US20140145337A1 - Memory Device Interconnects and Method of Manufacture - Google Patents

Memory Device Interconnects and Method of Manufacture Download PDF

Info

Publication number
US20140145337A1
US20140145337A1 US14/102,450 US201314102450A US2014145337A1 US 20140145337 A1 US20140145337 A1 US 20140145337A1 US 201314102450 A US201314102450 A US 201314102450A US 2014145337 A1 US2014145337 A1 US 2014145337A1
Authority
US
United States
Prior art keywords
bit line
inter
level dielectric
source
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/102,450
Inventor
Shenqing Fang
Connie Wang
Wen Yu
Fei Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spansion LLC
Monterey Research LLC
Original Assignee
Spansion LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spansion LLC filed Critical Spansion LLC
Priority to US14/102,450 priority Critical patent/US20140145337A1/en
Publication of US20140145337A1 publication Critical patent/US20140145337A1/en
Assigned to MORGAN STANLEY SENIOR FUNDING, INC. reassignment MORGAN STANLEY SENIOR FUNDING, INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CYPRESS SEMICONDUCTOR CORPORATION, SPANSION LLC
Assigned to CYPRESS SEMICONDUCTOR CORPORATION reassignment CYPRESS SEMICONDUCTOR CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MORGAN STANLEY SENIOR FUNDING INC.,
Assigned to MONTEREY RESEARCH, LLC reassignment MONTEREY RESEARCH, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CYPRESS SEMICONDUCTOR CORPORATION
Assigned to MORGAN STANLEY SENIOR FUNDING, INC. reassignment MORGAN STANLEY SENIOR FUNDING, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE 8647899 PREVIOUSLY RECORDED ON REEL 035240 FRAME 0429. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTERST. Assignors: CYPRESS SEMICONDUCTOR CORPORATION, SPANSION LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • H01L21/76813Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures involving a partial via etch
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/10Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/10EEPROM devices comprising charge-trapping gate insulators characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Memories (AREA)

Abstract

An integrated circuit memory device, in one embodiment, includes a substrate having a plurality of bit lines. A first and second inter-level dielectric layer are successively disposed on the substrate. Each of a plurality of source lines extend through the first inter-level dielectric layer. Each of a plurality of source line vias extend through the second inter-level dielectric layer to each respective one of the plurality of source lines. Each of the plurality of staggered bit line contacts extend through the first and second inter-level dielectric layes to respective bit lines.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This is a continuation of U.S. patent application Ser. No. 12/116,200 filed May 6, 2008.
  • BACKGROUND OF THE INVENTION
  • There is a continuing need for improved flash memory devices. The need for larger storage capacity devices, faster operating devices and/or lower power consuming devices continually drive further scaling of memory devices. However, the scaling of memory devices is constrained by design rules that are technology specific. The design rules specify the minimum feature sizes, spacings and overlaps for the component devices and interconnects, and the maximum misalignment that can occur between two masks. In addition, line width expansion and shrinkage throughout fabrication also strongly affect the design rules.
  • Referring to FIG. 1, a representation of a memory cell array, according to the conventional art, is shown. The representation illustrates the grid of word lines 110, bit lines 120, drain select gate, source select gate, source line, and corresponding contacts. In the conventional art, the bit line interconnects may include polysilicon plugs (Poly 3), tungsten (W) clad layers, tungsten vias, and M1 interconnects. The source line interconnects may include polysilicon layer buried contacts (Poly 3), Titanium nitride (TiN) barrier layers, and tungsten (W) damascene M1 interconnects. The conventional interconnects require a relatively large number of masks. In addition, the bit line interconnects and source line interconnects are typically fabricated separately. Furthermore, the polysilicon portions of the conventional interconnects are characterized by a relatively high resistance.
  • In order to continue to scale memory devices, such as NAND flash memories, there is a continuing need to further scale the interconnects. Preferably, the interconnects should be fabricated using as few masks as possible. The resistance of interconnects should also preferably be lower than conventional bit line and source line ground interconnects.
  • SUMMARY OF THE INVENTION
  • Embodiments of the present technology are directed toward integrated circuit IC memory devices having staggered bit line contacts. The bit line contacts, bit line vias, the source lines and source line vias of the IC memory device are also substantially fabricated together. In addition, the bit line contacts, bit line vias, source lines and source line vias of the IC memory device are metal or a metal alloy.
  • In one embodiment, the integrated circuit memory device includes a substrate having a plurality of bit lines. A first inter-level dielectric layer is disposed on the substrate and a second inter-level dielectric layer is disposed on the first inter-level dielectric layer. A plurality of source lines extend through the first inter-level dielectric layer to the plurality of bit lines. Source line vias extend through the second inter-level dielectric layer to the source lines. Each of a plurality of staggered bit line contacts extend through the first inter-level dielectric layers to a respective one of the plurality of bit lines. Each of a plurality of bit line vias extend through the second inter-level dielectric layer to a respective one of the plurality of staggered bit line contacts. A metallization layer is coupled to one or more of the plurality of source line vias and one or more of the plurality of staggered bit line vias.
  • In another embodiment, a method of fabricating the integrated circuit memory device includes depositing a first inter-level dielectric layer on a substrate having a plurality of bit lines. A plurality of source line trenches are etched in the first inter-level dielectric layer and a plurality of staggered bit line contact openings are etched in the first inter-level dielectric layer such that each opening extends to a respective one of the plurality of bit lines. A plurality of source lines are formed in the plurality of source line trenches and a plurality of staggered bit line contacts are formed in the plurality of staggered bit line contact openings from a first metal layer. A second inter-level dielectric layer is then deposited on the first inter-level dielectric layer. A plurality of source line via openings are etched in the second inter-level dielectric layer such that each opening extends to a source line. In addition, a plurality of staggered bit line via openings are etched in the second inter-level dielectric layer such that each opening extends to a respective one of the plurality of staggered bit line contacts. A plurality of source line vias are formed in the plurality of source line via openings and a plurality of staggered bit line vias are formed in the plurality of staggered bit line via openings from a second metal layer.
  • In yet another embodiment, a method of fabricating an integrated circuit memory device includes depositing a first inter-level dielectric layer on a substrate having a plurality of bit lines. A plurality of source line trenches are etched in the first inter-level dielectric layer. In addition, a plurality of staggered bit line contact openings are etched in the first inter-level dielectric layer such that each opening extends to a respective one of the plurality of bit line. A plurality of source lines are formed in the plurality of source line trenches and a plurality of staggered bit line contacts are formed in the plurality of staggered bit line contact openings from a first metal layer. A second inter-level dielectric layer and an etch stop layer are then deposited on the first inter-level dielectric layer. A plurality of source line via windows and a plurality of bit line via windows are etched in the etch stop layer proximate the source lines and the staggered bit line contacts respectively. A plurality of trenches are etched in the first metallization oxide layer that each extend to a respective one of the plurality of source line via windows and the plurality of staggered bit line vias windows in the etch stop layer. The etching process is continued to each a plurality of the source line via openings through the second inter-level dielectric layer to a respective one of the plurality of the source lines, and a plurality of staggered bit line via openings through the second inter-level dielectric layer to a respective one of the first portion of the plurality of staggered bit line contacts. A plurality of source vias are the formed in the plurality of source via openings, a plurality of staggered bit line vias are formed in the plurality of staggered bit line via openings and a first metallization layer is formed in the plurality of trenches in the first metallization oxide layer from a second metal layer.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments of the present invention are illustrated by way of example and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
  • FIG. 1 shows a representation of a memory cell array, according to the conventional art.
  • FIG. 2 shows a representation of a memory cell array, in accordance with one embodiment of the present technology.
  • FIGS. 3A-3D show a method of fabricating interconnects in an integrated circuit (IC) memory device, according to one embodiment of the present technology.
  • FIGS. 4A-4D shows various stages during fabrication of the IC memory device, in accordance with one embodiment of the present technology.
  • FIGS. 5A-5D show a method of fabricating interconnects in an integrated circuit (IC) memory device, according to another embodiment of the present technology.
  • FIGS. 6A-6D shows various stages during fabrication of the IC memory device, in accordance with another embodiment of the present technology.
  • FIGS. 7A-7D show a method of fabricating interconnects in an integrated circuit (IC) memory device, according to yet another embodiment of the present technology.
  • FIGS. 8A-8D shows various stages during fabrication of the IC memory device, in accordance with yet another embodiment of the present technology.
  • FIGS. 9A-9B shows staggered bit line vias and contacts, in accordance with embodiment of the present technology.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Reference will now be made in detail to the embodiments of the present technology, examples of which are illustrated in the accompanying drawings. While the present technology will be described in conjunction with these embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of the present technology, numerous specific details are set forth in order to provide a thorough understanding of the present technology. However, it is understood that the present technology may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the present technology.
  • Integrated circuits such as memory devices may have hundreds, thousands, millions or more transistors, capacitors and the like, referred herein to as semiconductor components, fabricated therein. The interconnections between semiconductor components are typically made in a plurality of levels. As used here, the term “line” and “lines” refer to the portions of interconnects that are arranged in planes that are substantially parallel to the wafer substrate. For example, a memory device typically includes a plurality of source lines, bit lines, drain select gates, source select gates, and the like fabricated in one or more planes in the interconnect layers. The terms “contact,” “contacts,” “via” and “vias” refer to the portions of interconnects that are substantially perpendicular to the wafer substrate used to connect lines in different planes or provide a connect at the surface of the die to lines or components buried under one or more layers.
  • Embodiments of the present technology are directed to IC memory devices with staggered bit line contacts and bit line vias. The staggered bit line contacts and bit line vias may be formed at the same time as the source lines and source line vias. In addition, the source line and source line vias and/or the bit line contacts and bit line vias may be separated into two portions vertically. Furthermore, the source line, source line vias, bit line contacts and bit line vias may be metal.
  • Referring now to FIG. 2, a representation of a memory cell array, in accordance with one embodiment of the present technology, is shown. The word lines 205, bit lines 210, drain select gates 215, source select gates 220, source lines 225 and corresponding contacts/ vias 230, 235, 240 of the memory cell array are shown overlaid over a symbolic representation of a NAND cell array. Each column of the NAND flash memory array includes a drain select (e.g., MOSFET transistor) 245, a plurality of flash memory cells (e.g., floating gate MOSFET or SONOS transistors) 250, and a source select (e.g., MOSFET transistor) 255 disposed along a corresponding bit line 210. A drain select gate 215 is coupled to the gates of the drain selects 245 aligned in the first row. A respective one of a plurality of word lines 205 is coupled to the gates of each of the flash memory cells 250 along a given row. A source select gate 220 is coupled to the gates of the source selects 255 aligned in the last row.
  • The area of the semiconductor die consumed by the core memory cell unit is a function of the word line pitch (a) and the bit line pitch (b). The rest of the area of the semiconductor die is consumed by features that are considered overhead with regard to the core memory cell unit. The overhead is a function of the select gate width (c), select gate word line space (d), select gate-bit line contact space (e), via bottom on CD in y-direction (f), space between staggered contacts (g), select gate-source line space (h), and source line width (bottom) (i). The select gate-bit line contact space (e), contact bottom CD in the y-direction (f), the space between staggered contacts (g), select gate-source line space (h) and source line width (i) are determined by process capability.
  • The bit line contacts/ vias 230, 235 are staggered so that adjacent bit line contacts/vias are not in the same row. Staggering the bit line contacts/ vias 230, 235 increases the allowable misalignment tolerance without increasing the bit line pitch. The bit line contacts/ vias 230, 235, source lines 225 and source line vias 240 may be metal or metal alloy, such as tungsten, copper or the like. The metal source lines 225, source line vias 240 and bit line contacts/ vias 230, 235 reduce the resistance of the source line interconnects and bit line interconnects as compared to the conventional art. In addition, the bit line contacts/ vias 230, 235, source lines 225 and source line vias 240 may be formed at the same time. As a result, such NAND flash memories are characterized by improved bit line interconnects and source line interconnects.
  • Referring now to FIGS. 3A-3D, a method of fabricating interconnects in an integrated circuit (IC) memory device, according to one embodiment of the present technology, is shown. The method of fabricating mull level interconnects in an IC memory device will be further illustrated with reference to FIGS. 4A-4D, which shows various stages during fabrication of the IC memory device. The left side of FIGS. 4A-4D illustrate a cross-sectional view of FIG. 2 along view line A-A and the right side of FIG. 4A-4D illustrate a cross-sectional view of FIG. 2 along view line B-B. The method of fabricating the IC memory device begins, at 302, with various initial processes upon a wafer 402, such as cleaning, depositing, oxidation, doping, diffusion, implanting, photolithography, etching, chemical vapor deposition, evaporation, sputtering, epitaxy, annealing and/or the like. The initial fabrication processes form an array of memory cells, and periphery circuits such as input/output buffers, data latch, address latch, address decoders and control logic. In one implementation, the IC memory device may be a NAND flash memory device.
  • At 304, a first inter-level dielectric layer (ILD0A) 404 is deposited on the wafer 402. The inter-level dielectric may be chemical-vapor-deposited or sputtered silicon dioxide (SiO2), polyimide or the like. At 306, the inter-level dielectric layer 404 is thinned and/or planarized. In one implementation, the deposited first inter-level dielectric layer is thinned and planarized by chemical-mechanical polishing (CMP). At 308, a photo-resist is deposited and patterned by any well-known lithography process to form a source line mask. At 310, a plurality of trenches 410 are etched by any well-known etching method. In one implementation, an etchant interacts with the portions of the first inter-level dielectric layer exposed by the patterned resist until a plurality of source line trenches 410 are formed. At 312, the source line mask is removed utilizing an appropriate resist stripper or a resist ashing process.
  • At 314, a first metal layer is deposited on the first inter-level dielectric 404. In one implementation, the metal may be titanium (Ti), titanium nitride (TiN), tungsten (W), or a multilayer metal such as Ti/TiN/W. Referring now to FIG. 3B, excess metal of the first metal layer is removed to form source lines 416 in the source line trenches 410, at 316. In one implementation, the first metal layer is chemical-mechanical polished (CMP) to form the source lines 416 in the source line trenches 410.
  • Referring now to FIG. 4B, a second inter-level dielectric layer (ILD0B) 418 is deposited, at 318. An anti-reflective coating (ARC) 420 may also be deposited, at 320. At 322, a photo-resist is deposited and patterned by any well-known lithography process to form a source line via mask. At 324, a plurality of openings are etched by any well-known etching method to form a plurality of source line via openings 424. In one implementation, an etchant removes the portions of the second inter-level dielectric layer 418 exposed by the patterned resist layer until the plurality of openings extend to the source lines 416. At 326, the source line via mask is removed utilizing an appropriate resist stripper or a resist ashing process.
  • Referring now to FIG. 3C, a photo-resist is deposited and patterned by any well-known lithography process to form a staggered bit line contact mask, at 328. Referring now to FIG. 4C, a plurality of openings are etched by any well-known etching method to form a plurality of staggered bit line contact openings 430, at 330. The bit line contact openings 430 are staggered so that adjacent openings are not in the same row. In one implementation, an etchant removes the portions of the second inter-level dielectric layer 418 and first inter-level dielectric layer 404 exposed by the patterned resist layer until the plurality of staggered bit line contact openings 430 extend to respective bit lines 431. At 332, the staggered bit line contact mask is removed utilizing an appropriate resist stripper or a resist ashing process.
  • Referring now to FIG. 4D, a second metal layer is deposited on the second inter-level dielectric 418 and in the openings 424, 430, at 334. In one implementation, the metal may be titanium (Ti), titanium nitride (TiN), tungsten (W), or a multilayer metal such as Ti/TiN/W. At 336, excess metal is removed to form a plurality of source line vias 436 and a plurality of staggered bit line contacts 437 in the second portion of the source line via openings 424 and the bit line contact openings 430 respectively. In one implementation, the second metal layer is chemical-mechanical polished (CMP) to form the source line vias 436 in the source line via openings 424 and the staggered bit line contacts 437 in the staggered bit line contact openings 430. The resulting bit line contacts 437 are staggered so that adjacent bit line contacts are not in the same row.
  • At 338, an etch stop layer (ESL) is deposited. Referring now to FIG. 3D, a first metallization oxide layer 440 is deposited, at 340. At 342, a photo-resist is deposited and patterned by any well-known lithography process to form a first metallization layer mask. At 344, the exposed portions of the first metallization oxide layer 440 are etched by any well-known isotropic etching method. At 346, a third metal layer is deposited using an additive plating technique or the like to form first metallization layer to make connections 446, 447 to the source vias 436 and the staggered bit line vias 437. In one implementation, the metal may be copper (Cu), aluminum (Al), tungsten (W) or the like. At 348, fabrication continues with various other processes. The various processes typically include cleaning, depositing, oxidation, doping, diffusion, implanting, photolithography, etching, chemical vapor deposition, evaporation, sputtering, epitaxy, annealing, passivation, cleaving and/or the like.
  • Referring now to FIGS. 5A-5D, a method of fabricating interconnects in an IC memory device, according to another embodiment of the present technology, is shown. The method of fabricating multilevel interconnects in the IC memory device will be further illustrated with reference to FIGS. 6A-6D, which shows various stages during fabrication of the IC memory device. Again, the left side of FIGS. 6A-6D illustrate a cross-sectional view of FIG. 2 along view line A-A and the right side of FIG. 6A-6D illustrate a cross-sectional view of FIG. 2 along view line B-B. The method of fabricating the IC memory device begins, at 502, with various initial processes upon a wafer 602, such as cleaning, depositing, oxidation, doping, diffusion, implanting, photolithography, etching chemical vapor deposition, evaporation, sputtering, epitaxy, annealing and/or the like. The initial fabrication processes form an array of memory cells, and periphery circuits such as input/output buffers, data latch, address latch, address decoders and control logic. In one implementation, the IC memory device may be a NAND flash memory device.
  • At 504, a first inter-level dielectric layer (ILD0A) 604 is deposited on the wafer 602. The inter-level dielectric may be chemical-vapor-deposited or sputtered silicon dioxide (SiO2), polyimide or the like. At 506, the inter-level dielectric layer 604 is thinned and/or planarized. In one implementation, the deposited first inter-level dielectric layer is thinned and planarized by chemical-mechanical polishing (CMP). At 508, an anti-reflective coating (ARC) 608 may also be deposited. At 510, a photo-resist is deposited and patterned by any well-known lithography process to form a source line and staggered bit line contact mask. At 512, a plurality of openings are etched by any well-known etching method to form a plurality of source line trenches 612 and a plurality of staggered bit line contact openings 613. In one implementation, an etchant interacts with the portions of the first inter-level dielectric layer 604 exposed by the patterned resist until a plurality of source line trenches 612 are formed that extend to the bit lines 615. The etchant also removes the exposed portions of the first inter-level dielectric layer 604 until a plurality of staggered bit line contact openings 613 are formed that extend to one or more bit lines 615. The bit line contact openings 613 are staggered so that adjacent openings are not in the same row. In addition, the aspect ratio of the staggered bit line contact openings result in tapered walls. The staggering of the bit line contact openings enable use of a larger tapering for the bit line contact openings. Referring now to FIG. 5B, the source line and staggered bit line contact mask is removed utilizing an appropriate resist stripper or a resist asking process, at 514.
  • Referring now to FIG. 6B, a first metal layer is deposited on the first inter-level dielectric, at 516. In one implementation, the metal may be titanium (Ti), titanium nitride (TiN), tungsten (W), or a multilayer metal such as Ti/TiN/W. At 518, excess metal of the first metal layer is removed to form a plurality of source lines 616 in the source line trenches 612. Removal of the excess metal of the first metal layer also forms a plurality of bit line contacts 617 in the staggered bit line contact openings 613. In one implementation, the first metal layer is chemical-mechanical polished (CMP) to form the source lines 616 and the staggered bit line contacts 617. At 520, an etch stop layer (ESL) 620 may be deposited.
  • Referring now to FIG. 6C, a second inter-level dielectric layer (ILD0B) 622 is deposited, at 522. The inter-level dielectric may be chemical-vapor-deposited or sputtered silicon dioxide (SiO2), polyimide or the like. At 526, a second anti-reflective coating (ARC) 626 may also be deposited. Referring now to FIG. 5C, a photo-resist is deposited and patterned by any well-known lithography process to form a source line via and staggered bit line via mask, at 528. At 530, a plurality of openings are etched by any well-known etching method to form a plurality of source line via openings 630 and a plurality of staggered bit line via openings 631. In one implementation, an etchant removes the exposed portions of the second inter-level dielectric layer 622 exposed by the patterned resist layer until a plurality of openings extend to the source lines 616 and the staggered bit line contacts 617. Again, the aspect ratio of the staggered bit line via openings 631 result in tapered walls. The staggering of the bit line via openings enable use of a larger tapering for the bit line via openings.
  • At 532, the source line via and staggered bit line via mask is removed utilizing an appropriate resist stripper or a resist aching process. Referring now to FIG. 6D, a second metal layer is deposited on the second inter-level dielectric 622 and in the openings 630, 631, at 534. In one implementation, the metal may be titanium (Ti), titanium nitride (TiN), tungsten (W), or a multilayer metal such as Ti/TiN/W. At 536, excess metal is removed to form source line vias 636 and staggered bit line vias 637. In one implementation, the second metal layer is chemical-mechanical polished (CMP) to form the source line vias 636 in the source line via openings 630 and the plurality of staggered bit line vias 637 in the staggered bit line via openings 631. The resulting bit line vias are staggered so that adjacent bit line vias are not in the same row.
  • Referring now to FIG. 5D, a second etch stop layer (ESL) may be deposited, at 538. At 540, a first metallization oxide layer 640 is deposited. At 542, a photo-resist is deposited and patterned by any well-known lithography process to form a first metallization layer mask. At 544, the exposed portions of the first metallization oxide layer 640 are etched by any well-known etching method. At 546, a third metal layer is deposited using an additive technique such as plating or the like to form a first metallization layer to make connects to the source line vias 646 and the bit line vas 647. In one implementation, the metal may be copper (Cu) aluminum (Al), tungsten (W) or the like. At 548, fabrication continues with various other processes. The various processes typically include cleaning, depositing, oxidation, doping, diffusion, implanting, photolithography, etching, chemical vapor deposition, evaporation, sputtering, epitaxy, annealing, passivation, cleaving and/or the like.
  • It is appreciated that the staggering of the bit line vias and the tapering of the bit line vias increase the allowable alignment errors (e.g., relaxes lithography constraints) between the staggered bit line contacts and staggered bit line vias respectively. For instance, as illustrated in FIGS. 9A and 9B, the combination of the tapering of the bit line vias and contacts and the staggering of the bit line vias and contacts relaxes the lithography constraints such that the vias and contacts maintain electrical contact with each other and do not overlap adjacent bit line vias and contacts even when there is a given amount misalignment between the bit line vias and contacts 617, 631. In addition, the tapering of the bit line vias and contacts 617, 631 and the source line and source line vias allow a more uniform metal fill.
  • Referring now to FIGS. 7A-7D, a method of fabricating interconnects in an IC memory device, according to another embodiment of the present technology, is shown. The method of fabricating multilevel interconnects in the IC memory device will be further illustrated with reference to FIGS. 8A-8D, which shows various stages during fabrication of the IC memory device. Again, the left side of FIGS. 8A-8D illustrate a cross-sectional view of FIG. 2 along view line A-A and the right side of FIG. 8A-8D illustrate a cross-sectional view of FIG. 2 along view line B-B. The method of fabricating the IC memory device begins, at 702, with various initial processes upon a wafer 802, such as cleaning, depositing, oxidation, doping, diffusion, implanting, photolithography, etching, chemical vapor deposition, evaporation, sputtering, epitaxy, annealing and/or the like. The initial fabrication processes form an array of memory cells, and periphery circuits such as input/output buffers, data latch, address latch, address decoders and control logic. In one implementation, the IC memory device may be a NAND flash memory device.
  • At 704, a first inter-level dielectric layer (ILD0A) 804 is deposited on the wafer 602. The inter-level dielectric may be chemical-vapor-deposited or sputtered silicon dioxide (SiO2), polyimide or the like. At 706, the inter-level dielectric layer 804 is thinned and/or planarized. In one implementation, the deposited first inter-level dielectric layer is thinned and planarized by chemical-mechanical polishing (CMP). At 708, an anti-reflective coating (ARC) 808 may also be deposited. At 710, a photo-resist is deposited and patterned by any well-known lithography process to form a source line and staggered bit line contact mask. At 712, a plurality of openings are etched by any well-known etching method to form a plurality of source line trenches 812 and a plurality of staggered bit line contact openings 813 in the first inter-level dielectric layer. In one implementation, an etchant interacts with the exposed portions of the first inter-level dielectric layer 804 exposed by the patterned resist until a plurality of source line trenches 812 are formed. The etchant also removes the portions of the first inter-level dielectric layer 804 until a plurality of staggered bit line contact openings 813 are formed that extend to each of one or more bit lines 815. The bit line contact openings 813 are staggered so that adjacent openings are not in the same row. In addition, the aspect ratio of the staggered bit line contact openings 813 and the etchant used result in tapered walls. The staggering of the bit line contacts openings enable use of a larger tapering for the bit line contact openings.
  • Referring now to FIG. 7B, the source line and staggered bit line contact mask is removed utilizing an appropriate resist stripper or a resist ashing process, at 744. A first metal layer is deposited on the first inter-level dielectric, at 716. In one implementation, the metal may be titanium (Ti), titanium nitride (TiN), tungsten (W), or a multilayer metal such as Ti/TiN/W. Referring now to FIG. 8B, excess metal of the first metal layer is removed to form source lines 818 in the plurality of source line trenches 812, at 718. Removal of the excess metal of the first metal layer also forms staggered bit line contacts 819 in the plurality of staggered bit line contact openings 813. In one implementation, the first metal layer is chemical-mechanical polished (CMP) to form the source lines 818 and staggered bit line contacts 819.
  • Referring now to FIG. 8C, a first etch stop layer (ESL) 820 may be deposited, at 720. In one implementation, the first ESL 820 may be a nitride layer, or the like. At 728, a second inter-level dielectric layer (ILD0B) 828 is deposited. The inter-level dielectric may be chemical-vapor-deposited or sputtered silicon dioxide (SiO2), polyimide or the like. At 730, a second ESL 830 is deposited. In one implementation, the second ESL 830 may be a nitride layer, or the liked. Referring now to FIG. 7C, a photo-resist is deposited and patterned by any well-known lithography process to form a source line via and staggered bit line via mask, at 732. At 734, a plurality of openings are etched in the second ESL 830 by any well-known etching method to form source line via windows and staggered bit line via windows in the second ESL 830. In one implementation, an etchant interacts with the exposed portions of second ESL 830 exposed by the patterned resist until a plurality of source line via and staggered bit line via windows are formed. At 736, the source line via and staggered bit line via mask is removed utilizing an appropriate resist stripper or a resist ashing process.
  • At 738, a first metallization oxide layer 838 is deposited. A second anti-reflective coating (ARC) 840 may also be deposited, at 740. At 742, a photo-resist is deposited and patterned by any well-known lithography process to form a first metallization layer mask. Referring now to FIG. 7D, the first metallization oxide layer 838 is etched by any well-known etching method to pattern a first source line and staggered bit line metal layer 844 in the first metallization oxide layer 838, at 744. In addition, the etchant interacts with the second inter-level dielectric layer (ILD0B) 838 through the source line via windows and staggered bit line via windows in the second ESL 830 to form source line via openings 845 and staggered bit line via openings 846 in the second inter-level dielectric layer 822. In one implementation, an etchant interacts with the portions of the first metallization oxide layer 838 to patterns the first metallization layer and then the second inter-level dielectric layer 822 until the source line via openings 845 are formed that extend to the source line contacts 818. The etchant also removes the exposed portions of the second inter-level dielectric layer 822 until staggered bit line via openings 846 are formed that extend to the staggered bit line contacts 819. Again, the aspect ratio of the staggered bit line via openings 846 and the etchant used result in tapered walls. The staggering of the bit line via openings enable use of a larger tapering for the bit line via openings. At 746, the first metallization layer mask is removed utilizing an appropriate resist stripper or a resist ashing process.
  • At 748, a second metal layer 842 is deposited using an additive technique such as plating or the like. In one implementation, the metal may be copper (Cu), aluminum (Al), tungsten (W) or the like. In another implementation, the metal may be tungsten (W), titanium (Ti), titanium nitride (TiN), or a multilayer metal such as Ti/TiN/W. The second metal layer forms source line vias 848, staggered bit line vias 849 and the source line and bit line first metallization layer 850. The resulting bit line vias 819, 849 are staggered so that adjacent bit line vias are not in the same row. At 750, fabrication continues with various other processes. The various processes typically include cleaning, depositing, oxidation, doping, diffusion, ion implanting, photolithography, etching, chemical vapor deposition, evaporation, sputtering, epitaxy, annealing, passivation, cleaving and/or the like.
  • It is appreciated that the staggering of the bit line contacts and vias 819, 849 and the source line and source line vias 818, 848, and the tapering of the portions of the bit line contacts and vias 819, 849 and source line and source line vias 818, 848 increase the allowable alignment errors (e.g., relaxes lithography constraints) between the bit line vias and contacts 819, 849 and the source line and source line vias 818, 848 respectively. For instance, as illustrated in FIGS. 9A and 9B the staggering of the bit line vias and contacts 819, 849 relax the lithography constraints in that the bit line vias and contacts 819, 849 maintain electrical contact with each other and do not overlap adjacent bit line vias and contacts even when there is a given amount of misalignment between the bit line vias and contacts 819, 849. In addition, the tapering of the bit line vias and contacts 819, 849 and the source line and source line vias 818, 848 allow a more uniform metal fill.
  • The foregoing descriptions of specific embodiments of the present technology have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the present technology and its practical application, to thereby enable others skilled in the art to best utilize the present technology and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the Claims appended hereto and their equivalents.

Claims (15)

What is claimed is:
1. An integrated circuit memory device comprising:
a substrate having a plurality of bit lines;
a first inter-level dielectric layer disposed on the substrate;
a second inter-level dielectric layer disposed on the first inter-level dielectric layer;
a plurality of source lines that extend through the first inter-level dielectric layer;
a plurality of source line vias that extend through the second inter-level dielectric layer to each respective one of the plurality of source lines;
a plurality of bit line contacts that extend through the first inter-level dielectric layer and second inter-level dielectric layer to each respective one of the plurality of bit lines; and
a metallization layer coupled to one or more of the plurality of source line vias and one or more of the plurality of bit line contacts.
2. The integrated circuit memory device of claim 1, wherein the plurality of source lines are formed from a first metal layer.
3. The integrated circuit memory device of claim 2, wherein the plurality of bit line contacts and the plurality of source line vias are formed from a second metal layer.
4. The integrated circuit memory device of claim 1, wherein the plurality of bit line contacts and plurality of bit line vias are staggered so that adjacent ones of the bit line contacts and bit line vias are not in a same row.
5. The integrated circuit memory device of claim 1, wherein the plurality of bit line contacts, the plurality of source lines and the plurality of source line vias are formed from a metal or metal alloy.
6. The integrated circuit memory device of claim 1, wherein the plurality of bit line contacts, the plurality of source lines and the plurality of source line vias are comprised of one or more metals selected from the group consisting of tungsten, titanium, and titanium nitride.
7. The integrated circuit memory device of claim 1, wherein each of the plurality of bit line contacts are tapered.
8. The integrated circuit memory device of claim 1, wherein each of the plurality of source lines and each of the plurality of source line vias are tapered.
9. A method of fabricating an integrated circuit memory device comprising:
depositing a first inter-level dielectric layer on a substrate having a plurality of bit lines;
etching a plurality of source line trenches in the first inter-level dielectric layer;
forming a plurality of source lines in the plurality of source line trenches from a first metal layer;
depositing a second inter-level dielectric layer on the first inter-level dielectric layer;
etching a plurality of source line via openings in the second inter-level dielectric layer that each extend to a respective one of the plurality of source lines and a plurality of staggered bit line via openings in the second inter-level dielectric layer that each extend to a respective one of the plurality of staggered bit line contacts;
etching a plurality of staggered bit line contact openings in the second inter-level dielectric layer and the first inter-level dielectric layer that each extend to a respective one of the plurality of bit lines; and
forming a plurality of source line vias in the plurality of source line via openings and a plurality of staggered bit line contacts in the plurality of staggered bit line contact openings from a second metal layer.
10. The method according to claim 9, wherein forming the plurality of source lines comprises:
depositing the first metal layer after etching the source line trenches; and
removing a portion of the first metal layer until the first metal layer only remains in the source line trenches.
11. The method according to claim 9, wherein forming the plurality of source line vias and the plurality of staggered bit line contacts comprises:
depositing the second metal layer after etching the source line via openings and the staggered bit line contact openings; and
removing a portion of the second metal layer until the second metal layer only remains in the source line via openings and staggered bit line contact openings.
12. The method according to claim 9, wherein:
the source line trenches are etched using a first mask;
the source line via openings are etched using a second mask; and
the staggered bit line contact openings are etched using a third mask.
13. The method according to claims 9, wherein each of the plurality of stagered bit line contacts are tapered.
15. The method according to claim 9, wherein the first metal layer is tungsten, titanium, titanium nitrate or a multilayer of titanium, titanium nitride and tungsten.
16. The method according to claim 9, wherein the second metal layer is tungsten, titanium, titanium nitrate or a multilayer of titanium, titanium nitride and tungsten.
US14/102,450 2008-05-06 2013-12-10 Memory Device Interconnects and Method of Manufacture Abandoned US20140145337A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/102,450 US20140145337A1 (en) 2008-05-06 2013-12-10 Memory Device Interconnects and Method of Manufacture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/116,200 US8669597B2 (en) 2008-05-06 2008-05-06 Memory device interconnects and method of manufacturing
US14/102,450 US20140145337A1 (en) 2008-05-06 2013-12-10 Memory Device Interconnects and Method of Manufacture

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/116,200 Continuation US8669597B2 (en) 2008-05-06 2008-05-06 Memory device interconnects and method of manufacturing

Publications (1)

Publication Number Publication Date
US20140145337A1 true US20140145337A1 (en) 2014-05-29

Family

ID=41266159

Family Applications (7)

Application Number Title Priority Date Filing Date
US12/116,200 Active 2029-08-13 US8669597B2 (en) 2008-05-06 2008-05-06 Memory device interconnects and method of manufacturing
US14/102,450 Abandoned US20140145337A1 (en) 2008-05-06 2013-12-10 Memory Device Interconnects and Method of Manufacture
US14/102,446 Abandoned US20140151887A1 (en) 2008-05-06 2013-12-10 Memory Device Interconnects and Method of Manufacture
US15/239,580 Abandoned US20170092577A1 (en) 2008-05-06 2016-08-17 Memory Device Interconnects and Method of Manufacture
US16/147,032 Active US10833009B2 (en) 2008-05-06 2018-09-28 Memory device interconnects and method of manufacture
US16/677,568 Active US10833013B2 (en) 2008-05-06 2019-11-07 Memory device interconnects and method of manufacture
US17/092,846 Abandoned US20210134715A1 (en) 2008-05-06 2020-11-09 Memory Device Interconnects and Method of Manufacture

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/116,200 Active 2029-08-13 US8669597B2 (en) 2008-05-06 2008-05-06 Memory device interconnects and method of manufacturing

Family Applications After (5)

Application Number Title Priority Date Filing Date
US14/102,446 Abandoned US20140151887A1 (en) 2008-05-06 2013-12-10 Memory Device Interconnects and Method of Manufacture
US15/239,580 Abandoned US20170092577A1 (en) 2008-05-06 2016-08-17 Memory Device Interconnects and Method of Manufacture
US16/147,032 Active US10833009B2 (en) 2008-05-06 2018-09-28 Memory device interconnects and method of manufacture
US16/677,568 Active US10833013B2 (en) 2008-05-06 2019-11-07 Memory device interconnects and method of manufacture
US17/092,846 Abandoned US20210134715A1 (en) 2008-05-06 2020-11-09 Memory Device Interconnects and Method of Manufacture

Country Status (1)

Country Link
US (7) US8669597B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8669597B2 (en) * 2008-05-06 2014-03-11 Spansion Llc Memory device interconnects and method of manufacturing
US20090302472A1 (en) * 2008-06-05 2009-12-10 Samsung Electronics Co., Ltd. Non-volatile memory devices including shared bit lines and methods of fabricating the same
JP5362296B2 (en) * 2008-09-03 2013-12-11 矢崎総業株式会社 Terminal fitting
US20110101534A1 (en) * 2009-11-04 2011-05-05 International Business Machines Corporation Automated short length wire shape strapping and methods of fabricting the same
US9412598B2 (en) 2010-12-20 2016-08-09 Cypress Semiconductor Corporation Edge rounded field effect transistors and methods of manufacturing
US8263458B2 (en) 2010-12-20 2012-09-11 Spansion Llc Process margin engineering in charge trapping field effect transistors
KR20130139610A (en) * 2012-06-13 2013-12-23 에스케이하이닉스 주식회사 Semiconductor memory device, memory system comprising the same and method of manufacturing the same
US9230647B2 (en) * 2013-12-27 2016-01-05 Taiwan Semiconductor Manufacturing Co., Ltd. Metal line connection for improved RRAM reliability, semiconductor arrangement comprising the same, and manufacture thereof
US9916410B2 (en) 2015-06-22 2018-03-13 International Business Machines Corporation Signal via positioning in a multi-layer circuit board
US9881115B2 (en) 2016-04-27 2018-01-30 International Business Machines Corporation Signal via positioning in a multi-layer circuit board using a genetic via placement solver
US10211151B2 (en) * 2016-06-30 2019-02-19 International Business Machines Corporation Enhanced self-alignment of vias for asemiconductor device
US10115899B1 (en) * 2017-06-23 2018-10-30 Sandisk Technologies Llc Methods and apparatus for three-dimensional nonvolatile memory
US10903239B2 (en) * 2017-07-28 2021-01-26 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated circuit device with improved layout
US10672770B2 (en) * 2018-08-14 2020-06-02 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070241378A1 (en) * 2006-04-13 2007-10-18 Micron Technology, Inc. Method for forming bit line contacts and bit lines during the formation of a semiconductor device, and devices and systems including the bit lines and bit line contacts

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289423A (en) * 1990-11-16 1994-02-22 Sgs-Thomson Microelectronics S.R.L. Bank erasable, flash-EPROM memory
KR0144901B1 (en) 1995-04-24 1998-08-17 김광호 Semiconductor memory apparatus
US5885856A (en) 1996-08-21 1999-03-23 Motorola, Inc. Integrated circuit having a dummy structure and method of making
JP2000286263A (en) 1999-03-29 2000-10-13 Nec Corp Semiconductor device and its manufacture
JP3998373B2 (en) * 1999-07-01 2007-10-24 株式会社ルネサステクノロジ Manufacturing method of semiconductor integrated circuit device
JP2001077543A (en) 1999-09-03 2001-03-23 Fujitsu Ltd Multilayer wiring board
US6295222B2 (en) 2000-01-28 2001-09-25 Mitsubishi Kabushiki Kaisha Semiconductor memory device with two layers of bit lines
US6380067B1 (en) * 2000-05-31 2002-04-30 Advanced Micro Devices, Inc. Method for creating partially UV transparent anti-reflective coating for semiconductors
JP2002118235A (en) 2000-10-10 2002-04-19 Mitsubishi Electric Corp Semiconductor device, method for manufacturing semiconductor, and mask for manufacturing the same
KR100396470B1 (en) * 2001-02-19 2003-09-03 삼성전자주식회사 Non-volatile memory device having bitline contact pad and Method of manufacturing the same
US6468894B1 (en) 2001-03-21 2002-10-22 Advanced Micro Devices, Inc. Metal interconnection structure with dummy vias
JP4688343B2 (en) 2001-05-16 2011-05-25 ルネサスエレクトロニクス株式会社 Ferroelectric memory device
JP2002343861A (en) * 2001-05-21 2002-11-29 Mitsubishi Electric Corp Semiconductor integrated circuit and its manufacturing method
JP3790469B2 (en) 2001-12-21 2006-06-28 富士通株式会社 Semiconductor device
JP2004153015A (en) 2002-10-30 2004-05-27 Fujitsu Ltd Semiconductor device and its manufacturing method
US6833323B2 (en) 2003-01-29 2004-12-21 Taiwan Semiconductor Manufacturing Co., Ltd Method for forming patterned features at a semiconductor wafer periphery to prevent metal peeling
US6841396B2 (en) * 2003-05-19 2005-01-11 Texas Instruments Incorporated VIA0 etch process for FRAM integration
JP2005064226A (en) 2003-08-12 2005-03-10 Renesas Technology Corp Wiring structure
US7087350B2 (en) 2003-11-24 2006-08-08 Taiwan Semiconductor Manufacturing Co. Ltd. Method for combining via patterns into a single mask
JP4401874B2 (en) * 2004-06-21 2010-01-20 株式会社ルネサステクノロジ Semiconductor device
JP4222979B2 (en) 2004-07-28 2009-02-12 Necエレクトロニクス株式会社 Semiconductor device
JP5047625B2 (en) * 2004-10-25 2012-10-10 スパンション エルエルシー Semiconductor device and manufacturing method thereof
KR101008371B1 (en) 2005-05-30 2011-01-19 스펜션 저팬 리미티드 Semiconductor device and method for manufacturing same
US7224069B2 (en) 2005-07-25 2007-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Dummy structures extending from seal ring into active circuit area of integrated circuit chip
KR100698101B1 (en) * 2005-10-05 2007-03-23 동부일렉트로닉스 주식회사 Tungsten Plug Structure Of Semiconductor Device And Method for Forming The Same
DE102005057076A1 (en) 2005-11-30 2007-05-31 Advanced Micro Devices, Inc., Sunnyvale Increasing adhesion of metal layers comprises determination of regions of reduced contact hole density and formation of position-holding contacts with metal
JP2007165543A (en) * 2005-12-13 2007-06-28 Toshiba Corp Method for manufacturing semiconductor memory device
US7433231B2 (en) * 2006-04-26 2008-10-07 Micron Technology, Inc. Multiple select gates with non-volatile memory cells
JP2007305713A (en) 2006-05-10 2007-11-22 Matsushita Electric Ind Co Ltd Semiconductor device, and method for generating wiring auxiliary pattern
KR100760634B1 (en) * 2006-10-02 2007-09-20 삼성전자주식회사 Nand-type non volatile memory devcie and method of forming the same
JP2008205379A (en) * 2007-02-22 2008-09-04 Toshiba Corp Nonvolatile semiconductor memory and its production process
JP5027529B2 (en) 2007-03-01 2012-09-19 ルネサスエレクトロニクス株式会社 Semiconductor device and appearance inspection method
US7729161B2 (en) * 2007-08-02 2010-06-01 Macronix International Co., Ltd. Phase change memory with dual word lines and source lines and method of operating same
US8669597B2 (en) 2008-05-06 2014-03-11 Spansion Llc Memory device interconnects and method of manufacturing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070241378A1 (en) * 2006-04-13 2007-10-18 Micron Technology, Inc. Method for forming bit line contacts and bit lines during the formation of a semiconductor device, and devices and systems including the bit lines and bit line contacts

Also Published As

Publication number Publication date
US20190035723A1 (en) 2019-01-31
US20140151887A1 (en) 2014-06-05
US20170092577A1 (en) 2017-03-30
US20090278173A1 (en) 2009-11-12
US20200075477A1 (en) 2020-03-05
US8669597B2 (en) 2014-03-11
US10833013B2 (en) 2020-11-10
US20210134715A1 (en) 2021-05-06
US10833009B2 (en) 2020-11-10

Similar Documents

Publication Publication Date Title
US10833013B2 (en) Memory device interconnects and method of manufacture
US7951704B2 (en) Memory device peripheral interconnects and method of manufacturing
US10957581B2 (en) Self aligned via and pillar cut for at least a self aligned double pitch
US7223693B2 (en) Methods for fabricating memory devices using sacrificial layers and memory devices fabricated by same
CN110581103B (en) Semiconductor element and manufacturing method thereof
JP2010536176A (en) Semiconductor structure including close-pitch contacts and method for forming the same
US20110278654A1 (en) Semiconductor device
TW201843770A (en) Method for manufacturing a semiconductor device
US8841214B2 (en) Dual damascene process
US6387754B2 (en) Method of forming an on-chip decoupling capacitor with bottom hardmask
US7510914B2 (en) Semiconductor devices having fuses and methods of forming the same
US5602050A (en) Method of making a semiconductor device with conductors on stepped substrate having planar upper surfaces
US6265306B1 (en) Resist flow method for defining openings for conductive interconnections in a dielectric layer
US20100244271A1 (en) Semiconductor device and manufacturing method thereof
US9418886B1 (en) Method of forming conductive features
US6037253A (en) Method for increasing interconnect packing density in integrated circuits
CN112397515A (en) Apparatus including aluminum interconnects, memory devices including interconnects, and related methods
CN220934078U (en) Integrated chip
US11515204B2 (en) Methods for forming conductive vias, and associated devices and systems
US20230096938A1 (en) Fabrication of back-end-of-line interconnects
US20240145377A1 (en) Planarization structure for mim topography
KR100617052B1 (en) Method for Forming Semi-conductor Device

Legal Events

Date Code Title Description
AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:CYPRESS SEMICONDUCTOR CORPORATION;SPANSION LLC;REEL/FRAME:035240/0429

Effective date: 20150312

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: MONTEREY RESEARCH, LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CYPRESS SEMICONDUCTOR CORPORATION;REEL/FRAME:046173/0955

Effective date: 20180620

Owner name: CYPRESS SEMICONDUCTOR CORPORATION, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING INC.,;REEL/FRAME:046175/0969

Effective date: 20180620

AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., NEW YORK

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE 8647899 PREVIOUSLY RECORDED ON REEL 035240 FRAME 0429. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTERST;ASSIGNORS:CYPRESS SEMICONDUCTOR CORPORATION;SPANSION LLC;REEL/FRAME:058002/0470

Effective date: 20150312