2 CH3
    3 OCH2CO2H N(CH3)2 CH3
    4 OCH2CH2CO2CH2CH3 N(CH3)2 H
    5 OCH2CH2CO2H N(CH3)2 H
    6 OCH2CH2CO2CH2CH3 N(CH3)2 CH3
    7 OCH2CH2CO2H N(CH3)2 CH3
    8 OCH2CH2PO(OCH2CH3)2 N(CH3)2 H
    9 OCH2CH2PO(OH)2 N(CH3)2 H
    10 OCH2CH2PO(OCH2CH3)2 N(CH3)2 CH3
    11 OCH2CH2PO(OH)2 N(CH3)2 CH3
    12 OCH2CH═CHCO2CH2CH3 N(CH3)2 H
    13 OCH2CH═CHCO2H N(CH3)2 H
    14 OCH2CH═CHCO2CH2CH3 N(CH3)2 CH3
    15 OCH2CH═CHCO2H N(CH3)2 CH3
    16 OCH2C6H4CO2CH2CH3(2, 3 or 4) N(CH3)2 H
    17 OCH2C6H4CO2H (2, 3 or 4) N(CH3)2 H
    18 OCH2C6H4CO2CH2CH3(2, 3 or 4) N(CH3)2 CH3
    19 OCH2C6H4CO2H (2, 3 or 4) N(CH3)2 CH3
    20 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) N(CH3)2 H
    21 OCH2C6H4CH2CO2H (2, 3 or 4) N(CH3)2 H
    22 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) N(CH3)2 CH3
    23 OCH2C6H4CH2CO2H (2, 3 or 4) N(CH3)2 CH3
    24 OCH2CO2CH2CH3 NHCH2C6CH5 H
    25 OCH2CO2H NHCH2C6CH5 H
    26 OCH2CO2CH2CH3 NHCH2C6CH5 CH3
    27 OCH2CO2H NHCH2C6CH5 CH3
    28 OCH2CH2CO2CH2CH3 NHCH2C6CH5 H
    29 OCH2CH2CO2H NHCH2C6CH5 H
    30 OCH2CH2CO2CH2CH3 NHCH2C6CH5 CH3
    31 OCH2CH2CO2H NHCH2C6CH5 CH3
    32 OCH2CH2PO(OCH2CH3)2 NHCH2C6CH5 H
    33 OCH2CH2PO(OH)2 NHCH2C6CH5 H
    34 OCH2CH2PO(OCH2CH3)2 NHCH2C6CH5 CH3
    35 OCH2CH2PO(OH)2 NHCH2C6CH5 CH3
    36 OCH2CH═CHCO2CH2CH3 NHCH2C6CH5 H
    37 OCH2CH═CHCO2H NHCH2C6CH5 H
    38 OCH2CH═CHCO2CH2CH3 NHCH2C6CH5 CH3
    39 OCH2CH═CHCO2H NHCH2C6CH5 CH3
    40 OCH2CO2CH2CH3 NHCH2CONH2 H
    41 OCH2CO2H NHCH2CONH2 H
    42 OCH2CO2CH2CH3 NHCH2CONH2 CH3
    43 OCH2CO2H NHCH2CONH2 CH3
    44 OCH2CH2CO2CH2CH3 NHCH2CONH2 H
    45 OCH2CH2CO2H NHCH2CONH2 H
    46 OCH2CH2CO2CH2CH3 NHCH2CONH2 CH3
    47 OCH2CH2CO2H NHCH2CONH2 CH3
    48 OCH2CH2PO(OCH2CH3)2 NHCH2CONH2 H
    49 OCH2CH2PO(OH)2 NHCH2CONH2 H
    50 OCH2CH2PO(OCH2CH3)2 NHCH2CONH2 CH3
    51 OCH2CH2PO(OH)2 NHCH2CONH2 CH3
    52 OCH2CH═CHCO2CH2CH3 NHCH2CONH2 H
    53 OCH2CH═CHCO2H NHCH2CONH2 H
    54 OCH2CH═CHCO2CH2CH3 NHCH2CONH2 CH3
    55 OCH2CH═CHCO2H NHCH2CONH2 CH3
    56 OCH2C6H4CO2CH2CH3(2, 3 or 4) NHCH2CONH2 H
    57 OCH2C6H4CO2H (2, 3 or 4) NHCH2CONH2 H
    58 OCH2C6H4CO2CH2CH3(2, 3 or 4) NHCH2CONH2 CH3
    59 OCH2C6H4CO2H (2, 3 or 4) NHCH2CONH2 CH3
    60 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) NHCH2CONH2 H
    61 OCH2C6H4CH2CO2H (2, 3 or 4) NHCH2CONH2 H
    62 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) NHCH2CONH2 CH3
    63 OCH2C6H4CH2CO2H (2, 3 or 4) NHCH2CONH2 CH3
    64 OCH2-tetrazole N(CH3)2 H
    65 OCH2-tetrazole N(CH3)2 CH3
    66 OCH2-tetrazole NHCH2C6CH5 H
    67 OCH2-tetrazole NHCH2C6CH5 CH3
    68 CH2-tetrazole N(CH3)2 H
    69 CH2-tetrazole N(CH3)2 CH3
    70 CH2-tetrazole NHCH2C6CH5 H
    71 CH2-tetrazole NHCH2C6CH5 CH3
  • TABLE IVd
    Figure US20140155355A1-20140605-C00031
    Ex. # X Z R1
    1 OCH2CO2H N(CH3)2 H
    2 OCH2CO2CH2CH3 N(CH3)2 CH3
    3 OCH2CO2H N(CH3)2 CH3
    4 OCH2CH2CO2CH2CH3 N(CH3)2 H
    5 OCH2CH2CO2H N(CH3)2 H
    6 OCH2CH2CO2CH2CH3 N(CH3)2 CH3
    7 OCH2CH2CO2H N(CH3)2 CH3
    8 OCH2CH2PO(OCH2CH3)2 N(CH3)2 H
    9 OCH2CH2PO(OH)2 N(CH3)2 H
    10 OCH2CH2PO(OCH2CH3)2 N(CH3)2 CH3
    11 OCH2CH2PO(OH)2 N(CH3)2 CH3
    12 OCH2CH═CHCO2CH2CH3 N(CH3)2 H
    13 OCH2CH═CHCO2H N(CH3)2 H
    14 OCH2CH═CHCO2CH2CH3 N(CH3)2 CH3
    15 OCH2CH═CHCO2H N(CH3)2 CH3
    16 OCH2C6H4CO2CH2CH3(2, 3 or 4) N(CH3)2 H
    17 OCH2C6H4CO2H (2, 3 or 4) N(CH3)2 H
    18 OCH2C6H4CO2CH2CH3(2, 3 or 4) N(CH3)2 CH3
    19 OCH2C6H4CO2H (2, 3 or 4) N(CH3)2 CH3
    20 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) N(CH3)2 H
    21 OCH2C6H4CH2CO2H (2, 3 or 4) N(CH3)2 H
    22 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) N(CH3)2 CH3
    23 OCH2C6H4CH2CO2H (2, 3 or 4) N(CH3)2 CH3
    24 OCH2CO2CH2CH3 NHCH2C6CH5 H
    25 OCH2CO2H NHCH2C6CH5 H
    26 OCH2CO2CH2CH3 NHCH2C6CH5 CH3
    27 OCH2CO2H NHCH2C6CH5 CH3
    28 OCH2CH2CO2CH2CH3 NHCH2C6CH5 H
    29 OCH2CH2CO2H NHCH2C6CH5 H
    30 OCH2CH2CO2CH2CH3 NHCH2C6CH5 CH3
    31 OCH2CH2CO2H NHCH2C6CH5 CH3
    32 OCH2CH2PO(OCH2CH3)2 NHCH2C6CH5 H
    33 OCH2CH2PO(OH)2 NHCH2C6CH5 H
    34 OCH2CH2PO(OCH2CH3)2 NHCH2C6CH5 CH3
    35 OCH2CH2PO(OH)2 NHCH2C6CH5 CH3
    36 OCH2CH═CHCO2CH2CH3 NHCH2C6CH5 H
    37 OCH2CH═CHCO2H NHCH2C6CH5 H
    38 OCH2CH═CHCO2CH2CH3 NHCH2C6CH5 CH3
    39 OCH2CH═CHCO2H NHCH2C6CH5 CH3
    40 OCH2CO2CH2CH3 NHCH2CONH2 H
    41 OCH2CO2H NHCH2CONH2 H
    42 OCH2CO2CH2CH3 NHCH2CONH2 CH3
    43 OCH2CO2H NHCH2CONH2 CH3
    44 OCH2CH2CO2CH2CH3 NHCH2CONH2 H
    45 OCH2CH2CO2H NHCH2CONH2 H
    46 OCH2CH2CO2CH2CH3 NHCH2CONH2 CH3
    47 OCH2CH2CO2H NHCH2CONH2 CH3
    48 OCH2CH2PO(OCH2CH3)2 NHCH2CONH2 H
    49 OCH2CH2PO(OH)2 NHCH2CONH2 H
    50 OCH2CH2PO(OCH2CH3)2 NHCH2CONH2 CH3
    51 OCH2CH2PO(OH)2 NHCH2CONH2 CH3
    52 OCH2CH═CHCO2CH2CH3 NHCH2CONH2 H
    53 OCH2CH═CHCO2H NHCH2CONH2 H
    54 OCH2CH═CHCO2CH2CH3 NHCH2CONH2 CH3
    55 OCH2CH═CHCO2H NHCH2CONH2 CH3
    56 OCH2C6H4CO2CH2CH3(2, 3 or 4) NHCH2CONH2 H
    57 OCH2C6H4CO2H (2, 3 or 4) NHCH2CONH2 H
    58 OCH2C6H4CO2CH2CH3(2, 3 or 4) NHCH2CONH2 CH3
    59 OCH2C6H4CO2H (2, 3 or 4) NHCH2CONH2 CH3
    60 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) NHCH2CONH2 H
    61 OCH2C6H4CH2CO2H (2, 3 or 4) NHCH2CONH2 H
    62 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) NHCH2CONH2 CH3
    63 OCH2C6H4CO2H (2, 3 or 4) NHCH2CONH2 CH3
    64 OCH2-tetrazole N(CH3)2 H
    65 OCH2-tetrazole N(CH3)2 CH3
    66 OCH2-tetrazole NHCH2C6CH5 H
    67 OCH2-tetrazole NHCH2C6CH5 CH3
    68 CH2-tetrazole N(CH3)2 H
    69 CH2-tetrazole N(CH3)2 CH3
    70 CH2-tetrazole NHCH2C6CH5 H
    71 CH2-tetrazole NHCH2C6CH5 CH3
  • TABLE V
    Figure US20140155355A1-20140605-C00032
    Ex. # X X1 Z R1
    1. H H OH CO2CH2CH3
    2. H H OH CO2H
    3. H H OH CH2CO2CH2CH3
    4. H H OH CH2CO2H
    5. H H OH CH2CH2CO2CH2CH3
    6. H H OH CH2CH2CO2H
    7. H H OH CH2CH═CHCO2H
    8. H H OH CH2CH═CHCO2H
    9. H H OH CH2CH2P—O(OCH2CH3)2
    10. H H OH CH2CH2P—O(OH)2
    11. OH H OH CO2CH2CH3
    12. OH H OH CO2H
    13. OH H OH CH2CO2CH2CH3
    14. OH H OH CH2CO2H
    15. OH H OH CH2CH2CO2CH2CH3
    16. OH H OH CH2CH2CO2H
    17. OH H OH CH2CH═CHCO2H
    18. OH H OH CH2CH═CHCO2H
    19. OH H OH CH2CH2P—O(OCH2CH3)2
    20. OH H OH CH2CH2P—O(OH)2
    21. OCH3 H OH CO2CH2CH3
    22. OCH3 H OH CO2H
    23. OCH3 H OH CH2CO2CH2CH3
    24. OCH3 H OH CH2CO2H
    25. OCH3 H OH CH2CH2CO2CH2CH3
    26. OCH3 H OH CH2CH2CO2H
    27. OCH3 H OH CH2CH═CHCO2H
    28. OCH3 H OH CH2CH═CHCO2H
    29. OCH3 H OH CH2CH2P—O(OCH2CH3)2
    30. OCH3 H OH CH2CH2P—O(OH)2
    31. OCH2CH═CH2 H OH CO2CH2CH3
    32. OCH2CH═CH2 H OH CO2H
    33. OCH2CH═CH2 H OH CH2CO2CH2CH3
    34. OCH2CH═CH2 H OH CH2CO2H
    35. OCH2CH═CH2 H OH CH2CH2CO2CH2CH3
    36. OCH2CH═CH2 H OH CH2CH2CO2H
    37. OCH2CH═CH2 H OH CH2CH═CHCO2H
    38. OCH2CH═CH2 H OH CH2CH═CHCO2H
    39. OCH2CH═CH2 H OH CH2CH2P—O(OCH2CH3)2
    40. OCH2CH═CH2 H OH CH2CH2P—O(OH)2
    41. OCH2C6H5 H OH CO2CH2CH3
    42. OCH2C6H5 H OH CO2H
    43. OCH2C6H5 H OH CH2CO2CH2CH3
    44. OCH2C6H5 H OH CH2CO2H
    45. OCH2C6H5 H OH CH2CH2CO2CH2CH3
    46. OCH2C6H5 H OH CH2CH2CO2H
    47. OCH2C6H5 H OH CH2CH═CHCO2H
    48. OCH2C6H5 H OH CH2CH═CHCO2H
    49. OCH2C6H5 H OH CH2CH2P—O(OCH2CH3)2
    50. OCH2C6H5 H OH CH2CH2P—O(OH)2
    51. Cll H OH CO2CH2CH3
    52. Cl H OH CO2H
    53. Cl H OH CH2CO2CH2CH3
    54. Cl H OH CH2CO2H
    55. Cl H OH CH2CH2CO2CH2CH3
    56. Cl H OH CH2CH2CO2H
    57. Cl H OH CH2CH═CHCO2H
    58. Cl H OH CH2CH═CHCO2H
    59. Cl H OH CH2CH2P—O(OCH2CH3)2
    60. Cl H OH CH2CH2P—O(OH)2
    61. NO2 H OH CO2CH2CH3
    62. NO2 H OH CO2H
    63. NO2 H OH CH2CO2CH2CH3
    64. NO2 H OH CH2CO2H
    65. NO2 H OH CH2CH2CO2CH2CH3
    66. NO2 H OH CH2CH2CO2H
    67. NO2 H OH CH2CH═CHCO2H
    68. NO2 H OH CH2CH═CHCO2H
    69. NO2 H OH CH2CH2P—O(OCH2CH3)2
    70. NO2 H OH CH2CH2P—O(OH)2
    71. NH2 H OH CO2CH2CH3
    72. NH2 H OH CO2H
    73. NH2 H OH CH2CO2CH2CH3
    74. NH2 H OH CH2CO2H
    75. NH2 H OH CH2CH2CO2CH2CH3
    76. NH2 H OH CH2CH2CO2H
    77. NH2 H OH CH2CH═CHCO2H
    78. NH2 H OH CH2CH═CHCO2H
    79. NH2 H OH CH2CH2P—O(OCH2CH3)2
    80. NH2 H OH CH2CH2P—O(OH)2
    81. NHSO2CH3 H OH H
    82. NHSO2CH3 H OH CH3
    83. NHSO2CH3 H OH CO2CH2CH3
    84. NHSO2CH3 H OH CO2H
    85. NHSO2CH3 H OH CH2CO2CH2CH3
    86. NHSO2CH3 H OH CH2CO2H
    87. NHSO2CH3 H OH CH2CH2CO2CH2CH3
    88. NHSO2CH3 H OH CH2CH2CO2H
    89. NHSO2CH3 H OH CH2CH═CHCO2H
    90. NHSO2CH3 H OH CH2CH═CHCO2H
    91. NHSO2CH3 H OH CH2CH2P—O(OCH2CH3)2
    92. NHSO2CH3 H OH CH2CH2P—O(OH)2
    93. OCH2CONH2 H OH H
    94. OCH2CONH2 H OH CH3
    95. OCH2CONH2 H OH CO2CH2CH3
    96. OCH2CONH2 H OH CO2H
    97. OCH2CONH2 H OH CH2CO2CH2CH3
    98. OCH2CONH2 H OH CH2CO2H
    99. OCH2CONH2 H OH CH2CH2CO2CH2CH3
    100. OCH2CONH2 H OH CH2CH2CO2H
    101. OCH2CONH2 H OH CH2CH═CHCO2H
    102. OCH2CONH2 H OH CH2CH═CHCO2H
    103. OCH2CONH2 H OH CH2CH2P—O(OCH2CH3)2
    104. OCH2CONH2 H OH CH2CH2P—O(OH)2
    105. OH CH2N(CH3)2 OH CO2CH2CH3
    106. OH CH2N(CH3)2 OH CO2H
    107. OH CH2N(CH3)2 OH CH2CO2CH2CH3
    108. OH CH2N(CH3)2 OH CH2CO2H
    109. OH CH2N(CH3)2 OH CH2CH2CO2CH2CH3
    110. OH CH2N(CH3)2 OH CH2CH2CO2H
    111. OH CH2N(CH3)2 OH CH2CH═CHCO2H
    112. OH CH2N(CH3)2 OH CH2CH═CHCO2H
    113. OH CH2N(CH3)2 OH CH2CH2P—O(OCH2CH3)2
    114. OH CH2N(CH3)2 OH CH2CH2P—O(OH)2
    115. OCH3 CH2N(CH3)2 OH CO2CH2CH3
    116. OCH3 CH2N(CH3)2 OH CO2H
    117. OCH3 CH2N(CH3)2 OH CH2CO2CH2CH3
    118. OCH3 CH2N(CH3)2 OH CH2CO2H
    119. OCH3 CH2N(CH3)2 OH CH2CH2CO2CH2CH3
    120. OCH3 CH2N(CH3)2 OH CH2CH2CO2H
    121. OCH3 CH2N(CH3)2 OH CH2CH═CHCO2H
    122. OCH3 CH2N(CH3)2 OH CH2CH═CHCO2H
    123. OCH3 CH2N(CH3)2 OH CH2CH2P—O(OCH2CH3)2
    124. OCH3 CH2N(CH3)2 OH CH2CH2P—O(OH)2
    125. OH CH2N+(CH3)3 Cl- OH H
    126. OH CH2N+(CH3)3 Cl- OH CH3
    127. OH CH2N+(CH3)3 Cl- OH CO2CH2CH3
    128. OH CH2N+(CH3)3 Cl- OH CO2H
    129. OH CH2N+(CH3)3 Cl- OH CH2CO2CH2CH3
    130. OH CH2N+(CH3)3 Cl- OH CH2CO2H
    131. OH CH2N+(CH3)3 Cl- OH CH2CH2CO2CH2CH3
    132. OH CH2N+(CH3)3 Cl- OH CH2CH2CO2H
    133. OH CH2N+(CH3)3 Cl- OH CH2CH═CHCO2H
    134. OH CH2N+(CH3)3 Cl- OH CH2CH═CHCO2H
    135. OH CH2N+(CH3)3 Cl- OH CH2CH2P—O(OCH2CH3)2
    136. OH CH2N+(CH3)3 Cl- OH CH2CH2P—O(OH)2
    137. OCH3 CH2N+(CH3)3 Cl- OH H
    138. OCH3 CH2N+(CH3)3 Cl- OH CH3
    139. OCH3 CH2N+(CH3)3 Cl- OH CO2CH2CH3
    140. OCH3 CH2N+(CH3)3 Cl- OH CO2H
    141. OCH3 CH2N+(CH3)3 Cl- OH CH2CO2CH2CH3
    142. OCH3 CH2N+(CH3)3 Cl- OH CH2CO2H
    143. OCH3 CH2N+(CH3)3 Cl- OH CH2CH2CO2CH2CH3
    144. OCH3 CH2N+(CH3)3 Cl- OH CH2CH2CO2H
    145. OCH3 CH2N+(CH3)3 Cl- OH CH2CH═CHCO2H
    146. OCH3 CH2N+(CH3)3 Cl- OH CH2CH═CHCO2H
    147. OCH3 CH2N+(CH3)3 Cl- OH CH2CH2P—O(OCH2CH3)2
    148. OCH3 CH2N+(CH3)3 Cl- OH CH2CH2P—O(OH)2
    149. H H OCH3 CO2CH2CH3
    150. H H OCH3 CO2H
    151. H H OCH3 CH2CO2CH2CH3
    152. H H OCH3 CH2CO2H
    153. H H OCH3 CH2CH2CO2CH2CH3
    154. H H OCH3 CH2CH2CO2H
    155. H H OCH3 CH2CH═CHCO2H
    156. H H OCH3 CH2CH═CHCO2H
    157. H H OCH3 CH2CH2P—O(OCH2CH3)2
    158. H H OCH3 CH2CH2P—O(OH)2
    159. OH H OCH3 CO2CH2CH3
    160. OH H OCH3 CO2H
    161. OH H OCH3 CH2CO2CH2CH3
    162. OH H OCH3 CH2CO2H
    163. OH H OCH3 CH2CH2CO2CH2CH3
    164. OH H OCH3 CH2CH2CO2H
    165. OH H OCH3 CH2CH═CHCO2H
    166. OH H OCH3 CH2CH═CHCO2H
    167. OH H OCH3 CH2CH2P—O(OCH2CH3)2
    168. OH H OCH3 CH2CH2P—O(OH)2
    169. OCH3 H OCH3 CO2CH2CH3
    170. OCH3 H OCH3 CO2H
    171. OCH3 H OCH3 CH2CO2CH2CH3
    172. OCH3 H OCH3 CH2CO2H
    173. OCH3 H OCH3 CH2CH2CO2CH2CH3
    174. OCH3 H OCH3 CH2CH2CO2H
    175. OCH3 H OCH3 CH2CH═CHCO2H
    176. OCH3 H OCH3 CH2CH═CHCO2H
    177. OCH3 H OCH3 CH2CH2P—O(OCH2CH3)2
    178. OCH3 H OCH3 CH2CH2P—O(OH)2
    179. OCH2CH═CH2 H OCH3 CO2CH2CH3
    180. OCH2CH═CH2 H OCH3 CO2H
    181. OCH2CH═CH2 H OCH3 CH2CO2CH2CH3
    182. OCH2CH═CH2 H OCH3 CH2CO2H
    183. OCH2CH═CH2 H OCH3 CH2CH2CO2CH2CH3
    184. OCH2CH═CH2 H OCH3 CH2CH2CO2H
    185. OCH2CH═CH2 H OCH3 CH2CH═CHCO2H
    186. OCH2CH═CH2 H OCH3 CH2CH═CHCO2H
    187. OCH2CH═CH2 H OCH3 CH2CH2P—O(OCH2CH3)2
    188. OCH2CH═CH2 H OCH3 CH2CH2P—O(OH)2
    189. OCH2C6H5 H OCH3 CO2CH2CH3
    190. OCH2C6H5 H OCH3 CO2H
    191. OCH2C6H5 H OCH3 CH2CO2CH2CH3
    192. OCH2C6H5 H OCH3 CH2CO2H
    193. OCH2C6H5 H OCH3 CH2CH2CO2CH2CH3
    194. OCH2C6H5 H OCH3 CH2CH2CO2H
    195. OCH2C6H5 H OCH3 CH2CH═CHCO2H
    196. OCH2C6H5 H OCH3 CH2CH═CHCO2H
    197. OCH2C6H5 H OCH3 CH2CH2P—O(OCH2CH3)2
    198. OCH2C6H5 H OCH3 CH2CH2P—O(OH)2
    199. Cl H OCH3 CO2CH2CH3
    200. Cl H OCH3 CO2H
    201. Cl H OCH3 CH2CO2CH2CH3
    202. Cl H OCH3 CH2CO2H
    203. Cl H OCH3 CH2CH2CO2CH2CH3
    204. Cl H OCH3 CH2CH2CO2H
    205. Cl H OCH3 CH2CH═CHCO2H
    206. Cl H OCH3 CH2CH═CHCO2H
    207. Cl H OCH3 CH2CH2P—O(OCH2CH3)2
    208. Cl H OCH3 CH2CH2P—O(OH)2
    209. NO2 H OCH3 CO2CH2CH3
    210. NO2 H OCH3 CO2H
    211. NO2 H OCH3 CH2CO2CH2CH3
    212. NO2 H OCH3 CH2CO2H
    213. NO2 H OCH3 CH2CH2CO2CH2CH3
    214. NO2 H OCH3 CH2CH2CO2H
    215. NO2 H OCH3 CH2CH═CHCO2H
    216. NO2 H OCH3 CH2CH═CHCO2H
    217. NO2 H OCH3 CH2CH2P—O(OCH2CH3)2
    218. NO2 H OCH3 CH2CH2P—O(OH)2
    219. NH2 H OCH3 CO2CH2CH3
    220. NH2 H OCH3 CO2H
    221. NH2 H OCH3 CH2CO2CH2CH3
    222. NH2 H OCH3 CH2CO2H
    223. NH2 H OCH3 CH2CH2CO2CH2CH3
    224. NH2 H OCH3 CH2CH2CO2H
    225. NH2 H OCH3 CH2CH═CHCO2H
    226. NH2 H OCH3 CH2CH═CHCO2H
    227. NH2 H OCH3 CH2CH2P—O(OCH2CH3)2
    228. NH2 H OCH3 CH2CH2P—O(OH)2
    229. NHSO2CH3 H OCH3 H
    230. NHSO2CH3 H OCH3 CH3
    231. NHSO2CH3 H OCH3 CO2CH2CH3
    232. NHSO2CH3 H OCH3 CO2H
    233. NHSO2CH3 H OCH3 CH2CO2CH2CH3
    234. NHSO2CH3 H OCH3 CH2CO2H
    235. NHSO2CH3 H OCH3 CH2CH2CO2CH2CH3
    236. NHSO2CH3 H OCH3 CH2CH2CO2H
    237. NHSO2CH3 H OCH3 CH2CH═CHCO2H
    238. NHSO2CH3 H OCH3 CH2CH═CHCO2H
    239. NHSO2CH3 H OCH3 CH2CH2P—O(OCH2CH3)2
    240. NHSO2CH3 H OCH3 CH2CH2P—O(OH)2
    241. OCH2CONH2 H OCH3 H
    242. OCH2CONH2 H OCH3 CH3
    243. OCH2CONH2 H OCH3 CO2CH2CH3
    244. OCH2CONH2 H OCH3 CO2H
    245. OCH2CONH2 H OCH3 CH2CO2CH2CH3
    246. OCH2CONH2 H OCH3 CH2CO2H
    247. OCH2CONH2 H OCH3 CH2CH2CO2CH2CH3
    248. OCH2CONH2 H OCH3 CH2CH2CO2H
    249. OCH2CONH2 H OCH3 CH2CH═CHCO2H
    250. OCH2CONH2 H OCH3 CH2CH═CHCO2H
    251. OCH2CONH2 H OCH3 CH2CH2P—O(OCH2CH3)2
    252. OCH2CONH2 H OCH3 CH2CH2P—O(OH)2
    253. OH CH2N(CH3)2 OCH3 CO2CH2CH3
    254. OH CH2N(CH3)2 OCH3 CO2H
    255. OH CH2N(CH3)2 OCH3 CH2CO2CH2CH3
    256. OH CH2N(CH3)2 OCH3 CH2CO2H
    257. OH CH2N(CH3)2 OCH3 CH2CH2CO2CH2CH3
    258. OH CH2N(CH3)2 OCH3 CH2CH2CO2H
    259. OH CH2N(CH3)2 OCH3 CH2CH═CHCO2H
    260. OH CH2N(CH3)2 OCH3 CH2CH═CHCO2H
    261. OH CH2N(CH3)2 OCH3 CH2CH2P—O(OCH2CH3)2
    262. OH CH2N(CH3)2 OCH3 CH2CH2P—O(OH)2
    263. OCH3 CH2N(CH3)2 OCH3 CO2CH2CH3
    264. OCH3 CH2N(CH3)2 OCH3 CO2H
    265. OCH3 CH2N(CH3)2 OCH3 CH2CO2CH2CH3
    266. OCH3 CH2N(CH3)2 OCH3 CH2CO2H
    267. OCH3 CH2N(CH3)2 OCH3 CH2CH2CO2CH2CH3
    268. OCH3 CH2N(CH3)2 OCH3 CH2CH2CO2H
    269. OCH3 CH2N(CH3)2 OCH3 CH2CH═CHCO2H
    270. OCH3 CH2N(CH3)2 OCH3 CH2CH═CHCO2H
    271. OCH3 CH2N(CH3)2 OCH3 CH2CH2P—O(OCH2CH3)2
    272. OCH3 CH2N(CH3)2 OCH3 CH2CH2P—O(OH)2
    273. OH CH2N+(CH3)3 Cl- OCH3 H
    274. OH CH2N+(CH3)3 Cl- OCH3 CH3
    275. OH CH2N+(CH3)3 Cl- OCH3 CO2CH2CH3
    276. OH CH2N+(CH3)3 Cl- OCH3 CO2H
    277. OH CH2N+(CH3)3 Cl- OCH3 CH2CO2CH2CH3
    278. OH CH2N+(CH3)3 Cl- OCH3 CH2CO2H
    279. OH CH2N+(CH3)3 Cl- OCH3 CH2CH2CO2CH2CH3
    280. OH CH2N+(CH3)3 Cl- OCH3 CH2CH2CO2H
    281. OH CH2N+(CH3)3 Cl- OCH3 CH2CH═CHCO2H
    282. OH CH2N+(CH3)3 Cl- OCH3 CH2CH═CHCO2H
    283. OH CH2N+(CH3)3 Cl- OCH3 CH2CH2P—O(OCH2CH3)2
    284. OH CH2N+(CH3)3 Cl- OCH3 CH2CH2P—O(OH)2
    285. OCH3 CH2N+(CH3)3 Cl- OCH3 H
    286. OCH3 CH2N+(CH3)3 Cl- OCH3 CH3
    287. OCH3 CH2N+(CH3)3 Cl- OCH3 CO2CH2CH3
    288. OCH3 CH2N+(CH3)3 Cl- OCH3 CO2H
    289. OCH3 CH2N+(CH3)3 Cl- OCH3 CH2CO2CH2CH3
    290. OCH3 CH2N+(CH3)3 Cl- OCH3 CH2CO2H
    291. OCH3 CH2N+(CH3)3 Cl- OCH3 CH2CH2CO2CH2CH3
    292. OCH3 CH2N+(CH3)3 Cl- OCH3 CH2CH2CO2H
    293. OCH3 CH2N+(CH3)3 Cl- OCH3 CH2CH═CHCO2H
    294. OCH3 CH2N+(CH3)3 Cl- OCH3 CH2CH═CHCO2H
    295. OCH3 CH2N+(CH3)3 Cl- OCH3 CH2CH2P—O(OCH2CH3)2
    296. OCH3 CH2N+(CH3)3 Cl- OCH3 CH2CH2P—O(OH)2
    297. H H OCH2C6H5 CO2CH2CH3
    298. H H OCH2C6H5 CO2H
    299. H H OCH2C6H5 CH2CO2CH2CH3
    300. H H OCH2C6H5 CH2CO2H
    301. H H OCH2C6H5 CH2CH2CO2CH2CH3
    302. H H OCH2C6H5 CH2CH2CO2H
    303. H H OCH2C6H5 CH2CH═CHCO2H
    304. H H OCH2C6H5 CH2CH═CHCO2H
    305. H H OCH2C6H5 CH2CH2P—O(OCH2CH3)2
    306. H H OCH2C6H5 CH2CH2P—O(OH)2
    307. OH H OCH2C6H5 CO2CH2CH3
    308. OH H OCH2C6H5 CO2H
    309. OH H OCH2C6H5 CH2CO2CH2CH3
    310. OH H OCH2C6H5 CH2CO2H
    311. OH H OCH2C6H5 CH2CH2CO2CH2CH3
    312. OH H OCH2C6H5 CH2CH2CO2H
    313. OH H OCH2C6H5 CH2CH═CHCO2H
    314. OH H OCH2C6H5 CH2CH═CHCO2H
    315. OH H OCH2C6H5 CH2CH2P—O(OCH2CH3)2
    316. OH H OCH2C6H5 CH2CH2P—O(OH)2
    317. OCH3 H OCH2C6H5 CO2CH2CH3
    318. OCH3 H OCH2C6H5 CO2H
    319. OCH3 H OCH2C6H5 CH2CO2CH2CH3
    320. OCH3 H OCH2C6H5 CH2CO2H
    321. OCH3 H OCH2C6H5 CH2CH2CO2CH2CH3
    322. OCH3 H OCH2C6H5 CH2CH2CO2H
    323. OCH3 H OCH2C6H5 CH2CH═CHCO2H
    324. OCH3 H OCH2C6H5 CH2CH═CHCO2H
    325. OCH3 H OCH2C6H5 CH2CH2P—O(OCH2CH3)2
    326. OCH3 H OCH2C6H5 CH2CH2P—O(OH)2
    327. OCH2CH═CH2 H OCH2C6H5 CO2CH2CH3
    328. OCH2CH═CH2 H OCH2C6H5 CO2H
    329. OCH2CH═CH2 H OCH2C6H5 CH2CO2CH2CH3
    330. OCH2CH═CH2 H OCH2C6H5 CH2CO2H
    331. OCH2CH═CH2 H OCH2C6H5 CH2CH2CO2CH2CH3
    332. OCH2CH═CH2 H OCH2C6H5 CH2CH2CO2H
    333. OCH2CH═CH2 H OCH2C6H5 CH2CH═CHCO2H
    334. OCH2CH═CH2 H OCH2C6H5 CH2CH═CHCO2H
    335. OCH2CH═CH2 H OCH2C6H5 CH2CH2P—O(OCH2CH3)2
    336. OCH2CH═CH2 H OCH2C6H5 CH2CH2P—O(OH)2
    337. OCH2C6H5 H OCH2C6H5 CO2CH2CH3
    338. OCH2C6H5 H OCH2C6H5 CO2H
    339. OCH2C6H5 H OCH2C6H5 CH2CO2CH2CH3
    340. OCH2C6H5 H OCH2C6H5 CH2CO2H
    341. OCH2C6H5 H OCH2C6H5 CH2CH2CO2CH2CH3
    342. OCH2C6H5 H OCH2C6H5 CH2CH2CO2H
    343. OCH2C6H5 H OCH2C6H5 CH2CH═CHCO2H
    344. OCH2C6H5 H OCH2C6H5 CH2CH═CHCO2H
    345. OCH2C6H5 H OCH2C6H5 CH2CH2P—O(OCH2CH3)2
    346. OCH2C6H5 H OCH2C6H5 CH2CH2P—O(OH)2
    347. Cl H OCH2C6H5 CO2CH2CH3
    348. Cl H OCH2C6H5 CO2H
    349. Cl H OCH2C6H5 CH2CO2CH2CH3
    350. Cl H OCH2C6H5 CH2CO2H
    351. Cl H OCH2C6H5 CH2CH2CO2CH2CH3
    352. Cl H OCH2C6H5 CH2CH2CO2H
    353. Cl H OCH2C6H5 CH2CH═CHCO2H
    354. Cl H OCH2C6H5 CH2CH═CHCO2H
    355. Cl H OCH2C6H5 CH2CH2P—O(OCH2CH3)2
    356. Cl H OCH2C6H5 CH2CH2P—O(OH)2
    357. NO2 H OCH2C6H5 CO2CH2CH3
    358. NO2 H OCH2C6H5 CO2H
    359. NO2 H OCH2C6H5 CH2CO2CH2CH3
    360. NO2 H OCH2C6H5 CH2CO2H
    361. NO2 H OCH2C6H5 CH2CH2CO2CH2CH3
    362. NO2 H OCH2C6H5 CH2CH2CO2H
    363. NO2 H OCH2C6H5 CH2CH═CHCO2H
    364. NO2 H OCH2C6H5 CH2CH═CHCO2H
    365. NO2 H OCH2C6H5 CH2CH2P—O(OCH2CH3)2
    366. NO2 H OCH2C6H5 CH2CH2P—O(OH)2
    367. NH2 H OCH2C6H5 CO2CH2CH3
    368. NH2 H OCH2C6H5 CO2H
    369. NH2 H OCH2C6H5 CH2CO2CH2CH3
    370. NH2 H OCH2C6H5 CH2CO2H
    371. NH2 H OCH2C6H5 CH2CH2CO2CH2CH3
    372. NH2 H OCH2C6H5 CH2CH2CO2H
    373. NH2 H OCH2C6H5 CH2CH═CHCO2H
    374. NH2 H OCH2C6H5 CH2CH═CHCO2H
    375. NH2 H OCH2C6H5 CH2CH2P—O(OCH2CH3)2
    376. NH2 H OCH2C6H5 CH2CH2P—O(OH)2
    377. NHSO2CH3 H OCH2C6H5 H
    378. NHSO2CH3 H OCH2C6H5 CH3
    379. NHSO2CH3 H OCH2C6H5 CO2CH2CH3
    380. NHSO2CH3 H OCH2C6H5 CO2H
    381. NHSO2CH3 H OCH2C6H5 CH2CO2CH2CH3
    382. NHSO2CH3 H OCH2C6H5 CH2CO2H
    383. NHSO2CH3 H OCH2C6H5 CH2CH2CO2CH2CH3
    384. NHSO2CH3 H OCH2C6H5 CH2CH2CO2H
    385. NHSO2CH3 H OCH2C6H5 CH2CH═CHCO2H
    386. NHSO2CH3 H OCH2C6H5 CH2CH═CHCO2H
    387. NHSO2CH3 H OCH2C6H5 CH2CH2P—O(OCH2CH3)2
    388. NHSO2CH3 H OCH2C6H5 CH2CH2P—O(OH)2
    389. OCH2CONH2 H OCH2C6H5 H
    390. OCH2CONH2 H OCH2C6H5 CH3
    391. OCH2CONH2 H OCH2C6H5 CO2CH2CH3
    392. OCH2CONH2 H OCH2C6H5 CO2H
    393. OCH2CONH2 H OCH2C6H5 CH2CO2CH2CH3
    394. OCH2CONH2 H OCH2C6H5 CH2CO2H
    395. OCH2CONH2 H OCH2C6H5 CH2CH2CO2CH2CH3
    396. OCH2CONH2 H OCH2C6H5 CH2CH2CO2H
    397. OCH2CONH2 H OCH2C6H5 CH2CH═CHCO2H
    398. OCH2CONH2 H OCH2C6H5 CH2CH═CHCO2H
    399. OCH2CONH2 H OCH2C6H5 CH2CH2P—O(OCH2CH3)2
    400. OCH2CONH2 H OCH2C6H5 CH2CH2P—O(OH)2
    401. OH CH2N(CH3)2 OCH2C6H5 CO2CH2CH3
    402. OH CH2N(CH3)2 OCH2C6H5 CO2H
    403. OH CH2N(CH3)2 OCH2C6H5 CH2CO2CH2CH3
    404. OH CH2N(CH3)2 OCH2C6H5 CH2CO2H
    405. OH CH2N(CH3)2 OCH2C6H5 CH2CH2CO2CH2CH3
    406. OH CH2N(CH3)2 OCH2C6H5 CH2CH2CO2H
    407. OH CH2N(CH3)2 OCH2C6H5 CH2CH═CHCO2H
    408. OH CH2N(CH3)2 OCH2C6H5 CH2CH═CHCO2H
    409. OH CH2N(CH3)2 OCH2C6H5 CH2CH2P—O(OCH2CH3)2
    410. OH CH2N(CH3)2 OCH2C6H5 CH2CH2P—O(OH)2
    411. OCH3 CH2N(CH3)2 OCH2C6H5 CO2CH2CH3
    412. OCH3 CH2N(CH3)2 OCH2C6H5 CO2H
    413. OCH3 CH2N(CH3)2 OCH2C6H5 CH2CO2CH2CH3
    414. OCH3 CH2N(CH3)2 OCH2C6H5 CH2CO2H
    415. OCH3 CH2N(CH3)2 OCH2C6H5 CH2CH2CO2CH2CH3
    416. OCH3 CH2N(CH3)2 OCH2C6H5 CH2CH2CO2H
    417. OCH3 CH2N(CH3)2 OCH2C6H5 CH2CH═CHCO2H
    418. OCH3 CH2N(CH3)2 OCH2C6H5 CH2CH═CHCO2H
    419. OCH3 CH2N(CH3)2 OCH2C6H5 CH2CH2P—O(OCH2CH3)2
    420. OCH3 CH2N(CH3)2 OCH2C6H5 CH2CH2P—O(OH)2
    421. OH CH2N+(CH3)3 Cl- OCH2C6H5 H
    422. OH CH2N+(CH3)3 Cl- OCH2C6H5 CH3
    423. OH CH2N+(CH3)3 Cl- OCH2C6H5 CO2CH2CH3
    424. OH CH2N+(CH3)3 Cl- OCH2C6H5 CO2H
    425. OH CH2N+(CH3)3 Cl- OCH2C6H5 CH2CO2CH2CH3
    426. OH CH2N+(CH3)3 Cl- OCH2C6H5 CH2CO2H
    427. OH CH2N+(CH3)3 Cl- OCH2C6H5 CH2CH2CO2CH2CH3
    428. OH CH2N+(CH3)3 Cl- OCH2C6H5 CH2CH2CO2H
    429. OH CH2N+(CH3)3 Cl- OCH2C6H5 CH2CH═CHCO2H
    430. OH CH2N+(CH3)3 Cl- OCH2C6H5 CH2CH═CHCO2H
    431. OH CH2N+(CH3)3 Cl- OCH2C6H5 CH2CH2P—O(OCH2CH3)2
    432. OH CH2N+(CH3)3 Cl- OCH2C6H5 CH2CH2P—O(OH)2
    433. OCH3 CH2N+(CH3)3 Cl- OCH2C6H5 H
    434. OCH3 CH2N+(CH3)3 Cl- OCH2C6H5 CH3
    435. OCH3 CH2N+(CH3)3 Cl- OCH2C6H5 CO2CH2CH3
    436. OCH3 CH2N+(CH3)3 Cl- OCH2C6H5 CO2H
    437. OCH3 CH2N+(CH3)3 Cl- OCH2C6H5 CH2CO2CH2CH3
    438. OCH3 CH2N+(CH3)3 Cl- OCH2C6H5 CH2CO2H
    439. OCH3 CH2N+(CH3)3 Cl- OCH2C6H5 CH2CH2CO2CH2CH3
    440. OCH3 CH2N+(CH3)3 Cl- OCH2C6H5 CH2CH2CO2H
    441. OCH3 CH2N+(CH3)3 Cl- OCH2C6H5 CH2CH═CHCO2H
    442. OCH3 CH2N+(CH3)3 Cl- OCH2C6H5 CH2CH═CHCO2H
    443. OCH3 CH2N+(CH3)3 Cl- OCH2C6H5 CH2CH2P—O(OCH2CH3)2
    444. OCH3 CH2N+(CH3)3 Cl- OCH2C6H5 CH2CH2P—O(OH)2
    445. H H OCH2CH═CH2 CO2CH2CH3
    446. H H OCH2CH═CH2 CO2H
    447. H H OCH2CH═CH2 CH2CO2CH2CH3
    448. H H OCH2CH═CH2 CH2CO2H
    449. H H OCH2CH═CH2 CH2CH2CO2CH2CH3
    450. H H OCH2CH═CH2 CH2CH2CO2H
    451. H H OCH2CH═CH2 CH2CH═CHCO2H
    452. H H OCH2CH═CH2 CH2CH═CHCO2H
    453. H H OCH2CH═CH2 CH2CH2P—O(OCH2CH3)2
    454. H H OCH2CH═CH2 CH2CH2P—O(OH)2
    455. OH H OCH2CH═CH2 CO2CH2CH3
    456. OH H OCH2CH═CH2 CO2H
    457. OH H OCH2CH═CH2 CH2CO2CH2CH3
    458. OH H OCH2CH═CH2 CH2CO2H
    459. OH H OCH2CH═CH2 CH2CH2CO2CH2CH3
    460. OH H OCH2CH═CH2 CH2CH2CO2H
    461. OH H OCH2CH═CH2 CH2CH═CHCO2H
    462. OH H OCH2CH═CH2 CH2CH═CHCO2H
    463. OH H OCH2CH═CH2 CH2CH2P—O(OCH2CH3)2
    464. OH H OCH2CH═CH2 CH2CH2P—O(OH)2
    465. OCH3 H OCH2CH═CH2 CO2CH2CH3
    466. OCH3 H OCH2CH═CH2 CO2H
    467. OCH3 H OCH2CH═CH2 CH2CO2CH2CH3
    468. OCH3 H OCH2CH═CH2 CH2CO2H
    469. OCH3 H OCH2CH═CH2 CH2CH2CO2CH2CH3
    470. OCH3 H OCH2CH═CH2 CH2CH2CO2H
    471. OCH3 H OCH2CH═CH2 CH2CH═CHCO2H
    472. OCH3 H OCH2CH═CH2 CH2CH═CHCO2H
    473. OCH3 H OCH2CH═CH2 CH2CH2P—O(OCH2CH3)2
    474. OCH3 H OCH2CH═CH2 CH2CH2P—O(OH)2
    475. OCH2CH═CH2 H OCH2CH═CH2 CO2CH2CH3
    476. OCH2CH═CH2 H OCH2CH═CH2 CO2H
    477. OCH2CH═CH2 H OCH2CH═CH2 CH2CO2CH2CH3
    478. OCH2CH═CH2 H OCH2CH═CH2 CH2CO2H
    479. OCH2CH═CH2 H OCH2CH═CH2 CH2CH2CO2CH2CH3
    480. OCH2CH═CH2 H OCH2CH═CH2 CH2CH2CO2H
    481. OCH2CH═CH2 H OCH2CH═CH2 CH2CH═CHCO2H
    482. OCH2CH═CH2 H OCH2CH═CH2 CH2CH═CHCO2H
    483. OCH2CH═CH2 H OCH2CH═CH2 CH2CH2P—O(OCH2CH3)2
    484. OCH2CH═CH2 H OCH2CH═CH2 CH2CH2P—O(OH)2
    485. OCH2C6H5 H OCH2CH═CH2 CO2CH2CH3
    486. OCH2C6H5 H OCH2CH═CH2 CO2H
    487. OCH2C6H5 H OCH2CH═CH2 CH2CO2CH2CH3
    488. OCH2C6H5 H OCH2CH═CH2 CH2CO2H
    489. OCH2C6H5 H OCH2CH═CH2 CH2CH2CO2CH2CH3
    490. OCH2C6H5 H OCH2CH═CH2 CH2CH2CO2H
    491. OCH2C6H5 H OCH2CH═CH2 CH2CH═CHCO2H
    492. OCH2C6H5 H OCH2CH═CH2 CH2CH═CHCO2H
    493. OCH2C6H5 H OCH2CH═CH2 CH2CH2P—O(OCH2CH3)2
    494. OCH2C6H5 H OCH2CH═CH2 CH2CH2P—O(OH)2
    495. Cll H OCH2CH═CH2 CO2CH2CH3
    496. Cl H OCH2CH═CH2 CO2H
    497. Cl H OCH2CH═CH2 CH2CO2CH2CH3
    498. Cl H OCH2CH═CH2 CH2CO2H
    499. Cl H OCH2CH═CH2 CH2CH2CO2CH2CH3
    500. Cl H OCH2CH═CH2 CH2CH2CO2H
    501. Cl H OCH2CH═CH2 CH2CH═CHCO2H
    502. Cl H OCH2CH═CH2 CH2CH═CHCO2H
    503. Cl H OCH2CH═CH2 CH2CH2P—O(OCH2CH3)2
    504. Cl H OCH2CH═CH2 CH2CH2P—O(OH)2
    505. NO2 H OCH2CH═CH2 CO2CH2CH3
    506. NO2 H OCH2CH═CH2 CO2H
    507. NO2 H OCH2CH═CH2 CH2CO2CH2CH3
    508. NO2 H OCH2CH═CH2 CH2CO2H
    509. NO2 H OCH2CH═CH2 CH2CH2CO2CH2CH3
    510. NO2 H OCH2CH═CH2 CH2CH2CO2H
    511. NO2 H OCH2CH═CH2 CH2CH═CHCO2H
    512. NO2 H OCH2CH═CH2 CH2CH═CHCO2H
    513. NO2 H OCH2CH═CH2 CH2CH2P—O(OCH2CH3)2
    514. NO2 H OCH2CH═CH2 CH2CH2P—O(OH)2
    515. NH2 H OCH2CH═CH2 CO2CH2CH3
    516. NH2 H OCH2CH═CH2 CO2H
    517. NH2 H OCH2CH═CH2 CH2CO2CH2CH3
    518. NH2 H OCH2CH═CH2 CH2CO2H
    519. NH2 H OCH2CH═CH2 CH2CH2CO2CH2CH3
    520. NH2 H OCH2CH═CH2 CH2CH2CO2H
    521. NH2 H OCH2CH═CH2 CH2CH═CHCO2H
    522. NH2 H OCH2CH═CH2 CH2CH═CHCO2H
    523. NH2 H OCH2CH═CH2 CH2CH2P—O(OCH2CH3)2
    524. NH2 H OCH2CH═CH2 CH2CH2P—O(OH)2
    525. NHSO2CH3 H OCH2CH═CH2 H
    526. NHSO2CH3 H OCH2CH═CH2 CH3
    527. NHSO2CH3 H OCH2CH═CH2 CO2CH2CH3
    528. NHSO2CH3 H OCH2CH═CH2 CO2H
    529. NHSO2CH3 H OCH2CH═CH2 CH2CO2CH2CH3
    530. NHSO2CH3 H OCH2CH═CH2 CH2CO2H
    531. NHSO2CH3 H OCH2CH═CH2 CH2CH2CO2CH2CH3
    532. NHSO2CH3 H OCH2CH═CH2 CH2CH2CO2H
    533. NHSO2CH3 H OCH2CH═CH2 CH2CH═CHCO2H
    534. NHSO2CH3 H OCH2CH═CH2 CH2CH═CHCO2H
    535. NHSO2CH3 H OCH2CH═CH2 CH2CH2P—O(OCH2CH3)2
    536. NHSO2CH3 H OCH2CH═CH2 CH2CH2P—O(OH)2
    537. OCH2CONH2 H OCH2CH═CH2 H
    538. OCH2CONH2 H OCH2CH═CH2 CH3
    539. OCH2CONH2 H OCH2CH═CH2 CO2CH2CH3
    540. OCH2CONH2 H OCH2CH═CH2 CO2H
    541. OCH2CONH2 H OCH2CH═CH2 CH2CO2CH2CH3
    542. OCH2CONH2 H OCH2CH═CH2 CH2CO2H
    543. OCH2CONH2 H OCH2CH═CH2 CH2CH2CO2CH2CH3
    544. OCH2CONH2 H OCH2CH═CH2 CH2CH2CO2H
    545. OCH2CONH2 H OCH2CH═CH2 CH2CH═CHCO2H
    546. OCH2CONH2 H OCH2CH═CH2 CH2CH═CHCO2H
    547. OCH2CONH2 H OCH2CH═CH2 CH2CH2P—O(OCH2CH3)2
    548. OCH2CONH2 H OCH2CH═CH2 CH2CH2P—O(OH)2
    549. OH CH2N(CH3)2 OCH2CH═CH2 CO2CH2CH3
    550. OH CH2N(CH3)2 OCH2CH═CH2 CO2H
    551. OH CH2N(CH3)2 OCH2CH═CH2 CH2CO2CH2CH3
    552. OH CH2N(CH3)2 OCH2CH═CH2 CH2CO2H
    553. OH CH2N(CH3)2 OCH2CH═CH2 CH2CH2CO2CH2CH3
    554. OH CH2N(CH3)2 OCH2CH═CH2 CH2CH2CO2H
    555. OH CH2N(CH3)2 OCH2CH═CH2 CH2CH═CHCO2H
    556. OH CH2N(CH3)2 OCH2CH═CH2 CH2CH═CHCO2H
    557. OH CH2N(CH3)2 OCH2CH═CH2 CH2CH2P—O(OCH2CH3)2
    558. OH CH2N(CH3)2 OCH2CH═CH2 CH2CH2P—O(OH)2
    559. OCH3 CH2N(CH3)2 OCH2CH═CH2 CO2CH2CH3
    560. OCH3 CH2N(CH3)2 OCH2CH═CH2 CO2H
    561. OCH3 CH2N(CH3)2 OCH2CH═CH2 CH2CO2CH2CH3
    562. OCH3 CH2N(CH3)2 OCH2CH═CH2 CH2CO2H
    563. OCH3 CH2N(CH3)2 OCH2CH═CH2 CH2CH2CO2CH2CH3
    564. OCH3 CH2N(CH3)2 OCH2CH═CH2 CH2CH2CO2H
    565. OCH3 CH2N(CH3)2 OCH2CH═CH2 CH2CH═CHCO2H
    566. OCH3 CH2N(CH3)2 OCH2CH═CH2 CH2CH═CHCO2H
    567. OCH3 CH2N(CH3)2 OCH2CH═CH2 CH2CH2P—O(OCH2CH3)2
    568. OCH3 CH2N(CH3)2 OCH2CH═CH2 CH2CH2P—O(OH)2
    569. OH CH2N+(CH3)3 Cl- OCH2CH═CH2 H
    570. OH CH2N+(CH3)3 Cl- OCH2CH═CH2 CH3
    571. OH CH2N+(CH3)3 Cl- OCH2CH═CH2 CO2CH2CH3
    572. OH CH2N+(CH3)3 Cl- OCH2CH═CH2 CO2H
    573. OH CH2N+(CH3)3 Cl- OCH2CH═CH2 CH2CO2CH2CH3
    574. OH CH2N+(CH3)3 Cl- OCH2CH═CH2 CH2CO2H
    575. OH CH2N+(CH3)3 Cl- OCH2CH═CH2 CH2CH2CO2CH2CH3
    576. OH CH2N+(CH3)3 Cl- OCH2CH═CH2 CH2CH2CO2H
    577. OH CH2N+(CH3)3 Cl- OCH2CH═CH2 CH2CH═CHCO2H
    578. OH CH2N+(CH3)3 Cl- OCH2CH═CH2 CH2CH═CHCO2H
    579. OH CH2N+(CH3)3 Cl- OCH2CH═CH2 CH2CH2P—O(OCH2CH3)2
    580. OH CH2N+(CH3)3 Cl- OCH2CH═CH2 CH2CH2P—O(OH)2
    581. OCH3 CH2N+(CH3)3 Cl- OCH2CH═CH2 H
    582. OCH3 CH2N+(CH3)3 Cl- OCH2CH═CH2 CH3
    583. OCH3 CH2N+(CH3)3 Cl- OCH2CH═CH2 CO2CH2CH3
    584. OCH3 CH2N+(CH3)3 Cl- OCH2CH═CH2 CO2H
    585. OCH3 CH2N+(CH3)3 Cl- OCH2CH═CH2 CH2CO2CH2CH3
    586. OCH3 CH2N+(CH3)3 Cl- OCH2CH═CH2 CH2CO2H
    587. OCH3 CH2N+(CH3)3 Cl- OCH2CH═CH2 CH2CH2CO2CH2CH3
    588. OCH3 CH2N+(CH3)3 Cl- OCH2CH═CH2 CH2CH2CO2H
    589. OCH3 CH2N+(CH3)3 Cl- OCH2CH═CH2 CH2CH═CHCO2H
    590. OCH3 CH2N+(CH3)3 Cl- OCH2CH═CH2 CH2CH═CHCO2H
    591. OCH3 CH2N+(CH3)3 Cl- OCH2CH═CH2 CH2CH2P—O(OCH2CH3)2
    592. OCH3 CH2N+(CH3)3 Cl- OCH2CH═CH2 CH2CH2P—O(OH)2
    593. H H OCH2CONH2 H
    594. H H OCH2CONH2 CH3
    595. H H OCH2CONH2 CO2CH2CH3
    596. H H OCH2CONH2 CO2H
    597. H H OCH2CONH2 CH2CO2CH2CH3
    598. H H OCH2CONH2 CH2CO2H
    599. H H OCH2CONH2 CH2CH2CO2CH2CH3
    600. H H OCH2CONH2 CH2CH2CO2H
    601. H H OCH2CONH2 CH2CH═CHCO2H
    602. H H OCH2CONH2 CH2CH═CHCO2H
    603. H H OCH2CONH2 CH2CH2P—O(OCH2CH3)2
    604. H H OCH2CONH2 CH2CH2P—O(OH)2
    605. OH H OCH2CONH2 H
    606. OH H OCH2CONH2 CH3
    607. OH H OCH2CONH2 CO2CH2CH3
    608. OH H OCH2CONH2 CO2H
    609. OH H OCH2CONH2 CH2CO2CH2CH3
    610. OH H OCH2CONH2 CH2CO2H
    611. OH H OCH2CONH2 CH2CH2CO2CH2CH3
    612. OH H OCH2CONH2 CH2CH2CO2H
    613. OH H OCH2CONH2 CH2CH═CHCO2H
    614. OH H OCH2CONH2 CH2CH═CHCO2H
    615. OH H OCH2CONH2 CH2CH2P—O(OCH2CH3)2
    616. OH H OCH2CONH2 CH2CH2P—O(OH)2
    617. OCH3 H OCH2CONH2 H
    618. OCH3 H OCH2CONH2 CH3
    619. OCH3 H OCH2CONH2 CO2CH2CH3
    620. OCH3 H OCH2CONH2 CO2H
    621. OCH3 H OCH2CONH2 CH2CO2CH2CH3
    622. OCH3 H OCH2CONH2 CH2CO2H
    623. OCH3 H OCH2CONH2 CH2CH2CO2CH2CH3
    624. OCH3 H OCH2CONH2 CH2CH2CO2H
    625. OCH3 H OCH2CONH2 CH2CH═CHCO2H
    626. OCH3 H OCH2CONH2 CH2CH═CHCO2H
    627. OCH3 H OCH2CONH2 CH2CH2P—O(OCH2CH3)2
    628. OCH3 H OCH2CONH2 CH2CH2P—O(OH)2
    629. OCH2CH═CH2 H OCH2CONH2 H
    630. OCH2CH═CH2 H OCH2CONH2 CH3
    631. OCH2CH═CH2 H OCH2CONH2 CO2CH2CH3
    632. OCH2CH═CH2 H OCH2CONH2 CO2H
    633. OCH2CH═CH2 H OCH2CONH2 CH2CO2CH2CH3
    634. OCH2CH═CH2 H OCH2CONH2 CH2CO2H
    635. OCH2CH═CH2 H OCH2CONH2 CH2CH2CO2CH2CH3
    636. OCH2CH═CH2 H OCH2CONH2 CH2CH2CO2H
    637. OCH2CH═CH2 H OCH2CONH2 CH2CH═CHCO2H
    638. OCH2CH═CH2 H OCH2CONH2 CH2CH═CHCO2H
    639. OCH2CH═CH2 H OCH2CONH2 CH2CH2P—O(OCH2CH3)2
    640. OCH2CH═CH2 H OCH2CONH2 CH2CH2P—O(OH)2
    641. OCH2C6H5 H OCH2CONH2 H
    642. OCH2C6H5 H OCH2CONH2 CH3
    643. OCH2C6H5 H OCH2CONH2 CO2CH2CH3
    644. OCH2C6H5 H OCH2CONH2 CO2H
    645. OCH2C6H5 H OCH2CONH2 CH2CO2CH2CH3
    646. OCH2C6H5 H OCH2CONH2 CH2CO2H
    647. OCH2C6H5 H OCH2CONH2 CH2CH2CO2CH2CH3
    648. OCH2C6H5 H OCH2CONH2 CH2CH2CO2H
    649. OCH2C6H5 H OCH2CONH2 CH2CH═CHCO2H
    650. OCH2C6H5 H OCH2CONH2 CH2CH═CHCO2H
    651. OCH2C6H5 H OCH2CONH2 CH2CH2P—O(OCH2CH3)2
    652. OCH2C6H5 H OCH2CONH2 CH2CH2P—O(OH)2
    653. Cl H OCH2CONH2 H
    654. Cl H OCH2CONH2 CH3
    655. Cl H OCH2CONH2 CO2CH2CH3
    656. Cl H OCH2CONH2 CO2H
    657. Cl H OCH2CONH2 CH2CO2CH2CH3
    658. Cl H OCH2CONH2 CH2CO2H
    659. Cl H OCH2CONH2 CH2CH2CO2CH2CH3
    660. Cl H OCH2CONH2 CH2CH2CO2H
    661. Cl H OCH2CONH2 CH2CH═CHCO2H
    662. Cl H OCH2CONH2 CH2CH═CHCO2H
    663. Cl H OCH2CONH2 CH2CH2P—O(OCH2CH3)2
    664. Cl H OCH2CONH2 CH2CH2P—O(OH)2
    665. NO2 H OCH2CONH2 H
    666. NO2 H OCH2CONH2 CH3
    667. NO2 H OCH2CONH2 CO2CH2CH3
    668. NO2 H OCH2CONH2 CO2H
    669. NO2 H OCH2CONH2 CH2CO2CH2CH3
    670. NO2 H OCH2CONH2 CH2CO2H
    671. NO2 H OCH2CONH2 CH2CH2CO2CH2CH3
    672. NO2 H OCH2CONH2 CH2CH2CO2H
    673. NO2 H OCH2CONH2 CH2CH═CHCO2H
    674. NO2 H OCH2CONH2 CH2CH═CHCO2H
    675. NO2 H OCH2CONH2 CH2CH2P—O(OCH2CH3)2
    676. NO2 H OCH2CONH2 CH2CH2P—O(OH)2
    677. NH2 H OCH2CONH2 H
    678. NH2 H OCH2CONH2 CH3
    679. NH2 H OCH2CONH2 CO2CH2CH3
    680. NH2 H OCH2CONH2 CO2H
    681. NH2 H OCH2CONH2 CH2CO2CH2CH3
    682. NH2 H OCH2CONH2 CH2CO2H
    683. NH2 H OCH2CONH2 CH2CH2CO2CH2CH3
    684. NH2 H OCH2CONH2 CH2CH2CO2H
    685. NH2 H OCH2CONH2 CH2CH═CHCO2H
    686. NH2 H OCH2CONH2 CH2CH═CHCO2H
    687. NH2 H OCH2CONH2 CH2CH2P—O(OCH2CH3)2
    688. NH2 H OCH2CONH2 CH2CH2P—O(OH)2
    689. NHSO2CH3 H OCH2CONH2 H
    690. NHSO2CH3 H OCH2CONH2 CH3
    691. NHSO2CH3 H OCH2CONH2 CO2CH2CH3
    692. NHSO2CH3 H OCH2CONH2 CO2H
    693. NHSO2CH3 H OCH2CONH2 CH2CO2CH2CH3
    694. NHSO2CH3 H OCH2CONH2 CH2CO2H
    695. NHSO2CH3 H OCH2CONH2 CH2CH2CO2CH2CH3
    696. NHSO2CH3 H OCH2CONH2 CH2CH2CO2H
    697. NHSO2CH3 H OCH2CONH2 CH2CH═CHCO2H
    698. NHSO2CH3 H OCH2CONH2 CH2CH═CHCO2H
    699. NHSO2CH3 H OCH2CONH2 CH2CH2P—O(OCH2CH3)2
    700. NHSO2CH3 H OCH2CONH2 CH2CH2P—O(OH)2
    701. OCH2CONH2 H OCH2CONH2 H
    702. OCH2CONH2 H OCH2CONH2 CH3
    703. OCH2CONH2 H OCH2CONH2 CO2CH2CH3
    704. OCH2CONH2 H OCH2CONH2 CO2H
    705. OCH2CONH2 H OCH2CONH2 CH2CO2CH2CH3
    706. OCH2CONH2 H OCH2CONH2 CH2CO2H
    707. OCH2CONH2 H OCH2CONH2 CH2CH2CO2CH2CH3
    708. OCH2CONH2 H OCH2CONH2 CH2CH2CO2H
    709. OCH2CONH2 H OCH2CONH2 CH2CH═CHCO2H
    710. OCH2CONH2 H OCH2CONH2 CH2CH═CHCO2H
    711. OCH2CONH2 H OCH2CONH2 CH2CH2P—O(OCH2CH3)2
    712. OCH2CONH2 H OCH2CONH2 CH2CH2P—O(OH)2
    713. OH CH2N(CH3)2 OCH2CONH2 H
    714. OH CH2N(CH3)2 OCH2CONH2 CH3
    715. OH CH2N(CH3)2 OCH2CONH2 CO2CH2CH3
    716. OH CH2N(CH3)2 OCH2CONH2 CO2H
    717. OH CH2N(CH3)2 OCH2CONH2 CH2CO2CH2CH3
    718. OH CH2N(CH3)2 OCH2CONH2 CH2CO2H
    719. OH CH2N(CH3)2 OCH2CONH2 CH2CH2CO2CH2CH3
    720. OH CH2N(CH3)2 OCH2CONH2 CH2CH2CO2H
    721. OH CH2N(CH3)2 OCH2CONH2 CH2CH═CHCO2H
    722. OH CH2N(CH3)2 OCH2CONH2 CH2CH═CHCO2H
    723. OH CH2N(CH3)2 OCH2CONH2 CH2CH2P—O(OCH2CH3)2
    724. OH CH2N(CH3)2 OCH2CONH2 CH2CH2P—O(OH)2
    725. OCH3 CH2N(CH3)2 OCH2CONH2 H
    726. OCH3 CH2N(CH3)2 OCH2CONH2 CH3
    727. OCH3 CH2N(CH3)2 OCH2CONH2 CO2CH2CH3
    728. OCH3 CH2N(CH3)2 OCH2CONH2 CO2H
    729. OCH3 CH2N(CH3)2 OCH2CONH2 CH2CO2CH2CH3
    730. OCH3 CH2N(CH3)2 OCH2CONH2 CH2CO2H
    731. OCH3 CH2N(CH3)2 OCH2CONH2 CH2CH2CO2CH2CH3
    732. OCH3 CH2N(CH3)2 OCH2CONH2 CH2CH2CO2H
    733. OCH3 CH2N(CH3)2 OCH2CONH2 CH2CH═CHCO2H
    734. OCH3 CH2N(CH3)2 OCH2CONH2 CH2CH═CHCO2H
    735. OCH3 CH2N(CH3)2 OCH2CONH2 CH2CH2P—O(OCH2CH3)2
    736. OCH3 CH2N(CH3)2 OCH2CONH2 CH2CH2P—O(OH)2
    737. OH CH2N+(CH3)3 Cl- OCH2CONH2 H
    738. OH CH2N+(CH3)3 Cl- OCH2CONH2 CH3
    739. OH CH2N+(CH3)3 Cl- OCH2CONH2 CO2CH2CH3
    740. OH CH2N+(CH3)3 Cl- OCH2CONH2 CO2H
    741. OH CH2N+(CH3)3 Cl- OCH2CONH2 CH2CO2CH2CH3
    742. OH CH2N+(CH3)3 Cl- OCH2CONH2 CH2CO2H
    743. OH CH2N+(CH3)3 Cl- OCH2CONH2 CH2CH2CO2CH2CH3
    744. OH CH2N+(CH3)3 Cl- OCH2CONH2 CH2CH2CO2H
    745. OH CH2N+(CH3)3 Cl- OCH2CONH2 CH2CH═CHCO2H
    746. OH CH2N+(CH3)3 Cl- OCH2CONH2 CH2CH═CHCO2H
    747. OH CH2N+(CH3)3 Cl- OCH2CONH2 CH2CH2P—O(OCH2CH3)2
    748. OH CH2N+(CH3)3 Cl- OCH2CONH2 CH2CH2P—O(OH)2
    749. OCH3 CH2N+(CH3)3 Cl- OCH2CONH2 H
    750. OCH3 CH2N+(CH3)3 Cl- OCH2CONH2 CH3
    751. OCH3 CH2N+(CH3)3 Cl- OCH2CONH2 CO2CH2CH3
    752. OCH3 CH2N+(CH3)3 Cl- OCH2CONH2 CO2H
    753. OCH3 CH2N+(CH3)3 Cl- OCH2CONH2 CH2CO2CH2CH3
    754. OCH3 CH2N+(CH3)3 Cl- OCH2CONH2 CH2CO2H
    755. OCH3 CH2N+(CH3)3 Cl- OCH2CONH2 CH2CH2CO2CH2CH3
    756. OCH3 CH2N+(CH3)3 Cl- OCH2CONH2 CH2CH2CO2H
    757. OCH3 CH2N+(CH3)3 Cl- OCH2CONH2 CH2CH═CHCO2H
    758. OCH3 CH2N+(CH3)3 Cl- OCH2CONH2 CH2CH═CHCO2H
    759. OCH3 CH2N+(CH3)3 Cl- OCH2CONH2 CH2CH2P—O(OCH2CH3)2
    760. OCH3 CH2N+(CH3)3 Cl- OCH2CONH2 CH2CH2P—O(OH)2
    761. H H H CH2-tetrazole
    762. OCH3 H H CH2-tetrazole
    763. OCH2C6H5 H H CH2-tetrazole
  • TABLE VI
    Figure US20140155355A1-20140605-C00033
    Cl is present when Q is other than O.
    Ex. # X Q R1
    1. H CH3 H
    2. H CH2CH═CH2 H
    3. H CH2C≡CH H
    4. H O H
    5. H CH3 CH3
    6. H CH2CH═CH2 CH3
    7. H CH2C≡CH CH3
    8. H O CH3
    9. H CH3 CH2CO2CH2CH3
    10. H CH2CH═CH2 CH2CO2CH2CH3
    11. H CH2C≡CH CH2CO2CH2CH3
    12. H O CH2CO2CH2CH3
    13. H CH3 CH2CH2PO(OCH2CH3)2
    14. H CH2CH═CH2 CH2CH2PO(OCH2CH3)2
    15. H CH2C≡CH CH2CH2PO(OCH2CH3)2
    16. H O CH2CH2PO(OCH2CH3)2
    17. OH CH3 H
    18. OH CH2CH═CH2 H
    19. OH CH2C≡CH H
    20. OH O H
    21. OH CH3 CH3
    22. OH CH2CH═CH2 CH3
    23. OH CH2C≡CH CH3
    24. OH O CH3
    25. OH CH3 CH2CO2CH2CH3
    26. OH CH2CH═CH2 CH2CO2CH2CH3
    27. OH CH2C≡CH CH2CO2CH2CH3
    28. OH O CH2CO2CH2CH3
    29. OH CH3 CH2CH2PO(OCH2CH3)2
    30. OH CH2CH═CH2 CH2CH2PO(OCH2CH3)2
    31. OH CH2C≡CH CH2CH2PO(OCH2CH3)2
    32. OH O CH2CH2PO(OCH2CH3)2
    33. OCH3 CH3 H
    34. OCH3 CH2CH═CH2 H
    35. OCH3 CH2C≡CH H
    36. OCH3 O H
    37. OCH3 CH3 CH3
    38. OCH3 CH2CH═CH2 CH3
    39. OCH3 CH2C≡CH CH3
    40. OCH3 O CH3
    41. OCH3 CH3 CH2CO2CH2CH3
    42. OCH3 CH2CH═CH2 CH2CO2CH2CH3
    43. OCH3 CH2C≡CH CH2CO2CH2CH3
    44. OCH3 O CH2CO2CH2CH3
    45. OCH3 CH3 CH2CH2PO(OCH2CH3)2
    46. OCH3 CH2CH═CH2 CH2CH2PO(OCH2CH3)2
    47. OCH3 CH2C≡CH CH2CH2PO(OCH2CH3)2
    48. OCH3 O CH2CH2PO(OCH2CH3)2
    49. Cl CH3 H
    50. Cl CH2CH═CH2 H
    51. Cl CH2C≡CH H
    52. Cl O H
    53. Cl CH3 CH3
    54. Cl CH2CH═CH2 CH3
    55. Cl CH2C≡CH CH3
    56. Cl O CH3
    57. Cl CH3 CH2CO2CH2CH3
    58. Cl CH2CH═CH2 CH2CO2CH2CH3
    59. Cl CH2C≡CH CH2CO2CH2CH3
    60. Cl O CH2CO2CH2CH3
    61. Cl CH3 CH2CH2PO(OCH2CH3)2
    62. Cl CH2CH═CH2 CH2CH2PO(OCH2CH3)2
    63. Cl CH2C≡CH CH2CH2PO(OCH2CH3)2
    64. Cl O CH2CH2PO(OCH2CH3)2
    65. NO2 CH3 H
    66. NO2 CH2CH═CH2 H
    67. NO2 CH2C≡CH H
    68. NO2 O H
    69. NO2 CH3 CH3
    70. NO2 CH2CH═CH2 CH3
    71. NO2 CH2C≡CH CH3
    72. NO2 O CH3
    73. NO2 CH3 CH2CO2CH2CH3
    74. NO2 CH2CH═CH2 CH2CO2CH2CH3
    75. NO2 CH2C≡CH CH2CO2CH2CH3
    76. NO2 O CH2CO2CH2CH3
    77. NO2 CH3 CH2CH2PO(OCH2CH3)2
    78. NO2 CH2CH═CH2 CH2CH2PO(OCH2CH3)2
    79. NO2 CH2C≡CH CH2CH2PO(OCH2CH3)2
    80. NO2 O CH2CH2PO(OCH2CH3)2
    81. NH2 CH3 H
    82. NH2 CH2CH═CH2 H
    83. NH2 CH2C≡CH H
    84. NH2 O H
    85. NH2 CH3 CH3
    86. NH2 CH2CH═CH2 CH3
    87. NH2 CH2C≡CH CH3
    88. NH2 O CH3
    89. NH2 CH3 CH2CO2CH2CH3
    90. NH2 CH2CH═CH2 CH2CO2CH2CH3
    91. NH2 CH2C≡CH CH2CO2CH2CH3
    92. NH2 O CH2CO2CH2CH3
    93. NH2 CH3 CH2CH2PO(OCH2CH3)2
    94. NH2 CH2CH═CH2 CH2CH2PO(OCH2CH3)2
    95. NH2 CH2C≡CH CH2CH2PO(OCH2CH3)2
    96. NH2 O CH2CH2PO(OCH2CH3)2
    97. NHSO2CH3 CH3 H
    98. NHSO2CH3 CH2CH═CH2 H
    99. NHSO2CH3 CH2C≡CH H
    100. NHSO2CH3 O H
    101. NHSO2CH3 CH3 CH3
    102. NHSO2CH3 CH2CH═CH2 CH3
    103. NHSO2CH3 CH2C≡CH CH3
    104. NHSO2CH3 O CH3
    105. NHSO2CH3 CH3 CH2CO2CH2CH3
    106. NHSO2CH3 CH2CH═CH2 CH2CO2CH2CH3
    107. NHSO2CH3 CH2C≡CH CH2CO2CH2CH3
    108. NHSO2CH3 O CH2CO2CH2CH3
    109. NHSO2CH3 CH3 CH2CH2PO(OCH2CH3)2
    110. NHSO2CH3 CH2CH═CH2 CH2CH2PO(OCH2CH3)2
    111. NHSO2CH3 CH2C≡CH CH2CH2PO(OCH2CH3)2
    112. NHSO2CH3 O CH2CH2PO(OCH2CH3)2
    113. OCH2C6H5 CH3 H
    114. OCH2C6H5 CH2CH═CH2 H
    115. OCH2C6H5 CH2C≡CH H
    116. OCH2C6H5 O H
    117. OCH2C6H5 CH3 CH3
    118. OCH2C6H5 CH2CH═CH2 CH3
    119. OCH2C6H5 CH2C≡CH CH3
    120. OCH2C6H5 O CH3
    121. OCH2C6H5 CH3 CH2CO2CH2CH3
    122. OCH2C6H5 CH2CH═CH2 CH2CO2CH2CH3
    123. OCH2C6H5 CH2C≡CH CH2CO2CH2CH3
    124. OCH2C6H5 O CH2CO2CH2CH3
    125. OCH2C6H5 CH3 CH2CH2PO(OCH2CH3)2
    126. OCH2C6H5 CH2CH═CH2 CH2CH2PO(OCH2CH3)2
    127. OCH2C6H5 CH2C≡CH CH2CH2PO(OCH2CH3)2
    128. OCH2C6H5 O CH2CH2PO(OCH2CH3)2
    129. OCH2CH2C6H5 CH3 H
    130. OCH2CH2C6H5 CH2CH═CH2 H
    131. OCH2CH2C6H5 CH2C≡CH H
    132. OCH2CH2C6H5 O H
    133. OCH2CH2C6H5 CH3 CH3
    134. OCH2CH2C6H5 CH2CH═CH2 CH3
    135. OCH2CH2C6H5 CH2C≡CH CH3
    136. OCH2CH2C6H5 O CH3
    137. OCH2C6H4—Cl CH3 H
    (2, 3, or 4)
    138. OCH2C6H4—Cl CH2CH═CH2 H
    (2, 3, or 4)
    139. OCH2C6H4—Cl CH2C≡CH H
    (2, 3, or 4)
    140. OCH2C6H4—Cl O H
    (2, 3, or 4)
    141. OCH2C6H4—Cl CH3 CH3
    (2, 3, or 4)
    142. OCH2C6H4—Cl CH2CH═CH2 CH3
    (2, 3, or 4)
    143. OCH2C6H4—Cl CH2C≡CH CH3
    (2, 3, or 4)
    144. OCH2C6H4—Cl O CH3
    (2, 3, or 4)
    145. OCH2C6H4OCH3 CH3 H
    (2, 3, or 4)
    146. OCH2C6H4OCH3 CH2CH═CH2 H
    (2, 3, or 4)
    147. OCH2C6H4OCH3 CH2C≡CH H
    (2, 3, or 4)
    148. OCH2C6H4OCH3 O H
    (2, 3, or 4)
    149. OCH2C6H4OCH3 CH3 CH3
    (2, 3, or 4)
    150. OCH2C6H4OCH3 CH2CH═CH2 CH3
    (2, 3, or 4)
    151. OCH2C6H4OCH3 CH2C≡CH CH3
    (2, 3, or 4)
    152. OCH2C6H4OCH3 O CH3
    (2, 3, or 4)
    153. OCH2C6H4C6H5 CH3 H
    154. OCH2C6H4C6H5 CH2CH═CH2 H
    155. OCH2C6H4C6H5 CH2C≡CH H
    156. OCH2C6H4C6H5 O H
    157. OCH2C6H4C6H5 CH3 CH3
    158. OCH2C6H4C6H5 CH2CH═CH2 CH3
    159. OCH2C6H4C6H5 CH2C≡CH CH3
    160. OCH2C6H4C6H5 O CH3
  • TABLE VII
    Figure US20140155355A1-20140605-C00034
    Cl is present when Q is other than O.
    Ex. # X Q R1
    1. H CH3 H
    2. H CH2CH═CH2 H
    3. H CH2C≡CH H
    4. H O H
    5. H CH3 CH3
    6. H CH2CH═CH2 CH3
    7. H CH2C≡CH CH3
    8. H O CH3
    9. H CH3 CH2CO2CH2CH3
    10. H CH2CH═CH2 CH2CO2CH2CH3
    11. H CH2C≡CH CH2CO2CH2CH3
    12. H O CH2CO2CH2CH3
    13. H CH3 CH2CH2PO(OCH2CH3)2
    14. H CH2CH═CH2 CH2CH2PO(OCH2CH3)2
    15. H CH2C≡CH CH2CH2PO(OCH2CH3)2
    16. H O CH2CH2PO(OCH2CH3)2
    17. OH CH3 H
    18. OH CH2CH═CH2 H
    19. OH CH2C≡CH H
    20. OH O H
    21. OH CH3 CH3
    22. OH CH2CH═CH2 CH3
    23. OH CH2C≡CH CH3
    24. OH O CH3
    25. OH CH3 CH2CO2CH2CH3
    26. OH CH2CH═CH2 CH2CO2CH2CH3
    27. OH CH2C≡CH CH2CO2CH2CH3
    28. OH O CH2CO2CH2CH3
    29. OH CH3 CH2CH2PO(OCH2CH3)2
    30. OH CH2CH═CH2 CH2CH2PO(OCH2CH3)2
    31. OH CH2C≡CH CH2CH2PO(OCH2CH3)2
    32. OH O CH2CH2PO(OCH2CH3)2
    33. OCH3 CH3 H
    34. OCH3 CH2CH═CH2 H
    35. OCH3 CH2C≡CH H
    36. OCH3 O H
    37. OCH3 CH3 CH3
    38. OCH3 CH2CH═CH2 CH3
    39. OCH3 CH2C≡CH CH3
    40. OCH3 O CH3
    41. OCH3 CH3 CH2CO2CH2CH3
    42. OCH3 CH2CH═CH2 CH2CO2CH2CH3
    43. OCH3 CH2C≡CH CH2CO2CH2CH3
    44. OCH3 O CH2CO2CH2CH3
    45. OCH3 CH3 CH2CH2PO(OCH2CH3)2
    46. OCH3 CH2CH═CH2 CH2CH2PO(OCH2CH3)2
    47. OCH3 CH2C≡CH CH2CH2PO(OCH2CH3)2
    48. OCH3 O CH2CH2PO(OCH2CH3)2
    49. Cl CH3 H
    50. Cl CH2CH═CH2 H
    51. Cl CH2C≡CH H
    52. Cl O H
    53. Cl CH3 CH3
    54. Cl CH2CH═CH2 CH3
    55. Cl CH2C≡CH CH3
    56. Cl O CH3
    57. Cl CH3 CH2CO2CH2CH3
    58. Cl CH2CH═CH2 CH2CO2CH2CH3
    59. Cl CH2C≡CH CH2CO2CH2CH3
    60. Cl O CH2CO2CH2CH3
    61. Cl CH3 CH2CH2PO(OCH2CH3)2
    62. Cl CH2CH═CH2 CH2CH2PO(OCH2CH3)2
    63. Cl CH2C≡CH CH2CH2PO(OCH2CH3)2
    64. Cl O CH2CH2PO(OCH2CH3)2
    65. NO2 CH3 H
    66. NO2 CH2CH═CH2 H
    67. NO2 CH2C≡CH H
    68. NO2 O H
    69. NO2 CH3 CH3
    70. NO2 CH2CH═CH2 CH3
    71. NO2 CH2C≡CH CH3
    72. NO2 O CH3
    73. NO2 CH3 CH2CO2CH2CH3
    74. NO2 CH2CH═CH2 CH2CO2CH2CH3
    75. NO2 CH2C≡CH CH2CO2CH2CH3
    76. NO2 O CH2CO2CH2CH3
    77. NO2 CH3 CH2CH2PO(OCH2CH3)2
    78. NO2 CH2CH═CH2 CH2CH2PO(OCH2CH3)2
    79. NO2 CH2C≡CH CH2CH2PO(OCH2CH3)2
    80. NO2 O CH2CH2PO(OCH2CH3)2
    81. NH2 CH3 H
    82. NH2 CH2CH═CH2 H
    83. NH2 CH2C≡CH H
    84. NH2 O H
    85. NH2 CH3 CH3
    86. NH2 CH2CH═CH2 CH3
    87. NH2 CH2C≡CH CH3
    88. NH2 O CH3
    89. NH2 CH3 CH2CO2CH2CH3
    90. NH2 CH2CH═CH2 CH2CO2CH2CH3
    91. NH2 CH2C≡CH CH2CO2CH2CH3
    92. NH2 O CH2CO2CH2CH3
    93. NH2 CH3 CH2CH2PO(OCH2CH3)2
    94. NH2 CH2CH═CH2 CH2CH2PO(OCH2CH3)2
    95. NH2 CH2C≡CH CH2CH2PO(OCH2CH3)2
    96. NH2 O CH2CH2PO(OCH2CH3)2
    97. NHSO2CH3 CH3 H
    98. NHSO2CH3 CH2CH═CH2 H
    99. NHSO2CH3 CH2C≡CH H
    100. NHSO2CH3 O H
    101. NHSO2CH3 CH3 CH3
    102. NHSO2CH3 CH2CH═CH2 CH3
    103. NHSO2CH3 CH2C≡CH CH3
    104. NHSO2CH3 O CH3
    105. NHSO2CH3 CH3 CH2CO2CH2CH3
    106. NHSO2CH3 CH2CH═CH2 CH2CO2CH2CH3
    107. NHSO2CH3 CH2C≡CH CH2CO2CH2CH3
    108. NHSO2CH3 O CH2CO2CH2CH3
    109. NHSO2CH3 CH3 CH2CH2PO(OCH2CH3)2
    110. NHSO2CH3 CH2CH═CH2 CH2CH2PO(OCH2CH3)2
    111. NHSO2CH3 CH2C≡CH CH2CH2PO(OCH2CH3)2
    112. NHSO2CH3 O CH2CH2PO(OCH2CH3)2
    113. OCH2C6H5 CH3 H
    114. OCH2C6H5 CH2CH═CH2 H
    115. OCH2C6H5 CH2C≡CH H
    116. OCH2C6H5 O H
    117. OCH2C6H5 CH3 CH3
    118. OCH2C6H5 CH2CH═CH2 CH3
    119. OCH2C6H5 CH2C≡CH CH3
    120. OCH2C6H5 O CH3
    121. OCH2C6H5 CH3 CH2CO2CH2CH3
    122. OCH2C6H5 CH2CH═CH2 CH2CO2CH2CH3
    123. OCH2C6H5 CH2C≡CH CH2CO2CH2CH3
    124. OCH2C6H5 O CH2CO2CH2CH3
    125. OCH2C6H5 CH3 CH2CH2PO(OCH2CH3)2
    126. OCH2C6H5 CH2CH═CH2 CH2CH2PO(OCH2CH3)2
    127. OCH2C6H5 CH2C≡CH CH2CH2PO(OCH2CH3)2
    128. OCH2C6H5 O CH2CH2PO(OCH2CH3)2
    129. OCH2CH2C6H5 CH3 H
    130. OCH2CH2C6H5 CH2CH═CH2 H
    131. OCH2CH2C6H5 CH2C≡CH H
    132. OCH2CH2C6H5 O H
    133. OCH2CH2C6H5 CH3 CH3
    134. OCH2CH2C6H5 CH2CH═CH2 CH3
    135. OCH2CH2C6H5 CH2C≡CH CH3
    136. OCH2CH2C6H5 O CH3
    137. OCH2C6H4-2-Cl CH3 H
    138. OCH2C6H4-3-Cl CH3 H
    139. OCH2C6H4-4-Cl CH3 H
    140. OCH2C6H4-2-Cl CH2CH═CH2 H
    141. OCH2C6H4-3-Cl CH2CH═CH2 H
    142. OCH2C6H4-4-Cl CH2CH═CH2 H
    143. OCH2C6H4-2-Cl CH2C≡CH H
    144. OCH2C6H4-3-Cl CH2C≡CH H
    145. OCH2C6H4-4-Cl CH2C≡CH H
    146. OCH2C6H4-2-Cl O H
    147. OCH2C6H4-3-Cl O H
    148. OCH2C6H4-4-Cl O H
    149. OCH2C6H4-2-Cl CH3 CH3
    150. OCH2C6H4-3-Cl CH3 CH3
    151. OCH2C6H4-4-Cl CH3 CH3
    152. OCH2C6H4-2-Cl CH2CH═CH2 CH3
    153. OCH2C6H4-3-Cl CH2CH═CH2 CH3
    154. OCH2C6H4-4-Cl CH2CH═CH2 CH3
    155. OCH2C6H4-2-Cl CH2C≡CH CH3
    156. OCH2C6H4-3-Cl CH2C≡CH CH3
    157. OCH2C6H4-4-Cl CH2C≡CH CH3
    158. OCH2C6H4-2-Cl O CH3
    159. OCH2C6H4-3-Cl O CH3
    160. OCH2C6H4-4-Cl O CH3
    161. OCH2C6H4-2- CH3 H
    OCH3
    162. OCH2C6H4-3- CH3 H
    OCH3
    163. OCH2C6H4-4- CH3 H
    OCH3
    164. OCH2C6H4-2- CH2CH═CH2 H
    OCH3
    165. OCH2C6H4-3- CH2CH═CH2 H
    OCH3
    166. OCH2C6H4-4- CH2CH═CH2 H
    OCH3
    167. OCH2C6H4-2- CH2C≡CH H
    OCH3
    168. OCH2C6H4-3- CH2C≡CH H
    OCH3
    169. OCH2C6H4-4- CH2C≡CH H
    OCH3
    170. OCH2C6H4-2- O H
    OCH3
    171. OCH2C6H4-3- O H
    OCH3
    172. OCH2C6H4-4- O H
    OCH3
    173. OCH2C6H4-2- CH3 CH3
    OCH3
    174. OCH2C6H4-3- CH3 CH3
    OCH3
    175. OCH2C6H4-4- CH3 CH3
    OCH3
    176. OCH2C6H4-2- CH2CH═CH2 CH3
    OCH3
    177. OCH2C6H4-3- CH2CH═CH2 CH3
    OCH3
    178. OCH2C6H4-4- CH2CH═CH2 CH3
    OCH3
    179. OCH2C6H4-2- CH2C≡CH CH3
    OCH3
    180. OCH2C6H4-3- CH2C≡CH CH3
    OCH3
    181. OCH2C6H4-4- CH2C≡CH CH3
    OCH3
    182. OCH2C6H4-2- O CH3
    OCH3
    183. OCH2C6H4-3- O CH3
    OCH3
    184. OCH2C6H4-4- O CH3
    OCH3
    185. OCH2C6H4C6H5 CH3 H
    186. OCH2C6H4C6H5 CH2CH═CH2 H
    187. OCH2C6H4C6H5 CH2C≡CH H
    188. OCH2C6H4C6H5 O H
    189. OCH2C6H4C6H5 CH3 CH3
    190. OCH2C6H4C6H5 CH2CH═CH2 CH3
    191. OCH2C6H4C6H5 CH2C≡CH CH3
    192. OCH2C6H4C6H5 O CH3
  • TABLE VIIIa
    Figure US20140155355A1-20140605-C00035
    Ex. # X R1
    1. NO2 H
    2. NO2 CH3
    3. CN H
    4. CN CH3
    5. CONH2 H
    6. CONH2 CH3
    7. CO2H H
    8. CO2H CH3
    9. NHSO2CH3 H
    10. NHSO2CH3 CH3
    11. OCH2C6H5 H
    12. OCH2C6H5 CH3
    13. OCH2C6H4C6H5 H
    14. OCH2C6H4C6H5 CH3
    15. OCH2CH2C6H5 H
    16. OCH2CH2C6H5 CH3
    17. OCH2C6H4Cl (2, 3, or 4) H
    18. OCH2C6H4Cl (2, 3, or 4) CH3
    19. OCH2C6H4OCH3 (2, 3, or 4) H
    20. OCH2C6H4OCH3 (2, 3, or 4) CH3
    21. OCH2C6H4F (2, 3, or 4) H
    22. OCH2C6H4F (2, 3, or 4) CH3
    23. OCH2C6H4CN (2, 3, or 4) H
    24. OCH2C6H4CN (2, 3, or 4) CH3
    25. OCH2C6H4CONH2 (2, 3, or 4) H
    26. OCH2C6H4CONH2 (2, 3, or 4) CH3
    27. OCH2C6H4CH2CN (2, 3, or 4) H
    28. OCH2C6H4CH2CN (2, 3, or 4) CH3
    29. OCH2C6H4CH2CONH2 (2, 3, or 4) H
    30. OCH2C6H4CH2CONH2 (2, 3, or 4) CH3
    31. OCH2C6H4OCH2CN (2, 3, or 4) H
    32. OCH2C6H4OCH2CN (2, 3, or 4) CH3
    33. OCH2C6H4OCH2CONH2 (2, 3, or 4) H
    34. OCH2C6H4OCH2CONH2 (2, 3, or 4) CH3
    35. OCH2C6H3 (CN)2(3,5) H
    36. OCH2C6H3(CN)2 (3,5) CH3
    37. OCH2C6H3(CONH2)2 (3,5) H
    38. OCH2C6H3(CONH2)2 (3,5) CH3
    39. OCH2C6H4—NO2 (2, 3, or 4) H
    40. OCH2C6H4—NO2 (2, 3, or 4) CH3
    41. OCH2C6H4—CF3 (2, 3, or 4) H
    42. OCH2C6H4—CF3 (2, 3, or 4) CH3
    43. OCH2C6H4—CH3 (2, 3, or 4) H
    44. OCH2C6H4—CH3 (2, 3, or 4) CH3
    45. OCH2C6H4—NHSO2CH3 (2, 3, or 4) H
    46. OCH2C6H4—NHSO2CH3 (2, 3, or 4) CH3
    47. OCH2C6H4C6H4CN (2, 3, or 4) H
    48. OCH2C6H4C6H4CN (2, 3, or 4) CH3
    49. OCH2C6H4C6H4CONH2 (2, 3, or 4) H
    50. OCH2C6H4C6H4CONH2 (2, 3, or 4) CH3
    51. OCH2C6H4C6H4CO2H (2, 3, or 4) H
    52. OCH2C6H4C6H4CO2H (2, 3, or 4) CH3
  • TABLE VIIIb
    Figure US20140155355A1-20140605-C00036
    Ex. # X′ R1
    1. NO2 H
    2. NO2 CH3
    3. CN H
    4. CN CH3
    5. CONH2 H
    6. CONH2 CH3
    7. CO2H H
    8. CO2H CH3
    9. NHSO2CH3 H
    10. NHSO2CH3 CH3
    11. OCH2C6H5 H
    12. OCH2C6H5 CH3
    13. OCH2CH2C6H5 H
    14. OCH2C6H4C6H5 H
    15. OCH2C6H4C6H5 CH3
    16. OCH2CH2C6H5 CH3
    17. OCH2C6H4—Cl (2, 3, or 4) H
    18. OCH2C6H4—Cl (2, 3, or 4) CH3
    19. OCH2C6H4—OCH3 (2, 3, or 4) H
    20. OCH2C6H4—OCH3 (2, 3, or 4) CH3
    21. OCH2C6H4—F (2, 3, or 4) H
    22. OCH2C6H4—F (2, 3, or 4) CH3
    23. OCH2C6H4CN (2, 3, or 4) H
    24. OCH2C6H4CN (2, 3, or 4) CH3
    25. OCH2C6H4CONH2 (2, 3, or 4) H
    26. OCH2C6H4CONH2 (2, 3, or 4) CH3
    27. OCH2C6H4CH2CN (2, 3, or 4) H
    28. OCH2C6H4CH2CN (2, 3, or 4) CH3
    29. OCH2C6H4CH2CONH2 (2, 3, or 4) H
    30. OCH2C6H4CH2CONH2 (2, 3, or 4) CH3
    31. OCH2C6H4OCH2CN (2, 3, or 4) H
    32. OCH2C6H4OCH2CN (2, 3, or 4) CH3
    33. OCH2C6H4OCH2CONH2 (2, 3, or 4) H
    34. OCH2C6H4OCH2CONH2 (2, 3, or 4) CH3
    35. OCH2C6H3(CN)2 (3, 5) H
    36. OCH2C6H3(CN)2 (3, 5) CH3
    37. OCH2C6H3(CONH2)2 (3, 5) H
    38. OCH2C6H3(CONH2)2 (3, 5) CH3
    39. OCH2C6H4—NO2 (2, 3, or 4) H
    40. OCH2C6H4—NO2 (2, 3, or 4) CH3
    41. OCH2C6H4—CF3 (2, 3, or 4) H
    42. OCH2C6H4—CF3 (2, 3, or 4) CH3
    43. OCH2C6H4—CH3 (2, 3, or 4) H
    44. OCH2C6H4—CH3 (2, 3, or 4) CH3
    45. OCH2C6H4—NHSO2CH3 (2, 3, or 4) H
    46. OCH2C6H4—NHSO2CH3 (2, 3, or 4) CH3
    47. OCH2C6H4C6H4CN (2, 3, or 4) H
    48. OCH2C6H4C6H4CN (2, 3, or 4) CH3
    49. OCH2C6H4C6H4CONH2 (2, 3, or 4) H
    50. OCH2C6H4C6H4CONH2 (2, 3, or 4) CH3
    51. OCH2C6H4C6H4CO2H (2, 3, or 4) H
    52. OCH2C6H4C6H4CO2H (2, 3, or 4) CH3
  • TABLE VIIIc
    Figure US20140155355A1-20140605-C00037
    Ex. # X R1
    1. NHCH2C6H5 H
    2. NHCH2C6H5 CH3
    3. NHCH2C6H4C6H5 H
    4. NHCH2C6H4C6H5 CH3
    5. NHCH2CH2C6H5 H
    6. NHCH2CH2C6H5 CH3
    7. NHCH2C6H4—Cl (2, 3, or 4) H
    8. NHCH2C6H4—Cl (2, 3, or 4) CH3
    9. NHCH2C6H4—OCH3 (2, 3, or 4) H
    10. NHCH2C6H4—OCH3 (2, 3, or 4) CH3
    11. NHCH2C6H4—F (2, 3, or 4) H
    12. NHCH2C6H4—F (2, 3, or 4) CH3
    13. NHCH2C6H4CN (2, 3, or 4) H
    14. NHCH2C6H4CN (2, 3, or 4) CH3
    15. NHCH2C6H4CONH2 (2, 3, or 4) H
    16. NHCH2C6H4CONH2 (2, 3, or 4) CH3
    17. NHCH2C6H4CH2CN (2, 3, or 4) H
    18. NHCH2C6H4CH2CN (2, 3, or 4) CH3
    19. NHCH2C6H4CH2CONH2 (2, 3, or 4) H
    20. NHCH2C6H4CH2CONH2 (2, 3, or 4) CH3
    21. NHCH2C6H4OCH2CN (2, 3, or 4) H
    22. NHCH2C6H4OCH2CN (2, 3, or 4) CH3
    23. NHCH2C6H4OCH2CONH2 (2, 3, or 4) H
    24. NHCH2C6H4OCH2CONH2 (2, 3, or 4) CH3
    25. NHCH2C6H3(CN)2 (3, 5) H
    26. NHCH2C6H3(CN)2 (3, 5) CH3
    27. NHCH2C6H3(CONH2)2 (3, 5) H
    28. NHCH2C6H3(CONH2)2 (3, 5) CH3
    29. NHCH2C6H4—NO2 (2, 3, or 4) H
    30. NHCH2C6H4—NO2 (2, 3, or 4) CH3
    31. NHCH2C6H4—CF3 (2, 3, or 4) H
    32. NHCH2C6H4—CF3 (2, 3, or 4) CH3
    33. NHCH2C6H4—CH3 (2, 3, or 4) H
    34. NHCH2C6H4—CH3 (2, 3, or 4) CH3
    35. NHCH2C6H4—NHSO2CH3 (2, 3, or 4) H
    36. NHCH2C6H4—NHSO2CH3 (2, 3, or 4) CH3
    37. NHCH2C6H4C6H4CN (2, 3, or 4) H
    38. NHCH2C6H4C6H4CN (2, 3, or 4) CH3
    39. NHCH2C6H4C6H4CONH2 (2, 3, or 4) H
    40. NHCH2C6H4C6H4CONH2 (2, 3, or 4) CH3
    41. NHCH2C6H4C6H4CO2H (2, 3, or 4) H
    42. NHCH2C6H4C6H4CO2H (2, 3, or 4) CH3
  • TABLE VIIId
    Figure US20140155355A1-20140605-C00038
    1. NHCH2C6H5 H
    2. NHCH2C6H5 CH3
    3. NHCH2C6H4C6H5 H
    4. NHCH2C6H4C6H5 CH3
    5. NHCH2CH2C6H5 H
    6. NHCH2CH2C6H5 CH3
    7. NHCH2C6H4—Cl (2, 3, or 4) H
    8. NHCH2C6H4—Cl (2, 3, or 4) CH3
    9. NHCH2C6H4—OCH3 (2, 3, or 4) H
    10. NHCH2C6H4—OCH3 (2, 3, or 4) CH3
    11. NHCH2C6H4—F (2, 3, or 4) H
    12. NHCH2C6H4—F (2, 3, or 4) CH3
    13. NHCH2C6H4CN (2, 3, or 4) H
    14. NHCH2C6H4CN (2, 3, or 4) CH3
    15. NHCH2C6H4CONH2 (2, 3, or 4) H
    16. NHCH2C6H4CONH2 (2, 3, or 4) CH3
    17. NHCH2C6H4CH2CN (2, 3, or 4) H
    18. NHCH2C6H4CH2CN (2, 3, or 4) CH3
    19. NHCH2C6H4CH2CONH2 (2, 3, or 4) H
    20. NHCH2C6H4CH2CONH2 (2, 3, or 4) CH3
    21. NHCH2C6H4OCH2CN (2, 3, or 4) H
    22. NHCH2C6H4OCH2CN (2, 3, or 4) CH3
    23. NHCH2C6H4OCH2CONH2 (2, 3, or 4) H
    24. NHCH2C6H4OCH2CONH2 (2, 3, or 4) CH3
    25. NHCH2C6H3(CN)2 (3, 5) H
    26. NHCH2C6H3(CN)2 (3, 5) CH3
    27. NHCH2C6H3(CONH2)2 (3, 5) H
    28. NHCH2C6H3(CONH2)2 (3, 5) CH3
    29. NHCH2C6H4—NO2 (2, 3, or 4) H
    30. NHCH2C6H4—NO2 (2, 3, or 4) CH3
    31. NHCH2C6H4—CF3 (2, 3, or 4) H
    32. NHCH2C6H4—CF3 (2, 3, or 4) CH3
    33. NHCH2C6H4—CH3 (2, 3, or 4) H
    34. NHCH2C6H4—CH3 (2, 3, or 4) CH3
    35. NHCH2C6H4—NHSO2CH3 (2, 3, or 4) H
    36. NHCH2C6H4—NHSO2CH3 (2, 3, or 4) CH3
    37. NHCH2C6H4C6H4CN (2, 3, or 4) H
    38. NHCH2C6H4C6H4CN (2, 3, or 4) CH3
    39. NHCH2C6H4C6H4CONH2 (2, 3, or 4) H
    40. NHCH2C6H4C6H4CONH2 (2, 3, or 4) CH3
    41. NHCH2C6H4C6H4CO2H (2, 3, or 4) H
    42. NHCH2C6H4C6H4CO2H (2, 3, or 4) CH3
  • TABLE IXa
    Figure US20140155355A1-20140605-C00039
    Ex # X R1
    1. O(CH2CH2O)2CH2CH2OH H
    2. O(CH2CH2O)2CH2CH2OH CH3
    3. O(CH2CH2O)2CH2CH2OCH3 H
    4. O(CH2CH2O)2CH2CH2OCH3 CH3
    5. O(CH2CH2O)3CH2CH2OH H
    6. O(CH2CH2O)3CH2CH2OH CH3
    7. O(CH2CH2O)3CH2CH2OCH3 H
    8. O(CH2CH2O)3CH2CH2OCH3 CH3
    9. O(CH2CH2O)4CH2CH2OH H
    10. O(CH2CH2O)4CH2CH2OH CH3
    11. O(CH2CH2O)4CH2CH2OCH3 H
    12. O(CH2CH2O)4CH2CH2OCH3 CH3
    13. O(CH2CH2O)5CH2CH2OH H
    14. O(CH2CH2O)5CH2CH2OH CH3
    15. O(CH2CH2O)5CH2CH2OCH3 H
    16. O(CH2CH2O)5CH2CH2OCH3 CH3
    17. O(CH2CH2O)7CH2CH2OH H
    18. O(CH2CH2O)7CH2CH2OH CH3
    19. O(CH2CH2O)7CH2CH2OCH3 H
    20. O(CH2CH2O)7CH2CH2OCH3 CH3
    21. O(CH2CH2O)9CH2CH2OH H
    22. O(CH2CH2O)9CH2CH2OH CH3
    23. O(CH2CH2O)9CH2CH2OCH3 H
    24. O(CH2CH2O)9CH2CH2OCH3 CH3
  • TABLE IXb
    Figure US20140155355A1-20140605-C00040
    Ex # X R1
    1. O(CH2CH2O)2CH2CH2OH H
    2. O(CH2CH2O)2CH2CH2OH CH3
    3. O(CH2CH2O)2CH2CH2OCH3 H
    4. O(CH2CH2O)2CH2CH2OCH3 CH3
    5. O(CH2CH2O)3CH2CH2OH H
    6. O(CH2CH2O)3CH2CH2OH CH3
    7. O(CH2CH2O)3CH2CH2OCH3 H
    8. O(CH2CH2O)3CH2CH2OCH3 CH3
    9. O(CH2CH2O)4CH2CH2OH H
    10. O(CH2CH2O)4CH2CH2OH CH3
    11. O(CH2CH2O)4CH2CH2OCH3 H
    12. O(CH2CH2O)4CH2CH2OCH3 CH3
    13. O(CH2CH2O)5CH2CH2OH H
    14. O(CH2CH2O)5CH2CH2OH CH3
    15. O(CH2CH2O)5CH2CH2OCH3 H
    16. O(CH2CH2O)5CH2CH2OCH3 CH3
    17. O(CH2CH2O)7CH2CH2OH H
    18. O(CH2CH2O)7CH2CH2OH CH3
    19. O(CH2CH2O)7CH2CH2OCH3 H
    20. O(CH2CH2O)7CH2CH2OCH3 CH3
    21. O(CH2CH2O)9CH2CH2OH H
    22. O(CH2CH2O)9CH2CH2OH CH3
    23. O(CH2CH2O)9CH2CH2OCH3 H
    24. O(CH2CH2O)9CH2CH2OCH3 CH3
  • TABLE Xa
    Figure US20140155355A1-20140605-C00041
    Number X Q R1
    1. O(CH2CH2O)2CH2CH2OH CH3 H
    2. O(CH2CH2O)2CH2CH2OH CH3 CH3
    3. O(CH2CH2O)2CH2CH2OCH3 CH3 H
    4. O(CH2CH2O)2CH2CH2OCH3 CH3 CH3
    5. O(CH2CH2O)3CH2CH2OH CH3 H
    6. O(CH2CH2O)3CH2CH2OH CH3 CH3
    7. O(CH2CH2O)3CH2CH2OCH3 CH3 H
    8. O(CH2CH2O)3CH2CH2OCH3 CH3 CH3
    9. O(CH2CH2O)4CH2CH2OH CH3 H
    10. O(CH2CH2O)4CH2CH2OH CH3 CH3
    11. O(CH2CH2O)4CH2CH2OCH3 CH3 H
    12. O(CH2CH2O)4CH2CH2OCH3 CH3 CH3
    13. O(CH2CH2O)5CH2CH2OH CH3 H
    14. O(CH2CH2O)5CH2CH2OH CH3 CH3
    15. O(CH2CH2O)5CH2CH2OCH3 CH3 H
    16. O(CH2CH2O)5CH2CH2OCH3 CH3 CH3
    17. O(CH2CH2O)7CH2CH2OH CH3 H
    18. O(CH2CH2O)7CH2CH2OH CH3 CH3
    19. O(CH2CH2O)7CH2CH2OCH3 CH3 H
    20. O(CH2CH2O)7CH2CH2OCH3 CH3 CH3
    21. O(CH2CH2O)9CH2CH2OH CH3 H
    22. O(CH2CH2O)9CH2CH2OH CH3 CH3
    23. O(CH2CH2O)9CH2CH2OCH3 CH3 H
    24. O(CH2CH2O)9CH2CH2OCH3 CH3 CH3
    25. O(CH2CH2O)2CH2CH2OH CH2C≡CH H
    26. O(CH2CH2O)2CH2CH2OH CH2C≡CH CH3
    27. O(CH2CH2O)2CH2CH2OCH3 CH2C≡CH H
    28. O(CH2CH2O)2CH2CH2OCH3 CH2C≡CH CH3
    29. O(CH2CH2O)3CH2CH2OH CH2C≡CH H
    30. O(CH2CH2O)3CH2CH2OH CH2C≡CH CH3
    31. O(CH2CH2O)3CH2CH2OCH3 CH2C≡CH H
    32. O(CH2CH2O)3CH2CH2OCH3 CH2C≡CH CH3
    33. O(CH2CH2O)4CH2CH2OH CH2C≡CH H
    34. O(CH2CH2O)4CH2CH2OH CH2C≡CH CH3
    35. O(CH2CH2O)4CH2CH2OCH3 CH2C≡CH H
    36. O(CH2CH2O)4CH2CH2OCH3 CH2C≡CH CH3
    37. O(CH2CH2O)5CH2CH2OH CH2C≡CH H
    38. O(CH2CH2O)5CH2CH2OH CH2C≡CH CH3
    39. O(CH2CH2O)5CH2CH2OCH3 CH2C≡CH H
    40. O(CH2CH2O)5CH2CH2OCH3 CH2C≡CH CH3
    41. O(CH2CH2O)7CH2CH2OH CH2C≡CH H
    42. O(CH2CH2O)7CH2CH2OH CH2C≡CH CH3
    43. O(CH2CH2O)7CH2CH2OCH3 CH2C≡CH H
    44. O(CH2CH2O)7CH2CH2OCH3 CH2C≡CH CH3
    45. O(CH2CH2O)9CH2CH2OH CH2C≡CH H
    46. O(CH2CH2O)9CH2CH2OH CH2C≡CH CH3
    47. O(CH2CH2O)9CH2CH2OCH3 CH2C≡CH H
    48. O(CH2CH2O)9CH2CH2OCH3 CH2C≡CH CH3
  • TABLE Xb
    Figure US20140155355A1-20140605-C00042
    Number X Q R1
    1. O(CH2CH2O)2CH2CH2OH CH3 H
    2. O(CH2CH2O)2CH2CH2OH CH3 CH3
    3. O(CH2CH2O)2CH2CH2OCH3 CH3 H
    4. O(CH2CH2O)2CH2CH2OCH3 CH3 CH3
    5. O(CH2CH2O)3CH2CH2OH CH3 H
    6. O(CH2CH2O)3CH2CH2OH CH3 CH3
    7. O(CH2CH2O)3CH2CH2OCH3 CH3 H
    8. O(CH2CH2O)3CH2CH2OCH3 CH3 CH3
    9. O(CH2CH2O)4CH2CH2OH CH3 H
    10. O(CH2CH2O)4CH2CH2OH CH3 CH3
    11. O(CH2CH2O)4CH2CH2OCH3 CH3 H
    12. O(CH2CH2O)4CH2CH2OCH3 CH3 CH3
    13. O(CH2CH2O)5CH2CH2OH CH3 H
    14. O(CH2CH2O)5CH2CH2OH CH3 CH3
    15. O(CH2CH2O)5CH2CH2OCH3 CH3 H
    16. O(CH2CH2O)5CH2CH2OCH3 CH3 CH3
    17. O(CH2CH2O)7CH2CH2OH CH3 H
    18. O(CH2CH2O)7CH2CH2OH CH3 CH3
    19. O(CH2CH2O)7CH2CH2OCH3 CH3 H
    20. O(CH2CH2O)7CH2CH2OCH3 CH3 CH3
    21. O(CH2CH2O)9CH2CH2OH CH3 H
    22. O(CH2CH2O)9CH2CH2OH CH3 CH3
    23. O(CH2CH2O)9CH2CH2OCH3 CH3 H
    24. O(CH2CH2O)9CH2CH2OCH3 CH3 CH3
    25. O(CH2CH2O)2CH2CH2OH CH2C≡CH H
    26. O(CH2CH2O)2CH2CH2OH CH2C≡CH CH3
    27. O(CH2CH2O)2CH2CH2OCH3 CH2C≡CH H
    28. O(CH2CH2O)2CH2CH2OCH3 CH2C≡CH CH3
    29. O(CH2CH2O)3CH2CH2OH CH2C≡CH H
    30. O(CH2CH2O)3CH2CH2OH CH2C≡CH CH3
    31. O(CH2CH2O)3CH2CH2OCH3 CH2C≡CH H
    32. O(CH2CH2O)3CH2CH2OCH3 CH2C≡CH CH3
    33. O(CH2CH2O)4CH2CH2OH CH2C≡CH H
    34. O(CH2CH2O)4CH2CH2OH CH2C≡CH CH3
    35. O(CH2CH2O)4CH2CH2OCH3 CH2C≡CH H
    36. O(CH2CH2O)4CH2CH2OCH3 CH2C≡CH CH3
    37. O(CH2CH2O)5CH2CH2OH CH2C≡CH H
    38. O(CH2CH2O)5CH2CH2OH CH2C≡CH CH3
    39. O(CH2CH2O)5CH2CH2OCH3 CH2C≡CH H
    40. O(CH2CH2O)5CH2CH2OCH3 CH2C≡CH CH3
    41. O(CH2CH2O)7CH2CH2OH CH2C≡CH H
    42. O(CH2CH2O)7CH2CH2OH CH2C≡CH CH3
    43. O(CH2CH2O)7CH2CH2OCH3 CH2C≡CH H
    44. O(CH2CH2O)7CH2CH2OCH3 CH2C≡CH CH3
    45. O(CH2CH2O)9CH2CH2OH CH2C≡CH H
    46. O(CH2CH2O)9CH2CH2OH CH2C≡CH CH3
    47. O(CH2CH2O)9CH2CH2OCH3 CH2C≡CH H
    48. O(CH2CH2O)9CH2CH2OCH3 CH2C≡CH CH3
  • Numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise that as specifically described herein.

Claims (23)

1-13. (canceled)
14. A method of treating a disease, comprising: administering to a mammal in need thereof a therapeutically effective amount of a compound selected from Tables A, I, IIa, IIb, IIIa, IIIb, IVa, IVb, IVc, IVd, V, VIIIa, VIIIb, VIIIc, VIIId, IXa, and IXb, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein the disease is selected from disease sets (a) and (b):
(a) obesity, Type 2 diabetes, hypertension, dyslipidemia, high blood pressure, and insulin resistance; and,
(b) a co-morbidty of obesity selected from Type 2 diabetes, Metabolic Syndrome, dementia, hypertension, pulmonary hypoventilation syndrome, coronary artery disease, arterial sclerotic disease, and high cholesterol:
TABLE A
Figure US20140155355A1-20140605-C00043
Ex# X Y Z 1 OCH2C6H5 H2 H 2 OCH2C6H4—CO2CH3 (3) H2 H 3 OCH2C6H4—CONH2 (4) H2 H 4 OCH2C6H4—CONH2 (3) H2 H 5 OCH2CH═CH—CO2CH2CH3 H2 H 6 OCH2C6H5 O OCH3 7 OCH2C6H4—OCH2CONH2 H2 H (3) 8 OCH2C6H4—CH2CONH2 (3) H2 H 9 H H2 OH 10 OCH2C6H5 H2 OH 11 OCH2C6H5 O OCH3 13 OCH2C6H4CH3 H2 H (3) 14 OCH2C6H4CF3 H2 H (3) 15 OCH2C6H4CH3 H2 H (4) 16 OCH2C6H4CN H2 H (3) 17 NHCH2C6H4CN H2 H (4) 18 NHCH2C6H4OH H2 H (4) 19 NHCH2C6H4OH H2 H (3)
TABLE I
Figure US20140155355A1-20140605-C00044
Ex. # X X1 R R1 1 H H CH3 H 2 H H H H 3 H H CH3 CH3 4 H H H CH3 5 OH H CH3 H 6 OH H H H 7 OH H CH3 CH3 8 OH H H CH3 9 OCH3 H CH3 H 10 OCH3 H H H 11 OCH3 H CH3 CH3 12 OCH3 H H CH3 13 OCH2C6H5 H CH3 H 14 OCH2C6H5 H H H 15 OCH2C6H5 H CH3 CH3 16 OCH2C6H5 H H CH3 17 OCH2CH2C6H5 H CH3 H 18 OCH2CH2C6H5 H H H 19 OCH2CH2C6H5 H CH3 CH3 20 OCH2CH2C6H5 H H CH3 21 OCH2CH═CH2 H CH3 H 22 OCH2CH═CH2 H H H 23 OCH2CH═CH2 H CH3 CH3 24 OCH2CH═CH2 H H CH3 25 OCH2CONH2 H CH3 H 26 OCH2CONH2 H H H 27 OCH2CONH2 H CH3 CH3 28 OCH2CONH2 H H CH3 29 Cl H CH3 H 30 CI H H H 31 Cl H CH3 CH3 32 Cl H H CH3 33 NO2 H CH3 H 34 NO2 H H H 35 NO2 H CH3 CH3 36 NO2 H H CH3 41 NHSO2CH3 H CH3 H 42 NHSO2CH3 H H H 43 NHSO2CH3 H CH3 CH3 44 NHSO2CH3 H H CH3 45 OH CH2N(CH3)2 CH3 H 46 OH CH2N(CH3)2 H H 47 OH CH2N(CH3)2 CH3 CH3 48 OH CH2N(CH3)2 H CH3 49 OH CH2N+(CH3)3Cl CH3 H 50 OH CH2N+(CH3)3Cl H H 51 OH CH2N+(CH3)3Cl CH3 CH3 52 OH CH2N+(CH3)3Cl H CH3 53 OCH3 CH2N(CH3)2 CH3 H 54 OCH3 CH2N(CH3)2 H H 55 OCH3 CH2N(CH3)2 CH3 CH3 56 OCH3 CH2N(CH3)2 H CH3 57 OCH3 CH2N+(CH3)3Cl CH3 H 58 OCH3 CH2N+(CH3)3Cl H H 59 OCH3 CH2N+(CH3)3Cl CH3 CH3 60 OCH3 CH2N+(CH3)3Cl H CH3
TABLE II
Figure US20140155355A1-20140605-C00045
Ex. # X X1 R1 1 H H CO2CH2CH3 2 H H CO2H 3 OH H CO2CH2CH3 4 OH H CO2H 5 OCH3 H CO2CH2CH3 6 OCH3 H CO2H 7 OCH2CH═CH2 H CO2CH2CH3 8 OCH2CH═CH2 H CO2H 9 OCH2C6H5 H CO2CH2CH3 10 OCH2C6H5 H CO2H 11 OCH2CH2C6H5 H CO2CH2CH3 12 OCH2CH2C6H5 H CO2H 13 OCH2CONH2 H CO2CH2CH3 14 OCH2CONH2 H CO2H 15 Cl H CO2CH2CH3 16 Cl H CO2H 17 NO2 H CO2CH2CH3 18 NO2 H CO2H 21 NHSO2CH3 H CO2CH2CH3 22 NHSO2CH3 H CO2H 23 OH CH2N(CH3)2 CO2CH2CH3 24 OH CH2N(CH3)2 CO2H 25 OCH3 CH2N(CH3)2 CO2CH2CH3 26 OCH3 CH2N(CH3)2 CO2H 27 OCH2C6H5 CH2N(CH3)2 CO2CH2CH3 28 OCH2C6H5 CH2N(CH3)2 CO2H 29 OH CH2N+(CH3)3 Cl CO2CH2CH3 30 OH CH2N+(CH3)3 Cl CO2H 31 OCH3 CH2N+(CH3)3 Cl CO2CH2CH3 32 OCH3 CH2N+(CH3)3 Cl CO2H 33 OCH2C6H5 CH2N+(CH3)3 Cl CO2CH2CH3 34 OCH2C6H5 CH2N+(CH3)3 Cl CO2H 35 H H CH2CO2CH2CH3 36 H H CH2CO2H 37 OH H CH2CO2CH2CH3 38 OH H CH2CO2H 39 OCH3 H CH2CO2CH2CH3 40 OCH3 H CH2CO2H 41 OCH2CH═CH2 H CH2CO2CH2CH3 42 OCH2CH═CH2 H CH2CO2H 43 OCH2C6H5 H CH2CO2CH2CH3 44 OCH2C6H5 H CH2CO2H 45 OCH2CH2C6H5 H CH2CO2CH2CH3 46 OCH2CH2C6H5 H CH2CO2H 47 OCH2CONH2 H CH2CO2CH2CH3 48 OCH2CONH2 H CH2CO2H 49 Cl H CH2CO2CH2CH3 50 Cl H CH2CO2H 51 NO2 H CH2CO2CH2CH3 52 NO2 H CH2CO2H 55 NHSO2CH3 H CH2CO2CH2CH3 56 NHSO2CH3 H CH2CO2H 57 OH CH2N(CH3)2 CH2CO2CH2CH3 58 OH CH2N(CH3)2 CH2CO2H 59 OCH3 CH2N(CH3)2 CH2CO2CH2CH3 60 OCH3 CH2N(CH3)2 CH2CO2H 61 OCH2C6H5 CH2N(CH3)2 CH2CO2CH2CH3 62 OCH2C6H5 CH2N(CH3)2 CH2CO2H 63 OH CH2N+(CH3)3 Cl CH2CO2CH2CH3 64 OH CH2N+(CH3)3 Cl CH2CO2H 65 OCH3 CH2N+(CH3)3 Cl CH2CO2CH2CH3 66 OCH3 CH2N+(CH3)3 Cl CH2CO2H 67 OCH2C6H5 CH2N+(CH3)3 Cl CH2CO2CH2CH3 68 OCH2C6H5 CH2N+(CH3)3 Cl CH2CO2H 69 H H CH2CH2CO2CH2CH3 70 H H CH2CH2CO2H 71 OH H CH2CH2CO2CH2CH3 72 OH H CH2CH2CO2H 73 OCH3 H CH2CH2CO2CH2CH3 74 OCH3 H CH2CH2CO2H 75 OCH2CH═CH2 H CH2CH2CO2CH2CH3 76 OCH2CH═CH2 H CH2CH2CO2H 77 OCH2C6H5 H CH2CH2CO2CH2CH3 78 OCH2C6H5 H CH2CH2CO2H 79 OCH2CH2C6H5 H CH2CH2CO2CH2CH3 80 OCH2CH2C6H5 H CH2CH2CO2H 81 OCH2CONH2 H CH2CH2CO2CH2CH3 82 OCH2CONH2 H CH2CH2CO2H 83 Cl H CH2CH2CO2CH2CH3 84 Cl H CH2CH2CO2H 85 NO2 H CH2CH2CO2CH2CH3 86 NO2 H CH2CH2CO2H 89 NHSO2CH3 H CH2CH2CO2CH2CH3 90 NHSO2CH3 H CH2CH2CO2H 91 OH CH2N(CH3)2 CH2CH2CO2CH2CH3 92 OH CH2N(CH3)2 CH2CH2CO2H 93 OCH3 CH2N(CH3)2 CH2CH2CO2CH2CH3 94 OCH3 CH2N(CH3)2 CH2CH2CO2H 95 OCH2C6H5 CH2N(CH3)2 CH2CH2CO2CH2CH3 96 OCH2C6H5 CH2N(CH3)2 CH2CH2CO2H 97 OH CH2N+(CH3)3 Cl CH2CH2CO2CH2CH3 98 OH CH2N+(CH3)3 Cl CH2CH2CO2H 99 OCH3 CH2N+(CH3)3 Cl CH2CH2CO2CH2CH3 100 OCH3 CH2N+(CH3)3 Cl CH2CH2CO2H 101 OCH2C6H5 CH2N+(CH3)3 Cl CH2CH2CO2CH2CH3 102 OCH2C6H5 CH2N+(CH3)3 Cl CH2CH2CO2H 103 H H CH2CH═CHCO2CH2CH3 104 H H CH2CH═CHCO2H 105 OH H CH2CH═CHCO2CH2CH3 106 OH H CH2CH═CHCO2H 107 OCH3 H CH2CH═CHCO2CH2CH3 108 OCH3 H CH2CH═CHCO2H 109 OCH2CH═CH2 H CH2CH═CHCO2CH2CH3 110 OCH2CH═CH2 H CH2CH═CHCO2H 111 OCH2C6H5 H CH2CH═CHCO2CH2CH3 112 OCH2C6H5 H CH2CH═CHCO2H 113 OCH2CH2C6H5 H CH2CH═CHCO2CH2CH3 114 OCH2CH2C6H5 H CH2CH═CHCO2H 115 OCH2CONH2 H CH2CH═CHCO2CH2CH3 116 OCH2CONH2 H CH2CH═CHCO2H 117 Cl H CH2CH═CHCO2CH2CH3 118 Cl H CH2CH═CHCO2H 119 NO2 H CH2CH═CHCO2CH2CH3 120 NO2 H CH2CH═CHCO2H 123 NHSO2CH3 H CH2CH═CHCO2CH2CH3 124 NHSO2CH3 H CH2CH═CHCO2H 125 OH CH2N(CH3)2 CH2CH═CHCO2CH2CH3 126 OH CH2N(CH3)2 CH2CH═CHCO2H 127 OCH3 CH2N(CH3)2 CH2CH═CHCO2CH2CH3 128 OCH3 CH2N(CH3)2 CH2CH═CHCO2H 129 OCH2C6H5 CH2N(CH3)2 CH2CH═CHCO2CH2CH3 130 OCH2C6H5 CH2N(CH3)2 CH2CH═CHCO2H 131 OH CH2N+(CH3)3 Cl CH2CH═CHCO2CH2CH3 132 OH CH2N+(CH3)3 Cl CH2CH═CHCO2H 133 OCH3 CH2N+(CH3)3 Cl CH2CH═CHCO2CH2CH3 134 OCH3 CH2N+(CH3)3 Cl CH2CH═CHCO2H 135 OCH2C6H5 CH2N+(CH3)3 Cl CH2CH═CHCO2CH2CH3 136 OCH2C6H5 CH2N+(CH3)3 Cl CH2CH═CHCO2H 137 H H CH2CH2PO(OCH2CH3)2 138 H H CH2CH2PO(OH)2 139 OH H CH2CH2PO(OCH2CH3)2 140 OH H CH2CH2PO(OH)2 141 OCH3 H CH2CH2PO(OCH2CH3)2 142 OCH3 H CH2CH2PO(OH)2 143 OCH2CH═CH2 H CH2CH2PO(OCH2CH3)2 144 OCH2CH═CH2 H CH2CH2PO(OH)2 145 OCH2C6H5 H CH2CH2PO(OCH2CH3)2 146 OCH2C6H5 H CH2CH2PO(OH)2 147 OCH2CH2C6H5 H CH2CH2PO(OCH2CH3)2 148 OCH2CH2C6H5 H CH2CH2PO(OH)2 149 OCH2CONH2 H CH2CH2PO(OCH2CH3)2 150 OCH2CONH2 H CH2CH2PO(OH)2 151 Cl H CH2CH2PO(OCH2CH3)2 152 Cl H CH2CH2PO(OH)2 153 NO2 H CH2CH2PO(OCH2CH3)2 154 NO2 H CH2CH2PO(OH)2 157 NHSO2CH3 H CH2CH2PO(OCH2CH3)2 158 NHSO2CH3 H CH2CH2PO(OH)2 159 OH CH2N(CH3)2 CH2CH2PO(OCH2CH3)2 160 OH CH2N(CH3)2 CH2CH2PO(OH)2 161 OCH3 CH2N(CH3)2 CH2CH2PO(OCH2CH3)2 162 OCH3 CH2N(CH3)2 CH2CH2PO(OH)2 163 OCH2C6H5 CH2N(CH3)2 CH2CH2PO(OCH2CH3)2 164 OCH2C6H5 CH2N(CH3)2 CH2CH2PO(OH)2 165 OH CH2N+(CH3)3 Cl CH2CH2PO(OCH2CH3)2 166 OH CH2N+(CH3)3 Cl CH2CH2PO(OH)2 167 OCH3 CH2N+(CH3)3 Cl CH2CH2PO(OCH2CH3)2 168 OCH3 CH2N+(CH3)3 Cl CH2CH2PO(OH)2 169 OCH2C6H5 CH2N+(CH3)3 Cl CH2CH2PO(OCH2CH3)2 170 OCH2C6H5 CH2N+(CH3)3 Cl CH2CH2PO(OH)2
TABLE IIIa
Figure US20140155355A1-20140605-C00046
Ex. # X X1 Z1 R1 1 H H CH2CO2CH2CH3 H 2 H H CH2CO2H H 3 H H CH2CO2CH2CH3 CH3 4 H H CH2CO2H CH3 5 OH H CH2CO2CH2CH3 H 6 OH H CH2CO2H H 7 OH H CH2CO2CH2CH3 CH3 8 OH H CH2CO2H CH3 9 OCH3 H CH2CO2CH2CH3 H 10 OCH3 H CH2CO2H H 11 OCH3 H CH2CO2CH2CH3 CH3 12 OCH3 H CH2CO2H CH3 13 OCH2C6H5 H CH2CO2CH2CH3 H 14 OCH2C6H5 H CH2CO2H H 15 OCH2C6H5 H CH2CO2CH2CH3 CH3 16 OCH2C6H5 H CH2CO2H CH3 17 OCH2CH2C6H5 H CH2CO2CH2CH3 H 18 OCH2CH2C6H5 H CH2CO2H H 19 OCH2CH2C6H5 H CH2CO2CH2CH3 CH3 20 OCH2CH2C6H5 H CH2CO2H CH3 21 OCH2CH═CH2 H CH2CO2CH2CH3 H 22 OCH2CH═CH2 H CH2CO2H H 23 OCH2CH═CH2 H CH2CO2CH2CH3 CH3 24 OCH2CH═CH2 H CH2CO2H CH3 25 OCH2CONH2 H CH2CO2CH2CH3 H 26 OCH2CONH2 H CH2CO2H H 27 OCH2CONH2 H CH2CO2CH2CH3 CH3 28 OCH2CONH2 H CH2CO2H CH3 29 Cl H CH2CO2CH2CH3 H 30 Cl H CH2CO2H H 31 Cl H CH2CO2CH2CH3 CH3 32 Cl H CH2CO2H CH3 33 NO2 H CH2CO2CH2CH3 H 34 NO2 H CH2CO2H H 35 NO2 H CH2CO2CH2CH3 CH3 36 NO2 H CH2CO2H CH3 41 NHSO2CH3 H CH2CO2CH2CH3 H 42 NHSO2CH3 H CH2CO2H H 43 NHSO2CH3 H CH2CO2CH2CH3 CH3 44 NHSO2CH3 H CH2CO2H CH3 45 OH CH2N(CH3)2 CH2CO2CH2CH3 H 46 OH CH2N(CH3)2 CH2CO2H H 47 OH CH2N(CH3)2 CH2CO2CH2CH3 CH3 48 OH CH2N(CH3)2 CH2CO2H CH3 49 OH CH2N+(CH3)3Cl CO2CH2CH3 H 50 OH CH2N+(CH3)3Cl CH2CO2H H 51 OH CH2N+(CH3)3Cl CO2CH2CH3 CH3 52 OH CH2N+(CH3)3Cl CH2CO2H CH3 53 OCH3 CH2N(CH3)2 CH2CO2CH2CH3 H 54 OCH3 CH2N(CH3)2 CH2CO2H H 55 OCH3 CH2N(CH3)2 CH2CO2CH2CH3 CH3 56 OCH3 CH2N(CH3)2 CH2CO2H CH3 57 OCH3 CH2N+(CH3)3Cl CH2CO2CH2CH3 H 58 OCH3 CH2N+(CH3)3Cl CH2CO2H H 59 OCH3 CH2N+(CH3)3Cl CH2CO2CH2CH3 CH3 60 OCH3 CH2N+(CH3)3Cl CH2CO2H CH3 61 H H CH2CH2CO2CH2CH3 H 62 H H CH2CH2CO2H H 63 H H CH2CH2CO2CH2CH3 CH3 64 H H CH2CH2CO2H CH3 65 OH H CH2CH2CO2CH2CH3 H 66 OH H CH2CH2CO2H H 67 OH H CH2CH2CO2CH2CH3 CH3 68 OH H CH2CH2CO2H CH3 69 OCH3 H CH2CH2CO2CH2CH3 H 70 OCH3 H CH2CH2CO2H H 71 OCH3 H CH2CH2CO2CH2CH3 CH3 72 OCH3 H CH2CH2CO2H CH3 73 OCH2C6H5 H CH2CH2CO2CH2CH3 H 74 OCH2C6H5 H CH2CH2CO2H H 75 OCH2C6H5 H CH2CH2CO2CH2CH3 CH3 76 OCH2C6H5 H CH2CH2CO2H CH3 77 OCH2CH2C6H5 H CH2CH2CO2CH2CH3 H 78 OCH2CH2C6H5 H CH2CH2CO2H H 79 OCH2CH2C6H5 H CH2CH2CO2CH2CH3 CH3 80 OCH2CH2C6H5 H CH2CH2CO2H CH3 81 OCH2CH═CH2 H CH2CH2CO2CH2CH3 H 82 OCH2CH═CH2 H CH2CH2CO2H H 83 OCH2CH═CH2 H CH2CH2CO2CH2CH3 CH3 84 OCH2CH═CH2 H CH2CH2CO2H CH3 85 OCH2CONH2 H CH2CH2CO2CH2CH3 H 86 OCH2CONH2 H CH2CH2CO2H H 87 OCH2CONH2 H CH2CH2CO2CH2CH3 CH3 88 OCH2CONH2 H CH2CH2CO2H CH3 89 Cl H CH2CH2CO2CH2CH3 H 90 Cl H CH2CH2CO2H H 91 Cl H CH2CH2CO2CH2CH3 CH3 92 Cl H CH2CH2CO2H CH3 93 NO2 H CH2CH2CO2CH2CH3 H 94 NO2 H CH2CH2CO2H H 95 NO2 H CH2CH2CO2CH2CH3 CH3 96 NO2 H CH2CH2CO2H CH3 101 NHSO2CH3 H CH2CH2CO2CH2CH3 H 102 NHSO2CH3 H CH2CH2CO2H H 103 NHSO2CH3 H CH2CH2CO2CH2CH3 CH3 104 NHSO2CH3 H CH2CH2CO2H CH3 105 OH CH2N(CH3)2 CH2CH2CO2CH2CH3 H 106 OH CH2N(CH3)2 CH2CH2CO2H H 107 OH CH2N(CH3)2 CH2CH2CO2CH2CH3 CH3 108 OH CH2N(CH3)2 CH2CH2CO2H CH3 109 OH CH2N+(CH3)3Cl CH2CH2CO2CH2CH3 H 110 OH CH2N+(CH3)3Cl CH2CH2CO2H H 111 OH CH2N+(CH3)3Cl CH2CH2CO2CH2CH3 CH3 112 OH CH2N+(CH3)3Cl CH2CH2CO2H CH3 113 OCH3 CH2N(CH3)2 CH2CH2CO2CH2CH3 H 114 OCH3 CH2N(CH3)2 CH2CH2CO2H H 115 OCH3 CH2N(CH3)2 CH2CH2CO2CH2CH3 CH3 116 OCH3 CH2N(CH3)2 CH2CH2CO2H CH3 117 OCH3 CH2N+(CH3)3Cl CH2CH2CO2CH2CH3 H 1118 OCH3 CH2N+(CH3)3Cl CH2CH2CO2H H 119 OCH3 CH2N+(CH3)3Cl CH2CH2CO2CH2CH3 CH3 120 OCH3 CH2N+(CH3)3Cl CH2CH2CO2H CH3 121 H H CH2CH2PO—(OCH2CH3)2 H 122 H H CH2CH2PO—(OH)2 H 123 H H CH2CH2PO—(OCH2CH3)2 CH3 124 H H CH2CH2PO—(OH)2 CH3 125 OH H CH2CH2PO—(OCH2CH3)2 H 126 OH H CH2CH2PO—(OH)2 H 127 OH H CH2CH2PO—(OCH2CH3)2 CH3 128 OH H CH2CH2PO—(OH)2 CH3 129 OCH3 H CH2CH2PO—(OCH2CH3)2 H 130 OCH3 H CH2CH2PO—(OH)2 H 131 OCH3 H CH2CH2PO—(OCH2CH3)2 CH3 132 OCH3 H CH2CH2PO—(OH)2 CH3 133 OCH2C6H5 H CH2CH2PO—(OCH2CH3)2 H 134 OCH2C6H5 H CH2CH2PO—(OH)2 H 135 OCH2C6H5 H CH2CH2PO—(OCH2CH3)2 CH3 136 OCH2C6H5 H CH2CH2PO—(OH)2 CH3 137 OCH2CH2C6H5 H CH2CH2PO—(OCH2CH3)2 H 138 OCH2CH2C6H5 H CH2CH2PO—(OH)2 H 139 OCH2CH2C6H5 H CH2CH2PO—(OCH2CH3)2 CH3 140 OCH2CH2C6H5 H CH2CH2PO—(OH)2 CH3 141 OCH2CH═CH2 H CH2CH2PO—(OCH2CH3)2 H 142 OCH2CH═CH2 H CH2CH2PO—(OH)2 H 143 OCH2CH═CH2 H CH2CH2PO—(OCH2CH3)2 CH3 144 OCH2CH═CH2 H CH2CH2PO—(OH)2 CH3 145 OCH2CONH2 H CH2CH2PO—(OCH2CH3)2 H 146 OCH2CONH2 H CH2CH2PO—(OH)2 H 147 OCH2CONH2 H CH2CH2PO—(OCH2CH3)2 CH3 148 OCH2CONH2 H CH2CH2PO—(OH)2 CH3 149 Cl H CH2CH2PO—(OCH2CH3)2 H 150 Cl H CH2CH2PO—(OH)2 H 151 Cl H CH2CH2PO—(OCH2CH3)2 CH3 152 Cl H CH2CH2PO—(OH)2 CH3 153 NO2 H CH2CH2PO—(OCH2CH3)2 H 154 NO2 H CH2CH2PO—(OH)2 H 155 NO2 H CH2CH2PO—(OCH2CH3)2 CH3 156 NO2 H CH2CH2PO—(OH)2 CH3 161 NHSO2CH3 H CH2CH2PO—(OCH2CH3)2 H 162 NHSO2CH3 H CH2CH2PO—(OH)2 H 163 NHSO2CH3 H CH2CH2PO—(OCH2CH3)2 CH3 164 NHSO2CH3 H CH2CH2PO—(OH)2 CH3 165 OH CH2N(CH3)2 CH2CH2PO—(OCH2CH3)2 H 166 OH CH2N(CH3)2 CH2CH2PO—(OH)2 H 167 OH CH2N(CH3)2 CH2CH2PO—(OCH2CH3)2 CH3 168 OH CH2N(CH3)2 CH2CH2PO—(OH)2 CH3 169 OH CH2N+(CH3)3Cl CH2CH2PO—(OCH2CH3)2 H 170 OH CH2N+(CH3)3Cl CH2CH2PO—(OH)2 H 171 OH CH2N+(CH3)3Cl CH2CH2PO—(OCH2CH3)2 CH3 172 OH CH2N+(CH3)3Cl CH2CH2PO—(OH)2 CH3 173 OCH3 CH2N(CH3)2 CH2CH2PO—(OCH2CH3)2 H 174 OCH3 CH2N(CH3)2 CH2CH2PO—(OH)2 H 175 OCH3 CH2N(CH3)2 CH2CH2PO—(OCH2CH3)2 CH3 176 OCH3 CH2N(CH3)2 CH2CH2PO—(OH)2 CH3 177 OCH3 CH2N+(CH3)3Cl CH2CH2PO—(OCH2CH3)2 H 178 OCH3 CH2N+(CH3)3Cl CH2CH2PO—(OH)2 H 179 OCH3 CH2N+(CH3)3Cl CH2CH2PO—(OCH2CH3)2 CH3 180 OCH3 CH2N+(CH3)3Cl CH2CH2PO—(OH)2 CH3 181 H H CH2CH2CONH—CH(OH)CO2H H 182 H H CH2CH2CONH—CH(OH)CO2H CH3 183 OH H CH2CH2CONH—CH(OH)CO2H H 184 OH H CH2CH2CONH—CH(OH)CO2H CH3 185 OCH3 H CH2CH2CONH—CH(OH)CO2H H 186 OCH3 H CH2CH2CONH—CH(OH)CO2H CH3 187 OCH2C6H5 H CH2CH2CONH—CH(OH)CO2H H 188 OCH2C6H5 H CH2CH2CONH—CH(OH)CO2H CH3 189 OCH2CH2C6H5 H CH2CH2CONH—CH(OH)CO2H H 190 OCH2CH2C6H5 H CH2CH2CONH—CH(OH)CO2H CH3 191 OCH2CH═CH2 H CH2CH2CONH—CH(OH)CO2H H 192 OCH2CH═CH2 H CH2CH2CONH—CH(OH)CO2H CH3 193 OCH2CONH2 H CH2CH2CONH—CH(OH)CO2H H 194 OCH2CONH2 H CH2CH2CONH—CH(OH)CO2H CH3 195 Cl H CH2CH2CONH—CH(OH)CO2H H 196 Cl H CH2CH2CONH—CH(OH)CO2H CH3 197 NO2 H CH2CH2CONH—CH(OH)CO2H H 198 NO2 H CH2CH2CONH—CH(OH)CO2H CH3 201 NHSO2CH3 H CH2CH2CONH—CH(OH)CO2H H 202 NHSO2CH3 H CH2CH2CONH—CH(OH)CO2H CH3 203 OH CH2N(CH3)2 CH2CH2CONH—CH(OH)CO2H H 204 OH CH2N(CH3)2 CH2CH2CONH—CH(OH)CO2H CH3 205 OH CH2N+(CH3)3Cl CH2CH2CONH—CH(OH)CO2H H 206 OH CH2N+(CH3)3Cl CH2CH2CONH—CH(OH)CO2H CH3 207 OCH3 CH2N(CH3)2 CH2CH2CONH—CH(OH)CO2H H 208 OCH3 CH2N(CH3)2 CH2CH2CONH—CH(OH)CO2H CH3 209 OCH3 CH2N+(CH3)3Cl CH2CH2CONH—CH(OH)CO2H H 210 OCH3 CH2N+(CH3)3Cl CH2CH2CONH—CH(OH)CO2H CH3 211 H H CH2CH2CONH—C(CH3)2CH2SO3H H 212 H H CH2CH2CONH—C(CH3)2CH2SO3H CH3 213 OH H CH2CH2CONH—C(CH3)2CH2SO3H H 214 OH H CH2CH2CONH—C(CH3)2CH2SO3H CH3 215 OCH3 H CH2CH2CONH—C(CH3)2CH2SO3H H 216 OCH3 H CH2CH2CONH—C(CH3)2CH2SO3H CH3 217 OCH2C6H5 H CH2CH2CONH—C(CH3)2CH2SO3H H 218 OCH2C6H5 H CH2CH2CONH—C(CH3)2CH2SO3H CH3 219 OCH2CH2C6H5 H CH2CH2CONH—C(CH3)2CH2SO3H H 220 OCH2CH2C6H5 H CH2CH2CONH—C(CH3)2CH2SO3H CH3 221 OCH2CH═CH2 H CH2CH2CONH—C(CH3)2CH2SO3H H 222 OCH2CH═CH2 H CH2CH2CONH—C(CH3)2CH2SO3H CH3 223 OCH2CONH2 H CH2CH2CONH—C(CH3)2CH2SO3H H 224 OCH2CONH2 H CH2CH2CONH—C(CH3)2CH2SO3H CH3 225 Cl H CH2CH2CONH—C(CH3)2CH2SO3H H 226 Cl H CH2CH2CONH—C(CH3)2CH2SO3H CH3 227 NO2 H CH2CH2CONH—C(CH3)2CH2SO3H H 228 NO2 H CH2CH2CONH—C(CH3)2CH2SO3H CH3 231 NHSO2CH3 H CH2CH2CONH—C(CH3)2CH2SO3H H 232 NHSO2CH3 H CH2CH2CONH—C(CH3)2CH2SO3H CH3 233 OH CH2N(CH3)2 CH2CH2CONH—C(CH3)2CH2SO3H H 234 OH CH2N(CH3)2 CH2CH2CONH—C(CH3)2CH2SO3H CH3 235 OH CH2N+(CH3)3Cl CH2CH2CONH—C(CH3)2CH2SO3H H 236 OH CH2N+(CH3)3Cl CH2CH2CONH—C(CH3)2CH2SO3H CH3 237 OCH3 CH2N(CH3)2 CH2CH2CONH—C(CH3)2CH2SO3H H 238 OCH3 CH2N(CH3)2 CH2CH2CONH—C(CH3)2CH2SO3H CH3 239 OCH3 CH2N+(CH3)3Cl CH2CH2CONH—C(CH3)2CH2SO3H H 240 OCH3 CH2N+(CH3)3Cl CH2CH2CONH—C(CH3)2CH2SO3H CH3
TABLE IIIb
Figure US20140155355A1-20140605-C00047
Ex. # X X1 Z1 R1 1 H H CH2CO2CH2CH3 H 2 H H CH2CO2H H 3 H H CH2CO2CH2CH3 CH3 4 H H CH2CO2H CH3 5 OH H CH2CO2CH2CH3 H 6 OH H CH2CO2H H 7 OH H CH2CO2CH2CH3 CH3 8 OH H CH2CO2H CH3 9 OCH3 H CH2CO2CH2CH3 H 10 OCH3 H CH2CO2H H 11 OCH3 H CH2CO2CH2CH3 CH3 12 OCH3 H CH2CO2H CH3 13 OCH2C6H5 H CH2CO2CH2CH3 H 14 OCH2C6H5 H CH2CO2H H 15 OCH2C6H5 H CH2CO2CH2CH3 CH3 16 OCH2C6H5 H CH2CO2H CH3 17 OCH2CH2C6H5 H CH2CO2CH2CH3 H 18 OCH2CH2C6H5 H CH2CO2H H 19 OCH2CH2C6H5 H CH2CO2CH2CH3 CH3 20 OCH2CH2C6H5 H CH2CO2H CH3 21 OCH2CH═CH2 H CH2CO2CH2CH3 H 22 OCH2CH═CH2 H CH2CO2H H 23 OCH2CH═CH2 H CH2CO2CH2CH3 CH3 24 OCH2CH═CH2 H CH2CO2H CH3 25 OCH2CONH2 H CH2CO2CH2CH3 H 26 OCH2CONH2 H CH2CO2H H 27 OCH2CONH2 H CH2CO2CH2CH3 CH3 28 OCH2CONH2 H CH2CO2H CH3 29 Cl H CH2CO2CH2CH3 H 30 Cl H CH2CO2H H 31 Cl H CH2CO2CH2CH3 CH3 32 Cl H CH2CO2H CH3 33 NO2 H CH2CO2CH2CH3 H 34 NO2 H CH2CO2H H 35 NO2 H CH2CO2CH2CH3 CH3 36 NO2 H CH2CO2H CH3 37 H H CH2CH2CO2CH2CH3 H 38 H H CH2CH2CO2H H 39 H H CH2CH2CO2CH2CH3 CH3 40 H H CH2CH2CO2H CH3 41 OH H CH2CH2CO2CH2CH3 H 42 OH H CH2CH2CO2H H 43 OH H CH2CH2CO2CH2CH3 CH3 44 OH H CH2CH2CO2H CH3 45 OCH3 H CH2CH2CO2CH2CH3 H 46 OCH3 H CH2CH2CO2H H 47 OCH3 H CH2CH2CO2CH2CH3 CH3 48 OCH3 H CH2CH2CO2H CH3 49 OCH2C6H5 H CH2CH2CO2CH2CH3 H 50 OCH2C6H5 H CH2CH2CO2H H 51 OCH2C6H5 H CH2CH2CO2CH2CH3 CH3 52 OCH2C6H5 H CH2CH2CO2H CH3 53 OCH2CH2C6H5 H CH2CH2CO2CH2CH3 H 54 OCH2CH2C6H5 H CH2CH2CO2H H 55 OCH2CH2C6H5 H CH2CH2CO2CH2CH3 CH3 56 OCH2CH2C6H5 H CH2CH2CO2H CH3 57 OCH2CH═CH2 H CH2CH2CO2CH2CH3 H 58 OCH2CH═CH2 H CH2CH2CO2H H 59 OCH2CH═CH2 H CH2CH2CO2CH2CH3 CH3 60 OCH2CH═CH2 H CH2CH2CO2H CH3 61 OCH2CONH2 H CH2CH2CO2CH2CH3 H 62 OCH2CONH2 H CH2CH2CO2H H 63 OCH2CONH2 H CH2CH2CO2CH2CH3 CH3 64 OCH2CONH2 H CH2CH2CO2H CH3 65 Cl H CH2CH2CO2CH2CH3 H 66 Cl H CH2CH2CO2H H 67 Cl H CH2CH2CO2CH2CH3 CH3 68 Cl H CH2CH2CO2H CH3 69 NO2 H CH2CH2CO2CH2CH3 H 70 NO2 H CH2CH2CO2H H 71 NO2 H CH2CH2CO2CH2CH3 CH3 72 NO2 H CH2CH2CO2H CH3 73 H H CH2CH2PO—(OCH2CH3)2 H 74 H H CH2CH2PO—(OH)2 H 75 H H CH2CH2PO—(OCH2CH3)2 CH3 76 H H CH2CH2PO—(OH)2 CH3 77 OH H CH2CH2PO—(OCH2CH3)2 H 78 OH H CH2CH2PO—(OH)2 H 79 OH H CH2CH2PO—(OCH2CH3)2 CH3 80 OH H CH2CH2PO—(OH)2 CH3 81 OCH3 H CH2CH2PO—(OCH2CH3)2 H 82 OCH3 H CH2CH2PO—(OH)2 H 83 OCH3 H CH2CH2PO—(OCH2CH3)2 CH3 84 OCH3 H CH2CH2PO—(OH)2 CH3 85 OCH2C6H5 H CH2CH2PO—(OCH2CH3)2 H 86 OCH2C6H5 H CH2CH2PO—(OH)2 H 87 OCH2C6H5 H CH2CH2PO—(OCH2CH3)2 CH3 88 OCH2C6H5 H CH2CH2PO—(OH)2 CH3 89 OCH2CH2C6H5 H CH2CH2PO—(OCH2CH3)2 H 90 OCH2CH2C6H5 H CH2CH2PO—(OH)2 H 91 OCH2CH2C6H5 H CH2CH2PO—(OCH2CH3)2 CH3 92 OCH2CH2C6H5 H CH2CH2PO—(OH)2 CH3 93 OCH2CH═CH2 H CH2CH2PO—(OCH2CH3)2 H 94 OCH2CH═CH2 H CH2CH2PO—(OH)2 H 95 OCH2CH═CH2 H CH2CH2PO—(OCH2CH3)2 CH3 96 OCH2CH═CH2 H CH2CH2PO—(OH)2 CH3 97 OCH2CONH2 H CH2CH2PO—(OCH2CH3)2 H 98 OCH2CONH2 H CH2CH2PO—(OH)2 H 99 OCH2CONH2 H CH2CH2PO—(OCH2CH3)2 CH3 100 OCH2CONH2 H CH2CH2PO—(OH)2 CH3 101 Cl H CH2CH2PO—(OCH2CH3)2 H 102 Cl H CH2CH2PO—(OH)2 H 103 Cl H CH2CH2PO—(OCH2CH3)2 CH3 104 Cl H CH2CH2PO—(OH)2 CH3 105 NO2 H CH2CH2PO—(OCH2CH3)2 H 106 NO2 H CH2CH2PO—(OH)2 H 107 NO2 H CH2CH2PO—(OCH2CH3)2 CH3 108 NO2 H CH2CH2PO—(OH)2 CH3 109 H H CH2CH2CONH—CH(OH)CO2H H 110 H H CH2CH2CONH—CH(OH)CO2H CH3 111 OH H CH2CH2CONH—CH(OH)CO2H H 112 OH H CH2CH2CONH—CH(OH)CO2H CH3 113 OCH3 H CH2CH2CONH—CH(OH)CO2H H 114 OCH3 H CH2CH2CONH—CH(OH)CO2H CH3 115 OCH2C6H5 H CH2CH2CONH—CH(OH)CO2H H 116 OCH2C6H5 H CH2CH2CONH—CH(OH)CO2H CH3 117 OCH2CH2C6H5 H CH2CH2CONH—CH(OH)CO2H H 118 OCH2CH2C6H5 H CH2CH2CONH—CH(OH)CO2H CH3 119 OCH2CH═CH2 H CH2CH2CONH—CH(OH)CO2H H 120 OCH2CH═CH2 H CH2CH2CONH—CH(OH)CO2H CH3 121 OCH2CONH2 H CH2CH2CONH—CH(OH)CO2H H 122 OCH2CONH2 H CH2CH2CONH—CH(OH)CO2H CH3 123 Cl H CH2CH2CONH—CH(OH)CO2H H 124 Cl H CH2CH2CONH—CH(OH)CO2H CH3 125 NO2 H CH2CH2CONH—CH(OH)CO2H H 126 NO2 H CH2CH2CONH—CH(OH)CO2H CH3 127 H H CH2CH2CONH—C(CH3)2CH2SO3H H 128 H H CH2CH2CONH—C(CH3)2CH2SO3H CH3 129 OH H CH2CH2CONH—C(CH3)2CH2SO3H H 130 OH H CH2CH2CONH—C(CH3)2CH2SO3H CH3 131 OCH3 H CH2CH2CONH—C(CH3)2CH2SO3H H 132 OCH3 H CH2CH2CONH—C(CH3)2CH2SO3H CH3 133 OCH2C6H5 H CH2CH2CONH—C(CH3)2CH2SO3H H 134 OCH2C6H5 H CH2CH2CONH—C(CH3)2CH2SO3H CH3 135 OCH2CH2C6H5 H CH2CH2CONH—C(CH3)2CH2SO3H H 136 OCH2CH2C6H5 H CH2CH2CONH—C(CH3)2CH2SO3H CH3 137 OCH2CH═CH2 H CH2CH2CONH—C(CH3)2CH2SO3H H 138 OCH2CH═CH2 H CH2CH2CONH—C(CH3)2CH2SO3H CH3 139 OCH2CONH2 H CH2CH2CONH—C(CH3)2CH2SO3H H 140 OCH2CONH2 H CH2CH2CONH—C(CH3)2CH2SO3H CH3 141 Cl H CH2CH2CONH—C(CH3)2CH2SO3H H 142 Cl H CH2CH2CONH—C(CH3)2CH2SO3H CH3 143 NO2 H CH2CH2CONH—C(CH3)2CH2SO3H H 144 NO2 H CH2CH2CONH—C(CH3)2CH2SO3H CH3
TABLE IVa
Figure US20140155355A1-20140605-C00048
Ex. # X Z R1 1 OCH2CO2CH2CH3 H H 2 OCH2CO2H H H 3 OCH2CO2CH2CH3 H CH3 4 OCH2CO2H H CH3 5 OCH2CH2CO2CH2CH3 H H 6 OCH2CH2CO2H H H 7 OCH2CH2CO2CH2CH3 H CH3 8 OCH2CH2CO2H H CH3 9 OCH2CH2PO(OCH2CH3)2 H H 10 OCH2CH2PO(OH)2 H H 11 OCH2CH2PO(OCH2CH3)2 H CH3 12 OCH2CH2PO(OH)2 H CH3 13 OCH2CH═CHCO2CH2CH3 H H 14 OCH2CH═CHCO2H H H 15 OCH2CH═CHCO2CH2CH3 H CH3 16 OCH2CH═CHCO2H H CH3 17 OCH2C6H4CO2CH2CH3(2, 3 or 4) H H 18 OCH2C6H4CO2H (2, 3 or 4) H H 19 OCH2C6H4CO2CH2CH3(2, 3 or 4) H CH3 20 OCH2C6H4CO2H (2, 3 or 4) H CH3 21 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) H H 22 OCH2C6H4CH2CO2H (2, 3 or 4) H H 23 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) H CH3 24 OCH2C6H4CH2CO2H (2, 3 or 4) H CH3 25 OCH2CO2CH2CH3 OH H 26 OCH2CO2H OH H 27 OCH2CO2CH2CH3 OH CH3 28 OCH2CO2H OH CH3 29 OCH2CH2CO2CH2CH3 OH H 30 OCH2CH2CO2H OH H 31 OCH2CH2CO2CH2CH3 OH CH3 32 OCH2CH2CO2H OH CH3 33 OCH2CH2PO(OCH2CH3)2 OH H 34 OCH2CH2PO(OH)2 OH H 35 OCH2CH2PO(OCH2CH3)2 OH CH3 36 OCH2CH2PO(OH)2 OH CH3 37 OCH2CH═CHCO2CH2CH3 OH H 38 OCH2CH═CHCO2H OH H 39 OCH2CH═CHCO2CH2CH3 OH CH3 40 OCH2CH═CHCO2H OH CH3 41 OCH2C6H4CO2CH2CH3(2, 3 or 4) OH H 42 OCH2C6H4CO2H (2, 3 or 4) OH H 43 OCH2C6H4CO2CH2CH3(2, 3 or 4) OH CH3 44 OCH2C6H4CO2H (2, 3 or 4) OH CH3 45 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) OH H 46 OCH2C6H4CH2CO2H (2, 3 or 4) OH H 47 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) OH CH3 48 OCH2C6H4CH2CO2H (2, 3 or 4) OH CH3 49 OCH2CO2CH2CH3 OCH3 H 50 OCH2CO2H OCH3 H 51 OCH2CO2CH2CH3 OCH3 CH3 52 OCH2CO2H OCH3 CH3 53 OCH2CH2CO2CH2CH3 OCH3 H 54 OCH2CH2CO2H OCH3 H 55 OCH2CH2CO2CH2CH3 OCH3 CH3 56 OCH2CH2CO2H OCH3 CH3 57 OCH2CH2PO(OCH2CH3)2 OCH3 H 58 OCH2CH2PO(OH)2 OCH3 H 59 OCH2CH2PO(OCH2CH3)2 OCH3 CH3 60 OCH2CH2PO(OH)2 OCH3 CH3 61 OCH2CH═CHCO2CH2CH3 OCH3 H 62 OCH2CH═CHCO2H OCH3 H 63 OCH2CH═CHCO2CH2CH3 OCH3 CH3 64 OCH2CH═CHCO2H OCH3 CH3 65 OCH2C6H4CO2CH2CH3(2, 3 or 4) OCH3 H 66 OCH2C6H4CO2H (2, 3 or 4) OCH3 H 67 OCH2C6H4CO2CH2CH3(2, 3 or 4) OCH3 CH3 68 OCH2C6H4CO2H (2, 3 or 4) OCH3 CH3 69 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) OCH3 H 70 OCH2C6H4CH2CO2H (2, 3 or 4) OCH3 H 71 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) OCH3 CH3 72 OCH2C6H4CH2CO2H (2, 3 or 4) OCH3 CH3 73 OCH2CO2CH2CH3 OCH2CH═CH2 H 74 OCH2CO2H OCH2CH═CH2 H 75 OCH2CO2CH2CH3 OCH2CH═CH2 CH3 76 OCH2CO2H OCH2CH═CH2 CH3 77 OCH2CH2CO2CH2CH3 OCH2CH═CH2 H 78 OCH2CH2CO2H OCH2CH═CH2 H 79 OCH2CH2CO2CH2CH3 OCH2CH═CH2 CH3 80 OCH2CH2CO2H OCH2CH═CH2 CH3 81 OCH2CH2PO(OCH2CH3)2 OCH2CH═CH2 H 82 OCH2CH2PO(OH)2 OCH2CH═CH2 H 83 OCH2CH2PO(OCH2CH3)2 OCH2CH═CH2 CH3 84 OCH2CH2PO(OH)2 OCH2CH═CH2 CH3 85 OCH2CH═CHCO2CH2CH3 OCH2CH═CH2 H 86 OCH2CH═CHCO2H OCH2CH═CH2 H 87 OCH2CH═CHCO2CH2CH3 OCH2CH═CH2 CH3 88 OCH2CH═CHCO2H OCH2CH═CH2 CH3 89 OCH2C6H4CO2CH2CH3(2, 3 or 4) OCH2CH═CH2 H 90 OCH2C6H4CO2H (2, 3 or 4) OCH2CH═CH2 H 91 OCH2C6H4CO2CH2CH3(2, 3 or 4) OCH2CH═CH2 CH3 92 OCH2C6H4CO2H (2, 3 or 4) OCH2CH═CH2 CH3 93 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) OCH2CH═CH2 H 94 OCH2C6H4CH2CO2H (2, 3 or 4) OCH2CH═CH2 H 95 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) OCH2CH═CH2 CH3 96 OCH2C6H4CH2CO2H (2, 3 or 4) OCH2CH═CH2 CH3 97 OCH2CO2CH2CH3 OCH2C6CH5 H 98 OCH2CO2H OCH2C6CH5 H 99 OCH2CO2CH2CH3 OCH2C6CH5 CH3 100 OCH2CO2H OCH2C6CH5 CH3 101 OCH2CH2CO2CH2CH3 OCH2C6CH5 H 102 OCH2CH2CO2H OCH2C6CH5 H 103 OCH2CH2CO2CH2CH3 OCH2C6CH5 CH3 104 OCH2CH2CO2H OCH2C6CH5 CH3 105 OCH2CH2PO(OCH2CH3)2 OCH2C6CH5 H 106 OCH2CH2PO(OH)2 OCH2C6CH5 H 107 OCH2CH2PO(OCH2CH3)2 OCH2C6CH5 CH3 108 OCH2CH2PO(OH)2 OCH2C6CH5 CH3 109 OCH2CH═CHCO2CH2CH3 OCH2C6CH5 H 110 OCH2CH═CHCO2H OCH2C6CH5 H 111 OCH2CH═CHCO2CH2CH3 OCH2C6CH5 CH3 112 OCH2CH═CHCO2H OCH2C6CH5 CH3 113 OCH2CO2CH2CH3 OCH2CONH2 H 114 OCH2CO2H OCH2CONH2 H 115 OCH2CO2CH2CH3 OCH2CONH2 CH3 116 OCH2CO2H OCH2CONH2 CH3 117 OCH2CH2CO2CH2CH3 OCH2CONH2 H 118 OCH2CH2CO2H OCH2CONH2 H 119 OCH2CH2CO2CH2CH3 OCH2CONH2 CH3 120 OCH2CH2CO2H OCH2CONH2 CH3 121 OCH2CH2PO(OCH2CH3)2 OCH2CONH2 H 122 OCH2CH2PO(OH)2 OCH2CONH2 H 123 OCH2CH2PO(OCH2CH3)2 OCH2CONH2 CH3 124 OCH2CH2PO(OH)2 OCH2CONH2 CH3 125 OCH2CH═CHCO2CH2CH3 OCH2CONH2 H 126 OCH2CH═CHCO2H OCH2CONH2 H 127 OCH2CH═CHCO2CH2CH3 OCH2CONH2 CH3 128 OCH2CH═CHCO2H OCH2CONH2 CH3 159 OCH2CH2—N+(CH3)3 X H H 160 OCH2CH2—N+(CH3)3 X H CH3 161 OCH2CH2—N+(CH3)3 X OCH3 H 162 OCH2CH2—N+(CH3)3 X OCH3 CH3 163 OCH2CH2—N+(CH3)3 X OCH2CH═CH2 H 164 OCH2CH2—N+(CH3)3 X OCH2CH═CH2 CH3 165 OCH2CH2—N+(CH3)3 X OCH2C6CH5 H 166 OCH2CH2—N+(CH3)3 X OCH2C6CH5 CH3
TABLE IVb
Figure US20140155355A1-20140605-C00049
Ex. # X1 Z R1 1 OCH2CO2CH2CH3 H H 2 OCH2CO2H H H 3 OCH2CO2CH2CH3 H CH3 4 OCH2CO2H H CH3 5 OCH2CH2CO2CH2CH3 H H 6 OCH2CH2CO2H H H 7 OCH2CH2CO2CH2CH3 H CH3 8 OCH2CH2CO2H H CH3 9 OCH2CH2PO(OCH2CH3)2 H H 10 OCH2CH2PO(OH)2 H H 11 OCH2CH2PO(OCH2CH3)2 H CH3 12 OCH2CH2PO(OH)2 H CH3 13 OCH2CH═CHCO2CH2CH3 H H 14 OCH2CH═CHCO2H H H 15 OCH2CH═CHCO2CH2CH3 H CH3 16 OCH2CH═CHCO2H H CH3 17 OCH2C6H4CO2CH2CH3(2, 3 or 4) H H 18 OCH2C6H4CO2H (2, 3 or 4) H H 19 OCH2C6H4CO2CH2CH3(2, 3 or 4) H CH3 20 OCH2C6H4CO2H (2, 3 or 4) H CH3 21 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) H H 22 OCH2C6H4CH2CO2H (2, 3 or 4) H H 23 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) H CH3 24 OCH2C6H4CH2CO2H (2, 3 or 4) H CH3 25 OCH2CO2CH2CH3 OH H 26 OCH2CO2H OH H 27 OCH2CO2CH2CH3 OH CH3 28 OCH2CO2H OH CH3 29 OCH2CH2CO2CH2CH3 OH H 30 OCH2CH2CO2H OH H 31 OCH2CH2CO2CH2CH3 OH CH3 32 OCH2CH2CO2H OH CH3 33 OCH2CH2PO(OCH2CH3)2 OH H 34 OCH2CH2PO(OH)2 OH H 35 OCH2CH2PO(OCH2CH3)2 OH CH3 36 OCH2CH2PO(OH)2 OH CH3 37 OCH2CH═CHCO2CH2CH3 OH H 38 OCH2CH═CHCO2H OH H 39 OCH2CH═CHCO2CH2CH3 OH CH3 40 OCH2CH═CHCO2H OH CH3 41 OCH2C6H4CO2CH2CH3(2, 3 or 4) OH H 42 OCH2C6H4CO2H (2, 3 or 4) OH H 43 OCH2C6H4CO2CH2CH3(2, 3 or 4) OH CH3 44 OCH2C6H4CO2H (2, 3 or 4) OH CH3 45 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) OH H 46 OCH2C6H4CH2CO2H (2, 3 or 4) OH H 47 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) OH CH3 48 OCH2C6H4CH2CO2H (2, 3 or 4) OH CH3 49 OCH2CO2CH2CH3 OCH3 H 50 OCH2CO2H OCH3 H 51 OCH2CO2CH2CH3 OCH3 CH3 52 OCH2CO2H OCH3 CH3 53 OCH2CH2CO2CH2CH3 OCH3 H 54 OCH2CH2CO2H OCH3 H 55 OCH2CH2CO2CH2CH3 OCH3 CH3 56 OCH2CH2CO2H OCH3 CH3 57 OCH2CH2PO(OCH2CH3)2 OCH3 H 58 OCH2CH2PO(OH)2 OCH3 H 59 OCH2CH2PO(OCH2CH3)2 OCH3 CH3 60 OCH2CH2PO(OH)2 OCH3 CH3 61 OCH2CH═CHCO2CH2CH3 OCH3 H 62 OCH2CH═CHCO2H OCH3 H 63 OCH2CH═CHCO2CH2CH3 OCH3 CH3 64 OCH2CH═CHCO2H OCH3 CH3 65 OCH2C6H4CO2CH2CH3(2, 3 or 4) OCH3 H 66 OCH2C6H4CO2H (2, 3 or 4) OCH3 H 67 OCH2C6H4CO2CH2CH3(2, 3 or 4) OCH3 CH3 68 OCH2C6H4CO2H (2, 3 or 4) OCH3 CH3 69 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) OCH3 H 70 OCH2C6H4CH2CO2H (2, 3 or 4) OCH3 H 71 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) OCH3 CH3 72 OCH2C6H4CH2CO2H (2, 3 or 4) OCH3 CH3 73 OCH2CO2CH2CH3 OCH2CH═CH2 H 74 OCH2CO2H OCH2CH═CH2 H 75 OCH2CO2CH2CH3 OCH2CH═CH2 CH3 76 OCH2CO2H OCH2CH═CH2 CH3 77 OCH2CH2CO2CH2CH3 OCH2CH═CH2 H 78 OCH2CH2CO2H OCH2CH═CH2 H 79 OCH2CH2CO2CH2CH3 OCH2CH═CH2 CH3 80 OCH2CH2CO2H OCH2CH═CH2 CH3 81 OCH2CH2PO(OCH2CH3)2 OCH2CH═CH2 H 82 OCH2CH2PO(OH)2 OCH2CH═CH2 H 83 OCH2CH2PO(OCH2CH3)2 OCH2CH═CH2 CH3 84 OCH2CH2PO(OH)2 OCH2CH═CH2 CH3 85 OCH2CH═CHCO2CH2CH3 OCH2CH═CH2 H 86 OCH2CH═CHCO2H OCH2CH═CH2 H 87 OCH2CH═CHCO2CH2CH3 OCH2CH═CH2 CH3 88 OCH2CH═CHCO2H OCH2CH═CH2 CH3 89 OCH2C6H4CO2CH2CH3(2, 3 or 4) OCH2CH═CH2 H 90 OCH2C6H4CO2H (2, 3 or 4) OCH2CH═CH2 H 91 OCH2C6H4CO2CH2CH3(2, 3 or 4) OCH2CH═CH2 CH3 92 OCH2C6H4CO2H (2, 3 or 4) OCH2CH═CH2 CH3 93 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) OCH2CH═CH2 H 94 OCH2C6H4CH2CO2H (2, 3 or 4) OCH2CH═CH2 H 95 OCH2C6H4CH2CO2CH2CH3(2, 3 or 4) OCH2CH═CH2 CH3 96 OCH2C6H4CH2CO2H (2, 3 or 4) OCH2CH═CH2 CH3 97 OCH2CO2CH2CH3 OCH2C6CH5 H 98 OCH2CO2H OCH2C6CH5 H 99 OCH2CO2CH2CH3 OCH2C6CH5 CH3 100 OCH2CO2H OCH2C6CH5 CH3 101 OCH2CH2CO2CH2CH3 OCH2C6CH5 H 102 OCH2CH2CO2H OCH2C6CH5 H 103 OCH2CH2CO2CH2CH3 OCH2C6CH5 CH3 104 OCH2CH2CO2H OCH2C6CH5 CH3 105 OCH2CH2PO(OCH2CH3)2 OCH2C6CH5 H 106 OCH2CH2PO(OH)2 OCH2C6CH5 H 107 OCH2CH2PO(OCH2CH3)2 OCH2C6CH5 CH3 108 OCH2CH2PO(OH)2 OCH2C6CH5 CH3 109 OCH2CH═CHCO2CH2CH3 OCH2C6CH5 H 110 OCH2CH═CHCO2H OCH2C6CH5 H 111 OCH2CH═CHCO2CH2CH3 OCH2C6CH5 CH3 112 OCH2CH═CHCO2H OCH2C6CH5 CH3 113 OCH2CO2CH2CH3 OCH2CONH2 H 114 OCH2CO2H OCH2CONH2 H 115 OCH2CO2CH2CH3 OCH2CONH2 CH3 116 OCH2CO2H OCH2CONH2 CH3 117 OCH2CH2CO2CH2CH3 OCH2CONH2 H 118 OCH2CH2CO2H OCH2CONH2 H 119 OCH2CH2CO2CH2CH3 OCH2CONH2 CH3 120 OCH2CH2CO2H OCH2CONH2 CH3 121 OCH2CH2PO(OCH2CH3)2 OCH2CONH2 H 122 OCH2CH2PO(OH)2 OCH2CONH2 H 123 OCH2CH2PO(OCH2CH3)2 OCH2CONH2 CH3 124 OCH2CH2PO(OH)2 OCH2CONH2 CH3 125 OCH2CH═CHCO2CH2CH3 OCH2CONH2 H 126 OCH2CH═CHCO2H OCH2CONH2 H 127 OCH2CH═CHCO2CH2CH3 OCH2CONH2 CH3 128 OCH2CH═CHCO2H OCH2CONH2 CH3 159 OCH2CH2—N+(CH3)3 X H H 160 OCH2CH2—N+(CH3)3 X H CH3 161 OCH2CH2—N+(CH3)3 X OCH3 H 162 OCH2CH2—N+(CH3)3 X OCH3 CH3 163 OCH2CH2—N+(CH3)3 X OCH2CH═CH2 H 164 OCH2CH2—N+(CH3)3 X OCH2CH═CH2 CH3 165 OCH2CH2—N+(CH3)3 X OCH2C6CH5 H 166 OCH2CH2—N+(CH3)3 X OCH2C6CH5 CH3
TABLE IVc
Figure US20140155355A1-20140605-C00050
Ex. # X Z R1 1 OCH2CO2H N(CH3)2 H 2 OCH2CO2CH2CH3 N(CH3)2 CH3 3 OCH2CO2H N(CH3)2 CH3 4 OCH2CH2CO2CH2CH3 N(CH3)2 H 5 OCH2CH2CO2H N(CH3)2 H 6 OCH2CH2CO2CH2CH3 N(CH3)2 CH3 7 OCH2CH2CO2H N(CH3)2 CH3 8 OCH2CH2PO(OCH2CH3)2 N(CH3)2 H 9 OCH2CH2PO(OH)2 N(CH3)2 H 10 OCH2CH2PO(OCH2CH3)2 N(CH3)2 CH3 11 OCH2CH2PO(OH)2 N(CH3)2 CH3 12 OCH2CH═CHCO2CH2CH3 N(CH3)2 H 13 OCH2CH═CHCO2H N(CH3)2 H 14 OCH2CH═CHCO2CH2CH3 N(CH3)2 CH3 15 OCH2CH═CHCO2H N(CH3)2 CH3 16 OCH2C6H4CO2CH2CH3(2, 3 or 4) N(CH3)2 H 17 OCH2C6H4CO2H (2, 3 or 4) N(CH3)2 H 18 OCH2C6H4CO2CH2CH3(2, 3 or 4) N(CH3)2 CH3 19 OCH2C6H4CO2H (2, 3 or 4) N(CH3)2 CH3 20 OCH2C6H4CH2CO2CH2CH3(2, 3 or N(CH3)2 H 4) 21 OCH2C6H4CH2CO2H (2, 3 or 4) N(CH3)2 H 22 OCH2C6H4CH2CO2CH2CH3(2, 3 or N(CH3)2 CH3 4) 23 OCH2C6H4CH2CO2H (2, 3 or 4) N(CH3)2 CH3 24 OCH2CO2CH2CH3 NHCH2C6CH5 H 25 OCH2CO2H NHCH2C6CH5 H 26 OCH2CO2CH2CH3 NHCH2C6CH5 CH3 27 OCH2CO2H NHCH2C6CH5 CH3 28 OCH2CH2CO2CH2CH3 NHCH2C6CH5 H 29 OCH2CH2CO2H NHCH2C6CH5 H 30 OCH2CH2CO2CH2CH3 NHCH2C6CH5 CH3 31 OCH2CH2CO2H NHCH2C6CH5 CH3 32 OCH2CH2PO(OCH2CH3)2 NHCH2C6CH5 H 33 OCH2CH2PO(OH)2 NHCH2C6CH5 H 34 OCH2CH2PO(OCH2CH3)2 NHCH2C6CH5 CH3 35 OCH2CH2PO(OH)2 NHCH2C6CH5 CH3 36 OCH2CH═CHCO2CH2CH3 NHCH2C6CH5 H 37 OCH2CH═CHCO2H NHCH2C6CH5 H 38 OCH2CH═CHCO2CH2CH3 NHCH2C6CH5 CH3 39 OCH2CH═CHCO2H NHCH2C6CH5 CH3 40 OCH2CO2CH2CH3 NHCH2CONH2 H 41 OCH2CO2H NHCH2CONH2 H 42 OCH2CO2CH2CH3 NHCH2CONH2 CH3 43 OCH2CO2H NHCH2CONH2 CH3 44 OCH2CH2CO2CH2CH3 NHCH2CONH2 H 45 OCH2CH2CO2H NHCH2CONH2 H 46 OCH2CH2CO2CH2CH3 NHCH2CONH2 CH3 47 OCH2CH2CO2H NHCH2CONH2 CH3 48 OCH2CH2PO(OCH2CH3)2 NHCH2CONH2 H 49 OCH2CH2PO(OH)2 NHCH2CONH2 H 50 OCH2CH2PO(OCH2CH3)2 NHCH2CONH2 CH3 51 OCH2CH2PO(OH)2 NHCH2CONH2 CH3 52 OCH2CH═CHCO2CH2CH3 NHCH2CONH2 H 53 OCH2CH═CHCO2H NHCH2CONH2 H 54 OCH2CH═CHCO2CH2CH3 NHCH2CONH2 CH3 55 OCH2CH═CHCO2H NHCH2CONH2 CH3 56 OCH2C6H4CO2CH2CH3(2, 3 or 4) NHCH2CONH2 H 57 OCH2C6H4CO2H (2, 3 or 4) NHCH2CONH2 H 58 OCH2C6H4CO2CH2CH3(2, 3 or 4) NHCH2CONH2 CH3 59 OCH2C6H4CO2H (2, 3 or 4) NHCH2CONH2 CH3 60 OCH2C6H4CH2CO2CH2CH3(2, 3 or NHCH2CONH2 H 4) 61 OCH2C6H4CH2CO2H (2, 3 or 4) NHCH2CONH2 H 62 OCH2C6H4CH2CO2CH2CH3(2, 3 or NHCH2CONH2 CH3 4) 63 OCH2C6H4CH2CO2H (2, 3 or 4) NHCH2CONH2 CH3
TABLE IVd
Figure US20140155355A1-20140605-C00051
Ex. # X1 Z R1 1 OCH2CO2H N(CH3)2 H 2 OCH2CO2CH2CH3 N(CH3)2 CH3 3 OCH2CO2H N(CH3)2 CH3 4 OCH2CH2CO2CH2CH3 N(CH3)2 H 5 OCH2CH2CO2H N(CH3)2 H 6 OCH2CH2CO2CH2CH3 N(CH3)2 CH3 7 OCH2CH2CO2H N(CH3)2 CH3 8 OCH2CH2PO(OCH2CH3)2 N(CH3)2 H 9 OCH2CH2PO(OH)2 N(CH3)2 H 10 OCH2CH2PO(OCH2CH3)2 N(CH3)2 CH3 11 OCH2CH2PO(OH)2 N(CH3)2 CH3 12 OCH2CH═CHCO2CH2CH3 N(CH3)2 H 13 OCH2CH═CHCO2H N(CH3)2 H 14 OCH2CH═CHCO2CH2CH3 N(CH3)2 CH3 15 OCH2CH═CHCO2H N(CH3)2 CH3 16 OCH2C6H4CO2CH2CH3(2, 3 or N(CH3)2 H 4) 17 OCH2C6H4CO2H (2, 3 or 4) N(CH3)2 H 18 OCH2C6H4CO2CH2CH3(2, 3 or N(CH3)2 CH3 4) 19 OCH2C6H4CO2H (2, 3 or 4) N(CH3)2 CH3 20 OCH2C6H4CH2CO2CH2CH3(2, 3 N(CH3)2 H or 4) 21 OCH2C6H4CH2CO2H (2, 3 or 4) N(CH3)2 H 22 OCH2C6H4CH2CO2CH2CH3(2, 3 N(CH3)2 CH3 or 4) 23 OCH2C6H4CH2CO2H (2, 3 or 4) N(CH3)2 CH3 24 OCH2CO2CH2CH3 NHCH2C6CH5 H 25 OCH2CO2H NHCH2C6CH5 H 26 OCH2CO2CH2CH3 NHCH2C6CH5 CH3 27 OCH2CO2H NHCH2C6CH5 CH3 28 OCH2CH2CO2CH2CH3 NHCH2C6CH5 H 29 OCH2CH2CO2H NHCH2C6CH5 H 30 OCH2CH2CO2CH2CH3 NHCH2C6CH5 CH3 31 OCH2CH2CO2H NHCH2C6CH5 CH3 32 OCH2CH2PO(OCH2CH3)2 NHCH2C6CH5 H 33 OCH2CH2PO(OH)2 NHCH2C6CH5 H 34 OCH2CH2PO(OCH2CH3)2 NHCH2C6CH5 CH3 35 OCH2CH2PO(OH)2 NHCH2C6CH5 CH3 36 OCH2CH═CHCO2CH2CH3 NHCH2C6CH5 H 37 OCH2CH═CHCO2H NHCH2C6CH5 H 38 OCH2CH═CHCO2CH2CH3 NHCH2C6CH5 CH3 39 OCH2CH═CHCO2H NHCH2C6CH5 CH3 40 OCH2CO2CH2CH3 NHCH2CONH2 H 41 OCH2CO2H NHCH2CONH2 H 42 OCH2CO2CH2CH3 NHCH2CONH2 CH3 43 OCH2CO2H NHCH2CONH2 CH3 44 OCH2CH2CO2CH2CH3 NHCH2CONH2 H 45 OCH2CH2CO2H NHCH2CONH2 H 46 OCH2CH2CO2CH2CH3 NHCH2CONH2 CH3 47 OCH2CH2CO2H NHCH2CONH2 CH3 48 OCH2CH2PO(OCH2CH3)2 NHCH2CONH2 H 49 OCH2CH2PO(OH)2 NHCH2CONH2 H 50 OCH2CH2PO(OCH2CH3)2 NHCH2CONH2 CH3 51 OCH2CH2PO(OH)2 NHCH2CONH2 CH3 52 OCH2CH═CHCO2CH2CH3 NHCH2CONH2 H 53 OCH2CH═CHCO2H NHCH2CONH2 H 54 OCH2CH═CHCO2CH2CH3 NHCH2CONH2 CH3 55 OCH2CH═CHCO2H NHCH2CONH2 CH3 56 OCH2C6H4CO2CH2CH3(2, 3 or NHCH2CONH2 H 4) 57 OCH2C6H4CO2H (2, 3 or 4) NHCH2CONH2 H 58 OCH2C6H4CO2CH2CH3(2, 3 or NHCH2CONH2 CH3 4) 59 OCH2C6H4CO2H (2, 3 or 4) NHCH2CONH2 CH3 60 OCH2C6H4CH2CO2CH2CH3(2, 3 NHCH2CONH2 H or 4) 61 OCH2C6H4CH2CO2H (2, 3 or 4) NHCH2CONH2 H 62 OCH2C6H4CH2CO2CH2CH3(2, 3 NHCH2CONH2 CH3 or 4) 63 OCH2C6H4CH2CO2H (2, 3 or 4) NHCH2CONH2 CH3
TABLE V
Figure US20140155355A1-20140605-C00052
Ex. # X X1 Z R1 1. H H OH CO2CH2CH3 2. H H OH CO2H 3. H H OH CH2CO2CH2CH3 4. H H OH CH2CO2H 5. H H OH CH2CH2CO2CH2CH3 6. H H OH CH2CH2CO2H 7. H H OH CH2CH═CHCO2H 8. H H OH CH2CH═CHCO2H 9. H H OH CH2CH2P—O(OCH2CH3)2 10. H H OH CH2CH2P—O(OH)2 11. OH H OH CO2CH2CH3 12. OH H OH CO2H 13. OH H OH CH2CO2CH2CH3 14. OH H OH CH2CO2H 15. OH H OH CH2CH2CO2CH2CH3 16. OH H OH CH2CH2CO2H 17. OH H OH CH2CH═CHCO2H 18. OH H OH CH2CH═CHCO2H 19. OH H OH CH2CH2P—O(OCH2CH3)2 20. OH H OH CH2CH2P—O(OH)2 21. OCH3 H OH CO2CH2CH3 22. OCH3 H OH CO2H 23. OCH3 H OH CH2CO2CH2CH3 24. OCH3 H OH CH2CO2H 25. OCH3 H OH CH2CH2CO2CH2CH3 26. OCH3 H OH CH2CH2CO2H 27. OCH3 H OH CH2CH═CHCO2H 28. OCH3 H OH CH2CH═CHCO2H 29. OCH3 H OH CH2CH2P—O(OCH2CH3)2 30. OCH3 H OH CH2CH2P—O(OH)2 31. OCH2CH═CH2 H OH CO2CH2CH3 32. OCH2CH═CH2 H OH CO2H 33. OCH2CH═CH2 H OH CH2CO2CH2CH3 34. OCH2CH═CH2 H OH CH2CO2H 35. OCH2CH═CH2 H OH CH2CH2CO2CH2CH3 36. OCH2CH═CH2 H OH CH2CH2CO2H 37. OCH2CH═CH2 H OH CH2CH═CHCO2H 38. OCH2CH═CH2 H OH CH2CH═CHCO2H 39. OCH2CH═CH2 H OH CH2CH2P—O(OCH2CH3)2 40. OCH2CH═CH2 H OH CH2CH2P—O(OH)2 41. OCH2C6H5 H OH CO2CH2CH3 42. OCH2C6H5 H OH CO2H 43. OCH2C6H5 H OH CH2CO2CH2CH3 44. OCH2C6H5 H OH CH2CO2H 45. OCH2C6H5 H OH CH2CH2CO2CH2CH3 46. OCH2C6H5 H OH CH2CH2CO2H 47. OCH2C6H5 H OH CH2CH═CHCO2H 48. OCH2C6H5 H OH CH2CH═CHCO2H 49. OCH2C6H5 H OH CH2CH2P—O(OCH2CH3)2 50. OCH2C6H5 H OH CH2CH2P—O(OH)2 51. Cll H OH CO2CH2CH3 52. Cl H OH CO2H 53. Cl H OH CH2CO2CH2CH3 54. Cl H OH CH2CO2H 55. Cl H OH CH2CH2CO2CH2CH3 56. Cl H OH CH2CH2CO2H 57. Cl H OH CH2CH═CHCO2H 58. Cl H OH CH2CH═CHCO2H 59. Cl H OH CH2CH2P—O(OCH2CH3)2 60. Cl H OH CH2CH2P—O(OH)2 61. NO2 H OH CO2CH2CH3 62. NO2 H OH CO2H 63. NO2 H OH CH2CO2CH2CH3 64. NO2 H OH CH2CO2H 65. NO2 H OH CH2CH2CO2CH2CH3 66. NO2 H OH CH2CH2CO2H 67. NO2 H OH CH2CH═CHCO2H 68. NO2 H OH CH2CH═CHCO2H 69. NO2 H OH CH2CH2P—O(OCH2CH3)2 70. NO2 H OH CH2CH2P—O(OH)2 71. NHSO2CH3 H OH H 72. NHSO2CH3 H OH CH3 73. NHSO2CH3 H OH CO2CH2CH3 74. NHSO2CH3 H OH CO2H 75. NHSO2CH3 H OH CH2CO2CH2CH3 76. NHSO2CH3 H OH CH2CO2H 77. NHSO2CH3 H OH CH2CH2CO2CH2CH3 78. NHSO2CH3 H OH CH2CH2CO2H 79. NHSO2CH3 H OH CH2CH═CHCO2H 80. NHSO2CH3 H OH CH2CH═CHCO2H 81. NHSO2CH3 H OH CH2CH2P—O(OCH2CH3)2 82. NHSO2CH3 H OH CH2CH2P—O(OH)2 83. OCH2CONH2 H OH H 84. OCH2CONH2 H OH CH3 85. OCH2CONH2 H OH CO2CH2CH3 86. OCH2CONH2 H OH CO2H 87. OCH2CONH2 H OH CH2CO2CH2CH3 88. OCH2CONH2 H OH CH2CO2H 89. OCH2CONH2 H OH CH2CH2CO2CH2CH3 90. OCH2CONH2 H OH CH2CH2CO2H 91. OCH2CONH2 H OH CH2CH═CHCO2H 92. OCH2CONH2 H OH CH2CH═CHCO2H 93. OCH2CONH2 H OH CH2CH2P—O(OCH2CH3)2 94. OCH2CONH2 H OH CH2CH2P—O(OH)2 95. OH CH2N(CH3)2 OH CO2CH2CH3 96. OH CH2N(CH3)2 OH CO2H 97. OH CH2N(CH3)2 OH CH2CO2CH2CH3 98. OH CH2N(CH3)2 OH CH2CO2H 99. OH CH2N(CH3)2 OH CH2CH2CO2CH2CH3 100. OH CH2N(CH3)2 OH CH2CH2CO2H 101. OH CH2N(CH3)2 OH CH2CH═CHCO2H 102. OH CH2N(CH3)2 OH CH2CH═CHCO2H 103. OH CH2N(CH3)2 OH CH2CH2P—O(OCH2CH3)2 104. OH CH2N(CH3)2 OH CH2CH2P—O(OH)2 105. OCH3 CH2N(CH3)2 OH CO2CH2CH3 106. OCH3 CH2N(CH3)2 OH CO2H 107. OCH3 CH2N(CH3)2 OH CH2CO2CH2CH3 108. OCH3 CH2N(CH3)2 OH CH2CO2H 109. OCH3 CH2N(CH3)2 OH CH2CH2CO2CH2CH3 110. OCH3 CH2N(CH3)2 OH CH2CH2CO2H 111. OCH3 CH2N(CH3)2 OH CH2CH═CHCO2H 112. OCH3 CH2N(CH3)2 OH CH2CH═CHCO2H 113. OCH3 CH2N(CH3)2 OH CH2CH2P—O(OCH2CH3)2 114. OCH3 CH2N(CH3)2 OH CH2CH2P—O(OH)2 115. OH CH2N+(CH3)3 OH H Cl 116. OH CH2N+(CH3)3 OH CH3 Cl 117. OH CH2N+(CH3)3 OH CO2CH2CH3 Cl 118. OH CH2N+(CH3)3 OH CO2H Cl 119. OH CH2N+(CH3)3 OH CH2CO2CH2CH3 Cl 120. OH CH2N+(CH3)3 OH CH2CO2H Cl 121. OH CH2N+(CH3)3 OH CH2CH2CO2CH2CH3 Cl 122. OH CH2N+(CH3)3 OH CH2CH2CO2H Cl 123. OH CH2N+(CH3)3 OH CH2CH═CHCO2H Cl 124. OH CH2N+(CH3)3 OH CH2CH═CHCO2H Cl 125. OH CH2N+(CH3)3 OH CH2CH2P—O(OCH2CH3)2 Cl 126. OH CH2N+(CH3)3 OH CH2CH2P—O(OH)2 Cl 127. OCH3 CH2N+(CH3)3 OH H Cl 128. OCH3 CH2N+(CH3)3 OH CH3 Cl 129. OCH3 CH2N+(CH3)3 OH CO2CH2CH3 Cl 130. OCH3 CH2N+(CH3)3 OH CO2H Cl 131. OCH3 CH2N+(CH3)3 OH CH2CO2CH2CH3 Cl 132. OCH3 CH2N+(CH3)3 OH CH2CO2H Cl 133. OCH3 CH2N+(CH3)3 OH CH2CH2CO2CH2CH3 Cl 134. OCH3 CH2N+(CH3)3 OH CH2CH2CO2H Cl 135. OCH3 CH2N+(CH3)3 OH CH2CH═CHCO2H Cl 136. OCH3 CH2N+(CH3)3 OH CH2CH═CHCO2H Cl 137. OCH3 CH2N+(CH3)3 OH CH2CH2P—O(OCH2CH3)2 Cl 138. OCH3 CH2N+(CH3)3 OH CH2CH2P—O(OH)2 Cl 139. H H OCH3 CO2CH2CH3 140. H H OCH3 CO2H 141. H H OCH3 CH2CO2CH2CH3 142. H H OCH3 CH2CO2H 143. H H OCH3 CH2CH2CO2CH2CH3 144. H H OCH3 CH2CH2CO2H 145. H H OCH3 CH2CH═CHCO2H 146. H H OCH3 CH2CH═CHCO2H 147. H H OCH3 CH2CH2P—O(OCH2CH3)2 148. H H OCH3 CH2CH2P—O(OH)2 149. OH H OCH3 CO2CH2CH3 150. OH H OCH3 CO2H 151. OH H OCH3 CH2CO2CH2CH3 152. OH H OCH3 CH2CO2H 153. OH H OCH3 CH2CH2CO2CH2CH3 154. OH H OCH3 CH2CH2CO2H 155. OH H OCH3 CH2CH═CHCO2H 156. OH H OCH3 CH2CH═CHCO2H 157. OH H OCH3 CH2CH2P—O(OCH2CH3)2 158. OH H OCH3 CH2CH2P—O(OH)2 159. OCH3 H OCH3 CO2CH2CH3 160. OCH3 H OCH3 CO2H 161. OCH3 H OCH3 CH2CO2CH2CH3 162. OCH3 H OCH3 CH2CO2H 163. OCH3 H OCH3 CH2CH2CO2CH2CH3 164. OCH3 H OCH3 CH2CH2CO2H 165. OCH3 H OCH3 CH2CH═CHCO2H 166. OCH3 H OCH3 CH2CH═CHCO2H 167. OCH3 H OCH3 CH2CH2P—O(OCH2CH3)2 168. OCH3 H OCH3 CH2CH2P—O(OH)2 169. OCH2CH═CH2 H OCH3 CO2CH2CH3 170. OCH2CH═CH2 H OCH3 CO2H 171. OCH2CH═CH2 H OCH3 CH2CO2CH2CH3 172. OCH2CH═CH2 H OCH3 CH2CO2H 173. OCH2CH═CH2 H OCH3 CH2CH2CO2CH2CH3 174. OCH2CH═CH2 H OCH3 CH2CH2CO2H 175. OCH2CH═CH2 H OCH3 CH2CH═CHCO2H 176. OCH2CH═CH2 H OCH3 CH2CH═CHCO2H 177. OCH2CH═CH2 H OCH3 CH2CH2P—O(OCH2CH3)2 178. OCH2CH═CH2 H OCH3 CH2CH2P—O(OH)2 179. OCH2C6H5 H OCH3 CO2CH2CH3 180. OCH2C6H5 H OCH3 CO2H 181. OCH2C6H5 H OCH3 CH2CO2CH2CH3 182. OCH2C6H5 H OCH3 CH2CO2H 183. OCH2C6H5 H OCH3 CH2CH2CO2CH2CH3 184. OCH2C6H5 H OCH3 CH2CH2CO2H 185. OCH2C6H5 H OCH3 CH2CH═CHCO2H 186. OCH2C6H5 H OCH3 CH2CH═CHCO2H 187. OCH2C6H5 H OCH3 CH2CH2P—O(OCH2CH3)2 188. OCH2C6H5 H OCH3 CH2CH2P—O(OH)2 189. Cl H OCH3 CO2CH2CH3 190. Cl H OCH3 CO2H 191. Cl H OCH3 CH2CO2CH2CH3 192. Cl H OCH3 CH2CO2H 193. Cl H OCH3 CH2CH2CO2CH2CH3 194. Cl H OCH3 CH2CH2CO2H 195. Cl H OCH3 CH2CH═CHCO2H 196. Cl H OCH3 CH2CH═CHCO2H 197. Cl H OCH3 CH2CH2P—O(OCH2CH3)2 198. Cl H OCH3 CH2CH2P—O(OH)2 199. NO2 H OCH3 CO2CH2CH3 200. NO2 H OCH3 CO2H 201. NO2 H OCH3 CH2CO2CH2CH3 202. NO2 H OCH3 CH2CO2H 203. NO2 H OCH3 CH2CH2CO2CH2CH3 204. NO2 H OCH3 CH2CH2CO2H 205. NO2 H OCH3 CH2CH═CHCO2H 206. NO2 H OCH3 CH2CH═CHCO2H 207. NO2 H OCH3 CH2CH2P—O(OCH2CH3)2 208. NO2 H OCH3 CH2CH2P—O(OH)2 209. NHSO2CH3 H OCH3 H 210. NHSO2CH3 H OCH3 CH3 211. NHSO2CH3 H OCH3 CO2CH2CH3 212. NHSO2CH3 H OCH3 CO2H 213. NHSO2CH3 H OCH3 CH2CO2CH2CH3 214. NHSO2CH3 H OCH3 CH2CO2H 215. NHSO2CH3 H OCH3 CH2CH2CO2CH2CH3 216. NHSO2CH3 H OCH3 CH2CH2CO2H 217. NHSO2CH3 H OCH3 CH2CH═CHCO2H 218. NHSO2CH3 H OCH3 CH2CH═CHCO2H 219. NHSO2CH3 H OCH3 CH2CH2P—O(OCH2CH3)2 220. NHSO2CH3 H OCH3 CH2CH2P—O(OH)2 221. OCH2CONH2 H OCH3 H 222. OCH2CONH2 H OCH3 CH3 223. OCH2CONH2 H OCH3 CO2CH2CH3 224. OCH2CONH2 H OCH3 CO2H 225. OCH2CONH2 H OCH3 CH2CO2CH2CH3 226. OCH2CONH2 H OCH3 CH2CO2H 227. OCH2CONH2 H OCH3 CH2CH2CO2CH2CH3 228. OCH2CONH2 H OCH3 CH2CH2CO2H 229. OCH2CONH2 H OCH3 CH2CH═CHCO2H 230. OCH2CONH2 H OCH3 CH2CH═CHCO2H 231. OCH2CONH2 H OCH3 CH2CH2P—O(OCH2CH3)2 232. OCH2CONH2 H OCH3 CH2CH2P—O(OH)2 233. OH CH2N(CH3)2 OCH3 CO2CH2CH3 234. OH CH2N(CH3)2 OCH3 CO2H 235. OH CH2N(CH3)2 OCH3 CH2CO2CH2CH3 236. OH CH2N(CH3)2 OCH3 CH2CO2H 237. OH CH2N(CH3)2 OCH3 CH2CH2CO2CH2CH3 238. OH CH2N(CH3)2 OCH3 CH2CH2CO2H 239. OH CH2N(CH3)2 OCH3 CH2CH═CHCO2H 240. OH CH2N(CH3)2 OCH3 CH2CH═CHCO2H 241. OH CH2N(CH3)2 OCH3 CH2CH2P—O(OCH2CH3)2 242. OH CH2N(CH3)2 OCH3 CH2CH2P—O(OH)2 243. OCH3 CH2N(CH3)2 OCH3 CO2CH2CH3 244. OCH3 CH2N(CH3)2 OCH3 CO2H 245. OCH3 CH2N(CH3)2 OCH3 CH2CO2CH2CH3 246. OCH3 CH2N(CH3)2 OCH3 CH2CO2H 247. OCH3 CH2N(CH3)2 OCH3 CH2CH2CO2CH2CH3 248. OCH3 CH2N(CH3)2 OCH3 CH2CH2CO2H 249. OCH3 CH2N(CH3)2 OCH3 CH2CH═CHCO2H 250. OCH3 CH2N(CH3)2 OCH3 CH2CH═CHCO2H 251. OCH3 CH2N(CH3)2 OCH3 CH2CH2P—O(OCH2CH3)2 252. OCH3 CH2N(CH3)2 OCH3 CH2CH2P—O(OH)2 253. OH CH2N+(CH3)3 OCH3 H Cl 254. OH CH2N+(CH3)3 OCH3 CH3 Cl 255. OH CH2N+(CH3)3 OCH3 CO2CH2CH3 Cl 256. OH CH2N+(CH3)3 OCH3 CO2H Cl 257. OH CH2N+(CH3)3 OCH3 CH2CO2CH2CH3 Cl 258. OH CH2N+(CH3)3 OCH3 CH2CO2H Cl 259. OH CH2N+(CH3)3 OCH3 CH2CH2CO2CH2CH3 Cl 260. OH CH2N+(CH3)3 OCH3 CH2CH2CO2H Cl 261. OH CH2N+(CH3)3 OCH3 CH2CH═CHCO2H Cl 262. OH CH2N+(CH3)3 OCH3 CH2CH═CHCO2H Cl 263. OH CH2N+(CH3)3 OCH3 CH2CH2P—O(OCH2CH3)2 Cl 264. OH CH2N+(CH3)3 OCH3 CH2CH2P—O(OH)2 Cl 265. OCH3 CH2N+(CH3)3 OCH3 H Cl 266. OCH3 CH2N+(CH3)3 OCH3 CH3 Cl 267. OCH3 CH2N+(CH3)3 OCH3 CO2CH2CH3 Cl 268. OCH3 CH2N+(CH3)3 OCH3 CO2H Cl 269. OCH3 CH2N+(CH3)3 OCH3 CH2CO2CH2CH3 Cl 270. OCH3 CH2N+(CH3)3 OCH3 CH2CO2H Cl 271. OCH3 CH2N+(CH3)3 OCH3 CH2CH2CO2CH2CH3 Cl 272. OCH3 CH2N+(CH3)3 OCH3 CH2CH2CO2H Cl 273. OCH3 CH2N+(CH3)3 OCH3 CH2CH═CHCO2H Cl 274. OCH3 CH2N+(CH3)3 OCH3 CH2CH═CHCO2H Cl 275. OCH3 CH2N+(CH3)3 OCH3 CH2CH2P—O(OCH2CH3)2 Cl 276. OCH3 CH2N+(CH3)3 OCH3 CH2CH2P—O(OH)2 Cl 277. H H OCH2C6H5 CO2CH2CH3 278. H H OCH2C6H5 CO2H 279. H H OCH2C6H5 CH2CO2CH2CH3 280. H H OCH2C6H5 CH2CO2H 281. H H OCH2C6H5 CH2CH2CO2CH2CH3 282. H H OCH2C6H5 CH2CH2CO2H 283. H H OCH2C6H5 CH2CH═CHCO2H 284. H H OCH2C6H5 CH2CH═CHCO2H 285. H H OCH2C6H5 CH2CH2P—O(OCH2CH3)2 286. H H OCH2C6H5 CH2CH2P—O(OH)2 287. OH H OCH2C6H5 CO2CH2CH3 288. OH H OCH2C6H5 CO2H 289. OH H OCH2C6H5 CH2CO2CH2CH3 290. OH H OCH2C6H5 CH2CO2H 291. OH H OCH2C6H5 CH2CH2CO2CH2CH3 292. OH H OCH2C6H5 CH2CH2CO2H 293. OH H OCH2C6H5 CH2CH═CHCO2H 294. OH H OCH2C6H5 CH2CH═CHCO2H 295. OH H OCH2C6H5 CH2CH2P—O(OCH2CH3)2 296. OH H OCH2C6H5 CH2CH2P—O(OH)2 297. OCH3 H OCH2C6H5 CO2CH2CH3 298. OCH3 H OCH2C6H5 CO2H 299. OCH3 H OCH2C6H5 CH2CO2CH2CH3 300. OCH3 H OCH2C6H5 CH2CO2H 301. OCH3 H OCH2C6H5 CH2CH2CO2CH2CH3 302. OCH3 H OCH2C6H5 CH2CH2CO2H 303. OCH3 H OCH2C6H5 CH2CH═CHCO2H 304. OCH3 H OCH2C6H5 CH2CH═CHCO2H 305. OCH3 H OCH2C6H5 CH2CH2P—O(OCH2CH3)2 306. OCH3 H OCH2C6H5 CH2CH2P—O(OH)2 307. OCH2CH═CH2 H OCH2C6H5 CO2CH2CH3 308. OCH2CH═CH2 H OCH2C6H5 CO2H 309. OCH2CH═CH2 H OCH2C6H5 CH2CO2CH2CH3 310. OCH2CH═CH2 H OCH2C6H5 CH2CO2H 311. OCH2CH═CH2 H OCH2C6H5 CH2CH2CO2CH2CH3 312. OCH2CH═CH2 H OCH2C6H5 CH2CH2CO2H 313. OCH2CH═CH2 H OCH2C6H5 CH2CH═CHCO2H 314. OCH2CH═CH2 H OCH2C6H5 CH2CH═CHCO2H 315. OCH2CH═CH2 H OCH2C6H5 CH2CH2P—O(OCH2CH3)2 316. OCH2CH═CH2 H OCH2C6H5 CH2CH2P—O(OH)2 317. OCH2C6H5 H OCH2C6H5 CO2CH2CH3 318. OCH2C6H5 H OCH2C6H5 CO2H 319. OCH2C6H5 H OCH2C6H5 CH2CO2CH2CH3 320. OCH2C6H5 H OCH2C6H5 CH2CO2H 321. OCH2C6H5 H OCH2C6H5 CH2CH2CO2CH2CH3 322. OCH2C6H5 H OCH2C6H5 CH2CH2CO2H 323. OCH2C6H5 H OCH2C6H5 CH2CH═CHCO2H 324. OCH2C6H5 H OCH2C6H5 CH2CH═CHCO2H 325. OCH2C6H5 H OCH2C6H5 CH2CH2P—O(OCH2CH3)2 326. OCH2C6H5 H OCH2C6H5 CH2CH2P—O(OH)2 327. Cl H OCH2C6H5 CO2CH2CH3 328. Cl H OCH2C6H5 CO2H 329. Cl H OCH2C6H5 CH2CO2CH2CH3 330. Cl H OCH2C6H5 CH2CO2H 331. Cl H OCH2C6H5 CH2CH2CO2CH2CH3 332. Cl H OCH2C6H5 CH2CH2CO2H 333. Cl H OCH2C6H5 CH2CH═CHCO2H 334. Cl H OCH2C6H5 CH2CH═CHCO2H 335. Cl H OCH2C6H5 CH2CH2P—O(OCH2CH3)2 336. Cl H OCH2C6H5 CH2CH2P—O(OH)2 337. NO2 H OCH2C6H5 CO2CH2CH3 338. NO2 H OCH2C6H5 CO2H 339. NO2 H OCH2C6H5 CH2CO2CH2CH3 340. NO2 H OCH2C6H5 CH2CO2H 341. NO2 H OCH2C6H5 CH2CH2CO2CH2CH3 342. NO2 H OCH2C6H5 CH2CH2CO2H 343. NO2 H OCH2C6H5 CH2CH═CHCO2H 344. NO2 H OCH2C6H5 CH2CH═CHCO2H 345. NO2 H OCH2C6H5 CH2CH2P—O(OCH2CH3)2 346. NO2 H OCH2C6H5 CH2CH2P—O(OH)2 347. NHSO2CH3 H OCH2C6H5 H 348. NHSO2CH3 H OCH2C6H5 CH3 349. NHSO2CH3 H OCH2C6H5 CO2CH2CH3 350. NHSO2CH3 H OCH2C6H5 CO2H 351. NHSO2CH3 H OCH2C6H5 CH2CO2CH2CH3 352. NHSO2CH3 H OCH2C6H5 CH2CO2H 353. NHSO2CH3 H OCH2C6H5 CH2CH2CO2CH2CH3 354. NHSO2CH3 H OCH2C6H5 CH2CH2CO2H 355. NHSO2CH3 H OCH2C6H5 CH2CH═CHCO2H 356. NHSO2CH3 H OCH2C6H5 CH2CH═CHCO2H 357. NHSO2CH3 H OCH2C6H5 CH2CH2P—O(OCH2CH3)2 358. NHSO2CH3 H OCH2C6H5 CH2CH2P—O(OH)2 359. OCH2CONH2 H OCH2C6H5 H 360. OCH2CONH2 H OCH2C6H5 CH3 361. OCH2CONH2 H OCH2C6H5 CO2CH2CH3 362. OCH2CONH2 H OCH2C6H5 CO2H 363. OCH2CONH2 H OCH2C6H5 CH2CO2CH2CH3 364. OCH2CONH2 H OCH2C6H5 CH2CO2H 365. OCH2CONH2 H OCH2C6H5 CH2CH2CO2CH2CH3 366. OCH2CONH2 H OCH2C6H5 CH2CH2CO2H 367. OCH2CONH2 H OCH2C6H5 CH2CH═CHCO2H 368. OCH2CONH2 H OCH2C6H5 CH2CH═CHCO2H 369. OCH2CONH2 H OCH2C6H5 CH2CH2P—O(OCH2CH3)2 370. OCH2CONH2 H OCH2C6H5 CH2CH2P—O(OH)2 371. OH CH2N(CH3)2 OCH2C6H5 CO2CH2CH3 372. OH CH2N(CH3)2 OCH2C6H5 CO2H 373. OH CH2N(CH3)2 OCH2C6H5 CH2CO2CH2CH3 374. OH CH2N(CH3)2 OCH2C6H5 CH2CO2H 375. OH CH2N(CH3)2 OCH2C6H5 CH2CH2CO2CH2CH3 376. OH CH2N(CH3)2 OCH2C6H5 CH2CH2CO2H 377. OH CH2N(CH3)2 OCH2C6H5 CH2CH═CHCO2H 378. OH CH2N(CH3)2 OCH2C6H5 CH2CH═CHCO2H 379. OH CH2N(CH3)2 OCH2C6H5 CH2CH2P—O(OCH2CH3)2 380. OH CH2N(CH3)2 OCH2C6H5 CH2CH2P—O(OH)2 381. OCH3 CH2N(CH3)2 OCH2C6H5 CO2CH2CH3 382. OCH3 CH2N(CH3)2 OCH2C6H5 CO2H 383. OCH3 CH2N(CH3)2 OCH2C6H5 CH2CO2CH2CH3 384. OCH3 CH2N(CH3)2 OCH2C6H5 CH2CO2H 385. OCH3 CH2N(CH3)2 OCH2C6H5 CH2CH2CO2CH2CH3 386. OCH3 CH2N(CH3)2 OCH2C6H5 CH2CH2CO2H 387. OCH3 CH2N(CH3)2 OCH2C6H5 CH2CH═CHCO2H 388. OCH3 CH2N(CH3)2 OCH2C6H5 CH2CH═CHCO2H 389. OCH3 CH2N(CH3)2 OCH2C6H5 CH2CH2P—O(OCH2CH3)2 390. OCH3 CH2N(CH3)2 OCH2C6H5 CH2CH2P—O(OH)2 391. OH CH2N+(CH3)3 OCH2C6H5 H Cl 392. OH CH2N+(CH3)3 OCH2C6H5 CH3 Cl 393. OH CH2N+(CH3)3 OCH2C6H5 CO2CH2CH3 Cl 394. OH CH2N+(CH3)3 OCH2C6H5 CO2H Cl 395. OH CH2N+(CH3)3 OCH2C6H5 CH2CO2CH2CH3 Cl 396. OH CH2N+(CH3)3 OCH2C6H5 CH2CO2H Cl 397. OH CH2N+(CH3)3 OCH2C6H5 CH2CH2CO2CH2CH3 Cl 398. OH CH2N+(CH3)3 OCH2C6H5 CH2CH2CO2H Cl 399. OH CH2N+(CH3)3 OCH2C6H5 CH2CH═CHCO2H Cl 400. OH CH2N+(CH3)3 OCH2C6H5 CH2CH═CHCO2H Cl 401. OH CH2N+(CH3)3 OCH2C6H5 CH2CH2P—O(OCH2CH3)2 Cl 402. OH CH2N+(CH3)3 OCH2C6H5 CH2CH2P—O(OH)2 Cl 403. OCH3 CH2N+(CH3)3 OCH2C6H5 H Cl 404. OCH3 CH2N+(CH3)3 OCH2C6H5 CH3 Cl 405. OCH3 CH2N+(CH3)3 OCH2C6H5 CO2CH2CH3 Cl 406. OCH3 CH2N+(CH3)3 OCH2C6H5 CO2H Cl 407. OCH3 CH2N+(CH3)3 OCH2C6H5 CH2CO2CH2CH3 Cl 408. OCH3 CH2N+(CH3)3 OCH2C6H5 CH2CO2H Cl 409. OCH3 CH2N+(CH3)3 OCH2C6H5 CH2CH2CO2CH2CH3 Cl 410. OCH3 CH2N+(CH3)3 OCH2C6H5 CH2CH2CO2H Cl 411. OCH3 CH2N+(CH3)3 OCH2C6H5 CH2CH═CHCO2H Cl 412. OCH3 CH2N+(CH3)3 OCH2C6H5 CH2CH═CHCO2H Cl 413. OCH3 CH2N+(CH3)3 OCH2C6H5 CH2CH2P—O(OCH2CH3)2 Cl 414. OCH3 CH2N+(CH3)3 OCH2C6H5 CH2CH2P—O(OH)2 Cl 415. H H OCH2CH═CH2 CO2CH2CH3 416. H H OCH2CH═CH2 CO2H 417. H H OCH2CH═CH2 CH2CO2CH2CH3 418. H H OCH2CH═CH2 CH2CO2H 419. H H OCH2CH═CH2 CH2CH2CO2CH2CH3 420. H H OCH2CH═CH2 CH2CH2CO2H 421. H H OCH2CH═CH2 CH2CH═CHCO2H 422. H H OCH2CH═CH2 CH2CH═CHCO2H 423. H H OCH2CH═CH2 CH2CH2P—O(OCH2CH3)2 424. H H OCH2CH═CH2 CH2CH2P—O(OH)2 425. OH H OCH2CH═CH2 CO2CH2CH3 426. OH H OCH2CH═CH2 CO2H 427. OH H OCH2CH═CH2 CH2CO2CH2CH3 428. OH H OCH2CH═CH2 CH2CO2H 429. OH H OCH2CH═CH2 CH2CH2CO2CH2CH3 430. OH H OCH2CH═CH2 CH2CH2CO2H 431. OH H OCH2CH═CH2 CH2CH═CHCO2H 432. OH H OCH2CH═CH2 CH2CH═CHCO2H 433. OH H OCH2CH═CH2 CH2CH2P—O(OCH2CH3)2 434. OH H OCH2CH═CH2 CH2CH2P—O(OH)2 435. OCH3 H OCH2CH═CH2 CO2CH2CH3 436. OCH3 H OCH2CH═CH2 CO2H 437. OCH3 H OCH2CH═CH2 CH2CO2CH2CH3 438. OCH3 H OCH2CH═CH2 CH2CO2H 439. OCH3 H OCH2CH═CH2 CH2CH2CO2CH2CH3 440. OCH3 H OCH2CH═CH2 CH2CH2CO2H 441. OCH3 H OCH2CH═CH2 CH2CH═CHCO2H 442. OCH3 H OCH2CH═CH2 CH2CH═CHCO2H 443. OCH3 H OCH2CH═CH2 CH2CH2P—O(OCH2CH3)2 444. OCH3 H OCH2CH═CH2 CH2CH2P—O(OH)2 445. OCH2CH═CH2 H OCH2CH═CH2 CO2CH2CH3 446. OCH2CH═CH2 H OCH2CH═CH2 CO2H 447. OCH2CH═CH2 H OCH2CH═CH2 CH2CO2CH2CH3 448. OCH2CH═CH2 H OCH2CH═CH2 CH2CO2H 449. OCH2CH═CH2 H OCH2CH═CH2 CH2CH2CO2CH2CH3 450. OCH2CH═CH2 H OCH2CH═CH2 CH2CH2CO2H 451. OCH2CH═CH2 H OCH2CH═CH2 CH2CH═CHCO2H 452. OCH2CH═CH2 H OCH2CH═CH2 CH2CH═CHCO2H 453. OCH2CH═CH2 H OCH2CH═CH2 CH2CH2P—O(OCH2CH3)2 454. OCH2CH═CH2 H OCH2CH═CH2 CH2CH2P—O(OH)2 455. OCH2C6H5 H OCH2CH═CH2 CO2CH2CH3 456. OCH2C6H5 H OCH2CH═CH2 CO2H 457. OCH2C6H5 H OCH2CH═CH2 CH2CO2CH2CH3 458. OCH2C6H5 H OCH2CH═CH2 CH2CO2H 459. OCH2C6H5 H OCH2CH═CH2 CH2CH2CO2CH2CH3 460. OCH2C6H5 H OCH2CH═CH2 CH2CH2CO2H 461. OCH2C6H5 H OCH2CH═CH2 CH2CH═CHCO2H 462. OCH2C6H5 H OCH2CH═CH2 CH2CH═CHCO2H 463. OCH2C6H5 H OCH2CH═CH2 CH2CH2P—O(OCH2CH3)2 464. OCH2C6H5 H OCH2CH═CH2 CH2CH2P—O(OH)2 465. Cll H OCH2CH═CH2 CO2CH2CH3 466. Cl H OCH2CH═CH2 CO2H 467. Cl H OCH2CH═CH2 CH2CO2CH2CH3 468. Cl H OCH2CH═CH2 CH2CO2H 469. Cl H OCH2CH═CH2 CH2CH2CO2CH2CH3 470. Cl H OCH2CH═CH2 CH2CH2CO2H 471. Cl H OCH2CH═CH2 CH2CH═CHCO2H 472. Cl H OCH2CH═CH2 CH2CH═CHCO2H 473. Cl H OCH2CH═CH2 CH2CH2P—O(OCH2CH3)2 474. Cl H OCH2CH═CH2 CH2CH2P—O(OH)2 475. NO2 H OCH2CH═CH2 CO2CH2CH3 476. NO2 H OCH2CH═CH2 CO2H 477. NO2 H OCH2CH═CH2 CH2CO2CH2CH3 478. NO2 H OCH2CH═CH2 CH2CO2H 479. NO2 H OCH2CH═CH2 CH2CH2CO2CH2CH3 480. NO2 H OCH2CH═CH2 CH2CH2CO2H 481. NO2 H OCH2CH═CH2 CH2CH═CHCO2H 482. NO2 H OCH2CH═CH2 CH2CH═CHCO2H 483. NO2 H OCH2CH═CH2 CH2CH2P—O(OCH2CH3)2 484. NO2 H OCH2CH═CH2 CH2CH2P—O(OH)2 485. NHSO2CH3 H OCH2CH═CH2 H 486. NHSO2CH3 H OCH2CH═CH2 CH3 487. NHSO2CH3 H OCH2CH═CH2 CO2CH2CH3 488. NHSO2CH3 H OCH2CH═CH2 CO2H 489. NHSO2CH3 H OCH2CH═CH2 CH2CO2CH2CH3 490. NHSO2CH3 H OCH2CH═CH2 CH2CO2H 491. NHSO2CH3 H OCH2CH═CH2 CH2CH2CO2CH2CH3 492. NHSO2CH3 H OCH2CH═CH2 CH2CH2CO2H 493. NHSO2CH3 H OCH2CH═CH2 CH2CH═CHCO2H 494. NHSO2CH3 H OCH2CH═CH2 CH2CH═CHCO2H 495. NHSO2CH3 H OCH2CH═CH2 CH2CH2P—O(OCH2CH3)2 496. NHSO2CH3 H OCH2CH═CH2 CH2CH2P—O(OH)2 497. OCH2CONH2 H OCH2CH═CH2 H 498. OCH2CONH2 H OCH2CH═CH2 CH3 499. OCH2CONH2 H OCH2CH═CH2 CO2CH2CH3 500. OCH2CONH2 H OCH2CH═CH2 CO2H 501. OCH2CONH2 H OCH2CH═CH2 CH2CO2CH2CH3 502. OCH2CONH2 H OCH2CH═CH2 CH2CO2H 503. OCH2CONH2 H OCH2CH═CH2 CH2CH2CO2CH2CH3 504. OCH2CONH2 H OCH2CH═CH2 CH2CH2CO2H 505. OCH2CONH2 H OCH2CH═CH2 CH2CH═CHCO2H 506. OCH2CONH2 H OCH2CH═CH2 CH2CH═CHCO2H 507. OCH2CONH2 H OCH2CH═CH2 CH2CH2P—O(OCH2CH3)2 508. OCH2CONH2 H OCH2CH═CH2 CH2CH2P—O(OH)2 509. OH CH2N(CH3)2 OCH2CH═CH2 CO2CH2CH3 510. OH CH2N(CH3)2 OCH2CH═CH2 CO2H 511. OH CH2N(CH3)2 OCH2CH═CH2 CH2CO2CH2CH3 512. OH CH2N(CH3)2 OCH2CH═CH2 CH2CO2H 513. OH CH2N(CH3)2 OCH2CH═CH2 CH2CH2CO2CH2CH3 514. OH CH2N(CH3)2 OCH2CH═CH2 CH2CH2CO2H 515. OH CH2N(CH3)2 OCH2CH═CH2 CH2CH═CHCO2H 516. OH CH2N(CH3)2 OCH2CH═CH2 CH2CH═CHCO2H 517. OH CH2N(CH3)2 OCH2CH═CH2 CH2CH2P—O(OCH2CH3)2 518. OH CH2N(CH3)2 OCH2CH═CH2 CH2CH2P—O(OH)2 519. OCH3 CH2N(CH3)2 OCH2CH═CH2 CO2CH2CH3 520. OCH3 CH2N(CH3)2 OCH2CH═CH2 CO2H 521. OCH3 CH2N(CH3)2 OCH2CH═CH2 CH2CO2CH2CH3 522. OCH3 CH2N(CH3)2 OCH2CH═CH2 CH2CO2H 523. OCH3 CH2N(CH3)2 OCH2CH═CH2 CH2CH2CO2CH2CH3 524. OCH3 CH2N(CH3)2 OCH2CH═CH2 CH2CH2CO2H 525. OCH3 CH2N(CH3)2 OCH2CH═CH2 CH2CH═CHCO2H 526. OCH3 CH2N(CH3)2 OCH2CH═CH2 CH2CH═CHCO2H 527. OCH3 CH2N(CH3)2 OCH2CH═CH2 CH2CH2P—O(OCH2CH3)2 528. OCH3 CH2N(CH3)2 OCH2CH═CH2 CH2CH2P—O(OH)2 529. OH CH2N+(CH3)3 OCH2CH═CH2 H Cl 530. OH CH2N+(CH3)3 OCH2CH═CH2 CH3 Cl 531. OH CH2N+(CH3)3 OCH2CH═CH2 CO2CH2CH3 Cl 532. OH CH2N+(CH3)3 OCH2CH═CH2 CO2H Cl 533. OH CH2N+(CH3)3 OCH2CH═CH2 CH2CO2CH2CH3 Cl 534. OH CH2N+(CH3)3 OCH2CH═CH2 CH2CO2H Cl 535. OH CH2N+(CH3)3 OCH2CH═CH2 CH2CH2CO2CH2CH3 Cl 536. OH CH2N+(CH3)3 OCH2CH═CH2 CH2CH2CO2H Cl 537. OH CH2N+(CH3)3 OCH2CH═CH2 CH2CH═CHCO2H Cl 538. OH CH2N+(CH3)3 OCH2CH═CH2 CH2CH═CHCO2H Cl 539. OH CH2N+(CH3)3 OCH2CH═CH2 CH2CH2P—O(OCH2CH3)2 Cl 540. OH CH2N+(CH3)3 OCH2CH═CH2 CH2CH2P—O(OH)2 Cl 541. OCH3 CH2N+(CH3)3 OCH2CH═CH2 H Cl 542. OCH3 CH2N+(CH3)3 OCH2CH═CH2 CH3 Cl 543. OCH3 CH2N+(CH3)3 OCH2CH═CH2 CO2CH2CH3 Cl 544. OCH3 CH2N+(CH3)3 OCH2CH═CH2 CO2H Cl 545. OCH3 CH2N+(CH3)3 OCH2CH═CH2 CH2CO2CH2CH3 Cl 546. OCH3 CH2N+(CH3)3 OCH2CH═CH2 CH2CO2H Cl 547. OCH3 CH2N+(CH3)3 OCH2CH═CH2 CH2CH2CO2CH2CH3 Cl 548. OCH3 CH2N+(CH3)3 OCH2CH═CH2 CH2CH2CO2H Cl 549. OCH3 CH2N+(CH3)3 OCH2CH═CH2 CH2CH═CHCO2H Cl 550. OCH3 CH2N+(CH3)3 OCH2CH═CH2 CH2CH═CHCO2H Cl 551. OCH3 CH2N+(CH3)3 OCH2CH═CH2 CH2CH2P—O(OCH2CH3)2 Cl 552. OCH3 CH2N+(CH3)3 OCH2CH═CH2 CH2CH2P—O(OH)2 Cl 553. H H OCH2CONH2 H 554. H H OCH2CONH2 CH3 555. H H OCH2CONH2 CO2CH2CH3 556. H H OCH2CONH2 CO2H 557. H H OCH2CONH2 CH2CO2CH2CH3 558. H H OCH2CONH2 CH2CO2H 559. H H OCH2CONH2 CH2CH2CO2CH2CH3 560. H H OCH2CONH2 CH2CH2CO2H 561. H H OCH2CONH2 CH2CH═CHCO2H 562. H H OCH2CONH2 CH2CH═CHCO2H 563. H H OCH2CONH2 CH2CH2P—O(OCH2CH3)2 564. H H OCH2CONH2 CH2CH2P—O(OH)2 565. OH H OCH2CONH2 H 566. OH H OCH2CONH2 CH3 567. OH H OCH2CONH2 CO2CH2CH3 568. OH H OCH2CONH2 CO2H 569. OH H OCH2CONH2 CH2CO2CH2CH3 570. OH H OCH2CONH2 CH2CO2H 571. OH H OCH2CONH2 CH2CH2CO2CH2CH3 572. OH H OCH2CONH2 CH2CH2CO2H 573. OH H OCH2CONH2 CH2CH═CHCO2H 574. OH H OCH2CONH2 CH2CH═CHCO2H 575. OH H OCH2CONH2 CH2CH2P—O(OCH2CH3)2 576. OH H OCH2CONH2 CH2CH2P—O(OH)2 577. OCH3 H OCH2CONH2 H 578. OCH3 H OCH2CONH2 CH3 579. OCH3 H OCH2CONH2 CO2CH2CH3 580. OCH3 H OCH2CONH2 CO2H 581. OCH3 H OCH2CONH2 CH2CO2CH2CH3 582. OCH3 H OCH2CONH2 CH2CO2H 583. OCH3 H OCH2CONH2 CH2CH2CO2CH2CH3 584. OCH3 H OCH2CONH2 CH2CH2CO2H 585. OCH3 H OCH2CONH2 CH2CH═CHCO2H 586. OCH3 H OCH2CONH2 CH2CH═CHCO2H 587. OCH3 H OCH2CONH2 CH2CH2P—O(OCH2CH3)2 588. OCH3 H OCH2CONH2 CH2CH2P—O(OH)2 589. OCH2CH═CH2 H OCH2CONH2 H 590. OCH2CH═CH2 H OCH2CONH2 CH3 591. OCH2CH═CH2 H OCH2CONH2 CO2CH2CH3 592. OCH2CH═CH2 H OCH2CONH2 CO2H 593. OCH2CH═CH2 H OCH2CONH2 CH2CO2CH2CH3 594. OCH2CH═CH2 H OCH2CONH2 CH2CO2H 595. OCH2CH═CH2 H OCH2CONH2 CH2CH2CO2CH2CH3 596. OCH2CH═CH2 H OCH2CONH2 CH2CH2CO2H 597. OCH2CH═CH2 H OCH2CONH2 CH2CH═CHCO2H 598. OCH2CH═CH2 H OCH2CONH2 CH2CH═CHCO2H 599. OCH2CH═CH2 H OCH2CONH2 CH2CH2P—O(OCH2CH3)2 600. OCH2CH═CH2 H OCH2CONH2 CH2CH2P—O(OH)2 601. OCH2C6H5 H OCH2CONH2 H 602. OCH2C6H5 H OCH2CONH2 CH3 603. OCH2C6H5 H OCH2CONH2 CO2CH2CH3 604. OCH2C6H5 H OCH2CONH2 CO2H 605. OCH2C6H5 H OCH2CONH2 CH2CO2CH2CH3 606. OCH2C6H5 H OCH2CONH2 CH2CO2H 607. OCH2C6H5 H OCH2CONH2 CH2CH2CO2CH2CH3 608. OCH2C6H5 H OCH2CONH2 CH2CH2CO2H 609. OCH2C6H5 H OCH2CONH2 CH2CH═CHCO2H 610. OCH2C6H5 H OCH2CONH2 CH2CH═CHCO2H 611. OCH2C6H5 H OCH2CONH2 CH2CH2P—O(OCH2CH3)2 612. OCH2C6H5 H OCH2CONH2 CH2CH2P—O(OH)2 613. Cl H OCH2CONH2 H 614. Cl H OCH2CONH2 CH3 615. Cl H OCH2CONH2 CO2CH2CH3 616. Cl H OCH2CONH2 CO2H 617. Cl H OCH2CONH2 CH2CO2CH2CH3 618. Cl H OCH2CONH2 CH2CO2H 619. Cl H OCH2CONH2 CH2CH2CO2CH2CH3 620. Cl H OCH2CONH2 CH2CH2CO2H 621. Cl H OCH2CONH2 CH2CH═CHCO2H 622. Cl H OCH2CONH2 CH2CH═CHCO2H 623. Cl H OCH2CONH2 CH2CH2P—O(OCH2CH3)2 624. Cl H OCH2CONH2 CH2CH2P—O(OH)2 625. NO2 H OCH2CONH2 H 626. NO2 H OCH2CONH2 CH3 627. NO2 H OCH2CONH2 CO2CH2CH3 628. NO2 H OCH2CONH2 CO2H 629. NO2 H OCH2CONH2 CH2CO2CH2CH3 630. NO2 H OCH2CONH2 CH2CO2H 631. NO2 H OCH2CONH2 CH2CH2CO2CH2CH3 632. NO2 H OCH2CONH2 CH2CH2CO2H 633. NO2 H OCH2CONH2 CH2CH═CHCO2H 634. NO2 H OCH2CONH2 CH2CH═CHCO2H 635. NO2 H OCH2CONH2 CH2CH2P—O(OCH2CH3)2 636. NO2 H OCH2CONH2 CH2CH2P—O(OH)2 637. NHSO2CH3 H OCH2CONH2 H 638. NHSO2CH3 H OCH2CONH2 CH3 639. NHSO2CH3 H OCH2CONH2 CO2CH2CH3 640. NHSO2CH3 H OCH2CONH2 CO2H 641. NHSO2CH3 H OCH2CONH2 CH2CO2CH2CH3 642. NHSO2CH3 H OCH2CONH2 CH2CO2H 643. NHSO2CH3 H OCH2CONH2 CH2CH2CO2CH2CH3 644. NHSO2CH3 H OCH2CONH2 CH2CH2CO2H 645. NHSO2CH3 H OCH2CONH2 CH2CH═CHCO2H 646. NHSO2CH3 H OCH2CONH2 CH2CH═CHCO2H 647. NHSO2CH3 H OCH2CONH2 CH2CH2P—O(OCH2CH3)2 648. NHSO2CH3 H OCH2CONH2 CH2CH2P—O(OH)2 649. OCH2CONH2 H OCH2CONH2 H 650. OCH2CONH2 H OCH2CONH2 CH3 651. OCH2CONH2 H OCH2CONH2 CO2CH2CH3 652. OCH2CONH2 H OCH2CONH2 CO2H 653. OCH2CONH2 H OCH2CONH2 CH2CO2CH2CH3 654. OCH2CONH2 H OCH2CONH2 CH2CO2H 655. OCH2CONH2 H OCH2CONH2 CH2CH2CO2CH2CH3 656. OCH2CONH2 H OCH2CONH2 CH2CH2CO2H 657. OCH2CONH2 H OCH2CONH2 CH2CH═CHCO2H 658. OCH2CONH2 H OCH2CONH2 CH2CH═CHCO2H 659. OCH2CONH2 H OCH2CONH2 CH2CH2P—O(OCH2CH3)2 660. OCH2CONH2 H OCH2CONH2 CH2CH2P—O(OH)2 661. OH CH2N(CH3)2 OCH2CONH2 H 662. OH CH2N(CH3)2 OCH2CONH2 CH3 663. OH CH2N(CH3)2 OCH2CONH2 CO2CH2CH3 664. OH CH2N(CH3)2 OCH2CONH2 CO2H 665. OH CH2N(CH3)2 OCH2CONH2 CH2CO2CH2CH3 666. OH CH2N(CH3)2 OCH2CONH2 CH2CO2H 667. OH CH2N(CH3)2 OCH2CONH2 CH2CH2CO2CH2CH3 668. OH CH2N(CH3)2 OCH2CONH2 CH2CH2CO2H 669. OH CH2N(CH3)2 OCH2CONH2 CH2CH═CHCO2H 670. OH CH2N(CH3)2 OCH2CONH2 CH2CH═CHCO2H 671. OH CH2N(CH3)2 OCH2CONH2 CH2CH2P—O(OCH2CH3)2 672. OH CH2N(CH3)2 OCH2CONH2 CH2CH2P—O(OH)2 673. OCH3 CH2N(CH3)2 OCH2CONH2 H 674. OCH3 CH2N(CH3)2 OCH2CONH2 CH3 675. OCH3 CH2N(CH3)2 OCH2CONH2 CO2CH2CH3 676. OCH3 CH2N(CH3)2 OCH2CONH2 CO2H 677. OCH3 CH2N(CH3)2 OCH2CONH2 CH2CO2CH2CH3 678. OCH3 CH2N(CH3)2 OCH2CONH2 CH2CO2H 679. OCH3 CH2N(CH3)2 OCH2CONH2 CH2CH2CO2CH2CH3 680. OCH3 CH2N(CH3)2 OCH2CONH2 CH2CH2CO2H 681. OCH3 CH2N(CH3)2 OCH2CONH2 CH2CH═CHCO2H 682. OCH3 CH2N(CH3)2 OCH2CONH2 CH2CH═CHCO2H 683. OCH3 CH2N(CH3)2 OCH2CONH2 CH2CH2P—O(OCH2CH3)2 684. OCH3 CH2N(CH3)2 OCH2CONH2 CH2CH2P—O(OH)2 685. OH CH2N+(CH3)3 OCH2CONH2 H Cl 686. OH CH2N+(CH3)3 OCH2CONH2 CH3 Cl 687. OH CH2N+(CH3)3 OCH2CONH2 CO2CH2CH3 Cl 688. OH CH2N+(CH3)3 OCH2CONH2 CO2H Cl 689. OH CH2N+(CH3)3 OCH2CONH2 CH2CO2CH2CH3 Cl 690. OH CH2N+(CH3)3 OCH2CONH2 CH2CO2H Cl 691. OH CH2N+(CH3)3 OCH2CONH2 CH2CH2CO2CH2CH3 Cl 692. OH CH2N+(CH3)3 OCH2CONH2 CH2CH2CO2H Cl 693. OH CH2N+(CH3)3 OCH2CONH2 CH2CH═CHCO2H Cl 694. OH CH2N+(CH3)3 OCH2CONH2 CH2CH═CHCO2H Cl 695. OH CH2N+(CH3)3 OCH2CONH2 CH2CH2P—O(OCH2CH3)2 Cl 696. OH CH2N+(CH3)3 OCH2CONH2 CH2CH2P—O(OH)2 Cl 697. OCH3 CH2N+(CH3)3 OCH2CONH2 H Cl 698. OCH3 CH2N+(CH3)3 OCH2CONH2 CH3 Cl 699. OCH3 CH2N+(CH3)3 OCH2CONH2 CO2CH2CH3 Cl 700. OCH3 CH2N+(CH3)3 OCH2CONH2 CO2H Cl 701. OCH3 CH2N+(CH3)3 OCH2CONH2 CH2CO2CH2CH3 Cl 702. OCH3 CH2N+(CH3)3 OCH2CONH2 CH2CO2H Cl 703. OCH3 CH2N+(CH3)3 OCH2CONH2 CH2CH2CO2CH2CH3 Cl 704. OCH3 CH2N+(CH3)3 OCH2CONH2 CH2CH2CO2H Cl 705. OCH3 CH2N+(CH3)3 OCH2CONH2 CH2CH═CHCO2H Cl 706. OCH3 CH2N+(CH3)3 OCH2CONH2 CH2CH═CHCO2H Cl 707. OCH3 CH2N+(CH3)3 OCH2CONH2 CH2CH2P—O(OCH2CH3)2 Cl 708. OCH3 CH2N+(CH3)3 OCH2CONH2 CH2CH2P—O(OH)2 Cl
TABLE VIIIa
Figure US20140155355A1-20140605-C00053
Ex. # X R1 1. CN H 2. CN CH3 3. CONH2 H 4. CONH2 CH3 5. CO2H H 6. CO2H CH3 7. NHSO2CH3 H 8. NHSO2CH3 CH3 9. OCH2C6H5 H 10. OCH2C6H5 CH3 11. OCH2C6H4C6H5 H 12. OCH2C6H4C6H5 CH3 13. OCH2CH2C6H5 H 14. OCH2CH2C6H5 CH3 15. OCH2C6H4Cl (2, 3, or 4) H 16. OCH2C6H4Cl (2, 3, or 4) CH3 17. OCH2C6H4OCH3 (2, 3, or 4) H 18. OCH2C6H4OCH3 (2, 3, or 4) CH3 19. OCH2C6H4F (2, 3, or 4) H 20. OCH2C6H4F (2, 3, or 4) CH3 21. OCH2C6H4CN (2, 3, or 4) H 22. OCH2C6H4CN (2, 3, or 4) CH3 23. OCH2C6H4CONH2 (2, 3, or 4) H 24. OCH2C6H4CONH2 (2, 3, or 4) CH3 25. OCH2C6H4CH2CN (2, 3, or 4) H 26. OCH2C6H4CH2CN (2, 3, or 4) CH3 27. OCH2C6H4CH2CONH2 (2, 3, or 4) H 28. OCH2C6H4CH2CONH2 (2, 3, or 4) CH3 29. OCH2C6H4OCH2CN (2, 3, or 4) H 30. OCH2C6H4OCH2CN (2, 3, or 4) CH3 31. OCH2C6H4OCH2CONH2 (2, 3, or 4) H 32. OCH2C6H4OCH2CONH2 (2, 3, or 4) CH3 33. OCH2C6H3(CN)2 (3,5) H 34. OCH2C6H3(CN)2 (3,5) CH3 35. OCH2C6H3(CONH2)2 (3,5) H 36. OCH2C6H3(CONH2)2 (3,5) CH3 37. OCH2C6H4—NO2 (2, 3, or 4) H 38. OCH2C6H4—NO2 (2, 3, or 4) CH3 39. OCH2C6H4—CF3 (2, 3, or 4) H 40. OCH2C6H4—CF3 (2, 3, or 4) CH3 41. OCH2C6H4—CH3 (2, 3, or 4) H 42. OCH2C6H4—CH3 (2, 3, or 4) CH3 43. OCH2C6H4—NHSO2CH3 (2, 3, or 4) H 44. OCH2C6H4—NHSO2CH3 (2, 3, or 4) CH3 45. OCH2C6H4C6H4CN (2, 3, or 4) H 46. OCH2C6H4C6H4CN (2, 3, or 4) CH3 47. OCH2C6H4C6H4CONH2 (2, 3, or 4) H 48. OCH2C6H4C6H4CONH2 (2, 3, or 4) CH3 49. OCH2C6H4C6H4CO2H (2, 3, or 4) H 50. OCH2C6H4C6H4CO2H (2, 3, or 4) CH3
TABLE VIIIb
Figure US20140155355A1-20140605-C00054
Ex. # X′ R1 1. CN H 2. CN CH3 3. CONH2 H 4. CONH2 CH3 5. CO2H H 6. CO2H CH3 7. NHSO2CH3 H 8. NHSO2CH3 CH3 9. OCH2C6H5 H 10. OCH2C6H5 CH3 11. OCH2CH2C6H5 H 12. OCH2C6H4C6H5 H 13. OCH2C6H4C6H5 CH3 14. OCH2CH2C6H5 CH3 15. OCH2C6H4—Cl (2, 3, or 4) H 16. OCH2C6H4—Cl (2, 3, or 4) CH3 17. OCH2C6H4—OCH3 (2, 3, or 4) H 18. OCH2C6H4—OCH3 (2, 3, or 4) CH3 19. OCH2C6H4—F (2, 3, or 4) H 20. OCH2C6H4—F (2, 3, or 4) CH3 21. OCH2C6H4CN (2, 3, or 4) H 22. OCH2C6H4CN (2, 3, or 4) CH3 23. OCH2C6H4CONH2 (2, 3, or 4) H 24. OCH2C6H4CONH2 (2, 3, or 4) CH3 25. OCH2C6H4CH2CN (2, 3, or 4) H 26. OCH2C6H4CH2CN (2, 3, or 4) CH3 27. OCH2C6H4CH2CONH2 (2, 3, or 4) H 28. OCH2C6H4CH2CONH2 (2, 3, or 4) CH3 29. OCH2C6H4OCH2CN (2, 3, or 4) H 30. OCH2C6H4OCH2CN (2, 3, or 4) CH3 31. OCH2C6H4OCH2CONH2 (2, 3, or 4) H 32. OCH2C6H4OCH2CONH2 (2, 3, or 4) CH3 33. OCH2C6H3(CN)2 (3,5) H 34. OCH2C6H3(CN)2 (3,5) CH3 35. OCH2C6H3(CONH2)2 (3,5) H 36. OCH2C6H3(CONH2)2 (3,5) CH3 37. OCH2C6H4—NO2 (2, 3, or 4) H 38. OCH2C6H4—NO2 (2, 3, or 4) CH3 39. OCH2C6H4—CF3 (2, 3, or 4) H 40. OCH2C6H4—CF3 (2, 3, or 4) CH3 41. OCH2C6H4—CH3 (2, 3, or 4) H 42. OCH2C6H4—CH3 (2, 3, or 4) CH3 43. OCH2C6H4—NHSO2CH3 (2, 3, or 4) H 44. OCH2C6H4—NHSO2CH3 (2, 3, or 4) CH3 45. OCH2C6H4C6H4CN (2, 3, or 4) H 46. OCH2C6H4C6H4CN (2, 3, or 4) CH3 47. OCH2C6H4C6H4CONH2 (2, 3, or 4) H 48. OCH2C6H4C6H4CONH2 (2, 3, or 4) CH3 49. OCH2C6H4C6H4CO2H (2, 3, or 4) H 50. OCH2C6H4C6H4CO2H (2, 3, or 4) CH3
TABLE VIIIc
Figure US20140155355A1-20140605-C00055
Ex. # X R1 1. NHCH2C6H5 H 2. NHCH2C6H5 CH3 3. NHCH2C6H4C6H5 H 4. NHCH2C6H4C6H5 CH3 5. NHCH2CH2C6H5 H 6. NHCH2CH2C6H5 CH3 7. NHCH2C6H4—Cl (2, 3, or 4) H 8. NHCH2C6H4—Cl (2, 3, or 4) CH3 9. NHCH2C6H4—OCH3 (2, 3, or 4) H 10. NHCH2C6H4—OCH3 (2, 3, or 4) CH3 11. NHCH2C6H4—F (2, 3, or 4) H 12. NHCH2C6H4—F (2, 3, or 4) CH3 13. NHCH2C6H4CN (2, 3, or 4) H 14. NHCH2C6H4CN (2, 3, or 4) CH3 15. NHCH2C6H4CONH2 (2, 3, or 4) H 16. NHCH2C6H4CONH2 (2, 3, or 4) CH3 17. NHCH2C6H4CH2CN (2, 3, or 4) H 18. NHCH2C6H4CH2CN (2, 3, or 4) CH3 19. NHCH2C6H4CH2CONH2 (2, 3, or 4) H 20. NHCH2C6H4CH2CONH2 (2, 3, or 4) CH3 21. NHCH2C6H4OCH2CN (2, 3, or 4) H 22. NHCH2C6H4OCH2CN (2, 3, or 4) CH3 23. NHCH2C6H4OCH2CONH2 (2, 3, or 4) H 24. NHCH2C6H4OCH2CONH2 (2, 3, or 4) CH3 25. NHCH2C6H3(CN)2 (3,5) H 26. NHCH2C6H3(CN)2 (3,5) CH3 27. NHCH2C6H3(CONH2)2 (3,5) H 28. NHCH2C6H3(CONH2)2 (3,5) CH3 29. NHCH2C6H4—NO2 (2, 3, or 4) H 30. NHCH2C6H4—NO2 (2, 3, or 4) CH3 31. NHCH2C6H4—CF3 (2, 3, or 4) H 32. NHCH2C6H4—CF3 (2, 3, or 4) CH3 33. NHCH2C6H4—CH3 (2, 3, or 4) H 34. NHCH2C6H4—CH3 (2, 3, or 4) CH3 35. NHCH2C6H4—NHSO2CH3 (2, 3, or 4) H 36. NHCH2C6H4—NHSO2CH3 (2, 3, or 4) CH3 37. NHCH2C6H4C6H4CN (2, 3, or 4) H 38. NHCH2C6H4C6H4CN (2, 3, or 4) CH3 39. NHCH2C6H4C6H4CONH2 (2, 3, or 4) H 40. NHCH2C6H4C6H4CONH2 (2, 3, or 4) CH3 41. NHCH2C6H4C6H4CO2H (2, 3, or 4) H 42. NHCH2C6H4C6H4CO2H (2, 3, or 4) CH3
TABLE VIIId
Figure US20140155355A1-20140605-C00056
1. NHCH2C6H5 H 2. NHCH2C6H5 CH3 3. NHCH2C6H4C6H5 H 4. NHCH2C6H4C6H5 CH3 5. NHCH2CH2C6H5 H 6. NHCH2CH2C6H5 CH3 7. NHCH2C6H4—Cl (2, 3, or 4) H 8. NHCH2C6H4—Cl (2, 3, or 4) CH3 9. NHCH2C6H4—OCH3 (2, 3, or 4) H 10. NHCH2C6H4—OCH3 (2, 3, or 4) CH3 11. NHCH2C6H4—F (2, 3, or 4) H 12. NHCH2C6H4—F (2, 3, or 4) CH3 13. NHCH2C6H4CN (2, 3, or 4) H 14. NHCH2C6H4CN (2, 3, or 4) CH3 15. NHCH2C6H4CONH2 (2, 3, or 4) H 16. NHCH2C6H4CONH2 (2, 3, or 4) CH3 17. NHCH2C6H4CH2CN (2, 3, or 4) H 18. NHCH2C6H4CH2CN (2, 3, or 4) CH3 19. NHCH2C6H4CH2CONH2 (2, 3, or 4) H 20. NHCH2C6H4CH2CONH2 (2, 3, or 4) CH3 21. NHCH2C6H4OCH2CN (2, 3, or 4) H 22. NHCH2C6H4OCH2CN (2, 3, or 4) CH3 23. NHCH2C6H4OCH2CONH2 (2, 3, or 4) H 24. NHCH2C6H4OCH2CONH2 (2, 3, or 4) CH3 25. NHCH2C6H3(CN)2 (3,5) H 26. NHCH2C6H3(CN)2 (3,5) CH3 27. NHCH2C6H3(CONH2)2 (3,5) H 28. NHCH2C6H3(CONH2)2 (3,5) CH3 29. NHCH2C6H4—NO2 (2, 3, or 4) H 30. NHCH2C6H4—NO2 (2, 3, or 4) CH3 31. NHCH2C6H4—CF3 (2, 3, or 4) H 32. NHCH2C6H4—CF3 (2, 3, or 4) CH3 33. NHCH2C6H4—CH3 (2, 3, or 4) H 34. NHCH2C6H4—CH3 (2, 3, or 4) CH3 35. NHCH2C6H4—NHSO2CH3 (2, 3, or 4) H 36. NHCH2C6H4—NHSO2CH3 (2, 3, or 4) CH3 37. NHCH2C6H4C6H4CN (2, 3, or 4) H 38. NHCH2C6H4C6H4CN (2, 3, or 4) CH3 39. NHCH2C6H4C6H4CONH2 (2, 3, or 4) H 40. NHCH2C6H4C6H4CONH2 (2, 3, or 4) CH3 41. NHCH2C6H4C6H4CO2H (2, 3, or 4) H 42. NHCH2C6H4C6H4CO2H (2, 3, or 4) CH3
TABLE IXa
Figure US20140155355A1-20140605-C00057
Ex # X R1 1. O(CH2CH2O)2CH2CH2OH H 2. O(CH2CH2O)2CH2CH2OH CH3 3. O(CH2CH2O)2CH2CH2OCH3 H 4. O(CH2CH2O)2CH2CH2OCH3 CH3 5. O(CH2CH2O)3CH2CH2OH H 6. O(CH2CH2O)3CH2CH2OH CH3 7. O(CH2CH2O)3CH2CH2OCH3 H 8. O(CH2CH2O)3CH2CH2OCH3 CH3 9. O(CH2CH2O)4CH2CH2OH H 10. O(CH2CH2O)4CH2CH2OH CH3 11. O(CH2CH2O)4CH2CH2OCH3 H 12. O(CH2CH2O)4CH2CH2OCH3 CH3 13. O(CH2CH2O)5CH2CH2OH H 14. O(CH2CH2O)5CH2CH2OH CH3 15. O(CH2CH2O)5CH2CH2OCH3 H 16. O(CH2CH2O)5CH2CH2OCH3 CH3 17. O(CH2CH2O)7CH2CH2OH H 18. O(CH2CH2O)7CH2CH2OH CH3 19. O(CH2CH2O)7CH2CH2OCH3 H 20. O(CH2CH2O)7CH2CH2OCH3 CH3 21. O(CH2CH2O)9CH2CH2OH H 22. O(CH2CH2O)9CH2CH2OH CH3 23. O(CH2CH2O)9CH2CH2OCH3 H 24. O(CH2CH2O)9CH2CH2OCH3 CH3
TABLE IXb
Figure US20140155355A1-20140605-C00058
Ex # X R1 1. O(CH2CH2O)2CH2CH2OH H 2. O(CH2CH2O)2CH2CH2OH CH3 3. O(CH2CH2O)2CH2CH2OCH3 H 4. O(CH2CH2O)2CH2CH2OCH3 CH3 5. O(CH2CH2O)3CH2CH2OH H 6. O(CH2CH2O)3CH2CH2OH CH3 7. O(CH2CH2O)3CH2CH2OCH3 H 8. O(CH2CH2O)3CH2CH2OCH3 CH3 9. O(CH2CH2O)4CH2CH2OH H 10. O(CH2CH2O)4CH2CH2OH CH3 11. O(CH2CH2O)4CH2CH2OCH3 H 12. O(CH2CH2O)4CH2CH2OCH3 CH3 13. O(CH2CH2O)5CH2CH2OH H 14. O(CH2CH2O)5CH2CH2OH CH3 15. O(CH2CH2O)5CH2CH2OCH3 H 16. O(CH2CH2O)5CH2CH2OCH3 CH3 17. O(CH2CH2O)7CH2CH2OH H 18. O(CH2CH2O)7CH2CH2OH CH3 19. O(CH2CH2O)7CH2CH2OCH3 H 20. O(CH2CH2O)7CH2CH2OCH3 CH3 21. O(CH2CH2O)9CH2CH2OH H 22. O(CH2CH2O)9CH2CH2OH CH3 23. O(CH2CH2O)9CH2CH2OCH3 H 24. O(CH2CH2O)9CH2CH2OCH3 CH3.
15-19. (canceled)
20. The method of claim 14, wherein the disease is selected from obesity, Type 2 diabetes, hypertension, dyslipidemia, high blood pressure, and insulin resistance.
21. The method of claim 20, wherein the compound is selected from Table A, or a stereoisomer or pharmaceutically acceptable salt thereof.
22. The method of claim 20, wherein the compound is selected from Table I, or a stereoisomer or pharmaceutically acceptable salt thereof.
23. The method of claim 20, wherein the compound is selected from Table IIa, or a stereoisomer or pharmaceutically acceptable salt thereof.
24. The method of claim 20, wherein the compound is selected from Table IIb, or a stereoisomer or pharmaceutically acceptable salt thereof.
25. The method of claim 20, wherein the compound is selected from Table IIIa, or a stereoisomer or pharmaceutically acceptable salt thereof.
26. The method of claim 20, wherein the compound is selected from Table IIIb, or a stereoisomer or pharmaceutically acceptable salt thereof.
27. The method of claim 20, wherein the compound is selected from Table IVa, or a stereoisomer or pharmaceutically acceptable salt thereof.
28. The method of claim 20, wherein the compound is selected from Table IVb, or a stereoisomer or pharmaceutically acceptable salt thereof.
29. The method of claim 20, wherein the compound is selected from Table IVc, or a stereoisomer or pharmaceutically acceptable salt thereof.
30. The method of claim 20, wherein the compound is selected from Table IVd, or a stereoisomer or pharmaceutically acceptable salt thereof.
31. The method of claim 20, wherein the compound is selected from Table V, or a stereoisomer or pharmaceutically acceptable salt thereof.
32. The method of claim 20, wherein the compound is selected from Table VIIIa, or a stereoisomer or pharmaceutically acceptable salt thereof.
33. The method of claim 20, wherein the compound is selected from Table VIIIb, or a stereoisomer or pharmaceutically acceptable salt thereof.
34. The method of claim 20, wherein the compound is selected from Table VIIIc, or a stereoisomer or pharmaceutically acceptable salt thereof.
35. The method of claim 20, wherein the compound is selected from Table VIIId, or a stereoisomer or pharmaceutically acceptable salt thereof.
36. The method of claim 20, wherein the compound is selected from Table IXa, or a stereoisomer or pharmaceutically acceptable salt thereof.
37. The method of claim 20, wherein the compound is selected from Table IXb, or a stereoisomer or pharmaceutically acceptable salt thereof.
38. The method of claim 14, wherein the disease is a co-morbidty of obesity selected from Type 2 diabetes, Metabolic Syndrome, dementia, hypertension, pulmonary hypoventilation syndrome, coronary artery disease, arterial sclerotic disease, and high cholesterol.
39. The method of claim 38, wherein the compound is selected from Table A, or a stereoisomer or pharmaceutically acceptable salt thereof.
US13/872,658 2005-07-01 2013-04-29 Mao-b inhibitors useful for treating obesity Abandoned US20140155355A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/872,658 US20140155355A1 (en) 2005-07-01 2013-04-29 Mao-b inhibitors useful for treating obesity

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US69606705P 2005-07-01 2005-07-01
US11/427,846 US7956220B2 (en) 2005-07-01 2006-06-30 MAO-B inhibitors useful for treating obesity
US13/076,174 US20120015909A1 (en) 2005-07-01 2011-03-30 Mao-b inhibitors useful for treating obesity
US13/872,658 US20140155355A1 (en) 2005-07-01 2013-04-29 Mao-b inhibitors useful for treating obesity

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/076,174 Continuation US20120015909A1 (en) 2005-07-01 2011-03-30 Mao-b inhibitors useful for treating obesity

Publications (1)

Publication Number Publication Date
US20140155355A1 true US20140155355A1 (en) 2014-06-05

Family

ID=37604807

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/427,846 Expired - Fee Related US7956220B2 (en) 2005-07-01 2006-06-30 MAO-B inhibitors useful for treating obesity
US13/076,174 Abandoned US20120015909A1 (en) 2005-07-01 2011-03-30 Mao-b inhibitors useful for treating obesity
US13/872,658 Abandoned US20140155355A1 (en) 2005-07-01 2013-04-29 Mao-b inhibitors useful for treating obesity

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/427,846 Expired - Fee Related US7956220B2 (en) 2005-07-01 2006-06-30 MAO-B inhibitors useful for treating obesity
US13/076,174 Abandoned US20120015909A1 (en) 2005-07-01 2011-03-30 Mao-b inhibitors useful for treating obesity

Country Status (7)

Country Link
US (3) US7956220B2 (en)
EP (1) EP1906952A4 (en)
CN (1) CN101262867A (en)
AU (1) AU2006265639A1 (en)
CA (1) CA2616918A1 (en)
WO (1) WO2007005845A1 (en)
ZA (1) ZA200800591B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015027324A1 (en) * 2013-08-30 2015-03-05 The University Of British Columbia Mao-b selective inhibitor compounds, pharmaceutical compositions thereof and uses thereof
US20150099741A1 (en) * 2013-10-03 2015-04-09 Northwestern University Diagnosing and treating patients having psychiatric disorders

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008092091A2 (en) * 2007-01-26 2008-07-31 Jenrin Discovery Mao inhibiting n-benzyl-n-propargyl-amines useful for treating obesity
EP2053033A1 (en) * 2007-10-26 2009-04-29 Bayer Schering Pharma AG Compounds for use in imaging, diagnosing and/or treatment of diseases of the central nervous system or of tumors
KR101580189B1 (en) * 2009-05-21 2015-12-24 삼성전자주식회사 Antenna Apparatus of Portable Device
EP2694472B1 (en) 2011-04-05 2020-03-11 Takeda Pharmaceutical Company Limited Sulfonamide derivative and use thereof
CN110615813B (en) * 2019-07-22 2022-01-14 浙江工业大学 Small molecule probe and preparation and application thereof
WO2023234675A1 (en) * 2022-05-30 2023-12-07 기초과학연구원 Antisense oligomers against monoamine oxidase b and use thereof

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3397236A (en) 1965-12-29 1968-08-13 Norwich Pharma Co Nu-2, 3-butadienyl-nu-methylbenzylamine or the 2-chloro-derivative thereof
US3485874A (en) * 1966-05-04 1969-12-23 Chinoin Gyogyszer Es Vegyeszet Ortho and para bromophenyl isopropyl methylamines
US3775479A (en) 1966-12-23 1973-11-27 Hoffmann La Roche Amine compounds
DE3267380D1 (en) 1981-06-22 1985-12-19 Ici Plc Peptides and pseudopeptides in which the n terminus bears two substituents
HU187775B (en) 1982-07-14 1986-02-28 Chinoin Gyogyszer Es Vegyeszeti Termekek Gyara Rt,Hu New process for producing propargile-amines of pharmaceutical activity
US5238962A (en) * 1983-03-03 1993-08-24 Hoffmann-La Roche Inc. Benzamide derivatives
HU207282B (en) * 1984-05-31 1993-03-29 Chinoin Gyogyszer Es Vegyeszet Process for producing phenyl-alkyl-amine derivatives and pharmaceutical compositions containing them
US5270328A (en) 1991-03-29 1993-12-14 Eli Lilly And Company Peripherally selective piperidine opioid antagonists
US5250542A (en) 1991-03-29 1993-10-05 Eli Lilly And Company Peripherally selective piperidine carboxylate opioid antagonists
US5159081A (en) 1991-03-29 1992-10-27 Eli Lilly And Company Intermediates of peripherally selective n-carbonyl-3,4,4-trisubstituted piperidine opioid antagonists
US5434171A (en) 1993-12-08 1995-07-18 Eli Lilly And Company Preparation of 3,4,4-trisubstituted-piperidinyl-N-alkylcarboxylates and intermediates
US6033682A (en) 1995-01-13 2000-03-07 Somerset Pharmaceuticals, Inc. S(+) desmethylselegiline and its use in therapeutic methods and pharmaceutical compositions
GEP20012374B (en) * 1995-03-02 2001-03-25 Scherer Ltd R P Pharmaceutical Compositions Comprising Monoamine Oxidase B Inhibitors, Method for Obtaining the Same and Use
DE69611842T2 (en) 1995-06-14 2001-06-07 Taisho Pharmaceutical Co Ltd OPTICALLY ACTIVE SUBSTITUTED PHENYLALKYLAMINE DERIVATIVES
WO1998022110A1 (en) 1996-11-20 1998-05-28 Virginia Tech Intellectual Properties, Inc. Prodrugs for the selective inhibition of monoamine oxidase-b
US6251938B1 (en) 1996-12-18 2001-06-26 Teva Pharmaceutical Industries, Ltd., Phenylethylamine derivatives
WO1999006369A1 (en) * 1997-08-01 1999-02-11 University Of Florida Neuraminidase inhibitors
CA2317439A1 (en) * 1998-01-14 1999-07-22 Wayne J. Brouillette Methods of synthesizing and screening inhibitors of bacterial nad synthetase enzyme, compounds thereof, and methods of treating bacterial and microbial infections with inhibitors of bacterial nad synthetase enzyme
WO1999037293A2 (en) 1998-01-27 1999-07-29 Thomas Thomas N Use of an mao-a or mao-b inhibitor for the treatment of vascular disorders
AU782191B2 (en) 2000-05-25 2005-07-07 F. Hoffmann-La Roche Ag Substituted 1-aminoalkyl-lactams and their use as muscarinic receptor antagonists
US20040010038A1 (en) 2002-02-27 2004-01-15 Eran Blaugrund Propargylamino indan derivatives and propargylamino tetralin derivatives as brain-selective MAO inhibitors
AU2003219913A1 (en) 2002-02-27 2003-09-09 Teva Pharmaceutical Industries, Ltd. Propargylamino indan derivatives and propargylamino tetralin derivatives as brain-selective mao inhibitors

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Visentin et al. (European Journal of Pharmacology, 466 (2003), p. 235-243) *
Visentin et al. (Obesity Research, 2004, v. 12, n. 3, p. 547-555) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015027324A1 (en) * 2013-08-30 2015-03-05 The University Of British Columbia Mao-b selective inhibitor compounds, pharmaceutical compositions thereof and uses thereof
AU2014311221B2 (en) * 2013-08-30 2018-11-15 Centre For Drug Research And Development MAO-B selective inhibitor compounds, pharmaceutical compositions thereof and uses thereof
US10196345B2 (en) 2013-08-30 2019-02-05 The University Of British Columbia MAO-B selective inhibitor compounds, pharmaceutical compositions thereof and uses thereof
US20150099741A1 (en) * 2013-10-03 2015-04-09 Northwestern University Diagnosing and treating patients having psychiatric disorders
US10098893B2 (en) * 2013-10-03 2018-10-16 Northwestern University Methods of administering a trace amine-associated receptor 1 (TAAR1) agonist to patients having the minor allele of the single nucleotide polymorphism rs2237457

Also Published As

Publication number Publication date
EP1906952A1 (en) 2008-04-09
AU2006265639A1 (en) 2007-01-11
CA2616918A1 (en) 2007-01-11
ZA200800591B (en) 2009-03-25
EP1906952A4 (en) 2010-04-14
CN101262867A (en) 2008-09-10
US7956220B2 (en) 2011-06-07
US20120015909A1 (en) 2012-01-19
WO2007005845A1 (en) 2007-01-11
US20070004683A1 (en) 2007-01-04

Similar Documents

Publication Publication Date Title
US8138209B2 (en) Substituted picolinamides as MAO-B inhibitors useful for treating obesity
US8541475B2 (en) MAO-B inhibitors useful for treating obesity
US20120015909A1 (en) Mao-b inhibitors useful for treating obesity
TWI252222B (en) beta2-adrenergic receptor agonists
US7687481B2 (en) Cannabinoid receptor antagonists/inverse agonists useful for treating obesity
US7666889B2 (en) Cannabinoid receptor antagonists/inverse agonists useful for treating metabolic disorders, including obesity and diabetes
US9133140B2 (en) Cycloalkylamne derivatives
US8124802B2 (en) MAO inhibiting N-benzyl-N-propargyl-amines useful for treating obesity
US7429679B2 (en) Sulphonic acid salt of sibutramine
FR2735128A1 (en) NOVEL BENZENESULFONAMIDE COMPOUNDS, PROCESS FOR THEIR PREPARATION AND USE IN THERAPEUTICS.
US8088926B2 (en) Substituted 2-methyl-2-phenoxy-N-propyl-propionamides as cannabinoid receptor antagonists/inverse agonists useful for treating obesity
WO2023091565A1 (en) Nsd2-targeted chemical degraders and compositions and methods of use thereof
US6998503B2 (en) Crystalline solid form of (2S,5Z)-2-amino-7-(ethanimidoylamino)-2-methylhept-5-enoic acid

Legal Events

Date Code Title Description
AS Assignment

Owner name: JENRIN DISCOVERY, INC., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCELROY, JOHN F;CHORVAT, ROBERT J;SIGNING DATES FROM 20090326 TO 20090502;REEL/FRAME:030360/0285

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION