US20140125809A1 - Digital ruvis camera - Google Patents

Digital ruvis camera Download PDF

Info

Publication number
US20140125809A1
US20140125809A1 US14/070,328 US201314070328A US2014125809A1 US 20140125809 A1 US20140125809 A1 US 20140125809A1 US 201314070328 A US201314070328 A US 201314070328A US 2014125809 A1 US2014125809 A1 US 2014125809A1
Authority
US
United States
Prior art keywords
camera
ultraviolet
subject
image sensor
bandpass filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/070,328
Inventor
Michael K. Thorsted
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Syntronics LLC
Original Assignee
Syntronics LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Syntronics LLC filed Critical Syntronics LLC
Priority to US14/070,328 priority Critical patent/US20140125809A1/en
Assigned to SYNTRONICS, LLC reassignment SYNTRONICS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: THORSTED, MICHAEL K
Publication of US20140125809A1 publication Critical patent/US20140125809A1/en
Priority to US14/518,078 priority patent/US9294689B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/661Transmitting camera control signals through networks, e.g. control via the Internet

Definitions

  • the present disclosure is directed to a digital camera and, more particularly, to a digital Reflected Ultraviolet Imaging System (“RUVIS”) camera for detecting and analyzing forensic evidence.
  • RUVIS digital Reflected Ultraviolet Imaging System
  • UV radiation ultraviolet
  • UV radiation While visible light has a wavelength ranging from about 400 nm to about 750 nm, UV radiation has a shorter wavelength ranging from about 10 nm to about 400 nm.
  • Some types of forensic evidence may include organic substances (e.g., blood, saliva, and semen) that are either readily visible or, upon exposure to UV radiation, may fluoresce and become visible to the human eye.
  • RUVIS technology which enables a user to see latent fingerprints on nonporous surfaces prior to treatment with powders or dyes, may be used to examine latent fingerprints.
  • RUVIS technology works on the principle that most nonporous surfaces either reflect or absorb light in the UV spectrum.
  • UV radiation illuminates a nonporous surface containing a latent fingerprint
  • the fingerprint stands out as darker or lighter than the background based on whether the surface reflects or absorbs the UV radiation, respectively.
  • Early RUVIS devices were portable, battery operated devices that used an image intensifier with a special photocathode to amplify the reflected UV radiation to allow an investigator to see latent fingerprints.
  • the noisy, grainy, low-resolution, green image on these devices was good enough to detect latent fingerprints, but was inadequate to document and photograph the fingerprints.
  • Attempts were made to capture images of latent fingerprints by including a video or digital camera with the image intensifier.
  • these systems were limited by a field of view smaller than two inches by two inches and a relatively low-resolution of the image intensifier. These systems also required collecting and processing of an image before a user could determine whether a suitable latent fingerprint had been captured.
  • the forensics community has recently set 1000 pixels per square inch as the minimum resolution to capture latent fingerprints. While modern digital cameras are capable of 12, 14, and 16 megapixel resolutions or even higher, they cannot capture images in the UV spectrum. In fact, to prevent images in the visible spectrum from appearing blurred, modern digital cameras are designed to have spectral sensitivity similar to a human eye, thereby blocking light from the UV spectrum. Glass is used in the lens and window of the sensor for most modern digital cameras, which blocks over ninety percent of the light below 300 nm and most of the light between 300 and 400 nm. Additionally, bandpass filters are often used to block light outside of the visible spectrum, further preventing modern digital cameras from capturing high resolution images in the UV spectrum.
  • the disclosure is directed toward a UV sensitive video camera.
  • the camera may include an input window and a bandpass filter.
  • the input window may receive into the camera UV radiation reflected off of a subject.
  • the bandpass filter may filter the UV radiation received into the camera through the input window.
  • the bandpass filter may have a passband centered at about 254 nm and a bandwidth of about 1 nm to about 100 mm.
  • the camera may also include an image sensor for collecting the filtered UV radiation passing through the bandpass filter and for generating an output based on the collected UV radiation.
  • the camera may further include at least one controller configured to generate video display signals based on the output of the image sensor.
  • the disclosure is directed toward a method for capturing UV images on a camera.
  • the method may include illuminating a subject with a UV lamp and receiving, on a camera, UV radiation reflecting off of the subject from the ultraviolet lamp.
  • the method may also include filtering the UV radiation entering the camera with a filter having a passband centered at about 254 rim and a bandwidth of about 1 nm to about 100 nm.
  • the method may further include collecting the filtered UV radiation and controlling, by at least one controller, gain and integration time of the camera to digitally capture images corresponding to the collected UV radiation.
  • the method may also include generating a video display of the digitally captured images showing the subject illuminated by UV radiation and storing the digitally captured images.
  • FIG. 1 is a diagrammatic illustration of an exemplary disclosed system for capturing UV images
  • FIG. 2 is a pictorial illustration of an exemplary disclosed UV sensitive video camera that may be used in the system of FIG. 1 ;
  • FIG. 3 is an assembly illustration of an exemplary disclosed UV sensitive video camera shown in FIG. 2 ;
  • FIG. 4 is an assembly illustration of an exemplary disclosed imager having a partially removed coverplate that may be used in the UV sensitive video camera of FIG. 2 ;
  • FIG. 5 is a graph showing the typical transmission percentage at varying wavelengths for an exemplary disclosed lens made from quartz
  • FIG. 6 is a graph showing the transmission percentage at varying wavelengths for an exemplary disclosed bandpass filter having a bandpass centered at about 254 nm;
  • FIG. 7 is a diagrammatic illustration of an exemplary disclosed system for capturing IN images using a portable UV sensitive video camera.
  • FIG. 8 is a flowchart of an exemplary disclosed method for capturing UV images on a camera that may be used with the system for capturing UV images of FIG. 1 .
  • FIG. 1 illustrates an ultraviolet (“UV”) imaging system 10 having a UV lamp 20 configured to direct UV radiation towards a subject 30 .
  • Imaging system 10 may also include a UV sensitive camera 40 configured to capture one or more. UV images 50 of subject 30 , a display 60 to view UV images 50 captured by camera 40 , and a storage device 70 for storing captured UV images 50 .
  • UV imaging system 10 may be used in a lab (as shown), on location at a crime scene, or at any location having forensic evidence. In one embodiment, UV imaging system 10 may be a stationary system such that forensic evidence, i.e., subject 30 , may be transported to UV imaging system 10 for analysis. However, it is contemplated that UV imaging system 10 may be transportable to subject 30 .
  • UV lamp 20 is depicted as a stationary mercury lamp.
  • UV lamp 20 may include any other type of UV light emitting device such as, for example, a deuterium light, a black light tube or bulb, a short wave UV lamp, a UV light-emitting diode, a UV laser, or a UV LED light.
  • UV lamp 20 may be configured to emit UV radiation at least at a wavelength of 254 nm at a power rating between one and 50 watts depending on the size of subject 30 and distance from subject 30 . It is contemplated that UV lamp 20 may be configured to emit UV radiation continuously or in pulses.
  • UV lamp 20 is a standalone lamp that includes a stand 22 , a housing 24 connected to and supported by stand 22 , and a bulb 26 housed in housing 24 .
  • UV lamp 20 may be connectable to camera 40 via an adjustable or fixed connecting member (not shown).
  • Stand 22 may be configured to fixedly position UV lamp 20 to emit UV radiation towards subject 30 at a specific angle such as, for example, looking down roughly perpendicular to the surface of subject 30 (as shown) or from the side roughly parallel to the surface of subject 30 .
  • stand 22 may be adjustable such that UV lamp 20 may be positioned to emit UV radiation towards subject at a variety of angles so as to form an angle between the light emitted by UV lamp 20 and the surface of subject 30 between about zero to 180 degrees. It is contemplated that stand 22 may be bendable and connectable to housing 24 such that housing 24 and bulb 26 may be rotatable in the x, y, and z planes. UV lamp 20 may be connectable to an independent power source (not shown) via, for example, a 110 volt wall plug, or may include an internal battery (not shown) to power bulb 26 . Alternatively, UV lamp 20 may be connectable to a laptop computer used for display 60 and powered via the laptop computer.
  • nonporous surface 80 may include a latent fingerprint that remained after a human hand contacted nonporous surface 80 .
  • subject 30 may he any type of forensic evidence and may vary in size such as, for example, a portion of a single fingerprint or multiple fingerprints and palm prints.
  • Subject 30 may include fresh or aged forensic evidence. It is contemplated that subject 30 may include multiple layers of forensic evidence overlaying one another.
  • Nonporous surface 80 may include any surface that is capable of containing subject 30 , such as, for example, a newspaper (as shown), playing cards, or money. It is contemplated that nonporous surface 80 may include flat or curved surfaces, such as, for example, a soda can, capable of containing subject 30 .
  • camera 40 may capture UV images 50 .
  • camera 40 is positioned looking down on subject 30 at an angle roughly perpendicular to nonporous surface 80 .
  • camera 40 may be positioned at a range of angles in connection with nonporous surface 80 .
  • Camera 40 may be held by a user (not shown) or fixedly or adjustably positioned by an overhead stand (not shown) or tripod (not shown).
  • the angle at which camera 40 views subject 30 may be adjustable. As shown in FIG. 1 , connectable to display 60 and storage 70 to receive power.
  • camera 40 may be connectable to an independent power source (not shown) via, for example, a 110 volt wall plug, or may include an internal battery (not shown) to power camera 40 . It is contemplated that camera 40 may receive direct or alternating current. Camera 40 may be in communication with display 60 and storage 70 via a wired connection or remotely over a wireless network (not shown).
  • Display 60 may be configured to receive UV images 50 from camera 40 as shown.
  • display 60 may include a monitor of a desktop computer or laptop computer.
  • display 60 may include any device configured to display video images, such as, for example, a camera display, a cellular phone display, or a television, etc.
  • Display 60 may vary in size based on the type of device and the image quality preferred. Based on the type of device, display 60 may be mobile or stationary.
  • Display 60 may be in communication with camera 40 and storage device 70 , and configured to send displayed UV images 50 to storage device 70 via, for example, a wired connection or remotely over a wireless network (not shown).
  • a computer associated with display 60 may, be equipped with controls such as, for example, a keyboard, mouse, or touch screen.
  • the computer may be configured to control the functions of camera 40 , including, for example, capturing UV images 50 and sending UV images 50 to display 60 and storage device 70 .
  • the computer may he configured to control the functions of display 60 , including, for example, selecting which UV images 50 to display and sending UV images 50 to storage device 70 .
  • the computer may he configured to control the functions of storage device 70 , including, for example, selecting a filename and storage location for UV images 50 .
  • Storage device 70 may include an external hard drive of a computer as shown. However, it is contemplated that storage device 70 may be any device configured to digitally store UV images 50 , such as, for example, internal computer memory, internal camera memory, a removable memory device, or a writable disc. Depending on the type of device, storage device 70 may be mobile or stationary. For instance, internal camera memory may he transportable with camera 40 to a crime scene, whereas an external hard drive may remain stationary in a lab. Storage device 70 may be in communication with camera 40 and display 60 via, for example, a wired connection or remotely over a wireless network (not shown),
  • camera 40 may include an input window 110 configured to receive UV radiation reflecting off of subject 30 into camera 40 .
  • Camera 40 may also include a bandpass filter 120 configured to filter UV radiation received into camera 40 through input window 110 , a lens 130 configured to receive and pass at least a portion of the UV radiation received into camera 40 through input window 110 , and a body 140 configured to collect the filtered UV radiation and generate a video display of UV images 50 .
  • input window 110 may include a viewing hole roughly the same diameter as lens 130 that is configured to allow at least a portion of UV radiation passing through bandpass filter 120 and lens 130 into camera body 140 . It is contemplated that input window may be a circular viewing hole, Depending on the amount of light a user desires to enter camera body 140 and based on the thickness of bandpass filter 120 and lens 130 , input window 110 may vary in diameter. It is contemplated that input window 110 may include a coverplate (not shown) that may occupy the viewing hole. In one embodiment, the coverplate may be constructed from various grades of fused silica, such as, for example, quartz, supracil, infracil, optosil, and other trade names.
  • the coverplate may be constructed from calcium fluoride, magnesium fluoride, sapphire, plastics, or other suitable materials configured to pass light having a wavelength of about 254 nm.
  • input window 110 may be configured without a coverplate.
  • bandpass filter 120 may be positioned along the optical path adjacent to lens 130 opposite input window 110 .
  • bandpass filter 120 may be positioned along the optical path between lens 130 and input window 110 .
  • Bandpass filter 120 may be cylindrical or circular in shape. The diameter of bandpass filter 120 may vary depending on the size of input window 110 and lens 130 , and the desired UV images 50 . For purposes of this disclosure, bandpass filter 120 may have roughly the same diameter as lens 130 . In one embodiment, bandpass filter 120 may have a passband centered at about 254 nm. However, it is contemplated that bandpass filter 120 may have a passband centered at other wavelengths depending upon the type of forensic evidence being captured.
  • bandpass filter 120 may have a bandpass centered at about 450 nm to analyze biological fluids, at about 532 nm to analyze laser illuminated surfaces, and at about 695 or 800 nm to analyze document alteration.
  • Bandpass filter 120 may have a bandwidth of about 1 nm to about 100 nm. In one embodiment, bandpass filter 120 may have a bandwidth of about 25 nm, which allows for about 25 percent transmission. In yet another embodiment, bandpass filter 120 may have a bandwidth of about 40 nm, which allows for about 33 percent transmission. It is contemplated that bandpass filter 120 may be configured to attenuate all out of band light by at least three orders of magnitude, having an out of band transmission of less than 0.1 percent. In another embodiment, bandpass filter 120 may be configured to attenuate approximately the entire visible and infrared spectrums to allow for clearer UV images 50 .
  • Lens 130 may be positioned along the optical path between bandpass filter 120 and input window 110 . In another embodiment, lens 130 may be positioned along the optical path adjacent bandpass filter 120 and opposite input window 110 . However, it is contemplated that lens 130 may be omitted from camera 40 . Lens 130 may be cylindrical in shape and vary in diameter based on the size of input window 110 and bandpass filter 120 and/or based on the size of the desired UV images 50 . For purposes of this disclosure, lens 130 may be the same diameter as bandpass filter 120 . In one embodiment, lens 130 may he constructed from various grades of fused silica, including quartz, supracil, utrasil, optosil, and other trade names.
  • lens 130 may be constructed from calcium fluoride, magnesium fluoride, sapphire, plastics, or other suitable materials configured to pass light having a bandwidth of about 254 nm, Depending on the construction material, lens 130 may be configured to block light at certain wavelengths.
  • lens 130 may include a quartz lens configured to pass about 90 percent of light at a wavelength of 254 nm and between 82 percent and 95 percent of light having a wavelength between 200 nm and 1100 nm.
  • body 140 may be box-like in shape and input window 110 may be formed within body 140 .
  • body 140 may take on any shape used for modern digital cameras.
  • Body 140 may be connectable to bandpass filter 120 or lens 130 such that an optical path is provided through bandpass filter 120 , lens 130 , and input window 110 ,
  • body 140 may be constructed out of plastic.
  • body 140 may be constructed from other materials used in modern digital cameras, such as, for example, wood, aluminum, steel, and titanium.
  • FIG. 3 shows an assembly view of a disclosed embodiment of camera 40 , including the contents housed in body 140 .
  • Body 140 may house an image sensor 160 configured to receive UV radiation entering body 140 and produce an electrical output, image capture electronics 170 configured to receive an electrical output from image sensor 160 and generate video display signals, and rear cover 180 .
  • Image sensor 160 may be positioned within body 140 such that when light enters camera 40 through input window 110 , it first contacts image sensor 160 .
  • image sensor 160 may have a shape that matches the shape and size of body 140 such that image sensor 160 may be housed within body 140 . It is contemplated that image sensor 160 may include a full frame 35 mm format size charge-coupled device (“CCD”) imager, a complementary metal-oxide-semiconductor (“CMOS”), charge injection device (“CID”), or other image sensing technology.
  • CCD charge-coupled device
  • CMOS complementary metal-oxide-semiconductor
  • CID charge injection device
  • image sensor 160 may include a CCD) imager, which employs row and column serial transfer circuitry, to take advantage of its inherently lower noise, higher dynamic range, pixel uniformity, shuttering capabilities, sensitivity to the near infrared spectrum, and relatively large imaging area.
  • image sensor 160 may include a CMOS imager, which employs individual pixel addressing, to take advantage of its region of interest windowing capabilities and speed of image transfer.
  • image senor 160 may include a CID imager, which is similar to both the CCD and the CMOS in features and has the additional advantage of radiation hardness. The topologies of the CCD, CMOS and CID imagers are well understood by those skilled in the art of camera electronics as are the associated capture electronics 170 required by each.
  • image sensor 160 may be configured to transform the light into electrical signals° Image sensor 160 may be positioned along the optical path in between input window 110 and image capture electronics 170 .
  • image sensor 160 may be configured to sense light in the UV spectrum, including UV radiation having a wavelength of about 254 nm.
  • image sensor 160 may be configured to sense light in the UV, visible, and infrared spectrums depending on the type of forensic evidence being captured by camera 40 .
  • Imagining sensor 160 may include a monochrome sensor to achieve higher resolution.
  • image sensor 160 may use a color filter. Image sensor 160 may be front illuminated or back illuminated.
  • image sensor 160 may include an on-chip lens, metal wiring, and a photodiode along an optical path.
  • image sensor 160 may include an on-chip lens, transparent conductive wiring, such as Indium-Tin-Oxide, transparent gold, and other hybrid transparent conductive coating, and a photodiode along an optical path.
  • image sensor 160 may include an on-chip lens, a photodiode, and metal wiring along an optical path.
  • image sensor 160 may include an on-chip lens, a photodiode, and transparent conductive wiring such as Indium-Tin-Oxide, transparent gold, and other hybrid conductive coating along an optical path.
  • the on-chip lens may he constructed from various grades of fused silica, including quartz, supracil, utrasil, optosil, or from calcium fluoride, magnesium fluoride, sapphire, plastics, or other suitable materials configured to pass light having a bandwidth of about 254 nm, Alternatively, the on-chip lens may not be included in image sensor 160 .
  • Image capture electronics 170 may be configured to receive electrical signals from image sensor 160 and generate and direct UV images 50 to display 60 and storage 70 .
  • image capture electronics 170 may be positioned along the optical path in between image sensor 160 and rear cover 180 , image capture electronics 170 may be configured to be compatible with the type of imager sensor 160 , e.g., a CCD, CMOS, CID, or other image sensing technology.
  • image capture electronics 170 may transfer UV images 50 to display 60 or storage device 70 via USB, FireWire, IEEE 1394, Camera Link, GigE, or other wired interface, In another embodiment, image capture electronics 170 may transfer UV images 50 to display 60 or storage device 70 via Bluetooth, or other wireless interface.
  • UV images 50 may be transferred in an interlaced, progressive, or other image format.
  • the image data of UV images 50 may be 8 bit, 10 bit, 12 bit, 14 bit, 16 bit or other data format.
  • the image data of UV images 50 may be transferred as 8 or 16 bit monochrome format.
  • the image data of UV images 50 may be transferred as 24 or 32 bit color format. It is contemplated that the image data of UV images 50 may be transferred in RAW format (unmodified) or in modified format such as with gamma correction.
  • Rear cover 180 may be connectable to body 140 opposite input window 110 .
  • rear cover 180 may be connectable to body 140 via one or more snap on connectors (not shown). However, it is contemplated that rear cover 180 may be connectable to body 140 via screws, slots, latches, or other connectors known in the art.
  • rear cover 180 may dose off one side of box-shaped body 140 such that image sensor 160 and image capture electronics 170 are housed within body 140 . In such an embodiment, rear cover 180 may be sized to match the dimensions of body 140 .
  • rear cover 180 may be constructed out of plastic. However, rear cover 180 may be constructed from other materials used in modern cameras, such as, for example, wood, aluminum, steel, and titanium.
  • image sensor 160 may include an opening through its center that may be filled with a coverplate 210 , Coverplate 210 may be configured to allow light to pass from input window 110 to image capture electronics 170 .
  • coverplate 210 may be constructed from various grades of fused silica, including quartz, supracil, utrasil, optosil, and other trade names.
  • coverplate 210 may be constructed from calcium fluoride, magnesium fluoride, sapphire, plastics, or other suitable materials configured to pass light having a wavelength of about 254 nm.
  • image sensor 160 may not include coverplate 210 .
  • image sensor 160 may be manufactured with coverplate 210 constructed from glass. In such an embodiment, coverplate 210 constructed from glass may be removed from image sensor 160 .
  • FIG. 5 shows a transmission curve for a disclosed embodiment of lens 130 constructed from quartz.
  • lens 130 may be configured to transmit more than 80 percent of light having a wavelength between 200 nm and 1100 nm.
  • lens 130 may be configured to transmit high percentages of light at certain wavelengths, such as, for example, about 90 percent transmission at a wavelength of about 254 nm.
  • FIG. 6 shows a transmission curve for a disclosed embodiment of bandpass filter 120 .
  • bandpass filter 120 may be configured to transmit light having a wavelength between 200 nm and 450 nm and attenuate approximately all light outside of that band.
  • bandpass filter 120 may have a passband centered at about 254 nm and be configured to transmit about 30 percent of UV radiation having a wavelength at about 254 nm.
  • FIG. 7 shows another embodiment of UV imaging system 10 , which may be operated at a crime scene.
  • camera 40 may be pointed at subject 30 contained on nonporous surface 80 .
  • subject 30 may include a handprint, including a collection of fingerprints and a palm print
  • nonporous surface 80 may include a wall of a room in a building.
  • UV lamp 20 may be positioned to emit UV radiation at subject 30 at an angle roughly parallel to nonporous surface 80 .
  • Camera 40 may be positioned to capture UV images 50 of subject 30 at an angle between zero and 180 degrees with nonporous surface 80 . It is contemplated that display 60 may be formed in rear cover 180 of camera 40 .
  • Camera 40 may house a mobile power source 220 , which is configured to power camera 40 .
  • mobile power source 220 may be a disposable alkaline battery.
  • mobile power source 220 may include a coin cell battery, lithium battery, rechargeable battery, or other mobile source of power known in the art.
  • Camera 40 may house storage device 70 in the form of internal camera memory or removable memory.
  • the disclosed UV imaging system may be implemented into any imaging application that captures images in the UV spectrum, including industrial applications that require clean, grease-free surfaces, Those industrial applications may include ceramic circuit boards, LCD displays, image intensifier components, space born systems, and other contamination critical or vacuum out-gassing critical applications.
  • the disclosed UV imaging system may offer improved accuracy and efficiency for investigators analyzing forensic evidence.
  • the disclosed. UV imaging system may capture high resolution images in the UV spectrum as components along the optical path, i.e., input window 110 , bandpass filter 120 , lens 130 , and image sensor 160 , may be configured to pass light having a wavelength of about 254 nm.
  • UV imaging system may provide a live image of forensic evidence prior to developing and lifting the evidence, allowing an investigator to focus only on evidence that has forensic value.
  • the disclosed UV imaging system may allow for this live image to be instantly captured and digitally saved. Operation of UV imaging system 10 will now be described.
  • FIG. 8 shows a disclosed embodiment of a method for capturing UV images 50 on camera 40 using UV imaging system 10 .
  • UV lamp 20 may illuminate subject 30 with UV radiation.
  • subject 30 may reflect the UV radiation or absorb the UV radiation and fluoresce.
  • UV lamp 20 may emit UV radiation onto subject 30 at a crime scene.
  • UV lamp 20 may emit UV radiation onto subject 30 in a lab.
  • UV lamp 20 may be fixedly positioned by a tripod or stand.
  • UV lamp 20 may be positioned by an adjustable connecting arm (not shown) connectable to camera 40 .
  • a user may hold UV lamp 20 in position.
  • the angle at which UV lamp 20 emits UV radiation onto subject 30 may be adjustable to obtain a desired reflection or fluorescing off of subject 30 . For instance, at a first angle light reflecting off of ridges in a fingerprint of subject 30 may appear white compared to a dark background. After adjusting UV lamp 20 to a second angle, light reflecting off of ridges in the fingerprint of subject 30 may appear black compared to a light background.
  • UV lamp 20 illuminates subject 30
  • camera 40 may receive UV radiation reflecting off of subject 30 from UV lamp 20 as shown in process 320 .
  • camera 40 may receive UV radiation fluorescing off of subject 30 from UV lamp 20 .
  • UV radiation may enter camera 40 through input window 110 .
  • the reflecting or fluorescing UV radiation may appear differently in camera 40 and UV lamp 20 may be adjusted to achieve a desired reflection.
  • UV lamp 20 may be maintained in a fixed position and angle and camera 40 may be adjustable to obtain a desired reflection or fluorescing off of subject 30 .
  • bandpass filter 120 may filter UV radiation entering camera 40 at a passband centered at about 254 nm and a bandwidth of about 1 nm to about 100 nm. In another embodiment, bandpass filter 120 may filter light centered at a different passband or bandwidth depending on the forensic evidence being captured. In one embodiment, bandpass filter 120 may filter UV radiation and then pass the filtered UV radiation to lens 130 . In an alternative embodiment, light may enter lens 130 , which may pass at least a portion of the light to bandpass filter 120 . After passing through bandpass filter 120 and lens 130 , filtered UV radiation may enter body 140 through input window 110 . Input window 110 may pass at least a portion of the filtered UV radiation to image sensor 160 and other components housed inside body 140 .
  • the filtered UV radiation may be collected by image sensor 160 as shown in process 340 , In one embodiment, the filtered UV radiation may first pass through coverplate 210 of image sensor 160 , which may pass at least a portion of the filtered UV radiation, Alternatively, image sensor 160 may omit coverplate 210 .
  • the filtered UV radiation may pass through an on-chip lens of image sensor 160 , which may pass at least a portion of the filtered UV radiation and direct the filtered UV radiation through metal wiring to a photodiode when image sensor 160 is front illuminated
  • the filtered UV radiation may pass through an on-chip lens of image sensor 160 , which may pass at least a portion of the filtered UV radiation and direct the filtered UV radiation through transparent conductive wiring, such as Indium-Tin-Oxide, transparent gold, and other hybrid transparent conductive coatings, to a photodiode when image sensor 160 is front illuminated.
  • image sensor 160 may omit an on-chip lens.
  • image sensor 160 may be back illuminated such that the filtered UV radiation may pass directly to a photodiode before contacting metal wiring.
  • the image sensor 160 may be back illuminated such that the filtered UV radiation may pass directly to a photodiode before contacting transparent conductive wiring, such as Indium-Tin-Oxide, transparent gold, and other hybrid transparent conductive coatings.
  • image sensor 160 may include a color filter along the optical path between the on-chip lens and metal wiring or photodiode that passes light of a particular color, such as, for example, red, green, or blue.
  • image sensor 160 may include a color filter along the optical path between the on-chip lens and transparent conductive wiring, such as Indium-Tin-Oxide, transparent gold, and other hybrid transparent conductive coatings, or photodiode that passes light of a particular color, such as, for example, red, green, or blue.
  • transparent conductive wiring such as Indium-Tin-Oxide, transparent gold, and other hybrid transparent conductive coatings, or photodiode that passes light of a particular color, such as, for example, red, green, or blue.
  • At least one controller may control gain and integration time of camera 40 to digitally capture images of the collected UV radiation as shown in process 350 .
  • Camera 40 may include software instructions, executable by the at least one controller included in camera 40 or an affiliated computer, to adjust gain, gamma, pixel binning, frame rate, integration time, image readout, and image reset to capture high resolution UV images 50 .
  • image sensor 160 and image capture electronics 170 may generate a video display of digitally captured UV images 50 showing subject 30 illuminated by UV radiation.
  • image sensor 160 may output a video display of at least two inches by two inches at a resolution of at least 1000 pixels per square inch.
  • image sensor 160 may output a video display that is four inches by four inches at a resolution of at least 1000 pixels per square inch. This four inch by four inch video display may be used to capture a palm print or entire handprint in addition to providing clearance to easily capture a fingerprint of subject 30 .
  • Image sensor 160 may have an output for a video display having a resolution of at least 16 megapixels. In one embodiment, the outputted video display may have a resolution of about 4900 by 3300 pixels.
  • the outputted video display may have a resolution of about 4000 by 4000 pixels. It is contemplated that image sensor 160 may have an output for a video display having a resolution of 5 megapixels, 8 megapixels, 11 megapixels, 20 megapixels, or 40 megapixels.
  • image capture electronics 170 may send the generated video display of UV images 50 to display 60 and storage device 70 via a wired connection, a wireless network, or other means of communication.
  • display 60 may display UV images 50 .
  • a user may edit UV images 50 prior to storage on storage device 70 .
  • software executed by the at least one controller, may be configured to automatically edit UV images 50 .
  • software may enable gamma control to remap the video levels of the UV images 50 such that the intensity of very dim pixels are greatly increased, the intensity of brighter pixels are slightly increased, and the intensity of very bright pixels is not increased.
  • gamma control may be adjusted by a slider that allows a user to vary the gamma transfer function from 1:1 (i.e., no change) up to 1:0.3 (i.e., significant increase of brightness of dim pixel intensity.
  • the gamma function is a well-defined function known to those skilled in the art of photography, cameras, and Photoshop.
  • software may enable integration control to allow one or more frames of UV image 50 to be integrated, edited, and stored in memory. Before storing UV image 50 , the one or more frames used to create UV image 50 may be edited to be summed, averaged, or superimposed. In the summed integration mode, one or more of UV images 50 are added together, thus creating an overall brighter image that becomes increasingly brighter as additional UV images 50 are added. To prevent all pixels from becoming saturated at full video brightness by allowing summed integration mode to continue indefinitely, a user may stop the summed integration mode when UV image 50 on display 60 reaches a desired intensity, at which point the summed UV image 50 may be saved to storage device 70 . Alternatively, software may be configured to stop the summed integration mode when UV image 50 on display 60 reaches a predetermined level of intensity.
  • UV images 50 may be added together and then divided by the number of images.
  • the averaged UV image 50 may remain the same intensity.
  • a user may vary the brightness of UV lamp 20 or the angle of incidence until UV image 50 on display 60 becomes brighter or dimmer as desired, at which point the averaged integration mode may be stopped and UV image 50 may be saved to storage device 70 .
  • software may be configured to stop the averaged integration mode when UV image 50 on display 60 reaches a predetermined level of intensity.
  • one or more of UV images 50 may be superimposed on each previous UV image 50 .
  • superimposed UV image 50 may be compared on a pixel by pixel basis with previous UV image 50 , and if the intensity of any pixel of superimposed UV image 50 is greater than the corresponding pixel of previous UV image 50 , the intensity of that pixel may replace the intensity of the corresponding pixel of previous UV image 50 .
  • the intensity of the pixels of superimposed UV image 50 is less than the intensity of the corresponding pixels of previous UV image 50 , the intensity of previous UV image 50 may be retained.
  • a user may vary the position and angle of UV lamp 20 until UV image 50 on display 60 reaches a desired illumination and intensity, at which point the superimposed integration mode may be stopped and UV image 50 may be saved to storage device 70 .
  • software may be configured to stop the superimposed integration mode when UV image 50 on display 60 reaches a predetermined level of illumination and intensity.
  • the video display of digitally captured UV images 50 may be stored on storage device 70 .
  • Storage device 70 may receive UV images 50 from camera 40 or display 60 via a wired connection, a wireless network, or other means of communication.
  • Storage device 70 may store UV images 50 in file formats used for videos and photographs, such as, for example, TIFF, PEG, GIF, MPEG, M4V, 3GP, and Quicktime. It is contemplated that storage device may store UV images 50 in any device for digitally storing UV images 50 , such as, for example, internal computer memory, internal camera memory, a removable memory device, or a writable disc.
  • camera 40 may be capable of generating a video display having a resolution of at least 1000 pixels per square inch and dimensions of at least two inches by two inches. Using these large, high resolution images, investigators may be able to more accurately and efficiently detect, capture, and analyze forensic evidence.
  • camera 40 may provide a real-time image of forensic evidence before any attempt is made to develop and lift fingerprints, decreasing time spent detecting, capturing, and analyzing forensic evidence.

Abstract

An ultraviolet sensitive video camera is disclosed. The camera may have an input window and a bandpass filter. The input window may receive into the camera ultraviolet radiation reflected off of a subject. The bandpass filter may filter the ultraviolet radiation received into the camera through the input window. The bandpass filter may have a passband centered at about 254 nm and a bandwidth of about 1 nm to about 100 nm. The camera may also have an image sensor and at least one controller. The image sensor may collect the filtered ultraviolet radiation passing through the bandpass filter and generate an output based on the collected Ultraviolet radiation. The at least one controller may be configured to generate video display signals based on the output of the image sensor.

Description

    RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional Application No. 61/721,667, filed Nov. 2, 2012, which is incorporated herein by reference.
  • Technical FIELD
  • The present disclosure is directed to a digital camera and, more particularly, to a digital Reflected Ultraviolet Imaging System (“RUVIS”) camera for detecting and analyzing forensic evidence.
  • BACKGROUND
  • Crime scene investigators are often challenged with a difficult task of detecting and analyzing forensic evidence that is not visible to the human eye, most notably fingerprints. To detect otherwise invisible forensic evidence, investigators have relied on light in the ultraviolet (“UV”) spectrum, also known as UV radiation. While visible light has a wavelength ranging from about 400 nm to about 750 nm, UV radiation has a shorter wavelength ranging from about 10 nm to about 400 nm. Some types of forensic evidence may include organic substances (e.g., blood, saliva, and semen) that are either readily visible or, upon exposure to UV radiation, may fluoresce and become visible to the human eye. However, other substances like fingerprints have historically required dusting with a fluorescent dusting powder or dyeing prior to UV radiation exposure in order to make the fingerprints visible to the unaided eye. In certain situations, RUVIS technology, which enables a user to see latent fingerprints on nonporous surfaces prior to treatment with powders or dyes, may be used to examine latent fingerprints.
  • RUVIS technology works on the principle that most nonporous surfaces either reflect or absorb light in the UV spectrum. When UV radiation illuminates a nonporous surface containing a latent fingerprint, the fingerprint stands out as darker or lighter than the background based on whether the surface reflects or absorbs the UV radiation, respectively. Early RUVIS devices were portable, battery operated devices that used an image intensifier with a special photocathode to amplify the reflected UV radiation to allow an investigator to see latent fingerprints. The noisy, grainy, low-resolution, green image on these devices was good enough to detect latent fingerprints, but was inadequate to document and photograph the fingerprints. Attempts were made to capture images of latent fingerprints by including a video or digital camera with the image intensifier. However, these systems were limited by a field of view smaller than two inches by two inches and a relatively low-resolution of the image intensifier. These systems also required collecting and processing of an image before a user could determine whether a suitable latent fingerprint had been captured.
  • Despite these limitations in RUVIS systems, the forensics community has recently set 1000 pixels per square inch as the minimum resolution to capture latent fingerprints. While modern digital cameras are capable of 12, 14, and 16 megapixel resolutions or even higher, they cannot capture images in the UV spectrum. In fact, to prevent images in the visible spectrum from appearing blurred, modern digital cameras are designed to have spectral sensitivity similar to a human eye, thereby blocking light from the UV spectrum. Glass is used in the lens and window of the sensor for most modern digital cameras, which blocks over ninety percent of the light below 300 nm and most of the light between 300 and 400 nm. Additionally, bandpass filters are often used to block light outside of the visible spectrum, further preventing modern digital cameras from capturing high resolution images in the UV spectrum.
  • SUMMARY
  • In one aspect, the disclosure is directed toward a UV sensitive video camera. The camera may include an input window and a bandpass filter. The input window may receive into the camera UV radiation reflected off of a subject. The bandpass filter may filter the UV radiation received into the camera through the input window. The bandpass filter may have a passband centered at about 254 nm and a bandwidth of about 1 nm to about 100 mm. The camera may also include an image sensor for collecting the filtered UV radiation passing through the bandpass filter and for generating an output based on the collected UV radiation. The camera may further include at least one controller configured to generate video display signals based on the output of the image sensor.
  • In another aspect, the disclosure is directed toward a method for capturing UV images on a camera. The method may include illuminating a subject with a UV lamp and receiving, on a camera, UV radiation reflecting off of the subject from the ultraviolet lamp. The method may also include filtering the UV radiation entering the camera with a filter having a passband centered at about 254 rim and a bandwidth of about 1 nm to about 100 nm. The method may further include collecting the filtered UV radiation and controlling, by at least one controller, gain and integration time of the camera to digitally capture images corresponding to the collected UV radiation. The method may also include generating a video display of the digitally captured images showing the subject illuminated by UV radiation and storing the digitally captured images.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagrammatic illustration of an exemplary disclosed system for capturing UV images;
  • FIG. 2 is a pictorial illustration of an exemplary disclosed UV sensitive video camera that may be used in the system of FIG. 1;
  • FIG. 3 is an assembly illustration of an exemplary disclosed UV sensitive video camera shown in FIG. 2;
  • FIG. 4 is an assembly illustration of an exemplary disclosed imager having a partially removed coverplate that may be used in the UV sensitive video camera of FIG. 2;
  • FIG. 5 is a graph showing the typical transmission percentage at varying wavelengths for an exemplary disclosed lens made from quartz;
  • FIG. 6 is a graph showing the transmission percentage at varying wavelengths for an exemplary disclosed bandpass filter having a bandpass centered at about 254 nm;
  • FIG. 7 is a diagrammatic illustration of an exemplary disclosed system for capturing IN images using a portable UV sensitive video camera; and
  • FIG. 8 is a flowchart of an exemplary disclosed method for capturing UV images on a camera that may be used with the system for capturing UV images of FIG. 1.
  • DETAILED DESCRIPTION
  • FIG. 1 illustrates an ultraviolet (“UV”) imaging system 10 having a UV lamp 20 configured to direct UV radiation towards a subject 30. Imaging system 10 may also include a UV sensitive camera 40 configured to capture one or more. UV images 50 of subject 30, a display 60 to view UV images 50 captured by camera 40, and a storage device 70 for storing captured UV images 50. UV imaging system 10 may be used in a lab (as shown), on location at a crime scene, or at any location having forensic evidence. In one embodiment, UV imaging system 10 may be a stationary system such that forensic evidence, i.e., subject 30, may be transported to UV imaging system 10 for analysis. However, it is contemplated that UV imaging system 10 may be transportable to subject 30.
  • For purposes of this disclosure, UV lamp 20 is depicted as a stationary mercury lamp. One skilled in the art will recognize, however, that UV lamp 20 may include any other type of UV light emitting device such as, for example, a deuterium light, a black light tube or bulb, a short wave UV lamp, a UV light-emitting diode, a UV laser, or a UV LED light. in one embodiment, UV lamp 20 may be configured to emit UV radiation at least at a wavelength of 254 nm at a power rating between one and 50 watts depending on the size of subject 30 and distance from subject 30. It is contemplated that UV lamp 20 may be configured to emit UV radiation continuously or in pulses. In the illustrated embodiment, UV lamp 20 is a standalone lamp that includes a stand 22, a housing 24 connected to and supported by stand 22, and a bulb 26 housed in housing 24. However, it is contemplated that UV lamp 20 may be connectable to camera 40 via an adjustable or fixed connecting member (not shown). Stand 22 may be configured to fixedly position UV lamp 20 to emit UV radiation towards subject 30 at a specific angle such as, for example, looking down roughly perpendicular to the surface of subject 30 (as shown) or from the side roughly parallel to the surface of subject 30. Alternatively, stand 22 may be adjustable such that UV lamp 20 may be positioned to emit UV radiation towards subject at a variety of angles so as to form an angle between the light emitted by UV lamp 20 and the surface of subject 30 between about zero to 180 degrees. It is contemplated that stand 22 may be bendable and connectable to housing 24 such that housing 24 and bulb 26 may be rotatable in the x, y, and z planes. UV lamp 20 may be connectable to an independent power source (not shown) via, for example, a 110 volt wall plug, or may include an internal battery (not shown) to power bulb 26. Alternatively, UV lamp 20 may be connectable to a laptop computer used for display 60 and powered via the laptop computer.
  • As UV radiation from UV lamp 20 contacts subject 30, the UV radiation may be either reflected or absorbed by nonporous surface 80 containing subject 30. in the illustrated embodiment, subject 30 may include a latent fingerprint that remained after a human hand contacted nonporous surface 80. However, it is contemplated that subject 30 may he any type of forensic evidence and may vary in size such as, for example, a portion of a single fingerprint or multiple fingerprints and palm prints. Subject 30 may include fresh or aged forensic evidence. It is contemplated that subject 30 may include multiple layers of forensic evidence overlaying one another. Nonporous surface 80 may include any surface that is capable of containing subject 30, such as, for example, a newspaper (as shown), playing cards, or money. It is contemplated that nonporous surface 80 may include flat or curved surfaces, such as, for example, a soda can, capable of containing subject 30.
  • After subject 30 is exposed to UV radiation from UV lamp 20, camera 40 may capture UV images 50. In the illustrated embodiment, camera 40 is positioned looking down on subject 30 at an angle roughly perpendicular to nonporous surface 80. However, it is contemplated that camera 40 may be positioned at a range of angles in connection with nonporous surface 80. Camera 40 may be held by a user (not shown) or fixedly or adjustably positioned by an overhead stand (not shown) or tripod (not shown). In one embodiment, the angle at which camera 40 views subject 30 may be adjustable. As shown in FIG. 1, connectable to display 60 and storage 70 to receive power. Alternatively, it is contemplated that camera 40 may be connectable to an independent power source (not shown) via, for example, a 110 volt wall plug, or may include an internal battery (not shown) to power camera 40. it is contemplated that camera 40 may receive direct or alternating current. Camera 40 may be in communication with display 60 and storage 70 via a wired connection or remotely over a wireless network (not shown).
  • Display 60 may be configured to receive UV images 50 from camera 40 as shown. In one embodiment, display 60 may include a monitor of a desktop computer or laptop computer. However, it is contemplated that display 60 may include any device configured to display video images, such as, for example, a camera display, a cellular phone display, or a television, etc. Display 60 may vary in size based on the type of device and the image quality preferred. Based on the type of device, display 60 may be mobile or stationary. For instance, a laptop computer or cellular phone may be transportable to a crime scene whereas a stationary desktop computer may remain in a lab, Display 60 may be in communication with camera 40 and storage device 70, and configured to send displayed UV images 50 to storage device 70 via, for example, a wired connection or remotely over a wireless network (not shown). It is contemplated that a computer associated with display 60 may, be equipped with controls such as, for example, a keyboard, mouse, or touch screen. In such an embodiment, the computer may be configured to control the functions of camera 40, including, for example, capturing UV images 50 and sending UV images 50 to display 60 and storage device 70. In another embodiment, the computer may he configured to control the functions of display 60, including, for example, selecting which UV images 50 to display and sending UV images 50 to storage device 70. In yet another embodiment, the computer may he configured to control the functions of storage device 70, including, for example, selecting a filename and storage location for UV images 50.
  • Storage device 70 may include an external hard drive of a computer as shown. However, it is contemplated that storage device 70 may be any device configured to digitally store UV images 50, such as, for example, internal computer memory, internal camera memory, a removable memory device, or a writable disc. Depending on the type of device, storage device 70 may be mobile or stationary. For instance, internal camera memory may he transportable with camera 40 to a crime scene, whereas an external hard drive may remain stationary in a lab. Storage device 70 may be in communication with camera 40 and display 60 via, for example, a wired connection or remotely over a wireless network (not shown),
  • As shown in FIG. 2, camera 40 may include an input window 110 configured to receive UV radiation reflecting off of subject 30 into camera 40. Camera 40 may also include a bandpass filter 120 configured to filter UV radiation received into camera 40 through input window 110, a lens 130 configured to receive and pass at least a portion of the UV radiation received into camera 40 through input window 110, and a body 140 configured to collect the filtered UV radiation and generate a video display of UV images 50.
  • In one embodiment, input window 110 may include a viewing hole roughly the same diameter as lens 130 that is configured to allow at least a portion of UV radiation passing through bandpass filter 120 and lens 130 into camera body 140. It is contemplated that input window may be a circular viewing hole, Depending on the amount of light a user desires to enter camera body 140 and based on the thickness of bandpass filter 120 and lens 130, input window 110 may vary in diameter. It is contemplated that input window 110 may include a coverplate (not shown) that may occupy the viewing hole. In one embodiment, the coverplate may be constructed from various grades of fused silica, such as, for example, quartz, supracil, infracil, optosil, and other trade names. In another embodiment, the coverplate may be constructed from calcium fluoride, magnesium fluoride, sapphire, plastics, or other suitable materials configured to pass light having a wavelength of about 254 nm. In yet another embodiment, input window 110 may be configured without a coverplate.
  • Configured to filter UV radiation entering the camera through input window 110, bandpass filter 120 may be positioned along the optical path adjacent to lens 130 opposite input window 110. Alternatively, in another embodiment, bandpass filter 120 may be positioned along the optical path between lens 130 and input window 110. Bandpass filter 120 may be cylindrical or circular in shape. The diameter of bandpass filter 120 may vary depending on the size of input window 110 and lens 130, and the desired UV images 50. For purposes of this disclosure, bandpass filter 120 may have roughly the same diameter as lens 130. In one embodiment, bandpass filter 120 may have a passband centered at about 254 nm. However, it is contemplated that bandpass filter 120 may have a passband centered at other wavelengths depending upon the type of forensic evidence being captured. For instance, bandpass filter 120 may have a bandpass centered at about 450 nm to analyze biological fluids, at about 532 nm to analyze laser illuminated surfaces, and at about 695 or 800 nm to analyze document alteration. Bandpass filter 120 may have a bandwidth of about 1 nm to about 100 nm. In one embodiment, bandpass filter 120 may have a bandwidth of about 25 nm, which allows for about 25 percent transmission. In yet another embodiment, bandpass filter 120 may have a bandwidth of about 40 nm, which allows for about 33 percent transmission. It is contemplated that bandpass filter 120 may be configured to attenuate all out of band light by at least three orders of magnitude, having an out of band transmission of less than 0.1 percent. In another embodiment, bandpass filter 120 may be configured to attenuate approximately the entire visible and infrared spectrums to allow for clearer UV images 50.
  • Lens 130 may be positioned along the optical path between bandpass filter 120 and input window 110. In another embodiment, lens 130 may be positioned along the optical path adjacent bandpass filter 120 and opposite input window 110. However, it is contemplated that lens 130 may be omitted from camera 40. Lens 130 may be cylindrical in shape and vary in diameter based on the size of input window 110 and bandpass filter 120 and/or based on the size of the desired UV images 50. For purposes of this disclosure, lens 130 may be the same diameter as bandpass filter 120. In one embodiment, lens 130 may he constructed from various grades of fused silica, including quartz, supracil, utrasil, optosil, and other trade names. In another embodiment, lens 130 may be constructed from calcium fluoride, magnesium fluoride, sapphire, plastics, or other suitable materials configured to pass light having a bandwidth of about 254 nm, Depending on the construction material, lens 130 may be configured to block light at certain wavelengths. In one embodiment, lens 130 may include a quartz lens configured to pass about 90 percent of light at a wavelength of 254 nm and between 82 percent and 95 percent of light having a wavelength between 200 nm and 1100 nm.
  • For purposes of this disclosure, body 140 may be box-like in shape and input window 110 may be formed within body 140. Alternatively, body 140 may take on any shape used for modern digital cameras. Body 140 may be connectable to bandpass filter 120 or lens 130 such that an optical path is provided through bandpass filter 120, lens 130, and input window 110, In one embodiment, body 140 may be constructed out of plastic. However, body 140 may be constructed from other materials used in modern digital cameras, such as, for example, wood, aluminum, steel, and titanium.
  • FIG. 3 shows an assembly view of a disclosed embodiment of camera 40, including the contents housed in body 140. Body 140 may house an image sensor 160 configured to receive UV radiation entering body 140 and produce an electrical output, image capture electronics 170 configured to receive an electrical output from image sensor 160 and generate video display signals, and rear cover 180.
  • Image sensor 160 may be positioned within body 140 such that when light enters camera 40 through input window 110, it first contacts image sensor 160. For purposes of this disclosure, image sensor 160 may have a shape that matches the shape and size of body 140 such that image sensor 160 may be housed within body 140. It is contemplated that image sensor 160 may include a full frame 35 mm format size charge-coupled device (“CCD”) imager, a complementary metal-oxide-semiconductor (“CMOS”), charge injection device (“CID”), or other image sensing technology. In one embodiment, image sensor 160 may include a CCD) imager, which employs row and column serial transfer circuitry, to take advantage of its inherently lower noise, higher dynamic range, pixel uniformity, shuttering capabilities, sensitivity to the near infrared spectrum, and relatively large imaging area. In another embodiment, image sensor 160 may include a CMOS imager, which employs individual pixel addressing, to take advantage of its region of interest windowing capabilities and speed of image transfer. In yet another embodiment, image senor 160 may include a CID imager, which is similar to both the CCD and the CMOS in features and has the additional advantage of radiation hardness. The topologies of the CCD, CMOS and CID imagers are well understood by those skilled in the art of camera electronics as are the associated capture electronics 170 required by each.
  • Upon receiving light, image sensor 160 may be configured to transform the light into electrical signals° Image sensor 160 may be positioned along the optical path in between input window 110 and image capture electronics 170. In one embodiment, image sensor 160 may be configured to sense light in the UV spectrum, including UV radiation having a wavelength of about 254 nm. In another embodiment, image sensor 160 may be configured to sense light in the UV, visible, and infrared spectrums depending on the type of forensic evidence being captured by camera 40. Imagining sensor 160 may include a monochrome sensor to achieve higher resolution. Alternatively, in another embodiment, image sensor 160 may use a color filter. Image sensor 160 may be front illuminated or back illuminated. Using a front illuminated structure (not shown), image sensor 160 may include an on-chip lens, metal wiring, and a photodiode along an optical path. Alternatively, in another embodiment using the front illuminated structure (not shown), image sensor 160 may include an on-chip lens, transparent conductive wiring, such as Indium-Tin-Oxide, transparent gold, and other hybrid transparent conductive coating, and a photodiode along an optical path. Using a back illuminated structure (not shown), image sensor 160 may include an on-chip lens, a photodiode, and metal wiring along an optical path. Alternatively, in another embodiment using the back illuminated structure (not shown), image sensor 160 may include an on-chip lens, a photodiode, and transparent conductive wiring such as Indium-Tin-Oxide, transparent gold, and other hybrid conductive coating along an optical path. For either structure, the on-chip lens may he constructed from various grades of fused silica, including quartz, supracil, utrasil, optosil, or from calcium fluoride, magnesium fluoride, sapphire, plastics, or other suitable materials configured to pass light having a bandwidth of about 254 nm, Alternatively, the on-chip lens may not be included in image sensor 160.
  • Image capture electronics 170 may be configured to receive electrical signals from image sensor 160 and generate and direct UV images 50 to display 60 and storage 70. In one embodiment, image capture electronics 170 may be positioned along the optical path in between image sensor 160 and rear cover 180, image capture electronics 170 may be configured to be compatible with the type of imager sensor 160, e.g., a CCD, CMOS, CID, or other image sensing technology. In one embodiment, image capture electronics 170 may transfer UV images 50 to display 60 or storage device 70 via USB, FireWire, IEEE 1394, Camera Link, GigE, or other wired interface, In another embodiment, image capture electronics 170 may transfer UV images 50 to display 60 or storage device 70 via Bluetooth, or other wireless interface. UV images 50 may be transferred in an interlaced, progressive, or other image format. The image data of UV images 50 may be 8 bit, 10 bit, 12 bit, 14 bit, 16 bit or other data format. In one embodiment, the image data of UV images 50 may be transferred as 8 or 16 bit monochrome format. Alternatively, in another embodiment, the image data of UV images 50 may be transferred as 24 or 32 bit color format. It is contemplated that the image data of UV images 50 may be transferred in RAW format (unmodified) or in modified format such as with gamma correction.
  • Rear cover 180 may be connectable to body 140 opposite input window 110. In one embodiment, rear cover 180 may be connectable to body 140 via one or more snap on connectors (not shown). However, it is contemplated that rear cover 180 may be connectable to body 140 via screws, slots, latches, or other connectors known in the art. In one embodiment, rear cover 180 may dose off one side of box-shaped body 140 such that image sensor 160 and image capture electronics 170 are housed within body 140. In such an embodiment, rear cover 180 may be sized to match the dimensions of body 140. In one embodiment, rear cover 180 may be constructed out of plastic. However, rear cover 180 may be constructed from other materials used in modern cameras, such as, for example, wood, aluminum, steel, and titanium.
  • As shown in FIG. 4, image sensor 160 may include an opening through its center that may be filled with a coverplate 210, Coverplate 210 may be configured to allow light to pass from input window 110 to image capture electronics 170. In one embodiment, coverplate 210 may be constructed from various grades of fused silica, including quartz, supracil, utrasil, optosil, and other trade names. In another embodiment, coverplate 210 may be constructed from calcium fluoride, magnesium fluoride, sapphire, plastics, or other suitable materials configured to pass light having a wavelength of about 254 nm. Alternatively, it is contemplated that image sensor 160 may not include coverplate 210. In yet another embodiment, image sensor 160 may be manufactured with coverplate 210 constructed from glass. In such an embodiment, coverplate 210 constructed from glass may be removed from image sensor 160.
  • FIG. 5 shows a transmission curve for a disclosed embodiment of lens 130 constructed from quartz. In this embodiment, lens 130 may be configured to transmit more than 80 percent of light having a wavelength between 200 nm and 1100 nm. For purposes of this disclosure, lens 130 may be configured to transmit high percentages of light at certain wavelengths, such as, for example, about 90 percent transmission at a wavelength of about 254 nm.
  • FIG. 6 shows a transmission curve for a disclosed embodiment of bandpass filter 120. In this embodiment, bandpass filter 120 may be configured to transmit light having a wavelength between 200 nm and 450 nm and attenuate approximately all light outside of that band. For purposes of this disclosure, bandpass filter 120 may have a passband centered at about 254 nm and be configured to transmit about 30 percent of UV radiation having a wavelength at about 254 nm.
  • FIG. 7 shows another embodiment of UV imaging system 10, which may be operated at a crime scene. In this embodiment, camera 40 may be pointed at subject 30 contained on nonporous surface 80. For purposes of this disclosure, subject 30 may include a handprint, including a collection of fingerprints and a palm print, and nonporous surface 80 may include a wall of a room in a building. In one embodiment, UV lamp 20 may be positioned to emit UV radiation at subject 30 at an angle roughly parallel to nonporous surface 80. Camera 40 may be positioned to capture UV images 50 of subject 30 at an angle between zero and 180 degrees with nonporous surface 80. It is contemplated that display 60 may be formed in rear cover 180 of camera 40. Camera 40 may house a mobile power source 220, which is configured to power camera 40. In one embodiment, mobile power source 220 may be a disposable alkaline battery. However, it is contemplated that mobile power source 220 may include a coin cell battery, lithium battery, rechargeable battery, or other mobile source of power known in the art. Camera 40 may house storage device 70 in the form of internal camera memory or removable memory.
  • INDUSTRIAL APPLICABILITY
  • The disclosed UV imaging system may be implemented into any imaging application that captures images in the UV spectrum, including industrial applications that require clean, grease-free surfaces, Those industrial applications may include ceramic circuit boards, LCD displays, image intensifier components, space born systems, and other contamination critical or vacuum out-gassing critical applications. The disclosed UV imaging system may offer improved accuracy and efficiency for investigators analyzing forensic evidence. Specifically, the disclosed. UV imaging system may capture high resolution images in the UV spectrum as components along the optical path, i.e., input window 110, bandpass filter 120, lens 130, and image sensor 160, may be configured to pass light having a wavelength of about 254 nm. These high resolution images may be captured at a size greater than 2 inches by 2 inches at a resolution of at least 1000 pixels per square inch, thereby decreasing the risk of capturing a partial fingerprint or smudge and enabling the capture of an entire palm print or handprint. The disclosed UV imaging system may provide a live image of forensic evidence prior to developing and lifting the evidence, allowing an investigator to focus only on evidence that has forensic value. The disclosed UV imaging system may allow for this live image to be instantly captured and digitally saved. Operation of UV imaging system 10 will now be described.
  • FIG. 8 shows a disclosed embodiment of a method for capturing UV images 50 on camera 40 using UV imaging system 10. In process 310, UV lamp 20 may illuminate subject 30 with UV radiation. In response, subject 30 may reflect the UV radiation or absorb the UV radiation and fluoresce. in one embodiment, UV lamp 20 may emit UV radiation onto subject 30 at a crime scene. In another embodiment, UV lamp 20 may emit UV radiation onto subject 30 in a lab. In either setting, UV lamp 20 may be fixedly positioned by a tripod or stand. Alternatively, UV lamp 20 may be positioned by an adjustable connecting arm (not shown) connectable to camera 40. In yet another embodiment, a user may hold UV lamp 20 in position. The angle at which UV lamp 20 emits UV radiation onto subject 30 may be adjustable to obtain a desired reflection or fluorescing off of subject 30. For instance, at a first angle light reflecting off of ridges in a fingerprint of subject 30 may appear white compared to a dark background. After adjusting UV lamp 20 to a second angle, light reflecting off of ridges in the fingerprint of subject 30 may appear black compared to a light background.
  • After UV lamp 20 illuminates subject 30, camera 40 may receive UV radiation reflecting off of subject 30 from UV lamp 20 as shown in process 320. in another embodiment, camera 40 may receive UV radiation fluorescing off of subject 30 from UV lamp 20. UV radiation may enter camera 40 through input window 110. Depending on the angle at which UV lamp 20 emits UV radiation on subject 30, as discussed above, the reflecting or fluorescing UV radiation may appear differently in camera 40 and UV lamp 20 may be adjusted to achieve a desired reflection. In another embodiment, UV lamp 20 may be maintained in a fixed position and angle and camera 40 may be adjustable to obtain a desired reflection or fluorescing off of subject 30.
  • In process 330, bandpass filter 120 may filter UV radiation entering camera 40 at a passband centered at about 254 nm and a bandwidth of about 1 nm to about 100 nm. In another embodiment, bandpass filter 120 may filter light centered at a different passband or bandwidth depending on the forensic evidence being captured. In one embodiment, bandpass filter 120 may filter UV radiation and then pass the filtered UV radiation to lens 130. In an alternative embodiment, light may enter lens 130, which may pass at least a portion of the light to bandpass filter 120. After passing through bandpass filter 120 and lens 130, filtered UV radiation may enter body 140 through input window 110. Input window 110 may pass at least a portion of the filtered UV radiation to image sensor 160 and other components housed inside body 140. After being filtered and passing through input window 110, the filtered UV radiation may be collected by image sensor 160 as shown in process 340, In one embodiment, the filtered UV radiation may first pass through coverplate 210 of image sensor 160, which may pass at least a portion of the filtered UV radiation, Alternatively, image sensor 160 may omit coverplate 210. In one embodiment, the filtered UV radiation may pass through an on-chip lens of image sensor 160, which may pass at least a portion of the filtered UV radiation and direct the filtered UV radiation through metal wiring to a photodiode when image sensor 160 is front illuminated, In another embodiment, the filtered UV radiation may pass through an on-chip lens of image sensor 160, which may pass at least a portion of the filtered UV radiation and direct the filtered UV radiation through transparent conductive wiring, such as Indium-Tin-Oxide, transparent gold, and other hybrid transparent conductive coatings, to a photodiode when image sensor 160 is front illuminated. Alternatively, image sensor 160 may omit an on-chip lens. In another embodiment, image sensor 160 may be back illuminated such that the filtered UV radiation may pass directly to a photodiode before contacting metal wiring. Alternatively, the image sensor 160 may be back illuminated such that the filtered UV radiation may pass directly to a photodiode before contacting transparent conductive wiring, such as Indium-Tin-Oxide, transparent gold, and other hybrid transparent conductive coatings. It is contemplated that image sensor 160 may include a color filter along the optical path between the on-chip lens and metal wiring or photodiode that passes light of a particular color, such as, for example, red, green, or blue. It is also contemplated that image sensor 160 may include a color filter along the optical path between the on-chip lens and transparent conductive wiring, such as Indium-Tin-Oxide, transparent gold, and other hybrid transparent conductive coatings, or photodiode that passes light of a particular color, such as, for example, red, green, or blue.
  • As image sensor 160 collects the filtered UV radiation, at least one controller may control gain and integration time of camera 40 to digitally capture images of the collected UV radiation as shown in process 350. Camera 40 may include software instructions, executable by the at least one controller included in camera 40 or an affiliated computer, to adjust gain, gamma, pixel binning, frame rate, integration time, image readout, and image reset to capture high resolution UV images 50.
  • As shown in process 360, image sensor 160 and image capture electronics 170 may generate a video display of digitally captured UV images 50 showing subject 30 illuminated by UV radiation. In one embodiment, image sensor 160 may output a video display of at least two inches by two inches at a resolution of at least 1000 pixels per square inch. In another embodiment, image sensor 160 may output a video display that is four inches by four inches at a resolution of at least 1000 pixels per square inch. This four inch by four inch video display may be used to capture a palm print or entire handprint in addition to providing clearance to easily capture a fingerprint of subject 30. Image sensor 160 may have an output for a video display having a resolution of at least 16 megapixels. In one embodiment, the outputted video display may have a resolution of about 4900 by 3300 pixels. Alternatively, the outputted video display may have a resolution of about 4000 by 4000 pixels. It is contemplated that image sensor 160 may have an output for a video display having a resolution of 5 megapixels, 8 megapixels, 11 megapixels, 20 megapixels, or 40 megapixels. At the direction of at least one controller, image capture electronics 170 may send the generated video display of UV images 50 to display 60 and storage device 70 via a wired connection, a wireless network, or other means of communication. Upon receiving the generated video display of UV images 50, display 60 may display UV images 50.
  • Interacting with software executed by one or more controllers in the camera or a computer configured to control display 60, a user may edit UV images 50 prior to storage on storage device 70. Alternatively, it is contemplated that software, executed by the at least one controller, may be configured to automatically edit UV images 50. For example, in one embodiment, software may enable gamma control to remap the video levels of the UV images 50 such that the intensity of very dim pixels are greatly increased, the intensity of brighter pixels are slightly increased, and the intensity of very bright pixels is not increased. In this embodiment, gamma control may be adjusted by a slider that allows a user to vary the gamma transfer function from 1:1 (i.e., no change) up to 1:0.3 (i.e., significant increase of brightness of dim pixel intensity. The gamma function is a well-defined function known to those skilled in the art of photography, cameras, and Photoshop.
  • In another embodiment, software may enable integration control to allow one or more frames of UV image 50 to be integrated, edited, and stored in memory. Before storing UV image 50, the one or more frames used to create UV image 50 may be edited to be summed, averaged, or superimposed. In the summed integration mode, one or more of UV images 50 are added together, thus creating an overall brighter image that becomes increasingly brighter as additional UV images 50 are added. To prevent all pixels from becoming saturated at full video brightness by allowing summed integration mode to continue indefinitely, a user may stop the summed integration mode when UV image 50 on display 60 reaches a desired intensity, at which point the summed UV image 50 may be saved to storage device 70. Alternatively, software may be configured to stop the summed integration mode when UV image 50 on display 60 reaches a predetermined level of intensity.
  • In averaged integration mode, one or more of UV images 50 may be added together and then divided by the number of images. When the light level is constant, the angle of illumination is constant, and the camera angle is constant, the averaged UV image 50 may remain the same intensity. A user may vary the brightness of UV lamp 20 or the angle of incidence until UV image 50 on display 60 becomes brighter or dimmer as desired, at which point the averaged integration mode may be stopped and UV image 50 may be saved to storage device 70. Alternatively, software may be configured to stop the averaged integration mode when UV image 50 on display 60 reaches a predetermined level of intensity.
  • In superimposed integration mode, one or more of UV images 50 may be superimposed on each previous UV image 50. In this mode, superimposed UV image 50 may be compared on a pixel by pixel basis with previous UV image 50, and if the intensity of any pixel of superimposed UV image 50 is greater than the corresponding pixel of previous UV image 50, the intensity of that pixel may replace the intensity of the corresponding pixel of previous UV image 50. Alternatively, if the intensity of the pixels of superimposed UV image 50 is less than the intensity of the corresponding pixels of previous UV image 50, the intensity of previous UV image 50 may be retained. A user may vary the position and angle of UV lamp 20 until UV image 50 on display 60 reaches a desired illumination and intensity, at which point the superimposed integration mode may be stopped and UV image 50 may be saved to storage device 70. Alternatively, software may be configured to stop the superimposed integration mode when UV image 50 on display 60 reaches a predetermined level of illumination and intensity.
  • The video display of digitally captured UV images 50 may be stored on storage device 70. Storage device 70 may receive UV images 50 from camera 40 or display 60 via a wired connection, a wireless network, or other means of communication. Storage device 70 may store UV images 50 in file formats used for videos and photographs, such as, for example, TIFF, PEG, GIF, MPEG, M4V, 3GP, and Quicktime. It is contemplated that storage device may store UV images 50 in any device for digitally storing UV images 50, such as, for example, internal computer memory, internal camera memory, a removable memory device, or a writable disc.
  • Many advantages may be associated with camera 40. In particular, by using materials configured to pass light having a wavelength of about 254 nm along its optical path, camera 40 may be capable of generating a video display having a resolution of at least 1000 pixels per square inch and dimensions of at least two inches by two inches. Using these large, high resolution images, investigators may be able to more accurately and efficiently detect, capture, and analyze forensic evidence. In addition, camera 40 may provide a real-time image of forensic evidence before any attempt is made to develop and lift fingerprints, decreasing time spent detecting, capturing, and analyzing forensic evidence.
  • It will be apparent to those skilled in the art that various modifications and variations can be made to the system of the present disclosure. Other embodiments of the system will be apparent to those skilled in the art from consideration of the specification and practice of the method and system disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope of the disclosure being indicated by the following claims and their equivalents.

Claims (20)

What is claimed is:
1. An ultraviolet sensitive video camera comprising:
an input window for receiving into the camera. ultraviolet radiation reflected off of a subject;
a bandpass filter for filtering the ultraviolet radiation received into the camera through the input window, the bandpass filter having a passband centered at about 254 nm and a bandwidth of about 1 nm to about 100 nm;
an image sensor for collecting the filtered ultraviolet radiation passing through the bandpass filter and for generating an output based on the collected ultraviolet radiation; and
at least one controller configured to generate video display signals based on the output of the image sensor.
2. The ultraviolet sensitive video camera of claim 1, further comprising a lens configured to receive and pass at least a portion of the ultraviolet radiation received into the camera through the input window.
3. The ultraviolet sensitive video camera of claim 2, wherein the lens is positioned along an optical path between the bandpass filter and the input window.
4. The ultraviolet sensitive video camera of claim 2, wherein the bandpass filter is positioned along an optical path between the lens and the input window.
5. The ultraviolet sensitive video camera of claim 2, wherein the lens comprises a material transmissive to at least a portion of radiation received having a wavelength of about 254 nm.
6. The ultraviolet sensitive video camera of claim 5, wherein the lens comprises quartz.
7. The ultraviolet sensitive video camera of claim 1, wherein the input window comprises a material transmissive to at least a portion of radiation received having a wavelength of about 254 nm.
8. The ultraviolet sensitive video camera of claim 1, wherein the bandpass filter has an out of band transmission of less than 0.1 percent.
9. The ultraviolet sensitive video camera of claim 1, wherein the image sensor has a resolution greater than 2048 by 2048 pixels.
10. The ultraviolet sensitive video camera of claim 9, wherein the image sensor has a resolution of at least 16 megapixels.
11. The ultraviolet sensitive video camera of claim 1, wherein the image sensor has a coverplate comprising a material configured to pass at least a portion of radiation received having a wavelength of about 254 nm.
12. The ultraviolet sensitive video camera of claim 1, wherein the image sensor is a charge-coupled device imager.
13. The ultraviolet sensitive video camera of claim 1, wherein the video display signals generated by the at least one controller correspond to a display area greater than two inches by two inches at a resolution of at least 1000 pixels per square inch.
14. The ultraviolet sensitive video camera of claim 13, further comprising a display for viewing the video display signals generated by the at least one controller.
15. The ultraviolet sensitive video camera of claim 1, further comprising a storage device configured to store data relating to the video display signals generated by the at least one controller.
16. A system for capturing ultraviolet images on a camera comprising:
an ultraviolet lamp for illuminating a subject, wherein the ultraviolet lamp has a power rating between 1 and 50 watts;
an ultraviolet sensitive video camera comprising:
an input window for receiving into the camera ultraviolet radiation reflected off of a subject from the ultraviolet lamp;
a lens for passing a portion of the ultraviolet radiation received into the camera through the input window;
bandpass filter for filtering the ultraviolet radiation entering the camera through the input window and the lens, the bandpass filter having a passband centered at about 254 nm and having a bandwidth of about 1 nm to about 100 nm;
an image sensor for collecting the filtered ultraviolet radiation passing through the bandpass filter and for generating an output based on the collected ultraviolet radiation; and
at least one controller configured to generate video display signals based on the output of the image sensor;
a display for viewing the video display signals generated by the at least one controller; and
a storage device configured to store data relating to the video display signals generated by the at least one controller.
17. A method for capturing ultraviolet images on a camera comprising:
illuminating a subject with an ultraviolet lamp;
receiving, on a camera, ultraviolet radiation reflecting off of the subject from the ultraviolet lamp;
filtering the ultraviolet radiation entering the camera with a filter having a passband centered at about 254 nm and a bandwidth of about 1 nm to about 100 nm;
collecting the filtered ultraviolet radiation;
controlling, by at least one controller, gain and integration time of the camera to digitally capture images corresponding to the collected ultraviolet radiation;
generating a video display of the digitally captured images showing the subject illuminated by ultraviolet radiation; and
storing the digitally captured images.
18. The method of claim 17, further comprising adjusting an angle at which the ultraviolet lamp illuminates the subject such that the subject appears darker than a background on the video display.
19. The method of claim 17, further comprising adjusting an angle at which the ultraviolet lamp illuminates the subject such that the subject appears lighter than a background on the video display.
20. The method of claim 17, wherein generating the video display of the digitally captured images further comprises generating a video display having an area greater than two inches by two inches at a resolution of at least 1000 pixels per square inch.
US14/070,328 2012-11-02 2013-11-01 Digital ruvis camera Abandoned US20140125809A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/070,328 US20140125809A1 (en) 2012-11-02 2013-11-01 Digital ruvis camera
US14/518,078 US9294689B2 (en) 2012-11-02 2014-10-20 Digital RUVIS camera

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261721667P 2012-11-02 2012-11-02
US14/070,328 US20140125809A1 (en) 2012-11-02 2013-11-01 Digital ruvis camera

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/518,078 Continuation US9294689B2 (en) 2012-11-02 2014-10-20 Digital RUVIS camera

Publications (1)

Publication Number Publication Date
US20140125809A1 true US20140125809A1 (en) 2014-05-08

Family

ID=50621991

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/070,328 Abandoned US20140125809A1 (en) 2012-11-02 2013-11-01 Digital ruvis camera
US14/518,078 Active US9294689B2 (en) 2012-11-02 2014-10-20 Digital RUVIS camera

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/518,078 Active US9294689B2 (en) 2012-11-02 2014-10-20 Digital RUVIS camera

Country Status (1)

Country Link
US (2) US20140125809A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105608933A (en) * 2015-11-30 2016-05-25 四川东山教学设备有限责任公司 Portable video display platform for teaching
CN111079592A (en) * 2019-12-04 2020-04-28 清华大学 Ceramic fingerprint image generating and extracting method and device
US20210330851A1 (en) * 2020-04-28 2021-10-28 Adam Warwick Bell Face mask with enhanced uv-c sterilization flow path and low resistance to inhalation
US11232283B1 (en) * 2021-05-17 2022-01-25 Vr Media Technology, Inc. Facial recognition system that compares narrow band ultraviolet-absorbing skin chromophores
US11354924B1 (en) 2021-05-17 2022-06-07 Vr Media Technology, Inc. Hand recognition system that compares narrow band ultraviolet-absorbing skin chromophores
US11719572B2 (en) * 2015-05-12 2023-08-08 Daniel Feldman Real time ultraviolet light reflectance imaging

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111242092A (en) * 2015-07-29 2020-06-05 财团法人工业技术研究院 Biological identification device and wearable carrier
CN105303906A (en) * 2015-11-30 2016-02-03 四川东山教学设备有限责任公司 Remote-control video display bench for teaching
CN105303905A (en) * 2015-11-30 2016-02-03 四川东山教学设备有限责任公司 Portable video display bench for teaching
CN105589280B (en) * 2016-02-16 2018-05-29 上海市刑事科学技术研究院 Flexible soft material evidence photographic means and its method
WO2019238363A1 (en) * 2018-06-13 2019-12-19 Asml Netherlands B.V. Metrology apparatus
AU2022232395B2 (en) * 2021-03-10 2023-10-12 Kevin Thomas Als camera system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060133643A1 (en) * 2004-12-16 2006-06-22 Bennett Mischell A Method and system for wide-area ultraviolet detection of forensic evidence
US20070221863A1 (en) * 2005-12-12 2007-09-27 Zipf Edward C Emission detector for the remote detection of explosives and illegal drugs
US20090033774A1 (en) * 2007-07-31 2009-02-05 Nikon Corporation Imaging device
US20090072142A1 (en) * 2007-09-14 2009-03-19 Forensicare Incorporated Scanning system and techniques for medical and/or forensic assessment using the same
US20100025568A1 (en) * 2008-07-16 2010-02-04 Pioneer Corporation Image sensing device
US20120120232A1 (en) * 2009-05-21 2012-05-17 Takashi Nishikawa Shape measuring device, observation device, and image processing method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983846A (en) 1989-08-22 1991-01-08 Arturo M. Rios Portable fingerprint detection method and device
EP0568596A1 (en) 1991-01-24 1993-11-10 The University Of Maryland Method and apparatus for multi-dimensional phase fluorescence lifetime imaging
US5455674A (en) 1992-06-26 1995-10-03 Instruments Sa, Inc. Method and apparatus for forensic examination of surfaces
US20040021086A1 (en) 2002-07-31 2004-02-05 Gregoire Verrier Image intensifying visual scanning device and method
US20040099809A1 (en) 1999-06-08 2004-05-27 Gregoire Verrier Image intensifying visual scanning device and method
US6392238B1 (en) 1999-06-09 2002-05-21 Jobin Yvon Inc. UV-imager system
US6954270B2 (en) 2002-12-20 2005-10-11 Cao Group, Inc. Method for detecting forensic evidence
FR2810737B1 (en) 2000-06-23 2003-04-18 Oreal APPARATUS AND METHOD FOR EXAMINING A SURFACE
US7186990B2 (en) 2002-01-22 2007-03-06 Microbiosystems, Limited Partnership Method and apparatus for detecting and imaging the presence of biological materials
DE102004009104A1 (en) 2004-02-25 2005-09-22 Berthold Technologies Gmbh & Co. Kg Method and device for detecting ionizing radiation
WO2006073450A2 (en) 2004-04-27 2006-07-13 The Trustees Of The University Of Pennsylvania Polarization and reflection based non-contact latent fingerprint imaging and lifting
US7050715B1 (en) 2004-07-22 2006-05-23 Carrington John H Forensic visualization and recording apparatus
US7589309B2 (en) 2006-03-22 2009-09-15 Ikonisys, Inc. Imager system for an automated microscope
JP2008032912A (en) * 2006-07-27 2008-02-14 Dainippon Printing Co Ltd Method of manufacturing microlens
US8466964B2 (en) * 2007-04-02 2013-06-18 Opto-Knowledge Systems, Inc. Multispectral uncooled thermal infrared camera system
CN101414592B (en) * 2007-10-18 2010-04-14 鸿富锦精密工业(深圳)有限公司 Image sensor encapsulation
US20090118600A1 (en) * 2007-11-02 2009-05-07 Ortiz Joseph L Method and apparatus for skin documentation and analysis
TW201329607A (en) * 2012-01-02 2013-07-16 Lumos Technology Co Ltd Short-distance light source apparatus for image capturing device and image capturing device having the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060133643A1 (en) * 2004-12-16 2006-06-22 Bennett Mischell A Method and system for wide-area ultraviolet detection of forensic evidence
US20070221863A1 (en) * 2005-12-12 2007-09-27 Zipf Edward C Emission detector for the remote detection of explosives and illegal drugs
US20090033774A1 (en) * 2007-07-31 2009-02-05 Nikon Corporation Imaging device
US20090072142A1 (en) * 2007-09-14 2009-03-19 Forensicare Incorporated Scanning system and techniques for medical and/or forensic assessment using the same
US20100025568A1 (en) * 2008-07-16 2010-02-04 Pioneer Corporation Image sensing device
US20120120232A1 (en) * 2009-05-21 2012-05-17 Takashi Nishikawa Shape measuring device, observation device, and image processing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11719572B2 (en) * 2015-05-12 2023-08-08 Daniel Feldman Real time ultraviolet light reflectance imaging
CN105608933A (en) * 2015-11-30 2016-05-25 四川东山教学设备有限责任公司 Portable video display platform for teaching
CN111079592A (en) * 2019-12-04 2020-04-28 清华大学 Ceramic fingerprint image generating and extracting method and device
US20210330851A1 (en) * 2020-04-28 2021-10-28 Adam Warwick Bell Face mask with enhanced uv-c sterilization flow path and low resistance to inhalation
US11232283B1 (en) * 2021-05-17 2022-01-25 Vr Media Technology, Inc. Facial recognition system that compares narrow band ultraviolet-absorbing skin chromophores
US11354924B1 (en) 2021-05-17 2022-06-07 Vr Media Technology, Inc. Hand recognition system that compares narrow band ultraviolet-absorbing skin chromophores

Also Published As

Publication number Publication date
US9294689B2 (en) 2016-03-22
US20150097963A1 (en) 2015-04-09

Similar Documents

Publication Publication Date Title
US9294689B2 (en) Digital RUVIS camera
US9091903B2 (en) Optimized movable IR filter in cameras
Tocci et al. A versatile HDR video production system
JP5545016B2 (en) Imaging device
US7119842B2 (en) Image capturing device including a spectrally-selectively transmissive diaphragm
US7907780B2 (en) Method for collecting data for color measurements from a digital electronic image capturing device or system
US20060092297A1 (en) Method and apparatus for removing hot pixels in a digital camera
JP6315759B2 (en) Fluorescence detection device and vacuum cleaner
TW200903792A (en) Image sensor
JP2006211416A (en) Image processor and method
JP5224804B2 (en) Imaging device
JP2016534610A (en) Photography apparatus having a plurality of camera modules
US8265352B1 (en) Photographic fingerprint collection and imaging system
JP2006050337A (en) Imaging apparatus, imaging method, and imaging control program
US20090219403A1 (en) Compact passive low-light imaging apparatus
JP3589962B2 (en) Color imaging system with anti-aliasing function
WO2019065555A1 (en) Image capturing device, information acquisition method and information acquisition program
JP4709126B2 (en) Imaging apparatus, method, and program
JP2003333608A (en) Field sequential television camera device for photographing skin
JP5112702B2 (en) Imaging apparatus, method, and program
WO2019065554A1 (en) Image capturing device, information acquisition method and information acquisition program
JP4010360B2 (en) Spectral imaging device
Taplin et al. Practical spectral capture systems for museum imaging
WO2005043890A1 (en) Imaging device
KR20060039800A (en) Camera comprising luminance sensor

Legal Events

Date Code Title Description
AS Assignment

Owner name: SYNTRONICS, LLC, VIRGINIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THORSTED, MICHAEL K;REEL/FRAME:031545/0796

Effective date: 20131104

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION