US20140154157A1 - Process of Treating End-of-Life Cathode Ray Tubes for Lead and Soluble Silicates Recovery - Google Patents

Process of Treating End-of-Life Cathode Ray Tubes for Lead and Soluble Silicates Recovery Download PDF

Info

Publication number
US20140154157A1
US20140154157A1 US13/692,136 US201213692136A US2014154157A1 US 20140154157 A1 US20140154157 A1 US 20140154157A1 US 201213692136 A US201213692136 A US 201213692136A US 2014154157 A1 US2014154157 A1 US 2014154157A1
Authority
US
United States
Prior art keywords
sulphide
lead
process according
glass
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/692,136
Inventor
Giovanni Modica
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Costech International SpA
Original Assignee
Costech International SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Costech International SpA filed Critical Costech International SpA
Priority to US13/692,136 priority Critical patent/US20140154157A1/en
Publication of US20140154157A1 publication Critical patent/US20140154157A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/04Obtaining lead by wet processes
    • C22B13/045Recovery from waste materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a process for recovering lead contained in the glass of the cones resulting from the disposal of cathode ray tube television sets, and to the conversion of the remaining glass of the screens into soluble silicates.
  • cathode ray tube television sets In the specific case of cathode ray tube television sets, specialized companies dispose of them by recovering and starting up the recycling of plastic materials, wood-based materials, electronic circuits and, with particular regard to the cathode ray tube (CRT), barium/strontium glass and lead glass, which normally form the screen and the cone tube, respectively; in certain cases, the screen glass also contains lead, even if to a lesser extent.
  • CTR cathode ray tube
  • barium/strontium glass and lead glass which normally form the screen and the cone tube, respectively; in certain cases, the screen glass also contains lead, even if to a lesser extent.
  • the so-called ‘phosphors’ a complex mix of metal compounds which brighten up and form the image when hit by the cathode rays—are deposited.
  • the glass screen is cleared from phosphors before starting the recycling process thereof.
  • no recovery treatment is performed on phosphors and this is also because of their low percentage, despite these being a material from which valuable rare earths metals could be recovered.
  • the part of cathode tube containing lead may be divided into two components: the cone, made of a glass with a 20% minimum lead oxide content, intended to prevent X rays (generated by the deceleration of electrons when these hit the screen; phenomenon known with the German term Bremsstrahlung) from escaping from inside the tube; and a high-lead content (up to 50%) and low melting point frit, which is used to connect the screen to the cone.
  • the cone made of a glass with a 20% minimum lead oxide content, intended to prevent X rays (generated by the deceleration of electrons when these hit the screen; phenomenon known with the German term Bremsstrahlung) from escaping from inside the tube; and a high-lead content (up to 50%) and low melting point frit, which is used to connect the screen to the cone.
  • the operations carried out by specialized companies before dispatching it to the discharge essentially consist in removing the coatings deposited on the glass in order to suppress the release of toxic-noxious substances.
  • the average weight of the cathode tube is about 15 kg; considering that the barium glass/lead glass weight ratio is about 2/1, from each disposed television about 1 kg lead and about 9 kg water glass could be theoretically recovered. In large-sized television sets, lead glass weight may even reach 10 kg, thus doubling the above-mentioned recovery values.
  • the object of the present invention is to provide a process which allows to totally recover lead, in the form of sulphide, from glasses containing the element, and the remaining part of the compounds present in the glass in the form of a mixture of water-soluble silicates.
  • the first operation of the process of the invention consists in the initial treatment of the lead glass with a strong alkali. This treatment may be carried out with various methods.
  • the glass is directly treated with an aqueous alkali solution, typically a hydroxide of an alkali metal, preferably of sodium, NaOH, or potassium, KOH.
  • an aqueous alkali solution typically a hydroxide of an alkali metal, preferably of sodium, NaOH, or potassium, KOH.
  • an aqueous alkali solution is used, the minimum temperature at which the glass dissolution phenomenon becomes industrially useful is higher than 100° C., whereby an autoclave operation at autogenic pressure generated according to the temperature is required.
  • Glass dissolution has an acceptable rate at values of about 150° C., and it becomes quite fast at a temperature of 180° C.
  • the glass is etched and dissolved by alkali, thus leading to the formation of a clear solution.
  • This solution is processed (e.g. by filtration) to remove any non-reacted glass residues, which are recycled to alkali treatment.
  • this is a solid-liquid reaction, it is expedient to increase the etching surface by finely
  • the first glass etching may be thermo-chemically performed, by mixing the glass (preferably ground) with alkali in a solid form, and by heating the so obtained solid mixture at a temperature higher than the melting temperature of the alkali employed (e.g. 323° C. when NaOH is used or 360° C. when KOH is used). Once the mixture has been melted, the mass is taken again with water, thus obtaining a very fluid, viscous mass.
  • the melting temperature of the alkali employed e.g. 323° C. when NaOH is used or 360° C. when KOH is used.
  • the lead glass/alkaline compound weight ratio may be between 1/0.6 and 1/1.4 and preferably between 1/0.8 and 1/1.2. If glass dissolution by alkali etching in aqueous phase is used, the alkali will be used in the form of aqueous solutions with a concentration between 10 and 50% by weight, preferably between 15 and 45%.
  • the second operation of the process of the invention consists in adding a sulphide to the liquid phase obtained in the previous operation, with lead sulphide precipitation.
  • the sulphide may be added to the liquid phase in the form of a soluble compound, e.g. sodium sulphide (solid or, in its turn, in the form of concentrated solution); alternatively, in the liquid phase, hydrogen sulphide, H 2 S, may be bubbled in gaseous form.
  • a soluble compound e.g. sodium sulphide (solid or, in its turn, in the form of concentrated solution)
  • hydrogen sulphide, H 2 S may be bubbled in gaseous form.
  • the amount of the latter will be simply calculated by knowing the weight of the processed glass and the lead concentration thereof (from which weight and thus moles of lead are obtained); with similar calculations, within reach of a person of ordinary skill in the art, the volume of H 2 S to be bubbled through the liquid phase may be calculated.
  • the lead sulphide is separated by means of filtration, centrifugation or other known method, thus recovering a clear sodium silicate solution (if the alkali used was sodium hydroxide), the concentration of which depends on the amount of water used in treating the mass.
  • the lead sulphide may be usefully converted into metal lead by means of treatments well known by those skilled in the art, and compared to the traditional galena extracted from the mineral, it shows a clearly higher sulphide concentration.
  • the silicate solution before recycling, may be subjected to a chemical analysis to detect the presence of a residue of lead or sulphide ions, which may result from an imperfect calculation of the amounts of reactants to be used (e.g. due to the fact that this calculation was made on the basis of the nominal lead concentration in the glass, and that the real lead content was higher or lower than the nominal one).
  • the lead precipitation may be completed by adding further sulphide (in the form of soluble salt or H 2 S, as previously described); in the second case, excess sulphide ions may be removed by adding to the solution a strong oxidizer (typically a peroxide), which oxidizes sulphides to sulphates, thus generating substances accepted in the composition of commercial silicates.
  • a strong oxidizer typically a peroxide
  • the recovered alkali silicate is very pure as it is lead free, and it also contains the cations present in the original lead glass, such as calcium, barium, potassium or aluminum, which in alkaline solution do not form insoluble sulphides and therefore do not precipitate along with lead sulphide; this product may be used in many fields, among which construction, ceramics and paint industries may be listed.
  • a 560 kg mass of lead glass is ground until obtaining a solid product having an average grain-size of 1 mm.
  • a chemical analysis is performed, from which the glass is determined to have average composition, expressed in weight percentage values: 7.9 Na 2 O-7.6 K 2 O-3.1 CaO-1.6 MgO-1.4 BaO-51.4 SiO 2 -4.3 Al 2 O 3 -0.1 Fe 2 O 3 -22.6 PbO.
  • the ground glass is put into an autoclave along with 560 kg of 99% pure solid sodium hydroxide, and 850 litres of water. The mass is heated at 180° C. and stirred for 3 hours. The autogenic pressure recorded is 8 bar.
  • the mass is cooled and filtered by separating a non-dissolved mass equal to 3% of the original one. Such a mass is recycled at a subsequent solubilisation treatment.
  • the clear solution is processed with H 2 S, thus obtaining the precipitation of a solid which, after drying, is of 134.5 kg, and which from the analysis is identified as lead sulphide of purity 99% by weight, which corresponds to a practically quantitative recovery of the lead originally contained in the glass, considering 3% of initial, non-dissolved mass and non perfectly homogeneous dissolution phenomena of the starting glass, which lead to a slight enrichment of lead content in the solution as compared to the starting average composition.
  • the separated clear solution consists of a mixture of sodium, potassium, calcium, magnesium, aluminum and barium silicates, and it is stable over time without causing, even to a minimum extent, the formation of precipitates or gelatinous masses.
  • example 1 The procedure of example 1 is repeated, with the only differences that the initial glass is ground to an average grain-size of 0.2 mm, the autoclave temperature during glass dissolution is kept at 190° C., and that this operation lasts 1 hour. The results obtained are similar to those described in example 1.
  • a 500 kg mass of the same glass as in example 1 is ground until obtaining a solid product having an average grain-size of 3 mm.
  • the ground glass is put into a crucible along with 450 kg of 99% solid sodium hydroxide.
  • the mass is heated at 480° C. and stirred for 1 hour.
  • the melt mass is cooled, ground and processed with 900 litres of water.
  • the mass is filtered and the separated solid residue is 3% of the initial mass.
  • the process of the invention provides undoubted operational advantages as well as advantages in energy consumption, and in toxic and noxious emissions.
  • the process has glass dissolution temperatures which are at most 200° C. for the treatment in aqueous phase, and 550° C. in case of alkali fusion treatment.
  • the process of the invention shows a high operational flexibility, which complies very well with the treatment of glass wreckage from end-of-life CRTs disposal, in which the material composition may normally fluctuate within relatively wide limits resulting both from the type of lead glass originally used by the manufactures and from the adopted disposal system which might not be capable of efficiently separating the screen glass from the cone glass.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

There is described a process of recycling screen glass resulting from the disposal of cathode tube televisions, with quantitative recovery of lead in the form of sulphide and of silicates of cations other than lead, and subsequently recycling all the materials so recovered.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a process for recovering lead contained in the glass of the cones resulting from the disposal of cathode ray tube television sets, and to the conversion of the remaining glass of the screens into soluble silicates.
  • STATE OF THE ART
  • The acknowledgement of the regulations on RAEE by the EU Member States set up a virtuous circuit of recovering materials from end-of-life, electric/electronic devices.
  • In the specific case of cathode ray tube television sets, specialized companies dispose of them by recovering and starting up the recycling of plastic materials, wood-based materials, electronic circuits and, with particular regard to the cathode ray tube (CRT), barium/strontium glass and lead glass, which normally form the screen and the cone tube, respectively; in certain cases, the screen glass also contains lead, even if to a lesser extent.
  • On the internal face of the screen, the so-called ‘phosphors’—a complex mix of metal compounds which brighten up and form the image when hit by the cathode rays—are deposited. The glass screen is cleared from phosphors before starting the recycling process thereof. On the other hand, no recovery treatment is performed on phosphors and this is also because of their low percentage, despite these being a material from which valuable rare earths metals could be recovered.
  • The part of cathode tube containing lead may be divided into two components: the cone, made of a glass with a 20% minimum lead oxide content, intended to prevent X rays (generated by the deceleration of electrons when these hit the screen; phenomenon known with the German term Bremsstrahlung) from escaping from inside the tube; and a high-lead content (up to 50%) and low melting point frit, which is used to connect the screen to the cone.
  • On the lead glass, the operations carried out by specialized companies before dispatching it to the discharge, essentially consist in removing the coatings deposited on the glass in order to suppress the release of toxic-noxious substances.
  • In a mid-sized television set, the average weight of the cathode tube is about 15 kg; considering that the barium glass/lead glass weight ratio is about 2/1, from each disposed television about 1 kg lead and about 9 kg water glass could be theoretically recovered. In large-sized television sets, lead glass weight may even reach 10 kg, thus doubling the above-mentioned recovery values.
  • In the United Kingdom, Nulife Glass Ltd. recovers metal lead from CRTs glass by means of a pyrometallurgical process, claiming a 95% recovery of the lead present in the glass. This process is however environmentally and energetically burdensome, as the lead recovery is performed by heating the mass at a temperature higher than 1000° C. and adding coal as a reducer; in this process, lead vapors are inevitably released, which have to be cut down to avoid environmental contamination.
  • The article “A novel process utilizing subcritical water to remove lead from wasted lead silicate glass”, to H. Miyoshi et al., Chemistry Letters, Vol. 33 (2004), N. 8, p. 956, discloses a hydrothermal treatment with water under subcritical conditions (355° C. e 24 MPa) to remove lead from a glass with the following composition (in molar percentages): 7.3 Na2O-6.4 K2O-3.7 MgO-5.4 CaO-66.4 SiO2-7.8 PbO-3 Al2O3. An acid treatment at 100° C. to turn silicate into silica and recover a soluble lead salt follows.
  • The article “Development of an eco-friendly material recycling process for spent lead glass using a mechanochemical process and Na2EDTA reagent”, to Ryo Sasai et al., Environ. Sci. Technol., Vol. 42 (2008), N. 11, pp. 4159-4164, discloses a mechanical-chemical treatment based on a mechanical milling action, and a chemical one by means of strong complexants.
  • The article “Lead extraction from waste funnel cathode-ray tubes glasses by reaction with silicon carbide and titanium nitride”, to P. G. Yot et al., Journal of hazardous Materials, Vol. 172 (2009), N. 1, pp. 117-123, discloses a process based on a reduction treatment performed with silicon carbide and titanium nitride.
  • The known processes are still to a level of laboratory studies, far away from an industrial application, and the only industrialized technology for the treatment of lead glass from CRTs (Nulife Glass Ltd.) proves to be highly energy demanding and does not achieve a total lead recovery.
  • SUMMARY OF THE INVENTION
  • The object of the present invention is to provide a process which allows to totally recover lead, in the form of sulphide, from glasses containing the element, and the remaining part of the compounds present in the glass in the form of a mixture of water-soluble silicates.
  • These objects are achieved according to the present invention by a process which comprises the following operations:
      • etching the glass by means of a strongly alkaline compound, thus obtaining an aqueous-based liquid phase;
      • adding a sulphide to the so obtained liquid phase, with the precipitation of lead sulphide;
      • separating the solid lead sulphide from the above liquid phase.
    DETAILED DESCRIPTION OF THE INVENTION
  • The first operation of the process of the invention consists in the initial treatment of the lead glass with a strong alkali. This treatment may be carried out with various methods.
  • According to a first possible method, the glass is directly treated with an aqueous alkali solution, typically a hydroxide of an alkali metal, preferably of sodium, NaOH, or potassium, KOH. If an aqueous alkali solution is used, the minimum temperature at which the glass dissolution phenomenon becomes industrially useful is higher than 100° C., whereby an autoclave operation at autogenic pressure generated according to the temperature is required. Glass dissolution has an acceptable rate at values of about 150° C., and it becomes quite fast at a temperature of 180° C. The glass is etched and dissolved by alkali, thus leading to the formation of a clear solution. This solution is processed (e.g. by filtration) to remove any non-reacted glass residues, which are recycled to alkali treatment. As this is a solid-liquid reaction, it is expedient to increase the etching surface by finely grinding the glass in order to facilitate the glass breaking-up treatment. The glass grinding extent does not affect the breaking-up action of the solution but only the time at which it occurs.
  • Alternatively, the first glass etching may be thermo-chemically performed, by mixing the glass (preferably ground) with alkali in a solid form, and by heating the so obtained solid mixture at a temperature higher than the melting temperature of the alkali employed (e.g. 323° C. when NaOH is used or 360° C. when KOH is used). Once the mixture has been melted, the mass is taken again with water, thus obtaining a very fluid, viscous mass.
  • The lead glass/alkaline compound weight ratio may be between 1/0.6 and 1/1.4 and preferably between 1/0.8 and 1/1.2. If glass dissolution by alkali etching in aqueous phase is used, the alkali will be used in the form of aqueous solutions with a concentration between 10 and 50% by weight, preferably between 15 and 45%.
  • The second operation of the process of the invention consists in adding a sulphide to the liquid phase obtained in the previous operation, with lead sulphide precipitation.
  • The sulphide may be added to the liquid phase in the form of a soluble compound, e.g. sodium sulphide (solid or, in its turn, in the form of concentrated solution); alternatively, in the liquid phase, hydrogen sulphide, H2S, may be bubbled in gaseous form. If sulphide from a soluble compound is added, the amount of the latter will be simply calculated by knowing the weight of the processed glass and the lead concentration thereof (from which weight and thus moles of lead are obtained); with similar calculations, within reach of a person of ordinary skill in the art, the volume of H2S to be bubbled through the liquid phase may be calculated.
  • In both cases, the selective precipitation of lead in the form of sulphide is achieved. The lead precipitation is quantitative, because this sulphide is practically insoluble, this salt having a solubility product of 10−29; on the other hand, sodium silicate and other silicates of the cations present in the glass, as well as the possible excess of alkali employed, remain in solution.
  • In the third and last operation of the method, the lead sulphide is separated by means of filtration, centrifugation or other known method, thus recovering a clear sodium silicate solution (if the alkali used was sodium hydroxide), the concentration of which depends on the amount of water used in treating the mass.
  • The lead sulphide may be usefully converted into metal lead by means of treatments well known by those skilled in the art, and compared to the traditional galena extracted from the mineral, it shows a clearly higher sulphide concentration.
  • The silicate solution, before recycling, may be subjected to a chemical analysis to detect the presence of a residue of lead or sulphide ions, which may result from an imperfect calculation of the amounts of reactants to be used (e.g. due to the fact that this calculation was made on the basis of the nominal lead concentration in the glass, and that the real lead content was higher or lower than the nominal one). If from the solution analysis, the presence of lead or sulphide ions is detected, in the first case, the lead precipitation may be completed by adding further sulphide (in the form of soluble salt or H2S, as previously described); in the second case, excess sulphide ions may be removed by adding to the solution a strong oxidizer (typically a peroxide), which oxidizes sulphides to sulphates, thus generating substances accepted in the composition of commercial silicates. The recovered alkali silicate is very pure as it is lead free, and it also contains the cations present in the original lead glass, such as calcium, barium, potassium or aluminum, which in alkaline solution do not form insoluble sulphides and therefore do not precipitate along with lead sulphide; this product may be used in many fields, among which construction, ceramics and paint industries may be listed.
  • The invention will be further disclosed by means of the following examples.
  • Example 1
  • A 560 kg mass of lead glass is ground until obtaining a solid product having an average grain-size of 1 mm. On a sample of the so obtained granulate, a chemical analysis is performed, from which the glass is determined to have average composition, expressed in weight percentage values: 7.9 Na2O-7.6 K2O-3.1 CaO-1.6 MgO-1.4 BaO-51.4 SiO2-4.3 Al2O3-0.1 Fe2O3-22.6 PbO. The ground glass is put into an autoclave along with 560 kg of 99% pure solid sodium hydroxide, and 850 litres of water. The mass is heated at 180° C. and stirred for 3 hours. The autogenic pressure recorded is 8 bar. At the end of the reaction, the mass is cooled and filtered by separating a non-dissolved mass equal to 3% of the original one. Such a mass is recycled at a subsequent solubilisation treatment. The clear solution is processed with H2S, thus obtaining the precipitation of a solid which, after drying, is of 134.5 kg, and which from the analysis is identified as lead sulphide of purity 99% by weight, which corresponds to a practically quantitative recovery of the lead originally contained in the glass, considering 3% of initial, non-dissolved mass and non perfectly homogeneous dissolution phenomena of the starting glass, which lead to a slight enrichment of lead content in the solution as compared to the starting average composition.
  • The separated clear solution consists of a mixture of sodium, potassium, calcium, magnesium, aluminum and barium silicates, and it is stable over time without causing, even to a minimum extent, the formation of precipitates or gelatinous masses.
  • Example 2
  • The procedure of example 1 is repeated, with the only differences that the autoclave temperature during glass dissolution is kept at 200° C., and that this operation lasts 1.5 hours. The results obtained are similar to those described in example 1.
  • Example 3
  • The procedure of example 1 is repeated, with the only differences that the initial glass is ground to an average grain-size of 0.2 mm, the autoclave temperature during glass dissolution is kept at 190° C., and that this operation lasts 1 hour. The results obtained are similar to those described in example 1.
  • Example 4
  • A 500 kg mass of the same glass as in example 1 is ground until obtaining a solid product having an average grain-size of 3 mm. The ground glass is put into a crucible along with 450 kg of 99% solid sodium hydroxide. The mass is heated at 480° C. and stirred for 1 hour. At the end of the reaction, the melt mass is cooled, ground and processed with 900 litres of water. The mass is filtered and the separated solid residue is 3% of the initial mass. Such a residue is recycled to the initial treatment, while the liquid phase is processed with hydrogen sulphide, thus obtaining the precipitation of a solid which, after drying, is 118.5 kg which, by means of the analysis is identified as lead sulphide of purity 99.2% by weight; this amount of solid corresponds to a practically quantitative recovery of the lead in the original glass. The separated, clear solution consists of a mixture of sodium, potassium, calcium, magnesium, aluminum and barium silicates, and it remains stable over time without causing, even to a minimum extent, the formation of precipitates or gelatinous masses.
  • With respect to the currently employed methods of treating lead glasses from CRTs disposal, the process of the invention provides undoubted operational advantages as well as advantages in energy consumption, and in toxic and noxious emissions.
  • First, the process has glass dissolution temperatures which are at most 200° C. for the treatment in aqueous phase, and 550° C. in case of alkali fusion treatment.
  • Second, the process of the invention shows a high operational flexibility, which complies very well with the treatment of glass wreckage from end-of-life CRTs disposal, in which the material composition may normally fluctuate within relatively wide limits resulting both from the type of lead glass originally used by the manufactures and from the adopted disposal system which might not be capable of efficiently separating the screen glass from the cone glass.

Claims (15)

1. A process of recovering lead and silicates from glasses resulting from cathode tube screen disposal, which comprises the following operations:
etching the glass by means of a strongly alkaline compound, thus obtaining an aqueous-based liquid phase;
adding a sulphide to the so obtained liquid phase, with the precipitation of lead sulphide;
separating the solid lead sulphide from the above liquid phase.
2. The process according to claim 1, wherein said alkaline compound is an alkali metal hydroxide.
3. The process according to claim 2, wherein said compound is chosen from sodium hydroxide and potassium hydroxide.
4. The process according to claim 1, wherein said glass etching operation is conducted by means of an aqueous solution of the alkaline compound at a temperature not higher than 200° C.
5. The process according to claim 4, wherein the process temperature is higher than 100° C.
6. The process according to claim 5, wherein the process temperature is between 150° C. and 180° C.
7. The process according to claim 1, wherein the alkaline compound is employed in the form of an aqueous solution with a weight concentration between 10 and 50%.
8. The process according to claim 7, wherein said concentration is between 15 and 45%.
9. The process according to claim 1, wherein said glass etching operation is conducted by blending the glass with the alkaline compound in solid form, heating the so obtained solid mixture at a temperature higher than the melting temperature of the alkaline compound employed, and taking again the resulting molten mass with water.
10. The process according to claim 1, wherein in said glass etching operation, the lead glass/alkaline compound weight ratio is between 1/0.6 and 1/1.4.
11. The process according to claim 10, wherein said weight ratio is between 1/0.8 and 1/1.2.
12. The process according to claim 1, wherein the glass is ground before said etching operation by the alkaline compound.
13. The process according to claim 1, wherein said operation of adding a sulphide to the liquid phase is conducted by adding a water-soluble sulphide to said liquid phase, or by bubbling hydrogen sulphide therein.
14. The process according to claim 1, wherein said operation of separating solid lead sulphide from the liquid phase is conducted by filtration or centrifugation.
15. The process according to claim 1 further comprising, after said operation of sulphide separation, a chemical analysis on said liquid phase, and:
if, in the analysis, the presence of lead ions in the liquid phase is detected, a sulphide is added thereto in the form of a water-soluble salt, or by bubbling hydrogen sulphide therein;
if, in the analysis, the presence of sulphide ions in the liquid phase is detected, an effective oxidant for the oxidation of sulphide ion to sulphate ion is added thereto.
US13/692,136 2012-12-03 2012-12-03 Process of Treating End-of-Life Cathode Ray Tubes for Lead and Soluble Silicates Recovery Abandoned US20140154157A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/692,136 US20140154157A1 (en) 2012-12-03 2012-12-03 Process of Treating End-of-Life Cathode Ray Tubes for Lead and Soluble Silicates Recovery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/692,136 US20140154157A1 (en) 2012-12-03 2012-12-03 Process of Treating End-of-Life Cathode Ray Tubes for Lead and Soluble Silicates Recovery

Publications (1)

Publication Number Publication Date
US20140154157A1 true US20140154157A1 (en) 2014-06-05

Family

ID=50825644

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/692,136 Abandoned US20140154157A1 (en) 2012-12-03 2012-12-03 Process of Treating End-of-Life Cathode Ray Tubes for Lead and Soluble Silicates Recovery

Country Status (1)

Country Link
US (1) US20140154157A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUA20161987A1 (en) * 2016-03-24 2017-09-24 E V H S R L PROCESS FOR THE TREATMENT OF CATHODIC TUBES AT THE END OF LIFE
US10184162B2 (en) * 2016-03-24 2019-01-22 Hellatron S.p.A. Hydrothermal process for the treatment of lead glass with recovery of lead metal, soluble and insoluble silicates and silica
CN113667842A (en) * 2021-07-14 2021-11-19 四川省冕宁县方兴稀土有限公司 Method for removing non-rare earth impurities in rare earth hydrometallurgy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUA20161987A1 (en) * 2016-03-24 2017-09-24 E V H S R L PROCESS FOR THE TREATMENT OF CATHODIC TUBES AT THE END OF LIFE
WO2017162757A1 (en) * 2016-03-24 2017-09-28 E.V.H. S.r.l. Process for the treatment of end-of-life cathode-ray tubes
CN109072336A (en) * 2016-03-24 2018-12-21 益维艾驰有限责任公司 For handling the technique of the cathode-ray tube of end-of-life
US10184162B2 (en) * 2016-03-24 2019-01-22 Hellatron S.p.A. Hydrothermal process for the treatment of lead glass with recovery of lead metal, soluble and insoluble silicates and silica
US10337114B2 (en) 2016-03-24 2019-07-02 E.V.H. S.r.l. Process for the treatment of end-of-life cathode-ray tubes
CN113667842A (en) * 2021-07-14 2021-11-19 四川省冕宁县方兴稀土有限公司 Method for removing non-rare earth impurities in rare earth hydrometallurgy

Similar Documents

Publication Publication Date Title
EP2455500A1 (en) Process of treating end-of-life cathode ray tubes for lead and soluble silicates recovery
JP5598631B2 (en) Recovery method of rare earth elements
KR101488164B1 (en) Method for recovery of rare earths from fluorescent lamps
US20140345326A9 (en) Systems and methods for processing lead-containing glass
Resende et al. Process development for the recovery of europium and yttrium from computer monitor screens
Okada et al. Reduction–melting combined with a Na2CO3 flux recycling process for lead recovery from cathode ray tube funnel glass
Önal et al. Recovery of rare earths from waste cathode ray tube (CRT) phosphor powder by selective sulfation roasting and water leaching
KR20140114070A (en) Method for separating heavy metal from glass
US10184162B2 (en) Hydrothermal process for the treatment of lead glass with recovery of lead metal, soluble and insoluble silicates and silica
AU2021254543A1 (en) Green chemical alkali conversion and defluorination method by roasting fluorine-containing rare earth ore and solid slag
Zhang et al. Extraction of lead from spent leaded glass in alkaline solution by mechanochemical reduction
US20140154157A1 (en) Process of Treating End-of-Life Cathode Ray Tubes for Lead and Soluble Silicates Recovery
US20140127110A1 (en) Method for recovering phosphorus in the form of a compound containing phosphorus, from lamp waste containing luminophores
Pindar et al. Characterization and recycling potential of the discarded cathode ray tube monitors
US20220185688A1 (en) Acid wash of red mud (bauxite residue)
JP4174708B2 (en) Method for recovering and purifying calcium fluoride from a by-product mixed salt containing fluorine
JP2012092406A (en) Method for recovering lead from lead-containing glass
DE102014206223A1 (en) Process for the recovery of rare earths from rare earth-containing compositions
JP2012239945A (en) Lead removal method for lead containing glass
CN106995884B (en) A method of the Extraction of rare earth element from waste phosphor powder
Hu et al. Extraction of lead from waste CRT funnel glass by generating lead sulfide–An approach for electronic waste management
Sinioros et al. A preliminary study of the concentration of special purpose elements and precious metals in the enriched precipitates produced by a wet method of cathode-ray tube recycling
US5939035A (en) Process for treating spent potlining containing inorganic matter
EP3222736B1 (en) Hydrothermal process for the treatment of lead glass with recovery of lead metal, soluble and insoluble silicates and silica
AU779342B2 (en) Method for producing metal or metal compound comprising process of treating with fluorine and adjusted raw material used therein

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION